WO2021160046A1 - 参考信号的时频资源配置方法、系统、电子设备和介质 - Google Patents

参考信号的时频资源配置方法、系统、电子设备和介质 Download PDF

Info

Publication number
WO2021160046A1
WO2021160046A1 PCT/CN2021/075640 CN2021075640W WO2021160046A1 WO 2021160046 A1 WO2021160046 A1 WO 2021160046A1 CN 2021075640 W CN2021075640 W CN 2021075640W WO 2021160046 A1 WO2021160046 A1 WO 2021160046A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time
symbol
resources
signals according
Prior art date
Application number
PCT/CN2021/075640
Other languages
English (en)
French (fr)
Inventor
周化雨
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2021160046A1 publication Critical patent/WO2021160046A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention belongs to the technical field of time-frequency resource configuration of reference signals, and in particular relates to a method, system, electronic equipment and medium for time-frequency resource configuration of reference signals.
  • the UE When a UE (user equipment, user equipment) is in an idle state (Idle mode, RRC IDLE), the UE needs to monitor the paging (paging) PDCCH (Physical Downlink Control Channel). Generally speaking, the UE needs to determine the paging PDCCH monitoring occasion (paging PDCCH monitoring occasion) through PF (Paging Frame), PO (Paging Occasion, paging occasion) and paging search space set (paging search space set) configuration. ). In 5G NR (a communication standard), the UE relies on the synchronization signal block to perform AGC (Automatic Gain Control) adjustment, channel tracking (including time-frequency tracking and/or time-frequency synchronization, etc.) and measurement.
  • AGC Automatic Gain Control
  • the sync signal block burst Since the sync signal block burst does not exist in every subframe or every time slot, the sync signal block burst is sent in a certain period of time, such as 5 milliseconds, 10 milliseconds, 20 milliseconds, etc. Therefore, generally speaking, The UE needs to wake up at least before the last synchronization signal block burst before the PO, and use the last synchronization signal block burst to perform AGC adjustment and channel tracking, or perform AGC adjustment, channel tracking and measurement. When the UE has experienced a long sleep, for example, the interval between the two POs that the UE needs to monitor due to the PO configuration is large, and the UE may need to wake up before the last two synchronization signal blocks burst before the PO.
  • the technical problem to be solved by the present invention is to overcome the disadvantage of relatively large system overhead in the prior art, and to provide a time-frequency resource configuration method, system, electronic device and medium for reference signals.
  • the present invention provides a time-frequency resource configuration method for reference signals, which includes the following steps:
  • the configuration information determine whether the time-frequency resource of the reference signal or whether it is valid.
  • the reference signal resource or reference resource set is determined.
  • multiple reference signal resources or reference resource sets are determined.
  • multiple reference signal resources or reference resource sets have the same period.
  • multiple reference signal resources or reference resource sets have the same bandwidth.
  • multiple reference signal resources or reference resource sets have the same resource block location.
  • multiple reference signal resources or reference resource sets have the same time slot.
  • a reference signal resource has a preset starting position of a subcarrier.
  • multiple reference signal resources have a preset lowest subcarrier starting position.
  • a reference signal resource has a preset symbol position or symbol start position.
  • multiple reference signal resources have a preset minimum symbol position or symbol start position.
  • a reference signal resource set has a preset starting position of a subcarrier.
  • a reference signal resource set has a preset symbol position or symbol start position.
  • the reference signal resources in a reference signal resource set have the same starting position of the subcarrier.
  • the reference signal resources in a reference signal resource set have the same symbol position or symbol start position.
  • the preset symbol positions are symbol ⁇ 4,8 ⁇ , symbol ⁇ 5,9 ⁇ , symbol ⁇ 6,10 ⁇ , symbol ⁇ 7,11 ⁇ .
  • multiple reference signal resource sets have preset lowest subcarrier starting positions.
  • multiple reference signal resource sets have preset minimum symbol positions or symbol start positions.
  • the reference signal is valid after the first moment, and the first moment is before the paging frame or paging occasion or the first paging PDCCH (Physical Downlink Control Channel) monitoring time, and The distance from the beginning of the paging frame or the paging occasion or the first paging PDCCH monitoring occasion is the first preset offset.
  • PDCCH Physical Downlink Control Channel
  • the reference signal is valid after the second moment, the second moment is after the paging indicator physical downlink control channel, and the distance from the paging indicator PDCCH is the second preset offset.
  • the time-frequency resource configuration method of the reference signal further includes the following steps:
  • the time-frequency resource configuration method of the reference signal further includes the following steps:
  • the paging indication information indicates that the reference signal is valid, it is determined that the reference signal is valid.
  • the time-frequency resource configuration method of the reference signal further includes the following steps:
  • the paging indication information indicates that it is necessary to monitor the paging PDCCH, it is determined that the reference signal is valid.
  • the present invention also provides a reference signal time-frequency resource configuration system, including a signal determining unit;
  • the signal determining unit is used to determine the time-frequency resource of the reference signal or whether it is valid according to the configuration information.
  • the reference signal resource or reference resource set is determined.
  • multiple reference signal resources or reference resource sets are determined.
  • multiple reference signal resources or reference resource sets have the same period.
  • multiple reference signal resources or reference resource sets have the same bandwidth.
  • multiple reference signal resources or reference resource sets have the same resource block location.
  • multiple reference signal resources or reference resource sets have the same time slot.
  • a reference signal resource has a preset starting position of a subcarrier.
  • multiple reference signal resources have preset lowest subcarrier start positions.
  • a reference signal resource has a preset symbol position or symbol start position.
  • multiple reference signal resources have a preset minimum symbol position or symbol start position.
  • a reference signal resource set has a preset starting position of a subcarrier.
  • a reference signal resource set has a preset symbol position or symbol start position.
  • the reference signal resources in a reference signal resource set have the same starting position of the subcarrier.
  • each reference signal resource in a reference signal resource set has the same symbol position or symbol start position.
  • the preset symbol positions are symbol ⁇ 4,8 ⁇ , symbol ⁇ 5,9 ⁇ , symbol ⁇ 6,10 ⁇ , symbol ⁇ 7,11 ⁇ .
  • multiple reference signal resource sets have preset lowest subcarrier starting positions.
  • multiple reference signal resource sets have preset minimum symbol positions or symbol start positions.
  • the signal determining unit is further configured to determine that the reference signal is valid after the first moment, which is before the paging frame or paging occasion or the first paging PDCCH monitoring opportunity, and is associated with the paging frame or The distance at which the paging occasion or the first paging PDCCH monitoring occasion starts is the first preset offset.
  • the reference signal is valid after the second moment, the second moment is after the paging indicator physical downlink control channel, and the distance from the paging indicator PDCCH is the second preset offset.
  • the signal determining unit is further configured to obtain paging indication information through the paging indication PDCCH.
  • the signal determining unit is further configured to determine that the reference signal is valid.
  • the signal determining unit is further configured to determine that the reference signal is valid.
  • the present invention also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • the processor implements the time-frequency resource allocation method of the reference signal of the present invention when the processor executes the computer program.
  • the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the time-frequency resource allocation method of the reference signal of the present invention are realized.
  • the positive progress effect of the present invention is that the present invention realizes the optimization of system overhead.
  • FIG. 1 is a flowchart of a time-frequency resource configuration method of a reference signal according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a time-frequency resource configuration method of a reference signal according to Embodiment 8 of the present invention.
  • FIG. 3 is a schematic structural diagram of an electronic device according to Embodiment 9 of the present invention.
  • FIG. 4 is a schematic structural diagram of a reference signal time-frequency resource allocation system according to Embodiment 11 of the present invention.
  • This embodiment provides a time-frequency resource configuration method for reference signals.
  • the time-frequency resource configuration method of the reference signal includes the following steps:
  • Step S101 Obtain configuration information.
  • Step S102 Determine whether the time-frequency resource of the reference signal or whether it is valid according to the configuration information.
  • step S102 the time-frequency resource of the reference signal is determined according to the configuration information.
  • step S102 it is determined whether the time-frequency resource of the reference signal is valid according to the configuration information.
  • this embodiment provides a time-frequency resource configuration method for reference signals.
  • multiple reference signal resources or reference signal resource sets are determined.
  • multiple reference signal resources or reference signal resource sets may form a reference signal burst, which corresponds to sending multiple reference signals on multiple beams.
  • a reference signal can be sent on each beam.
  • Multiple reference signal resources form a reference signal burst, suitable for CSI-RS for mobility (channel state information-reference signal for mobility) or CSI-RS (channel state information-reference signal for RRM/RLM measurement) , Channel State Information-Reference Signal), because generally a CSI-RS for mobility or a CSI-RS used for RRM/RLM measurement has a reference signal resource.
  • Multiple reference signal resource sets form a reference signal burst, which is suitable for TRS (Tracking Reference Signal, tracking reference signal), because in general, a TRS has a reference signal resource set.
  • this embodiment provides a time-frequency resource configuration method for reference signals.
  • multiple reference signal resources or reference resource sets have the same period. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • multiple reference signal resources or reference resource sets have the same period. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • multiple reference signal resources or reference resource sets have the same bandwidth. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • multiple reference signal resources or reference resource sets have the same resource block location. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • multiple reference signal resources or reference resource sets have the same time slot. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • this embodiment provides a time-frequency resource configuration method for reference signals.
  • a reference signal resource has a predetermined (predetermined, pre-defined or pre-set) subcarrier starting position.
  • Different synchronization signal blocks can correspond to different reference signal resources, which are suitable for CSI-RS for mobility or CSI-RS for RRM/RLM measurement.
  • One synchronization signal block can correspond to one reference signal resource. For example, when a synchronization signal block burst contains 8 synchronization signal blocks, the synchronization signal block burst can be associated with 8 reference signal resources, and each reference signal resource has a preset starting position of the subcarrier, which can be passed through Different starting positions of subcarriers distinguish different reference signal resources.
  • multiple reference signal resources have a lowest preset subcarrier starting position.
  • the lowest preset subcarrier start position is used as the reference start position, and the subcarrier start position of each reference signal resource is the reference start position plus an offset.
  • multiple reference signal resources can be configured with one parameter to reduce signaling overhead.
  • this embodiment provides a time-frequency resource configuration method for reference signals.
  • a reference signal resource has a preset symbol position or symbol start position. This symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • Different synchronization signal blocks can correspond to different reference signal resources, which are suitable for CSI-RS for mobility or CSI-RS for RRM/RLM measurement.
  • One synchronization signal block can correspond to one reference signal resource.
  • a synchronization signal block burst contains 8 synchronization signal blocks
  • the synchronization signal block burst is associated with 8 reference signal resources, and each reference signal resource has a preset symbol position or symbol start position, so that Different reference signal resources are distinguished by different symbol positions or symbol start positions.
  • multiple reference signal resources have a minimum preset symbol position or symbol start position.
  • Multiple reference signal resources use the smallest preset symbol position or symbol start as the reference position or reference start position, and the symbol position or symbol start position of each reference signal resource is the reference start position plus an offset quantity.
  • multiple reference signal resources can be configured with one parameter to reduce signaling overhead.
  • this embodiment provides a time-frequency resource configuration method for reference signals.
  • a reference signal resource set has a preset starting position of a subcarrier.
  • Different synchronization signal blocks can correspond to different reference resource sets, which are suitable for TRS.
  • One synchronization signal block can correspond to one reference resource set. For example, when a synchronization signal block burst contains 8 synchronization signal blocks, the synchronization signal block burst is associated with 8 reference signal resource sets, and each reference signal resource set has a preset subcarrier starting position, so that Different reference signal resource sets are distinguished by different starting positions of subcarriers.
  • the reference signal resources in a reference signal resource set have the same starting position of the subcarrier. This can reduce the overhead of configuration signaling.
  • multiple reference signal resource sets have a lowest preset subcarrier starting position.
  • the lowest preset subcarrier start position is used as the reference start position, and the subcarrier start position of each reference signal resource set is the reference start position plus an offset.
  • multiple reference signal resource sets can be configured with one parameter to reduce signaling overhead.
  • this embodiment provides a time-frequency resource configuration method for reference signals.
  • a reference signal resource set has a preset symbol position or symbol start position. This symbol is an OFDM symbol.
  • Different synchronization signal blocks can correspond to different reference resource sets, and are suitable for TRS (Tracking Reference Signal).
  • TRS Track Reference Signal
  • One synchronization signal block can correspond to one reference resource set. For example, when a synchronization signal block burst includes 8 synchronization signal blocks, the synchronization signal block burst is associated with 8 reference signal resource sets, and each reference signal resource set has a preset symbol position or symbol start position, In this way, different reference signal resource sets can be distinguished by different symbol positions or symbol start positions.
  • each reference signal resource in a reference signal resource set has the same symbol position or symbol start position. This can reduce the overhead of configuration signaling.
  • one reference signal resource set has two reference signal resources. Further, the two reference signal resources have different symbol positions.
  • the preset symbol positions are symbol ⁇ 4,8 ⁇ , symbol ⁇ 5,9 ⁇ , symbol ⁇ 6,10 ⁇ , symbol ⁇ 7,11 ⁇ ; or, the preset symbol starts from The starting position is symbol 4, symbol 5, symbol 6, and symbol 7.
  • the number indicates the symbol number or index of the symbol in the time slot, starting from 0. In this way, by distinguishing different symbol positions or symbol start positions, there can be 4 reference signal resource sets in one time slot. This way resources can be more concentrated.
  • the preset symbol positions are symbol ⁇ 0,4 ⁇ , symbol ⁇ 1,5 ⁇ , symbol ⁇ 2,6 ⁇ , symbol ⁇ 3,7 ⁇ ; or, the preset symbol starts from The starting position is symbol 0, symbol 1, symbol 2, symbol 3. This way resources can be more concentrated.
  • the preset symbol positions are symbol ⁇ 6,10 ⁇ , symbol ⁇ 7,11 ⁇ , symbol ⁇ 8,12 ⁇ , symbol ⁇ 9,13 ⁇ ; or, the preset symbol starts from The starting position is symbol 6, symbol 7, symbol 8, symbol 9. This way resources can be more concentrated.
  • the preset symbol start position is any symbol. This is more flexible.
  • multiple reference signal resource sets have a minimum preset symbol position or symbol start position.
  • Multiple reference signal resource sets use the smallest preset symbol position or symbol start as the reference position or reference start position, and the symbol position or symbol start position of each reference signal resource set is the reference start position plus one Offset.
  • multiple reference signal resource sets can be configured with one parameter to reduce signaling overhead.
  • this embodiment provides a time-frequency resource configuration method for reference signals.
  • step S102 it is also determined that the reference signal is valid after the first moment.
  • the first moment is before the paging frame or the paging occasion or the first paging PDCCH monitoring opportunity, and the distance from the paging frame or the paging occasion or the first paging PDCCH monitoring opportunity is the first preset offset quantity.
  • whether the reference signal is valid is related to the paging frame or the paging occasion or the start of the first paging PDCCH monitoring occasion, which can reduce the signaling overhead.
  • step S102 it is further determined that the reference signal is valid after the second moment.
  • the second moment is after the paging indicator physical downlink control channel and the distance from the paging indicator PDCCH is the second preset offset.
  • the time-frequency resource configuration method of the reference signal further includes the following steps:
  • Step S103 Obtain paging indication information through the paging indication PDCCH.
  • the time-frequency resource configuration method of the reference signal further includes the following steps:
  • Step S104 If the paging indication information indicates that the reference signal is valid, it is determined that the reference signal is valid.
  • the time-frequency resource configuration method of the reference signal further includes the following steps:
  • Step S105 If the paging indication information indicates that it is necessary to monitor the paging PDCCH, it is determined that the reference signal is valid.
  • the UE obtains the paging indication information by indicating the PDCCH through paging. If the paging indication information indicates that the reference signal is valid, the UE determines that the reference signal is valid. If the paging indication information indicates that the UE needs to monitor the paging PDCCH, the UE determines that the reference signal is valid. In this way, whether the reference signal is valid can be determined through dynamic signaling (dynamic signaling), where the dynamic signaling may be Down Control Information (DCI) signaling.
  • DCI Down Control Information
  • FIG. 3 is a schematic structural diagram of an electronic device provided by this embodiment.
  • the electronic device includes a memory, a processor, and a computer program that is stored on the memory and can run on the processor.
  • the processor implements the reference signal of any one of Embodiments 1 to 8 when the program is executed. Time-frequency resource allocation method.
  • the electronic device 30 shown in FIG. 3 is only an example, and should not bring any limitation to the function and application scope of the embodiment of the present invention.
  • the electronic device 30 may be in the form of a general-purpose computing device, for example, it may be a server device.
  • the components of the electronic device 30 may include, but are not limited to: the above-mentioned at least one processor 31, the above-mentioned at least one memory 32, and a bus 33 connecting different system components (including the memory 32 and the processor 31).
  • the bus 33 includes a data bus, an address bus, and a control bus.
  • the memory 32 may include a volatile memory, such as a random access memory (RAM) 321 and/or a cache memory 322, and may further include a read-only memory (ROM) 323.
  • RAM random access memory
  • ROM read-only memory
  • the memory 32 may also include a program/utility tool 325 having a set of (at least one) program module 324.
  • program module 324 includes but is not limited to: an operating system, one or more application programs, other program modules, and program data. Each of the examples or some combination may include the realization of a network environment.
  • the processor 31 executes various functional applications and data processing by running a computer program stored in the memory 32, such as the reference signal time-frequency resource configuration method in Embodiment 1 of the present invention.
  • the electronic device 30 may also communicate with one or more external devices 34 (such as keyboards, pointing devices, etc.). This communication can be performed through an input/output (I/O) interface 35.
  • the model-generated device 30 may also communicate with one or more networks (for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 36. As shown in the figure, the network adapter 36 communicates with other modules of the device 30 generated by the model through the bus 33.
  • networks for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the time-frequency resource configuration method of the reference signal of any one of Embodiments 1 to 8 is implemented A step of.
  • the readable storage medium may more specifically include but not limited to: portable disk, hard disk, random access memory, read only memory, erasable programmable read only memory, optical storage device, magnetic storage device or any of the above The right combination.
  • the present invention can also be implemented in the form of a program product, which includes program code.
  • the program product runs on a terminal device, the program code is used to make the terminal device execute the implementation. Steps of the time-frequency resource configuration method of the reference signal in any one of Embodiment 1 to Embodiment 8.
  • program code used to execute the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent
  • the software package is executed, partly on the user’s device, partly on the remote device, or entirely on the remote device.
  • the reference signal time-frequency resource configuration system includes an information acquisition unit 201 and a signal determination unit 202.
  • the information obtaining unit 201 is used to obtain configuration information;
  • the signal determining unit 202 is used to determine the time-frequency resource of the reference signal or whether it is valid according to the configuration information.
  • the signal determining unit 202 is configured to determine the resource of the reference signal according to the configuration information.
  • the signal determining unit 202 is configured to determine whether the resource of the reference signal is valid according to the configuration information.
  • this embodiment provides a reference signal time-frequency resource allocation system.
  • the signal determining unit 202 is configured to determine multiple reference signal resources or reference signal resource sets.
  • multiple reference signal resources or reference signal resource sets may form a reference signal burst, which corresponds to sending multiple reference signals on multiple beams.
  • a reference signal can be sent on each beam.
  • Multiple reference signal resources form a reference signal burst, suitable for CSI-RS for mobility (channel state information-reference signal for mobility) or CSI-RS (channel state information-reference signal for RRM/RLM measurement) , Channel State Information-Reference Signal), because generally a CSI-RS for mobility or a CSI-RS used for RRM/RLM measurement has a reference signal resource.
  • Multiple reference signal resource sets form a reference signal burst, which is suitable for TRS (Tracking Reference Signal, tracking reference signal), because in general, a TRS has a reference signal resource set.
  • this embodiment provides a reference signal time-frequency resource allocation system.
  • multiple reference signal resources or reference resource sets have the same period. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • multiple reference signal resources or reference resource sets have the same period. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • multiple reference signal resources or reference resource sets have the same bandwidth. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • multiple reference signal resources or reference resource sets have the same resource block location. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • multiple reference signal resources or reference resource sets have the same time slot. In this way, the overhead of configuration signaling can be reduced, or the processing complexity of the UE can be reduced.
  • this embodiment provides a reference signal time-frequency resource allocation system.
  • a reference signal resource has a predetermined (predetermined, pre-defined or pre-set) subcarrier starting position.
  • Different synchronization signal blocks can correspond to different reference signal resources, which are suitable for CSI-RS for mobility or CSI-RS for RRM/RLM measurement.
  • One synchronization signal block can correspond to one reference signal resource. For example, when a synchronization signal block burst contains 8 synchronization signal blocks, the synchronization signal block burst can be associated with 8 reference signal resources, and each reference signal resource has a preset starting position of the subcarrier, which can be passed through Different starting positions of subcarriers distinguish different reference signal resources.
  • multiple reference signal resources have a lowest preset subcarrier starting position.
  • the lowest preset subcarrier start position is used as the reference start position, and the subcarrier start position of each reference signal resource is the reference start position plus an offset.
  • multiple reference signal resources can be configured with one parameter to reduce signaling overhead.
  • this embodiment provides a reference signal time-frequency resource allocation system.
  • a reference signal resource has a preset symbol position or symbol start position. This symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • Different synchronization signal blocks can correspond to different reference signal resources, which are suitable for CSI-RS for mobility or CSI-RS for RRM/RLM measurement.
  • One synchronization signal block can correspond to one reference signal resource.
  • a synchronization signal block burst contains 8 synchronization signal blocks
  • the synchronization signal block burst is associated with 8 reference signal resources, and each reference signal resource has a preset symbol position or symbol start position, so that Different reference signal resources are distinguished by different symbol positions or symbol start positions.
  • multiple reference signal resources have a minimum preset symbol position or symbol start position.
  • Multiple reference signal resources use the smallest preset symbol position or symbol start as the reference position or reference start position, and the symbol position or symbol start position of each reference signal resource is the reference start position plus an offset quantity.
  • multiple reference signal resources can be configured with one parameter to reduce signaling overhead.
  • this embodiment provides a reference signal time-frequency resource allocation system.
  • a reference signal resource set has a preset starting position of a subcarrier.
  • Different synchronization signal blocks can correspond to different reference resource sets, which are suitable for TRS.
  • One synchronization signal block can correspond to one reference resource set. For example, when a synchronization signal block burst contains 8 synchronization signal blocks, the synchronization signal block burst is associated with 8 reference signal resource sets, and each reference signal resource set has a preset subcarrier starting position, so that Different reference signal resource sets are distinguished by different starting positions of subcarriers.
  • the reference signal resources in a reference signal resource set have the same starting position of the subcarrier. This can reduce the overhead of configuration signaling.
  • multiple reference signal resource sets have a lowest preset subcarrier starting position.
  • the lowest preset subcarrier start position is used as the reference start position, and the subcarrier start position of each reference signal resource set is the reference start position plus an offset.
  • multiple reference signal resource sets can be configured with one parameter to reduce signaling overhead.
  • this embodiment provides a reference signal time-frequency resource allocation system.
  • a reference signal resource set has a preset symbol position or symbol start position. This symbol is an OFDM symbol.
  • Different synchronization signal blocks can correspond to different reference resource sets, and are suitable for TRS (Tracking Reference Signal).
  • TRS Track Reference Signal
  • One synchronization signal block can correspond to one reference resource set. For example, when a synchronization signal block burst includes 8 synchronization signal blocks, the synchronization signal block burst is associated with 8 reference signal resource sets, and each reference signal resource set has a preset symbol position or symbol start position, In this way, different reference signal resource sets can be distinguished by different symbol positions or symbol start positions.
  • each reference signal resource in a reference signal resource set has the same symbol position or symbol start position. This can reduce the overhead of configuration signaling.
  • one reference signal resource set has two reference signal resources. Further, the two reference signal resources have different symbol positions.
  • the preset symbol positions are symbol ⁇ 4,8 ⁇ , symbol ⁇ 5,9 ⁇ , symbol ⁇ 6,10 ⁇ , symbol ⁇ 7,11 ⁇ ; or, the preset symbol starts from The starting position is symbol 4, symbol 5, symbol 6, and symbol 7.
  • the number indicates the symbol number or index of the symbol in the time slot, starting from 0. In this way, by distinguishing different symbol positions or symbol start positions, there can be 4 reference signal resource sets in one time slot. This way resources can be more concentrated.
  • the preset symbol positions are symbol ⁇ 0,4 ⁇ , symbol ⁇ 1,5 ⁇ , symbol ⁇ 2,6 ⁇ , symbol ⁇ 3,7 ⁇ ; or, the preset symbol starts from The starting position is symbol 0, symbol 1, symbol 2, symbol 3. This way resources can be more concentrated.
  • the preset symbol positions are symbol ⁇ 6,10 ⁇ , symbol ⁇ 7,11 ⁇ , symbol ⁇ 8,12 ⁇ , symbol ⁇ 9,13 ⁇ ; or, the preset symbol starts from The starting position is symbol 6, symbol 7, symbol 8, symbol 9. This way resources can be more concentrated.
  • the preset symbol start position is any symbol. This is more flexible.
  • multiple reference signal resource sets have a minimum preset symbol position or symbol start position.
  • Multiple reference signal resource sets use the smallest preset symbol position or symbol start as the reference position or reference start position, and the symbol position or symbol start position of each reference signal resource set is the reference start position plus one Offset.
  • multiple reference signal resource sets can be configured with one parameter to reduce signaling overhead.
  • this embodiment provides a reference signal time-frequency resource allocation system.
  • the signal determining unit 202 is further configured to determine that the reference signal is valid after the first moment.
  • the first moment is before the paging frame or the paging occasion or the first paging PDCCH monitoring opportunity, and the distance from the paging frame or the paging occasion or the first paging PDCCH monitoring opportunity is the first preset offset quantity.
  • whether the reference signal is valid is related to the paging frame or the paging occasion or the start of the first paging PDCCH monitoring occasion, which can reduce the signaling overhead.
  • the signal determining unit 202 is further configured to determine that the reference signal is valid after the second moment.
  • the second moment is after the paging indicator physical downlink control channel and the distance from the paging indicator PDCCH is the second preset offset.
  • the signal determining unit 202 is configured to obtain the paging indication information through the paging indication PDCCH.
  • the signal determining unit 202 is configured to: if the paging indication information indicates that the reference signal is valid, determine that the reference signal is valid.
  • the signal determining unit 202 is configured to determine that the reference signal is valid if the paging indication information indicates that it is necessary to monitor the paging PDCCH.
  • the UE obtains the paging indication information by indicating the PDCCH through paging. If the paging indication information indicates that the reference signal is valid, the UE determines that the reference signal is valid. If the paging indication information indicates that the UE needs to monitor the paging PDCCH, the UE determines that the reference signal is valid. In this way, whether the reference signal is valid can be determined through dynamic signaling (dynamic signaling), where the dynamic signaling may be Down Control Information (DCI) signaling.
  • DCI Down Control Information

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种参考信号的时频资源配置方法、系统、电子设备和介质,其中参考信号的时频资源配置方法,包括以下步骤:根据配置信息,确定参考信号的时频资源或是否有效。本发明实现了系统开销的优化。

Description

参考信号的时频资源配置方法、系统、电子设备和介质
本申请要求申请日为2020年2月14日的中国专利申请202010093379.0的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于参考信号的时频资源配置技术领域,尤其涉及一种参考信号的时频资源配置方法、系统、电子设备和介质。
背景技术
当UE(user equipment,用户设备)处在空闲态(Idle mode,RRC IDLE)时,UE需要监听paging(寻呼)PDCCH(Physical Downlink Control Channel,物理下行控制信道)。一般来说,UE需要通过PF(Paging Frame,寻呼帧)、PO(Paging Occasion,寻呼时机)和paging search space set(寻呼搜索空间集合)配置来确定paging PDCCH监听时机(paging PDCCH monitoring occasion)。在5G NR(一种通信标准)中,UE依赖于同步信号块进行AGC(自动增益控制)调整、信道跟踪(包括时频跟踪和/或时频同步等)和测量。由于同步信号块突发并不是每个子帧或每个时隙中都存在,同步信号块突发以某个时间周期被发送,例如5毫秒、10毫秒、20毫秒等,因此,一般来说,UE至少需要在PO前的最后一个同步信号块突发前醒来,并使用最后一个同步信号块突发进行AGC调整和信道跟踪,或者进行AGC调整、信道跟踪和测量。当UE经历了长时间睡眠,例如PO配置导致的UE需要监听的两个PO间隔较大,UE可能需要在PO前的最后两个同步信号块突发前醒来。使用一个同步信号块突发进行AGC调整,使用另一个同步信号块突发进行信道跟踪;或者,使用一个同步信号块突发进行AGC调整和信道跟踪,使用另一个同步信号块突发进行测量。现有技术的系统开销较大。
发明内容
本发明要解决的技术问题是为了克服现有技术中的系统开销较大的缺陷,提供一种参考信号的时频资源配置方法、系统、电子设备和介质。
本发明是通过下述技术方案来解决上述技术问题:
本发明提供一种参考信号的时频资源配置方法,包括以下步骤:
根据配置信息,确定参考信号的时频资源或是否有效。
可选地,确定参考信号资源或参考资源集合。
可选地,确定多个参考信号资源或参考资源集合。
可选地,多个参考信号资源或参考资源集合具有相同的周期。
可选地,多个参考信号资源或参考资源集合具有相同的带宽。
可选地,多个参考信号资源或参考资源集合具有相同的资源块位置。
可选地,多个参考信号资源或参考资源集合具有相同的时隙。
可选地,一个参考信号资源具有一个预设的子载波起始位置。
可选地,多个参考信号资源具有一个预设的最低的子载波起始位置。
可选地,一个参考信号资源具有一个预设的符号位置或符号起始位置。
可选地,多个参考信号资源具有一个预设的最小的符号位置或符号起始位置。
可选地,一个参考信号资源集合具有一个预设的子载波起始位置。
可选地,一个参考信号资源集合具有一个预设的符号位置或符号起始位置。
可选地,一个参考信号资源集合内的参考信号资源具有相同的子载波起始位置。
可选地,一个参考信号资源集合内的参考信号资源具有相同的符号位置或符号起始位置。
可选地,预设符号位置为符号{4,8},符号{5,9},符号{6,10},符号{7,11}。
可选地,多个参考信号资源集合具有预设的最低的子载波起始位置。
可选地,多个参考信号资源集合具有预设的最小的符号位置或符号起始位置。
可选地,确定参考信号在第一时刻之后是有效的,第一时刻在寻呼帧或寻呼时机或第一个寻呼PDCCH(Physical Downlink Control Channel,物理下行控制信道)监听时机之前、且与寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机开始的距离为第一预设偏移量。
可选地,确定参考信号在第二时刻之后是有效的,第二时刻为寻呼指示物理下行控制信道之后、且与寻呼指示PDCCH的距离为第二预设偏移量。
可选地,参考信号的时频资源配置方法还包括以下步骤:
通过寻呼指示PDCCH获取寻呼指示信息。
可选地,参考信号的时频资源配置方法还包括以下步骤:
若寻呼指示信息指示参考信号有效,则确定参考信号是有效的。
可选地,参考信号的时频资源配置方法还包括以下步骤:
若寻呼指示信息指示需要监听寻呼PDCCH,则确定参考信号是有效的。
本发明还提供一种参考信号的时频资源配置系统,包括信号确定单元;
信号确定单元用于根据配置信息,确定参考信号的时频资源或是否有效。
可选地,确定参考信号资源或参考资源集合。
可选地,确定多个参考信号资源或参考资源集合。
可选地,多个参考信号资源或参考资源集合具有相同的周期。
可选地,多个参考信号资源或参考资源集合具有相同的带宽。
可选地,多个参考信号资源或参考资源集合具有相同的资源块位置。
可选地,多个参考信号资源或参考资源集合具有相同的时隙。
可选地,一个参考信号资源具有一个预设的子载波起始位置。
可选地,多个参考信号资源具有预设的最低的子载波起始位置。
可选地,一个参考信号资源具有一个预设的符号位置或符号起始位置。
可选地,多个参考信号资源具有一个预设的最小的符号位置或符号起始位置。
可选地,一个参考信号资源集合具有一个预设的子载波起始位置。
可选地,一个参考信号资源集合具有一个预设的符号位置或符号起始位置。
可选地,一个参考信号资源集合内的参考信号资源具有相同的子载波起始位置。
可选地,一个参考信号资源集合内的每一个参考信号资源具有相同的符号位置或符号起始位置。
可选地,预设的符号位置为符号{4,8},符号{5,9},符号{6,10},符号{7,11}。
可选地,多个参考信号资源集合具有预设的最低的子载波起始位置。
可选地,多个参考信号资源集合具有预设的最小的符号位置或符号起始位置。
可选地,信号确定单元还用于确定参考信号在第一时刻之后是有效的,第一时刻在寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机之前、且与寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机开始的距离为第一预设偏移量。
可选地,确定参考信号在第二时刻之后是有效的,第二时刻为寻呼指示物理下行控制信道之后、且与寻呼指示PDCCH的距离为第二预设偏移量。
可选地,信号确定单元还用于通过寻呼指示PDCCH获取寻呼指示信息。
可选地,若寻呼指示信息指示参考信号有效,则信号确定单元还用于确定参考信号是有效的。
可选地,若寻呼指示信息指示需要监听寻呼PDCCH,则信号确定单元还用于确定参考信号是有效的。
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现本发明的参考信号的时频资源配置 方法。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现本发明的参考信号的时频资源配置方法的步骤。
本发明的积极进步效果在于:本发明实现了系统开销的优化。
附图说明
图1为本发明的实施例1的参考信号的时频资源配置方法的流程图。
图2为本发明的实施例8的参考信号的时频资源配置方法的流程图。
图3为本发明的实施例9的电子设备结构示意图。
图4为本发明的实施例11的参考信号的时频资源配置系统的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例提供一种参考信号的时频资源配置方法。参照图1,该参考信号的时频资源配置方法包括以下步骤:
步骤S101、获取配置信息。
步骤S102、根据配置信息,确定参考信号的时频资源或是否有效。
在一种可选的实施方式中,在步骤S102中,根据配置信息,确定参考信号的时频资源。
在另一种可选的实施方式中,在步骤S102中,根据配置信息,确定参考信号的时频资源是否有效。
实施例2
在实施例1的基础上,本实施例提供一种参考信号的时频资源配置方法。
作为一种可选的实施方式,在步骤S102中,确定多个参考信号资源或参考信号资源集合。具体地,多个参考信号资源或参考信号资源集合可以组成一个参考信号突发(burst),对应在多个波束上发送多个参考信号。每个波束上可以发送一个参考信号。多个参考信号资源组成一个参考信号突发,适合于CSI-RS for mobility(用于移动性的信道状态信息-参考信号)或用于RRM/RLM测量的CSI-RS(信道状态信息-参考信号,Channel State Information-Reference Signal),因为一般来说一个CSI-RS for mobility或用于RRM/RLM 测量的CSI-RS具有一个参考信号资源。多个参考信号资源集合组成一个参考信号突发,适合于TRS(Tracking Reference Signal,跟踪参考信号),因为一般来说一个TRS具有一个参考信号资源集合。
实施例3
在实施例1的基础上,本实施例提供一种参考信号的时频资源配置方法。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的周期。这样可以减少配置信令的开销,或者减小UE处理复杂度。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的周期。这样可以减少配置信令的开销,或者减小UE处理复杂度。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的带宽。这样可以减少配置信令的开销,或者减小UE处理复杂度。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的资源块位置。这样可以减少配置信令的开销,或者减小UE处理复杂度。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的时隙。这样可以减少配置信令的开销,或者减小UE处理复杂度。
实施例4
在实施例1的基础上,本实施例提供一种参考信号的时频资源配置方法。在本实施例中,一个参考信号资源具有一个预设(predetermined、pre-defined或pre-set)的子载波起始位置。不同的同步信号块可以对应不同的参考信号资源,适合于CSI-RS for mobility或用于RRM/RLM测量的CSI-RS。一个同步信号块可以对应一个的参考信号资源。例如,当一个同步信号块突发包含8个同步信号块时,该同步信号块突发可以关联8个参考信号资源,每个参考信号资源具有一个预设的子载波起始位置,这样可以通过不同的子载波起始位置区分不同的参考信号资源。
作为一种可选的实施方式,多个参考信号资源具有一个最低的预设子载波起始位置。多个参考信号资源以此最低的预设的子载波起始位置作为参考起始位置,每个参考信号资源的子载波起始位置为参考起始位置加上一个偏移量。此时可以通过一个参数配置多个参考信号资源,减少信令开销。
实施例5
在实施例1的基础上,本实施例提供一种参考信号的时频资源配置方法。在本实施例中,一个参考信号资源具有一个预设的符号位置或符号起始位置。该符号为OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。不同的同步信号块 可以对应不同的参考信号资源,适合于CSI-RS for mobility或用于RRM/RLM测量的CSI-RS。一个同步信号块可以对应一个的参考信号资源。例如,当一个同步信号块突发包含8个同步信号块时,该同步信号块突发关联8个参考信号资源,每个参考信号资源具有一个预设的符号位置或符号起始位置,这样可以通过不同的符号位置或符号起始位置区分不同的参考信号资源。
作为一种可选的实施方式,多个参考信号资源具有一个最小的预设的符号位置或符号起始位置。多个参考信号资源以此最小的预设的符号位置或符号起始作为参考位置或参考起始位置,每个参考信号资源的符号位置或符号起始位置为参考起始位置加上一个偏移量。此时可以通过一个参数配置多个参考信号资源,减少信令开销。
实施例6
在实施例1的基础上,本实施例提供一种参考信号的时频资源配置方法。在本实施例中,一个参考信号资源集合具有一个预设的子载波起始位置。不同的同步信号块可以对应不同的参考资源集合,适合于TRS。一个同步信号块可以对应一个的参考资源集合。例如,当一个同步信号块突发包含8个同步信号块时,该同步信号块突发关联8个参考信号资源集合,每个参考信号资源集合具有一个预设的子载波起始位置,这样可以通过不同的子载波起始位置区分不同的参考信号资源集合。
作为一种可选的实施方式,一个参考信号资源集合内的参考信号资源具有相同的子载波起始位置。这样可以减少配置信令的开销。
在一种可选的实施方式中,多个参考信号资源集合具有一个最低的预设的子载波起始位置。多个参考信号资源集合以此最低的预设的子载波起始位置作为参考起始位置,每个参考信号资源集合的子载波起始位置为参考起始位置加上一个偏移量。此时可以通过一个参数配置多个参考信号资源集合,减少信令开销。
实施例7
在实施例1的基础上,本实施例提供一种参考信号的时频资源配置方法。在本实施例中,一个参考信号资源集合具有一个预设的符号位置或符号起始位置。该符号为OFDM符号。不同的同步信号块可以对应不同的参考资源集合,适合于TRS(Tracking Reference Signal,跟踪参考信号)。一个同步信号块可以对应一个的参考资源集合。例如,当一个同步信号块突发包含8个同步信号块时,该同步信号块突发关联8个参考信号资源集合,每个参考信号资源集合具有一个预设的符号位置或符号起始位置,这样可以通过不同的符号位置或符号起始位置区分不同的参考信号资源集合。
作为一种可选的实施方式,一个参考信号资源集合内的每一个参考信号资源具有相 同的符号位置或符号起始位置。这样可以减少配置信令的开销。
作为一种可选的实施方式,一个参考信号资源集合具有2个参考信号资源。进一步,这2个参考信号资源具有不同符号位置。
作为一种可选的实施方式,预设的符号位置为符号{4,8},符号{5,9},符号{6,10},符号{7,11};或者,预设的符号起始位置为符号4,符号5,符号6,符号7。数字表示符号在时隙内的符号编号或索引,从0开始。这样在通过区分不同的符号位置或符号起始位置,一个时隙内可以有4个参考信号资源集合。这样资源可以更集中。
作为一种可选的实施方式,预设的符号位置为符号{0,4},符号{1,5},符号{2,6},符号{3,7};或者,预设的符号起始位置为符号0,符号1,符号2,符号3。这样资源可以更集中。
作为一种可选的实施方式,预设的符号位置为符号{6,10},符号{7,11},符号{8,12},符号{9,13};或者,预设的符号起始位置为符号6,符号7,符号8,符号9。这样资源可以更集中。
作为一种可选的实施方式,预设的符号起始位置为任意符号。这样较灵活。
在一种可选的实施方式中,多个参考信号资源集合具有一个最小的预设符号位置或符号起始位置。多个参考信号资源集合以此最小的预设的符号位置或符号起始作为参考位置或参考起始位置,每个参考信号资源集合的符号位置或符号起始位置为参考起始位置加上一个偏移量。此时可以通过一个参数配置多个参考信号资源集合,减少信令开销。
实施例8
在实施例1的基础上,本实施例提供一种参考信号的时频资源配置方法。在本实施例中,在步骤S102中,还确定参考信号在第一时刻之后是有效的。第一时刻在寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机之前、且与寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机开始的距离为第一预设偏移量。这样,参考信号是否有效与寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机开始有关,可以减少信令开销。
作为一种可选的实施方式,在步骤S102中,还确定参考信号在第二时刻之后是有效的。第二时刻为寻呼指示物理下行控制信道之后、且与寻呼指示PDCCH的距离为第二预设偏移量。
在一种可选的实施方式中,参照图2,该参考信号的时频资源配置方法还包括以下步骤:
步骤S103、通过寻呼指示PDCCH获取寻呼指示信息。
作为一种可选的实施方式,该参考信号的时频资源配置方法还包括以下步骤:
步骤S104、若寻呼指示信息指示参考信号有效,则确定参考信号是有效的。
作为一种可选的实施方式,该参考信号的时频资源配置方法还包括以下步骤:
步骤S105、若寻呼指示信息指示需要监听寻呼PDCCH,则确定参考信号是有效的。
UE通过寻呼指示PDCCH,获取寻呼指示信息。若寻呼指示信息指示参考信号有效,则UE确定参考信号有效。若寻呼指示信息指示UE需要监听寻呼PDCCH,则UE确定参考信号有效。这样,参考信号是否有效可以通过动态信令(dynamic signaling)确定,其中动态信令可以为下行控制信息(Down Control Information,DCI)信令。
实施例9
图3为本实施例提供的一种电子设备的结构示意图。所述电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现实施例1至实施例8中任意一个实施例的参考信号的时频资源配置方法。图3显示的电子设备30仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
电子设备30可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备30的组件可以包括但不限于:上述至少一个处理器31、上述至少一个存储器32、连接不同系统组件(包括存储器32和处理器31)的总线33。
总线33包括数据总线、地址总线和控制总线。
存储器32可以包括易失性存储器,例如随机存取存储器(RAM)321和/或高速缓存存储器322,还可以进一步包括只读存储器(ROM)323。
存储器32还可以包括具有一组(至少一个)程序模块324的程序/实用工具325,这样的程序模块324包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器31通过运行存储在存储器32中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明实施例1的参考信号的时频资源配置方法。
电子设备30也可以与一个或多个外部设备34(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口35进行。并且,模型生成的设备30还可以通过网络适配器36与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器36通过总线33与模型生成的设备30的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成的设备30使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块, 但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例10
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现实施例1至实施例8中任意一个实施例的参考信号的时频资源配置方法的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行实现实施例1至实施例8中任意一个实施例的参考信号的时频资源配置方法的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
实施例11
本实施例提供一种参考信号的时频资源配置系统。参照图4,该参考信号的时频资源配置系统包括信息获取单元201、信号确定单元202。信息获取单元201用于获取配置信息;信号确定单元202用于根据配置信息,确定参考信号的时频资源或是否有效。
在一种可选的实施方式中,信号确定单元202用于:根据配置信息,确定参考信号的资源。
在另一种可选的实施方式中,信号确定单元202用于:根据配置信息,确定参考信号的资源是否有效。
实施例12
在实施例11的基础上,本实施例提供一种参考信号的时频资源配置系统。
作为一种可选的实施方式,信号确定单元202用于:确定多个参考信号资源或参考信号资源集合。具体地,多个参考信号资源或参考信号资源集合可以组成一个参考信号突发(burst),对应在多个波束上发送多个参考信号。每个波束上可以发送一个参考信号。多个参考信号资源组成一个参考信号突发,适合于CSI-RS for mobility(用于移动性的信道状态信息-参考信号)或用于RRM/RLM测量的CSI-RS(信道状态信息-参考信号, Channel State Information-Reference Signal),因为一般来说一个CSI-RS for mobility或用于RRM/RLM测量的CSI-RS具有一个参考信号资源。多个参考信号资源集合组成一个参考信号突发,适合于TRS(Tracking Reference Signal,跟踪参考信号),因为一般来说一个TRS具有一个参考信号资源集合。
实施例13
在实施例11的基础上,本实施例提供一种参考信号的时频资源配置系统。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的周期。这样可以减少配置信令的开销,或者减小UE处理复杂度。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的周期。这样可以减少配置信令的开销,或者减小UE处理复杂度。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的带宽。这样可以减少配置信令的开销,或者减小UE处理复杂度。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的资源块位置。这样可以减少配置信令的开销,或者减小UE处理复杂度。
作为一种可选的实施方式,多个参考信号资源或参考资源集合具有相同的时隙。这样可以减少配置信令的开销,或者减小UE处理复杂度。
实施例14
在实施例11的基础上,本实施例提供一种参考信号的时频资源配置系统。在本实施例中,一个参考信号资源具有一个预设(predetermined、pre-defined或pre-set)的子载波起始位置。不同的同步信号块可以对应不同的参考信号资源,适合于CSI-RS for mobility或用于RRM/RLM测量的CSI-RS。一个同步信号块可以对应一个的参考信号资源。例如,当一个同步信号块突发包含8个同步信号块时,该同步信号块突发可以关联8个参考信号资源,每个参考信号资源具有一个预设的子载波起始位置,这样可以通过不同的子载波起始位置区分不同的参考信号资源。
作为一种可选的实施方式,多个参考信号资源具有一个最低的预设子载波起始位置。多个参考信号资源以此最低的预设的子载波起始位置作为参考起始位置,每个参考信号资源的子载波起始位置为参考起始位置加上一个偏移量。此时可以通过一个参数配置多个参考信号资源,减少信令开销。
实施例15
在实施例11的基础上,本实施例提供一种参考信号的时频资源配置系统。在本实施例中,一个参考信号资源具有一个预设的符号位置或符号起始位置。该符号为OFDM (Orthogonal Frequency Division Multiplexing,正交频分复用)符号。不同的同步信号块可以对应不同的参考信号资源,适合于CSI-RS for mobility或用于RRM/RLM测量的CSI-RS。一个同步信号块可以对应一个的参考信号资源。例如,当一个同步信号块突发包含8个同步信号块时,该同步信号块突发关联8个参考信号资源,每个参考信号资源具有一个预设的符号位置或符号起始位置,这样可以通过不同的符号位置或符号起始位置区分不同的参考信号资源。
作为一种可选的实施方式,多个参考信号资源具有一个最小的预设的符号位置或符号起始位置。多个参考信号资源以此最小的预设的符号位置或符号起始作为参考位置或参考起始位置,每个参考信号资源的符号位置或符号起始位置为参考起始位置加上一个偏移量。此时可以通过一个参数配置多个参考信号资源,减少信令开销。
实施例16
在实施例11的基础上,本实施例提供一种参考信号的时频资源配置系统。在本实施例中,一个参考信号资源集合具有一个预设的子载波起始位置。不同的同步信号块可以对应不同的参考资源集合,适合于TRS。一个同步信号块可以对应一个的参考资源集合。例如,当一个同步信号块突发包含8个同步信号块时,该同步信号块突发关联8个参考信号资源集合,每个参考信号资源集合具有一个预设的子载波起始位置,这样可以通过不同的子载波起始位置区分不同的参考信号资源集合。
作为一种可选的实施方式,一个参考信号资源集合内的参考信号资源具有相同的子载波起始位置。这样可以减少配置信令的开销。
在一种可选的实施方式中,多个参考信号资源集合具有一个最低的预设的子载波起始位置。多个参考信号资源集合以此最低的预设的子载波起始位置作为参考起始位置,每个参考信号资源集合的子载波起始位置为参考起始位置加上一个偏移量。此时可以通过一个参数配置多个参考信号资源集合,减少信令开销。
实施例17
在实施例11的基础上,本实施例提供一种参考信号的时频资源配置系统。在本实施例中,一个参考信号资源集合具有一个预设的符号位置或符号起始位置。该符号为OFDM符号。不同的同步信号块可以对应不同的参考资源集合,适合于TRS(Tracking Reference Signal,跟踪参考信号)。一个同步信号块可以对应一个的参考资源集合。例如,当一个同步信号块突发包含8个同步信号块时,该同步信号块突发关联8个参考信号资源集合,每个参考信号资源集合具有一个预设的符号位置或符号起始位置,这样可以通过不同的符号位置或符号起始位置区分不同的参考信号资源集合。
作为一种可选的实施方式,一个参考信号资源集合内的每一个参考信号资源具有相同的符号位置或符号起始位置。这样可以减少配置信令的开销。
作为一种可选的实施方式,一个参考信号资源集合具有2个参考信号资源。进一步,这2个参考信号资源具有不同符号位置。
作为一种可选的实施方式,预设的符号位置为符号{4,8},符号{5,9},符号{6,10},符号{7,11};或者,预设的符号起始位置为符号4,符号5,符号6,符号7。数字表示符号在时隙内的符号编号或索引,从0开始。这样在通过区分不同的符号位置或符号起始位置,一个时隙内可以有4个参考信号资源集合。这样资源可以更集中。
作为一种可选的实施方式,预设的符号位置为符号{0,4},符号{1,5},符号{2,6},符号{3,7};或者,预设的符号起始位置为符号0,符号1,符号2,符号3。这样资源可以更集中。
作为一种可选的实施方式,预设的符号位置为符号{6,10},符号{7,11},符号{8,12},符号{9,13};或者,预设的符号起始位置为符号6,符号7,符号8,符号9。这样资源可以更集中。
作为一种可选的实施方式,预设的符号起始位置为任意符号。这样较灵活。
在一种可选的实施方式中,多个参考信号资源集合具有一个最小的预设符号位置或符号起始位置。多个参考信号资源集合以此最小的预设的符号位置或符号起始作为参考位置或参考起始位置,每个参考信号资源集合的符号位置或符号起始位置为参考起始位置加上一个偏移量。此时可以通过一个参数配置多个参考信号资源集合,减少信令开销。
实施例18
在实施例11的基础上,本实施例提供一种参考信号的时频资源配置系统。在本实施例中,信号确定单元202还用于:确定参考信号在第一时刻之后是有效的。第一时刻在寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机之前、且与寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机开始的距离为第一预设偏移量。这样,参考信号是否有效与寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机开始有关,可以减少信令开销。
作为一种可选的实施方式,信号确定单元202还用于:确定参考信号在第二时刻之后是有效的。第二时刻为寻呼指示物理下行控制信道之后、且与寻呼指示PDCCH的距离为第二预设偏移量。
在一种可选的实施方式中,信号确定单元202用于:通过寻呼指示PDCCH获取寻呼指示信息。
作为一种可选的实施方式,信号确定单元202用于:若寻呼指示信息指示参考信号 有效,则确定参考信号是有效的。
作为一种可选的实施方式,信号确定单元202用于:若寻呼指示信息指示需要监听寻呼PDCCH,则确定参考信号是有效的。
UE通过寻呼指示PDCCH,获取寻呼指示信息。若寻呼指示信息指示参考信号有效,则UE确定参考信号有效。若寻呼指示信息指示UE需要监听寻呼PDCCH,则UE确定参考信号有效。这样,参考信号是否有效可以通过动态信令(dynamic signaling)确定,其中动态信令可以为下行控制信息(Down Control Information,DCI)信令。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (48)

  1. 一种参考信号的时频资源配置方法,其特征在于,包括以下步骤:
    根据配置信息,确定参考信号的时频资源或是否有效。
  2. 如权利要求1所述的参考信号的时频资源配置方法,其特征在于,确定参考信号资源或参考信号资源集合。
  3. 如权利要求1所述的参考信号的时频资源配置方法,其特征在于,确定多个参考信号资源或参考信号资源集合。
  4. 如权利要求3所述的参考信号的时频资源配置方法,其特征在于,多个所述参考信号资源或参考信号资源集合具有相同的周期。
  5. 如权利要求3所述的参考信号的时频资源配置方法,其特征在于,多个所述参考信号资源或参考信号资源集合具有相同的带宽。
  6. 如权利要求3所述的参考信号的时频资源配置方法,其特征在于,多个所述参考信号资源或参考信号资源集合具有相同的资源块位置。
  7. 如权利要求3所述的参考信号的时频资源配置方法,其特征在于,多个所述参考信号资源或参考信号资源集合具有相同的时隙。
  8. 如权利要求2所述的参考信号的时频资源配置方法,其特征在于,一个所述参考信号资源具有一个预设的子载波起始位置。
  9. 如权利要求2所述的参考信号的时频资源配置方法,其特征在于,多个所述参考信号资源具有一个预设的最低的子载波起始位置。
  10. 如权利要求2所述的参考信号的时频资源配置方法,其特征在于,一个所述参考信号资源具有一个预设的符号位置或符号起始位置。
  11. 如权利要求3所述的参考信号的时频资源配置方法,其特征在于,多个所述参考信号资源具有一个预设的最小的符号位置或符号起始位置。
  12. 如权利要求2所述的参考信号的时频资源配置方法,其特征在于,一个所述参考信号资源集合具有一个预设的子载波起始位置。
  13. 如权利要求2所述的参考信号的时频资源配置方法,其特征在于,一个所述参考信号资源集合具有一个预设的符号位置或符号起始位置。
  14. 如权利要求2所述的参考信号的时频资源配置方法,其特征在于,一个所述参考信号资源集合内的所述参考信号资源具有相同的子载波起始位置。
  15. 如权利要求2所述的参考信号的时频资源配置方法,其特征在于,一个所述参考 信号资源集合内的每一个所述参考信号资源具有相同的符号位置或符号起始位置。
  16. 如权利要求13所述的参考信号的时频资源配置方法,其特征在于,所述预设符号位置为符号{4,8},符号{5,9},符号{6,10},符号{7,11}。
  17. 如权利要求3所述的参考信号的时频资源配置方法,其特征在于,多个所述参考信号资源集合具有一个预设的最低的子载波起始位置。
  18. 如权利要求3所述的参考信号的时频资源配置方法,其特征在于,多个所述参考信号资源集合具有一个预设的最小的符号位置或符号起始位置。
  19. 如权利要求1-18中任一项所述的参考信号的时频资源配置方法,其特征在于,确定所述参考信号在第一时刻之后是有效的,所述第一时刻在寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机之前、且与寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机开始的距离为第一预设偏移量。
  20. 如权利要求1-18中任一项所述的参考信号的时频资源配置方法,其特征在于,确定所述参考信号在第二时刻之后是有效的,所述第二时刻为寻呼指示物理下行控制信道之后、且与寻呼指示PDCCH的距离为第二预设偏移量。
  21. 如权利要求20所述的参考信号的时频资源配置方法,其特征在于,所述参考信号的时频资源配置方法还包括以下步骤:
    通过所述寻呼指示PDCCH获取寻呼指示信息。
  22. 如权利要求21所述的参考信号的时频资源配置方法,其特征在于,所述参考信号的时频资源配置方法还包括以下步骤:
    若所述寻呼指示信息指示所述参考信号有效,则确定所述参考信号是有效的。
  23. 如权利要求21所述的参考信号的时频资源配置方法,其特征在于,所述参考信号的时频资源配置方法还包括以下步骤:
    若所述寻呼指示信息指示需要监听寻呼PDCCH,则确定参考信号是有效的。
  24. 一种参考信号的时频资源配置系统,其特征在于,包括信号确定单元;
    所述信号确定单元用于根据配置信息,确定参考信号的时频资源或是否有效。
  25. 如权利要求24所述的参考信号的时频资源配置系统,其特征在于,确定参考信号资源或参考资源集合。
  26. 如权利要求24所述的参考信号的时频资源配置系统,其特征在于,确定多个参考信号资源或参考资源集合。
  27. 如权利要求26所述的参考信号的时频资源配置系统,其特征在于,多个参考信号、参考信号资源或参考资源集合具有相同的周期。
  28. 如权利要求26所述的参考信号的时频资源配置系统,其特征在于,多个参考信号、参考信号资源或参考资源集合具有相同的带宽。
  29. 如权利要求26所述的参考信号的时频资源配置系统,其特征在于,多个参考信号、参考信号资源或参考资源集合具有相同的资源块位置。
  30. 如权利要求26所述的参考信号的时频资源配置系统,其特征在于,多个参考信号、参考信号资源或参考资源集合具有相同的时隙。
  31. 如权利要求25所述的参考信号的时频资源配置系统,其特征在于,一个所述参考信号资源具有一个预设子载波起始位置。
  32. 如权利要求26所述的参考信号的时频资源配置系统,其特征在于,多个所述参考信号资源具有一个预设的最低的子载波起始位置。
  33. 如权利要求25所述的参考信号的时频资源配置系统,其特征在于,一个所述参考信号资源具有一个预设的符号位置或符号起始位置。
  34. 如权利要求26所述的参考信号的时频资源配置系统,其特征在于,多个所述参考信号资源具有一个预设的最小的符号位置或符号起始位置。
  35. 如权利要求25所述的参考信号的时频资源配置系统,其特征在于,一个所述参考信号资源集合具有一个预设子载波起始位置。
  36. 如权利要求25所述的参考信号的时频资源配置系统,其特征在于,一个所述参考信号资源集合具有一个预设的符号位置或符号起始位置。
  37. 如权利要求25所述的参考信号的时频资源配置系统,其特征在于,一个所述参考信号资源集合内的所述参考信号资源具有相同的子载波起始位置。
  38. 如权利要求25所述的参考信号的时频资源配置系统,其特征在于,一个所述参考信号资源集合内的每一个所述参考信号资源具有相同的符号位置或符号起始位置。
  39. 如权利要求36所述的参考信号的时频资源配置系统,其特征在于,所述预设的符号位置为符号{4,8},符号{5,9},符号{6,10},符号{7,11}。
  40. 如权利要求26所述的参考信号的时频资源配置系统,其特征在于,多个所述参考信号资源集合具有一个预设的最低的子载波起始位置。
  41. 如权利要求26所述的参考信号的时频资源配置系统,其特征在于,多个所述参考信号资源集合具有一个预设的最小的符号位置或符号起始位置。
  42. 如权利要求24-41中至少一项所述的参考信号的时频资源配置系统,其特征在于,所述信号确定单元还用于确定所述参考信号在第一时刻之后是有效的,所述第一时刻在寻呼帧或寻呼时机或第一个寻呼PDCCH监听时机之前、且与寻呼帧或寻呼时机或第一 个寻呼PDCCH监听时机开始的距离为第一预设偏移量。
  43. 如权利要求24-41中至少一项所述的参考信号的时频资源配置系统,其特征在于,确定所述参考信号在第二时刻之后是有效的,所述第二时刻为寻呼指示物理下行控制信道之后、且与寻呼指示PDCCH的距离为第二预设偏移量。
  44. 如权利要求43所述的参考信号的时频资源配置系统,其特征在于,所述信号确定单元还用于通过所述寻呼指示PDCCH获取寻呼指示信息。
  45. 如权利要求44所述的参考信号的时频资源配置系统,其特征在于,若所述寻呼指示信息指示所述参考信号有效,则所述信号确定单元还用于确定所述参考信号是有效的。
  46. 如权利要求44所述的参考信号的时频资源配置系统,其特征在于,若所述寻呼指示信息指示需要监听寻呼PDCCH,则所述信号确定单元还用于确定参考信号是有效的。
  47. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1-23中任一项所述的参考信号的时频资源配置方法。
  48. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-23中任一项所述的参考信号的时频资源配置方法的步骤。
PCT/CN2021/075640 2020-02-14 2021-02-05 参考信号的时频资源配置方法、系统、电子设备和介质 WO2021160046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010093379.0 2020-02-14
CN202010093379.0A CN113271662B (zh) 2020-02-14 2020-02-14 参考信号的时频资源配置方法、系统、电子设备和介质

Publications (1)

Publication Number Publication Date
WO2021160046A1 true WO2021160046A1 (zh) 2021-08-19

Family

ID=77227173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075640 WO2021160046A1 (zh) 2020-02-14 2021-02-05 参考信号的时频资源配置方法、系统、电子设备和介质

Country Status (2)

Country Link
CN (1) CN113271662B (zh)
WO (1) WO2021160046A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115734334A (zh) * 2021-08-31 2023-03-03 展讯通信(上海)有限公司 通信方法和通信装置
CN115883305A (zh) * 2021-09-29 2023-03-31 华为技术有限公司 时频同步方法、装置以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166734A (zh) * 2011-12-14 2013-06-19 华为技术有限公司 信道状态信息的获取方法及装置
CN103581945A (zh) * 2012-08-06 2014-02-12 中兴通讯股份有限公司 测量配置的处理方法及装置
CN104601286A (zh) * 2015-01-16 2015-05-06 华为技术有限公司 一种上报信道状态信息的方法、用户设备及系统
EP3529946A1 (en) * 2017-11-17 2019-08-28 Telefonaktiebolaget LM Ericsson (Publ) Methods and apparatuses for downlink tracking reference signal configuration
CN110768769A (zh) * 2018-07-27 2020-02-07 华为技术有限公司 基于下行参考信号的时间同步方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073776A1 (ko) * 2012-11-07 2014-05-15 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 수신 또는 송신하기 위한 방법 및 이를 위한 장치
CN108616345B (zh) * 2017-11-25 2019-03-26 华为技术有限公司 一种参考信号的配置方法和装置
US10932149B2 (en) * 2018-04-05 2021-02-23 Qualcomm Incorporated Using narrowband reference signal (NRS) tones in a non-anchor carrier to determine quality of the non-anchor carrier
CN110391882B (zh) * 2018-04-16 2022-04-05 中兴通讯股份有限公司 一种信号传输方法和装置
CN110730504B (zh) * 2018-07-16 2021-03-12 维沃移动通信有限公司 一种寻呼指示方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166734A (zh) * 2011-12-14 2013-06-19 华为技术有限公司 信道状态信息的获取方法及装置
CN103581945A (zh) * 2012-08-06 2014-02-12 中兴通讯股份有限公司 测量配置的处理方法及装置
CN104601286A (zh) * 2015-01-16 2015-05-06 华为技术有限公司 一种上报信道状态信息的方法、用户设备及系统
EP3529946A1 (en) * 2017-11-17 2019-08-28 Telefonaktiebolaget LM Ericsson (Publ) Methods and apparatuses for downlink tracking reference signal configuration
CN110768769A (zh) * 2018-07-27 2020-02-07 华为技术有限公司 基于下行参考信号的时间同步方法和装置

Also Published As

Publication number Publication date
CN113271662B (zh) 2023-08-08
CN113271662A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2021143938A1 (zh) Srs资源的配置方法、系统、设备、介质及基站
WO2021160046A1 (zh) 参考信号的时频资源配置方法、系统、电子设备和介质
US11456832B2 (en) Communication of common control blocks
WO2021139825A1 (zh) Dci的生成方法、小区的调度方法、系统、设备和介质
WO2021148048A1 (zh) 用于pdcch监听的控制方法、系统、介质及电子设备
WO2020259275A1 (zh) 链路管理方法、唤醒信号检测方法、终端设备和网络设备
WO2020098656A1 (zh) 确定准共址参考信号的方法和装置
WO2019062524A1 (zh) 确定时频资源的方法及装置
WO2019233195A1 (zh) 节能信号的传输方法、终端和网络侧设备
KR20150132859A (ko) 가상 데이터 센터 리소스 활용 정책들의 자동 튜닝
WO2019157939A1 (zh) 参考信号发送和接收方法及装置
WO2019134668A1 (zh) 信号接收方法、发送方法、用户设备和网络设备
US20230161541A1 (en) Screen projection method and system
WO2021160048A1 (zh) 下行控制信息的设计方法、系统、电子设备和存储介质
WO2021148049A1 (zh) 状态确定方法、系统、介质及电子设备
WO2021190659A1 (zh) 系统的数据获取方法、装置、介质及电子设备
CN114168401A (zh) 一种日志记录方法、装置及电子设备
WO2019184696A1 (zh) 配置物理下行控制信道的方法、用户设备和网络侧设备
WO2021148047A1 (zh) 非服务小区的csi的处理方法、系统、电子设备和介质
US9092396B2 (en) Standby system device, a control method, and a program thereof
US8572343B2 (en) Synchronous extent migration protocol for paired storage
US11995436B2 (en) Out-of-band updating method and system of expander
US20230077543A1 (en) Method for determining reference signal or reference signal resource or reference signal resource set, electronic device, and medium
WO2021139826A1 (zh) 非周期csi请求的响应方法、系统、电子设备和介质
CN110324109B (zh) Pdsch速率匹配方法、装置、用户终端及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753255

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21753255

Country of ref document: EP

Kind code of ref document: A1