WO2021139825A1 - Dci的生成方法、小区的调度方法、系统、设备和介质 - Google Patents

Dci的生成方法、小区的调度方法、系统、设备和介质 Download PDF

Info

Publication number
WO2021139825A1
WO2021139825A1 PCT/CN2021/075600 CN2021075600W WO2021139825A1 WO 2021139825 A1 WO2021139825 A1 WO 2021139825A1 CN 2021075600 W CN2021075600 W CN 2021075600W WO 2021139825 A1 WO2021139825 A1 WO 2021139825A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
dci
resource allocation
domain resource
field
Prior art date
Application number
PCT/CN2021/075600
Other languages
English (en)
French (fr)
Inventor
周欢
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Priority to EP21738630.9A priority Critical patent/EP4089948A4/en
Priority to JP2022542786A priority patent/JP2023552503A/ja
Publication of WO2021139825A1 publication Critical patent/WO2021139825A1/zh
Priority to US17/861,170 priority patent/US20220353851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention belongs to the technical field of downlink control information transmission, and in particular relates to a DCI (downlink control information) generation method, a cell scheduling method, system, equipment and medium.
  • DCI downlink control information
  • DCI1_0 contains the following information:
  • DCI1_1 contains the following information:
  • Frequency domain resource assignment (Frequency domain resource assignment)-if only resource assignment type 0 is configured Only 1 resource allocation type is configured If two resource allocations are configured Among them, P represents the size of RBG, and RBG represents RB group;
  • ZP CSI-RS trigger --X bits
  • CBG flushing out information (CBG flushing out information)-0 or 1 bit.
  • the value of the carrier indicator field in the DCI is the CrossCarrierSchedulingConfig.
  • the UE on a serving cell needs to monitor the PDCCH candidates in the UE-specific search space. If the UE is not configured with a carrier indication field, the PDCCH candidates monitored by the UE do not include the carrier indication field; if the UE is configured with a carrier indication field, the PDCCH candidates monitored by the UE Include carrier indication field. If the UE is configured to monitor the PDCCH candidate corresponding to the carrier indication field of a certain secondary cell on another serving cell, the UE does not expect to monitor the PDCCH candidate in the secondary cell. For the serving cell where the UE monitors the PDCCH candidate, the UE monitors at least the PDCCH candidate of the serving cell.
  • one DCI can only contain the scheduling information of one cell, in the prior art, in order to schedule multiple cells, multiple DCIs need to be sent.
  • Each DCI needs to occupy a corresponding PDCCH (Physical Downlink Shared Channel). Therefore, in order to schedule multiple cells, multiple PDCCHs need to be occupied, which consumes more communication resources.
  • a DCI only contains the scheduling information of a corresponding cell, which is limited by the length of each field in the DCI, and it is difficult to be compatible with the scheduling information of multiple cells.
  • the technical problem to be solved by the present invention is to overcome the defect that one DCI cannot be compatible with the configuration information of multiple cells in the prior art, and to provide a DCI generation method, cell scheduling method, system, equipment and medium.
  • the present invention also provides a method for generating DCI, which includes the following steps:
  • the length of each field of the target DCI is obtained according to the length of each field of the expected DCI corresponding to the target cell.
  • the number of target cells is multiple.
  • the expected DCI is the DCI required to schedule each target cell individually.
  • Each of the target DCIs The length of the field is the length required to be compatible with the corresponding field of the expected DCI;
  • Each field of the target DCI is generated according to the length and corresponding relationship of each field of the target DCI to form the target DCI.
  • the step of obtaining the length of each field of the target DCI according to the length of each field of the expected DCI corresponding to the target cell includes:
  • the length of the corresponding field of the target DCI is obtained according to the maximum value of the length of the corresponding field of the desired DCI.
  • the step of obtaining the length of each field of the target DCI according to the length of each field of the expected DCI corresponding to the target cell includes:
  • the length of the corresponding field of the target DCI is obtained according to the sum of the lengths of the corresponding fields of the multiple expected DCIs.
  • the length of the frequency domain resource allocation field of the target DCI is Among them, n ⁇ [1,K], K is the number of target cells;
  • the length of the frequency domain resource allocation field of the target DCI is max(N(n) RBG ), where n ⁇ [1,K], K is the target cell quantity;
  • the frequency domain resource allocation field of the target DCI includes a type indicator bit, and the type indicator bit is used to indicate that the target cells are all resource allocation types 1 or resource allocation type 0, the length of the frequency domain resource allocation field is among them, Corresponding to the pattern in which all target cells are indicated as resource allocation type 1; N(n) RBG corresponds to the pattern in which all target cells are indicated as resource allocation type 0, and K is the number of target cells;
  • the frequency domain resource allocation field of the target DCI includes K-bit type indicator bits, and each type indicator bit corresponds to a target cell to indicate the target cell resource allocation type 1 or resource allocation type 0, then the length of the frequency domain resource allocation field for among them, Corresponding to the pattern in which all target cells are indicated as resource allocation type 1; N(n) RBG corresponds to the pattern in which all target cells are indicated as resource allocation type 0, and K is the number of target cells.
  • the DCI generation method further includes the following steps:
  • the desired DCI corresponding to the reference cell is used as the target DCI.
  • the present invention also provides a cell scheduling method, including:
  • the cell scheduling method further includes the following steps: constructing a partial bandwidth configuration table, the partial bandwidth configuration table including partial bandwidth configuration information corresponding to each target cell;
  • the step of scheduling multiple target cells according to the target DCI includes: querying a partial bandwidth configuration table according to the partial bandwidth indication field of the target DCI to obtain partial bandwidth configuration information corresponding to each target cell, and configuring the corresponding target cell according to the partial bandwidth configuration information ;
  • the cell scheduling method further includes the following steps: constructing a time domain resource allocation table, where the time domain resource allocation table includes time domain resource configuration information corresponding to each target cell;
  • the step of scheduling multiple target cells according to the target DCI includes: querying the time domain resource allocation table according to the time domain resource allocation field of the target DCI to obtain the time domain resource configuration information corresponding to each target cell, and configuring according to the time domain resource configuration information Corresponding target cell.
  • the cell scheduling method includes the step of constructing a partial bandwidth configuration table
  • the partial bandwidth configuration information includes an activation mode
  • the activation mode is used to instruct the target cell to maintain the current BWP.
  • the cell scheduling method includes the step of constructing a time domain resource allocation table
  • the time domain resource allocation table includes an index area and multiple table blocks; each table block corresponds to a target cell; each element of the index area is used to index corresponding elements of multiple table blocks at the same time to obtain time Domain resource configuration information; the step of querying the time domain resource allocation table according to the time domain resource allocation field of the target DCI to obtain the time domain resource configuration information corresponding to each target cell includes: corresponding to the time domain resource allocation field according to the index area The elements of simultaneously index the corresponding elements of multiple table blocks to obtain time-domain resource configuration information;
  • the time domain resource allocation table includes multiple sub-tables; each sub-table includes an index area and a table block, and each table block corresponds to a target cell, and each element of the index area is used for indexing.
  • Corresponding elements of the corresponding table block to obtain time-domain resource configuration information; the steps of querying the time-domain resource allocation table according to the time-domain resource allocation field of the target DCI to obtain the time-domain resource configuration information corresponding to each target cell include: The corresponding elements of the table block are indexed according to the elements of the index area corresponding to the time domain resource allocation field to respectively obtain the time domain resource configuration information corresponding to each target cell.
  • the cell scheduling method further includes:
  • the reference time domain resource allocation table includes time domain resource configuration information corresponding to the reference cell;
  • the steps of scheduling multiple target cells according to the target DCI include:
  • the target DCI query the reference time domain resource allocation table to obtain time domain resource configuration information, and configure each target cell according to the time domain resource configuration information.
  • the present invention also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program
  • the DCI generation method of the present invention is implemented, or the processor executes the computer
  • the program implements the cell scheduling method of the present invention.
  • the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the steps of the DCI generation method of the present invention are realized, or when the computer program is executed by the processor, the cell of the present invention is realized.
  • the steps of the scheduling method are realized.
  • the present invention also provides a DCI generation system, which includes a length acquisition unit, a subfield construction unit, and a target DCI generation unit;
  • the length obtaining unit is used to obtain the length of each field of the target DCI according to the length of each field of the expected DCI corresponding to the target cell.
  • the number of target cells is multiple, and the expected DCI is the DCI required for scheduling each target cell individually.
  • the length of each field of the target DCI is the length required to be compatible with the corresponding field of the desired DCI;
  • the subfield construction unit is configured to construct subfields for each field of the target DCI according to a preset correspondence relationship, so that each subfield of each field of the target DCI corresponds to a target cell respectively;
  • the target DCI generating unit is configured to generate each field of the target DCI according to the length and the corresponding relationship of each field of the target DCI to form the target DCI.
  • the length obtaining unit is further configured to obtain the length of the corresponding field of the target DCI according to the maximum value of the length of the corresponding field of the desired DCI.
  • the length obtaining unit is further configured to obtain the length of the corresponding field of the target DCI according to the sum of the lengths of the corresponding fields of the multiple expected DCIs.
  • the length of the frequency domain resource allocation field of the target DCI is Among them, n ⁇ [1,K], K is the number of target cells;
  • the length of the frequency domain resource allocation field of the target DCI is max(N(n) RBG ), where n ⁇ [1,K], K is the target cell quantity;
  • the frequency domain resource allocation field of the target DCI includes a type indicator bit, and the type indicator bit is used to indicate that the target cells are all resource allocation types 1 or resource allocation type 0, the length of the frequency domain resource allocation field is among them, Corresponding to the pattern in which all target cells are indicated as resource allocation type 1; N(n) RBG corresponds to the pattern in which all target cells are indicated as resource allocation type 0, and K is the number of target cells;
  • the frequency domain resource allocation field of the target DCI includes K-bit type indicator bits, and each type indicator bit corresponds to a target cell to indicate the target cell resource allocation type 1 or resource allocation type 0, then the length of the frequency domain resource allocation field for among them, Corresponding to the pattern in which all target cells are indicated as resource allocation type 1; N(n) RBG corresponds to the pattern in which all target cells are indicated as resource allocation type 0, and K is the number of target cells.
  • the DCI generation system further includes a reference setting unit
  • the reference setting unit is used to set one of the target cells as a reference cell
  • the length obtaining unit is used to obtain the length of each field of the target DCI according to the length of each field of the expected DCI of the reference cell;
  • the subfield construction unit is also used to simultaneously correspond each field of the target DCI to multiple target cells;
  • the target DCI generating unit is further configured to use the expected DCI corresponding to the reference cell as the target DCI.
  • the present invention also provides a cell scheduling system, including a scheduling unit and the DCI generation system of the present invention
  • the DCI generation system is used to generate the target DCI
  • the scheduling unit is used to schedule multiple target cells according to the target DCI.
  • the scheduling system of the cell further includes a table building unit
  • the table construction unit is used to construct a partial bandwidth configuration table, and the partial bandwidth configuration table includes partial bandwidth configuration information corresponding to each target cell;
  • the scheduling unit is also used to query the partial bandwidth configuration table according to the partial bandwidth indication field of the target DCI to obtain and Part of the bandwidth configuration information corresponding to each target cell, and the corresponding target cell is configured according to the part of the bandwidth configuration information;
  • the table construction unit is used to construct a time-domain resource allocation table
  • the time-domain resource allocation table includes time-domain resource configuration information corresponding to each target cell
  • the scheduling unit is also used to allocate time-domain resources according to the target DCI
  • the field queries the time domain resource allocation table to obtain time domain resource configuration information corresponding to each target cell, and configures the corresponding target cell according to the time domain resource configuration information.
  • the partial bandwidth configuration information includes an activation mode, and the activation mode is used to instruct the target cell to maintain the current BWP.
  • the table construction unit is used to construct the time domain resource allocation table
  • the time domain resource allocation table includes an index area and multiple table blocks; each table block corresponds to a target cell; each element of the index area is used to index corresponding elements of multiple table blocks at the same time to obtain time Domain resource configuration information; the scheduling unit is also used to index corresponding elements of multiple table blocks at the same time according to the element corresponding to the time domain resource allocation field in the index area to obtain the time domain resource configuration information;
  • the time domain resource allocation table includes multiple sub-tables; each sub-table includes an index area and a table block, and each table block corresponds to a target cell, and each element of the index area is used for indexing.
  • the corresponding element of the corresponding table block is used to obtain time-domain resource configuration information; the scheduling unit is also used to index the corresponding element of the table block according to the element of the index area corresponding to the time-domain resource allocation field to obtain the corresponding element of each target cell. Corresponding time domain resource configuration information.
  • the scheduling system of the cell further includes a table construction unit; when the DCI generation system further includes a reference setting unit, the table construction unit is used to construct a reference time domain resource allocation table, and the reference time domain resource allocation table includes information related to the reference cell. Corresponding time domain resource configuration information;
  • the scheduling unit is further configured to query the reference time domain resource allocation table according to the time domain resource allocation field of the target DCI to obtain time domain resource configuration information, and configure each target cell according to the time domain resource configuration information.
  • the positive progress effect of the present invention is that the present invention enables one target DCI to be compatible with the scheduling information of multiple cells through improved DCI information, thereby supporting simultaneous scheduling of multiple cells and saving communication resources such as PDCCH.
  • FIG. 1 is a flowchart of a method for generating DCI according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a method for generating DCI according to Embodiment 4 of the present invention.
  • FIG. 3 is a flowchart of a method for generating DCI according to Embodiment 5 of the present invention.
  • FIG. 4 is a flowchart of a method for generating DCI according to Embodiment 6 of the present invention.
  • FIG. 5 is a flowchart of an optional implementation manner of the method for generating DCI according to Embodiment 7 of the present invention.
  • FIG. 6 is a flowchart of another optional implementation manner of the method for generating DCI according to Embodiment 7 of the present invention.
  • FIG. 7 is a flowchart of an optional implementation manner of a method for generating DCI according to Embodiment 8 of the present invention.
  • FIG. 8 is a flowchart of another optional implementation manner of the method for generating DCI according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic diagram of a situation where the first cell and the second cell in the method for generating DCI according to Embodiment 8 of the present invention cross time slots.
  • FIG. 10 is a schematic structural diagram of an electronic device according to Embodiment 9 of the present invention.
  • FIG. 11 is a schematic structural diagram of a DCI generation system according to Embodiment 11 of the present invention.
  • FIG. 12 is a schematic structural diagram of a DCI generation system according to Embodiment 14 of the present invention.
  • FIG. 13 is a schematic structural diagram of a cell scheduling system according to Embodiment 15 of the present invention.
  • FIG. 14 is a schematic structural diagram of a cell scheduling system according to Embodiment 16 of the present invention.
  • FIG. 15 is a schematic structural diagram of a cell scheduling system according to Embodiment 18 of the present invention.
  • This embodiment provides a method for generating DCI.
  • the DCI generation method includes the following steps:
  • Step S101 Obtain the length of each field of the target DCI according to the length of each field of the expected DCI corresponding to the target cell.
  • the desired DCI is the DCI required for scheduling each target cell individually
  • the length of each field of the target DCI is the length required to be compatible with the corresponding field of the desired DCI.
  • Step S102 Construct subfields for each field of the target DCI according to a preset correspondence relationship, so that each subfield of each field of the target DCI corresponds to a target cell.
  • Step S103 Generate each field of the target DCI according to the length of each field of the target DCI to form the target DCI.
  • each field of the target DCI According to the length of each field of the expected DCI corresponding to each target cell, the length of each field of the target DCI can be obtained. It can be obtained that each field of the target DCI has an appropriate length to be compatible with the corresponding fields of multiple cells, so that each field Both can contain scheduling information for multiple cells, that is, one DCI can be compatible with the scheduling information of multiple cells, thereby supporting scheduling of multiple cells at the same time. In the process of scheduling multiple cells, only one target DCI needs to be generated and sent, and only one PDCCH is occupied, which saves communication resources such as PDCCH.
  • this embodiment provides a method for generating DCI.
  • step S101 the length of the corresponding field of the target DCI is obtained according to the maximum value of the length of the corresponding field of the desired DCI.
  • the number of target cells be K.
  • the frequency domain resource allocation fields of these expected DCIs respectively correspond to the corresponding target cells. length.
  • the maximum value of these lengths is used as the length of the frequency domain resource allocation field of the target DCI.
  • the method for determining the length of other fields of the target DCI is similar to this. Accordingly, the length of the generated target DCI can be compatible with the scheduling information of multiple target cells, so that one target DCI includes the scheduling information of multiple target cells to support simultaneous scheduling of multiple target cells.
  • the length of the frequency domain resource allocation field of the target DCI is the sum of the maximum value of these lengths and a preset bit width value, and the subfield corresponding to the preset bit width value is used as To configure the resource allocation types of multiple target cells.
  • the method for determining the length of other fields of the target DCI is similar to this.
  • the target DCI is sent through a preset PDCCH, and the PDCCH corresponds to multiple target cells.
  • multiple target cells analyze the target DCI, and obtain the W-bit scheduling information in the field of the target DCI respectively.
  • the target cell uses the lowest Y bit in the W-bit scheduling information as the target cell correspondence The subfield of is used as the scheduling information of the target cell.
  • this field requires a target cell with W bits, and the complete field is used as a subfield corresponding to the target cell to obtain the corresponding scheduling information; if the field requires a target cell with X (X is less than W) bits, use the target cell in this field The lowest X bit of is used as the subfield corresponding to the target cell to obtain the corresponding scheduling information.
  • Other fields in the target DCI have similar effects on multiple target cells. Based on this, one target DCI can be compatible with the configuration information of multiple cells.
  • the length (number of bits) of the frequency domain resource allocation field depends on the object with the largest number of PRBs corresponding to the multiple target cells The BWP (partial bandwidth) of the cell. That is, if multiple target cells only support resource allocation type 1, the length of the frequency domain resource allocation field of the target DCI is Among them, n ⁇ [1,K], K is the number of target cells. Correspond to each target cell respectively.
  • the length of the frequency domain resource allocation field depends on the BWP of the target cell with the largest number of N RBGs corresponding to the multiple target cells. . That is, if multiple target cells only support resource allocation type 0, the length of the frequency domain resource allocation field of the target DCI is max(N(n) RBG ), where n ⁇ [1,K], K is the target cell quantity. Correspond to each target cell respectively.
  • the length of the frequency domain resource allocation field is: among them,
  • the N(j) RBGs correspond to each of the target cells that only support resource allocation type 1 respectively, and the N(j) RBGs correspond to each of the target cells that only support resource allocation type 0.
  • the number of target cells that only supports resource allocation type 0 is L
  • the frequency domain resource allocation field of the target DCI includes a type indicator bit, and the type indicator bit uses If the indicated target cells are all resource allocation type 1 or all resource allocation type 0, the length of the frequency domain resource allocation field is among them, Corresponding to the pattern in which all target cells are indicated as resource allocation type 1; N(n) RBG corresponds to the pattern in which all target cells are indicated as resource allocation type 0, and K is the number of target cells.
  • the most significant bit (MSB) of the frequency domain resource allocation field of the DCI is used as the type indicator bit.
  • the frequency domain resource allocation field of the target DCI includes K-bit type indicator bits, and each type indicator bit corresponds to a target cell to indicate resource allocation type 1 or resource allocation type 0 of the target cell.
  • the length of the frequency domain resource allocation field is among them, Corresponding to the pattern in which all target cells are indicated as resource allocation type 1; N(n) RBG corresponds to the pattern in which all target cells are indicated as resource allocation type 0, and K is the number of target cells.
  • the highest K bits of the frequency domain resource allocation field of the DCI are all type indicator bits. Among them, the highest bit of the frequency domain resource allocation field corresponds to the first target cell.
  • the first target cell When the value of this bit is 0, the first target cell is indicated as resource allocation type 0; when the value of this bit is 1, The first target cell is indicated as resource allocation type 1. If the first target cell only supports resource allocation type 0 or the first target cell only supports resource allocation type 1, then the first target cell ignores this bit and its resources The allocation type is not affected by this bit.
  • the second high bit of the frequency domain resource allocation field corresponds to the second target cell. When the value of this bit is 0, the second target cell is indicated as resource allocation type 0; when the value of this bit is 1, the second target cell is indicated as the resource allocation type.
  • the two target cells are indicated as resource allocation type 1; if the second target cell only supports resource allocation type 0 or the second target cell only supports resource allocation type 1, the second target cell ignores this bit and its resource allocation The type is not affected by this bit.
  • the Kth high bit of the frequency domain resource allocation field corresponds to the Kth target cell. When the value of this bit is 0, the Kth target cell is indicated as resource allocation type 0; when the value of this bit is 0 At 1, the Kth target cell is indicated as resource allocation type 1; if the Kth target cell only supports resource allocation type 0 or the Kth target cell only supports resource allocation type 1, the Kth target cell ignores this bit , Its resource allocation type is not affected by this bit.
  • the length of the corresponding field of the target DCI is obtained according to the maximum length of the corresponding field of the desired DCI, so that the corresponding field of the target DCI can be compatible with all multiple target cells that need to be scheduled with a shorter length, which saves resources.
  • the DCI generation method of this embodiment makes reasonable settings for the length of the target DCI and the information contained in the corresponding fields, so that one target DCI is compatible with the scheduling information of multiple cells, thereby supporting simultaneous scheduling of multiple cells.
  • the process of scheduling multiple cells only one target DCI needs to be generated and sent, and only one PDCCH is occupied, which saves communication resources such as PDCCH.
  • this embodiment provides a method for generating DCI.
  • the length of the corresponding field of the target DCI is obtained according to the sum of the lengths of the corresponding fields of a plurality of expected DCIs.
  • the frequency domain resource allocation field As an example.
  • the frequency domain resource allocation fields of these expected DCIs respectively correspond to the corresponding target cells. length.
  • the length of the frequency domain resource allocation field of the expected DCI of the i-th target cell be W i (i ⁇ [1,K]).
  • the lowest W 1 bit (that is, the W 1st to the 1st bit of the frequency domain resource allocation field, the first bit is the lowest bit of the frequency domain resource allocation field) constitutes the first subfield
  • the first subfield The field corresponds to the first target cell
  • the W 2 bits adjacent to the first subfield (that is, the (W 1 +W 2 ) bit to (W 1 +1) bit of the frequency domain resource allocation field) constitute the second subfield.
  • the second subfield corresponds to the second target cell.
  • the highest W K bits of the frequency domain resource allocation field constitute the Kth subfield
  • the Kth subfield corresponds to the Kth target cell.
  • multiple target cells After receiving the target DCI, multiple target cells parse out the frequency domain resource allocation field from the target DCI, and obtain corresponding configuration information from the corresponding subfield in the frequency domain resource allocation field according to the preset correspondence.
  • the method of determining the length of other fields of the target DCI and the functioning method are similar to this. Accordingly, the length of the generated target DCI can be compatible with the scheduling information of multiple target cells, so that one target DCI includes the scheduling information of multiple target cells to support simultaneous scheduling of multiple target cells.
  • the lowest W 1 bit (that is, the W 1st to the 1st bit of the frequency domain resource allocation field, the first bit is the lowest bit of the frequency domain resource allocation field) constitutes the first subfield
  • the first subfield The field corresponds to the first target cell
  • the W 2 bits adjacent to the first subfield (that is, the (W 1 +W 2 ) bit to (W 1 +1) bit of the frequency domain resource allocation field) constitute the second subfield.
  • the second subfield corresponds to the second target cell.
  • the first of the frequency domain resource allocation field Rank to rank
  • the bits constitute the Kth subfield, and the Kth subfield corresponds to the Kth target cell.
  • the highest A bit of the frequency domain resource allocation field is used to configure the resource allocation types of multiple target cells.
  • the method of determining the length of other fields of the target DCI and the functioning method are similar to this.
  • the length of the corresponding fields of the target DCI can be obtained.
  • the subfields corresponding to each target cell can be made relatively independent. Therefore, the configuration of a certain target cell will not be affected by other cells.
  • the influence or restriction of configuration has high flexibility.
  • the DCI generation method of this embodiment makes reasonable settings for the length of the target DCI and the information contained in the corresponding fields, so that one target DCI is compatible with the scheduling information of multiple cells, thereby supporting simultaneous scheduling of multiple cells.
  • the process of scheduling multiple cells only one target DCI needs to be generated and sent, and only one PDCCH is occupied, which saves communication resources such as PDCCH.
  • this embodiment provides a method for generating DCI.
  • the DCI generation method further includes the following steps:
  • Step S100 Set one of the target cells as a reference cell.
  • Step S101 includes: obtaining the length of each field of the target DCI according to the length of each field of the expected DCI of the reference cell.
  • Step S102 includes: corresponding each field of the target DCI to multiple target cells at the same time.
  • Step S103 includes: setting the desired DCI corresponding to the reference cell as the target DCI.
  • each target cell other than the reference cell adopts the same configuration as the reference cell.
  • the target DCI (that is, the desired DCI corresponding to the reference cell) is sent through a preset PDCCH, and the PDCCH corresponds to multiple target cells.
  • multiple target cells analyze the target DCI to obtain corresponding configuration information.
  • one DCI can be compatible with scheduling information of multiple cells, thereby supporting scheduling of multiple cells at the same time. In the process of scheduling multiple cells, only one target DCI needs to be generated and sent, and only one PDCCH is occupied, which saves communication resources such as PDCCH.
  • This embodiment provides a cell scheduling method.
  • the scheduling method of the cell includes: generating a target DCI by using the DCI generation method in any one of the embodiments 1-3;
  • the cell scheduling method also includes the following steps:
  • Step S104 Scheduling multiple target cells according to the target DCI.
  • the target DCI can be compatible with the scheduling information of multiple target cells, so one target DCI can support the scheduling of multiple target cells at the same time. Multiple target cells are scheduled according to the target DCI, and only one PDCCH is occupied, which saves communication resources such as PDCCH.
  • this embodiment provides a cell scheduling method.
  • the cell scheduling method further includes the following steps:
  • Step S11 construct a partial bandwidth configuration table.
  • the partial bandwidth configuration table includes partial bandwidth configuration information corresponding to each target cell.
  • step S104 includes step S1041, querying the partial bandwidth configuration table according to the partial bandwidth indication field of the target DCI to obtain partial bandwidth configuration information corresponding to each target cell, and configuring the corresponding target cell according to the partial bandwidth configuration information.
  • part of the bandwidth configuration table is configured by higher layer signaling (RRC) signaling.
  • RRC higher layer signaling
  • the first column of the partial bandwidth configuration table is the index column
  • the second column is the partial bandwidth configuration information corresponding to the first cell cell1
  • the third column is the second cell Part of the bandwidth configuration information corresponding to cell2.
  • the value of the partial bandwidth indication field of DCI is 1, it corresponds to the row with the value of the partial bandwidth configuration index in the partial bandwidth configuration table. Therefore, the partial bandwidth configuration information corresponding to the first cell cell1 is 1, and the second cell cell2 corresponds to Part of the bandwidth configuration information is 1.
  • the first cell cell1 and the second cell cell2 perform BWP handover according to part of the bandwidth configuration information.
  • the specific meaning of part of the bandwidth configuration information is clear to those skilled in the art, and will not be repeated here.
  • the partial bandwidth configuration table supports more than or equal to 3 target cells, and the number of columns in the partial bandwidth configuration table is adapted to the number of target cells.
  • the adopted form of the rows and columns of the partial bandwidth configuration table is obtained by transposing according to Table 1.
  • Partial bandwidth configuration index Partial bandwidth configuration information of cell1 Partial bandwidth configuration information of cell2 0 0 0 1 1 1 2 2 2 2
  • part of the bandwidth configuration information includes an activation mode, and the activation mode is used to instruct the target cell to maintain the current BWP.
  • the activation mode value is represented by "active BWP", which means that no BWP switching is performed, and the current BWP is still used.
  • the partial bandwidth configuration information corresponding to the first cell cell1 is "active BWP" ", the first cell cell1 still uses the current BWP; the part of the bandwidth configuration information corresponding to the second cell cell2 is 1, and the second cell cell2 performs BWP handover according to the part of the bandwidth configuration information.
  • the partial bandwidth configuration table supports more than or equal to 3 target cells, and the number of columns in the partial bandwidth configuration table is adapted to the number of target cells.
  • the adopted form of the rows and columns of the partial bandwidth configuration table is obtained by transposing according to Table 2.
  • Partial bandwidth configuration index Partial bandwidth configuration information of cell1 Partial bandwidth configuration information of cell2 0 0 0 1 active BWP 1 2 2 active BWP
  • the cell scheduling method of this embodiment can configure partial bandwidths of multiple cells at the same time when scheduling multiple cells, which improves efficiency.
  • this embodiment provides a cell scheduling method.
  • the cell scheduling method further includes the following steps:
  • Step S12 Construct a time domain resource allocation table.
  • the time domain resource allocation table includes time domain resource configuration information corresponding to each target cell.
  • step S104 includes step S1042, querying the time domain resource allocation table according to the time domain resource allocation field of the target DCI to obtain time domain resource configuration information corresponding to each target cell, and configuring the corresponding target cell according to the time domain resource configuration information.
  • the time domain resource allocation table includes an index area and a plurality of table blocks; each table block corresponds to a target cell; each element of the index area is used for simultaneous indexing. Corresponding elements of multiple table blocks to obtain time domain resource configuration information.
  • step S1032 corresponding elements of multiple table blocks are simultaneously indexed according to elements corresponding to the time domain resource allocation field in the index area to obtain time domain resource configuration information.
  • the time domain resource allocation table is a single table.
  • the "TDRA index (time-domain resource allocation index)" column in the time-domain resource allocation table is used as the index area.
  • Columns 2-5 of the time domain resource allocation table constitute the first table block, which corresponds to the first cell cell1.
  • the second column "K0 (DL) or K2 (UL) (time domain offset) for cell 1" column includes time domain offset information
  • "SLIV for cell 1” column includes SLIV configuration information
  • Mapping type for cell The "1” column includes the mapping type configuration information
  • the "Repetition for cell 1" column includes the retransmission configuration information.
  • Columns 6-9 of the time domain resource allocation table constitute the second table block, which corresponds to the second cell cell2.
  • the structure of the second table block is similar to the first table block.
  • the value corresponding to each row of the "TDRA index” column is 16 integers from 0 to 15.
  • the value of TDRA index and the corresponding value of time domain offset/SLIV/mapping type/repetition are similar to those in the prior art. Therefore, Table 3 omits individual behaviors.
  • the time domain resource allocation table is queried to obtain the time domain resource configuration information of each cell. For example, if the value of the time domain resource allocation field of the target DCI is 1, then the time domain resource configuration information of each cell is obtained according to the row with the TDRA index value of 1 in the time domain resource allocation table.
  • the time domain resource allocation table supports more than or equal to 3 target cells, and the number of table blocks included in the time domain resource allocation table is adapted to the number of target cells.
  • the row and column form of the time domain resource allocation table used is obtained by transposing according to Table 3.
  • the time domain resource allocation table includes multiple sub-tables; each sub-table includes an index area and a table block, and each table block corresponds to a target cell, and the index Each element of the area is used to index the corresponding element of the corresponding table block to obtain time-domain resource configuration information. Then in step 1032, the corresponding elements of the table block are indexed according to the elements of the index area corresponding to the time domain resource allocation field to obtain the time domain resource configuration information corresponding to each target cell respectively.
  • the time domain resource allocation table includes 2 sub-tables. Refer to Table 4 and Table 5 for the two sub-tables respectively.
  • the first sub-table (Table 4) corresponds to the first cell cell1
  • the second sub-table (Table 5) corresponds to the second cell cell2.
  • the "TDRA index” column serves as the index area, and the 2-4 columns constitute the first table block, which corresponds to the first cell cell1.
  • the “K0(DL) or K2(UL) (time domain offset)” column in the second column includes time domain offset information
  • the “SLIV” column includes SLIV configuration information
  • the “Mapping type” column includes mapping type configuration information.
  • the “Repetition for cell 1" column includes retransmission configuration information.
  • the first table block includes four columns such as time domain offset/SLIV/mapping type/repetition, which are respectively used to configure the time domain offset/SLIV/mapping type/repetition information of the first cell cell1.
  • the structure of the second sub-table is similar to that of the first sub-table.
  • the "TDRA index” column serves as the index area, and columns 2-4 constitute the second table block, which corresponds to the second cell cell1.
  • the time domain resource configuration information of the cell is obtained by querying each sub-table. For example, if the value of the time domain resource allocation field of the target DCI is 1, then the time domain resource configuration information of the first cell cell1 is obtained according to the row of the TDRA index value of 1 in the first sub-table, and according to the TDRA index in the second sub-table The row with the value of 1 obtains the time domain resource configuration information of the second cell cell2.
  • the time domain resource allocation table supports more than or equal to 3 target cells, and the number of sub-tables included in the time domain resource allocation table is adapted to the number of target cells.
  • the rows and columns of the sub-tables of the time-domain resource allocation table are transposed according to Table 4 and Table 5.
  • Type B TDRA index K0(DL)or K2(UL) SLIV Mapping type 0 1 145 Type B 1 2 136 Type B ... To To To 15 1 78 Type B
  • the value corresponding to each row of the "TDRA index” column is 16 integers from 0 to 15.
  • the value of TDRA index and the corresponding value of time domain offset/SLIV/mapping type are similar to those in the prior art. Therefore, Table 4 and Table 5 omit individual behaviors.
  • step S13 a time domain resource allocation table and a partial bandwidth allocation table are constructed.
  • step S1043 query the time domain resource allocation table according to the time domain resource allocation field of the target DCI to obtain the time domain resource configuration information corresponding to each target cell, and query the partial bandwidth configuration table according to the partial bandwidth indication field of the target DCI to obtain The partial bandwidth configuration information corresponding to each target cell configures the corresponding target cell according to the partial bandwidth configuration information and the time domain resource configuration information.
  • one DCI can be used to realize the scheduling of multiple cells at the same time, which saves communication resources such as PDCCH.
  • the scheduling method of the cell includes: generating a target DCI by using the DCI generation method of Embodiment 4;
  • the cell scheduling method also includes the following steps:
  • Step S104 Scheduling multiple target cells according to the target DCI.
  • the scheduling method of the cell further includes step S15, constructing a reference time domain resource allocation table.
  • the reference time domain resource allocation table includes time domain resource configuration information corresponding to the reference cell.
  • step S104 includes step S1045: query the reference time domain resource allocation table according to the time domain resource allocation field of the target DCI to obtain time domain resource configuration information, and configure each target cell according to the time domain resource configuration information. That is, during the scheduling process, each target cell is configured according to the reference time domain resource allocation table.
  • the reference time domain resource allocation table includes a "TDRA index” column and a table block side by side with the "TDRA index” column.
  • the table block includes three columns of time domain offset/SLIV/mapping type, which are respectively used to configure the time domain offset/SLIV/mapping type information of each cell. Let the number of target cells be 2 for description. If the value of the time domain resource allocation indication field in the DCI is 0, it corresponds to the row where the value of "TDRA index" is 0, and the time domain resource information obtained by the first cell cell1 is that the start symbol in the next time slot is 0, and the length is 0. It is 14 symbols.
  • the second cell cell 2 also obtains its own scheduling resources: the start symbol in the next time slot of cell 1 is 0, and the length is 14 symbols. If the sub-carrier spacing of cell 1 and cell 2 are different at this time, a cross-slot situation may occur. Referring to Fig. 9, at this time, cell 2 will be divided at the edge of the time slot and on symbols different from the scheduled direction. That is, if at the cell edge, originally only one PDSCH is scheduled, it will be automatically divided into two PDSCHs. In the case of different symbols in the scheduling direction (DL (downlink) before UL (uplink) after), for example, the original PDSCH will only be part of the DL and part of the UL part, but the UL cannot send the PDSCH, so it will not be sent.
  • DL downlink
  • uplink uplink
  • the reference time domain resource allocation table supports more than or equal to 3 target cells, and each target cell is configured with reference to the time domain resource allocation table.
  • the row and column form of the reference time domain resource allocation table is transposed according to Table 6.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by this embodiment.
  • the electronic device includes a memory, a processor, and a computer program stored on the memory and running on the processor.
  • the method for generating DCI in any one of Embodiments 1 to 4 is implemented when the processor executes the program.
  • the cell scheduling method of any one of Embodiment 5 to Embodiment 7 is implemented when the processor executes the program.
  • the electronic device 30 shown in FIG. 10 is only an example, and should not bring any limitation to the function and application scope of the embodiment of the present invention.
  • the electronic device 30 may be in the form of a general-purpose computing device, for example, it may be a server device.
  • the components of the electronic device 30 may include, but are not limited to: the above-mentioned at least one processor 31, the above-mentioned at least one memory 32, and a bus 33 connecting different system components (including the memory 32 and the processor 31).
  • the bus 33 includes a data bus, an address bus, and a control bus.
  • the memory 32 may include a volatile memory, such as a random access memory (RAM) 321 and/or a cache memory 322, and may further include a read-only memory (ROM) 323.
  • RAM random access memory
  • ROM read-only memory
  • the memory 32 may also include a program/utility tool 325 having a set of (at least one) program module 324.
  • program module 324 includes but is not limited to: an operating system, one or more application programs, other program modules, and program data. Each of the examples or some combination may include the realization of a network environment.
  • the processor 31 executes various functional applications and data processing by running a computer program stored in the memory 32, such as the DCI generation method of any one of Embodiments 1 to 4 of the present invention, or Embodiment 5.
  • the electronic device 30 may also communicate with one or more external devices 34 (such as keyboards, pointing devices, etc.). This communication can be performed through an input/output (I/O) interface 35.
  • the model-generated device 30 may also communicate with one or more networks (for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 36. As shown in the figure, the network adapter 36 communicates with other modules of the device 30 generated by the model through the bus 33.
  • networks for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the method for generating DCI in any one of Embodiments 1 to 4 are implemented, Or, when the program is executed by the processor, the steps of the cell scheduling method in any one of Embodiment 5 to Embodiment 7 are implemented.
  • the readable storage medium may more specifically include but not limited to: portable disk, hard disk, random access memory, read only memory, erasable programmable read only memory, optical storage device, magnetic storage device or any of the above The right combination.
  • the present invention can also be implemented in the form of a program product, which includes program code.
  • the program product runs on a terminal device
  • the program code is used to make the terminal device execute the implementation.
  • the steps of the method for generating DCI in any one of Embodiments 1 to 4, or the program code is used to make the terminal device execute the cell that implements any one of Embodiments 5 to 7
  • the steps of the scheduling method is not limited to any one of Embodiments 1 to 4
  • the program code is used to make the terminal device execute the cell that implements any one of Embodiments 5 to 7
  • program code used to execute the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent
  • the software package is executed, partly on the user’s device, partly on the remote device, or entirely on the remote device.
  • the DCI generation system includes a length acquisition unit 401, a subfield construction unit 402, and a target DCI generation unit 403.
  • the length obtaining unit 401 is configured to obtain the length of each field of the target DCI according to the length of each field of the expected DCI corresponding to the target cell. There are multiple target cells, and the expected DCI is required for scheduling each target cell individually. DCI, the length of each field of the target DCI is the length required to be compatible with the corresponding field of the desired DCI.
  • the subfield construction unit 402 is configured to construct subfields for each field of the target DCI according to a preset correspondence relationship, so that each subfield of each field of the target DCI corresponds to a target cell.
  • the target DCI generating unit 403 is configured to generate each field of the target DCI according to the length and the corresponding relationship of each field of the target DCI to form the target DCI.
  • each field of the target DCI According to the length of each field of the expected DCI corresponding to each target cell, the length of each field of the target DCI can be obtained. It can be obtained that each field of the target DCI has an appropriate length to be compatible with the corresponding fields of multiple cells, so that each field Both can contain scheduling information for multiple cells, that is, one DCI can be compatible with the scheduling information of multiple cells, thereby supporting scheduling of multiple cells at the same time. In the process of scheduling multiple cells, only one target DCI needs to be generated and sent, and only one PDSCH is occupied, which saves communication resources such as PDSCH.
  • this embodiment provides a DCI generation system.
  • the length obtaining unit 401 is further configured to obtain the length of the corresponding field of the target DCI according to the maximum value of the length of the corresponding field of the desired DCI.
  • the number of target cells be K.
  • the frequency domain resource allocation fields of these expected DCIs respectively correspond to the corresponding target cells. length.
  • the maximum value of these lengths is used as the length of the frequency domain resource allocation field of the target DCI.
  • the method for determining the length of other fields of the target DCI is similar to this. Accordingly, the length of the generated target DCI can be compatible with the scheduling information of multiple target cells, so that one target DCI includes the scheduling information of multiple target cells to support simultaneous scheduling of multiple target cells.
  • the length of the frequency domain resource allocation field of the target DCI is the sum of the maximum value of these lengths and a preset bit width value, and the subfield corresponding to the preset bit width value is used as To configure the resource allocation types of multiple target cells.
  • the method for determining the length of other fields of the target DCI is similar to this.
  • the target DCI is sent through a preset PDCCH, and the PDCCH corresponds to multiple target cells.
  • multiple target cells analyze the target DCI, and obtain the W-bit scheduling information in the field of the target DCI respectively.
  • the target cell uses the lowest Y bit in the W-bit scheduling information as the target cell correspondence The subfield of is used as the scheduling information of the target cell.
  • this field requires a target cell with W bits, and the complete field is used as a subfield corresponding to the target cell to obtain the corresponding scheduling information; if the field requires a target cell with X (X is less than W) bits, use the target cell in this field The lowest X bit of is used as the subfield corresponding to the target cell to obtain the corresponding scheduling information.
  • Other fields in the target DCI have similar effects on multiple target cells. Based on this, one target DCI can be compatible with the configuration information of multiple cells.
  • the length (number of bits) of the frequency domain resource allocation field depends on the object with the largest number of PRBs corresponding to the multiple target cells The BWP (partial bandwidth) of the cell. That is, if multiple target cells only support resource allocation type 1, the length of the frequency domain resource allocation field of the target DCI is Among them, n ⁇ [1,K], K is the number of target cells. Correspond to each target cell respectively.
  • the length of the frequency domain resource allocation field depends on the BWP of the target cell with the largest number of N RBGs corresponding to the multiple target cells. . That is, if multiple target cells only support resource allocation type 0, the length of the frequency domain resource allocation field of the target DCI is max(N(n) RBG ), where n ⁇ [1,K], K is the target cell quantity. Correspond to each target cell respectively.
  • the length of the frequency domain resource allocation field is: among them,
  • the N(j) RBGs correspond to each of the target cells that only support resource allocation type 1 respectively, and the N(j) RBGs correspond to each of the target cells that only support resource allocation type 0.
  • the number of target cells that only supports resource allocation type 0 is L
  • the frequency domain resource allocation field of the target DCI includes a type indicator bit, and the type indicator bit uses If the indicated target cells are all resource allocation type 1 or all resource allocation type 0, the length of the frequency domain resource allocation field is among them, Corresponding to the pattern in which all target cells are indicated as resource allocation type 1; N(n) RBG corresponds to the pattern in which all target cells are indicated as resource allocation type 0, and K is the number of target cells.
  • the most significant bit (MSB) of the frequency domain resource allocation field of the DCI is used as the type indicator bit.
  • the frequency domain resource allocation field of the target DCI includes K-bit type indicator bits, and each type indicator bit corresponds to a target cell to indicate resource allocation type 1 or resource allocation type 0 of the target cell.
  • the length of the frequency domain resource allocation field is among them, Corresponding to the pattern in which all target cells are indicated as resource allocation type 1; N(n) RBG corresponds to the pattern in which all target cells are indicated as resource allocation type 0, and K is the number of target cells.
  • the highest K bits of the frequency domain resource allocation field of the DCI are all type indicator bits. Among them, the highest bit of the frequency domain resource allocation field corresponds to the first target cell.
  • the first target cell When the value of this bit is 0, the first target cell is indicated as resource allocation type 0; when the value of this bit is 1, The first target cell is indicated as resource allocation type 1. If the first target cell only supports resource allocation type 0 or the first target cell only supports resource allocation type 1, then the first target cell ignores this bit and its resources The allocation type is not affected by this bit.
  • the second high bit of the frequency domain resource allocation field corresponds to the second target cell. When the value of this bit is 0, the second target cell is indicated as resource allocation type 0; when the value of this bit is 1, the second target cell is indicated as the resource allocation type.
  • the two target cells are indicated as resource allocation type 1; if the second target cell only supports resource allocation type 0 or the second target cell only supports resource allocation type 1, the second target cell ignores this bit and its resource allocation The type is not affected by this bit.
  • the Kth high bit of the frequency domain resource allocation field corresponds to the Kth target cell. When the value of this bit is 0, the Kth target cell is indicated as resource allocation type 0; when the value of this bit is 0 At 1, the Kth target cell is indicated as resource allocation type 1; if the Kth target cell only supports resource allocation type 0 or the Kth target cell only supports resource allocation type 1, the Kth target cell ignores this bit , Its resource allocation type is not affected by this bit.
  • the length of the corresponding field of the target DCI is obtained according to the maximum length of the corresponding field of the desired DCI, so that the corresponding field of the target DCI can be compatible with all multiple target cells that need to be scheduled with a shorter length, which saves resources.
  • the DCI generation system of this embodiment makes reasonable settings for the length of the target DCI and the information contained in the corresponding fields, so that one target DCI is compatible with the scheduling information of multiple cells, thereby supporting simultaneous scheduling of multiple cells.
  • the process of scheduling multiple cells only one target DCI needs to be generated and sent, and only one PDSCH is occupied, which saves communication resources such as PDSCH.
  • this embodiment provides a DCI generation system.
  • the length obtaining unit 401 is further configured to obtain the length of the corresponding field of the target DCI according to the sum of the lengths of the corresponding fields of the multiple expected DCIs.
  • the frequency domain resource allocation field As an example.
  • the frequency domain resource allocation fields of these expected DCIs respectively correspond to the corresponding target cells. length.
  • the length of the frequency domain resource allocation field of the expected DCI of the i-th target cell be W i (i ⁇ [1,K]).
  • the lowest W 1 bit (that is, the W 1st to the 1st bit of the frequency domain resource allocation field, the first bit is the lowest bit of the frequency domain resource allocation field) constitutes the first subfield
  • the first subfield The field corresponds to the first target cell
  • the W 2 bits adjacent to the first subfield (that is, the (W 1 +W 2 ) bit to (W 1 +1) bit of the frequency domain resource allocation field) constitute the second subfield.
  • the second subfield corresponds to the second target cell.
  • the highest W K bits of the frequency domain resource allocation field constitute the Kth subfield
  • the Kth subfield corresponds to the Kth target cell.
  • multiple target cells After receiving the target DCI, multiple target cells parse out the frequency domain resource allocation field from the target DCI, and obtain corresponding configuration information from the corresponding subfield in the frequency domain resource allocation field according to the preset correspondence.
  • the method of determining the length of other fields of the target DCI and the functioning method are similar to this. Accordingly, the length of the generated target DCI can be compatible with the scheduling information of multiple target cells, so that one target DCI includes the scheduling information of multiple target cells to support simultaneous scheduling of multiple target cells.
  • the lowest W 1 bit (that is, the W 1st to the 1st bit of the frequency domain resource allocation field, the first bit is the lowest bit of the frequency domain resource allocation field) constitutes the first subfield
  • the first subfield The field corresponds to the first target cell
  • the W 2 bits adjacent to the first subfield (that is, the (W 1 +W 2 ) bit to (W 1 +1) bit of the frequency domain resource allocation field) constitute the second subfield.
  • the second subfield corresponds to the second target cell.
  • the first of the frequency domain resource allocation field Rank to rank
  • the bits constitute the Kth subfield, and the Kth subfield corresponds to the Kth target cell.
  • the highest A bit of the frequency domain resource allocation field is used to configure the resource allocation types of multiple target cells.
  • the method of determining the length of other fields of the target DCI and the functioning method are similar to this.
  • the length of the corresponding fields of the target DCI can be obtained.
  • the subfields corresponding to each target cell can be made relatively independent. Therefore, the configuration of a certain target cell will not be affected by other cells.
  • the influence or restriction of configuration has high flexibility.
  • the DCI generation system of this embodiment makes reasonable settings for the length of the target DCI and the information contained in the corresponding fields, so that one target DCI is compatible with the scheduling information of multiple cells, thereby supporting simultaneous scheduling of multiple cells.
  • the process of scheduling multiple cells only one target DCI needs to be generated and sent, and only one PDSCH is occupied, which saves communication resources such as PDSCH.
  • the DCI generation system further includes a reference setting unit 404.
  • the reference setting unit 404 is configured to set one of the target cells as a reference cell.
  • the length obtaining unit 401 is configured to obtain the length of each field of the target DCI according to the length of each field of the expected DCI of the reference cell.
  • the subfield construction unit 402 is also used to simultaneously correspond each field of the target DCI to multiple target cells.
  • the target DCI generating unit 403 is further configured to use the desired DCI corresponding to the reference cell as the target DCI. That is, when scheduling multiple target cells, each target cell other than the reference cell adopts the same configuration as the reference cell.
  • the target DCI (that is, the desired DCI corresponding to the reference cell) is sent through a preset PDCCH, and the PDCCH corresponds to multiple target cells.
  • multiple target cells analyze the target DCI to obtain corresponding configuration information.
  • one DCI can be compatible with scheduling information of multiple cells, thereby supporting simultaneous scheduling of multiple cells. In the process of scheduling multiple cells, only one target DCI needs to be generated and sent, and only one PDSCH is occupied, which saves communication resources such as PDSCH.
  • This embodiment provides a cell scheduling system. Referring to FIG. 13, it includes a scheduling unit 405405 and a DCI generation system 5 of any one of Embodiments 11-13.
  • the DCI generation system 5 is used to generate a target DCI; the scheduling unit 405 is used to schedule multiple target cells according to the target DCI.
  • the target DCI can be compatible with the scheduling information of multiple target cells, so one target DCI can support the scheduling of multiple target cells at the same time. Multiple target cells are scheduled according to the target DCI, and only one PDSCH is occupied, which saves communication resources such as PDSCH.
  • this embodiment provides a cell scheduling system.
  • the scheduling system of the cell further includes a table construction unit 406.
  • the table construction unit 406 is used to construct a partial bandwidth configuration table, and the partial bandwidth configuration table includes partial bandwidth configuration information corresponding to each target cell; then the scheduling unit 405 is also used to query the partial bandwidth configuration table according to the partial bandwidth indication field of the target DCI. Obtain the partial bandwidth configuration information corresponding to each target cell, and configure the corresponding target cell according to the partial bandwidth configuration information.
  • part of the bandwidth configuration table is configured by higher layer signaling (RRC) signaling.
  • RRC higher layer signaling
  • the first column of the partial bandwidth configuration table is the index column
  • the second column is the partial bandwidth configuration information corresponding to the first cell cell1
  • the third column is the second cell Part of the bandwidth configuration information corresponding to cell2.
  • the value of the partial bandwidth indication field of DCI is 1, it corresponds to the row with the value of the partial bandwidth configuration index in the partial bandwidth configuration table. Therefore, the partial bandwidth configuration information corresponding to the first cell cell1 is 1, and the second cell cell2 corresponds to Part of the bandwidth configuration information is 1.
  • the first cell cell1 and the second cell cell2 perform BWP handover according to part of the bandwidth configuration information.
  • the specific meaning of part of the bandwidth configuration information is clear to those skilled in the art, and will not be repeated here.
  • the partial bandwidth configuration table supports more than or equal to 3 target cells, and the number of columns in the partial bandwidth configuration table is adapted to the number of target cells.
  • the adopted form of the rows and columns of the partial bandwidth configuration table is obtained by transposing according to Table 1.
  • part of the bandwidth configuration information includes an activation mode, and the activation mode is used to instruct the target cell to maintain the current BWP.
  • the activation mode value is represented by "active BWP", which means that no BWP switching is performed, and the current BWP is still used.
  • the partial bandwidth configuration information corresponding to the first cell cell1 is "active BWP" ", the first cell cell1 still uses the current BWP; the part of the bandwidth configuration information corresponding to the second cell cell2 is 1, and the second cell cell2 performs BWP handover according to the part of the bandwidth configuration information.
  • the partial bandwidth configuration table supports more than or equal to 3 target cells, and the number of columns in the partial bandwidth configuration table is adapted to the number of target cells.
  • the adopted form of the rows and columns of the partial bandwidth configuration table is obtained by transposing according to Table 2.
  • the cell scheduling system of this embodiment can configure partial bandwidths of multiple cells at the same time when scheduling multiple cells, which improves efficiency.
  • this embodiment provides a cell scheduling system.
  • the scheduling system of the cell further includes a table construction unit 406.
  • the table construction unit 406 is configured to construct a time-domain resource allocation table, and the time-domain resource allocation table includes time-domain resource configuration information corresponding to each target cell; then the scheduling unit 405 is also configured to The time domain resource allocation table is queried according to the time domain resource allocation field of the target DCI to obtain the time domain resource configuration information corresponding to each target cell, and the corresponding target cell is configured according to the time domain resource configuration information.
  • the time domain resource allocation table includes an index area and a plurality of table blocks; each table block corresponds to a target cell; each element of the index area is used for simultaneous indexing. Corresponding elements of multiple table blocks to obtain time domain resource configuration information.
  • step S1032 corresponding elements of multiple table blocks are simultaneously indexed according to elements corresponding to the time domain resource allocation field in the index area to obtain time domain resource configuration information.
  • the time domain resource allocation table is a single table.
  • the "TDRA index (time-domain resource allocation index)" column in the time-domain resource allocation table is used as the index area.
  • Columns 2-5 of the time domain resource allocation table constitute the first table block, which corresponds to the first cell cell1.
  • the second column "K0 (DL) or K2 (UL) (time domain offset) for cell 1" column includes time domain offset information
  • "SLIV for cell 1” column includes SLIV configuration information
  • Mapping type for cell The "1” column includes the mapping type configuration information
  • the "Repetition for cell 1" column includes the retransmission configuration information.
  • Columns 6-9 of the time domain resource allocation table constitute the second table block, which corresponds to the second cell cell2.
  • the structure of the second table block is similar to the first table block.
  • the value corresponding to each row of the "TDRA index” column is 16 integers from 0 to 15.
  • the value of TDRA index and the corresponding value of time domain offset/SLIV/mapping type/repetition are similar to those in the prior art. Therefore, Table 3 omits individual behaviors.
  • the time domain resource allocation table is queried to obtain the time domain resource configuration information of each cell. For example, if the value of the time domain resource allocation field of the target DCI is 1, then the time domain resource configuration information of each cell is obtained according to the row with the TDRA index value of 1 in the time domain resource allocation table.
  • the time domain resource allocation table supports more than or equal to 3 target cells, and the number of table blocks included in the time domain resource allocation table is adapted to the number of target cells.
  • the row and column form of the time domain resource allocation table used is obtained by transposing according to Table 3.
  • the time domain resource allocation table includes multiple sub-tables; each sub-table includes an index area and a table block, and each table block corresponds to a target cell, and the index Each element of the area is used to index the corresponding element of the corresponding table block to obtain time-domain resource configuration information. Then in step 1032, the corresponding elements of the table block are indexed according to the elements of the index area corresponding to the time domain resource allocation field to obtain the time domain resource configuration information corresponding to each target cell respectively.
  • the time domain resource allocation table includes 2 sub-tables. Refer to Table 4 and Table 5 for the two sub-tables respectively.
  • the first sub-table (Table 4) corresponds to the first cell cell1
  • the second sub-table (Table 5) corresponds to the second cell cell2.
  • the “TDRA index” column serves as the index area, and the 2-4 columns constitute the first table block, which corresponds to the first cell cell1.
  • the “K0(DL) or K2(UL) (time domain offset)” column in the second column includes time domain offset information
  • the “SLIV” column includes SLIV configuration information
  • the “Mapping type” column includes mapping type configuration information.
  • the “Repetition for cell 1" column includes retransmission configuration information.
  • the first table block includes four columns such as time domain offset/SLIV/mapping type/repetition, which are respectively used to configure the time domain offset/SLIV/mapping type/repetition information of the first cell cell1.
  • the structure of the second sub-table is similar to that of the first sub-table.
  • the "TDRA index” column serves as the index area, and columns 2-4 constitute the second table block, which corresponds to the second cell cell1.
  • the time domain resource configuration information of the cell is obtained by querying each sub-table. For example, if the value of the time domain resource allocation field of the target DCI is 1, then the time domain resource configuration information of the first cell cell1 is obtained according to the row of the TDRA index value of 1 in the first sub-table, and according to the TDRA index in the second sub-table The row with the value of 1 obtains the time domain resource configuration information of the second cell cell2.
  • the time domain resource allocation table supports more than or equal to 3 target cells, and the number of sub-tables included in the time domain resource allocation table is adapted to the number of target cells.
  • the rows and columns of the sub-tables of the time-domain resource allocation table are transposed according to Table 4 and Table 5.
  • the value corresponding to each row of the "TDRA index” column is 16 integers from 0 to 15.
  • the value of TDRA index and the corresponding value of time domain offset/SLIV/mapping type are similar to those in the prior art. Therefore, Table 4 and Table 5 omit individual behaviors.
  • the table construction unit 406 is used to construct a time domain resource allocation table and a partial bandwidth configuration table.
  • the scheduling unit 405 is further configured to query the time domain resource allocation table according to the time domain resource allocation field of the target DCI to obtain the time domain resource configuration information corresponding to each target cell, and query the partial bandwidth configuration table according to the partial bandwidth indication field of the target DCI. To obtain partial bandwidth configuration information corresponding to each target cell, configure the corresponding target cell according to the partial bandwidth configuration information and time domain resource configuration information.
  • one DCI can realize the scheduling of multiple cells at the same time, which saves communication resources such as PDSCH.
  • This embodiment provides a cell scheduling system.
  • the scheduling system of the cell includes a scheduling unit 405 and the DCI generation system 6 of Embodiment 14.
  • the DCI generation system 6 is used to generate a target DCI;
  • the scheduling unit 405 is used to schedule multiple target cells according to the target DCI.
  • the scheduling system of the cell further includes a table constructing unit 406.
  • the table construction unit 406 is configured to construct a reference time domain resource allocation table, and the reference time domain resource allocation table includes time domain resource configuration information corresponding to the reference cell.
  • the scheduling unit 405 is further configured to query the reference time domain resource allocation table according to the time domain resource allocation field of the target DCI to obtain time domain resource configuration information, and configure each target cell according to the time domain resource configuration information.
  • the reference time domain resource allocation table includes a "TDRA index” column and a table block side by side with the "TDRA index” column.
  • the table block includes three columns of time domain offset/SLIV/mapping type, which are respectively used to configure the time domain offset/SLIV/mapping type information of each cell. Let the number of target cells be 2 for description. If the value of the time domain resource allocation indication field in the DCI is 0, it corresponds to the row where the value of "TDRA index" is 0, and the time domain resource information obtained by the first cell cell1 is that the start symbol in the next time slot is 0, and the length It is 14 symbols.
  • the second cell cell 2 also obtains its own scheduling resources: the start symbol in the next time slot of cell 1 is 0, and the length is 14 symbols. If the sub-carrier spacing of cell 1 and cell 2 are different at this time, a cross-slot situation may occur. Referring to Fig. 9, at this time, cell 2 will be divided at the edge of the time slot and on symbols different from the scheduled direction. That is, if at the cell edge, originally only one PDSCH is scheduled, it will be automatically divided into two PDSCHs. In the case of different symbols in the scheduling direction (DL (downlink) before UL (uplink) after), for example, the original PDSCH will only be part of the DL and part of the UL part, but the UL cannot send the PDSCH, so it will not be sent.
  • DL downlink
  • uplink uplink
  • the reference time domain resource allocation table supports more than or equal to 3 target cells, and each target cell is configured with reference to the time domain resource allocation table.
  • the row and column form of the reference time domain resource allocation table is transposed according to Table 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种DCI的生成方法、小区的调度方法、系统、设备和介质,其中DCI的生成方法包括以下步骤:根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度,对象小区的数量为多个,期望DCI为用于单独调度每一个对象小区所需的DCI,目标DCI的各个字段的长度为兼容期望DCI的对应字段所需的长度;根据预设对应关系对目标DCI的各个字段分别构建子字段以使目标DCI的每一个字段的各个子字段分别与一个对象小区相对应;根据目标DCI的各个字段的长度和对应关系生成目标DCI的各个字段以形成目标DCI。本发明使得一个目标DCI兼容多个小区的调度信息。

Description

DCI的生成方法、小区的调度方法、系统、设备和介质
本申请要求申请日为2020年1月10日的中国专利申请202010028277.0的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于下行控制信息传输技术领域,尤其涉及一种DCI(下行控制信息)的生成方法、小区的调度方法、系统、设备和介质。
背景技术
目前,一个DCI只能包含一个小区的调度信息,如NR中调度DCI格式包含DCI0_0/0_1/0_2/1_0/1_1/1_2。其中DCI1_0包含下述信息:
-DCI格式标识(Identifier for DCI formats)–1bits(位)
-频域资源分配(Frequency domain resource assignment)–
Figure PCTCN2021075600-appb-000001
Figure PCTCN2021075600-appb-000002
其中,
Figure PCTCN2021075600-appb-000003
表征下行BWP内包含的RB个数。频域资源分配中,上行下行的资源分配是相同的。
-时域资源分配(Time domain resource assignment)–X bits
-VRB-to-PRB映射( VRB-to-PRB mapping)–1bit
-调制和编码方式(Modulation and coding scheme)–5bits
-新数据指示(New data indicator)–1bit
-冗余版本(Redundancy version)–2bits
-HARQ 进程个数(HARQ process number)–4bits
-下行分配索引(Downlink assignment index)–2bits
-调度PUCCH的TPC命令(TPC command for scheduled PUCCH)–2bits
-PUCCH资源指示(PUCCH resource indicator)–2bits
-PDSCH到HARQ反馈的定时指示(PDSCH-to-HARQ_feedback timing indicator)–3bits
其中DCI1_1包含下述信息:
-载波指示(Carrier indicator)–0 or 3bits.
-DCI格式标识(Identifier for DCI formats)–1bits
-部分带宽指示(Bandwidth part indicator)–0,1 or 2bits
-频域资源分配(Frequency domain resource assignment)–若只配置了资源分配类型0则
Figure PCTCN2021075600-appb-000004
只配置了资源分配类型1则
Figure PCTCN2021075600-appb-000005
若配置了两种资源分配则
Figure PCTCN2021075600-appb-000006
其中,P表征RBG的大小,RBG表征RB组;
-时域资源分配(Time domain resource assignment)–1,2,3,or 4bits
-VRB-to-PRB映射(VRB-to-PRB mapping)–0 or 1bit
-PRB绑定大小指示(PRB bundling size indicator)–0 or 1bit
-速率匹配指示(Rate matching indicator)–0,1,or 2bits
-ZP CSI-RS触发(ZP CSI-RS trigger)–X bits
传输块1:
-调制和编码方式(Modulation and coding scheme)–5bits
-新数据指示(New data indicator)–1bit
-冗余版本(Redundancy version)–2bits
传输块2:
-调制和编码方式(Modulation and coding scheme)–5bits
-新数据指示(New data indicator)–1bit
-冗余版本(Redundancy version)–2bits
-HARQ进程个数(HARQ process number)–4bits
-下行分配索引(Downlink assignment index)–0 or 4bits
-调度PUCCH的TPC命令(TPC command for scheduled PUCCH)–2bits
-PUCCH资源指示(PUCCH resource indicator)–2bits
-PDSCH到HARQ反馈的定时指示(PDSCH-to-HARQ_feedback timing indicator)–3bits
-天线端口(Antenna ports)–4,5,or 6bits
-传输配置指示(Transmission configuration indication)–0bit or 3bits
-SRS请求(SRS request)–2bits
-CBG传输信息(CBG transmission information)–0,2,4,6,or 8bits
-CBG清空信息(CBG flushing out information)–0 or 1bit.
-DMRS序列初始化(DMRS sequence initialization)–0 or 1bit
如果一个服务小区上UE(User Equipment,用户设备)配置了高层参数CrossCarrierSchedulingConfig,则DCI中的载波指示字段(carrier indicator field)取值即为CrossCarrierSchedulingConfig。一个服务小区上UE需要监听UE专用搜索空间的PDCCH候选,若UE没有配置载波指示字段,则UE监听的PDCCH候选中不包含载波指示字段;若UE配置了载波指示字段,则UE监听的PDCCH候选中包含载波指示字段。若UE配置在另一个服务小区上监听有对应某辅小区载波指示字段的PDCCH候选,则UE不期望在辅小区中监听PDCCH候选。对于UE监听PDCCH候选的服务小区,UE至少监听本服务小区的PDCCH候选。
鉴于一个DCI只能包含一个小区的调度信息,所以,现有技术中为了调度多个小区,需要发送多个DCI。每一个DCI均需要占用一个对应的PDCCH(物理下行共享信道)。因此,为了调度多个小区,需要占用多个PDCCH,消耗了较多的通信资源。另外,一个DCI仅包含一个对应小区的调度信 息,受到该DCI中各个字段的长度的限制,其难以兼容多个小区的调度信息。
发明内容
本发明要解决的技术问题是为了克服现有技术中一个DCI不能兼容多个小区的配置信息的缺陷,提供一种DCI的生成方法、小区的调度方法、系统、设备和介质。
本发明是通过下述技术方案来解决上述技术问题:
本发明还提供一种DCI的生成方法,包括以下步骤:
根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度,对象小区的数量为多个,期望DCI为用于单独调度每一个对象小区所需的DCI,目标DCI的各个字段的长度为兼容期望DCI的对应字段所需的长度;
根据预设对应关系对目标DCI的各个字段分别构建子字段以使目标DCI的每一个字段的各个子字段分别与一个对象小区相对应;
根据目标DCI的各个字段的长度和对应关系生成目标DCI的各个字段以形成目标DCI。
较佳地,根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度的步骤包括:
根据期望DCI的对应字段的长度的最大值得到目标DCI的对应字段的长度。
较佳地,根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度的步骤包括:
根据多个期望DCI的对应字段的长度的和得到目标DCI的对应字段的长度。
较佳地,当多个对象小区均只支持资源分配类型1时,目标DCI的频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000007
其中n∈[1,K],K为对象小区的数量;
或,当多个对象小区均只支持资源分配类型0时,目标DCI的频域资源分配字段的长度为max(N(n) RBG),其中,n∈[1,K],K为对象小区的数量;
或,当多个对象小区中,一部分对象小区只支持资源分配类型0,另一部分对象小区只支持资源分配类型1时,目标DCI的频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000008
其中,i∈[1,L],j∈[1,M],L为只支持资源分配类型1的对象小区的数量,M为只支持资源分配类型0的对象小区的数量,L+M=K,K为对象小区的数量;
或,当多个对象小区均既支持资源分配类型0又支持资源分配类型1时,目标DCI的频域资源分配字段包括一位类型指示位,类型指示位用于指示对象小区均为资源分配类型1或均为资源分配类型0,则频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000009
其中,
Figure PCTCN2021075600-appb-000010
与对象小区均被指示为资源分配类型1的模式相对应;N(n) RBG与对象小区均被指示为资源分配类型0的模式相对应,K为对象小区的数量;
或,目标DCI的频域资源分配字段包括K位类型指示位,每一位类型指示位分别对应一个对象小区以指示对象小区资源分配类型1或资源分配类型0,则频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000011
其中,
Figure PCTCN2021075600-appb-000012
与对象小区均被指示为资源分配类型1的模式相对应;N(n) RBG与对象小区均被指示为资源分配类型0的模式相对应,K为对象小区的数量。
较佳地,DCI的生成方法还包括以下步骤:
将其中一个对象小区设置为参考小区;
则根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度的步骤包括:
根据参考小区的期望DCI的各个字段的长度得到目标DCI的各个字段的长度;
根据预设对应关系对目标DCI的各个字段分别构建子字段的步骤包括:
将目标DCI的每一个字段同时与多个对象小区相对应;
根据目标DCI的各个字段的长度和对应关系生成目标DCI的各个字段以形成目标DCI的步骤包括:
将与参考小区对应的期望DCI作为目标DCI。
本发明还提供一种小区的调度方法,包括:
利用本发明的DCI的生成方法生成目标DCI;
根据目标DCI调度多个对象小区。
较佳地,小区的调度方法还包括以下步骤:构建部分带宽配置表格,部分带宽配置表格包括与每一个对象小区对应的部分带宽配置信息;
则根据目标DCI调度多个对象小区的步骤包括:根据目标DCI的部分带宽指示字段查询部分带宽配置表格以获得与每一个对象小区对应的部分带宽配置信息,根据部分带宽配置信息配置对应的对象小区;
和/或,小区的调度方法还包括以下步骤:构建时域资源分配表格,时域资源分配表格包括分别与每一个对象小区对应的时域资源配置信息;
则根据目标DCI调度多个对象小区的步骤包括:根据目标DCI的时域资源分配字段查询时域资源分配表格以获得与每一个对象小区对应的时域资源配置信息,根据时域资源配置信息配置对应的对象小区。
较佳地,当小区的调度方法包括构建部分带宽配置表格的步骤时,部分带宽配置信息包括激活模式,激活模式用于指示对象小区保持当前的BWP。
较佳地,当小区的调度方法包括构建时域资源分配表格的步骤时,
时域资源分配表格包括索引区和多个表格区块;每一个表格区块分别与一个对象小区相对应;索引区的每一个元素分别用于同时索引多个表格区块的对应元素以获取时域资源配置信息;则根据目标DCI的时域资源分配字段查询时域资源分配表格以获得与每一个对象小区对应的时域资源配置信息 的步骤包括:根据索引区的与时域资源分配字段对应的元素同时索引多个表格区块的对应元素以获取时域资源配置信息;
或,时域资源分配表格包括多个子表格;每一个子表格均包括一个索引区和一个表格区块,每一个表格区块分别与一个对象小区相对应,索引区的每一个元素分别用于索引对应的表格区块的对应元素以获取时域资源配置信息;则根据目标DCI的时域资源分配字段查询时域资源分配表格以获得与每一个对象小区对应的时域资源配置信息的步骤包括:根据索引区的与时域资源分配字段对应的元素索引表格区块的对应元素以分别获取与每一个对象小区对应的时域资源配置信息。
较佳地,当DCI的生成方法包括设置参考小区的步骤时,小区的调度方法还包括:
构建参考时域资源分配表格,参考时域资源分配表格包括与参考小区相对应的时域资源配置信息;
则根据目标DCI调度多个对象小区的步骤包括:
根据目标DCI的时域资源分配字段查询参考时域资源分配表格以获得时域资源配置信息,根据时域资源配置信息配置每一个对象小区。
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现本发明的DCI的生成方法,或处理器执行计算机程序时实现本发明的小区的调度方法。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现本发明的DCI的生成方法的步骤,或计算机程序被处理器执行时实现本发明的小区的调度方法的步骤。
本发明还提供一种DCI的生成系统,包括长度获取单元、子字段构建单元、目标DCI生成单元;
长度获取单元用于根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度,对象小区的数量为多个,期望DCI为用于单独调度每一个对象小区所需的DCI,目标DCI的各个字段的长度为兼容期望DCI的对应字段所需的长度;
子字段构建单元用于根据预设对应关系对目标DCI的各个字段分别构建子字段以使目标DCI的每一个字段的各个子字段分别与一个对象小区相对应;
目标DCI生成单元用于根据目标DCI的各个字段的长度和对应关系生成目标DCI的各个字段以形成目标DCI。
较佳地,长度获取单元还用于根据期望DCI的对应字段的长度的最大值得到目标DCI的对应字段的长度。
较佳地,长度获取单元还用于根据多个期望DCI的对应字段的长度的和得到目标DCI的对应字段的长度。
较佳地,当多个对象小区均只支持资源分配类型1时,目标DCI的频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000013
其中n∈[1,K],K为对象小区的数量;
或,当多个对象小区均只支持资源分配类型0时,目标DCI的频域资源分配字段的长度为max(N(n) RBG),其中,n∈[1,K],K为对象小区的数量;
或,当多个对象小区中,一部分对象小区只支持资源分配类型0,另一部分对象小区只支持资源分配类型1时,目标DCI的频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000014
其中,i∈[1,L],j∈[1,M],L为只支持资源分配类型1的对象小区的数量,M为只支持资源分配类型0的对象小区的数量,L+M=K,K为对象小区的数量;
或,当多个对象小区均既支持资源分配类型0又支持资源分配类型1时,目标DCI的频域资源分配字段包括一位类型指示位,类型指示位用于指示对象小区均为资源分配类型1或均为资源分配类型0,则频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000015
其中,
Figure PCTCN2021075600-appb-000016
与对象小区均被指示为资源分配类型1的模式相对应;N(n) RBG与对象小区均被指示为资源分配类型0的模式相对应,K为对象小区的数量;
或,目标DCI的频域资源分配字段包括K位类型指示位,每一位类型指示位分别对应一个对象小区以指示对象小区资源分配类型1或资源分配类型0,则频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000017
其中,
Figure PCTCN2021075600-appb-000018
与对象小区均被指示为资源分配类型1的模式相对应;N(n) RBG与对象小区均被指示为资源分配类型0的模式相对应,K为对象小区的数量。
较佳地,DCI的生成系统还包括参考设置单元;
参考设置单元用于将其中一个对象小区设置为参考小区;
则长度获取单元用于根据参考小区的期望DCI的各个字段的长度得到目标DCI的各个字段的长度;
子字段构建单元还用于将目标DCI的每一个字段同时与多个对象小区相对应;
目标DCI生成单元还用于将与参考小区对应的期望DCI作为目标DCI。
本发明还提供一种小区的调度系统,包括调度单元和本发明的DCI的生成系统;
DCI的生成系统用于生成目标DCI;
调度单元用于根据目标DCI调度多个对象小区。
较佳地,小区的调度系统还包括表格构建单元;
表格构建单元用于构建部分带宽配置表格,部分带宽配置表格包括与每一个对象小区对应的部分带宽配置信息;则调度单元还用于根据目标DCI的部分带宽指示字段查询部分带宽配置表格以获得与每一个对象小区对应的部分带宽配置信息,根据部分带宽配置信息配置对应的对象小区;
和/或,表格构建单元用于构建时域资源分配表格,时域资源分配表格包括分别与每一个对象小区对应的时域资源配置信息;则调度单元还用于根据目标DCI的时域资源分配字段查询时域资源分配表格以获得与每一个对象小区对应的时域资源配置信息,根据时域资源配置信息配置对应的对象小区。
较佳地,当表格构建单元用于构建部分带宽配置表格时,部分带宽配置信息包括激活模式,激活模式用于指示对象小区保持当前的BWP。
较佳地,当表格构建单元用于构建时域资源分配表格时,
时域资源分配表格包括索引区和多个表格区块;每一个表格区块分别与一个对象小区相对应;索引区的每一个元素分别用于同时索引多个表格区块的对应元素以获取时域资源配置信息;则调度单元还用于根据索引区的与时域资源分配字段对应的元素同时索引多个表格区块的对应元素以获取时域资源配置信息;
或,时域资源分配表格包括多个子表格;每一个子表格均包括一个索引区和一个表格区块,每一个表格区块分别与一个对象小区相对应,索引区的每一个元素分别用于索引对应的表格区块的对应元素以获取时域资源配置信息;则调度单元还用于根据索引区的与时域资源分配字段对应的元素索引表格区块的对应元素以分别获取与每一个对象小区对应的时域资源配置信息。
较佳地,小区的调度系统还包括表格构建单元;当DCI的生成系统还包括参考设置单元时,表格构建单元用于构建参考时域资源分配表格,参考时域资源分配表格包括与参考小区相对应的时域资源配置信息;
则调度单元还用于根据目标DCI的时域资源分配字段查询参考时域资源分配表格以获得时域资源配置信息,根据时域资源配置信息配置每一个对象小区。
本发明的积极进步效果在于:本发明通过改进的DCI信息,使得一个目标DCI能够兼容多个小区的调度信息,从而支持同时对多个小区进行调度,节省了PDCCH等通信资源。
附图说明
图1为本发明的实施例1的DCI的生成方法的流程图。
图2为本发明的实施例4的DCI的生成方法的流程图。
图3为本发明的实施例5的DCI的生成方法的流程图。
图4为本发明的实施例6的DCI的生成方法的流程图。
图5为本发明的实施例7的DCI的生成方法的一种可选的实施方式的流程图。
图6为本发明的实施例7的DCI的生成方法的另一种可选的实施方式的流程图。
图7为本发明的实施例8的DCI的生成方法的一种可选的实施方式的流程图。
图8为本发明的实施例8的DCI的生成方法的另一种可选的实施方式的流程图。
图9为本发明的实施例8的DCI的生成方法的第一小区和第二小区出现跨时隙的情况的示意图。
图10为本发明的实施例9的电子设备的结构示意图。
图11为本发明的实施例11的DCI的生成系统的结构示意图。
图12为本发明的实施例14的DCI的生成系统的结构示意图。
图13为本发明的实施例15的小区的调度系统的结构示意图。
图14为本发明的实施例16的小区的调度系统的结构示意图。
图15为本发明的实施例18的小区的调度系统的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例提供一种DCI的生成方法。参照图1,该DCI的生成方法包括以下步骤:
步骤S101、根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度。对象小区的数量为多个,期望DCI为用于单独调度每一个对象小区所需的DCI,目标DCI的各个字段的长度为兼容期望DCI的对应字段所需的长度。
步骤S102、根据预设对应关系对目标DCI的各个字段分别构建子字段以使目标DCI的每一个字段的各个子字段分别与一个对象小区相对应。
步骤S103、根据目标DCI的各个字段的长度分别生成目标DCI的各个字段以形成目标DCI。
根据每一个对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度,可以得到目标DCI的每一个字段具有合适的长度以兼容对应多个小区的相应字段,从而使得每一个字段都能够包含针对多个小区的调度信息,也即,一个DCI能够兼容多个小区的调度信息,从而支持同时对多个小区进行调度。在进行多个小区的调度的过程中,只需要生成并发送一个目标DCI即可,仅占用一个PDCCH,节省了PDCCH等通信资源。
实施例2
在实施例1的基础上,本实施例提供一种DCI的生成方法。
作为一种具体的实施方式,在步骤S101中,根据期望DCI的对应字段的长度的最大值得到目标DCI的对应字段的长度。
设对象小区的数量为K。根据现有技术,为了分别对K个对象小区进行单独调度时所需要分别设置的期望DCI,以频域资源分配字段为例,这些期望DCI的频域资源分配字段分别具有与对应的对象小区对应的长度。在一种可选的实施方式中,以这些长度中的最大值作为目标DCI的频域资源分配字段的长度。目标DCI的其他的字段的长度的确定方式与此类似。据此,即可使得生成的目标DCI的长度能兼容多个对象小区的调度信息,从而实现一个目标DCI包含多个对象小区的调度信息以支持同时对多个对象小区进行调度。在另一种可选的实施方式中,目标DCI的频域资源分配字段的长度为这些长度中的最大值与一预设位宽值的和,该预设位宽值对应的子字段,用于对多个对象小区的资源分配类型进行配置。目标DCI的其他的字段的长度的确定方式与此类似。
作为一种可选的实施方式,设目标DCI的某一字段的长度为W位,则该字段包含一个W位的调度信息,该W位的调度信息用于对多个对象小区进行调度。具体实施时,目标DCI通过一个预设的PDCCH发送,该PDCCH对应多个对象小区。多个对象小区收到该目标DCI之后,对该目标DCI进行解析,分别在该目标DCI的该字段得到该W位的调度信息。多个对象小区中,如果某一对象小区对应的期望DCI的该字段具有Y(Y小于等于W)位,则该对象小区以该W位的调度信息中的最低的Y位作为该对象小区对应的子字段作为该对象小区的调度信息。例如,该字段需要W位的对象小 区,以该完整字段作为与该对象小区对应的子字段以获得对应的调度信息;该字段需要X(X小于W)位的对象小区,则以该字段中的最低的X位作为与该对象小区对应的子字段以获得对应的调度信息。目标DCI中的其他字段对多个对象小区的作用方式类似。基于此,一个目标DCI即可兼容多个小区的配置信息。
在第一种可选的实施方式中,如果多个对象小区均只支持资源分配类型1,则频域资源分配字段的长度(位数)取决于多个对象小区对应的PRB个数最大的对象小区的BWP(部分带宽)。即,如果多个对象小区均只支持资源分配类型1,则目标DCI的频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000019
其中n∈[1,K],K为对象小区的数量。
Figure PCTCN2021075600-appb-000020
Figure PCTCN2021075600-appb-000021
分别与每一个对象小区相对应。
在第二种可选的实施方式中,如果多个对象小区均只支持资源分配类型0,则频域资源分配字段的长度取决于多个对象小区对应的N RBG个数最大的对象小区的BWP。即,如果多个对象小区均只支持资源分配类型0,则目标DCI的频域资源分配字段的长度为max(N(n) RBG),其中,n∈[1,K],K为对象小区的数量。
Figure PCTCN2021075600-appb-000022
分别与每一个对象小区相对应。
在第三种可选的实施方式中,如果多个对象小区中,一部分对象小区只支持资源分配类型0,另一部分对象小区只支持资源分配类型1,则频域资源分配字段的长度为:
Figure PCTCN2021075600-appb-000023
其中,
Figure PCTCN2021075600-appb-000024
分别与只支持资源分配类型1的一部分对象小区中的每一个对象小区相对应,N(j) RBG分别与只支持资源分配类型0的一部分对象小区中的每一个对象小区相对应。作为一种可选的实施方式,多个对象小区中,只支持资源分配类型0的一部分对象小区的数量为L,只支持资源分配类型1的另一部分对象小区的数量为M(L+M=K,K为期望调度的对象小区的数量,L、M、K均为正整数),则i∈[1,L],j∈[1,M]。
在第四种可选的实施方式中,如果多个对象小区均既支持资源分配类型0又支持资源分配类型1,则目标DCI的频域资源分配字段包括一位类型指示位,类型指示位用于指示对象小区均为资源分配类型1或均为资源分配类型0,则频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000025
其中,
Figure PCTCN2021075600-appb-000026
与对象小区均被指示为资源分配类型1的模式相对应;N(n) RBG与对象小区均被指示为资源分配类型0的模式相对应,K为对象小区的数量。作为一种可选的实施方式,DCI的频域资源分配字段的最高位(MSB)作为类型指示位。当类型指示位的值为0时,各个对象小区均被指示为资源分配类型0;当类型指示位的值为1时,各个对象小区均被指示为资源分配类型1。
在第五种可选的实施方式中,目标DCI的频域资源分配字段包括K位类型指示位,每一位类型指示位分别对应一个对象小区以指示对象小区资源分配类型1或资源分配类型0,则频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000027
Figure PCTCN2021075600-appb-000028
其中,
Figure PCTCN2021075600-appb-000029
与对象小区均被指示为资源分配类型1的模式相对应;N(n) RBG与对象小区均被指示为资源分配类型0的模式相对应,K为对象小区的数量。在作为一种可选的实施方式,DCI的频域资源分配字段的最高的K位均为类型指示位。其中,频域资源分配字段的最高位与第一个对象 小区相对应,当该位的值为0时,第一个对象小区被指示为资源分配类型0;当该位的值为1时,第一个对象小区被指示为资源分配类型1;如果第一个对象小区仅支持资源分配类型0或者第一个对象小区仅支持资源分配类型1,则第一个对象小区忽略该位,其资源分配类型不受该位的影响。频域资源分配字段的第二高位与第二个对象小区相对应,当该位的值为0时,第二个对象小区被指示为资源分配类型0;当该位的值为1时,第二个对象小区被指示为资源分配类型1;如果第二个对象小区仅支持资源分配类型0或者第二个对象小区仅支持资源分配类型1,则第二个对象小区忽略该位,其资源分配类型不受该位的影响。依此类推,频域资源分配字段的第K高位与第K个对象小区相对应,当该位的值为0时,第K个对象小区被指示为资源分配类型0;当该位的值为1时,第K个对象小区被指示为资源分配类型1;如果第K个对象小区仅支持资源分配类型0或者第K个对象小区仅支持资源分配类型1,则第K个对象小区忽略该位,其资源分配类型不受该位的影响。
根据期望DCI的对应字段的长度的最大值得到目标DCI的对应字段的长度,使得目标DCI的对应字段通过较短的长度即可兼容需要调度的所有多个对象小区,节省了资源。
本实施例的DCI的生成方法通过对目标DCI的长度及相应字段所包含的信息的合理设置,使得一个目标DCI兼容多个小区的调度信息,从而支持同时对多个小区进行调度。在进行多个小区的调度的过程中,只需要生成并发送一个目标DCI即可,仅占用一个PDCCH,节省了PDCCH等通信资源。
实施例3
在实施例1的基础上,本实施例提供一种DCI的生成方法。在本实施例中,作为一种具体的实施方式,在步骤S101中,根据多个期望DCI的对应字段的长度的和得到目标DCI的对应字段的长度。
设对象小区的数量为K。根据现有技术,为了分别对K个对象小区进行单独调度时所需要分别设置的期望DCI,以频域资源分配字段为例,这些期望DCI的频域资源分配字段分别具有与对应的对象小区对应的长度。设第i个对象小区的期望DCI的频域资源分配字段的长度为W i(i∈[1,K])。
在一种可选的实施方式中,目标DCI的频域资源分配字段的长度
Figure PCTCN2021075600-appb-000030
频域资源分配字段中,最低的W 1位(即频域资源分配字段第W 1位至第1位,第1位为频域资源分配字段的最低位)构成第一子字段,第一子字段与第一对象小区相对应;与第一子字段相邻的W 2位(即频域资源分配字段第(W 1+W 2)位至第(W 1+1)位)构成第二子字段,第二子字段与第二对象小区相对应。依此类推,频域资源分配字段的最高W K位构成第K子字段,第K子字段与第K对象小区相对应。多个对象小区接收到该目标DCI之后,从目标DCI中解析出频域资源分配字段,并根据预设对应关系从频域资源分配字段中的对应子字段获得对应的配置信息。目标DCI的其他的字段的长度的确定方式和作用方式与此类似。据此,即可使得生成的目标DCI的长度能兼容多个对象小区的调度信息,从而实现一个目标DCI包含多个对象小区的调度信息以支持同时对多个对象小区进行调度。
在另一种可选的实施方式中,目标DCI的频域资源分配字段的长度
Figure PCTCN2021075600-appb-000031
频域资源分配字段中,最低的W 1位(即频域资源分配字段第W 1位至第1位,第1位为频域资源分配字段的最低位)构成第一子字段,第一子字段与第一对象小区相对应;与第一子字段相邻的W 2位(即频域资源分配字段第(W 1+W 2)位至第(W 1+1)位)构成第二子字段,第二子字段与第二对象小区相对 应。依此类推,频域资源分配字段的第
Figure PCTCN2021075600-appb-000032
位至第
Figure PCTCN2021075600-appb-000033
位构成第K子字段,第K子字段与第K对象小区相对应。频域资源分配字段的最高的A位用于对多个对象小区的资源分配类型进行配置。目标DCI的其他的字段的长度的确定方式和作用方式与此类似。
根据多个期望DCI的对应字段的长度的和得到目标DCI的对应字段的长度,可以使与每一个对象小区对应的子字段相对独立,所以,对某一个对象小区的配置不会受到其他小区的配置的影响或限制,具有较高的灵活性。
本实施例的DCI的生成方法通过对目标DCI的长度及相应字段所包含的信息的合理设置,使得一个目标DCI兼容多个小区的调度信息,从而支持同时对多个小区进行调度。在进行多个小区的调度的过程中,只需要生成并发送一个目标DCI即可,仅占用一个PDCCH,节省了PDCCH等通信资源。
实施例4
在实施例1的基础上,本实施例提供一种DCI的生成方法。参照图2,该DCI的生成方法还包括以下步骤:
步骤S100、将其中一个对象小区设置为参考小区。
步骤S101包括:根据参考小区的期望DCI的各个字段的长度得到目标DCI的各个字段的长度。
步骤S102包括:将目标DCI的每一个字段同时与多个对象小区相对应。
步骤S103包括:将与参考小区对应的期望DCI作为目标DCI。
也即,在对多个对象小区进行调度时,参考小区以外的其他各个对象小区均采用与参考小区相同的配置。
具体实施时,目标DCI(即与参考小区对应的期望DCI)通过一个预设的PDCCH发送,该PDCCH对应多个对象小区。多个对象小区收到该目标DCI之后,对该目标DCI进行解析,即可得到对应的配置信息。根据本实施例的DCI的生成方法,一个DCI能够兼容多个小区的调度信息,从而支持同时对多个小区进行调度。在进行多个小区的调度的过程中,只需要生成并发送一个目标DCI即可,仅占用一个PDCCH,节省了PDCCH等通信资源。
实施例5
本实施例提供一种小区的调度方法。参照图3,该小区的调度方法包括:利用实施例1-3中任意一个实施例的DCI的生成方法生成目标DCI;
该小区的调度方法还包括以下步骤:
步骤S104、根据目标DCI调度多个对象小区。
目标DCI能够兼容多个对象小区的调度信息,所以,通过一个目标DCI即可支持同时对多个目标小区的调度。根据目标DCI调度多个对象小区,仅占用一个PDCCH,节省了PDCCH等通信资源。
实施例6
在实施例5的基础上,本实施例提供一种小区的调度方法。参照图4,该小区的调度方法还包括以下步骤:
步骤S11、构建部分带宽配置表格。部分带宽配置表格包括与每一个对象小区对应的部分带宽配 置信息。
则步骤S104包括步骤S1041、根据目标DCI的部分带宽指示字段查询部分带宽配置表格以获得与每一个对象小区对应的部分带宽配置信息,根据部分带宽配置信息配置对应的对象小区。
在第一种可选的实施方式中,部分带宽配置表格由高层信令(RRC)信令配置。以对象小区的数量为2的情形为例,参照表1,部分带宽配置表格的第一列为索引列,第二列为第一小区cell1对应的部分带宽配置信息,第三列为第二小区cell2对应的部分带宽配置信息。当DCI的部分带宽指示字段的值为1时,对应部分带宽配置表格中部分带宽配置索引的值为1的行,因此,第一小区cell1对应的部分带宽配置信息为1,第二小区cell2对应的部分带宽配置信息为1。第一小区cell1和第二小区cell2根据部分带宽配置信息进行BWP切换。部分带宽配置信息的具体含义是本领域技术人员清楚的,此处不再赘述。
在其他可选的实施方式中,部分带宽配置表格支持大于等于3个对象小区,部分带宽配置表格的列数与对象小区的数量相适应。
在另一种可选的实施方式中,采用的部分带宽配置表格的行列的形式是根据表1转置得到的。
表1
部分带宽配置索引 cell1部分带宽配置信息 cell2部分带宽配置信息
0 0 0
1 1 1
2 2 2
在第二种可选的实施方式中,为了提高BWP切换的效率,部分带宽配置信息包括激活模式,激活模式用于指示对象小区保持当前的BWP。参照表2,该激活模式值采用“active BWP”表征,表示不进行BWP切换,仍然使用当前的BWP。其益处在于,可以采用单小区PDCCH进行单个小区的BWP切换,而多小区PDCCH的部分或全部BWP均是针对当前BWP进行调度,不需要进一步调整激活BWP,有助于提高BWP切换的效率。根据表2,当DCI的部分带宽指示字段的值为1时,对应部分带宽配置表格中部分带宽配置索引的值为1的行,因此,第一小区cell1对应的部分带宽配置信息为“active BWP”,第一小区cell1仍然使用当前的BWP;第二小区cell2对应的部分带宽配置信息为1,第二小区cell2根据部分带宽配置信息进行BWP切换。
在其他可选的实施方式中,部分带宽配置表格支持大于等于3个对象小区,部分带宽配置表格的列数与对象小区的数量相适应。
在另一种可选的实施方式中,采用的部分带宽配置表格的行列的形式是根据表2转置得到的。
表2
部分带宽配置索引 cell1部分带宽配置信息 cell2部分带宽配置信息
0 0 0
1 active BWP 1
2 2 active BWP
3 active BWP active BWP
通过部分带宽配置表格的设置,本实施例的小区的调度方法在对多个小区进行调度时,可以同时对多个小区的部分带宽进行配置,提高了效率。
实施例7
在实施例5的基础上,本实施例提供一种小区的调度方法。参照图5,在一种可选的实施方式中,该小区的调度方法还包括以下步骤:
步骤S12、构建时域资源分配表格。时域资源分配表格包括分别与每一个对象小区对应的时域资源配置信息。
则步骤S104包括步骤S1042、根据目标DCI的时域资源分配字段查询时域资源分配表格以获得与每一个对象小区对应的时域资源配置信息,根据时域资源配置信息配置对应的对象小区。
在第一种可选的实施方式中,时域资源分配表格包括索引区和多个表格区块;每一个表格区块分别与一个对象小区相对应;索引区的每一个元素分别用于同时索引多个表格区块的对应元素以获取时域资源配置信息。在步骤S1032中,根据索引区的与时域资源分配字段对应的元素同时索引多个表格区块的对应元素以获取时域资源配置信息。
具体参照表3,时域资源分配表格为单一表格。时域资源分配表格中“TDRA index(时域资源分配索引)”列作为索引区。该时域资源分配表格的第2-5列构成第一表格区块,与第一小区cell1相对应。其中,第2列“K0(DL)or K2(UL)(时域偏置)for cell 1”列包括时域偏置信息,“SLIV for cell 1”列包括SLIV配置信息,“Mapping type for cell 1”列包括映射类型配置信息,“Repetition for cell 1”列包括重传配置信息。该时域资源分配表格的第6-9列构成第二表格区块,与第二小区cell2相对应。第二表格区块的结构与第一表格区块类似。
“TDRA index”列的每一行对应的数值分别为0至15的16个整数。TDRA index的值以及对应的时域偏置/SLIV/mapping type/repetition的数值与现有技术中相似,所以,表3省略了个别行为示出。
目标DCI生成后,根据目标DCI的时域资源分配字段对应的数值(对应TDRA index的值)在时域资源分配表格中查询得到每一个小区的时域资源配置信息。例如,目标DCI的时域资源分配字段的数值为1,则根据时域资源分配表格中TDRA index的值为1的行得到各个小区的时域资源配置信息。
在其他可选的实施方式中,时域资源分配表格支持大于等于3个对象小区,时域资源分配表格包含的表格区块的数量与对象小区的数量相适应。
在另一种可选的实施方式中,采用的时域资源分配表格的行列的形式是根据表3转置得到的。
表3
Figure PCTCN2021075600-appb-000034
Figure PCTCN2021075600-appb-000035
在第二种可选的实施方式中,时域资源分配表格包括多个子表格;每一个子表格均包括一个索引区和一个表格区块,每一个表格区块分别与一个对象小区相对应,索引区的每一个元素分别用于索引对应的表格区块的对应元素以获取时域资源配置信息。则在步骤1032中,根据索引区的与时域资源分配字段对应的元素索引表格区块的对应元素以分别获取与每一个对象小区对应的时域资源配置信息。
当对象小区的数量为2时,时域资源分配表格包括2个子表格。2个子表格分别参照表4、表5。第一子表格(表4)与第一小区cell1相对应,第二子表格(表5)与第二小区cell2相对应。
第一子表格中,“TDRA index”列作为索引区,第2-4列构成第一表格区块,与第一小区cell1相对应。其中,第2列“K0(DL)or K2(UL)(时域偏置)”列包括时域偏置信息,“SLIV”列包括SLIV配置信息,“Mapping type”列包括映射类型配置信息,“Repetition for cell 1”列包括重传配置信息。第一表格区块包括时域偏置/SLIV/mapping type/repetition等4列,分别用于配置第一小区cell1的时域偏置/SLIV/mapping type/repetition信息。第二子表格的结构与第一子表格类似,“TDRA index”列作为索引区,第2-4列构成第二表格区块,与第二小区cell1相对应。
目标DCI生成后,根据目标DCI的时域资源分配字段的数值(对应TDRA index的值)分别在每一个子表格中查询得到该小区的时域资源配置信息。例如,目标DCI的时域资源分配字段的数值为1,则根据第一子表格中TDRA index的值为1的行得到第一小区cell1的时域资源配置信息,根据第二子表格中TDRA index的值为1的行得到第二小区cell2的时域资源配置信息。
在其他可选的实施方式中,时域资源分配表格支持大于等于3个对象小区,时域资源分配表格包含的子表格的数量与对象小区的数量相适应。
在另一种可选的实施方式中,时域资源分配表格的子表格的行列的形式是根据表4、表5转置得到的。
表4
TDRA index K0(DL)or K2(UL) SLIV Mapping type
0 1 145 Type B
1 2 136 Type B
     
15 1 78 Type B
表5
TDRA index K0(DL)or K2(UL) SLIV Mapping type
0 1 145 Type B
1 2 136 Type B
     
15 1 78 Type B
“TDRA index”列的每一行对应的数值分别为0至15的16个整数。TDRA index的值以及对应的时域偏置/SLIV/mapping type的数值与现有技术中相似,所以,表4、表5均省略了个别行为示出。
在另一种可选的实施方式中,将本实施例的小区的调度方法与实施例6的小区的调度方法相结合,得到如图6所示的小区的调度方法。在步骤S13中,构建时域资源分配表格和部分带宽配置表格。在步骤S1043中,根据目标DCI的时域资源分配字段查询时域资源分配表格以获得与每一个对象小区对应的时域资源配置信息,根据目标DCI的部分带宽指示字段查询部分带宽配置表格以获得与每一个对象小区对应的部分带宽配置信息,根据部分带宽配置信息和时域资源配置信息配置对应的对象小区。
本实施例的小区的调度方法通过对时域资源分配表格的改进,可以通过一个DCI实现同时对多个小区的调度,节省了PDCCH等通信资源。
实施例8
本实施例提供一种小区的调度方法。参照图7,在一种可选的实施方式中,该小区的调度方法包括:利用实施例4的DCI的生成方法生成目标DCI;
该小区的调度方法还包括以下步骤:
步骤S104、根据目标DCI调度多个对象小区。
在另一种可选的实施方式中,参照图8,该小区的调度方法还包括步骤S15、构建参考时域资源分配表格。参考时域资源分配表格包括与参考小区相对应的时域资源配置信息。则步骤S104包括步骤S1045:根据目标DCI的时域资源分配字段查询参考时域资源分配表格以获得时域资源配置信息,根据时域资源配置信息配置每一个对象小区。也即,在调度的过程中,各个对象小区均根据参考时域资源分配表格进行配置。
假设第一小区cell1为参考小区。表6示出了参考时域资源分配表格的一种可选的结构。该参考时域资源分配表格包括“TDRA index”列和与“TDRA index”列并列的一个表格区块。表格区块包括时域偏置/SLIV/mapping type等3列,分别用于配置各个小区的时域偏置/SLIV/mapping type信息。以对象小区的数量为2进行说明。如果DCI中时域资源分配指示字段的值为0,则对应于“TDRA index”的值为0的行,则第一小区cell1得到时域资源信息为下一时隙内起始符号为0,长度为14个符号。第二小区cell 2同样得到自己的调度资源为:cell1下一时隙内起始符号为0,长度为14个符号。如果此时cell 1与cell2的子载波间隔不同,则可能出现跨时隙的情况出现,参照图9,此时cell2将在时隙边缘及与调度的方向不同的符号上做分割。也即,如在小区边缘,本来只调度了一个PDSCH,会自动分为2个PDSCH。在调度方向不同符号时(DL(下行)在前UL(上行)在后),如原PDSCH会只在DL上分一部分,UL部分上为一部分,但是UL不能发PDSCH,就不发了。
表6
TDRA index K0(DL)or K2(UL) SLIV Mapping type
0 1 27 Type A
1 2 27 Type A
     
15 1 78 Type B
在其他可选的实施方式中,参考时域资源分配表格支持大于等于3个对象小区,各个对象小区均参照时域资源分配表格进行配置。
在又一种可选的实施方式中,参考时域资源分配表格的行列的形式是根据表6转置得到的。
实施例9
图10为本实施例提供的一种电子设备的结构示意图。所述电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。在一种可选的实施方式中,所述处理器执行所述程序时实现实施例1至实施例4中的任意一个实施例的DCI的生成方法。在另一种可选的实施方式中,所述处理器执行所述程序时实现实施例5至实施例7中的任意一个实施例的小区的调度方法。图10显示的电子设备30仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图10所示,电子设备30可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备30的组件可以包括但不限于:上述至少一个处理器31、上述至少一个存储器32、连接不同系统组件(包括存储器32和处理器31)的总线33。
总线33包括数据总线、地址总线和控制总线。
存储器32可以包括易失性存储器,例如随机存取存储器(RAM)321和/或高速缓存存储器322,还可以进一步包括只读存储器(ROM)323。
存储器32还可以包括具有一组(至少一个)程序模块324的程序/实用工具325,这样的程序模块324包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器31通过运行存储在存储器32中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明实施例1至实施例4中的任意一个实施例的DCI的生成方法,或者实施例5至实施例7中的任意一个实施例的小区的调度方法。
电子设备30也可以与一个或多个外部设备34(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口35进行。并且,模型生成的设备30还可以通过网络适配器36与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器36通过总线33与模型生成的设备30的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成的设备30使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块 的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例10
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现实施例1至实施例4中的任意一个实施例的DCI的生成方法的步骤,或所述程序被处理器执行时实现实施例5至实施例7中的任意一个实施例的小区的调度方法的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行实现实施例1至实施例4中的任意一个实施例的DCI的生成方法的步骤,或所述程序代码用于使所述终端设备执行实现实施例5至实施例7中的任意一个实施例的小区的调度方法的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
实施例11
本实施例提供一种DCI的生成系统。参照图11,该DCI的生成系统包括长度获取单元401、子字段构建单元402、目标DCI生成单元403。
长度获取单元401用于根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度,对象小区的数量为多个,期望DCI为用于单独调度每一个对象小区所需的DCI,目标DCI的各个字段的长度为兼容期望DCI的对应字段所需的长度。子字段构建单元402用于根据预设对应关系对目标DCI的各个字段分别构建子字段以使目标DCI的每一个字段的各个子字段分别与一个对象小区相对应。目标DCI生成单元403用于根据目标DCI的各个字段的长度和对应关系生成目标DCI的各个字段以形成目标DCI。
根据每一个对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度,可以得到目标DCI的每一个字段具有合适的长度以兼容对应多个小区的相应字段,从而使得每一个字段都能够包含针对多个小区的调度信息,也即,一个DCI能够兼容多个小区的调度信息,从而支持同时对多个小区进行调度。在进行多个小区的调度的过程中,只需要生成并发送一个目标DCI即可,仅占用一个PDSCH,节省了PDSCH等通信资源。
实施例12
在实施例11的基础上,本实施例提供一种DCI的生成系统。
作为一种具体的实施方式,长度获取单元401还用于根据期望DCI的对应字段的长度的最大值得到目标DCI的对应字段的长度。
设对象小区的数量为K。根据现有技术,为了分别对K个对象小区进行单独调度时所需要分别设 置的期望DCI,以频域资源分配字段为例,这些期望DCI的频域资源分配字段分别具有与对应的对象小区对应的长度。在一种可选的实施方式中,以这些长度中的最大值作为目标DCI的频域资源分配字段的长度。目标DCI的其他的字段的长度的确定方式与此类似。据此,即可使得生成的目标DCI的长度能兼容多个对象小区的调度信息,从而实现一个目标DCI包含多个对象小区的调度信息以支持同时对多个对象小区进行调度。在另一种可选的实施方式中,目标DCI的频域资源分配字段的长度为这些长度中的最大值与一预设位宽值的和,该预设位宽值对应的子字段,用于对多个对象小区的资源分配类型进行配置。目标DCI的其他的字段的长度的确定方式与此类似。
作为一种可选的实施方式,设目标DCI的某一字段的长度为W位,则该字段包含一个W位的调度信息,该W位的调度信息用于对多个对象小区进行调度。具体实施时,目标DCI通过一个预设的PDCCH发送,该PDCCH对应多个对象小区。多个对象小区收到该目标DCI之后,对该目标DCI进行解析,分别在该目标DCI的该字段得到该W位的调度信息。多个对象小区中,如果某一对象小区对应的期望DCI的该字段具有Y(Y小于等于W)位,则该对象小区以该W位的调度信息中的最低的Y位作为该对象小区对应的子字段作为该对象小区的调度信息。例如,该字段需要W位的对象小区,以该完整字段作为与该对象小区对应的子字段以获得对应的调度信息;该字段需要X(X小于W)位的对象小区,则以该字段中的最低的X位作为与该对象小区对应的子字段以获得对应的调度信息。目标DCI中的其他字段对多个对象小区的作用方式类似。基于此,一个目标DCI即可兼容多个小区的配置信息。
在第一种可选的实施方式中,如果多个对象小区均只支持资源分配类型1,则频域资源分配字段的长度(位数)取决于多个对象小区对应的PRB个数最大的对象小区的BWP(部分带宽)。即,如果多个对象小区均只支持资源分配类型1,则目标DCI的频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000036
其中n∈[1,K],K为对象小区的数量。
Figure PCTCN2021075600-appb-000037
Figure PCTCN2021075600-appb-000038
分别与每一个对象小区相对应。
在第二种可选的实施方式中,如果多个对象小区均只支持资源分配类型0,则频域资源分配字段的长度取决于多个对象小区对应的N RBG个数最大的对象小区的BWP。即,如果多个对象小区均只支持资源分配类型0,则目标DCI的频域资源分配字段的长度为max(N(n) RBG),其中,n∈[1,K],K为对象小区的数量。
Figure PCTCN2021075600-appb-000039
分别与每一个对象小区相对应。
在第三种可选的实施方式中,如果多个对象小区中,一部分对象小区只支持资源分配类型0,另一部分对象小区只支持资源分配类型1,则频域资源分配字段的长度为:
Figure PCTCN2021075600-appb-000040
其中,
Figure PCTCN2021075600-appb-000041
分别与只支持资源分配类型1的一部分对象小区中的每一个对象小区相对应,N(j) RBG分别与只支持资源分配类型0的一部分对象小区中的每一个对象小区相对应。作为一种可选的实施方式,多个对象小区中,只支持资源分配类型0的一部分对象小区的数量为L,只支持资源分配类型1的另一部分对象小区的数量为M(L+M=K,K为期望调度的对象小区的数量,L、M、K均为正整数),则i∈[1,L],j∈[1,M]。
在第四种可选的实施方式中,如果多个对象小区均既支持资源分配类型0又支持资源分配类型1, 则目标DCI的频域资源分配字段包括一位类型指示位,类型指示位用于指示对象小区均为资源分配类型1或均为资源分配类型0,则频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000042
其中,
Figure PCTCN2021075600-appb-000043
与对象小区均被指示为资源分配类型1的模式相对应;N(n) RBG与对象小区均被指示为资源分配类型0的模式相对应,K为对象小区的数量。作为一种可选的实施方式,DCI的频域资源分配字段的最高位(MSB)作为类型指示位。当类型指示位的值为0时,各个对象小区均被指示为资源分配类型0;当类型指示位的值为1时,各个对象小区均被指示为资源分配类型1。
在第五种可选的实施方式中,目标DCI的频域资源分配字段包括K位类型指示位,每一位类型指示位分别对应一个对象小区以指示对象小区资源分配类型1或资源分配类型0,则频域资源分配字段的长度为
Figure PCTCN2021075600-appb-000044
Figure PCTCN2021075600-appb-000045
其中,
Figure PCTCN2021075600-appb-000046
与对象小区均被指示为资源分配类型1的模式相对应;N(n) RBG与对象小区均被指示为资源分配类型0的模式相对应,K为对象小区的数量。在作为一种可选的实施方式,DCI的频域资源分配字段的最高的K位均为类型指示位。其中,频域资源分配字段的最高位与第一个对象小区相对应,当该位的值为0时,第一个对象小区被指示为资源分配类型0;当该位的值为1时,第一个对象小区被指示为资源分配类型1;如果第一个对象小区仅支持资源分配类型0或者第一个对象小区仅支持资源分配类型1,则第一个对象小区忽略该位,其资源分配类型不受该位的影响。频域资源分配字段的第二高位与第二个对象小区相对应,当该位的值为0时,第二个对象小区被指示为资源分配类型0;当该位的值为1时,第二个对象小区被指示为资源分配类型1;如果第二个对象小区仅支持资源分配类型0或者第二个对象小区仅支持资源分配类型1,则第二个对象小区忽略该位,其资源分配类型不受该位的影响。依此类推,频域资源分配字段的第K高位与第K个对象小区相对应,当该位的值为0时,第K个对象小区被指示为资源分配类型0;当该位的值为1时,第K个对象小区被指示为资源分配类型1;如果第K个对象小区仅支持资源分配类型0或者第K个对象小区仅支持资源分配类型1,则第K个对象小区忽略该位,其资源分配类型不受该位的影响。
根据期望DCI的对应字段的长度的最大值得到目标DCI的对应字段的长度,使得目标DCI的对应字段通过较短的长度即可兼容需要调度的所有多个对象小区,节省了资源。
本实施例的DCI的生成系统通过对目标DCI的长度及相应字段所包含的信息的合理设置,使得一个目标DCI兼容多个小区的调度信息,从而支持同时对多个小区进行调度。在进行多个小区的调度的过程中,只需要生成并发送一个目标DCI即可,仅占用一个PDSCH,节省了PDSCH等通信资源。
实施例13
在实施例11的基础上,本实施例提供一种DCI的生成系统。在本实施例中,作为一种具体的实施方式,长度获取单元401还用于根据多个期望DCI的对应字段的长度的和得到目标DCI的对应字段的长度。
设对象小区的数量为K。根据现有技术,为了分别对K个对象小区进行单独调度时所需要分别设置的期望DCI,以频域资源分配字段为例,这些期望DCI的频域资源分配字段分别具有与对应的对象 小区对应的长度。设第i个对象小区的期望DCI的频域资源分配字段的长度为W i(i∈[1,K])。
在一种可选的实施方式中,目标DCI的频域资源分配字段的长度
Figure PCTCN2021075600-appb-000047
频域资源分配字段中,最低的W 1位(即频域资源分配字段第W 1位至第1位,第1位为频域资源分配字段的最低位)构成第一子字段,第一子字段与第一对象小区相对应;与第一子字段相邻的W 2位(即频域资源分配字段第(W 1+W 2)位至第(W 1+1)位)构成第二子字段,第二子字段与第二对象小区相对应。依此类推,频域资源分配字段的最高W K位构成第K子字段,第K子字段与第K对象小区相对应。多个对象小区接收到该目标DCI之后,从目标DCI中解析出频域资源分配字段,并根据预设对应关系从频域资源分配字段中的对应子字段获得对应的配置信息。目标DCI的其他的字段的长度的确定方式和作用方式与此类似。据此,即可使得生成的目标DCI的长度能兼容多个对象小区的调度信息,从而实现一个目标DCI包含多个对象小区的调度信息以支持同时对多个对象小区进行调度。
在另一种可选的实施方式中,目标DCI的频域资源分配字段的长度
Figure PCTCN2021075600-appb-000048
频域资源分配字段中,最低的W 1位(即频域资源分配字段第W 1位至第1位,第1位为频域资源分配字段的最低位)构成第一子字段,第一子字段与第一对象小区相对应;与第一子字段相邻的W 2位(即频域资源分配字段第(W 1+W 2)位至第(W 1+1)位)构成第二子字段,第二子字段与第二对象小区相对应。依此类推,频域资源分配字段的第
Figure PCTCN2021075600-appb-000049
位至第
Figure PCTCN2021075600-appb-000050
位构成第K子字段,第K子字段与第K对象小区相对应。频域资源分配字段的最高的A位用于对多个对象小区的资源分配类型进行配置。目标DCI的其他的字段的长度的确定方式和作用方式与此类似。
根据多个期望DCI的对应字段的长度的和得到目标DCI的对应字段的长度,可以使与每一个对象小区对应的子字段相对独立,所以,对某一个对象小区的配置不会受到其他小区的配置的影响或限制,具有较高的灵活性。
本实施例的DCI的生成系统通过对目标DCI的长度及相应字段所包含的信息的合理设置,使得一个目标DCI兼容多个小区的调度信息,从而支持同时对多个小区进行调度。在进行多个小区的调度的过程中,只需要生成并发送一个目标DCI即可,仅占用一个PDSCH,节省了PDSCH等通信资源。
实施例14
在实施例11的基础上,本实施例提供一种DCI的生成系统。参照图12,该DCI的生成系统还包括参考设置单元404。参考设置单元404用于将其中一个对象小区设置为参考小区。则长度获取单元401用于根据参考小区的期望DCI的各个字段的长度得到目标DCI的各个字段的长度。子字段构建单元402还用于将目标DCI的每一个字段同时与多个对象小区相对应。目标DCI生成单元403还用于将与参考小区对应的期望DCI作为目标DCI。也即,在对多个对象小区进行调度时,参考小区以外的其他各个对象小区均采用与参考小区相同的配置。
具体实施时,目标DCI(即与参考小区对应的期望DCI)通过一个预设的PDCCH发送,该PDCCH对应多个对象小区。多个对象小区收到该目标DCI之后,对该目标DCI进行解析,即可得到对应的配置信息。根据本实施例的DCI的生成系统,一个DCI能够兼容多个小区的调度信息,从而支持同时对多个小区进行调度。在进行多个小区的调度的过程中,只需要生成并发送一个目标DCI即可,仅 占用一个PDSCH,节省了PDSCH等通信资源。
实施例15
本实施例提供一种小区的调度系统。参照图13,包括调度单元405405和实施例11-13中任意一个实施例的DCI的生成系统5。
DCI的生成系统5用于生成目标DCI;调度单元405用于根据目标DCI调度多个对象小区。
目标DCI能够兼容多个对象小区的调度信息,所以,通过一个目标DCI即可支持同时对多个目标小区的调度。根据目标DCI调度多个对象小区,仅占用一个PDSCH,节省了PDSCH等通信资源。
实施例16
在实施例15的基础上,本实施例提供一种小区的调度系统。参照图14,小区的调度系统还包括表格构建单元406。表格构建单元406用于构建部分带宽配置表格,部分带宽配置表格包括与每一个对象小区对应的部分带宽配置信息;则调度单元405还用于根据目标DCI的部分带宽指示字段查询部分带宽配置表格以获得与每一个对象小区对应的部分带宽配置信息,根据部分带宽配置信息配置对应的对象小区。
在第一种可选的实施方式中,部分带宽配置表格由高层信令(RRC)信令配置。以对象小区的数量为2的情形为例,参照表1,部分带宽配置表格的第一列为索引列,第二列为第一小区cell1对应的部分带宽配置信息,第三列为第二小区cell2对应的部分带宽配置信息。当DCI的部分带宽指示字段的值为1时,对应部分带宽配置表格中部分带宽配置索引的值为1的行,因此,第一小区cell1对应的部分带宽配置信息为1,第二小区cell2对应的部分带宽配置信息为1。第一小区cell1和第二小区cell2根据部分带宽配置信息进行BWP切换。部分带宽配置信息的具体含义是本领域技术人员清楚的,此处不再赘述。
在其他可选的实施方式中,部分带宽配置表格支持大于等于3个对象小区,部分带宽配置表格的列数与对象小区的数量相适应。
在另一种可选的实施方式中,采用的部分带宽配置表格的行列的形式是根据表1转置得到的。
在第二种可选的实施方式中,为了提高BWP切换的效率,部分带宽配置信息包括激活模式,激活模式用于指示对象小区保持当前的BWP。参照表2,该激活模式值采用“active BWP”表征,表示不进行BWP切换,仍然使用当前的BWP。其益处在于,可以采用单小区PDCCH进行单个小区的BWP切换,而多小区PDCCH的部分或全部BWP均是针对当前BWP进行调度,不需要进一步调整激活BWP,有助于提高BWP切换的效率。根据表2,当DCI的部分带宽指示字段的值为1时,对应部分带宽配置表格中部分带宽配置索引的值为1的行,因此,第一小区cell1对应的部分带宽配置信息为“active BWP”,第一小区cell1仍然使用当前的BWP;第二小区cell2对应的部分带宽配置信息为1,第二小区cell2根据部分带宽配置信息进行BWP切换。
在其他可选的实施方式中,部分带宽配置表格支持大于等于3个对象小区,部分带宽配置表格的列数与对象小区的数量相适应。
在另一种可选的实施方式中,采用的部分带宽配置表格的行列的形式是根据表2转置得到的。
通过部分带宽配置表格的设置,本实施例的小区的调度系统在对多个小区进行调度时,可以同时对多个小区的部分带宽进行配置,提高了效率。
实施例17
在实施例15的基础上,本实施例提供一种小区的调度系统。参照图14,小区的调度系统还包括表格构建单元406。在一种可选的实施方式中,表格构建单元406用于构建时域资源分配表格,时域资源分配表格包括分别与每一个对象小区对应的时域资源配置信息;则调度单元405还用于根据目标DCI的时域资源分配字段查询时域资源分配表格以获得与每一个对象小区对应的时域资源配置信息,根据时域资源配置信息配置对应的对象小区。
在第一种可选的实施方式中,时域资源分配表格包括索引区和多个表格区块;每一个表格区块分别与一个对象小区相对应;索引区的每一个元素分别用于同时索引多个表格区块的对应元素以获取时域资源配置信息。在步骤S1032中,根据索引区的与时域资源分配字段对应的元素同时索引多个表格区块的对应元素以获取时域资源配置信息。
具体参照表3,时域资源分配表格为单一表格。时域资源分配表格中“TDRA index(时域资源分配索引)”列作为索引区。该时域资源分配表格的第2-5列构成第一表格区块,与第一小区cell1相对应。其中,第2列“K0(DL)or K2(UL)(时域偏置)for cell 1”列包括时域偏置信息,“SLIV for cell 1”列包括SLIV配置信息,“Mapping type for cell 1”列包括映射类型配置信息,“Repetition for cell 1”列包括重传配置信息。该时域资源分配表格的第6-9列构成第二表格区块,与第二小区cell2相对应。第二表格区块的结构与第一表格区块类似。
“TDRA index”列的每一行对应的数值分别为0至15的16个整数。TDRA index的值以及对应的时域偏置/SLIV/mapping type/repetition的数值与现有技术中相似,所以,表3省略了个别行为示出。
目标DCI生成后,根据目标DCI的时域资源分配字段对应的数值(对应TDRA index的值)在时域资源分配表格中查询得到每一个小区的时域资源配置信息。例如,目标DCI的时域资源分配字段的数值为1,则根据时域资源分配表格中TDRA index的值为1的行得到各个小区的时域资源配置信息。
在其他可选的实施方式中,时域资源分配表格支持大于等于3个对象小区,时域资源分配表格包含的表格区块的数量与对象小区的数量相适应。
在另一种可选的实施方式中,采用的时域资源分配表格的行列的形式是根据表3转置得到的。
在第二种可选的实施方式中,时域资源分配表格包括多个子表格;每一个子表格均包括一个索引区和一个表格区块,每一个表格区块分别与一个对象小区相对应,索引区的每一个元素分别用于索引对应的表格区块的对应元素以获取时域资源配置信息。则在步骤1032中,根据索引区的与时域资源分配字段对应的元素索引表格区块的对应元素以分别获取与每一个对象小区对应的时域资源配置信息。
当对象小区的数量为2时,时域资源分配表格包括2个子表格。2个子表格分别参照表4、表5。第一子表格(表4)与第一小区cell1相对应,第二子表格(表5)与第二小区cell2相对应。
第一子表格中,“TDRA index”列作为索引区,第2-4列构成第一表格区块,与第一小区cell1相 对应。其中,第2列“K0(DL)or K2(UL)(时域偏置)”列包括时域偏置信息,“SLIV”列包括SLIV配置信息,“Mapping type”列包括映射类型配置信息,“Repetition for cell 1”列包括重传配置信息。第一表格区块包括时域偏置/SLIV/mapping type/repetition等4列,分别用于配置第一小区cell1的时域偏置/SLIV/mapping type/repetition信息。第二子表格的结构与第一子表格类似,“TDRA index”列作为索引区,第2-4列构成第二表格区块,与第二小区cell1相对应。
目标DCI生成后,根据目标DCI的时域资源分配字段的数值(对应TDRA index的值)分别在每一个子表格中查询得到该小区的时域资源配置信息。例如,目标DCI的时域资源分配字段的数值为1,则根据第一子表格中TDRA index的值为1的行得到第一小区cell1的时域资源配置信息,根据第二子表格中TDRA index的值为1的行得到第二小区cell2的时域资源配置信息。
在其他可选的实施方式中,时域资源分配表格支持大于等于3个对象小区,时域资源分配表格包含的子表格的数量与对象小区的数量相适应。
在另一种可选的实施方式中,时域资源分配表格的子表格的行列的形式是根据表4、表5转置得到的。
“TDRA index”列的每一行对应的数值分别为0至15的16个整数。TDRA index的值以及对应的时域偏置/SLIV/mapping type的数值与现有技术中相似,所以,表4、表5均省略了个别行为示出。
在另一种可选的实施方式中,表格构建单元406用于构建时域资源分配表格和部分带宽配置表格。则调度单元405还用于根据目标DCI的时域资源分配字段查询时域资源分配表格以获得与每一个对象小区对应的时域资源配置信息,根据目标DCI的部分带宽指示字段查询部分带宽配置表格以获得与每一个对象小区对应的部分带宽配置信息,根据部分带宽配置信息和时域资源配置信息配置对应的对象小区。
本实施例的小区的调度系统通过对时域资源分配表格的改进,可以通过一个DCI实现同时对多个小区的调度,节省了PDSCH等通信资源。
实施例18
本实施例提供一种小区的调度系统。参照图15,该小区的调度系统包括调度单元405和实施例14的DCI的生成系统6。DCI的生成系统6用于生成目标DCI;调度单元405用于根据目标DCI调度多个对象小区。
在一种可选的实施方式中,该小区的调度系统还包括表格构建单元406。表格构建单元406用于构建参考时域资源分配表格,参考时域资源分配表格包括与参考小区相对应的时域资源配置信息。则调度单元405还用于根据目标DCI的时域资源分配字段查询参考时域资源分配表格以获得时域资源配置信息,根据时域资源配置信息配置每一个对象小区。
假设第一小区cell1为参考小区。表6示出了参考时域资源分配表格的一种可选的结构。该参考时域资源分配表格包括“TDRA index”列和与“TDRA index”列并列的一个表格区块。表格区块包括时域偏置/SLIV/mapping type等3列,分别用于配置各个小区的时域偏置/SLIV/mapping type信息。以对象小区的数量为2进行说明。如果DCI中时域资源分配指示字段的值为0,则对应于“TDRA index” 的值为0的行,则第一小区cell1得到时域资源信息为下一时隙内起始符号为0,长度为14个符号。第二小区cell 2同样得到自己的调度资源为:cell1下一时隙内起始符号为0,长度为14个符号。如果此时cell 1与cell2的子载波间隔不同,则可能出现跨时隙的情况出现,参照图9,此时cell2将在时隙边缘及与调度的方向不同的符号上做分割。也即,如在小区边缘,本来只调度了一个PDSCH,会自动分为2个PDSCH。在调度方向不同符号时(DL(下行)在前UL(上行)在后),如原PDSCH会只在DL上分一部分,UL部分上为一部分,但是UL不能发PDSCH,就不发了。
在其他可选的实施方式中,参考时域资源分配表格支持大于等于3个对象小区,各个对象小区均参照时域资源分配表格进行配置。
在又一种可选的实施方式中,参考时域资源分配表格的行列的形式是根据表6转置得到的。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (22)

  1. 一种DCI的生成方法,其特征在于,包括以下步骤:
    根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度,所述对象小区的数量为多个,所述期望DCI为用于单独调度每一个所述对象小区所需的DCI,所述目标DCI的各个字段的长度为兼容所述期望DCI的对应字段所需的长度;
    根据预设对应关系对所述目标DCI的各个字段分别构建子字段以使所述目标DCI的每一个所述字段的各个子字段分别与一个所述对象小区相对应;
    根据所述目标DCI的各个字段的长度和所述对应关系生成所述目标DCI的各个字段以形成所述目标DCI。
  2. 如权利要求1所述的DCI的生成方法,其特征在于,所述根据与所述对象小区对应的期望DCI的各个字段的长度得到所述目标DCI的各个字段的长度的步骤包括:
    根据所述期望DCI的对应字段的长度的最大值得到所述目标DCI的对应字段的长度。
  3. 如权利要求1所述的DCI的生成方法,其特征在于,所述根据与所述对象小区对应的期望DCI的各个字段的长度得到所述目标DCI的各个字段的长度的步骤包括:
    根据多个所述期望DCI的对应字段的长度的和得到所述目标DCI的对应字段的长度。
  4. 如权利要求2所述的DCI的生成方法,其特征在于,当多个所述对象小区均只支持资源分配类型1时,所述目标DCI的频域资源分配字段的长度为
    Figure PCTCN2021075600-appb-100001
    其中n∈[1,K],K为所述对象小区的数量;
    或,当多个所述对象小区均只支持资源分配类型0时,所述目标DCI的频域资源分配字段的长度为max(N(n) RBG),其中,n∈[1,K],K为所述对象小区的数量;
    或,当多个所述对象小区中,一部分所述对象小区只支持资源分配类型0,另一部分所述对象小区只支持资源分配类型1时,所述目标DCI的频域资源分配字段的长度为
    Figure PCTCN2021075600-appb-100002
    其中,i∈[1,L],j∈[1,M],L为只支持资源分配类型1的所述对象小区的数量,M为只支持资源分配类型0的所述对象小区的数量,L+M=K,K为所述对象小区的数量;
    或,当多个所述对象小区均既支持资源分配类型0又支持资源分配类型1时,所述目标DCI的频域资源分配字段包括一位类型指示位,所述类型指示位用于指示所述对象小区均为资源分配类型1或均为资源分配类型0,则所述频域资源分配字段的长度为
    Figure PCTCN2021075600-appb-100003
    被指示为资源分配类型0的模式相对应,K为所述对象小区的数量;
    或,所述目标DCI的频域资源分配字段包括K位类型指示位,每一位所述类型指示位分别对应一个所述对象小区以指示所述对象小区资源分配类型1或资源分配类型0,则所述频域资源分配字段
    Figure PCTCN2021075600-appb-100004
    小区均被指示为资源分配类型0的模式相对应,K为所述对象小区的数量。
  5. 如权利要求1-4中至少一项所述的DCI的生成方法,其特征在于,所述DCI的生成方法还包括以下步骤:
    将其中一个所述对象小区设置为参考小区;
    则根据与所述对象小区对应的期望DCI的各个字段的长度得到所述目标DCI的各个字段的长度的步骤包括:
    根据所述参考小区的期望DCI的各个字段的长度得到所述目标DCI的各个字段的长度;
    根据预设对应关系对所述目标DCI的各个字段分别构建子字段的步骤包括:
    将所述目标DCI的每一个字段同时与多个所述对象小区相对应;
    根据所述目标DCI的各个字段的长度和所述对应关系生成所述目标DCI的各个字段以形成所述目标DCI的步骤包括:
    将与所述参考小区对应的期望DCI作为所述目标DCI。
  6. 一种小区的调度方法,其特征在于,包括:
    利用如权利要求1-5中任意一项所述的DCI的生成方法生成目标DCI;
    根据所述目标DCI调度多个所述对象小区。
  7. 如权利要求6所述的小区的调度方法,其特征在于,所述小区的调度方法还包括以下步骤:构建部分带宽配置表格,部分带宽配置表格包括与每一个所述对象小区对应的部分带宽配置信息;
    则所述根据所述目标DCI调度多个所述对象小区的步骤包括:根据所述目标DCI的部分带宽指示字段查询所述部分带宽配置表格以获得与每一个所述对象小区对应的所述部分带宽配置信息,根据所述部分带宽配置信息配置对应的所述对象小区;
    和/或,所述小区的调度方法还包括以下步骤:构建时域资源分配表格,所述时域资源分配表格包括分别与每一个所述对象小区对应的时域资源配置信息;
    则所述根据所述目标DCI调度多个所述对象小区的步骤包括:根据所述目标DCI的时域资源分配字段查询所述时域资源分配表格以获得与每一个所述对象小区对应的所述时域资源配置信息,根据所述时域资源配置信息配置对应的所述对象小区。
  8. 如权利要求7所述的小区的调度方法,其特征在于,当所述小区的调度方法包括构建部分带宽配置表格的步骤时,所述部分带宽配置信息包括激活模式,所述激活模式用于指示所述对象小区保持当前的BWP。
  9. 如权利要求7所述的小区的调度方法,其特征在于,当所述小区的调度方法包括构建时域资源分配表格的步骤时,
    所述时域资源分配表格包括索引区和多个表格区块;每一个所述表格区块分别与一个所述对象小区相对应;所述索引区的每一个元素分别用于同时索引多个所述表格区块的对应元素以获取所述时域 资源配置信息;则根据所述目标DCI的时域资源分配字段查询所述时域资源分配表格以获得与每一个所述对象小区对应的所述时域资源配置信息的步骤包括:根据所述索引区的与所述时域资源分配字段对应的元素同时索引多个所述表格区块的对应元素以获取所述时域资源配置信息;
    或,所述时域资源分配表格包括多个子表格;每一个所述子表格均包括一个索引区和一个表格区块,每一个所述表格区块分别与一个所述对象小区相对应,所述索引区的每一个元素分别用于索引对应的所述表格区块的对应元素以获取所述时域资源配置信息;则根据所述目标DCI的时域资源分配字段查询所述时域资源分配表格以获得与每一个所述对象小区对应的所述时域资源配置信息的步骤包括:根据所述索引区的与所述时域资源分配字段对应的元素索引所述表格区块的对应元素以分别获取与每一个所述对象小区对应的所述时域资源配置信息。
  10. 如权利要求6-9中任一项所述的小区的调度方法,其特征在于,当所述小区的调度方法包括利用如权利要求5所述的DCI的生成方法生成目标DCI的步骤时,所述小区的调度方法还包括:
    构建参考时域资源分配表格,所述参考时域资源分配表格包括与所述参考小区相对应的时域资源配置信息;
    则所述根据所述目标DCI调度多个所述对象小区的步骤包括:
    根据所述目标DCI的时域资源分配字段查询所述参考时域资源分配表格以获得所述时域资源配置信息,根据所述时域资源配置信息配置每一个所述对象小区。
  11. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1-5中任一项所述的DCI的生成方法,或所述处理器执行所述计算机程序时实现权利要求6-10中任一项所述的小区的调度方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-5中任一项所述的DCI的生成方法的步骤,或所述计算机程序被处理器执行时实现权利要求6-10中任一项所述的小区的调度方法的步骤。
  13. 一种DCI的生成系统,其特征在于,包括长度获取单元、子字段构建单元、目标DCI生成单元;
    所述长度获取单元用于根据与对象小区对应的期望DCI的各个字段的长度得到目标DCI的各个字段的长度,所述对象小区的数量为多个,所述期望DCI为用于单独调度每一个所述对象小区所需的DCI,所述目标DCI的各个字段的长度为兼容所述期望DCI的对应字段所需的长度;
    所述子字段构建单元用于根据预设对应关系对所述目标DCI的各个字段分别构建子字段以使所述目标DCI的每一个所述字段的各个子字段分别与一个所述对象小区相对应;
    所述目标DCI生成单元用于根据所述目标DCI的各个字段的长度和所述对应关系生成所述目标DCI的各个字段以形成所述目标DCI。
  14. 如权利要求13所述的DCI的生成系统,其特征在于,所述长度获取单元还用于根据所述期望DCI的对应字段的长度的最大值得到所述目标DCI的对应字段的长度。
  15. 如权利要求13所述的DCI的生成系统,其特征在于,所述长度获取单元还用于根据多个所述 期望DCI的对应字段的长度的和得到所述目标DCI的对应字段的长度。
  16. 如权利要求14所述的DCI的生成系统,其特征在于,当多个所述对象小区均只支持资源分配类型1时,所述目标DCI的频域资源分配字段的长度为
    Figure PCTCN2021075600-appb-100005
    其中n∈[1,K],K为所述对象小区的数量;
    或,当多个所述对象小区均只支持资源分配类型0时,所述目标DCI的频域资源分配字段的长度为max(N(n) RBG),其中,n∈[1,K],K为所述对象小区的数量;
    或,当多个所述对象小区中,一部分所述对象小区只支持资源分配类型0,另一部分所述对象小区只支持资源分配类型1时,所述目标DCI的频域资源分配字段的长度为
    Figure PCTCN2021075600-appb-100006
    其中,i∈[1,L],j∈[1,M],L为只支持资源分配类型1的所述对象小区的数量,M为只支持资源分配类型0的所述对象小区的数量,L+M=K,K为所述对象小区的数量;
    或,当多个所述对象小区均既支持资源分配类型0又支持资源分配类型1时,所述目标DCI的频域资源分配字段包括一位类型指示位,所述类型指示位用于指示所述对象小区均为资源分配类型1或均为资源分配类型0,则所述频域资源分配字段的长度为
    Figure PCTCN2021075600-appb-100007
    被指示为资源分配类型0的模式相对应,K为所述对象小区的数量;
    或,所述目标DCI的频域资源分配字段包括K位类型指示位,每一位所述类型指示位分别对应一个所述对象小区以指示所述对象小区资源分配类型1或资源分配类型0,则所述频域资源分配字段
    Figure PCTCN2021075600-appb-100008
    小区均被指示为资源分配类型0的模式相对应,K为所述对象小区的数量。
  17. 如权利要求13-16中至少一项所述的DCI的生成系统,其特征在于,所述DCI的生成系统还包括参考设置单元;
    所述参考设置单元用于将其中一个所述对象小区设置为参考小区;
    则所述长度获取单元用于根据所述参考小区的期望DCI的各个字段的长度得到所述目标DCI的各个字段的长度;
    所述子字段构建单元还用于将所述目标DCI的每一个字段同时与多个所述对象小区相对应;
    所述目标DCI生成单元还用于将与所述参考小区对应的期望DCI作为所述目标DCI。
  18. 一种小区的调度系统,其特征在于,包括调度单元和如权利要求13-17中任意一项所述的DCI的生成系统;
    所述DCI的生成系统用于生成目标DCI;
    所述调度单元用于根据所述目标DCI调度多个所述对象小区。
  19. 如权利要求18所述的小区的调度系统,其特征在于,所述小区的调度系统还包括表格构建单 元;
    所述表格构建单元用于构建部分带宽配置表格,部分带宽配置表格包括与每一个所述对象小区对应的部分带宽配置信息;则所述调度单元还用于根据所述目标DCI的部分带宽指示字段查询所述部分带宽配置表格以获得与每一个所述对象小区对应的所述部分带宽配置信息,根据所述部分带宽配置信息配置对应的所述对象小区;
    和/或,所述表格构建单元用于构建时域资源分配表格,所述时域资源分配表格包括分别与每一个所述对象小区对应的时域资源配置信息;则所述调度单元还用于根据所述目标DCI的时域资源分配字段查询所述时域资源分配表格以获得与每一个所述对象小区对应的所述时域资源配置信息,根据所述时域资源配置信息配置对应的所述对象小区。
  20. 如权利要求19所述的小区的调度系统,其特征在于,当所述表格构建单元用于构建部分带宽配置表格时,所述部分带宽配置信息包括激活模式,所述激活模式用于指示所述对象小区保持当前的BWP。
  21. 如权利要求19所述的小区的调度系统,其特征在于,当所述表格构建单元用于构建时域资源分配表格时,
    所述时域资源分配表格包括索引区和多个表格区块;每一个所述表格区块分别与一个所述对象小区相对应;所述索引区的每一个元素分别用于同时索引多个所述表格区块的对应元素以获取所述时域资源配置信息;则所述调度单元还用于根据所述索引区的与所述时域资源分配字段对应的元素同时索引多个所述表格区块的对应元素以获取所述时域资源配置信息;
    或,所述时域资源分配表格包括多个子表格;每一个所述子表格均包括一个索引区和一个表格区块,每一个所述表格区块分别与一个所述对象小区相对应,所述索引区的每一个元素分别用于索引对应的所述表格区块的对应元素以获取所述时域资源配置信息;则所述调度单元还用于根据所述索引区的与所述时域资源分配字段对应的元素索引所述表格区块的对应元素以分别获取与每一个所述对象小区对应的所述时域资源配置信息。
  22. 如权利要求18-21中至少一项所述的小区的调度系统,其特征在于,所述小区的调度系统还包括表格构建单元;
    当所述小区的调度系统包括如权利要求17所述的DCI的生成系统时,所述表格构建单元用于构建参考时域资源分配表格,所述参考时域资源分配表格包括与所述参考小区相对应的时域资源配置信息;
    则所述调度单元还用于根据所述目标DCI的时域资源分配字段查询所述参考时域资源分配表格以获得所述时域资源配置信息,根据所述时域资源配置信息配置每一个所述对象小区。
PCT/CN2021/075600 2020-01-10 2021-02-05 Dci的生成方法、小区的调度方法、系统、设备和介质 WO2021139825A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21738630.9A EP4089948A4 (en) 2020-01-10 2021-02-05 DCI GENERATION METHOD, CELL PLANNING METHOD, SYSTEM, APPARATUS AND MEDIUM
JP2022542786A JP2023552503A (ja) 2020-01-10 2021-02-05 Dciの生成方法、セルのスケジューリング方法、システム、機器及び媒体
US17/861,170 US20220353851A1 (en) 2020-01-10 2022-07-09 Method for generating a downlink control information, method for scheduling a cell, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010028277.0A CN111245586B (zh) 2020-01-10 2020-01-10 Dci的生成方法、小区的调度方法、系统、设备和介质
CN202010028277.0 2020-01-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/861,170 Continuation US20220353851A1 (en) 2020-01-10 2022-07-09 Method for generating a downlink control information, method for scheduling a cell, and electronic device

Publications (1)

Publication Number Publication Date
WO2021139825A1 true WO2021139825A1 (zh) 2021-07-15

Family

ID=70866169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075600 WO2021139825A1 (zh) 2020-01-10 2021-02-05 Dci的生成方法、小区的调度方法、系统、设备和介质

Country Status (5)

Country Link
US (1) US20220353851A1 (zh)
EP (1) EP4089948A4 (zh)
JP (1) JP2023552503A (zh)
CN (1) CN111245586B (zh)
WO (1) WO2021139825A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116762454A (zh) * 2022-04-29 2023-09-15 北京小米移动软件有限公司 调度信息确定、下行控制信息发送方法和装置
WO2023178625A1 (en) * 2022-03-24 2023-09-28 Nec Corporation Methods, devices and computer readable media for communications
WO2023206561A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 调度信息确定、下行控制信息发送方法和装置
WO2023206563A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 调度信息确定、下行控制信息发送方法和装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245586B (zh) * 2020-01-10 2022-03-25 北京紫光展锐通信技术有限公司 Dci的生成方法、小区的调度方法、系统、设备和介质
CN111935844A (zh) * 2020-08-07 2020-11-13 中兴通讯股份有限公司 一种控制信令传输、获取方法,设备和存储介质
CN116097598A (zh) * 2020-08-07 2023-05-09 苹果公司 用于半持久调度(sps)物理下行链路共享信道(pdsch)释放的混合自动重传请求(harq)-确认(ack)反馈的方法和装置
EP4364511A4 (en) * 2022-04-28 2024-07-31 Zte Corp EFFICIENT MULTI-CELL PLANNING MECHANISM
WO2024000441A1 (en) * 2022-06-30 2024-01-04 Zte Corporation Multi-cell scheduling and transmission for wireless communications
WO2024007328A1 (en) * 2022-07-08 2024-01-11 Zte Corporation Method and system for multi-cell scheduling with different scheduling cases
CN117500063A (zh) * 2022-07-22 2024-02-02 北京紫光展锐通信技术有限公司 调度信息指示方法及通信装置
WO2024026765A1 (zh) * 2022-08-04 2024-02-08 Oppo广东移动通信有限公司 时域资源分配的配置方法、装置、设备及存储介质
CN117768073A (zh) * 2022-08-08 2024-03-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN118433894A (zh) * 2023-02-01 2024-08-02 大唐移动通信设备有限公司 信息处理方法、装置、网络设备及终端
CN118524543A (zh) * 2023-02-17 2024-08-20 大唐移动通信设备有限公司 信息处理方法、装置、终端及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205874A1 (zh) * 2017-05-12 2018-11-15 华为技术有限公司 传输方法、终端和网络设备
CN109923811A (zh) * 2016-11-03 2019-06-21 高通股份有限公司 物理下行链路共享信道中的下行链路控制信息捎带
US20190261405A1 (en) * 2018-02-16 2019-08-22 Qualcomm Incorporated Downlink control information signaling schemes for bandwidth part switching
CN111245586A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 Dci的生成方法、小区的调度方法、系统、设备和介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812625B (zh) * 2012-11-07 2017-11-24 上海贝尔股份有限公司 一种用于基于载波聚合确定下行控制信息的方法和设备
CN104901775B (zh) * 2014-03-09 2018-12-21 上海朗帛通信技术有限公司 一种在非授权频谱上的通信方法和装置
EP3247060B1 (en) * 2015-01-12 2021-03-17 LG Electronics Inc. Method whereby user equipment transmits ue capability information in wireless communication system, and device therefor
US10785012B2 (en) * 2015-01-28 2020-09-22 Interdigital Patent Holdings, Inc. Downlink control signaling
US11576085B2 (en) * 2017-10-25 2023-02-07 Qualcomm Incorporated Secondary cell activation and deactivation enhancements in new radio
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
CN111684747B (zh) * 2018-02-09 2021-12-17 华为技术有限公司 传输信息的方法和终端设备
CN109995497B (zh) * 2018-02-14 2020-08-07 华为技术有限公司 下行控制信息传输方法
EP3570482B1 (en) * 2018-05-15 2021-08-18 Comcast Cable Communications, LLC Multiple active bandwidth parts
EP3570613A1 (en) * 2018-05-18 2019-11-20 Comcast Cable Communications LLC Cross-carrier scheduling with multiple active bandwidth parts
US11395322B2 (en) * 2019-03-22 2022-07-19 Samsung Electronics Co., Ltd. Adjusting parameters of a transmission in response to interference
US20220210736A1 (en) * 2019-04-02 2022-06-30 Apple Inc. Cross-slot scheduling power saving techniques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923811A (zh) * 2016-11-03 2019-06-21 高通股份有限公司 物理下行链路共享信道中的下行链路控制信息捎带
WO2018205874A1 (zh) * 2017-05-12 2018-11-15 华为技术有限公司 传输方法、终端和网络设备
US20190261405A1 (en) * 2018-02-16 2019-08-22 Qualcomm Incorporated Downlink control information signaling schemes for bandwidth part switching
CN111245586A (zh) * 2020-01-10 2020-06-05 北京紫光展锐通信技术有限公司 Dci的生成方法、小区的调度方法、系统、设备和介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Summary of Thursday offline discussion on PDCCH enhancements", 3GPP DRAFT; R1-1907835, vol. RAN WG1, 7 May 2019 (2019-05-07), Reno, USA, pages 1 - 65, XP051740108 *
See also references of EP4089948A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178625A1 (en) * 2022-03-24 2023-09-28 Nec Corporation Methods, devices and computer readable media for communications
CN116762454A (zh) * 2022-04-29 2023-09-15 北京小米移动软件有限公司 调度信息确定、下行控制信息发送方法和装置
WO2023206561A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 调度信息确定、下行控制信息发送方法和装置
WO2023206563A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 调度信息确定、下行控制信息发送方法和装置

Also Published As

Publication number Publication date
EP4089948A1 (en) 2022-11-16
US20220353851A1 (en) 2022-11-03
EP4089948A4 (en) 2024-01-03
CN111245586A (zh) 2020-06-05
CN111245586B (zh) 2022-03-25
JP2023552503A (ja) 2023-12-18

Similar Documents

Publication Publication Date Title
WO2021139825A1 (zh) Dci的生成方法、小区的调度方法、系统、设备和介质
US11930508B2 (en) Downlink control information transmission method
WO2021143938A1 (zh) Srs资源的配置方法、系统、设备、介质及基站
US20210144722A1 (en) Method for transmitting uplink channel via multi-beams, terminal device and network-side device
RU2471297C2 (ru) Отображение и сигнализация общих опорных символов для множества антенн
WO2019062524A1 (zh) 确定时频资源的方法及装置
JP6975798B2 (ja) 物理ダウンリンク共有チャネル・リソース要素マッピング・インジケータの促進
WO2021169979A1 (zh) 服务小区调度方法、终端设备和网络设备
CN110741612B (zh) 一种调度请求的配置方法、网络设备及终端设备
WO2020011094A1 (zh) 搜索空间参数确定方法和终端设备
AU2020201895A1 (en) Data transmission method and apparatus
WO2022028191A1 (zh) 一种监测控制信道、确定传输配置指示的方法及终端
EP3742651B1 (en) Channel detection method and device, and computer storage medium
WO2021204242A1 (zh) 最大pdcch处理能力分配方法、终端设备及网络设备
US20230189287A1 (en) Method for determining feedback information transmission location and device
WO2017075787A1 (zh) 用户设备、接入网设备、上行控制信息的收发方法及装置
JP2022515877A (ja) 制御リソースセットの周波数領域ロケーションを決定するための方法および関係するデバイス
WO2019184696A1 (zh) 配置物理下行控制信道的方法、用户设备和网络侧设备
US20200177355A1 (en) Downlink Control Information Transmission Method, Apparatus, and System
WO2021035448A1 (zh) 一种跨时隙调度的指示方法及装置
CN112788766B (zh) 下行控制信道资源分配方法、装置、通信设备和存储介质
CN113795047A (zh) 一种下行节能方法、系统、计算机设备和存储介质
WO2020030142A1 (zh) 确定调制编码阶数表类型的方法及装置
WO2019153194A1 (zh) 一种资源配置方法及装置、计算机存储介质
WO2022078497A1 (zh) 确定终端初始上行bwp的方法、基站、设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021738630

Country of ref document: EP

Effective date: 20220810