WO2019233195A1 - 节能信号的传输方法、终端和网络侧设备 - Google Patents
节能信号的传输方法、终端和网络侧设备 Download PDFInfo
- Publication number
- WO2019233195A1 WO2019233195A1 PCT/CN2019/083157 CN2019083157W WO2019233195A1 WO 2019233195 A1 WO2019233195 A1 WO 2019233195A1 CN 2019083157 W CN2019083157 W CN 2019083157W WO 2019233195 A1 WO2019233195 A1 WO 2019233195A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- energy
- signal
- saving signal
- subset
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 230000005540 biological transmission Effects 0.000 claims abstract description 182
- 230000006870 function Effects 0.000 claims description 45
- 230000011664 signaling Effects 0.000 claims description 35
- 238000004422 calculation algorithm Methods 0.000 claims description 29
- 230000003068 static effect Effects 0.000 claims description 20
- 230000009194 climbing Effects 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000000875 corresponding effect Effects 0.000 description 53
- 238000004891 communication Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 13
- 238000013507 mapping Methods 0.000 description 10
- 238000013468 resource allocation Methods 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 6
- 101150071746 Pbsn gene Proteins 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 101100042371 Caenorhabditis elegans set-3 gene Proteins 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0229—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/28—Discontinuous transmission [DTX]; Discontinuous reception [DRX]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure relates to the field of communication technologies, and in particular, to a method, terminal, and network-side device for transmitting energy-saving signals.
- the working state of the terminal may include an idle state (RRC_IDLE), an inactive state (RRC_Inactive), and a connected state (RRC_Connected).
- RRC_IDLE idle state
- RRC_Inactive inactive state
- RRC_Connected connected state
- energy-saving signals is newly introduced in narrowband Internet of Things (NB-IoT) systems, such as: Wakeup Signal (WUS).
- WUS Wakeup Signal
- the relevant content of the energy-saving signal is not clear at present, for example: how to carry out the transmission is unclear. Therefore, the current communication system is still unable to improve the communication performance of the communication system through energy-saving signals. It can be seen that the communication performance of current communication systems is still relatively poor.
- Embodiments of the present disclosure provide a method, a terminal, and a network-side device for transmitting an energy-saving signal, so as to solve a problem that communication performance of a communication system is still poor.
- an embodiment of the present disclosure provides a method for transmitting an energy-saving signal, including:
- Network-side equipment determines transmission resources for energy-saving signals
- the network-side device sends the energy saving signal through the transmission resource, where the energy saving signal includes multiple sequences.
- the energy saving signal includes three or more sequences.
- the determining, by the network-side device, a transmission resource of the energy-saving signal includes:
- the network-side device groups terminals that need to monitor the energy-saving signal, and determines a transmission resource of the energy-saving signal for each terminal group.
- the energy-saving signal includes one or more signal subsets
- At least one signal subset of the terminals in the same terminal group uses the same transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses different transmission resources, the transmission resources including time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources;
- At least one signal subset of terminals in the same terminal group uses the same frequency domain resource, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- the determining, by the network-side device, a transmission resource of the energy-saving signal includes:
- the network-side device is a terminal or a terminal group, and determines a frequency domain resource of an energy-saving signal corresponding to the terminal identifier; and / or
- the network-side device determines a time-domain resource of the energy-saving signal of the terminal according to the terminal identifier.
- the network side device is a terminal or a terminal group, and determining the frequency domain resource of the energy-saving signal corresponding to the terminal identity includes:
- the determining, by the network-side device according to a terminal identifier, a time domain resource of a terminal's energy-saving signal includes:
- the network-side device determines a time domain resource of a terminal's energy-saving signal according to a terminal identifier and a discontinuous reception (Discontinuous Reception (DRX) cycle).
- DRX discontinuous Reception
- the determining, by the network-side device, a frequency domain resource of the energy-saving signal corresponding to the terminal identity for the terminal or terminal group in a static or semi-static manner includes:
- the network-side device uses radio resource control (RRC) signaling to semi-statically determine a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for a terminal or a terminal group; or
- RRC radio resource control
- the network-side device determines a frequency domain resource of the energy-saving signal corresponding to the terminal identity for the terminal or terminal group by means of a pre-appointed or system information indication.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the interlace structure includes multiple resource sets, and resources with the same index in the multiple resource sets serve as one interlace.
- the energy-saving signal includes multiple signal subsets, and the multiple signal subsets include a partial signal subset and another partial signal subset, and the network-side device determines the energy saving of the terminal according to the terminal identifier and the DRX cycle Time domain resources for signals, including:
- the network-side device determines, according to the terminal identifier, that the time domain resources of the partial signal subset of the terminal are before or within the DRX cycle, wherein the other partial signal subset is dynamically in orthogonal frequency division multiplexing OFDM Send on symbol.
- the time domain resources of the partial signal subset are determined by a pre-agreed algorithm; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device.
- the position of the time domain resources of the partial signal subset is a function of a terminal identification and a DRX cycle; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device, the time domain resources of the partial signal subset are notified through terminal-specific RRC signaling.
- the energy saving signal includes at least one of the following sequences:
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the same sequence in the energy saving signal indicates one or more of the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information, and end of data.
- the energy saving signal indicates the identification of the wake-up area by at least one sequence; and / or
- the energy saving signal indicates the cell identity through at least one sequence; and / or
- the energy saving signal indicates the terminal identity through at least one sequence; and / or
- the energy saving signal indicates the carrier information through at least one sequence; and / or
- the energy saving signal indicates the system information update through at least one sequence; and / or
- the energy saving signal indicates the distance information through at least one sequence; and / or
- the energy saving signal indicates the end of the data through at least one sequence.
- the energy-saving signal includes multiple sequences occupying one or more OFDM symbols.
- some sequences are used for the connected terminal, and all sequences are used for the non-connected terminal.
- An embodiment of the present disclosure further provides a method for transmitting an energy-saving signal, including:
- the terminal receives an energy-saving signal at a transmission resource, where the energy-saving signal includes multiple sequences, and the transmission resource is a transmission resource of the energy-saving signal determined by a network-side device.
- the energy saving signal includes three or more sequences.
- the transmission resource is that the network-side device groups the terminals that need to monitor the energy-saving signal, and assigns the transmission resource of the energy-saving signal to each terminal group.
- the energy-saving signal includes one or more signal subsets
- At least one signal subset of the terminals in the same terminal group uses the same transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses different transmission resources, the transmission resources including time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources;
- At least one signal subset of terminals in the same terminal group uses the same frequency domain resource, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- the transmission resources include:
- the frequency domain resources include:
- the network-side device determines, in a static or semi-static manner, a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group where the terminal is located; and / or
- the time domain resources include:
- the network-side device determines a time domain resource of the energy-saving signal of the terminal according to the terminal identifier and the DRX cycle.
- the frequency domain resources include:
- the network-side device uses semi-static RRC signaling to determine a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group where the terminal is located; or
- the network-side device determines a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group in which the terminal is located, by means of a pre-approved or system information indication.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the interlace structure includes multiple resource sets, and resources with the same index in the multiple resource sets serve as an interlace;
- the energy-saving signal of one terminal occupies all interlace in the interlace structure, the energy-saving signal includes an orthogonal sequence.
- the energy-saving signal includes a plurality of signal subsets, and the plurality of signal subsets includes a partial signal subset and another partial signal subset;
- the time domain resources of a part of the signal subset of the energy-saving signal of the terminal are before or within the DRX cycle, wherein another part of the signal subset is dynamically transmitted on the OFDM symbol.
- the time domain resources of the partial signal subset are determined by a pre-agreed algorithm; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device.
- the position of the time domain resources of the partial signal subset is a function of a terminal identification and a DRX cycle; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device, the time domain resources of the partial signal subset are notified through terminal-specific RRC signaling.
- the energy saving signal includes at least one of the following sequences:
- PN sequence PN sequence
- ZC sequence orthogonal sequence
- Costa sequence Kasumi sequence
- PSS sequence PSS sequence
- SSS sequence synchronization sequence with equivalent function and sequence combination.
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the same sequence in the energy-saving signal indicates one or more of the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information, and end of data.
- the energy saving signal indicates the wake-up area identifier through at least one sequence; and / or
- the energy saving signal indicates the cell identity through at least one sequence; and / or
- the energy saving signal indicates the terminal identity through at least one sequence; and / or
- the energy saving signal indicates the carrier information through at least one sequence; and / or
- the energy saving signal indicates the system information update through at least one sequence; and / or
- the energy saving signal indicates the distance information through at least one sequence; and / or
- the energy saving signal indicates the end of the data through at least one sequence.
- the energy-saving signal includes multiple sequences occupying one or more OFDM symbols.
- the energy-saving signal includes a first signal subset and a second signal subset, wherein the first signal subset is located before the second signal subset, and the method further includes:
- the terminal initiates power climbing
- the terminal blindly detects a control channel.
- the energy-saving signal further includes a third signal subset, wherein the third signal subset is located after the second signal subset, and the method further includes:
- the terminal If the terminal receives the third signal subset, the terminal enters a sleep state.
- the terminal receiving the energy-saving signal at the transmission resource includes:
- the terminal receives the partial sequence in the energy saving signal
- the terminal receives all sequences in the energy-saving signal.
- the terminal receives the energy-saving signal, a timer is started, and if the timer expires and the control channel of the terminal is not detected, it enters a sleep state.
- An embodiment of the present disclosure further provides a network-side device, including:
- the sending module is configured to send the energy saving signal through the transmission resource, wherein the energy saving signal includes multiple sequences.
- the determining module is configured to group terminals that need to monitor the energy-saving signal, and determine a transmission resource of the energy-saving signal for each terminal group.
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- An embodiment of the present disclosure further provides a terminal, including:
- the receiving module is configured to receive an energy-saving signal at a transmission resource, where the energy-saving signal includes multiple sequences, and the transmission resource is a transmission resource of the energy-saving signal determined by a terminal.
- the transmission resource is that the terminal groups the terminals that need to monitor the energy-saving signal, and assigns the transmission resource of the energy-saving signal to each terminal group.
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- An embodiment of the present disclosure further provides a network-side device including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor.
- the processor is configured to read a program in the memory and execute the following processes:
- the transceiver is configured to send the energy saving signal through the transmission resource, wherein the energy saving signal includes multiple sequences.
- the energy saving signal includes three or more sequences.
- the determining transmission resources of the energy-saving signal includes:
- Group the terminals that need to monitor the energy-saving signal, and determine the transmission resource of the energy-saving signal for each terminal group.
- the determining transmission resources of the energy-saving signal includes:
- a time domain resource of the energy saving signal of the terminal is determined.
- the terminal or the terminal group, and determining a frequency domain resource of the energy-saving signal corresponding to the terminal identifier includes:
- the determining the time domain resource of the energy saving signal of the terminal according to the terminal identifier includes:
- the time domain resources of the energy-saving signal of the terminal are determined according to the terminal identification and the non-continuous reception DRX cycle.
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the energy-saving signal includes multiple signal subsets, and the multiple signal subsets include a partial signal subset and another partial signal subset, and the network-side device determines the energy saving of the terminal according to the terminal identifier and the DRX cycle.
- Time domain resources for signals including:
- the network-side device determines, according to the terminal identifier, that the time domain resources of the partial signal subset of the terminal are before or within the DRX cycle, wherein the other partial signal subset is dynamically in orthogonal frequency division multiplexing OFDM Send on symbol.
- the energy saving signal includes at least one of the following sequences:
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- some sequences are used for the connected terminal, and all sequences are used for the non-connected terminal.
- An embodiment of the present disclosure further provides a terminal including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor.
- the transceiver is configured to receive an energy saving signal in a transmission resource, wherein the energy saving signal includes multiple sequences, and the transmission resource is a transmission resource of the energy saving signal determined by a network-side device.
- the energy saving signal includes three or more sequences.
- the transmission resource is that the network-side device groups the terminals that need to monitor the energy-saving signal, and assigns the transmission resource of the energy-saving signal to each terminal group.
- the transmission resources include:
- the frequency domain resources include:
- the network-side device determines, in a static or semi-static manner, a frequency domain resource of an energy-saving signal corresponding to a terminal identity determined for the terminal or a terminal group in which the terminal is located; and / or
- the time domain resources include:
- the network-side device determines a time domain resource of the energy-saving signal of the terminal according to the terminal identifier and the DRX cycle.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the energy-saving signal includes a plurality of signal subsets, and the plurality of signal subsets includes a partial signal subset and another partial signal subset;
- the time domain resources of a part of the signal subset of the energy-saving signal of the terminal are before or within the DRX cycle, wherein another part of the signal subset is dynamically transmitted on the OFDM symbol.
- the energy saving signal includes at least one of the following sequences:
- PN sequence PN sequence
- ZC sequence orthogonal sequence
- Costa sequence Kasumi sequence
- PSS sequence PSS sequence
- SSS sequence synchronization sequence with equivalent function and sequence combination.
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the energy-saving signal includes a first signal subset and a second signal subset, wherein the first signal subset is located before the second signal subset, and the transceiver is further configured to:
- the terminal If the terminal receives the second signal subset, it blindly detects a control channel.
- the energy saving signal further includes a third signal subset, wherein the third signal subset is located after the second signal subset, and the transceiver is further configured to:
- the terminal If the terminal receives the third signal subset, it enters a sleep state.
- the terminal receiving the energy-saving signal at the transmission resource includes:
- the terminal receives the partial sequence in the energy saving signal
- the terminal receives all sequences in the energy-saving signal.
- the terminal receives the energy-saving signal, a timer is started, and if the timer expires and the control channel of the terminal is not detected, it enters a sleep state.
- An embodiment of the present disclosure further provides a computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements steps in a method for transmitting an energy-saving signal on a network-side device side provided by an embodiment of the present disclosure, or When the program is executed by a processor, the steps in the method for transmitting energy-saving signals on the terminal side provided by the embodiments of the present disclosure are implemented.
- the network-side device determines a transmission resource of the energy-saving signal; the network-side device sends the energy-saving signal through the transmission resource, and the energy-saving signal includes multiple sequences. Therefore, energy-saving signals including multiple sequences can be transmitted, and the communication performance of the communication system can be improved.
- FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure
- FIG. 2 is a flowchart of a method for transmitting an energy-saving signal according to an embodiment of the present disclosure
- FIG. 3 is a schematic diagram of frequency domain resource allocation according to an embodiment of the present disclosure.
- FIG. 4 is a schematic diagram of an energy-saving signal according to an embodiment of the present disclosure.
- FIG. 5 is a schematic diagram of another energy-saving signal according to an embodiment of the present disclosure.
- FIG. 6 is a flowchart of another method for transmitting an energy-saving signal according to an embodiment of the present disclosure
- FIG. 7 is a structural diagram of a network-side device according to an embodiment of the present disclosure.
- FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
- FIG. 9 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
- FIG. 10 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
- FIG. 11 is a structural diagram of another network-side device according to an embodiment of the present disclosure.
- FIG. 12 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
- FIG. 1 is a schematic diagram of a network structure applicable to the embodiment of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network-side device 12.
- the terminal 11 may be a user terminal (User Equipment) or other terminals.
- Devices such as: mobile phones, tablet computers (laptop computers), laptop computers (laptop computers), personal digital assistants (PDAs), mobile Internet devices (MID) or wearable devices (Wearable device) and other terminal-side devices, it should be noted that the specific types of terminals are not limited in the embodiments of the present disclosure.
- the network-side device 12 may be a base station, such as a macro station, LTE eNB, 5G NR, NB, etc .; the network-side device may also be a small station, such as a low power node (LPN: low power node), pico, femto, or other small station, or
- the network-side device can be an access point (AP, access point); the base station can also be a network node composed of a central unit (CU, central unit) and multiple transmission and reception points (TRP, Transmission Reception Point) that it manages and controls.
- CU central unit
- TRP Transmission Reception Point
- FIG. 2 is a flowchart of a method for transmitting an energy-saving signal according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
- a network-side device determines transmission resources of an energy-saving signal.
- the network-side device sends the energy saving signal through the transmission resource, where the energy saving signal includes multiple sequences.
- the above-mentioned energy-saving signal may be a wake-up signal, or used to activate (or trigger) a detection control channel, or used to cause a terminal to start a sale of detection related to control channel decoding.
- the above energy-saving signal may be a wake-up signal (Wakeup Signal, WUS), of course, there is no limitation on this.
- WUS Wakeup Signal
- the above-mentioned energy-saving signal may also be other signals defined in the protocol, or other signals agreed in advance by the network side device and the terminal.
- the transmission resource of the energy-saving signal may be a transmission resource used to transmit the energy-saving signal.
- the transmission resource of the energy-saving signal may be determined according to a terminal or a terminal group. For example, the transmission resource of the energy-saving signal may be determined for each terminal separately, or the transmission resource of the energy-saving signal for terminals in the terminal group may be determined according to the terminal group. .
- the same sequence indication may indicate one or more functions, for example, a certain sequence may indicate a wakeup area identification (Wakeup area ID), a cell identification (Cell ID), a terminal identification, carrier information, One or more of system information update, distance information, and end of data.
- the energy-saving signal can indicate multiple functions to the terminal.
- the terminal After receiving the energy-saving signal, the terminal can parse the instructions of these functions, and then perform corresponding actions. For example: wake up, detect the control channel, detect the data channel, obtain system information, enter the sleep state, and so on. In this way, multiple functions can be instructed through the above-mentioned multiple sequences, so that the communication performance of the communication system can be improved.
- the above-mentioned energy-saving signal may be applied to a connected state terminal (RRC_Connected), or a non-connected state terminal, such as an idle state (RRC_IDLE) terminal or an inactive state (RRC_Inactive) terminal.
- RRC_Connected a connected state terminal
- RRC_IDLE idle state terminal
- RRC_Inactive an inactive state terminal
- the same energy-saving signal can be applied to both the connected terminal and the non-connected terminal to achieve the nested feature of the energy-saving signal, thereby saving transmission resources.
- control channel may be a physical downlink control channel (PDCCH), but it is not limited thereto.
- the control channel may refer to the existing and future Various possible control channels may be defined, for example: enhanced physical downlink control channel (Enhanced Physical Downlink Control Channel, ePDCCH) or machine-type communication physical downlink control channel (MTC Physical Downlink Control Channel, MPDCCH), and so on.
- ePDCCH enhanced Physical Downlink Control Channel
- MPDCCH Physical Downlink Control Channel
- the embodiments of the present disclosure may support licensed frequency bands and may also support unlicensed frequency bands.
- the embodiments of the present disclosure can be applied to NR technology and other communication systems, such as LTE.
- the energy saving signal includes three or more sequences.
- three or more sequences can enable the energy saving signal to achieve more functions, thereby further improving the communication performance of the communication system.
- the energy saving signal may include two sequences, which is not limited thereto.
- the determining, by the network-side device, a transmission resource of an energy-saving signal includes:
- the network-side device groups terminals that need to monitor the energy-saving signal, and determines a transmission resource of the energy-saving signal for each terminal group.
- the grouping of the terminals may be based on the terminal identification (UE ID) of the terminals.
- the terminals in the same terminal group have the same UE ID, or the terminals in the same terminal group have different UE IDs but satisfy a certain type. Relationship, for example, the terminal UE ID in the same terminal group in the group has the same value after modulating a certain value.
- the UE ID in the embodiment of the present disclosure may be a user identification, and is not limited to a Radio Network Temporary Identity (RNTI).
- RNTI Radio Network Temporary Identity
- it may be a terminal in a wake-up area or a paging area.
- the ID information in the (paging area) may also be a function of the globally unique identifier of the terminal, such as the module operation of the globally unique identifier of the terminal.
- the transmission resource of the energy-saving signal is determined according to the terminal group, it is possible to effectively prevent the network-side device from sending wake-up signals of all terminals on the same resource, thereby reducing the interference of the terminal detecting the wake-up signal, and also Can reduce the difficulty of designing the wake-up signal.
- the above energy-saving signal includes one or more signal subsets
- At least one signal subset of the terminals in the same terminal group uses the same transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses different transmission resources, the transmission resources including time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources;
- At least one signal subset of terminals in the same terminal group uses the same frequency domain resource, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- the signal subset may be one or more symbols, and the same signal subset may include one or more sequences.
- the foregoing one or more signal subsets may be referred to as one or more subsets of one energy-saving signal, and of course, may also be referred to as one or more different energy-saving signals.
- the transmission resources of different signal subsets may be different, for example, different signal subsets are sent in different time domain resources.
- the use of the same transmission resources for at least one signal subset of the terminals in the same terminal group may refer to that all signal subsets of the terminals in the same terminal group use the same time domain resource and frequency domain resource; or, within the same terminal group, Some signal subsets of the terminal use the same time domain resources and frequency domain resources, while other signal subsets use the same time domain resources, but use different frequency domain resources, or other signal subsets use the same frequency domain Resources, but using different time domain resources.
- multiple resource allocation methods can be used in combination. For example, when an energy-saving signal contains multiple signal subsets to be sent, each signal subset can be considered to map to a different resource allocation scheme.
- At least one signal subset of the terminals in the same terminal group adopts different transmission resources, and all or part of the signal subsets of the terminals in the same terminal group use different time domain resources and frequency domain resources.
- At least one signal subset of the terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources.
- Set uses the same time domain resources, different signal subsets use different frequency domain resources, or it can mean that some signal subsets in the same terminal group use the same time domain resources, and different signal subsets in this part of the signal subset use different Frequency domain resources. In this way, different energy-saving signals can be sent to multiple terminals in the same time domain resource, thereby saving time domain resources of the terminal.
- At least one signal subset of the terminals in the same terminal group uses the same frequency domain resources, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- Set uses the same frequency domain resources, different signal subsets use different time domain resources, or it can mean that some signal subsets in the same terminal group use the same frequency domain resources, and different signal subsets in this part of the signal subset use different Time domain resources. In this way, different energy-saving signals can be sent to multiple terminals in the same frequency domain resource, thereby saving the frequency domain resources of the terminal.
- the unit of time domain resources may refer to different orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing) symbols or time slots or other units of time domain resources.
- the unit of the frequency domain resource may be a physical resource block (Physical Resource Block, PRB), or may be a subcarrier or a frequency domain resource unit, which is not limited.
- the determining, by the network-side device, a transmission resource of an energy-saving signal includes:
- the network-side device is a terminal or a terminal group, and determines a frequency domain resource of an energy-saving signal corresponding to the terminal identifier; and / or
- the network-side device determines a time-domain resource of the energy-saving signal of the terminal according to the terminal identifier.
- the terminals in the terminal group have the same UE ID, or the UE IDs of the terminals in the terminal group are different but satisfy a certain relationship.
- the terminal UE ID in the same terminal group in the group is the same after modulating a certain value. .
- the frequency domain resource of the energy-saving signal determined corresponding to the terminal identifier may be: the frequency domain resource determined for the terminal corresponds to the terminal identifier of the terminal, or the frequency domain resource determined for the terminal group corresponds to the terminal identifier in the terminal group. Corresponding.
- the determined frequency domain resources and the time domain resources correspond to the terminal identity, it is possible to realize that no additional information needs to be added when determining the frequency domain resources and the time domain resources to reduce the complexity of the implementation.
- the network side device is a terminal or a terminal group, and determining the frequency domain resource of the energy-saving signal corresponding to the terminal identity includes:
- the determining, by the network-side device according to a terminal identifier, a time domain resource of a terminal's energy-saving signal includes:
- the network-side device determines a time domain resource of a terminal's energy-saving signal according to a terminal identifier and a discontinuous reception (Discontinuous Reception (DRX) cycle).
- DRX discontinuous Reception
- the above-mentioned network-side device determines the frequency domain resource of the energy-saving signal corresponding to the terminal identity for the terminal or terminal group in a static or semi-static manner, which may include:
- the network-side device uses radio resource control (RRC) signaling to semi-statically determine a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for a terminal or a terminal group; or
- RRC radio resource control
- the network-side device determines a frequency domain resource of the energy-saving signal corresponding to the terminal identity for the terminal or terminal group by means of a pre-appointed or system information indication.
- the energy-saving signal includes a plurality of signal subsets, where a part of the signal subset is located before another part of the signal subset.
- the time domain resources of the other signal subsets may be dynamically configured.
- the energy-saving signal includes signal subset 1 and signal subset 2, where signal subset 1 precedes signal subset 2 and signal subset 2
- the time-domain resources of are related to the real starting point of the data.
- the time-domain resources of the signal subset 2 are related to the interval of the real-time starting point of the data as 0, or the interval is within a preset range.
- the time domain resources of the above partial signal subset may be statically or semi-statically configured.
- the above-mentioned energy-saving signal may also include multiple signal subsets, where some signal subsets are located in other signal subsets prior to.
- the time domain resources of the foregoing partial signal subset may be based on a terminal identifier and a DRX cycle.
- the network-side device determining a time domain resource of the energy saving signal of the terminal according to the terminal identifier and the DRX cycle may include:
- the network-side device determines, according to the terminal identifier, that the time domain resources of a part of the signal subset of the energy-saving signal of the terminal are before or within the DRX cycle, and another part of the signal subset is dynamically transmitted on the OFDM symbol.
- a subset of signals may be dynamically transmitted on the OFDM symbol in front of the PDCCH, so that the terminal reduces the time for the terminal to blindly detect the PDCCH, thereby achieving the purpose of the energy saving function.
- the network-side device determines the time domain resource of the energy-saving signal of the terminal according to the terminal identifier and the DRX cycle, and may also determine the time of all signal subsets of the energy-saving signal of the terminal according to the terminal identifier and the DRX cycle.
- the domain resources are in other ways such as before the DRX cycle or within the DRX cycle, which is not limited. For example, for a non-DRX scenario, a time domain resource corresponding to the terminal identity may also be determined.
- determining the time domain resource of the energy-saving signal of the terminal according to the terminal identifier may also be determined according to a predetermined algorithm of the terminal identifier or a semi-static configuration of the terminal identifier, which is not limited in this regard. .
- some parameters in the above algorithm can be semi-statically configured.
- the time domain resources of the partial signal subset are determined by a pre-agreed algorithm; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device.
- the above and / or indicates that the time domain resources of a part of the signal subset can be configured through a pre-agreed algorithm and / or semi-static configuration.
- the above algorithm may include semi-statically configured parameters, such as the DRX cycle may be semi-statically configured.
- the above algorithm may be pre-agreed by the network-side device and the terminal, or pre-defined in the protocol.
- the time-domain resources are determined by the pre-agreed algorithm, which can reduce the transmission overhead before the network-side device and the terminal.
- Algorithm determines time domain resources, which can make time domain resource allocation more flexible
- the position of the time domain resources of the partial signal subset is a function of the terminal identification and the DRX cycle; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device, the time domain resources of the partial signal subset are notified through terminal-specific RRC signaling.
- the above functions may be predetermined by the network-side device and the terminal, or predefined in the protocol, and the specific content of the function is not limited.
- the above functions may include operations such as addition, subtraction, multiplication, division, or modulo. .
- the semi-static configuration is not limited to notification through terminal-specific RRC signaling, but may also be indicated through other high-level signaling or system information indication, which is not limited.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the above-mentioned unlicensed frequency band may include an unlicensed frequency band, and of course, it may also refer to an unlicensed frequency band other than the unlicensed frequency band.
- the interlace structure occupying the full bandwidth may be an interlace structure occupying the entire transmission bandwidth of the terminal.
- the interlace structure includes multiple resource sets, and resources with the same index in the multiple resource sets serve as an interlace;
- the interlace structure may include multiple interlace, wherein each interlace includes resources with the same index in different resource sets.
- a resource set is a group consisting of multiple consecutive PRBs, as shown in Figure 3.
- the full bandwidth in Figure 3 is divided into multiple groups by one group for every 10 consecutive PRBs.
- a total of N groups are obtained.
- the resource set is not limited to a group formed by multiple consecutive PRBs, for example, the resource set may be a subcarrier set. That is to say, the granularity of the frequency domain resources can be PRB or an integer multiple of the number of subcarriers, but not a multiple of PRB.
- the energy-saving signal includes an orthogonal sequence.
- the frequency domain resource of the energy-saving signal of one or more terminals is an interlace structure that occupies part or all of the bandwidth.
- the interlace structure can occupy part or all of the transmission bandwidth.
- the interlace allocated by each terminal sends an energy-saving signal, and the number of interlace allocated by the network-side device to the terminal and its interlace index are semi-statically configured or pre-approved.
- different terminals use different interlace.
- different terminals can be assigned the same interlace, which reflects the energy saving of the terminals in the terminal group described in the previous embodiment.
- signals use the same frequency domain resources.
- the basic unit in the frequency domain that can implement energy-saving signal transmission is interlace, so that frequency-domain resources can be fully utilized to improve resource utilization.
- the interlace structure is adopted so that only the interlace index needs to be indicated during resource allocation, thereby saving signaling overhead.
- the energy-saving signal includes one or more signal subsets, and the number of sequences included in different signal subsets may be the same or different.
- a certain signal subset may include 0 sequences, and other signal subsets
- a set can include one or more sequences. In this way, the flexibility of the energy-saving signal can be improved to meet the needs of different scenarios, services, or terminals.
- the energy saving signal includes at least one of the following sequences:
- PN Pseudo-Noise
- ZC ZC sequence
- orthogonal sequence Costa sequence
- Kasumi sequence Primary Synchronization Signal (PSS) sequence
- SSS Secondary Synchronization Signal
- the above Costa sequence may be a Costa sequence defined in the protocol, or may be a time domain sequence determined by the following formula:
- S CS (n) represents the aforementioned Costa sequence
- the Costas sequence length is LM.
- v l is a sequence of integers
- L and M are constants
- n is a constant
- p (n) is defined as follows,
- the above formula is only an example of the Costa sequence, and is not limited thereto.
- the Costa sequence may be generated by other formulas.
- the above Kasami sequence can be generated by:
- m sequence a with a period of 2 n -1 (n is an even number) is selected, and the sequence a is sampled every 2 n / 2 +1 numbers to obtain a sequence of length 2 n / 2 -1. It can be proved that this sequence is still an m sequence, and this sequence is repeated 2 n / 2 +1 times to obtain a sequence a ′ having the same length as the a sequence.
- Kasami sequences can be obtained by adding a and a 'sequences by bitwise modulo 2. In addition, when changing the phase of one of the sequences (moving backward or forward), a new Kasami sequence can be obtained.
- the above description is only an example.
- the m sequence a is not necessarily periodic, and its length is not necessarily 2 n -1 (n is an even number).
- the sequence included in the above energy-saving signal can be flexibly configured according to actual needs.
- the energy-saving signal includes multiple sequences, so that the function of the energy-saving signal is further enhanced to further improve the communication performance of the communication system.
- the energy saving signal is used to indicate at least one of the following:
- Wakeup area ID indicates the energy saving signal and control channel the distance between.
- the function of the energy saving signal can be improved to further improve the communication performance of the communication system.
- one sequence may indicate one or more of the above items, or one sequence may indicate one of the items, or a plurality of sequences may indicate one item, etc. This is not limited.
- the same sequence in the energy-saving signal indicates one or more of the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information, and end of data.
- the overhead of the energy-saving signal can be saved.
- the energy-saving signal indicates the identification of the wake-up area by at least one sequence
- the energy saving signal indicates the cell identity through at least one sequence; and / or
- the energy saving signal indicates the terminal identity through at least one sequence; and / or
- the energy saving signal indicates the carrier information through at least one sequence; and / or
- the energy saving signal indicates the system information update through at least one sequence; and / or
- the energy saving signal indicates the distance information through at least one sequence; and / or
- the energy saving signal indicates the end of the data through at least one sequence.
- the energy-saving signal includes multiple sequences occupying one or more OFDM symbols.
- multiple sequences may occupy the same OFDM symbol, or multiple sequences may occupy multiple OFDM symbols, for example, different sequences occupy different OFDM symbols, or some sequences occupy the same OFDM symbol, and other sequences occupy Different OFDM symbols to increase the flexibility of energy-saving signals.
- the wake-up signal For the Wakeup area ID indication, the wake-up signal carries multiple information fields, each information field carries a subsequence, and Wakeuparea ID maps to one of the subsequences, for example:
- Sequence 1 represents the mapping ID information of Wakeup area.
- the preferred sequence 1 is a function of Wakeup area ID.
- Wakeup area ID is ZC.
- the terminal first detects sequence 1 at the mapped WUS sending position. If the Wakeup area ID identified by the sequence is the identity of the Wakeup area to which the terminal belongs, it will continue to detect the subsequent sequence, otherwise the terminal stops detecting the subsequent multilevel Sequence, continue to enter the sleep state, which is very beneficial to the terminal to save power.
- the wake-up signal carries multiple information fields, each information field carries a subsequence, and the Cell ID maps 1-2 of them, for example:
- the multi-level sequence of the wake-up signal respectively occupies one or more OFDM symbols in the time domain.
- Sequences 2 and 3 can reuse PSS / SSS for time-frequency coarse synchronization operation.
- the terminal successfully detects the synchronization sequence PSS / SSS it can identify the Cell ID, preferred sequences 2 and 3 can reuse PSS / SSS design sequences.
- the coarse synchronization can be completed.
- the Cell ID can be used to assist subsequent decoding of the Physical Broadcast Channel (PBCH), such as directly detecting the PSS / SSS in the SSB or removing it based on the sequence ID and the previous synchronization information.
- the PSS / SSS detection step directly detects the PBCH, thereby achieving fast cell search for RRC-connected mode terminals.
- PBCH Physical Broadcast Channel
- the UE ID maps to one or more subsequences of the wake-up signal, for example:
- Sequence 4 can be used for UE ID indication.
- a specific method can be to use UE ID as initial information to generate a PN sequence as sequence 4, which can occupy multiple OFDM symbols in the time domain.
- the UE After the UE detects that the previous multi-level sequence belongs to the UE's own sequence, it starts to detect the sequence mapped by the UE ID. For example, by judging the peak value of the sliding correlation detection, if the terminal finds that the UE identified by the sequence is itself, it will continue to detect the subsequent Sequence, otherwise stop WUS detection and continue to sleep.
- the carrier information maps a subsequence of the wake-up signal, for example:
- sequence 5 can be used to indicate carrier information.
- the base station for the terminal.
- the terminal supports 4 carriers.
- the base station uses 4 bits [b0b1b2b3] as the index of the activated carrier.
- Bit mapping can be used.
- the method described in the embodiment of the present disclosure is the simplest method, and does not exclude other carrier indication methods.
- the terminal After the terminal detects the sequence mapped by the carrier information, it can prepare for subsequent power climbing on the carrier. This method effectively avoids the need to detect WUS on multiple radio frequency channels and continues to sleep on the carrier that is not activated, thereby Significantly reduces terminal power consumption.
- the system information update indication maps to a subsequence of the wake-up signal, for example:
- sequence 6 can be used for system information update instructions. This sequence only needs to distinguish whether system information needs to be updated, so only two cases are mapped. For example, if two orthogonal sequences can be constructed, sequence 0 indicates that system information has not been updated. Sequence 1 indicates that system information needs to be updated. The terminal only needs to detect the sequence of the phase mapping at the mapping position to obtain the indication of the system information. If it is found that the system information update flag is carried in the wake-up signal sequence, the terminal will detect new information at a later system information update time. If the wake-up signal does not have the system information update flag, the terminal considers that the downlink data arrives. The terminal in RRC_IDLE, RRC_Inactive mode will detect the downlink control information (Downlink Control Information) of the page, and then detect PDSCH for data reception. .
- Downlink Control Information Downlink Control Information
- WUS subset 1 is used to indicate that the terminal will soon have data in this DRX cycle. After the terminal correctly recognizes WUS subset 1, it starts to start power climbing. Normal reception and measurement operation. However, the location where the terminal receives WUS subset 1 may be far away from the data. To avoid the terminal from blindly detecting the PDCCH after waking up, a sequence is introduced to indicate the distance from WUS subset 1 to the PDSCH. Optional WUS subset 2 is introduced before the PDCCH or PDSCH, and the distance indicated by the sequence may also be the distance between WUS subset 1 and subset 2.
- the foregoing distance can be expressed by the number of OFDM symbols, and the number of OFDM symbols only needs to be taken as an input of a certain sequence, that is, the sequence is a function of the foregoing distance.
- the distance can also be an estimated value, such as accurate to a subframe or a time slot.
- the terminal finds that the WUS subset 1 starts to start power climbing, performs necessary cell search and wireless channel measurement procedures, but does not perform blind PDCCH detection, and does not start the blind PDCCH operation until the WUS subset 2 arrives and the detection is successful.
- the terminal can start detecting WUS subset 2 after receiving WUS subset 1, and use the distance indication of WUS and PDCCH for further verification. Any one of the two will perform blind detection of the PDCCH. Of course, these two pieces of indication information may also be reserved, such as only WUS subset 2 or only WUS and PDCCH distance indication information.
- the energy saving signal is shown in the following table:
- Another sub-set of is also composed of a sequence to indicate whether the base station has finished sending data this time.
- a specific method may be to design a sequence, such as similar to indicating whether the system information is changed, and used to indicate whether the data is ended, as shown in FIG. 5.
- WUS subset (set) 1 is used to indicate the arrival of data, the terminal starts power climbing, WUSset2 is used to activate PDCCH detection, WUSset3 is used to detect whether the data is over, and if the terminal successfully detects WUSset3, it enters the sleep state.
- WUS set3 is placed at the last symbol of DRX, but it is not excluded that it is more conducive to power saving. For example, WUS set3 is located after PDSCH at a predetermined number of OFDM symbols from PDSCH.
- the working state of the terminal in the NR may include three states: RRC_IDLE, RRC_Inactive, and RRC_Connected, while the terminal in the LTE has two working states of RRC_IDLE and RRC_Connected. How long does it take for a terminal in RRC_IDLE mode to wake up after being awakened by WUS than for a terminal in RRC_Connected, and it is necessary to perform more operations than RRC_IDLE, WUS may support more functions. For example, as shown in the following table, the preferred energy-saving signals in different states have a nested relationship. Sequences 1 to n 'are used for RRC_Connected mode, and 1 to n are used for RRC_IDLE mode. If the terminal is in RRC_Connected mode, it only needs to The detection sequence 1 to n 'is sufficient, thereby reducing the detection complexity.
- the network-side device determines a transmission resource of the energy-saving signal; the network-side device sends the energy-saving signal through the transmission resource, and the energy-saving signal includes multiple sequences. Therefore, energy-saving signals including multiple sequences can be transmitted, and the communication performance of the communication system can be improved.
- the following design scheme can be adopted.
- Method 1 The network first divides the UEs that need to monitor WUS into multiple groups according to the UE ID information, and each group of UEs sends a wake-up signal on the same resource.
- the UE ID is only a user identification, and is not limited to the RNTI.
- the ID information of the UE in Wake up area / paging area can also be a function of the global unique identification of the UE.
- the UE ’ s global Uniquely identifies the modulo operation.
- Method 2 The network divides the UEs that need to monitor WUS into multiple groups according to the UE ID information. Each group of UEs sends wake-up signals on the same frequency domain resources and different time domain resources.
- the different time domain resources may refer to different OFDM symbols or time slots, for example.
- Method 3 The network divides the UEs that need to monitor the WUS into multiple groups according to the UE ID information. Each group of UEs sends wake-up signals on the same time domain resources and different frequency domain resources. For example, different UEs can be calculated based on the UE ID. Send a wake-up signal on the PRB resource.
- Method four The network divides the UEs that need to monitor WUS into multiple groups according to the UE ID information.
- the UEs in the group send wake-up signals on different time domain resources.
- the number of users in a group of one is a special case of the above scheme. When the number of users in a group is greater than one, mode one has a smaller resource overhead than mode three and mode four.
- the above four schemes can be used in combination when necessary. For example, when the wake-up signal contains multiple subsets to be sent, each WUS subset can be considered to map to a different resource allocation scheme.
- Embodiment 1 All need to configure resources for sending wake-up signals. Unlike the sending resources for sending paging signals, which are indicated by the PDCCH, the base station needs to determine the time and frequency of WUS transmission before blindly detecting the PDCCH. Resources.
- the method for configuring WUS frequency domain transmission resources is as follows:
- the base station configures a WUS frequency domain transmission resource for the UE or UE group in a static or semi-static manner, and the frequency domain resource corresponds to the UE ID.
- the UE group is determined according to certain rules. For example, the UEs in the group have the same UE ID, or the UEs in the group are different but satisfy a certain relationship. For example, the UE ID in the group is the same after modulating a certain value. .
- the base station may also semi-statically configure the resource information sent by the WUS related to the UE ID or UE group through RRC signaling;
- the base station instructs the UE to send the resource information sent by the WUS to the UE according to a pre-approved or system information indication method as a supplementary method of resource configuration.
- the WUS is divided into multiple subsets and one of the subsets sends resources using this method Configuration; the aforementioned sending resource information generally refers to time-frequency resources, and sometimes also includes Beam-related information, such as Beam ID.
- the wake-up signal may not satisfy the Occupied Channel Bandwidth (OCB) regulation, so it is better to use occupancy for WUS.
- Occupied Channel Bandwidth (OCB) regulation Occupied Channel Bandwidth
- the full bandwidth interlace structure is shown in Figure 3.
- the full bandwidth is first divided into multiple groups by one group for every 10 consecutive PRBs. It is assumed that a total of N groups are obtained.
- each group takes a PRB to form an interlace (that is, N in FIG. 3).
- PRB set with the same index in group, such as index 0).
- the basic unit of WUS transmission in the frequency domain is interlace.
- the foregoing interlace is just an example.
- the granularity of the frequency domain resources allocated for each UE may be PRB or an integer multiple of the number of subcarriers, but not a multiple of PRB.
- the aforementioned interlace structure is full bandwidth in an unlicensed frequency band, and when in the licensed frequency band, the interlace can occupy part or all of the transmission bandwidth.
- the base station sends WUS on the interlace allocated for a certain UE.
- the number of interlace allocated by the base station to the UE and its interlace index are semi-statically configured or pre-approved. In the example shown in FIG. 3, different UEs use different interlace.
- the configuration method of WUS time domain transmission resources is as follows:
- the base station determines a possible transmission period of the UE-specific wake-up signal according to the UE ID and the DRX cycle, and sends a wake-up signal before the WUS transmission cycle before data transmission.
- WUS can be composed of multiple subsets.
- the base station needs to send certain subsets of wake-up signals at positions determined before or within each DRX cycle according to the UE ID information, and dynamically send other parts of WUS on certain OFDM symbols. ,As shown in Figure 4.
- Subset 1 of WUS is sent in sub-frame M.
- the base station and terminal with the better sending position use an agreed algorithm or the semi-static configuration of the base station makes the base station and terminal transparent to the position. When the algorithm is used for calculation, the position is UE.
- WUS subset 2 exists, it is sent after WUS subset 1 to send the location and data of the subset
- the actual origin of the transmission is related, the position is dynamic, cannot be determined before the WUS subset 1 is sent, and it has a certain mapping relationship with the subset of the sent WUS subset 1;
- Figure 4 only describes the two subsets of WUS and is not excluded There are other subsets of WUS. If the terminal detects WUS, the terminal starts a timer. The timer has a threshold configured by the base station. If the timer times out but does not detect its own PDCCH, the terminal will enter the sleep state again.
- Embodiment 1 and Embodiment 2 correspond to the implementation manner of transmission resource allocation in the embodiment shown in FIG. 2.
- Embodiment 1 and Embodiment 2 may not limit the energy-saving signal to include multiple sequences, that is, That is to say, in the technical solutions corresponding to Embodiment 1 and Embodiment 2, the energy saving signal may include a sequence.
- the base station sends a wake-up signal composed of a multi-level sequence.
- WUS subset i, and n1 + n2 +, ... + nm n.
- the WUS subset can be sent on the resources mapped according to the methods of Embodiments 1 and 2.
- n sequences can be one or more of PN sequences (such as m sequence, gold sequence), ZC sequence, orthogonal sequence, Costa sequence, Kasumi and other sequences; the purpose is to send wake-up signals by using m subsets of n sequences Supports parts or combinations of the following functions:
- the described multi-level wake-up signal or multi-level energy-saving signal may be composed of different single-level signals, and the base station may notify the terminal through RRC signaling to adopt the signaling, such as semi-static signaling.
- the base station may notify the terminal through RRC signaling to adopt the signaling, such as semi-static signaling.
- Those single-level energy-saving signals that is, the number of single-level signals in the multi-level energy-saving signals are variable, so the functions of the multi-level energy-saving signals are also variable, and of course, the system overhead is also variable.
- the multi-level energy-saving signal or the wake-up signal includes at most Nmax single-level energy-saving signals
- the base station indicates through signaling, such as through a bit mapping method, that is, the indication information includes Nmax binary bits, corresponding to the pre- Set the multi-level energy-saving signal identifier.
- the corresponding bit is set to 1.
- the notification signaling is preferably semi-static signaling as described above, but does not exclude other signaling, such as dynamic signaling.
- the described energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the energy-saving signal can be a multi-level energy-saving signal, but does not exclude other signals.
- the DCI of the PDCCH is used to indicate at least one of the following:
- the distance between the control channels can also be the distance between the time when the data / PDCCH actually arrives in the DRX cycle and the starting point of the DRX; it can also be absolute position information, such as data or radio frames, subframes, and time slots reached by the PDCCH.
- the specific identification of the OFDM symbol and the end of the data (such as the distance of the end of the data from the start of the DRX cycle) or the distance of the energy-saving signal from the end of the data or the specific information of the end of the data, such as radio frames and subframes , Time slot, or OFDM symbol).
- FIG. 6 is a flowchart of another method for transmitting an energy-saving signal according to an embodiment of the present disclosure. As shown in FIG. 6, the method includes the following steps:
- Step 601 The terminal receives an energy-saving signal at a transmission resource, where the energy-saving signal includes multiple sequences, and the transmission resource is a transmission resource of the energy-saving signal determined by a network-side device.
- the energy saving signal includes three or more sequences.
- the transmission resource is that the network-side device groups the terminals that need to monitor the energy-saving signal, and assigns the transmission resource of the energy-saving signal to each terminal group.
- the energy-saving signal includes one or more signal subsets
- At least one signal subset of the terminals in the same terminal group uses the same transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses different transmission resources, the transmission resources including time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources;
- At least one signal subset of terminals in the same terminal group uses the same frequency domain resources, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- the transmission resources include:
- the frequency domain resources include:
- the network-side device determines, in a static or semi-static manner, a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group where the terminal is located; and / or
- the time domain resources include:
- the network-side device determines a time domain resource of the energy-saving signal of the terminal according to the terminal identifier and the DRX cycle.
- the frequency domain resources include:
- the network-side device uses semi-static RRC signaling to determine a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group where the terminal is located; or
- the network-side device determines a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group in which the terminal is located, by means of a pre-approved or system information indication.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the interlace structure includes multiple resource sets, and resources with the same index in the multiple resource sets serve as an interlace;
- the energy-saving signal of one terminal occupies all interlace in the interlace structure, the energy-saving signal includes an orthogonal sequence.
- the energy-saving signal includes a plurality of signal subsets, wherein a part of the signal subset is located before another part of the signal subset.
- the energy-saving signal includes a plurality of signal subsets
- the time domain resources of a part of the signal subset of the energy-saving signal of the terminal are before or within the DRX cycle, wherein another part of the signal subset is dynamically transmitted on the OFDM symbol.
- the time domain resources of the partial signal subset are determined by a pre-agreed algorithm; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device.
- the position of the time domain resources of the partial signal subset is a function of a terminal identification and a DRX cycle; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device, the time domain resources of the partial signal subset are notified through terminal-specific RRC signaling.
- the energy saving signal includes at least one of the following sequences:
- PN sequence PN sequence
- ZC sequence orthogonal sequence
- Costa sequence Kasumi sequence
- PSS sequence PSS sequence
- SSS sequence synchronization sequence with equivalent function and sequence combination.
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the same sequence in the energy-saving signal indicates one or more of the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information, and end of data.
- the energy saving signal indicates the identification of the wake-up area by at least one sequence; and / or
- the energy saving signal indicates the cell identity through at least one sequence; and / or
- the energy saving signal indicates the terminal identity through at least one sequence; and / or
- the energy saving signal indicates the carrier information through at least one sequence; and / or
- the energy saving signal indicates the system information update through at least one sequence; and / or
- the energy saving signal indicates the distance information through at least one sequence; and / or
- the energy saving signal indicates the end of the data through at least one sequence.
- the energy-saving signal includes multiple sequences occupying one or more OFDM symbols.
- the energy-saving signal includes a first signal subset and a second signal subset, wherein the first signal subset is located before the second signal subset, and the method further includes:
- the terminal initiates power climbing
- the terminal blindly detects a control channel.
- the energy-saving signal further includes a third signal subset, wherein the third signal subset is located after the second signal subset, and the method further includes:
- the terminal If the terminal receives the third signal subset, the terminal enters a sleep state.
- the power consumption of the terminal can be further saved.
- the terminal receiving the energy-saving signal at the transmission resource includes:
- the terminal receives the partial sequence in the energy saving signal
- the terminal receives all sequences in the energy-saving signal.
- the terminal receives the energy-saving signal, a timer is started, and if the timer expires and the control channel of the terminal is not detected, it enters a sleep state.
- the power consumption of the terminal can be further saved.
- this embodiment is an implementation manner of the terminal corresponding to the embodiment shown in FIG. 2.
- the related description of the embodiment shown in FIG. The examples are not repeated, and the same beneficial effects can be achieved.
- a network-side device 700 includes:
- the sending module 702 is configured to send the energy saving signal through the transmission resource, where the energy saving signal includes multiple sequences.
- the energy saving signal includes three or more sequences.
- the determining module 701 is configured to group terminals that need to monitor the energy saving signal, and determine a transmission resource of the energy saving signal for each terminal group.
- the energy-saving signal includes one or more signal subsets
- At least one signal subset of the terminals in the same terminal group uses the same transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses different transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources;
- At least one signal subset of terminals in the same terminal group uses the same frequency domain resource, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- the determining module 701 is configured to determine a frequency domain resource of the energy-saving signal corresponding to the terminal identifier for the terminal or the terminal group; and / or
- the determining module 701 is configured to determine a time domain resource of an energy saving signal of a terminal according to a terminal identifier.
- the determining module 701 is configured to determine, in a static or semi-static manner, a frequency domain resource of the energy-saving signal corresponding to the terminal identity for the terminal or terminal group; and / or
- the determining module 701 is configured to determine a time domain resource of the energy-saving signal of the terminal according to the terminal identifier and the DRX cycle that is not continuously received.
- the determining module 701 is configured to control RRC signaling semi-static through radio resources, and determine a frequency domain resource of an energy-saving signal corresponding to a terminal identity for a terminal or a terminal group; or
- the determining module 701 is configured to determine, for a terminal or a terminal group, a frequency domain resource of an energy-saving signal corresponding to a terminal identifier in a manner agreed in advance or indicated by system information.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the interlace structure includes multiple resource sets, and resources with the same index in the multiple resource sets serve as one interlace.
- the energy-saving signal includes a plurality of signal subsets, wherein a part of the signal subset is located before another part of the signal subset.
- the determining module 701 is configured to determine, according to the terminal identifier, that the time domain resources of the partial signal subset of the terminal are before or within the DRX cycle, wherein the other partial signal subset is dynamically at an orthogonal frequency. Send on multiplexed OFDM symbols.
- the time domain resources of the partial signal subset are determined by a pre-agreed algorithm; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device.
- the position of the time domain resources of the partial signal subset is a function of a terminal identification and a DRX cycle; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device, the time domain resources of the partial signal subset are notified through terminal-specific RRC signaling.
- the energy saving signal includes at least one of the following sequences:
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the same sequence in the energy-saving signal indicates one or more of the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information, and end of data.
- the energy saving signal indicates the identification of the wake-up area by at least one sequence; and / or
- the energy saving signal indicates the cell identity through at least one sequence; and / or
- the energy saving signal indicates the terminal identity through at least one sequence; and / or
- the energy saving signal indicates the carrier information through at least one sequence; and / or
- the energy saving signal indicates the system information update through at least one sequence; and / or
- the energy saving signal indicates the distance information through at least one sequence; and / or
- the energy saving signal indicates the end of the data through at least one sequence.
- the energy-saving signal includes multiple sequences occupying one or more OFDM symbols.
- some sequences are used for the connected terminal, and all sequences are used for the non-connected terminal.
- the above-mentioned network-side device 700 in this embodiment may be a network-side device in any of the method embodiments in the embodiments of the present disclosure, and any implementation of the terminal in the method embodiments in the embodiments of the present disclosure may be This network device 700 in this embodiment is implemented and achieves the same beneficial effects, and details are not described herein again.
- FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
- the terminal 800 includes:
- the receiving module 801 is configured to receive an energy-saving signal in a transmission resource, where the energy-saving signal includes multiple sequences, and the transmission resource is a transmission resource of the energy-saving signal determined by a network-side device.
- the energy saving signal includes three or more sequences.
- the transmission resource is that the network-side device groups the terminals that need to monitor the energy-saving signal, and assigns the transmission resource of the energy-saving signal to each terminal group.
- the energy-saving signal includes one or more signal subsets
- At least one signal subset of the terminals in the same terminal group uses the same transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses different transmission resources, the transmission resources including time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources;
- At least one signal subset of terminals in the same terminal group uses the same frequency domain resource, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- the transmission resources include:
- the frequency domain resources include:
- the network-side device determines, in a static or semi-static manner, a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group where the terminal is located; and / or
- the time domain resources include:
- the network-side device determines a time domain resource of the energy-saving signal of the terminal according to the terminal identifier and the DRX cycle.
- the frequency domain resources include:
- the network-side device uses semi-static RRC signaling to determine a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group where the terminal is located; or
- the network-side device determines a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group in which the terminal is located, by means of a pre-approved or system information indication.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the interlace structure includes multiple resource sets, and resources with the same index in the multiple resource sets serve as an interlace;
- the energy-saving signal of one terminal occupies all interlace in the interlace structure, the energy-saving signal includes an orthogonal sequence.
- the energy-saving signal includes a plurality of signal subsets, wherein a part of the signal subset is located before another part of the signal subset.
- the energy-saving signal includes a plurality of signal subsets
- the time domain resources of a part of the signal subset of the energy-saving signal of the terminal are before or within the DRX cycle, wherein another part of the signal subset is dynamically transmitted on the OFDM symbol.
- the time domain resources of the partial signal subset are determined by a pre-agreed algorithm; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device.
- the position of the time domain resources of the partial signal subset is a function of a terminal identification and a DRX cycle; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device, the time domain resources of the partial signal subset are notified through terminal-specific RRC signaling.
- the energy saving signal includes at least one of the following sequences:
- PN sequence PN sequence
- ZC sequence orthogonal sequence
- Costa sequence Kasumi sequence
- PSS sequence PSS sequence
- SSS sequence synchronization sequence with equivalent function and sequence combination.
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the same sequence in the energy-saving signal indicates one or more of the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information, and end of data.
- the energy saving signal indicates the identification of the wake-up area by at least one sequence; and / or
- the energy saving signal indicates the cell identity through at least one sequence; and / or
- the energy saving signal indicates the terminal identity through at least one sequence; and / or
- the energy saving signal indicates the carrier information through at least one sequence; and / or
- the energy saving signal indicates the system information update through at least one sequence; and / or
- the energy saving signal indicates the distance information through at least one sequence; and / or
- the energy saving signal indicates the end of the data through at least one sequence.
- the energy-saving signal includes multiple sequences occupying one or more OFDM symbols.
- the energy-saving signal includes a first signal subset and a second signal subset, wherein the first signal subset is located before the second signal subset.
- the terminal 800 further includes :
- a starting module 802 configured to start power climbing if the terminal receives the first signal subset
- a blind detection module 803 is configured to blindly detect a control channel if the terminal receives the second signal subset.
- the energy saving signal further includes a third signal subset, where the third signal subset is located after the second signal subset.
- the terminal 800 further includes:
- the sleep module 804 is configured to, if the terminal receives the third signal subset, the terminal enters a sleep state.
- the receiving module 801 is configured to receive the terminal if the terminal is in the connected state. Part of the sequence described in the energy-saving signal;
- the receiving module 801 is configured to receive all sequences in the energy-saving signal if the terminal is in a disconnected state.
- the terminal receives the energy-saving signal, a timer is started, and if the timer expires and the control channel of the terminal is not detected, it enters a sleep state.
- the terminal 800 in this embodiment may be a terminal of any implementation manner in the method embodiment in this embodiment of the disclosure. Any implementation manner of the terminal in the method implementation in this embodiment of the present disclosure may be adopted by this embodiment.
- the above terminal 800 implements and achieves the same beneficial effects, which are not repeated here.
- FIG. 11 is a structural diagram of another network-side device according to an embodiment of the present disclosure.
- the network-side device includes: a transceiver 1110, a memory 1120, a processor 1100, and a storage unit.
- the program on the memory 1120 and executable on the processor wherein:
- the processor 1100 is configured to read a program in the memory 1120 and execute the following processes:
- the transceiver 1110 is configured to send the energy saving signal through the transmission resource, where the energy saving signal includes multiple sequences;
- the transceiver 1110 is configured to determine transmission resources of an energy-saving signal
- the energy-saving signal is transmitted through the transmission resource, where the energy-saving signal includes a plurality of sequences.
- the transceiver 1110 may be used to receive and send data under the control of the processor 1100.
- the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1100 and various circuits of the memory represented by the memory 1120 are linked together.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not further described herein.
- the bus interface provides an interface.
- the transceiver 1110 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
- the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 may store data used by the processor 1100 when performing operations.
- the memory 1120 is not limited to only the network-side device, and the memory 1120 and the processor 1100 may be separated in different geographical locations.
- the energy saving signal includes three or more sequences.
- the determining transmission resources of the energy-saving signal includes:
- Group the terminals that need to monitor the energy-saving signal, and determine the transmission resource of the energy-saving signal for each terminal group.
- the energy-saving signal includes one or more signal subsets
- At least one signal subset of the terminals in the same terminal group uses the same transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses different transmission resources, the transmission resources including time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources;
- At least one signal subset of terminals in the same terminal group uses the same frequency domain resource, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- the determining transmission resources of the energy-saving signal includes:
- a time domain resource of the energy saving signal of the terminal is determined.
- the terminal or the terminal group, and determining a frequency domain resource of the energy-saving signal corresponding to the terminal identifier includes:
- the determining the time domain resource of the energy saving signal of the terminal according to the terminal identifier includes:
- the time domain resources of the energy-saving signal of the terminal are determined according to the terminal identification and the non-continuous reception DRX cycle.
- determining the frequency domain resource of the energy-saving signal corresponding to the terminal identity for the terminal or terminal group in a static or semi-static manner includes:
- the frequency domain resource of the energy-saving signal corresponding to the terminal identity is determined for the terminal or terminal group in a manner agreed in advance or indicated by the system information.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the interlace structure includes multiple resource sets, and resources with the same index in the multiple resource sets serve as one interlace.
- the energy-saving signal includes a plurality of signal subsets, wherein a part of the signal subset is located before another part of the signal subset.
- determining the time domain resource of the energy saving signal of the terminal according to the terminal identity and the DRX cycle includes:
- the terminal identity it is determined that the time domain resources of the partial signal subset of the terminal are before or within the DRX cycle, wherein the other partial signal subset is dynamically transmitted on the orthogonal frequency division multiplexed OFDM symbol.
- the time domain resources of the partial signal subset are determined by a pre-agreed algorithm; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device.
- the position of the time domain resources of the partial signal subset is a function of a terminal identification and a DRX cycle; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device, the time domain resources of the partial signal subset are notified through terminal-specific RRC signaling.
- the energy saving signal includes at least one of the following sequences:
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the same sequence in the energy-saving signal indicates one or more of the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information, and end of data.
- the energy saving signal indicates the identification of the wake-up area by at least one sequence; and / or
- the energy saving signal indicates the cell identity through at least one sequence; and / or
- the energy saving signal indicates the terminal identity through at least one sequence; and / or
- the energy saving signal indicates the carrier information through at least one sequence; and / or
- the energy saving signal indicates the system information update through at least one sequence; and / or
- the energy saving signal indicates the distance information through at least one sequence; and / or
- the energy saving signal indicates the end of the data through at least one sequence.
- the energy-saving signal includes multiple sequences occupying one or more OFDM symbols.
- some sequences are used for the connected terminal, and all sequences are used for the non-connected terminal.
- the foregoing network-side device in this embodiment may be a network-side device in any of the method embodiments in the embodiments of the present disclosure, and any implementation of the network-side device in the method embodiments in the embodiments of the present disclosure may be It is implemented by the above-mentioned network-side device in this embodiment and achieves the same beneficial effects, and details are not described herein again.
- FIG. 12 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
- the terminal includes: a transceiver 1210, a memory 1220, a processor 1200, and stored on the memory 1220 A program that can run on the processor 1200, wherein:
- the transceiver 1210 is configured to receive an energy-saving signal at a transmission resource, where the energy-saving signal includes multiple sequences, and the transmission resource is a transmission resource of the energy-saving signal determined by a network-side device.
- the transceiver 1210 may be used to receive and send data under the control of the processor 1200.
- the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1200 and various circuits of the memory represented by the memory 1220 are linked together.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not further described herein.
- the bus interface provides an interface.
- the transceiver 1210 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
- the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 may store data used by the processor 1200 when performing operations.
- the memory 1220 is not limited to a terminal, and the memory 1220 and the processor 1200 may be separated in different geographical locations.
- the energy saving signal includes three or more sequences.
- the transmission resource is that the network-side device groups the terminals that need to monitor the energy-saving signal, and assigns the transmission resource of the energy-saving signal to each terminal group.
- the energy-saving signal includes one or more signal subsets
- At least one signal subset of the terminals in the same terminal group uses the same transmission resources, and the transmission resources include time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses different transmission resources, the transmission resources including time domain resources and frequency domain resources; or
- At least one signal subset of terminals in the same terminal group uses the same time domain resource, and at least one signal subset of different terminals in the same terminal group uses different frequency domain resources;
- At least one signal subset of terminals in the same terminal group uses the same frequency domain resource, and at least one signal subset of different terminals in the same terminal group uses different time domain resources.
- the transmission resources include:
- the frequency domain resources include:
- the network-side device determines, in a static or semi-static manner, a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group where the terminal is located; and / or
- the time domain resources include:
- the network-side device determines a time domain resource of the energy-saving signal of the terminal according to the terminal identifier and the DRX cycle.
- the frequency domain resources include:
- the network-side device uses semi-static RRC signaling to determine a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group where the terminal is located; or
- the network-side device determines a frequency domain resource of an energy-saving signal corresponding to a terminal identifier for the terminal or a terminal group in which the terminal is located, by means of a pre-approved or system information indication.
- the frequency domain resources of the energy-saving signals of one or more terminals are an interlace structure occupying a full bandwidth; and / or
- the frequency domain resources of the energy-saving signals of one or more terminals are interlace structures occupying part or all of the bandwidth.
- the interlace structure includes multiple resource sets, and resources with the same index in the multiple resource sets serve as an interlace;
- the energy-saving signal of one terminal occupies all interlace in the interlace structure, the energy-saving signal includes an orthogonal sequence.
- the energy-saving signal includes a plurality of signal subsets, wherein a part of the signal subset is located before another part of the signal subset.
- the energy-saving signal includes a plurality of signal subsets
- the time domain resources of a part of the signal subset of the energy-saving signal of the terminal are before or within the DRX cycle, wherein another part of the signal subset is dynamically transmitted on the OFDM symbol.
- the time domain resources of the partial signal subset are determined by a pre-agreed algorithm; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device.
- the position of the time domain resources of the partial signal subset is a function of a terminal identification and a DRX cycle; and / or
- the time domain resources of the partial signal subset are semi-statically configured by the network-side device, the time domain resources of the partial signal subset are notified through terminal-specific RRC signaling.
- the energy saving signal includes at least one of the following sequences:
- PN sequence PN sequence
- ZC sequence orthogonal sequence
- Costa sequence Kasumi sequence
- PSS sequence PSS sequence
- SSS sequence synchronization sequence with equivalent function and sequence combination.
- the energy saving signal is used to indicate at least one of the following:
- the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information and data ends, wherein the distance information indicates the distance between the energy saving signal and the control channel.
- the same sequence in the energy-saving signal indicates one or more of the wake-up area identifier, cell identifier, terminal identifier, carrier information, system information update, distance information, and end of data.
- the energy saving signal indicates the identification of the wake-up area by at least one sequence; and / or
- the energy saving signal indicates the cell identity through at least one sequence; and / or
- the energy saving signal indicates the terminal identity through at least one sequence; and / or
- the energy saving signal indicates the carrier information through at least one sequence; and / or
- the energy saving signal indicates the system information update through at least one sequence; and / or
- the energy saving signal indicates the distance information through at least one sequence; and / or
- the energy saving signal indicates the end of the data through at least one sequence.
- the energy-saving signal includes multiple sequences occupying one or more OFDM symbols.
- the energy-saving signal includes a first signal subset and a second signal subset, wherein the first signal subset is located before the second signal subset, and the transceiver 1210 is further configured to:
- the terminal If the terminal receives the second signal subset, it blindly detects a control channel.
- the energy saving signal further includes a third signal subset, wherein the third signal subset is located after the second signal subset, and the transceiver 1210 is further configured to:
- the terminal If the terminal receives the third signal subset, the terminal enters a sleep state.
- the receiving the energy-saving signal at the transmission resource includes:
- the terminal receives the energy-saving signal, a timer is started, and if the timer expires and the control channel of the terminal is not detected, it enters a sleep state.
- the above-mentioned terminal in this embodiment may be a terminal in any of the method embodiments in the embodiments of the present disclosure, and any embodiment of the terminal in the method embodiments in the embodiments of the present disclosure may be used in this embodiment.
- the above terminal implements and achieves the same beneficial effects, which are not repeated here.
- An embodiment of the present disclosure further provides a computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements steps in a method for transmitting an energy-saving signal on a network-side device side provided by an embodiment of the present disclosure, or When the program is executed by a processor, the steps in the method for transmitting energy-saving signals on the terminal side provided by the embodiments of the present disclosure are implemented.
- the disclosed methods and devices may be implemented in other ways.
- the device embodiments described above are only schematic.
- the division of the unit is only a logical function division.
- multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
- each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be separately physically included, or two or more units may be integrated into one unit.
- the above integrated unit may be implemented in the form of hardware, or in the form of hardware plus software functional units.
- the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
- the above software functional unit is stored in a storage medium, and includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute a part of the method for processing an information data block according to the embodiments of the present disclosure step.
- the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks, or optical disks, which can store program codes The medium.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开实施例提供一种节能信号的传输方法、终端和网络侧设备,该方法包括:网络侧设备确定节能信号的传输资源;所述网络侧设备通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
Description
相关申请的交叉引用
本申请主张在2018年6月4日在中国提交的中国专利申请No.201810564919.1的优先权以及2018年9月28日在中国提交的中国专利申请No.201811181963.0的优先权,上述申请的全部内容通过引用包含于此。
本公开涉及通信技术领域,尤其涉及一种节能信号的传输方法、终端和网络侧设备。
在5G新空口(New Radio,NR)系统中,终端的工作状态可以包括空闲态(RRC_IDLE)、非激活态(RRC_Inactive)和连接态(RRC_Connected)。另外,在窄带物联网(Narrow Band Internet of Things,NB-IoT)系统中新引入了节能信号这一概念,例如:唤醒信号(Wakeup Signal,WUS)。但是关于节能信号的相关内容,目前还未明确,例如:如何进行传输还未明确。因此,目前通信系统还无法实现通过节能信号改善通信系统的通信性能。可见,目前通信系统的通信性能还是比较差的问题。
发明内容
本公开实施例提供一种节能信号的传输方法、终端和网络侧设备,以解决通信系统的通信性能还是比较差的问题。
为了达到上述目的,本公开实施例提供一种节能信号的传输方法,包括:
网络侧设备确定节能信号的传输资源;
所述网络侧设备通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,所述网络侧设备确定节能信号的传输资源,包括:
所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
可选地,所述节能信号包括一个或者多个信号子集;
其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
可选地,所述网络侧设备确定节能信号的传输资源,包括:
所述网络侧设备为终端或者终端组,确定与终端标识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定终端的节能信号的时域资源。
可选地,所述网络侧设备为终端或者终端组,确定与终端标识相对应的节能信号的频域资源,包括:
所述网络侧设备通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定终端的节能信号的时域资源,包括:
所述网络侧设备根据终端标识和非连续接收(Discontinuous Reception,DRX)周期,确定终端的节能信号的时域资源。
可选地,所述网络侧设备通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源,包括:
所述网络侧设备通过无线资源控制(Radio Resource Control,RRC)信令半静态,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;或者
所述网络侧设备通过预先约定或者系统信息指示的方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的交织(interlace)结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace。
可选地,所述节能信号包括多个信号子集,所述多个信号子集包括部分信号子集和另部分信号子集,所述网络侧设备根据终端标识和DRX周期,确定终端的节能信号的时域资源,包括:
所述网络侧设备根据终端标识,确定终端的所述部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,所述另部分信号子集动态在正交频分复用OFDM符号上发送。
可选地,所述部分信号子集的时域资源通过预先约定的算法确定;和/或
所述部分信号子集的时域资源由所述网络侧设备半静态配置。
可选地,若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或
若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
伪噪声PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、主同步信号PSS序列、辅同步信号SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、 终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
可选地,所述节能信号通过至少一个序列指示唤醒区域标识;和/或
所述节能信号通过至少一个序列指示所述小区标识;和/或
所述节能信号通过至少一个序列指示所述终端标识;和/或
所述节能信号通过至少一个序列指示所述载波信息;和/或
所述节能信号通过至少一个序列指示所述系统信息更新;和/或
所述节能信号通过至少一个序列指示所述距离信息;和/或
所述节能信号通过至少一个序列指示所述数据结束。
可选地,所述节能信号包括多个序列占据一个或者多个OFDM符号。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端。
本公开实施例还提供一种节能信号的传输方法,包括:
终端在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为网络侧设备确定的所述节能信号的传输资源。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,所述传输资源为,所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
可选地,所述节能信号包括一个或者多个信号子集;
其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
可选地,所述传输资源包括:
所述网络侧设备为所述终端或者所述终端所在的终端组确定的与终端标 识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定的所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过静态或者半静态方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述时域资源,包括:
所述网络侧设备根据终端标识和DRX周期,确定所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过RRC信令半静态,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;或者
所述网络侧设备通过预先约定或者系统信息指示的方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace;
其中,若一个终端的节能信号占据所述interlace结构中所有interlace,则所述节能信号包括正交序列。
可选地,所述节能信号包括多个信号子集,所述多个信号子集包括部分信号子集和另部分信号子集;
所述终端的节能信号的部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,另部分信号子集动态在OFDM符号上发送。
可选地,所述部分信号子集的时域资源通过预先约定的算法确定;和/或
所述部分信号子集的时域资源由所述网络侧设备半静态配置。
可选地,若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或
若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、PSS序列、SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
可选地,所述节能信号通过至少一个序列指示所述唤醒区域标识;和/或
所述节能信号通过至少一个序列指示所述小区标识;和/或
所述节能信号通过至少一个序列指示所述终端标识;和/或
所述节能信号通过至少一个序列指示所述载波信息;和/或
所述节能信号通过至少一个序列指示所述系统信息更新;和/或
所述节能信号通过至少一个序列指示所述距离信息;和/或
所述节能信号通过至少一个序列指示所述数据结束。
可选地,所述节能信号包括多个序列占据一个或者多个OFDM符号。
可选地,所述节能信号包括第一信号子集和第二信号子集,其中,所述第一信号子集位于所述第二信号子集之前,所述方法还包括:
若所述终端接收到所述第一信号子集,则所述终端启动功率爬坡;
若所述终端接收到所述第二信号子集,则所述终端盲检控制信道。
可选地,所述节能信号还包括第三信号子集,其中,所述第三信号子集位于所述第二信号子集之后,所述方法还包括:
若所述终端接收到所述第三信号子集,则所述终端进入睡眠状态。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端,所述终端在传输资源接收节能信号,包括:
若所述终端为连接态,则所述终端接收所述节能信号中所述部分序列;
若所述终端为非连接态,则所述终端接收所述节能信号中的全部序列。
可选地,若所述终端接收到所述节能信号,则启动定时器,若所述定时器超时且未检测到所述终端的控制信道,则进入睡眠状态。
本公开实施例还提供一种网络侧设备,包括:
确定模块,用于确定节能信号的传输资源;
发送模块,用于通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
可选地,所述确定模块用于对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
本公开实施例还提供一种终端,包括:
接收模块,用于在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为终端确定的所述节能信号的传输资源。
可选地,所述传输资源为,所述终端对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
本公开实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述处理器用于读取存储器中的程序,执行下列过程:
确定节能信号的传输资源;
所述收发机用于通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,所述确定节能信号的传输资源,包括:
对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
可选地,所述确定节能信号的传输资源,包括:
为终端或者终端组,确定与终端标识相对应的节能信号的频域资源;和/或
根据终端标识,确定终端的节能信号的时域资源。
可选地,所述为终端或者终端组,确定与终端标识相对应的节能信号的频域资源,包括:
通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;和/或
所述根据终端标识,确定终端的节能信号的时域资源,包括:
根据终端标识和非持续接收DRX周期,确定终端的节能信号的时域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的交织interlace结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述节能信号包括多个信号子集,所述多个信号子集包括部分信号子集和另部分信号子集,所述网络侧设备根据终端标识和DRX周期,确 定终端的节能信号的时域资源,包括:
所述网络侧设备根据终端标识,确定终端的所述部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,所述另部分信号子集动态在正交频分复用OFDM符号上发送。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
伪噪声PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、主同步信号PSS序列、辅同步信号SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端。
本公开实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机,用于在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为网络侧设备确定的所述节能信号的传输资源。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,所述传输资源为,所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
可选地,所述传输资源包括:
所述网络侧设备为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定的所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过静态或者半静态方式,为所述终端或者所述终端所 在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述时域资源,包括:
所述网络侧设备根据终端标识和DRX周期,确定所述终端的节能信号的时域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述节能信号包括多个信号子集,所述多个信号子集包括部分信号子集和另部分信号子集;
所述终端的节能信号的部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,另部分信号子集动态在OFDM符号上发送。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、PSS序列、SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号包括第一信号子集和第二信号子集,其中,所述第一信号子集位于所述第二信号子集之前,所述收发机还用于:
若所述终端接收到所述第一信号子集,则启动功率爬坡;
若所述终端接收到所述第二信号子集,则盲检控制信道。
可选地,所述节能信号还包括第三信号子集,其中,所述第三信号子集位于所述第二信号子集之后,所述收发机还用于:
若所述终端接收到所述第三信号子集,则进入睡眠状态。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端,所述终端在传输资源接收节能信号,包括:
若所述终端为连接态,则所述终端接收所述节能信号中所述部分序列;
若所述终端为非连接态,则所述终端接收所述节能信号中的全部序列。
可选地,若所述终端接收到所述节能信号,则启动定时器,若所述定时器超时且未检测到所述终端的控制信道,则进入睡眠状态。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例提供的网络侧设备侧的节能信号的传输方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的终端侧的的节能信号的传输方法中的步骤。
本公开实施例中,网络侧设备确定节能信号的传输资源;所述网络侧设备通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。从而可以实现传输包括多个序列的节能信号,可以提高通信系统的通信性能。
图1是本公开实施例可应用的网络结构示意图;
图2是本公开实施例提供的一种节能信号的传输方法的流程图;
图3是本公开实施例提供的一种频域资源分配的示意图;
图4是本公开实施例提供的一种节能信号的示意图;
图5是本公开实施例提供的另一种节能信号的示意图;
图6是本公开实施例提供的另一种节能信号的传输方法的流程图;
图7是本公开实施例提供的一种网络侧设备的结构图;
图8是本公开实施例提供的一种终端的结构图;
图9是本公开实施例提供的另一种终端的结构图;
图10是本公开实施例提供的另一种终端的结构图;
图11是本公开实施例提供的另一种网络侧设备的结构图;
图12是本公开实施例提供的另一种终端的结构图。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1是本公开实施例可应用的网络结构示意图,如图1所示,包括终端11和网络侧设备12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、5G NR NB等;网络侧设备也可以是小站,如低功率节点(LPN:low power node)、pico、femto等小站,或者网络侧设备可以接入点(AP,access point);基站也可以是中央单元(CU,central unit)与其管理是和控制的多个传输接收点(TRP,Transmission Reception Point)共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备的具体类型。
请参见图2,图2是本公开实施例提供的一种节能信号的传输方法的流程图,如图2所示,包括以下步骤:
201、网络侧设备确定节能信号的传输资源;
202、所述网络侧设备通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
本公开实施例中,上述节能信号可以是用于唤醒信号,或者用于激活(或者称作触发)检测控制信道,或者用于使得终端开始与控制信道译码相关的检测的售。例如:上述节能信号可以是唤醒信号(Wakeup Signal,WUS),当然,对此不作限定,例如:上述节能信号还可以是协议中定义的其他信号,或者网络侧设备与终端预先约定的其他信号。
其中,上述节能信号的传输资源可以是指,用于传输该节能信号的传输资源。上述确定节能信号的传输资源可以是,按照终端或者终端组进行确定,例如:可以分别按照每个终端确定其节能信号的传输资源,或者可以按照终端组确定终端组内终端的节能信号的传输资源。
另外,本公开实施例中,同一个序列指示可以指示一个或者多个功能, 例如:某一个序列可以指示唤醒区域标识(Wake up area ID)、小区标识(Cell ID)、终端标识、载波信息、系统信息更新、距离信息和数据结束等中的一项或者多项。由于上述节能信号包括多个序列,从而可以节能信号可以向终端指示多个功能,终端接收到该节能信号之后,可以解析这些功能的指示,进而执行相应的行为。例如:唤醒、检测控制信道、检测数据信道、获取系统信息和进入睡眠状态等等。这样,通过上述多个序列可以指示多个功能,从而可以提高通信系统的通信性能。
另外,本公开实施例中,上述节能信号可以应用于连接态(RRC_Connected)终端,或者非连接态终端,如空闲态(RRC_IDLE)终端或者非激活态(RRC_Inactive)终端。且在一些实施方式,同一个节能信号即可以应用于连接态终端,又可以应用于非连接态终端,以达到节能信号具有嵌套的特征,进而节约传输资源。
需要说明的是,本公开实施例中,控制信道可以是物理下行控制信道(Physical Downlink Control Channel,PDCCH),但对此不作限定,本公开实施例中,控制信道可以是指现存的及其将来可能的各种可能定义控制信道,例如:增强物理下行控制信道(Enhanced Physical Downlink Control Channel,ePDCCH)或者机器型通信物理下行控制信道(MTC Physical Downlink Control Channel,MPDCCH)等等。另外,本公开实施例可以支持授权频段,也可以支持免许可频段。本公开实施例可以适用于NR技术也可适用于其它通信系统,如LTE。
可选地,本公开实施例中,所述节能信号包括三个或者三个以上的序列。这样通过三个或者三个以上的序列可以让节能信号实现更多功能,从而更进一步提高通信系统的通信性能。当然,本公开实施例中,节能信号也可以是包括两个序列,对此不作限定。
作为一种可选的实施方式,所述网络侧设备确定节能信号的传输资源,包括:
所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
其中,对终端进行分组可以是,根据终端的终端标识(UE ID)进行分组, 例如:同一终端组内的终端具有相同的UE ID,或者同一终端组内的终端的UE ID不同但满足某种关系,如组内同一终端组内的终端UE ID对某一数值取模后值相同。另外,本公开实施例中的UE ID可以是一个用户标识,并不局限于无线网络临时标识(Radio Network Temporary Identity,RNTI),例如:可以是终端在唤醒区域(Wake up area)或者寻呼区域(paging area)内的ID信息,或者也可以是与终端的全球唯一标识的一个函数,如可以是终端的全球唯一标识取模操作。
该实施方式中,由于是按照终端组确定所述节能信号的传输资源,从而可以有效的避免网络侧设备在相同的资源上发送所有终端的唤醒信号,从而降低终端检测唤醒信号的干扰,以及还可以降低唤醒信号设计难度。
可选地,上述节能信号包括一个或者多个信号子集;
其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
本公开实施例中,信号子集可以是一个或者多个符号,且同一个信号子集中可以包括一个或者多个序列。另外,需要说明的是,上述一个或者多个信号子集可以称作一个节能信号的一个或者多个子集,当然,也可以称作一个或者多个不同的节能信号。另外,不同信号子集的传输资源可以是不同的,例如:不同的信号子集在不同的时域资源发送。
上述同一终端组内的终端的至少一个信号子集采用相同的传输资源可以是指,同一终端组内的终端的所有信号子集采用相同的时域资源和频域资源;或者,同一终端组内的终端的部分信号子集采用相同的时域资源和频域资源,而另部分信号子集采用相同的时域资源,但采用不同的频域资源,或者另部分信号子集采用相同的频域资源,但采用不同的时域资源。也就是说,多种 资源配置方式可以组合使用,比如节能信号包含多个信号子集要发送时,可以考虑每个信号子集对映不同的资源配置方案。
该实施方式中,由于同一终端组内的终端的至少一个信号子集采用相同的时域资源和频域资源,从而可以节约通信系统中传输节能信号的传输资源。
上述同一终端组内的终端的至少一个信号子集采用不同的传输资源可以是同一终端组内的终端的所有或者部分信号子集采用不同的时域资源和频域资源。
该实施方式中,由于同一终端组内的终端的至少一个信号子集采用不同的传输资源,这样可以根据不同的终端的需求进行灵活的配置,从而提高节能信号传输的灵活性,增加通信系统的通信性能。
上述同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源可以是指,同一终端组内所有信号子集采用相同的时域资源,不同信号子集采用不同的频域资源,或者可以是指同一终端组内部分信号子集采用相同的时域资源,且该部分信号子集中不同信号子集采用不同的频域资源。这样可以在同一时域资源向多个终端发送不同的节能信号,从而可以节约终端的时域资源。
上述同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源可以是指,同一终端组内所有信号子集采用相同的频域资源,不同信号子集采用不同的时域资源,或者可以是指同一终端组内部分信号子集采用相同的频域资源,且该部分信号子集中不同信号子集采用不同的时域资源。这样可以在同一频域资源向多个终端发送不同的节能信号,从而可以节约终端的频域资源。
需要说明的是,本公开实施例中,时域资源的单位可以指在不同的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或者时隙或者其他的时域资源单位,对此不作限定。上述频域资源的单位可以是物理资源块(Physical Resource Block,PRB),或者可以是子载波或者还可以是频域资源单位,对此不作限定。
作为一种可选的实施方式,所述网络侧设备确定节能信号的传输资源,包括:
所述网络侧设备为终端或者终端组,确定与终端标识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定终端的节能信号的时域资源。
其中,上述终端组内的终端具有相同的UE ID,或者终端组内的终端的UE ID不同但满足某种关系,如组内同一终端组内的终端UE ID对某一数值取模后值相同。
上述确定与终端标识相对应的节能信号的频域资源可以是,为终端确定的频域资源与该终端的终端标识相对应,或者为终端组确定的频域资源与该终端组内的终端标识相对应。
由于确定的频域资源,以及时域资源与终端标识相对应,从而可以实现在确定频域资源和时域资源时不需要添加额外的信息,以降低实现的复杂度。
可选地,所述网络侧设备为终端或者终端组,确定与终端标识相对应的节能信号的频域资源,包括:
所述网络侧设备通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定终端的节能信号的时域资源,包括:
所述网络侧设备根据终端标识和非连续接收(Discontinuous Reception,DRX)周期,确定终端的节能信号的时域资源。
其中,上述网络侧设备通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源,可以包括:
所述网络侧设备通过无线资源控制(Radio Resource Control,RRC)信令半静态,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;或者
所述网络侧设备通过预先约定或者系统信息指示的方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源。
该实施方式中,由于通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源,从而可以减少动态信令的传输资源,以节约传输资源。
作为一种可选的实施方式,所述节能信号包括多个信号子集,其中,部 分信号子集位于另部分信号子集之前。
其中,上述另部分信号子集的时域资源可以是动态配置的,例如:节能信号包括信号子集1和信号子集2,其中,信号子集1在信号子集2前面,信号子集2的时域资源与数据真实的发送起点相关,例如:信号子集2的时域资源与数据真实的发送起点的间隔相关为0,或者间隔在预设范围内等等。而上述部分信号子集的时域资源可以是静态或者半静态配置的。
需要说明的是,该实施方式中,并不限定应用于DRX场景,例如:在非DRX场景中,上述节能信号同样可以包括多个信号子集,其中,部分信号子集位于另部分信号子集之前。
其中,对于DRX场景而上述部分信号子集的时域资源可以是根据终端标识和DRX周期。在所述节能信号包括多个信号子集的情况下,所述网络侧设备根据终端标识和DRX周期,确定终端的节能信号的时域资源,可以包括:
所述网络侧设备根据终端标识,确定终端的节能信号的部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,另部分信号子集动态在OFDM符号上发送。
该实施方式中,可以实现确定部分信号子集时域资源在DRX周期之前或者DRX周期之内,而另部分信子集动态传输,从而可以提高节能信号传输的灵活性,且还可以降低终端的功能。例如:可以在PDCCH前的OFDM符号动态传输信号子集,以使得终端降低终端盲检PDCCH的时间,达到节能功能的目的。
当然,本公开实施例中,网络侧设备根据终端标识和DRX周期,确定终端的节能信号的时域资源还可以是,根据终端标识和DRX周期,确定终端的节能信号的所有信号子集的时域资源均在DRX周期之前或者DRX周期之内等其他方式,对此不作限定,例如:对于非DRX场景,也可以确定与终端标识对应的时域资源。
另外,本公开实施例中,根据终端标识,确定终端的节能信号的时域资源还可以是,根据终端标识的通过预先约定的算法确定,或者根据终端标识的半静态配置等,对此不作限定。另外,上述算法中的一些参数可以是半静态配置的。
可选地,所述部分信号子集的时域资源通过预先约定的算法确定;和/或
所述部分信号子集的时域资源由所述网络侧设备半静态配置。
其中,上述和/或表示,部分信号子集的时域资源可以通过预先约定的算法和/或半静态配置。例如:上述算法中可以包含半静态配置的参数如DRX周期可以半静态配置。
其中,上述算法可以是网络侧设备与终端预先约定的,或者协议中预先定义的,这样通过预先约定的算法确定时域资源,从而可以降低网络侧设备与终端之前的传输开销,另外,通过上述算法确定时域资源,从而可以使得时域资源分配更加灵活
例如:若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或
若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
其中,上述函数可以是网络侧设备与终端预先约定好的,或者协议中预先定义的,且对函数的具体内容不作限定,例如:上述函数可以包括加、减、乘、除或者求模等运算。
另外,半静态配置并不限定通过终端专属的RRC信令通知,也可以是通过其他高层信令或者系统信息指示等,对此不作限定。
作为一种可选的实施方式,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的交织(interlace)结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
其中,上述免许可频段可以包括非授权频段,当然,也可以是指非授权频段之外的免许可频段。上述占据全带宽的interlace结构可以是,占据终端的全部传输带宽的interlace结构。
可选地,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace;
也就是说,interlace结构可以包括多个interlace,其中,每个interlace分别包括不同资源集合中相同索引的资源。
例如:以资源集合为多个连续的PRB构成的组(group),如图3所示,图3中首先全带宽被以每10个连续PRB一个group分成多个group,假定总共得到N个group;其中,N个group中每个group取一个PRB构成一个interlace,即图3中N个group中索引(index)相同的PRB集合,如index=0。当然,本公开实施例中,资源集合并不限定为多个连续的PRB构成的group,例如:资源集合可以是子载波集合。也就说是,频域资源的颗粒度可以是PRB,也可以是子载波个数的整数倍,但不是PRB的倍数。
另外,网络侧设备需要分配节能信号的所有终端或者一个终端的节能信号占据所述interlace结构中所有interlace时,则节能信号包括正交序列。
上述对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构可以是,当处于授权频段时interlace结构可以占据部分或者全部传输带宽,网络侧设备在为某个终端分配的interlace上发送节能信号,网络侧设备为终端分配的interlace个数及其interlace index是半静态配置的或者预先约定的。如图3所示的例子中不同的终端采用不同的interlace,较佳的在用户数较多时,不同的终端可以分配相同的interlace,对映前面实施方式中,描述的终端组内的终端的节能信号采用相同频域资源的情况。
该实施方式中,可以实现节能信号传输的频域基本单位为interlace,这样可以充分利用频域资源,以提高资源利用率。且采用interlace结构这样在资源分配时,只需要指示interlace索引即可,从而节约信令开销。
作为一种可选的实施方式,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
该实施方式中,可以实现节能信号包括一个或者多个信号子集,且不同信号子集包括的序列数量可以相同或者不同,例如:某一信号子集可以包括0个序列,而另一些信号子集可以包括一个或者多个序列。这样,可以提高节能信号的灵活性,以适应不同的场景、业务或者终端的需求。
可选地,所述节能信号包括如下至少一种序列:
伪噪声(Pseudo-Noise,PN)序列、ZC序列、正交序列、Costa序列、 Kasumi序列、主同步信号(Primary Synchronization Signal,PSS)序列、辅同步信号(Secondary Synchronization Signal,SSS)序列、有等效功能的同步序列和序列组合。
其中,上述Costa序列可以是协议中定义的Costa序列,或者可以是通过如下公式确定得的时域序列:
其中,S
CS(n)表示上述Costa序列,Costas序列长度是LM。其中v
l是一个整数序列,L和M为常数,n为常数,p(n)定义如下,
例如:生成长度为256的Costas序列,可以设置L=M=16,v
l使用如下序列:
{v
l}={5 2 8 9 12 4 14 10 15 13 7 6 3 11 1 5}。
另外,通过256点离散傅氏变换(Fast Fourier Transformation,FFT)是可以得到256点频域序列。
需要说明的是,上述公式仅是对Costa序列进行举例,对此不作限定,例如:还可以是通过其他公式生成的Costa序列。
而上述Kasami序列可以是通过如下方式产生的:
选定一周期为2
n-1(n为偶数)的m序列a,对序列a每隔2
n/2+1个数进行抽样,得到一长度为2
n/2-1的序列。可证明此序列仍为m序列,将此序列重复2
n/2+1遍,得到一与a序列同长的序列a’。把a与a’序列逐位模2加就可以得到一个Kasami序列。另外,当改变其中一个序列相位(向后或向前移动)时,可得到一新的Kasami序列。
需要说明的是,上面描述只是一个例子,如m序列a不一定必然是周期的,其长度也不一定必然是2
n-1(n为偶数)等。
其中,上述节能信号包括的序列可以根据实际需求进行灵活配置的。该实施方式中,可以实现节能信号包括多种序列,从而使得节能信号的功能更 加强大,以进一步提高通信系统的通信性能。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识(Wakeup area ID)、小区标识(Cell ID)、终端标识(UE ID)、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
由于节能信号可以指示上述多项中的至少一项,从而可以提高节能信号的功能,以进一步提高通信系统的通信性能。
另外,该实施方式中,可以是一个序列指示上述多项中的一项或者多项,或者可以是一个序列指示上述多项中的一项,或者可以是多个序列联合指示一项等,对此不作限定。
例如:所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。这样由于一个序列可以指示一项或者多项,从而可以节约节能信号的开销。
又例如:所述节能信号通过至少一个序列指示唤醒区域标识;和/或
所述节能信号通过至少一个序列指示所述小区标识;和/或
所述节能信号通过至少一个序列指示所述终端标识;和/或
所述节能信号通过至少一个序列指示所述载波信息;和/或
所述节能信号通过至少一个序列指示所述系统信息更新;和/或
所述节能信号通过至少一个序列指示所述距离信息;和/或
所述节能信号通过至少一个序列指示所述数据结束。
这样可以实现通过不同的序列来指示不同的功能,以提高节能信号的灵活性。
可选地,所述节能信号包括多个序列占据一个或者多个OFDM符号。
该实施方式中,可以实现多个序列占据同一OFDM符号,或者多个序列占据多个OFDM符号,例如:不同序列占据不同的OFDM符号,或者,一些序列占据相同的OFDM符号,而另一些序列占据不同的OFDM符号,以提高节能信号的灵活性。
下面按照不同的指示,以且节能信号为唤醒信号进行举例说明:
对于Wake up area ID指示,唤醒信号的携带多个信息域,每个信息域携带一个子序列,Wake up area ID对映其中一个子序列,例如:
其中,唤醒信号的多级序列分别占据时域一个或者多个OFDM符号,序列1表示对映Wake up area ID信息,较佳的序列1是Wake up area ID的函数,如Wake up area ID是ZC序列的根指数。终端在对映的WUS发送位置上首先检测序列1,如果发现该序列标识的Wake up area ID是终端所属的Wake up area的标识,则会继续检测后面的序列,否则终端停止检测后面的多级序列,继续进入睡眠状态,这样非常有利于终端节省功耗。
对于Cell ID指示,唤醒信号的携带多个信息域,每个信息域携带一个子序列,Cell ID对映其中1-2个子序列,例如:
唤醒信号的多级序列分别占据时域一个或者多个OFDM符号,序列2与3可以重用PSS/SSS用于时频粗同步操作,终端成功检测出同步序列PSS/SSS后,便可以识别出Cell ID,较佳的序列2与序列3可以重用PSS/SSS设计序列。终端解出Cell ID后可以完成粗同步,可以用Cell ID辅助后续译码物理广播信道(Physical Broadcast Channel,PBCH),比如直接根据序列ID和前面同步信息直接去检测SSB中的PSS/SSS或者去掉PSS/SSS检测步骤直接检测PBCH,从而为RRC-connected mode的终端实现快速小区搜索。
对于UE ID指示,UE ID对映唤醒信号的一个或者多个子序列,例如:
序列4可以用于UE ID指示,具体方法如可以利用UE ID作为初始信息产生一个PN序列作为序列4,该序列可以在时域占据一个多个OFDM符号。UE再检测到前面的多级序列属于UE自己的序列后便开始检测UE ID对映的序列,比如通过滑动相关检测的峰值判断,如果终端发现该序列标识的UE是自身,会继续检测后续的序列,否则停止WUS检测,继续进入睡眠状态。
对于载波信息指示,载波信息对映唤醒信号的一个子序列,例如:
如序列5可以用于载波信息指示,例如指示基站针对该终端激活的载波信息,比如终端支持4个载波,基站用4比特[b0b1b2b3]作为激活的载波的index指示,可以采用比特映射(bit mapping)的方式将激活载波对映的比特设置为1,没激活的载波对映的比特设置为0,然后将该bit mapping向量对映的十进制数值作为如PN序列的输入,或者ZC序列的根指数得到载波信息对映的序列,需要指出的是本公开实施例所叙述的方法是最简单的方法,并不排除其它载波指示的方法。终端检测到载波信息对映的序列后便可以准备在该载波上进行后续的功率爬坡,该方法有效避免了需要在多个射频通道检测WUS,在没有激活的载波上继续进入睡眠状态,从而明显降低终端功耗。
对于系统信息更新指示,系统信息更新指示对映唤醒信号的一个子序列,例如:
如序列6可以用于系统信息更新指示,该序列只需要区分系统信息是否需要更新,所以只对映两个情况(case),如可以构造两个正交序列,序列0表示系统信息没有更新,序列1表示系统信息需要更新。终端只需在对映位置上检测相映的序列,即可获得系统信息的指示。如果发现在唤醒信号序列里面携带了系统信息更新标志时,终端则会在后面的系统信息更新时刻检测新的信息。如果唤醒信号没有系统信息更新标志,终端认为由下行数据到达,处于RRC_IDLE、RRC_Inactive mode的终端将会检测寻呼(page)的下行控制信息(Downlink Control Information,DCI),然后检测PDSCH,进行数据接收。
对于唤醒信号与对映的PDCCH的距离信息
如图4所示,可以考虑将WUS分为多个子集,如WUS子集1用于指示 终端在本DRX周期即将有数据到达,终端正确识别WUS子集1后便开始启动功率爬坡,准备正常接收与测量操作。但是终端接收到WUS子集1的位置距离数据到达可能还有较远的距离,为了避免终端在唤醒后一直盲检PDCCH,引入一个序列用于指示WUS子集1距离PDSCH到达的距离,可选的在PDCCH或者PDSCH之前引入WUS子集2,序列指示的距离也可以是WUS子集1与子集2间的距离。前述距离可以用OFDM符号数表示,只需要把该OFDM符号数作为某一个序列的输入即可,即该序列是前述距离的函数。该距离除了可精确到OFDM符号,也可以是估计值,如精确到子帧或者时隙。终端发现WUS子集1开始启动功率爬坡,进行必要的小区搜索、无线信道测量过程,但是不执行PDCCH盲检,直到WUS子集2到达且检测成功后才开始盲检PDCCH操作。由于指示PDCCH到来的WUS子集2复杂度较低,终端可以在WUS子集1收到后即开始检测WUS子集2,利用WUS与PDCCH距离指示作为进一步的验证,也可以这两个信号解出任何一个都进行盲检PDCCH,当然这两个指示信息,也可以只保留一个,如只有WUS子集2,或者只有WUS与PDCCH距离指示信息。
对于数据结束的指示,节能信号如下表所示:
终端检测到并成功解码属于子集的数据后,并不知道基站是否还要继续向终端发送数据,所以在被WUS激活后,即使数据已经结束,也不能进入睡眠状态,因此本公开引入WUS信号的另一个子集,也由一个序列构成用于指示基站本次发送数据是否结束。具体方法,可以设计一个序列,如类似于指示系统信息是否改变,用于指示数据是否结束,如图5所示。WUS子集(set)1用于指示数据到来,终端启动功率爬坡,WUS set2用于激活PDCCH检测,WUS set3用于检测数据是否结束,终端如果成功检测到WUS set3则进入睡眠状态。图5中为了方便检测,将WUS set3放置到DRX on的最后符号处,但并不排除其更有利于省电的位置,如WUS set3位于PDSCH之后距离PDSCH为约定的OFDM符号数处。
作为一种可选的实施方式,所述节能信号包括的多个序列中,部分序列 用于连接态终端,而全部序列用于非连接态终端。
在NR中终端的工作状态可以包括:RRC_IDLE、RRC_Inactive和RRC_Connected,这三种状态,而LTE中终端有两种工作状态RRC_IDLE和RRC_Connected。处于RRC_IDLE mode的终端在被WUS唤醒后,比处于RRC_Connected的终端需要长的多少时间才能醒来,需要执行比RRC_IDLE更多的操作,WUS可能支持更多的功能。例如:如下表所示,较佳的处于不同状态时的节能信号具有嵌套关系,序列1到n’用于RRC_Connected mode,而1到n用于RRC_IDLE mode,终端如果处于RRC_Connected mode,则只需要检测序列1到n’即可,从而降低检测复杂度。
该实施方式中,由于部分序列用于连接态终端,而全部序列用于非连接态终端,这样可以实现对于不同状态的终端网络侧设备不需要发送不同的节能信号,从而降低传输开销。
需要说明的是,本公开实施例中,提供的上述多种可选的实施方式,均可以各自独立实现,也可以相互结合实现,对此不作限定。
本公开实施例中,网络侧设备确定节能信号的传输资源;所述网络侧设备通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。从而可以实现传输包括多个序列的节能信号,可以提高通信系统的通信性能。
下面通过多个实施例对节能信号进行举例说明:
实施例1
为了有效的避免基站在相同的资源上发送所有用户的WUS,从而降低UE检测唤醒信号的干扰,降低唤醒信号设计难度,可以采用如下设计方案。
方式一、网络首先根据UE ID信息把需要监听WUS的UE分成多个组,每组UE在相同的资源上发送唤醒信号。所述的UE ID只是一个用户标识,并不局限于RNTI,例如可是UE在Wake up area/paging area内的ID信息,也可以是与UE的全球唯一标识的一个函数,如可以是UE的全球唯一标识取模操作。
方式二、网络根据UE ID信息把需要监听WUS的UE分成多个组,每组 UE在相同的频域资源,不同的时域资源上发送唤醒信号。所述的不同时域资源,例如可以指在不同的OFDM符号或者时隙。
方式三、网络根据UE ID信息把需要监听WUS的UE分成多个组,每组UE在相同的时域资源,不同的频域资源上发送唤醒信号,例如可在根据UE ID计算出的不同的PRB资源上发送唤醒信号。
方式四、网络根据UE ID信息把需要监听WUS的UE分成多个组,组内UE分别在不同的时域资源上发送唤醒信号。组内用户个数为1是上述方案的一种特例,当组内用户个数大于1时,方式一比方式三与方式四具有更小的资源开销。上述四种方案必要时可以组合使用,比如唤醒信号包含多个子集要发送时,可以考虑每个WUS子集对映不同的资源配置方案。
实施例2
实施例1中所述三种方案都需要配置发送唤醒信号的资源,与发送寻呼信号(paging signal)的发送资源由PDCCH指示不同,基站需要在盲检PDCCH之前预先确定WUS的发送的时频资源。
WUS频域传输资源的配置的方法如下:
基站静态或者半静态方式为UE或者UE组配置WUS频域传输资源,该频域资源与UE ID相对应。所述的UE组是根据确定的规则确定的,如组内UE具有相同的UE ID标识,或者组内UE ID不同但满足某种关系,如组内UE ID对某一数值取模后值相同。
可选地,基站也可以通过RRC信令半静态的配置与UE ID或者UE组相关的WUS发送的资源信息;
可选地,基站根据预先约定或者系统信息指示的方式为UE指示WUS发送的资源信息作为一种资源配置的补充方法不能被排除,比如WUS分为多个子集其中某个子集发送资源采用该方法配置;前述的发送资源信息一般指时频资源,有时还包括与Beam相关的信息,如Beam ID。
对于免许可频段的一个例子,如果每个WUS占据传输带宽的一部分,会导致唤醒信号可能无法满足占用信道带宽(Occupied Channel Bandwidth,OCB)的规则(regulation),因此较佳的可以对WUS采用占据全带宽的interlace结构,如图3所示。图3中首先全带宽被以每10个连续PRB一个group分 成多个group,假定总共得到N个group;前述的N个group中,每个group取一个PRB构成一个interlace(即图3中N个group中index相同的PRB集合,如index=0)。WUS传输的频域基本单位为interlace。前述interlace只是个实例,每个group内,为每个UE分配的频域资源的颗粒度可以是PRB,也可以是子载波个数的整数倍,但不是PRB的倍数。前述的interlace结构在非授权频段时是全带宽的,当处于授权频段时interlace可以占据部分或者全部传输带宽。基站在为某个UE分配的interlace上发送WUS,基站为UE分配的interlace个数及其interlace index是半静态配置的或者预先约定的。图3所示的例子中不同的UE采用不同的interlace,较佳的在用户数较多时,不同的UE可以分配相同的interlace,对映实施例1中组内的用户占据相同资源的情况。本公开当然也不排除一个UE占据所有的interlace这种特例,此时实际上每个UE占据全带宽,则WUS信号为正交序列。
WUS时域传输资源的配置的方法如下:
基站根据UE ID与DRX周期,确定UE specific的唤醒信号的可能发送周期,在数据传输之前的WUS发送周期,发送唤醒信号。WUS可以由多个子集构成,基站需要根据UE ID信息在每个DRX周期之前或者DRX之内确定的位置上发送唤醒信号的某些子集,动态的在某些OFDM符号上发送WUS的其它部分,如图4所示。WUS的子集1在子帧M发送,发送位置较佳的基站与终端通过约定的算法,或者基站半静态配置使得基站与终端对该位置是透明的,当采用算法计算时,该位置是UE ID与DRX周期的函数,当采用半静态配置时,较佳的通过UE专属的RRC信令通知;WUS子集2如果存在,则在WUS子集1之后发送,发送该子集的位置与数据真实的发送起点相关,位置是动态的,无法在WUS子集1发送之前确定,也与发送WUS子集1的子集有确定的对映关系;图4只描述了WUS的两个子集不排除还有其它子集的WUS存在。终端如果检测到WUS,终端启动一个timer该定时器有一个基站配置的门限值,如果timer超时但并没有检测到属于自己的PDCCH,则终端会重新进入睡眠状态。
需要说明的是,实施例1和实施例2对应图2所示的实施例中传输资源分配的实施方式,另外,在实施例1和实施例2可以不限定节能信号包括多 个序列,也就说是,实施例1和实施例2对应的技术方案中节能信号可以包括一个序列的情况。
实施例3
基站发送由多级序列构成的唤醒信号。唤醒信号包含n个序列构成,较佳的n个序列可以划分为m,m>=1个子集,每个子集包含0=<ni<=n,i=1,2,..m个序列构成WUS子集i,且n1+n2+,…+nm=n。该WUS子集可以根据实施例1与2的方法在相映的资源上发送。这n个序列可以是PN序列(如m序列、gold序列),ZC序列,正交序列,Costa序列、Kasumi等序列中的一种或者多种;采用n个序列m个子集发送唤醒信号目的在于支持如下功能的部分或者组合:
指示Wakeup area ID、Cell ID、UE ID、载波信息、系统信息更新、指示唤醒信号与对映的PDCCH的距离信息、数据结束的指示。
其中,关于节能信号,以及其包括的序列等可以参见图2所示的实施例的相应说明,此处不作赘述。
实施例4:
本公开实施例中,所描述的多级唤醒信号或者多级节能信号可以由不同的单级信号构成,基站可以通过信令,如半静态信令,更具体的可以通过RRC信令通知终端采用的那些单级节能信号,即多级节能信号中单级信号的个数是可变的,这样多级节能信号的功能也是可变的,当然系统开销也是可变的。例如:所述多级节能信号或者唤醒信号最多包括Nmax个单级节能信号,基站通过信令如通过比特映射(bit mapping)方法来指示,即该指示信息包含Nmax个二元比特,分别对应预设的多级节能信号的标识,当采用该级节能信号时,对应比特置为1。当然也可以利用更少比特的信令,如定义几个多级序列组合的候选(candidates),不同的序列组合用信令通知即可。该方案可以降低前述多级唤醒信号或者多级节能信号开销,为网络提供更多的灵活性。该通知信令较佳的如前所述为半静态信令,但并不排除其他信令,如动态信令。
实施例5:
本公开实施例中,所描述的节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
该节能信号除了可以是多级节能信号,并不排除其他信号。如在DRX周期之前发送一个PDCCH信号作为节能信号用于唤醒UE,该PDCCH的DCI用于指示如下至少一项:
需要唤醒的区域标识、需要唤醒的小区标识、需要唤醒的终端标识、需要唤醒的载波信息、系统信息更新、还包括数据开始的位置信息(如可以是相对距离信息:该距离可以是节能信号与控制信道之间的距离,也可以是DRX on周期内数据/PDCCH真正到达的时间与DRX起点的距离信息;也可以是绝对位置信息,如数据或者PDCCH到达的无线帧,子帧,时隙,或者OFDM符号的具体标识)和数据结束的位置(如数据结束的位置距离DRX on周期的起点的距离或者节能信号与数据结束的位置的距离或者数据结束位置的具体信息,如无线帧,子帧,时隙,或者OFDM符号的具体标识)。
请参见图6,图6是本公开实施例提供的另一种节能信号的传输方法的流程图,如图6所示,包括以下步骤:
步骤601、终端在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为网络侧设备确定的所述节能信号的传输资源。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,所述传输资源为,所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
可选地,所述节能信号包括一个或者多个信号子集;
其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一 终端组内不同终端的至少一个信号子集采用不同的时域资源。
可选地,所述传输资源包括:
所述网络侧设备为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定的所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过静态或者半静态方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述时域资源,包括:
所述网络侧设备根据终端标识和DRX周期,确定所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过RRC信令半静态,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;或者
所述网络侧设备通过预先约定或者系统信息指示的方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace;
其中,若一个终端的节能信号占据所述interlace结构中所有interlace,则所述节能信号包括正交序列。
可选地,所述节能信号包括多个信号子集,其中,部分信号子集位于另部分信号子集之前。
可选地,所述节能信号包括多个信号子集;
所述终端的节能信号的部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,另部分信号子集动态在OFDM符号上发送。
可选地,所述部分信号子集的时域资源通过预先约定的算法确定;和/或
所述部分信号子集的时域资源由所述网络侧设备半静态配置。
可选地,若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或
若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、PSS序列、SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
可选地,所述节能信号通过至少一个序列指示唤醒区域标识;和/或
所述节能信号通过至少一个序列指示所述小区标识;和/或
所述节能信号通过至少一个序列指示所述终端标识;和/或
所述节能信号通过至少一个序列指示所述载波信息;和/或
所述节能信号通过至少一个序列指示所述系统信息更新;和/或
所述节能信号通过至少一个序列指示所述距离信息;和/或
所述节能信号通过至少一个序列指示所述数据结束。
可选地,所述节能信号包括多个序列占据一个或者多个OFDM符号。
可选地,所述节能信号包括第一信号子集和第二信号子集,其中,所述第一信号子集位于所述第二信号子集之前,所述方法还包括:
若所述终端接收到所述第一信号子集,则所述终端启动功率爬坡;
若所述终端接收到所述第二信号子集,则所述终端盲检控制信道。
该实施方式中,可以节约终端的功耗。
可选地,所述节能信号还包括第三信号子集,其中,所述第三信号子集位于所述第二信号子集之后,所述方法还包括:
若所述终端接收到所述第三信号子集,则所述终端进入睡眠状态。
该实施方式中,可以进一步节约终端的功耗。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端,所述终端在传输资源接收节能信号,包括:
若所述终端为连接态,则所述终端接收所述节能信号中所述部分序列;
若所述终端为非连接态,则所述终端接收所述节能信号中的全部序列。
可选地,若所述终端接收到所述节能信号,则启动定时器,若所述定时器超时且未检测到所述终端的控制信道,则进入睡眠状态。
该实施方式中,可以进一步节约终端的功耗。
需要说明的是,本实施例作为与图2所示的实施例中对应的终端的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图7,图7是本公开实施例提供的一种终端的结构图,如图7所示,网络侧设备700,包括:
确定模块701,用于确定节能信号的传输资源;
发送模块702,用于通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,确定模块701用于对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
可选地,所述节能信号包括一个或者多个信号子集;
其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输 资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
可选地,确定模块701用于为终端或者终端组,确定与终端标识相对应的节能信号的频域资源;和/或
确定模块701用于根据终端标识,确定终端的节能信号的时域资源。
可选地,确定模块701用于通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;和/或
确定模块701用于根据终端标识和非持续接收DRX周期,确定终端的节能信号的时域资源。
可选地,确定模块701用于通过无线资源控制RRC信令半静态,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;或者
可选地,确定模块701用于通过预先约定或者系统信息指示的方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace。
可选地,所述节能信号包括多个信号子集,其中,部分信号子集位于另部分信号子集之前。
可选地,确定模块701用于根据终端标识,确定终端的所述部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,所述另部分信号子集动态在正交频分复用OFDM符号上发送。
可选地,所述部分信号子集的时域资源通过预先约定的算法确定;和/或
所述部分信号子集的时域资源由所述网络侧设备半静态配置。
可选地,若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或
若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
伪噪声PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、主同步信号PSS序列、辅同步信号SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
可选地,所述节能信号通过至少一个序列指示唤醒区域标识;和/或
所述节能信号通过至少一个序列指示所述小区标识;和/或
所述节能信号通过至少一个序列指示所述终端标识;和/或
所述节能信号通过至少一个序列指示所述载波信息;和/或
所述节能信号通过至少一个序列指示所述系统信息更新;和/或
所述节能信号通过至少一个序列指示所述距离信息;和/或
所述节能信号通过至少一个序列指示所述数据结束。
可选地,所述节能信号包括多个序列占据一个或者多个OFDM符号。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端。
需要说明的是,本实施例中上述网络侧设备700可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中终 端的任意实施方式都可以被本实施例中的上述网络侧设备700所实现,以及达到相同的有益效果,此处不再赘述。
请参见图8,图8是本公开实施例提供的一种终端的结构图,如图8所示,终端800包括:
接收模块801,用于在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为网络侧设备确定的所述节能信号的传输资源。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,所述传输资源为,所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
可选地,所述节能信号包括一个或者多个信号子集;
其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
可选地,所述传输资源包括:
所述网络侧设备为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定的所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过静态或者半静态方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述时域资源,包括:
所述网络侧设备根据终端标识和DRX周期,确定所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过RRC信令半静态,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;或者
所述网络侧设备通过预先约定或者系统信息指示的方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace;
其中,若一个终端的节能信号占据所述interlace结构中所有interlace,则所述节能信号包括正交序列。
可选地,所述节能信号包括多个信号子集,其中,部分信号子集位于另部分信号子集之前。
可选地,所述节能信号包括多个信号子集;
所述终端的节能信号的部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,另部分信号子集动态在OFDM符号上发送。
可选地,所述部分信号子集的时域资源通过预先约定的算法确定;和/或
所述部分信号子集的时域资源由所述网络侧设备半静态配置。
可选地,若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或
若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、PSS序列、SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
可选地,所述节能信号通过至少一个序列指示唤醒区域标识;和/或
所述节能信号通过至少一个序列指示所述小区标识;和/或
所述节能信号通过至少一个序列指示所述终端标识;和/或
所述节能信号通过至少一个序列指示所述载波信息;和/或
所述节能信号通过至少一个序列指示所述系统信息更新;和/或
所述节能信号通过至少一个序列指示所述距离信息;和/或
所述节能信号通过至少一个序列指示所述数据结束。
可选地,所述节能信号包括多个序列占据一个或者多个OFDM符号。
可选地,所述节能信号包括第一信号子集和第二信号子集,其中,所述第一信号子集位于所述第二信号子集之前,如图9所示,终端800还包括:
启动模块802,用于若所述终端接收到所述第一信号子集,则启动功率爬坡;
盲检模块803,用于若所述终端接收到所述第二信号子集,则盲检控制信道。
可选地,所述节能信号还包括第三信号子集,其中,所述第三信号子集位于所述第二信号子集之后,如图10所示,终端800还包括:
睡眠模块804,用于若所述终端接收到所述第三信号子集,则所述终端进入睡眠状态。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端,接收模块801用于若所述终端为连接态,则接收所述节能信号中所述部分序列;
接收模块801用于若所述终端为非连接态,则接收所述节能信号中的全 部序列。
可选地,若所述终端接收到所述节能信号,则启动定时器,若所述定时器超时且未检测到所述终端的控制信道,则进入睡眠状态。
需要说明的是,本实施例中上述终端800可以是本公开实施例中方法实施例中任意实施方式的终端本公开实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端800所实现,以及达到相同的有益效果,此处不再赘述。
请参见图11,图11是本公开实施例提供的另一种网络侧设备的结构图,如图11所示,该网络侧设备包括:收发机1110、存储器1120、处理器1100及存储在所述存储器1120上并可在所述处理器上运行的程序,其中:
所述处理器1100用于读取存储器1120中的程序,执行下列过程:
确定节能信号的传输资源;
所述收发机1110用于通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列;
或者,
所述收发机1110,用于确定节能信号的传输资源;
通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
其中,收发机1110,可以用于在处理器1100的控制下接收和发送数据。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
需要说明的是,存储器1120并不限定只在网络侧设备上,可以将存储器1120和处理器1100分离处于不同的地理位置。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,所述确定节能信号的传输资源,包括:
对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
可选地,所述节能信号包括一个或者多个信号子集;
其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
可选地,所述确定节能信号的传输资源,包括:
为终端或者终端组,确定与终端标识相对应的节能信号的频域资源;和/或
根据终端标识,确定终端的节能信号的时域资源。
可选地,所述为终端或者终端组,确定与终端标识相对应的节能信号的频域资源,包括:
通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;和/或
所述根据终端标识,确定终端的节能信号的时域资源,包括:
根据终端标识和非持续接收DRX周期,确定终端的节能信号的时域资源。
可选地,所述通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源,包括:
通过RRC信令半静态,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;或者
通过预先约定或者系统信息指示的方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace。
可选地,所述节能信号包括多个信号子集,其中,部分信号子集位于另部分信号子集之前。
可选地,所述根据终端标识和DRX周期,确定终端的节能信号的时域资源,包括:
根据终端标识,确定终端的所述部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,所述另部分信号子集动态在正交频分复用OFDM符号上发送。
可选地,所述部分信号子集的时域资源通过预先约定的算法确定;和/或
所述部分信号子集的时域资源由所述网络侧设备半静态配置。
可选地,若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或
若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
伪噪声PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、主同步信号PSS序列、辅同步信号SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
可选地,所述节能信号通过至少一个序列指示唤醒区域标识;和/或
所述节能信号通过至少一个序列指示所述小区标识;和/或
所述节能信号通过至少一个序列指示所述终端标识;和/或
所述节能信号通过至少一个序列指示所述载波信息;和/或
所述节能信号通过至少一个序列指示所述系统信息更新;和/或
所述节能信号通过至少一个序列指示所述距离信息;和/或
所述节能信号通过至少一个序列指示所述数据结束。
可选地,所述节能信号包括多个序列占据一个或者多个OFDM符号。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端。
需要说明的是,本实施例中上述网络侧设备可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
请参见图12,图12是本公开实施例提供的另一种终端的结构图,如图12所示,该终端包括:收发机1210、存储器1220、处理器1200及存储在所述存储器1220上并可在所述处理器1200上运行的程序,其中:
所述收发机1210,用于在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为网络侧设备确定的所述节能信号的传输资源。
其中,收发机1210,可以用于在处理器1200的控制下接收和发送数据。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1210可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
需要说明的是,存储器1220并不限定只在终端上,可以将存储器1220和处理器1200分离处于不同的地理位置。
可选地,所述节能信号包括三个或者三个以上的序列。
可选地,所述传输资源为,所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
可选地,所述节能信号包括一个或者多个信号子集;
其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者
同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
可选地,所述传输资源包括:
所述网络侧设备为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述网络侧设备根据终端标识,确定的所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过静态或者半静态方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或
所述时域资源,包括:
所述网络侧设备根据终端标识和DRX周期,确定所述终端的节能信号的时域资源。
可选地,所述频域资源,包括:
所述网络侧设备通过RRC信令半静态,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;或者
所述网络侧设备通过预先约定或者系统信息指示的方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源。
可选地,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或
对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
可选地,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace;
其中,若一个终端的节能信号占据所述interlace结构中所有interlace,则所述节能信号包括正交序列。
可选地,所述节能信号包括多个信号子集,其中,部分信号子集位于另部分信号子集之前。
可选地,所述节能信号包括多个信号子集;
所述终端的节能信号的部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,另部分信号子集动态在OFDM符号上发送。
可选地,所述部分信号子集的时域资源通过预先约定的算法确定;和/或
所述部分信号子集的时域资源由所述网络侧设备半静态配置。
可选地,若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或
若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
可选地,所述节能信号包括m信号子集,其中,信号子集i包括n
i个序列,其中,m>=1,0=<n
i<=n,i=1,2,..m,且n
1+n
2+,…+n
m=n,n为所述节能信号包括的序列个数。
可选地,所述节能信号包括如下至少一种序列:
PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、PSS序列、SSS序列、有等效功能的同步序列和序列组合。
可选地,所述节能信号用于指示如下至少一项:
唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离 信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
可选地,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
可选地,所述节能信号通过至少一个序列指示唤醒区域标识;和/或
所述节能信号通过至少一个序列指示所述小区标识;和/或
所述节能信号通过至少一个序列指示所述终端标识;和/或
所述节能信号通过至少一个序列指示所述载波信息;和/或
所述节能信号通过至少一个序列指示所述系统信息更新;和/或
所述节能信号通过至少一个序列指示所述距离信息;和/或
所述节能信号通过至少一个序列指示所述数据结束。
可选地,所述节能信号包括多个序列占据一个或者多个OFDM符号。
可选地,所述节能信号包括第一信号子集和第二信号子集,其中,所述第一信号子集位于所述第二信号子集之前,收发机1210还用于:
若所述终端接收到所述第一信号子集,则启动功率爬坡;
若所述终端接收到所述第二信号子集,则盲检控制信道。
可选地,所述节能信号还包括第三信号子集,其中,所述第三信号子集位于所述第二信号子集之后,收发机1210还用于:
若所述终端接收到所述第三信号子集,则所述终端进入睡眠状态。
可选地,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端,所述在传输资源接收节能信号,包括:
若所述终端为连接态,则接收所述节能信号中所述部分序列;
若所述终端为非连接态,则接收所述节能信号中的全部序列。
可选地,若所述终端接收到所述节能信号,则启动定时器,若所述定时器超时且未检测到所述终端的控制信道,则进入睡眠状态。
需要说明的是,本实施例中上述终端可以是本公开实施例中方法实施例中任意实施方式的终端,本公开实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端所实现,以及达到相同的有益效果,此处不 再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例提供的网络侧设备侧的节能信号的传输方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的终端侧的的节能信号的传输方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述信息数据块的处理方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
Claims (75)
- 一种节能信号的传输方法,包括:网络侧设备确定节能信号的传输资源;所述网络侧设备通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
- 如权利要求1所述的方法,其中,所述节能信号包括三个或者三个以上的序列。
- 如权利要求1所述的方法,其中,所述网络侧设备确定节能信号的传输资源,包括:所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
- 如权利要求3所述的方法,其中,所述节能信号包括一个或者多个信号子集;其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
- 如权利要求1所述的方法,其中,所述网络侧设备确定节能信号的传输资源,包括:所述网络侧设备为终端或者终端组,确定与终端标识相对应的节能信号的频域资源;和/或所述网络侧设备根据终端标识,确定终端的节能信号的时域资源。
- 如权利要求5所述的方法,其中,所述网络侧设备为终端或者终端组,确定与终端标识相对应的节能信号的频域资源,包括:所述网络侧设备通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;和/或所述网络侧设备根据终端标识,确定终端的节能信号的时域资源,包括:所述网络侧设备根据终端标识和非持续接收DRX周期,确定终端的节能信号的时域资源。
- 如权利要求6所述的方法,其中,所述网络侧设备通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源,包括:所述网络侧设备通过无线资源控制RRC信令半静态,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;或者所述网络侧设备通过预先约定或者系统信息指示的方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源。
- 如权利要求1至7中任一项所述的方法,其中,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的交织interlace结构;和/或对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
- 如权利要求8所述的方法,其中,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace。
- 如权利要求6所述的方法,其中,所述节能信号包括多个信号子集,所述多个信号子集包括部分信号子集和另部分信号子集,所述网络侧设备根据终端标识和DRX周期,确定终端的节能信号的时域资源,包括:所述网络侧设备根据终端标识,确定终端的所述部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,所述另部分信号子集动态在正交频分复用OFDM符号上发送。
- 如权利要求10所述的方法,其中,所述部分信号子集的时域资源通过预先约定的算法确定;和/或所述部分信号子集的时域资源由所述网络侧设备半静态配置。
- 如权利要求11所述的方法,其中,若所述部分信号子集的时域资源 通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
- 如权利要求1、2、3、4、5、6、7、10、11或者12所述的方法,其中,所述节能信号包括m信号子集,其中,信号子集i包括n i个序列,其中,m>=1,0=<n i<=n,i=1,2,..m,且n 1+n 2+,…+n m=n,n为所述节能信号包括的序列个数。
- 如权利要求13所述的方法,其中,所述节能信号包括如下至少一种序列:伪噪声PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、主同步信号PSS序列、辅同步信号SSS序列、有等效功能的同步序列和序列组合。
- 如权利要求1、2、3、4、5、6、7、10、11或者12所述的方法,其中,所述节能信号用于指示如下至少一项:唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
- 如权利要求15所述的方法,其中,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
- 如权利要求15所述的方法,其中,所述节能信号通过至少一个序列指示唤醒区域标识;和/或所述节能信号通过至少一个序列指示所述小区标识;和/或所述节能信号通过至少一个序列指示所述终端标识;和/或所述节能信号通过至少一个序列指示所述载波信息;和/或所述节能信号通过至少一个序列指示所述系统信息更新;和/或所述节能信号通过至少一个序列指示所述距离信息;和/或所述节能信号通过至少一个序列指示所述数据结束。
- 如权利要求15所述的方法,其中,所述节能信号包括多个序列占据 一个或者多个OFDM符号。
- 如权利要求1、2、3、4、5、6、7、10、11或者12所述的方法,其中,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端。
- 一种节能信号的传输方法,包括:终端在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为网络侧设备确定的所述节能信号的传输资源。
- 如权利要求20所述的方法,其中,所述节能信号包括三个或者三个以上的序列。
- 如权利要求20所述的方法,其中,所述传输资源为,所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
- 如权利要求22所述的方法,其中,所述节能信号包括一个或者多个信号子集;其中,同一终端组内的终端的至少一个信号子集采用相同的传输资源,该传输资源包括时域资源和频域资源;或者同一终端组内的终端的至少一个信号子集采用不同的传输资源,该传输资源包括时域资源和频域资源;或者同一终端组内的终端的至少一个信号子集采用相同的时域资源,且同一终端组内不同终端的至少一个信号子集采用不同的频域资源;或者同一终端组内的终端的至少一个信号子集采用相同的频域资源,且同一终端组内不同终端的至少一个信号子集采用不同的时域资源。
- 如权利要求20所述的方法,其中,所述传输资源包括:所述网络侧设备为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或所述网络侧设备根据终端标识,确定的所述终端的节能信号的时域资源。
- 如权利要求24所述的方法,其中,所述频域资源,包括:所述网络侧设备通过静态或者半静态方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或所述时域资源,包括:所述网络侧设备根据终端标识和DRX周期,确定所述终端的节能信号的时域资源。
- 如权利要求25所述的方法,其中,所述频域资源,包括:所述网络侧设备通过RRC信令半静态,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;或者所述网络侧设备通过预先约定或者系统信息指示的方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源。
- 如权利要求20至26中任一项所述的方法,其中,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
- 如权利要求27所述的方法,其中,所述interlace结构包括多个资源集合,所述多个资源集合中具备同一索引的资源作为一个interlace;其中,若一个终端的节能信号占据所述interlace结构中所有interlace,则所述节能信号包括正交序列。
- 如权利要求25所述的方法,其中,所述节能信号包括多个信号子集,所述多个信号子集包括部分信号子集和另部分信号子集;所述终端的节能信号的部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,另部分信号子集动态在OFDM符号上发送。
- 如权利要求29所述的方法,其中,所述部分信号子集的时域资源通过预先约定的算法确定;和/或所述部分信号子集的时域资源由所述网络侧设备半静态配置。
- 如权利要求30所述的方法,其中,若所述部分信号子集的时域资源通过所述算法确定,则所述部分信号子集的时域资源的位置是终端标识与DRX周期的函数;和/或若所述部分信号子集的时域资源由所述网络侧设备半静态配置,则所述部分信号子集的时域资源通过终端专属的RRC信令通知。
- 如权利要求20、21、22、23、24、25、26、29、30或者31所述的方法,其中,所述节能信号包括m信号子集,其中,信号子集i包括n i个序列,其中,m>=1,0=<n i<=n,i=1,2,..m,且n 1+n 2+,…+n m=n,n为所述节能信号包括的序列个数。
- 如权利要求32所述的方法,其中,所述节能信号包括如下至少一种序列:PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、PSS序列、SSS序列、有等效功能的同步序列和序列组合。
- 如权利要求20、21、22、23、24、25、26、29、30或者31所述的方法,其中,所述节能信号用于指示如下至少一项:唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
- 如权利要求34所述的方法,其中,所述节能信号中同一个序列指示所述唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束中的一项或者多项。
- 如权利要求34所述的方法,其中,所述节能信号通过至少一个序列指示唤醒区域标识;和/或所述节能信号通过至少一个序列指示所述小区标识;和/或所述节能信号通过至少一个序列指示所述终端标识;和/或所述节能信号通过至少一个序列指示所述载波信息;和/或所述节能信号通过至少一个序列指示所述系统信息更新;和/或所述节能信号通过至少一个序列指示所述距离信息;和/或所述节能信号通过至少一个序列指示所述数据结束。
- 如权利要求34所述的方法,其中,所述节能信号包括多个序列占据一个或者多个OFDM符号。
- 如权利要求20、21、22、23、24、25、26、29、30或者31所述的方法,其中,所述节能信号包括第一信号子集和第二信号子集,其中,所述第一信号子集位于所述第二信号子集之前,所述方法还包括:若所述终端接收到所述第一信号子集,则所述终端启动功率爬坡;若所述终端接收到所述第二信号子集,则所述终端盲检控制信道。
- 如权利要求38所述的方法,其中,所述节能信号还包括第三信号子集,其中,所述第三信号子集位于所述第二信号子集之后,所述方法还包括:若所述终端接收到所述第三信号子集,则所述终端进入睡眠状态。
- 如权利要求20、21、22、23、24、25、26、29、30或者31所述的方法,其中,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端,所述终端在传输资源接收节能信号,包括:若所述终端为连接态,则所述终端接收所述节能信号中所述部分序列;若所述终端为非连接态,则所述终端接收所述节能信号中的全部序列。
- 如权利要求20、21、22、23、24、25、26、29、30或者31所述的方法,其中,若所述终端接收到所述节能信号,则启动定时器,若所述定时器超时且未检测到所述终端的控制信道,则进入睡眠状态。
- 一种网络侧设备,包括:确定模块,用于确定节能信号的传输资源;发送模块,用于通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
- 如权利要求42所述的网络侧设备,其中,所述确定模块用于对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
- 如权利要求42或43所述的网络侧设备,其中,所述节能信号包括m信号子集,其中,信号子集i包括n i个序列,其中,m>=1,0=<n i<=n,i=1,2,..m,且n 1+n 2+,…+n m=n,n为所述节能信号包括的序列个数。
- 如权利要求42或43所述的网络侧设备,其中,所述节能信号用于指示如下至少一项:唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
- 一种终端,包括:接收模块,用于在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为终端确定的所述节能信号的传输资源。
- 如权利要求46所述的终端,其中,所述传输资源为,所述终端对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
- 如权利要求46或47所述的终端,其中,所述节能信号包括m信号子集,其中,信号子集i包括n i个序列,其中,m>=1,0=<n i<=n,i=1,2,..m,且n 1+n 2+,…+n m=n,n为所述节能信号包括的序列个数。
- 如权利要求46或47所述的终端,其中,所述节能信号用于指示如下至少一项:唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
- 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述处理器用于读取存储器中的程序,执行下列过程:确定节能信号的传输资源;所述收发机用于通过所述传输资源发送所述节能信号,其中,所述节能信号包括多个序列。
- 如权利要求50所述的网络侧设备,其中,所述节能信号包括三个或者三个以上的序列。
- 如权利要求50所述的网络侧设备,其中,所述确定节能信号的传输资源,包括:对需要监听所述节能信号的终端进行分组,并给每个终端组确定所述节能信号的传输资源。
- 如权利要求50所述的网络侧设备,其中,所述确定节能信号的传输资源,包括:为终端或者终端组,确定与终端标识相对应的节能信号的频域资源;和/或根据终端标识,确定终端的节能信号的时域资源。
- 如权利要求53所述的网络侧设备,其中,所述为终端或者终端组,确定与终端标识相对应的节能信号的频域资源,包括:通过静态或者半静态方式,为终端或者终端组确定与终端标识相对应的节能信号的频域资源;和/或所述根据终端标识,确定终端的节能信号的时域资源,包括:根据终端标识和非持续接收DRX周期,确定终端的节能信号的时域资源。
- 如权利要求50至54中任一项所述的网络侧设备,其中,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的交织interlace结构;和/或对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
- 如权利要求54所述的网络侧设备,其中,所述节能信号包括多个信号子集,所述多个信号子集包括部分信号子集和另部分信号子集,所述网络侧设备根据终端标识和DRX周期,确定终端的节能信号的时域资源,包括:所述网络侧设备根据终端标识,确定终端的所述部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,所述另部分信号子集动态在正交频分复用OFDM符号上发送。
- 如权利要求50、51、52、53、54或者56所述的网络侧设备,其中,所述节能信号包括m信号子集,其中,信号子集i包括n i个序列,其中,m>=1,0=<n i<=n,i=1,2,..m,且n 1+n 2+,…+n m=n,n为所述节能信号包括的序列个数。
- 如权利要求60所述的网络侧设备,其中,所述节能信号包括如下至少一种序列:伪噪声PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、主同步信号PSS序列、辅同步信号SSS序列、有等效功能的同步序列和序列组合。
- 如权利要求50、51、52、53、54或者56所述的网络侧设备,其中,所述节能信号用于指示如下至少一项:唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的 距离。
- 如权利要求50、51、52、53、54或者56所述的网络侧设备,其中,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端。
- 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述收发机,用于在传输资源接收节能信号,其中,所述节能信号包括多个序列,所述传输资源为网络侧设备确定的所述节能信号的传输资源。
- 如权利要求61所述的终端,其中,所述节能信号包括三个或者三个以上的序列。
- 如权利要求61所述的终端,其中,所述传输资源为,所述网络侧设备对需要监听所述节能信号的终端进行分组,并给每个终端组确定的所述节能信号的传输资源。
- 如权利要求61所述的终端,其中,所述传输资源包括:所述网络侧设备为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或所述网络侧设备根据终端标识,确定的所述终端的节能信号的时域资源。
- 如权利要求64所述的终端,其中,所述频域资源,包括:所述网络侧设备通过静态或者半静态方式,为所述终端或者所述终端所在的终端组确定的与终端标识相对应的节能信号的频域资源;和/或所述时域资源,包括:所述网络侧设备根据终端标识和DRX周期,确定所述终端的节能信号的时域资源。
- 如权利要求61至65中任一项所述的终端,其中,对于免许可频段,一个或者多个终端的节能信号的频域资源为占据全带宽的interlace结构;和/或对于授权频段,一个或者多个终端的节能信号的频域资源为占据部分或者全部带宽的interlace结构。
- 如权利要求65所述的终端,其中,所述节能信号包括多个信号子集, 所述多个信号子集包括部分信号子集和另部分信号子集;所述终端的节能信号的部分信号子集的时域资源在DRX周期之前或者DRX周期之内,其中,另部分信号子集动态在OFDM符号上发送。
- 如权利要求61、62、63、64、65或者67所述的终端,其中,所述节能信号包括m信号子集,其中,信号子集i包括n i个序列,其中,m>=1,0=<n i<=n,i=1,2,..m,且n 1+n 2+,…+n m=n,n为所述节能信号包括的序列个数。
- 如权利要求68所述的终端,其中,所述节能信号包括如下至少一种序列:PN序列、ZC序列、正交序列、Costa序列、Kasumi序列、PSS序列、SSS序列、有等效功能的同步序列和序列组合。
- 如权利要求61、62、63、64、65或者67所述的终端,其中,所述节能信号用于指示如下至少一项:唤醒区域标识、小区标识、终端标识、载波信息、系统信息更新、距离信息和数据结束,其中,所述距离信息表示所述节能信号与控制信道之间的距离。
- 如权利要求61、62、63、64、65或者67所述的终端,其中,所述节能信号包括第一信号子集和第二信号子集,其中,所述第一信号子集位于所述第二信号子集之前,所述收发机还用于:若所述终端接收到所述第一信号子集,则启动功率爬坡;若所述终端接收到所述第二信号子集,则盲检控制信道。
- 如权利要求71所述的终端,其中,所述节能信号还包括第三信号子集,其中,所述第三信号子集位于所述第二信号子集之后,所述收发机还用于:若所述终端接收到所述第三信号子集,则进入睡眠状态。
- 如权利要求61、62、63、64、65或者67所述的终端,其中,所述节能信号包括的多个序列中,部分序列用于连接态终端,而全部序列用于非连接态终端,所述终端在传输资源接收节能信号,包括:若所述终端为连接态,则所述终端接收所述节能信号中所述部分序列;若所述终端为非连接态,则所述终端接收所述节能信号中的全部序列。
- 如权利要求61、62、63、64、65或者67所述的终端,其中,若所述终端接收到所述节能信号,则启动定时器,若所述定时器超时且未检测到所述终端的控制信道,则进入睡眠状态。
- 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1至19中任一项所述的节能信号的传输方法中的步骤,或者该程序被处理器执行时实现如权利要求20至41中任一项所述的节能信号的传输方法中的步骤。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810564919.1 | 2018-06-04 | ||
CN201810564919 | 2018-06-04 | ||
CN201811181963.0 | 2018-09-28 | ||
CN201811181963.0A CN110557815B (zh) | 2018-06-04 | 2018-09-28 | 一种节能信号的传输方法、终端和网络侧设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019233195A1 true WO2019233195A1 (zh) | 2019-12-12 |
Family
ID=68736193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/083157 WO2019233195A1 (zh) | 2018-06-04 | 2019-04-18 | 节能信号的传输方法、终端和网络侧设备 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110557815B (zh) |
TW (1) | TWI730320B (zh) |
WO (1) | WO2019233195A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113382459A (zh) * | 2020-02-25 | 2021-09-10 | 维沃移动通信有限公司 | 一种ps-pdcch配置方法、终端设备和网络侧设备 |
WO2024027588A1 (zh) * | 2022-08-03 | 2024-02-08 | 维沃移动通信有限公司 | 唤醒信号的发送方法、终端及网络侧设备 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111436093B (zh) * | 2019-01-11 | 2021-10-15 | 大唐移动通信设备有限公司 | 一种节能信号的传输方法、终端和网络侧设备 |
CN113133090B (zh) * | 2019-12-30 | 2023-03-31 | 大唐移动通信设备有限公司 | 信号传输方法及装置 |
CN113115484B (zh) * | 2020-01-13 | 2023-08-01 | 大唐移动通信设备有限公司 | 一种信道或/和信号的收发方法及装置 |
CN113225790B (zh) * | 2020-02-04 | 2023-04-11 | 北京紫光展锐通信技术有限公司 | 系统信息更新指示方法、装置、设备及存储介质 |
CN113260022B (zh) * | 2020-02-07 | 2022-12-23 | 大唐移动通信设备有限公司 | 一种信号传输方法及设备 |
CN114390685A (zh) * | 2020-10-19 | 2022-04-22 | 北京紫光展锐通信技术有限公司 | 一种子载波的分组方法及电子设备 |
CN115696274A (zh) * | 2021-07-29 | 2023-02-03 | 华为技术有限公司 | 一种通信方法、装置及系统 |
CN116367277A (zh) * | 2021-12-24 | 2023-06-30 | 华为技术有限公司 | 通信方法、装置、设备以及存储介质 |
WO2023133768A1 (zh) * | 2022-01-13 | 2023-07-20 | 北京小米移动软件有限公司 | 一种信息传输和接收方法、装置、设备及存储介质 |
CN117729613A (zh) * | 2022-09-09 | 2024-03-19 | 华为技术有限公司 | 通信方法以及相关装置 |
WO2024168600A1 (zh) * | 2023-02-15 | 2024-08-22 | Oppo广东移动通信有限公司 | 处理方法及装置、终端设备、网络设备 |
WO2024197568A1 (zh) * | 2023-03-28 | 2024-10-03 | Oppo广东移动通信有限公司 | 无线通信的方法、网络设备和终端设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107735975A (zh) * | 2015-06-18 | 2018-02-23 | 高通股份有限公司 | 嵌入式唤醒信令 |
CN108633070A (zh) * | 2017-03-24 | 2018-10-09 | 北京三星通信技术研究有限公司 | 半静态资源调度方法、功率控制方法及相应用户设备 |
CN109155973A (zh) * | 2018-08-13 | 2019-01-04 | 北京小米移动软件有限公司 | 唤醒方法、唤醒装置、电子设备和计算机可读存储介质 |
CN109561038A (zh) * | 2017-09-26 | 2019-04-02 | 珠海市魅族科技有限公司 | 用于基站或终端的采用唤醒信号的无线通信方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031955A1 (en) * | 2007-09-05 | 2009-03-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for power saving in a base station |
US8817769B2 (en) * | 2009-01-26 | 2014-08-26 | Qualcomm Incorporated | Power decision pilot for wireless communication |
JP5426782B2 (ja) * | 2011-02-08 | 2014-02-26 | 三菱電機株式会社 | 通信システム、通信回線切替方法および親局装置 |
US9072050B2 (en) * | 2013-10-03 | 2015-06-30 | Qualcomm Incorporated | Power saving with adaptive inactivity time out |
GB2562111B (en) * | 2017-05-05 | 2021-11-10 | Tcl Communication Ltd | Methods and devices associated with a wake up signal in a radio access network |
-
2018
- 2018-09-28 CN CN201811181963.0A patent/CN110557815B/zh active Active
-
2019
- 2019-04-18 WO PCT/CN2019/083157 patent/WO2019233195A1/zh active Application Filing
- 2019-04-24 TW TW108114277A patent/TWI730320B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107735975A (zh) * | 2015-06-18 | 2018-02-23 | 高通股份有限公司 | 嵌入式唤醒信令 |
CN108633070A (zh) * | 2017-03-24 | 2018-10-09 | 北京三星通信技术研究有限公司 | 半静态资源调度方法、功率控制方法及相应用户设备 |
CN109561038A (zh) * | 2017-09-26 | 2019-04-02 | 珠海市魅族科技有限公司 | 用于基站或终端的采用唤醒信号的无线通信方法及装置 |
CN109155973A (zh) * | 2018-08-13 | 2019-01-04 | 北京小米移动软件有限公司 | 唤醒方法、唤醒装置、电子设备和计算机可读存储介质 |
Non-Patent Citations (2)
Title |
---|
SAMSUNG: "DL power consumption reduction for eMTC", 3GPP TSG RAN WG1 MEETING #93 R1-1806684, 11 May 2018 (2018-05-11), XP051441886 * |
ZTE: "Power consumption reduction for physical channels for MTC", 3GPP TSG RAN WG1 MEETING #90 R1 -1713014, 11 August 2017 (2017-08-11), XP051315823 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113382459A (zh) * | 2020-02-25 | 2021-09-10 | 维沃移动通信有限公司 | 一种ps-pdcch配置方法、终端设备和网络侧设备 |
WO2024027588A1 (zh) * | 2022-08-03 | 2024-02-08 | 维沃移动通信有限公司 | 唤醒信号的发送方法、终端及网络侧设备 |
Also Published As
Publication number | Publication date |
---|---|
CN110557815A (zh) | 2019-12-10 |
TWI730320B (zh) | 2021-06-11 |
TW202005320A (zh) | 2020-01-16 |
CN110557815B (zh) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019233195A1 (zh) | 节能信号的传输方法、终端和网络侧设备 | |
US12041548B2 (en) | Wake-up signal resource determining method and apparatus, wake-up signal resource configuration method and apparatus, terminal, and base station | |
CA3065623C (en) | Signal transmission method, network device, and terminal device | |
WO2018219257A1 (zh) | 一种通信的方法及装置 | |
EP3664520B1 (en) | Method for indicating and determining terminal state, base station and terminal | |
CN110545167B (zh) | 信息传输的方法及装置 | |
TWI795597B (zh) | 節能訊號傳輸方法、終端和網路側設備 | |
KR102470742B1 (ko) | 절전 신호의 전송 방법, 단말 및 네트워크측 기기 | |
CN109802789B (zh) | 传输公共控制信息的时频域资源的配置方法和设备 | |
JP7194806B2 (ja) | 状態確定方法、状態指示方法、通信装置、通信システムおよび記憶媒体 | |
WO2020220976A1 (zh) | 一种通信方法及装置 | |
WO2021027769A1 (zh) | 唤醒信号的传输方法、装置和存储介质 | |
WO2018171772A1 (zh) | 下行控制信道的传输方法、装置、基站和用户设备 | |
US20210337477A1 (en) | Communication method and apparatus | |
CN111328130B (zh) | 一种信号接收方法、发送方法、终端和网络侧设备 | |
WO2019237831A1 (zh) | 下行控制信道检测方法、终端和网络侧设备 | |
WO2020221319A1 (zh) | 一种通信方法及装置 | |
WO2023006067A1 (zh) | 一种通信方法及装置 | |
CN113366890A (zh) | 一种唤醒信号发送方法及装置 | |
CN114765496A (zh) | 由用户设备执行的方法以及用户设备 | |
CN114629611B (zh) | Dci检测方法及装置、存储介质、用户设备 | |
WO2023078394A1 (zh) | 由用户设备执行的方法以及用户设备 | |
WO2021017623A1 (zh) | 一种节电信号配置和传输方法及装置 | |
CN117998547A (zh) | 一种唤醒终端设备的方法、设备及介质 | |
CN114629611A (zh) | Dci检测方法及装置、存储介质、用户设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19816043 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19816043 Country of ref document: EP Kind code of ref document: A1 |