WO2021148049A1 - 状态确定方法、系统、介质及电子设备 - Google Patents

状态确定方法、系统、介质及电子设备 Download PDF

Info

Publication number
WO2021148049A1
WO2021148049A1 PCT/CN2021/075845 CN2021075845W WO2021148049A1 WO 2021148049 A1 WO2021148049 A1 WO 2021148049A1 CN 2021075845 W CN2021075845 W CN 2021075845W WO 2021148049 A1 WO2021148049 A1 WO 2021148049A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary cell
state determination
state
subgroup
bit
Prior art date
Application number
PCT/CN2021/075845
Other languages
English (en)
French (fr)
Inventor
周化雨
潘振岗
雷珍珠
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US17/794,420 priority Critical patent/US20230074847A1/en
Publication of WO2021148049A1 publication Critical patent/WO2021148049A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, in particular to a state determination method, system, medium and electronic equipment.
  • the base station When the data traffic is low, the base station (gNB) sends a signal to the user equipment (User Equipment, UE) that a certain secondary cell enters the dormancy (sleep) state.
  • the UE When the UE receives the signaling that the secondary cell enters the dormancy state, the UE switches to the dormant bandwidth part (dormant Bandwidth Part, dormant BWP) on the secondary cell, that is, uses the dormant BWP as the active bandwidth part and the UE is in the dormancy Partially, there is no need to monitor the Physical Downlink Control Channel (PDCCH), so it saves power.
  • PDCH Physical Downlink Control Channel
  • the base station sends signaling to the user equipment that the secondary cell enters a non-dormancy (non-sleep) state.
  • the UE receives the signaling that the secondary cell enters the non-dormancy state, the UE switches back to a non-dormant Bandwidth Part (non-dormant BWP), that is, uses the non-dormant BWP as the active bandwidth part.
  • the UE needs to monitor the PDCCH on the non-dormant BWP, and can obtain more scheduling opportunities on the secondary cell, and therefore can support higher rate data services.
  • multiple secondary cells usually form a secondary cell group (Secondary Cell group, SCell group).
  • SCell group Secondary Cell group
  • the base station passes through the primary cell (Primary Cell, PCell) or primary and secondary cell.
  • PrimarySecondaryCell issues the signaling for switching between the dormancy of the secondary cell and the non-dormancy of the secondary cell.
  • the switching signaling instructs the secondary cell group to enter the dormancy state of the secondary cell, all the secondary cells in the secondary cell group will enter The secondary cell dormancy state.
  • the handover signaling indicates that the secondary cell group enters the secondary cell non-dormancy state, that is, when it is activated, all secondary cells in the secondary cell group will enter the secondary cell non-dormancy state.
  • the UE may not need to use all the secondary cells in the entire secondary cell group to communicate with the base station, and redundant activated secondary cells will cause the UE to need to monitor the redundant PDCCH, which is not good for the UE. Energy saving.
  • the technical problem to be solved by the present invention is to overcome the defect that the state of all the secondary cells in the secondary cell group is changed at the same time through the control signaling in the prior art, which causes the UE to need to monitor the redundant PDCCH and consumes too much power of the UE.
  • a state determination method includes:
  • the indication signaling it is determined that a secondary cell in a secondary cell subgroup enters a sleep state or enters a non-sleep state.
  • the indication signaling is one bit in a bitmap.
  • one bit in the bitmap corresponds to one secondary cell subgroup.
  • the corresponding relationship between the bits in the bitmap and the secondary cell subgroup is obtained through high-level parameters.
  • bit it is determined that the secondary cell in the secondary cell subgroup enters the sleep state; if the bit is 1, it is determined that the secondary cell in the secondary cell subgroup enters the non-sleep state .
  • bit if the bit is 1, it is determined that the secondary cell in the secondary cell subgroup enters the sleep state; if the bit is 0, it is determined that the secondary cell in the secondary cell subgroup enters the non-sleep state .
  • the indication signaling is obtained by receiving the PDCCH on the secondary cell.
  • the secondary cell subgroup is a subgroup of the secondary cell group where the secondary cell is located.
  • the list of secondary cells in the secondary cell subgroup is obtained through high-level parameters.
  • the entering the sleep state of the secondary cell includes: switching to the dormant BWP on the secondary cell; or, using the dormant BWP as the activated BWP on the secondary cell.
  • the entering the sleep state of the secondary cell includes:
  • a state determination system includes:
  • the signaling acquisition module is used to acquire indication signaling
  • the state determination module is configured to determine, according to the indication signaling, that a secondary cell in a secondary cell subgroup enters a sleep state or enters a non-sleep state.
  • the indication signaling is one bit in a bitmap.
  • one bit in the bitmap corresponds to one secondary cell subgroup.
  • the state determination system further includes a corresponding relationship obtaining module, which obtains the corresponding relationship between the bits in the bitmap and the secondary cell subgroups through high-level parameters.
  • the state determining module determines that the secondary cell in the secondary cell subgroup enters the sleep state; if the bit is 1, the state determining module determines the secondary cell The secondary cell in the subgroup enters a non-sleep state.
  • the state determining module determines that the secondary cell in the secondary cell subgroup enters the sleep state; if the bit is 0, the state determining module determines the secondary cell The secondary cell in the subgroup enters a non-sleep state.
  • the signaling acquisition module acquires the indication signaling by receiving the PDCCH on the secondary cell.
  • the secondary cell subgroup is a subgroup of the secondary cell group where the secondary cell is located.
  • the state determination system further includes a list acquisition module, configured to acquire a list of secondary cells in the secondary cell subgroup through high-level parameters.
  • the state determining module switches to the dormant BWP on the secondary cell; or, the state determining module uses the dormant BWP as the activated BWP on the secondary cell.
  • the state determining module stops monitoring the PDCCH on the secondary cell within the DRX activation time.
  • the state determining module stops monitoring the PDCCH on the secondary cell for a period of time.
  • An electronic device includes a memory, a processor, and a computer program that is stored on the memory and can run on the processor.
  • the processor implements the steps of the aforementioned state determination method when the processor executes the computer program.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the aforementioned state determination method are realized.
  • the positive progress effect of the present invention is that the state determination method, system, medium and electronic equipment provided by the present invention can divide a secondary cell group into multiple secondary cell subgroups, and the number of secondary cells in the secondary cell subgroup can be flexible
  • the control is in a small number, so that multiple secondary cell subgroups corresponding to a secondary cell group can be controlled separately, which avoids the need to monitor the PDCCH on redundant secondary cells at the same time, which effectively saves the power of the UE .
  • Fig. 1 is a flowchart of a state determination method according to Embodiment 1 of the present invention.
  • Fig. 2 is a structural block diagram of a state determination system according to Embodiment 2 of the present invention.
  • FIG. 3 is a structural block diagram of an electronic device according to Embodiment 3 of the present invention.
  • This embodiment provides a state determination method, which is used to determine the state of a secondary cell.
  • the state determination method may include:
  • Step S11 Obtain indication signaling
  • Step S12 According to the indication signaling, it is determined that a secondary cell in a secondary cell subgroup enters a sleep state or enters a non-sleep state.
  • a secondary cell in a secondary cell subgroup enters a sleep state or enters a non-sleep state, which can also be referred to as a secondary cell subgroup enters a sleep state or enters a non-sleep state.
  • a secondary cell in a secondary cell group enters a sleep state or enters a non-sleep state, it may also be referred to as a secondary cell group enters a sleep state or enter a non-sleep state.
  • a secondary cell in a secondary cell subgroup when a secondary cell in a secondary cell subgroup enters a sleep state or enters a non-sleep state, it is equivalent to an activated SCell in a secondary cell subgroup enters a sleep state or enters a non-sleep state.
  • a secondary cell in a secondary cell group when a secondary cell in a secondary cell group enters a sleep state or enters a non-sleep state, it is equivalent to that an activated secondary cell in a secondary cell group enters a sleep state or enter a non-sleep state.
  • the secondary cell when the secondary cell enters the sleep state, it is determined that the PDCCH on the secondary cell is no longer monitored. When the secondary cell enters the non-sleep state, it is determined to monitor the PDCCH on the secondary cell.
  • the secondary cell subgroup is a subgroup of the secondary cell group where the secondary cell is located.
  • the number of secondary cell subgroups is less than or equal to the number of secondary cell groups, so that the number of bits of the indication signaling (bitmap) of the secondary cell subgroup status monitored on the secondary cell is less than or equal to that on the primary cell or primary and secondary cell
  • the number of bits of the indication signaling (bitmap) of the monitored secondary cell group status can refer to standard definitions in the prior art.
  • the indication signaling is a bit in a bitmap, where the bitmap may be a digital sequence composed of 0 and 1.
  • One bit in the bitmap may correspond to one secondary cell subgroup. It can also be said that the status of one or more secondary cells in one secondary cell subgroup is indicated by the one bit.
  • bit if the bit is 0, it is determined that the secondary cell in the secondary cell subgroup enters the sleep state; if the bit is 1, it is determined that the secondary cell in the secondary cell subgroup enters Non-sleep state.
  • the bit is 1, it is determined that the secondary cell in the secondary cell subgroup enters the sleep state; if the bit is 0, the secondary cell in the secondary cell subgroup is determined Enter a non-sleep state.
  • the corresponding relationship between the bits in the bitmap and the secondary cell subgroup can be obtained through high-level parameters, and the high-level parameters may be sent to the UE by the gNB.
  • the indication signaling can be obtained by receiving the PDCCH on the secondary cell.
  • the indication signaling may be obtained by receiving the PDCCH on any secondary cell in the secondary cell subgroup.
  • the starting position of the indication signaling in the Downlink Control Information is provided by a higher layer parameter.
  • the starting position of the indication signaling in the DCI may be the same as the starting position of the indication signaling of the secondary cell group status in the DCI.
  • the indication signaling of the state of the secondary cell group is the signaling that the secondary cell enters the dormancy state or the signaling that the secondary cell enters the non-dormancy state.
  • the UE obtains the indication signaling of the state of the secondary cell group by receiving the PDCCH on the primary cell or the primary and secondary cell. In this way, the base station can configure the start position of the indication signaling of the secondary cell group status in the DCI, and indirectly configure the start position of the indication signaling in the DCI, which can save signaling overhead.
  • the list of secondary cells in the secondary cell subgroup can be obtained through high-level parameters.
  • the entering the sleep state of the secondary cell may include: switching to the dormant BWP on the secondary cell; or, using the dormant BWP as the activated BWP on the secondary cell.
  • the entering the sleep state of the secondary cell may also include: stopping monitoring the PDCCH on the secondary cell during the DRX activation time; or, stopping monitoring the PDCCH on the secondary cell for a period of time.
  • a secondary cell group includes 10 secondary cells, the state of the secondary cell group is controlled by a bit, if the bit is 0, it means entering the sleep state, if the bit is 1, it means entering Non-sleep state.
  • the UE monitors the indication information in the primary cell or primary and secondary cell.
  • the bit indicating the status is 0, the 10 secondary cells in the secondary cell group all enter the sleep state.
  • the UE communicates with the base station, it may not need to monitor the PDCCH on so many secondary cells, which causes excessive consumption of UE power.
  • each secondary cell subgroup includes 2 secondary cells.
  • the UE can monitor the indication information in a certain secondary cell (generally, the secondary cell group to which the secondary cell belongs has been indicated as a non-sleep state).
  • the indication signaling is one bit, and the indication signaling is used to indicate the status of the secondary cell subgroup. If the one bit is 0, the secondary cell subgroup (secondary cell 1 and secondary cell 2) all enter the sleep state, if the one bit is 1, then the secondary cell subgroup (secondary cell 1 and secondary cell 2) are both Enter a non-sleep state.
  • the secondary cell subgroup (secondary cell 1 and secondary cell 2) all enter the sleep state, if the one bit is 0, then the secondary cell subgroup (secondary cell 1 and secondary cell 2) ) All enter a non-sleep state.
  • the state determination method provided by the present invention can divide a secondary cell group into multiple secondary cell subgroups, and the number of secondary cells in the secondary cell subgroup can be flexibly controlled to a small number, so that one secondary cell group can be controlled
  • the corresponding multiple secondary cell subgroups perform signaling control respectively, which avoids the need to monitor the PDCCH on redundant secondary cells at the same time, and effectively saves the power of the UE.
  • the duration may be a period of time within the active time of a DRX cycle (discontinuous reception cycle), or a period of time composed of multiple DRX cycles.
  • the execution subject of the state determination method provided in the embodiment may be a separate chip, chip module or UE, or may be a chip or chip module integrated in the UE.
  • This embodiment provides a state determination system, which is used to determine the state of a secondary cell.
  • the state determination system 1 includes:
  • the signaling acquisition module 11 is used to acquire indication signaling
  • the state determining module 12 is configured to determine, according to the indication signaling, that a secondary cell in a secondary cell subgroup enters a sleep state or enters a non-sleep state.
  • the secondary cell when the secondary cell enters the sleep state, it is determined that the PDCCH on the secondary cell is no longer monitored. When the secondary cell enters the non-sleep state, it is determined to monitor the PDCCH on the secondary cell.
  • the secondary cell subgroup is a subgroup of the secondary cell group where the secondary cell is located.
  • the number of secondary cell subgroups is less than or equal to the number of secondary cell groups, so that the number of bits of the indication signaling (bitmap) of the secondary cell subgroup status monitored on the secondary cell is less than or equal to that on the primary cell or primary and secondary cell
  • the number of bits of the indication signaling (bitmap) of the monitored secondary cell group status can refer to standard definitions in the prior art.
  • the indication signaling is one bit in a bitmap.
  • the bitmap can be a sequence of numbers composed of 0 and 1.
  • One bit in the bitmap corresponds to one secondary cell subgroup. It can also be said that the status of one or more secondary cells in a secondary cell subgroup is all indicated by the one bit.
  • the state determining module 12 determines that the secondary cell in the secondary cell subgroup enters the sleep state; if the bit is 1, the state determining module 12 It is determined that the secondary cell in the secondary cell subgroup enters a non-sleep state.
  • the state determining module 12 determines that the secondary cell in the secondary cell subgroup enters the sleep state; if the bit is 0, the state determining module 12 Determine that the secondary cell in the secondary cell subgroup enters a non-sleep state.
  • the state determination system 1 further includes a corresponding relationship obtaining module 13, which can obtain the corresponding relationship between the bits in the bitmap and the secondary cell subgroups through high-level parameters.
  • the corresponding relationship acquisition module 13 can receive high-level parameters, and identify and read the corresponding relationship between the bits in the bitmap and the secondary cell subgroups from the high-level parameters.
  • the high-level parameters may be sent to the UE by the gNB.
  • the signaling acquisition module 11 acquires the indication signaling by receiving the PDCCH on the secondary cell.
  • the signaling acquisition module 11 may acquire the indication signaling by receiving a PDCCH on any secondary cell in the secondary cell subgroup.
  • the starting position of the indication signaling in the DCI is provided by a higher layer parameter.
  • the starting position of the indication signaling in the DCI may be the same as the starting position of the indication signaling of the secondary cell group status in the DCI.
  • the indication signaling of the state of the secondary cell group is the signaling that the secondary cell enters the dormancy state or the signaling that the secondary cell enters the non-dormancy state.
  • the UE obtains the indication signaling of the state of the secondary cell group by receiving the PDCCH on the primary cell or the primary and secondary cell. In this way, the base station can configure the starting position of the indication signaling of the secondary cell group status in the DCI, and indirectly configure the starting position of the indication signaling in the DCI, which can save signaling overhead.
  • the state determination system 1 further includes a list acquisition module 14 configured to acquire a list of secondary cells in the secondary cell subgroup through high-level parameters.
  • the list acquisition module 14 can receive high-level parameters, and identify and read the secondary cell list from the high-level parameters.
  • the state determining module 12 switches to the dormant BWP on the secondary cell; or, the state determining module 12 uses the dormant BWP as the activated BWP on the secondary cell.
  • the state determining module 12 may stop monitoring the PDCCH on the secondary cell within the DRX activation time. Alternatively, the state determining module 12 stops monitoring the PDCCH on the secondary cell for a period of time.
  • a secondary cell group includes 10 secondary cells, the status of the secondary cell group is indicated by a bit, if the bit is 0, it means entering the sleep state, if the bit is 1, it means entering Non-sleep state.
  • each secondary cell subgroup includes 2 secondary cells.
  • the UE can monitor the indication information in a certain secondary cell (generally, the secondary cell group to which the secondary cell belongs has been indicated as a non-sleep state).
  • the indication signaling is one bit, and the indication signaling is used to indicate the status of the secondary cell subgroup. If the one bit is 0, the secondary cell subgroup (secondary cell 1 and secondary cell 2) all enter the sleep state, if the one bit is 1, then the secondary cell subgroup (secondary cell 1 and secondary cell 2) are both Enter a non-sleep state.
  • the secondary cell subgroup (secondary cell 1 and secondary cell 2) all enter the sleep state, if the one bit is 0, then the secondary cell subgroup (secondary cell 1 and secondary cell 2) ) All enter a non-sleep state.
  • a secondary cell group can be divided into multiple secondary cell subgroups, and the number of secondary cells in the secondary cell subgroup can be flexibly controlled to a small number, so that Multiple secondary cell subgroups corresponding to a secondary cell group are separately controlled by signaling, which avoids the need to monitor the PDCCH on redundant secondary cells at the same time, and effectively saves the power of the UE.
  • the duration may be a period of time within the active time of a DRX cycle (discontinuous reception cycle), or a period of time composed of multiple DRX cycles.
  • the state determination system described in this embodiment may specifically be a separate chip, chip module or UE, or may be a chip or chip module integrated in the UE.
  • the various modules/units included in the state determination system may be software modules/units, hardware modules/units, or part software modules/units and part hardware modules/units.
  • the various modules/units contained therein can be implemented in the form of hardware such as circuits, or at least part of the modules/units can be implemented in the form of software programs.
  • Runs on the integrated processor inside the chip, and the remaining part of the modules/units can be implemented by hardware methods such as circuits; for each device and product applied to or integrated in the chip module, each of the modules/units contained in it can use circuits, etc. It is realized by hardware, different modules/units can be located in the same component (such as chip, circuit module, etc.) or different components of the chip module, or at least part of the modules/units can be realized in the form of a software program, and the software program runs For the processor integrated inside the chip module, the remaining part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the UE, each module/unit contained in it can be implemented by hardware such as circuits Different modules/units can be located in the same component (for example, chip, circuit module, etc.) or different components in the terminal, or at least some of the modules/units can be implemented in the form of a software program, and the software program runs on the UE The internal integrated processor, and the remaining
  • the present invention also provides an electronic device.
  • the electronic device may include a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program when the computer program is executed. The steps of the state determination method in the foregoing embodiment 1.
  • the electronic device 2 may be in the form of a general-purpose computing device, for example, it may be a server device.
  • the components of the electronic device 2 may include, but are not limited to: the above-mentioned at least one processor 3, the above-mentioned at least one memory 4, and a bus 5 connecting different system components (including the memory 4 and the processor 3).
  • the bus 5 may include a data bus, an address bus, and a control bus.
  • the memory 4 may include a volatile memory, such as a random access memory (RAM) 41 and/or a cache memory 42, and may further include a read-only memory (ROM) 43.
  • RAM random access memory
  • ROM read-only memory
  • the memory 4 may also include a program tool 45 (or utility tool) having a set of (at least one) program module 44.
  • program module 44 includes but is not limited to: an operating system, one or more application programs, and other program modules.
  • program data As well as program data, each of these examples or some combination may include the realization of a network environment.
  • the processor 3 executes various functional applications and data processing by running a computer program stored in the memory 4, such as the steps of the state determination method in the foregoing embodiment 1 of the present invention.
  • the electronic device 2 may also communicate with one or more external devices 6 (for example, a keyboard, a pointing device, etc.). This communication can be performed through an input/output (I/O) interface 7.
  • the electronic device 2 generated by the model can also communicate with one or more networks (for example, a local area network LAN, a wide area network WAN, and/or a public network) through the network adapter 8.
  • the network adapter 8 can communicate with other modules of the electronic device 2 generated by the model through the bus 5.
  • modules of the electronic device 2 generated by the model including but not limited to: microcode, device drivers, redundant processors, and external disk drivers. Arrays, RAID (disk array) systems, tape drives, and data backup storage systems, etc.
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the state determination method in the foregoing embodiment 1 are implemented.
  • the more specific ways that the computer-readable storage medium can adopt may include, but are not limited to: portable disks, hard disks, random access memories, read-only memories, erasable programmable read-only memories, optical storage devices, magnetic storage devices, or the above Any suitable combination of.
  • the present invention can also be implemented in the form of a program product, which includes program code.
  • program product runs on a terminal device
  • the program code is used to make the terminal device execute the implementation of the foregoing embodiment 1. Steps of the state determination method.
  • the program code for executing the present invention can be written in any combination of one or more programming languages.
  • the program code can be executed completely on the user equipment, partly executed on the user equipment, as an independent software.
  • the package is executed, partly on the user's device, partly on the remote device, or entirely on the remote device.

Abstract

本发明公开了一种状态确定方法、系统、介质及电子设备,所述状态确定方法包括:获取指示信令;根据所述指示信令,确定一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态。本发明技术方案可以将一个辅小区组划分为多个辅小区子组,而辅小区子组中的辅小区的数量可以灵活的控制在较小的数量,使得可以对一个辅小区组对应的多个辅小区子组分别进行信令控制,也就避免了需要同时监听多余的辅小区上的PDCCH,有效节约了UE的电能。

Description

状态确定方法、系统、介质及电子设备
本申请要求申请日为2020年1月21日的中国专利申请202010072622.0的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及通信技术领域,具体涉及一种状态确定方法、系统、介质及电子设备。
背景技术
在第五代移动通信技术(the 5th generation mobile communication technology,5G)的版本16(Release 16)中,引入了辅小区(Secondary Cell,SCell)睡眠(dormancy)机制。
当数据业务较少时,基站(gNB)发送某个辅小区进入dormancy(睡眠)状态的信令给用户设备(User Equipment,UE)。当UE收到该辅小区进入dormancy状态的信令时,UE在该辅小区上切换到睡眠带宽部分(dormant Bandwidth Part,dormant BWP),即以该dormant BWP作为激活带宽部分,UE在该睡眠带宽部分上不需要监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),因此比较省电。
当数据业务较多时,基站发送辅小区进入non-dormancy(非睡眠)状态的信令给用户设备。当UE收到该辅小区进入non-dormancy状态的信令时,UE切换回一个非睡眠带宽部分(non-dormant Bandwidth Part,non-dormant BWP),即以该non-dormant BWP作为激活带宽部分,UE在该non-dormant BWP上需要监听PDCCH,能够在该辅小区上获得较多的调度机会,因此可以支持更高速率的数据业务。通过辅小区dormancy和辅小区non-dormancy之间的切换,可以达到数据速率(吞吐量,throughput)和省电之间的自适应。
现有技术中,通常由多个辅小区构成了辅小区组(Secondary Cell group,SCell group),在DRX激活时间(DRX Active Time)内,基站通过主小区(Primary Cell,PCell)或主辅小区(Primary Secondary Cell)下发在辅小区dormancy和辅小区non-dormancy之间切换的信令,当该切换信令指示辅小区组进入辅小区dormancy状态时,辅小区组中的所有辅小区都会进入辅小区dormancy状态,当该切换信令指示辅小区组进入辅小区non-dormancy状态,即被激活时,辅小区组中的所有辅小区都会进入辅小区non-dormancy状态。在这种情况下,UE可能并不需要利用整个辅小区组中的所有辅小区来进行与基站的通信,而多余的被激活的辅小区就会造成UE需要额外监听多余的PDCCH,不利于UE节能。
基于此,如何避免现有技术中通过控制信令同时改变辅小区组中的所有辅小区的状态,造成UE需要额外监听多余的PDCCH而过多消耗UE电量,是一个亟待解决的问题。
发明内容
本发明要解决的技术问题是为了克服现有技术中通过控制信令同时改变辅小区组中的所有辅小区的状态,造成UE需要额外监听多余的PDCCH而过多消耗UE电量的缺陷,提供一种状态确定方法、系统、介质及电子设备。
本发明是通过下述技术方案来解决上述技术问题:
一种状态确定方法,所述状态确定方法包括:
获取指示信令;
根据所述指示信令,确定一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态。
可选的,所述指示信令为位图中的一个比特。
可选的,所述位图中的一个比特对应一个辅小区子组。
可选的,通过高层参数获取所述位图中的比特和辅小区子组的对应关系。
可选的,若所述比特为0,则确定所述辅小区子组中的辅小区进入睡眠状态;若所述比特为1,则确定所述辅小区子组中的辅小区进入非睡眠状态。
可选的,若所述比特为1,则确定所述辅小区子组中的辅小区进入睡眠状态;若所述比特为0,则确定所述辅小区子组中的辅小区进入非睡眠状态。
可选的,通过接收辅小区上的PDCCH获取所述指示信令。
可选的,所述辅小区子组为所述辅小区所在辅小区组的子组。
可选的,通过高层参数获取所述辅小区子组中的辅小区列表。
可选的,所述辅小区进入睡眠状态包括:在辅小区上切换到dormant BWP上;或者,在辅小区上使用dormant BWP作为激活的BWP。
可选的,所述辅小区进入睡眠状态包括:
在DRX(非连续接收)激活时间内,停止监听辅小区上的PDCCH;
或者,在一段持续时间内,停止监听辅小区上的PDCCH。
一种状态确定系统,所述状态确定系统包括:
信令获取模块,用于获取指示信令;
状态确定模块,用于根据所述指示信令,确定一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态。
可选的,所述指示信令为位图中的一个比特。
可选的,所述位图中的一个比特对应一个辅小区子组。
可选的,所述状态确定系统还包括对应关系获取模块,通过高层参数获取所述位图中的比特和辅小区子组的对应关系。
可选的,若所述比特为0,则所述状态确定模块确定所述辅小区子组中的辅小区进入睡眠状态;若所述比特为1,则所述状态确定模块确定所述辅小区子组中的辅小区进入非睡眠状态。
可选的,若所述比特为1,则所述状态确定模块确定所述辅小区子组中的辅小区进入睡眠状态;若所述比特为0,则所述状态确定模块确定所述辅 小区子组中的辅小区进入非睡眠状态。
可选的,所述信令获取模块通过接收辅小区上的PDCCH获取所述指示信令。
可选的,所述辅小区子组为所述辅小区所在辅小区组的子组。
可选的,所述状态确定系统还包括列表获取模块,用于通过高层参数获取所述辅小区子组中的辅小区列表。
可选的,所述状态确定模块在辅小区上切换到dormant BWP上;或者,所述状态确定模块在辅小区上使用dormant BWP作为激活的BWP。
可选的,所述状态确定模块在DRX激活时间内,停止监听辅小区上的PDCCH。
可选的,所述状态确定模块在一段持续时间内,停止监听辅小区上的PDCCH。
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行计算机程序时实现前述的状态确定方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现前述的状态确定方法的步骤。
本发明的积极进步效果在于:本发明提供的状态确定方法、系统、介质及电子设备可以将一个辅小区组划分为多个辅小区子组,而辅小区子组中的辅小区的数量可以灵活的控制在较小的数量,使得可以对一个辅小区组对应的多个辅小区子组分别进行信令控制,也就避免了需要同时监听多余的辅小区上的PDCCH,有效节约了UE的电能。
另外,通过设置在DRX激活时间内,停止监听辅小区上的PDCCH,可以实现仅仅在当前的DRX激活时间内在辅小区上减少PDCCH监听,既可以节能,又能保证在后续的DRX周期迅速恢复正常的PDCCH监听。
附图说明
图1为本发明实施例1的状态确定方法的流程图。
图2为本发明实施例2的状态确定系统的结构框图。
图3为本发明实施例3的电子设备的结构框图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例提供一种状态确定方法,该状态确定方法用于确定辅小区的状态。如图1所示,所述状态确定方法可以包括:
步骤S11:获取指示信令;
步骤S12:根据所述指示信令,确定一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态。
本发明中,一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态,也可以称为一个辅小区子组进入睡眠状态或进入非睡眠状态。类似地,一个辅小区组中的辅小区进入睡眠状态或进入非睡眠状态,也可以称为一个辅小区组进入睡眠状态或进入非睡眠状态。
本发明中,一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态,等价于一个辅小区子组中的激活的辅小区(activated SCell)进入睡眠状态或进入非睡眠状态。类似地,一个辅小区组中的辅小区进入睡眠状态或进入非睡眠状态,等价于一个辅小区组中的激活的辅小区进入睡眠状态或进入非睡眠状态。
进一步地,当辅小区进入睡眠状态后,确定不再监听辅小区上的PDCCH。当辅小区进入非睡眠状态后,确定监听辅小区上的PDCCH。
本发明中,所述辅小区子组为所述辅小区所在辅小区组的子组。所述辅 小区子组的数量小于等于辅小区组的数量,这样,在辅小区上监听的辅小区子组状态的指示信令(位图)的比特数小于等于在主小区或主辅小区上监听的辅小区组状态的指示信令(位图)的比特数。所述辅小区组的定义和运行逻辑可以参考现有技术中的标准定义。
优选地,所述指示信令为位图中的一个比特,其中,位图可以是由0和1构成的数字序列。
所述位图中的一个比特可以对应一个辅小区子组,也可以说,一个辅小区子组中的一个或多个辅小区的状态都由该一个比特来指示。
在一个具体实施方式中,若所述比特为0,则确定所述辅小区子组中的辅小区进入睡眠状态;若所述比特为1,则确定所述辅小区子组中的辅小区进入非睡眠状态。
在另一个具体实施方式中,若所述比特为1,则确定所述辅小区子组中的辅小区进入睡眠状态;若所述比特为0,则确定所述辅小区子组中的辅小区进入非睡眠状态。
优选地,可以通过高层参数获取所述位图中的比特和辅小区子组的对应关系,所述高层参数可以由gNB发送至UE。
本发明中,可以通过接收辅小区上的PDCCH获取所述指示信令。
当所述辅小区子组包括多个辅小区时,可以通过接收辅小区子组中任意一个辅小区上的PDCCH获取所述指示信令。
本发明中,所述指示信令在下行控制信息(Downlink Control Information,DCI)中起始位置由高层参数提供。所述指示信令在DCI中起始位置可以与辅小区组状态的指示信令在DCI中起始位置相同。所述辅小区组状态的指示信令为辅小区进入dormancy状态的信令或辅小区进入non-dormancy状态的信令。一般地,UE通过接收主小区或主辅小区上的PDCCH获取所述辅小区组状态的指示信令。这样,基站可以通过配置所述辅小区组状态的指示信令在DCI中起始位置,间接地配置了所述指示信令在DCI中起始位置,可 以节省信令开销。
优选地,可以通过高层参数获取所述辅小区子组中的辅小区列表。
本发明中,所述辅小区进入睡眠状态可以包括:在辅小区上切换到dormant BWP上;或者,在辅小区上使用dormant BWP作为激活的BWP。
另外,所述辅小区进入睡眠状态还可以包括:在DRX激活时间内,停止监听辅小区上的PDCCH;或者,在一段持续时间内,停止监听辅小区上的PDCCH。
在一个具体应用场景中,例如:一个辅小区组包括10个辅小区,该辅小区组的状态由一个比特来控制,若比特为0,则表示进入睡眠状态,若比特为1,则表示进入非睡眠状态。
对辅小区组不进行进一步细分的情况下,UE在主小区或主辅小区监听指示信息,当指示状态的比特为0时,则辅小区组中的10个辅小区都进入睡眠状态,此时,UE停止对10个辅小区的监听;当指示状态的比特为1时,则辅小区组中的10个辅小区都进入非睡眠状态,UE需要对10个辅小区进行监听,此时,UE在与基站通信的过程中,可能并不需要监听如此多的辅小区上的PDCCH,造成了UE电量的过多消耗。
若将辅小区组分成5个辅小区子组,每个辅小区子组包括2个辅小区。此时,UE可以在某个辅小区监听指示信息(一般来说,该辅小区所属于的辅小区组已经被指示为非睡眠状态)。对于一个辅小区子组(比如包含辅小区1和辅小区2),指示信令为一个比特,该指示信令用于指示该辅小区子组的状态。若该一个比特为0,则该辅小区子组(辅小区1和辅小区2)都进入睡眠状态,若该一个比特为1,则该辅小区子组(辅小区1和辅小区2)都进入非睡眠状态。或者,若该一个比特为1,则该辅小区子组(辅小区1和辅小区2)都进入睡眠状态,若该一个比特为0,则该辅小区子组(辅小区1和辅小区2)都进入非睡眠状态。
本发明提供的状态确定方法可以将一个辅小区组划分为多个辅小区子 组,而辅小区子组中的辅小区的数量可以灵活的控制在较小的数量,使得可以对一个辅小区组对应的多个辅小区子组分别进行信令控制,也就避免了需要同时监听多余的辅小区上的PDCCH,有效节约了UE的电能。
另外,通过设置在DRX激活时间内,停止监听辅小区上的PDCCH,可以实现仅仅在当前的DRX激活时间内在辅小区上减少PDCCH监听,既可以节能,又能保证在后续的DRX周期迅速恢复正常的PDCCH监听。还可以通过设置在一段持续时间内,停止监听辅小区上的PDCCH,可以实现仅仅在一段持续时间内在辅小区上减少PDCCH监听,既可以节能,又能保证在该持续时间后迅速恢复正常的PDCCH监听。该持续时间可以是一个DRX cycle(非连续接收循环)内的激活时间内的一段时间,也可以多个DRX cycle组成的一段时间。
关于实施例提供的状态确定方法的执行主体可以为单独的芯片、芯片模组或者UE,也可以是集成于UE内的芯片或者芯片模组。
实施例2
本实施例提供一种状态确定系统,该状态确定系统用于确定辅小区的状态。如图2所示,所述状态确定系统1包括:
信令获取模块11,用于获取指示信令;
状态确定模块12,用于根据所述指示信令,确定一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态。
进一步地,当辅小区进入睡眠状态后,确定不再监听辅小区上的PDCCH。当辅小区进入非睡眠状态后,确定监听辅小区上的PDCCH。
本发明中,所述辅小区子组为所述辅小区所在辅小区组的子组。所述辅小区子组的数量小于等于辅小区组的数量,这样,在辅小区上监听的辅小区子组状态的指示信令(位图)的比特数小于等于在主小区或主辅小区上监听的辅小区组状态的指示信令(位图)的比特数。所述辅小区组的定义和运行逻辑可以参考现有技术中的标准定义。
优选地,所述指示信令为位图中的一个比特。其中,位图可以是由0和1构成的数字序列。
所述位图中的一个比特对应一个辅小区子组。也可以说,一个辅小区子组中的一个或多个辅小区的状态都由该一个比特来指示。
在一个具体实施方式中,若所述比特为0,则所述状态确定模块12确定所述辅小区子组中的辅小区进入睡眠状态;若所述比特为1,则所述状态确定模块12确定所述辅小区子组中的辅小区进入非睡眠状态。
在另一个具体实施方式中,若所述比特为1,则所述状态确定模块12确定所述辅小区子组中的辅小区进入睡眠状态;若所述比特为0,则所述状态确定模块12确定所述辅小区子组中的辅小区进入非睡眠状态。
优选地,所述状态确定系统1还包括对应关系获取模块13,所述对应关系获取模块13可以通过高层参数获取所述位图中的比特和辅小区子组的对应关系。也就是说,所述对应关系获取模块13可以接收高层参数,并且从高层参数中识别并读取出位图中的比特和辅小区子组的对应关系。
所述高层参数可以由gNB发送至UE。
本发明中,所述信令获取模块11通过接收辅小区上的PDCCH获取所述指示信令。
当所述辅小区子组包括多个辅小区时,所述信令获取模块11可以通过接收辅小区子组中任意一个辅小区上的PDCCH获取所述指示信令。
本发明中,所述指示信令在DCI中起始位置由高层参数提供。所述指示信令在DCI中起始位置可以与辅小区组状态的指示信令在DCI中起始位置相同。所述辅小区组状态的指示信令为辅小区进入dormancy状态的信令或辅小区进入non-dormancy状态的信令。一般地,UE通过接收主小区或主辅小区上的PDCCH获取所述辅小区组状态的指示信令。这样,基站可以通过配置所述辅小区组状态的指示信令在DCI中起始位置,间接地配置了所述指示信令在DCI中起始位置,可以节省信令开销。
优选地,所述状态确定系统1还包括列表获取模块14,所述列表获取模块14用于通过高层参数获取所述辅小区子组中的辅小区列表。也就是说,所述列表获取模块14可以接收高层参数,并且从高层参数中识别并读取出所述辅小区列表。
本发明中,所述状态确定模块12在辅小区上切换到dormant BWP上;或者,所述状态确定模块12在辅小区上使用dormant BWP作为激活的BWP。
所述状态确定模块12可以在DRX激活时间内,停止监听辅小区上的PDCCH。或者,所述状态确定模块12在一段持续时间内,停止监听辅小区上的PDCCH。
在一个具体应用场景中,例如:一个辅小区组包括10个辅小区,该辅小区组的状态由一个比特来指示,若比特为0,则表示进入睡眠状态,若比特为1,则表示进入非睡眠状态。
对辅小区组不进行进一步细分的情况下,当指示状态的比特为0时,则辅小区组中的10个辅小区都进入睡眠状态,此时,UE停止对10个辅小区的监听;当指示状态的比特为1时,则辅小区组中的10个辅小区都进入非睡眠状态,此时,UE需要对10个辅小区进行监听,此时,UE在于基站通信的过程中,可能并不需要监听如此多的辅小区上的PDCCH,造成了UE电量的过多消耗。
若将辅小区组分成5个辅小区子组,每个辅小区子组包括2个辅小区。此时,UE可以在某个辅小区监听指示信息(一般来说,该辅小区所属于的辅小区组已经被指示为非睡眠状态)。对于一个辅小区子组(比如包含辅小区1和辅小区2),指示信令为一个比特,该指示信令用于指示该辅小区子组的状态。若该一个比特为0,则该辅小区子组(辅小区1和辅小区2)都进入睡眠状态,若该一个比特为1,则该辅小区子组(辅小区1和辅小区2)都进入非睡眠状态。或者,若该一个比特为1,则该辅小区子组(辅小区1和辅小区2)都进入睡眠状态,若该一个比特为0,则该辅小区子组(辅小 区1和辅小区2)都进入非睡眠状态。
本发明提供的状态确定系统在运行时,可以将一个辅小区组划分为多个辅小区子组,而辅小区子组中的辅小区的数量可以灵活的控制在较小的数量,使得可以对一个辅小区组对应的多个辅小区子组分别进行信令控制,也就避免了需要同时监听多余的辅小区上的PDCCH,有效节约了UE的电能。
另外,通过设置在DRX激活时间内,停止监听辅小区上的PDCCH,可以实现仅仅在当前的DRX激活时间内在辅小区上减少PDCCH监听,既可以节能,又能保证在后续的DRX周期迅速恢复正常的PDCCH监听。还可以通过设置在一段持续时间内,停止监听辅小区上的PDCCH,可以实现仅仅在一段持续时间内在辅小区上减少PDCCH监听,既可以节能,又能保证在该持续时间后迅速恢复正常的PDCCH监听。该持续时间可以是一个DRX cycle(非连续接收循环)内的激活时间内的一段时间,也可以多个DRX cycle组成的一段时间。
关于本实施例描述的状态确定系统具体可以是单独的芯片、芯片模组或者UE,也可以是集成于UE内的芯片或者芯片模组。状态确定系统包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于UE的各个装置、产品,其包含的各个模块/单元可以都 采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于UE内部集成的处理器,剩余的部分模块/单元可以采用电路等硬件方式实现。
实施例3
本发明还提供一种电子设备,如图3所示,所述电子设备可以包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行计算机程序时实现前述实施例1中的状态确定方法的步骤。
可以理解的是,图3所示的电子设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图3所示,电子设备2可以以通用计算设备的形式表现,例如:其可以为服务器设备。电子设备2的组件可以包括但不限于:上述至少一个处理器3、上述至少一个存储器4、连接不同系统组件(包括存储器4和处理器3)的总线5。
所述总线5可以包括数据总线、地址总线和控制总线。
所述存储器4可以包括易失性存储器,例如随机存取存储器(RAM)41和/或高速缓存存储器42,还可以进一步包括只读存储器(ROM)43。
所述存储器4还可以包括具有一组(至少一个)程序模块44的程序工具45(或实用工具),这样的程序模块44包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
所述处理器3通过运行存储在所述存储器4中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明前述实施例1中的状态确定方法的步骤。
所述电子设备2也可以与一个或多个外部设备6(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口7进行。并且,模型生 成的电子设备2还可以通过网络适配器8与一个或者多个网络(例如局域网LAN,广域网WAN和/或公共网络)通信。
如图3所示,网络适配器8可以通过总线5与模型生成的电子设备2的其它模块通信。本领域技术人员应当明白,尽管图中未示出,可以结合模型生成的电子设备2使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
需要说明的是,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例4
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,程序被处理器执行时实现前述实施例1中的状态确定方法的步骤。
其中,计算机可读存储介质可以采用的更具体方式可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行实现前述实施例1中的状态确定方法的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。

Claims (24)

  1. 一种状态确定方法,其特征在于,所述状态确定方法包括:
    获取指示信令;
    根据所述指示信令,确定一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态。
  2. 如权利要求1所述的状态确定方法,其特征在于,所述指示信令为位图中的一个比特。
  3. 如权利要求2所述的状态确定方法,其特征在于,所述位图中的一个比特对应一个辅小区子组。
  4. 如权利要求3所述的状态确定方法,其特征在于,通过高层参数获取所述位图中的比特和辅小区子组的对应关系。
  5. 如权利要求2所述的状态确定方法,其特征在于,
    若所述比特为0,则确定所述辅小区子组中的辅小区进入睡眠状态;
    若所述比特为1,则确定所述辅小区子组中的辅小区进入非睡眠状态。
  6. 如权利要求2所述的状态确定方法,其特征在于,
    若所述比特为1,则确定所述辅小区子组中的辅小区进入睡眠状态;
    若所述比特为0,则确定所述辅小区子组中的辅小区进入非睡眠状态。
  7. 如权利要求1-6中至少一项所述的状态确定方法,其特征在于,通过接收辅小区上的PDCCH获取所述指示信令。
  8. 如权利要求7所述的状态确定方法,其特征在于,所述辅小区子组为所述辅小区所在辅小区组的子组。
  9. 如权利要求8所述的状态确定方法,其特征在于,通过高层参数获取所述辅小区子组中的辅小区列表。
  10. 如权利要求1-9中至少一项所述的状态确定方法,其特征在于,
    所述辅小区进入睡眠状态包括:在辅小区上切换到dormant BWP上; 或者,在辅小区上使用dormant BWP作为激活的BWP。
  11. 如权利要求1-10中至少一项所述的状态确定方法,其特征在于,
    所述辅小区进入睡眠状态包括:
    在DRX激活时间内,停止监听辅小区上的PDCCH;
    或者,在一段持续时间内,停止监听辅小区上的PDCCH。
  12. 一种状态确定系统,其特征在于,所述状态确定系统包括:
    信令获取模块,用于获取指示信令;
    状态确定模块,用于根据所述指示信令,确定一个辅小区子组中的辅小区进入睡眠状态或进入非睡眠状态。
  13. 如权利要求12所述的状态确定系统,其特征在于,所述指示信令为位图中的一个比特。
  14. 如权利要求13所述的状态确定系统,其特征在于,所述位图中的一个比特对应一个辅小区子组。
  15. 如权利要求14所述的状态确定系统,其特征在于,所述状态确定系统还包括对应关系获取模块,用于通过高层参数获取所述位图中的比特和辅小区子组的对应关系。
  16. 如权利要求13所述的状态确定系统,其特征在于,
    若所述比特为0,则所述状态确定模块确定所述辅小区子组中的辅小区进入睡眠状态;
    若所述比特为1,则所述状态确定模块确定所述辅小区子组中的辅小区进入非睡眠状态。
  17. 如权利要求13所述的状态确定系统,其特征在于,
    若所述比特为1,则所述状态确定模块确定所述辅小区子组中的辅小区进入睡眠状态;
    若所述比特为0,则所述状态确定模块确定所述辅小区子组中的辅小区进入非睡眠状态。
  18. 如权利要求12-17中至少一项所述的状态确定系统,其特征在于,所述信令获取模块通过接收辅小区上的PDCCH获取所述指示信令。
  19. 如权利要求18所述的状态确定系统,其特征在于,所述辅小区子组为所述辅小区所在辅小区组的子组。
  20. 如权利要求19所述的状态确定系统,其特征在于,所述状态确定系统还包括列表获取模块,用于通过高层参数获取所述辅小区子组中的辅小区列表。
  21. 如权利要求12-17中至少一项所述的状态确定系统,其特征在于,所述状态确定模块在辅小区上切换到dormant BWP上;或者,所述状态确定模块在辅小区上使用dormant BWP作为激活的BWP。
  22. 如权利要求12-17中至少一项所述的状态确定系统,其特征在于,
    所述状态确定模块在DRX激活时间内,停止监听辅小区上的PDCCH;
    或者,所述状态确定模块在一段持续时间内,停止监听辅小区上的PDCCH。
  23. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行计算机程序时实现权利要求1-11任一项所述的状态确定方法的步骤。
  24. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-11任一项所述的状态确定方法的步骤。
PCT/CN2021/075845 2020-01-21 2021-02-07 状态确定方法、系统、介质及电子设备 WO2021148049A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/794,420 US20230074847A1 (en) 2020-01-21 2021-02-07 Method for determining a state, electronic device, and non-transitory computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010072622.0 2020-01-21
CN202010072622.0A CN111148052B (zh) 2020-01-21 2020-01-21 状态确定方法、系统、介质及电子设备

Publications (1)

Publication Number Publication Date
WO2021148049A1 true WO2021148049A1 (zh) 2021-07-29

Family

ID=70526829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075845 WO2021148049A1 (zh) 2020-01-21 2021-02-07 状态确定方法、系统、介质及电子设备

Country Status (3)

Country Link
US (1) US20230074847A1 (zh)
CN (1) CN111148052B (zh)
WO (1) WO2021148049A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115552978A (zh) * 2020-05-22 2022-12-30 Oppo广东移动通信有限公司 监听信道的方法、装置、设备及存储介质
CN116097766A (zh) * 2020-08-06 2023-05-09 苹果公司 特殊小区休眠带宽部分切换
WO2022151418A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301721A (zh) * 2015-05-15 2017-01-04 电信科学技术研究院 Lte载波聚合技术中聚合载波激活/去激活方法及设备
WO2019084184A1 (en) * 2017-10-25 2019-05-02 Qualcomm Incorporated ENHANCED ACTIVATION AND DEACTIVATION OF SECONDARY CELL IN NEW RADIO
US10433330B2 (en) * 2015-04-01 2019-10-01 Qualcomm Incorporated Enhanced carrier aggregation activation and scheduling request procedures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000176A1 (zh) * 2018-06-26 2020-01-02 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
CN110519853B (zh) * 2019-09-06 2023-04-28 中兴通讯股份有限公司 切换指示方法、切换方法、装置、服务节点、终端及介质
CN110677887B (zh) * 2019-10-14 2024-02-09 中兴通讯股份有限公司 切换方法、切换指示方法、装置、终端、服务节点及介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10433330B2 (en) * 2015-04-01 2019-10-01 Qualcomm Incorporated Enhanced carrier aggregation activation and scheduling request procedures
CN106301721A (zh) * 2015-05-15 2017-01-04 电信科学技术研究院 Lte载波聚合技术中聚合载波激活/去激活方法及设备
WO2019084184A1 (en) * 2017-10-25 2019-05-02 Qualcomm Incorporated ENHANCED ACTIVATION AND DEACTIVATION OF SECONDARY CELL IN NEW RADIO

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on low latency SCell activation and efficient SCell management", 3GPP DRAFT; R1-1911875, vol. RAN WG1, 9 November 2019 (2019-11-09), Reno, USA, pages 1 - 13, XP051823057 *
NOKIA, NOKIA SHANGHAI BELL: "Efficient CA design R1-1912281", 3GPP DRAFT; R1-1912281, vol. RAN WG1, 8 November 2019 (2019-11-08), Reno, Nevada, U.S.A, pages 1 - 7, XP051823344 *
QUALCOMM INCORPORATED: "Potential Techniques for UE Power Saving, R1-1903016", 3GPP DRAFT; R1-1903016, vol. RAN-WG1, 16 February 2019 (2019-02-16), pages 1 - 33, XP051600713 *

Also Published As

Publication number Publication date
CN111148052B (zh) 2023-03-24
CN111148052A (zh) 2020-05-12
US20230074847A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2021148049A1 (zh) 状态确定方法、系统、介质及电子设备
WO2021148048A1 (zh) 用于pdcch监听的控制方法、系统、介质及电子设备
CN110557778B (zh) 一种终端的功耗控制方法、装置及存储介质
US9329671B2 (en) Power-efficient inter processor communication scheduling
CN101470518B (zh) 用于不依赖于操作系统的服务的方法和装置
US9930618B2 (en) Apparatus and method for controlling operation mode in a wireless terminal
JP6458279B2 (ja) 電力供給制御方法及び無線端末
WO2017107852A1 (zh) 一种心跳报文的发送方法和装置
CN108289030B (zh) 一种基站故障识别处理方法及装置
WO2021160042A1 (zh) 节能指示及节能的方法及基站、设备和存储介质
US20140095911A1 (en) Controlling Power Consumption By Power Management Link
JP2022531942A (ja) ウェイクアップ信号監視指示
WO2023246101A1 (zh) 节能方法、基站及终端设备
CN112486311A (zh) 一种嵌入式系统的低功耗控制方法及系统、存储介质
CN114327023B (zh) 一种Kubernetes集群的节能方法、系统、计算机介质和电子设备
WO2022135059A1 (zh) 指示物理下行共享信道监听方法及装置、介质
CN111294896B (zh) 用户终端及其控制方法、计算机可读存储介质
CN115599447A (zh) 节能方法、节能设备、电子设备及计算机存储介质
WO2024017186A1 (zh) 接入控制方法、系统、设备、介质、芯片、终端及基站
WO2022078496A1 (zh) 物理层监听方法及相关装置
WO2023109331A1 (zh) 提升语音业务下行质量的方法、芯片、设备及存储介质
CN113678512B (zh) 节能信号的处理方法、装置、设备和存储介质
CN115826732A (zh) 一种休眠唤醒方法、装置以及计算机可读存储介质
CN115129382A (zh) 一种PCIe设备的链路状态控制方法、装置、设备及介质
CN116233878A (zh) 搜索空间组切换方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744426

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21744426

Country of ref document: EP

Kind code of ref document: A1