WO2021159909A1 - 一种涂布装置及不等厚集流体的涂布方法 - Google Patents

一种涂布装置及不等厚集流体的涂布方法 Download PDF

Info

Publication number
WO2021159909A1
WO2021159909A1 PCT/CN2021/071606 CN2021071606W WO2021159909A1 WO 2021159909 A1 WO2021159909 A1 WO 2021159909A1 CN 2021071606 W CN2021071606 W CN 2021071606W WO 2021159909 A1 WO2021159909 A1 WO 2021159909A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
coating
current collector
unequal
sensor
Prior art date
Application number
PCT/CN2021/071606
Other languages
English (en)
French (fr)
Inventor
张万财
冯俊敏
吴婷婷
Original Assignee
深圳市海瀚新能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020160438.7U external-priority patent/CN211455837U/zh
Application filed by 深圳市海瀚新能源技术有限公司 filed Critical 深圳市海瀚新能源技术有限公司
Publication of WO2021159909A1 publication Critical patent/WO2021159909A1/zh
Priority to US17/882,698 priority Critical patent/US11777071B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0411Methods of deposition of the material by extrusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of processing secondary batteries, and in particular, to a coating device and a coating method of a current collector of unequal thickness.
  • the structure of the composite current collector used in the existing secondary battery includes: a polymer layer, a metal plating layer arranged on opposite sides of the polymer layer, each metal plating layer includes a tab area and a coating area, and the coating area is used for The active material is coated to form an active material layer, and the tab area is used to connect the tabs, collect the current on the metal plating layer and divert it to the pole.
  • the thickness of the metal plating layer in the tab area and the coating area is the same, which easily leads to the problem of insufficient flow capacity in the tab area and excessive flow capacity in the coating area. Therefore, the inventor invented a new current collector to increase the thickness of the tab area, that is, the thickness of the tab area is greater than the thickness of the coating area, so that the thickness of the metal coating in the tab area is greater than the thickness of the metal coating in the coating area.
  • the coating area of the thinner area is used to coat the active material to form the active material layer, and the tab area of the thicker area is used to connect the tabs. Therefore, it is necessary to accurately coat the current collector of unequal thickness. Cloth (only the coating area is coated with the active material layer, the tab area is not coated with the active material layer).
  • the unequal-thickness current collector may shift during transportation. If the unequal-thickness current collector shifts, there will be active material in the tab area, while the coating area is not coated with active material or activity. Substance reduction and other phenomena, and then unable to accurately apply the active material.
  • the purpose of the present disclosure is to provide a coating device and a method for coating a current collector of unequal thickness, which can accurately coat a current collector of unequal thickness and avoid coating unnecessary active materials in the tab area.
  • embodiments of the present disclosure provide a coating device for coating an active material on a current collector of unequal thickness.
  • the unequal-thickness current collector includes coating areas and tab areas alternately arranged along the width direction of the unequal-thickness collector. Both the coating area and the tab area extend along the length of the unequal-thickness current collector.
  • the thickness is greater than the thickness of the coating area.
  • the coating device includes a thickness sensor, a correction controller and a correction mechanism. The thickness sensor is used to detect the thickness mutation point on the unequal thickness current collector and output the mutation point signal.
  • the correction controller can receive a sudden change point signal, and can compare the received sudden change signal with a preset thickness change point signal, and then determine whether the unequal thickness current collector is offset and the direction of the offset according to the comparison result, and send a correction signal.
  • the correction mechanism and the thickness sensor are arranged in sequence along the conveying path of the unequal thickness current collector, and the correction mechanism is used to receive the correction signal and make a correction action opposite to the deviation direction.
  • the thickness sensor detects the thickness change point of the unequal thickness current collector, and sends the sudden change point signal of the thickness change point to the correction controller.
  • the correction controller confirms the deviation direction of the unequal thickness current collector, it sends the correction signal to
  • the correction mechanism through the correction mechanism to correct the unequal thickness current collector in the direction opposite to the correction direction, can correct the deviation of the conveyed unequal thickness current collector in time, so that the unequal thickness current collector can be accurately coated later.
  • the thickness sensor is used to detect the thickness mutation point on the unequal thickness current collector and output a voltage mutation signal.
  • the correction controller is used to receive the voltage sudden change signal, and can compare the received voltage sudden change signal with the preset voltage sudden change signal, and according to the comparison result, determines whether the unequal thickness current collector is offset and the direction of the offset, and sends a correction signal.
  • the coating device further includes a displacement sensor that moves synchronously with the thickness sensor, which is used to detect the position of the thickness change point on the unequal thickness current collector and output a position signal.
  • the correction controller is used to receive the position signal of the thickness change point, and the received position signal.
  • the correction controller is used to receive the position signal of the thickness mutation point, and compare the received position signal with the preset thickness and the preset thickness mutation point, and determine whether the unequal thickness current collector is offset and offset according to the comparison result Direction and send out correction signal.
  • the thickness sensor and the displacement sensor move synchronously.
  • the displacement sensor synchronously detects the position of the thickness sudden change point and outputs a position signal, and then through the transmission and comparison of the position signal, it is determined whether the unequal thickness current collector is offset And the offset direction. If the position of the thickness change point shifts to the left, the correction controller controls the correction mechanism to correct the deviation; if the thickness change point position shifts to the right, the correction controller controls the correction mechanism to correct the deviation to the left. Correct the deviation of the unequal-thickness current collector to facilitate the subsequent accurate coating of the unequal-thickness current collector.
  • the thickness sensor is configured to reciprocate along the width direction of the unequal thickness current collector and is located on the side of the unequal thickness current collector.
  • the thickness sensor scans for one cycle, it detects the first thickness mutation point and outputs a mutation signal.
  • the correction controller calculates the time when the mutation point signal appears, and compares it with the preset time when the mutation point signal appears. Determine the deviation direction of the unequal thickness current collector and send out a correction signal.
  • the correction controller calculates that the time for the thickness change point to appear is longer than the preset time, it means that the unequal thickness current collector is shifted away from the position of the initial thickness sensor, and the correction controller controls the correction mechanism toward the beginning The position correction of the thickness sensor will then make the unequal-thickness current collector to correct the position of the initial thickness sensor; if the correction controller calculates that the time for the thickness change point to appear is shorter than the preset time, it means that the unequal-thickness set When the fluid moves toward the position close to the initial thickness sensor, the correction controller controls the correction mechanism to correct the position away from the initial thickness sensor, and then causes the unequal thickness current collector to correct the position away from the initial thickness sensor.
  • the thickness sensor is used to detect the thickness mutation point on the unequal thickness current collector and output multiple voltage mutation values; wherein the thickness sensor detects that the unequal thickness current collector changes from thick to thin, and the voltage changes suddenly. The value corresponds to a positive value or a negative value. The thickness sensor detects that the unequal-thickness collector changes from thin to thick, and the voltage mutation value corresponds to a negative or positive value.
  • the correction controller receives the voltage sudden change value, it compares the number of positive values with the preset number of positive values and compares the number of negative values with the preset number of negative values, and then determines the inequality according to the comparison result The offset direction of the thick current collector.
  • the correction mechanism is located at the front end of the thickness sensor.
  • the unequal-thickness current collector passes through the correction mechanism and then the thickness sensor.
  • the correction mechanism is controlled by the correction controller to correct the deviation.
  • the unequal-thickness current collector will be transported to the thickness sensor, and then the thickness change point detection, transmission and comparison, etc. can be timely detected whether the correction mechanism is in place or whether there is too much correction, so as to further correct the deviation.
  • the coating device further includes a coating back roller and a coating die.
  • the conveying path passes through the circumferential surface of the coating back roller and the coating back roller is located at the rear end of the thickness sensor.
  • the coating die Towards the conveying path on the coating back roll.
  • the tension interruption mechanism is arranged at the front end of the coating back roller, which can avoid the tension fluctuation of the front end of the over-roller from causing the substrate on the coating back roller to wrinkle, affecting the coating effect or forming a broken belt.
  • the tension interruption mechanism includes an active roller and a pressing roller
  • the conveying path passes between the active roller and the pressing roller
  • the pressing roller is used to pressurize the current collector of unequal thickness on the conveying path.
  • the unequal thickness current collector can be better tensioned, and after the tension is separated, the substrate wrinkles at the coating back roller can be further avoided, and the coating effect is better.
  • the outer diameter of the driving roller is larger than the outer diameter of the pressing roller, and the conveying path forms a covering angle on the driving roller.
  • the coating device further includes a first passing roller, the conveying path passes through the peripheral surface of the first passing roller, the first passing roller is located between the thickness sensor and the tension interruption mechanism, and the active roller is connected to the coating back
  • the length of the conveying path between the rollers is smaller than the length of the conveying path between the driving roller and the first passing roller.
  • the distance between the active roller and the tension cut-off mechanism is short, and no other over rollers cause tension fluctuations, and the tension is more stable for subsequent coating.
  • the embodiments of the present disclosure provide a coating method of a current collector of unequal thickness, which is suitable for the coating device described above.
  • the coating method includes: arranging the unequal-thickness current collector on the conveying path, and passing the unequal-thickness current collector through a correction mechanism and a thickness sensor.
  • the thickness sensor is used to detect the sudden change point of the thickness of the unequal thickness current collector and output the sudden change point signal.
  • the correction controller receives the sudden change point signal, and compares it with the preset thickness sudden change point signal, determines the deviation direction of the unequal thickness current collector, and sends a correction signal.
  • the correction mechanism is used to receive the correction signal and make a correction action opposite to the deviation direction.
  • the unequal-thickness current collector can be rectified in time to convey the offset, so as to accurately coat the unequal-thickness current collector.
  • embodiments of the present disclosure provide a coating device for coating an active material on a current collector of unequal thickness to form an active material layer.
  • the unequal-thickness current collector includes coating areas and tab areas alternately arranged along the length of the unequal-thickness collector. Both the coating area and the tab area extend in the width direction of the unequal-thickness current collector. The thickness is greater than the thickness of the coating area.
  • the coating device includes a thickness sensor for detecting the thickness of the unequal-thickness current collector and a coating back roller sequentially arranged along the conveying path of the unequal-thickness current collector.
  • the coating back roller has a coating area.
  • the first signal is obtained.
  • the thickness sensor sends the first signal to the coating controller.
  • the coating controller controls the opening of the coating die.
  • the second signal is obtained.
  • the thickness sensor sends the second signal to the coating controller, and the coating controller controls the coating die to close .
  • the coating area and the tab area are alternately arranged, when the tab area passes the coating back roll, no coating is performed, and the coating area is coated When backing the roll, apply coating again.
  • the thickness sensor Through the setting of the thickness sensor, it can be determined whether the position passing the coating back roller is the coating area or the tab area, so that the coating area can be accurately coated by controlling the switch of the coating die.
  • the embodiments of the present disclosure provide a method for coating a current collector of unequal thickness, which is suitable for the coating device described above.
  • the coating method includes: arranging the unequal-thickness current collector on the conveying path, and passing the unequal-thickness current collector through the thickness sensor and the coating back roller.
  • the first signal is obtained.
  • the thickness sensor sends the first signal to the coating controller, and the coating controller controls the coating die to open .
  • the second signal is obtained.
  • the thickness sensor sends the second signal to the coating controller, and the coating controller controls the coating die to close .
  • Figure 1 is a schematic diagram of the layer structure of a current collector of unequal thickness
  • Figure 2 is a schematic diagram of the structure of the coating device
  • Figure 3 is a schematic diagram of the first plane structure of the unequal thickness current collector
  • FIG. 4 is a schematic diagram of the first position structure of the coating die and the current collector of unequal thickness
  • Figure 5 is a schematic diagram of the position structure of the eddy current thickness sensor and the unequal thickness current collector
  • Figure 6 is a schematic block diagram of an eddy current thickness flow sensor
  • Fig. 7 is a schematic diagram of a second plane structure of a current collector of unequal thickness
  • Fig. 8 is a schematic view showing the structure of the second position of the coating die corresponding to the current collector of unequal thickness.
  • Icon 10-Unequal-thickness current collector; 11-Insulation layer; 12-First conductive layer; 13-Second conductive layer; 121-Coating area; 122-Tel area; 20-Coating device; 21-Correcting deviation Mechanism; 22-thickness sensor; 23-first passing roller; 24-tension cut-off mechanism; 25-coating mechanism; 251-coating back roller; 252-coating die head; 2521-spout; 2522-shielding part; 221 -First sensor; 222-Second sensor; 223-Frame body; 211-First correcting roller; 212-Second correcting roller; 26-Second passing roller; 241-Active roller; 242-Press roller.
  • FIG. 1 is a schematic diagram of the layer structure of a current collector 10 of unequal thickness.
  • the unequal-thickness current collector 10 has a three-layer structure. Specifically, it includes an insulating layer 11 located in an intermediate layer and a first conductive layer 12 and a second conductive layer 13 located on opposite sides of the insulating layer 11.
  • the first conductive layer 12 and the second conductive layer 13 both include coating regions 121 and tab regions 122 alternately arranged at intervals.
  • the coating regions 121 are used to coat active materials to form an active material layer, and the tab regions 122 are used to Connect the lugs.
  • the inventor designed the current collector 10 of unequal thickness.
  • the unequal-thickness current collector 10 means that the thicknesses of the corresponding tab region 122 and the coating region 121 in the first conductive layer 12 and the second conductive layer 13 are not equal, wherein the thickness of the tab region 122 is greater than that of the coating region 121 The thickness is such that the tab area 122 is connected to the tab, and the coating area 121 is coated with an active material to form an active material layer.
  • the inventor improved the coating device 20 as follows:
  • FIG. 2 is a schematic diagram of the structure of the coating device 20.
  • the coating device 20 includes an unwinding roller (not shown), a deviation correction mechanism 21, a deviation correction controller (not shown), a thickness sensor 22, a first passing roller 23, a tension interruption mechanism 24, and a coating mechanism 25 and take-up roll (not shown).
  • the 10 coils of unequal thickness current collector are unwinded from the unwinding roller, and are conveyed along the conveying path through the correction mechanism 21, the thickness sensor 22, the first passing roller 23, the tension interruption mechanism 24 and the coating mechanism 25, and use the rewinding mechanism. Rewinding rolls.
  • the coating mechanism 25 includes a coating back roller 251 and a coating die 252.
  • the conveying path passes through the circumferential surface of the coating back roller 251, and the coating die 252 faces the conveying path on the coating back roller 251. . That is to say, when conveying the unequal thickness current collector 10, the unequal thickness current collector 10 covers at least a part of the peripheral surface of the coating back roller 251, and the coating die 252 coats the slurry on the coating back roller 251.
  • the first coating method if the unequal thickness current collector 10 is a long roll material with a certain width, the coating area 121 and the tab area 122 both extend along the length direction of the unequal thickness current collector 10. In other words, if the unequal-thickness current collector 10 is arranged on the coating device 20, the extension direction of the coating area 121 and the tab area 122 is consistent with the conveying direction of the unequal-thickness current collector 10.
  • FIG. 3 is a schematic diagram of the first plane structure of the unequal thickness current collector 10. 3, the length direction indicated by the arrow in the figure is the extension direction of the tab area 122 and the coating area 121, and the coating area 121 and the tab area 122 are alternately arranged along the width direction of the current collector 10 of unequal thickness. After the unequal thickness current collector 10 is set on the coating device 20, the conveying direction of the unequal thickness current collector 10 is the length direction of the unequal thickness current collector 10.
  • FIG. 4 is a schematic diagram of the first position structure of the coating die 252 corresponding to the unequal thickness current collector 10. 4, after the unequal thickness current collector 10 is located on the circumferential surface of the coating back roller 251, the cross section of the unequal thickness current collector 10 is shown in FIG. 121 coats the active material layer, and avoids coating the active material layer on the tab area 122 of the current collector 10 with unequal thickness, and the structure of the coating die 252 is set as follows. As shown in FIG. 4, the coating die 252 has a plurality of nozzles 2521 arranged at intervals, and the nozzles 2521 correspond to the coating area 121 to coat the coating area 121 with an active material layer. Between two adjacent nozzles 2521 A shielding portion 2522 is provided, and the shielding portion 2522 corresponds to the tab area 122 to prevent the tab area 122 from being coated with an active material layer.
  • the correction mechanism 21 is controlled by the correction controller to correct the conveying path of the unequal thickness current collector.
  • the correction controller is electrically connected to the thickness sensor 22 and the correction mechanism 21 through the thickness sensor 22 and the correction controller.
  • the nozzle 2521 of the coating die 252 corresponds to the coating area 121 of the unequal-thickness collector 10 after the unequal-thickness current collector 10 is transported to the coating back roller 251 for accurate ⁇ Ground coating.
  • the thickness sensor 22 Since there is a thickness difference between the coating area 121 and the tab area 122 in the unequal-thickness current collector 10, the thickness sensor 22 is located on the side of the unequal-thickness current collector 10, and the thickness sensor 22 can be along the unequal-thickness current collector 10 Reciprocating in the width direction, the thickness sensor 22 is used to detect the thickness change point on the unequal-thickness current collector 10.
  • the thickness sensor 22 can detect the position of the thickness difference of the unequal-thickness current collector 10, and output the sudden change point signal, which is received by the correction controller
  • the mutation point signal is compared with the preset thickness mutation point signal to determine whether the unequal thickness current collector 10 is offset and the offset direction, and a correction signal is issued.
  • the correction mechanism 21 receives the correction signal and performs a correction action opposite to the deviation direction.
  • the thickness sensor 22 detects the thickness change point on the unequal thickness current collector 10, and the thickness sensor 22 sends a first change point signal to the correction controller (wherein, the first change point signal is to be compared with the subsequent second change point signal). It does not mean that it is a sudden change point signal).
  • the correction controller After the correction controller receives the first sudden change point signal, it compares with the preset thickness sudden change point signal corresponding to the first sudden change point signal to determine the unequal thickness current collector 10 Offset to the right, the correction controller sends a first correction signal to the correction mechanism 21 (the first correction signal is only used to distinguish it from the subsequent second correction signal, but it cannot be understood as an indication or implied relative importance), After the correction mechanism 21 receives the first correction signal, it corrects the deviation of the unequal thickness current collector 10 to the left.
  • the thickness sensor 22 detects the thickness change point on the unequal thickness current collector 10, the thickness sensor 22 sends a second change point signal to the correction controller, and the correction controller receives the second change point signal and corresponds to the second change point signal.
  • the correction controller sends a second correction signal to the correction mechanism 21, and the correction mechanism 21 makes the unequal thickness
  • the fluid 10 is rectified to the right.
  • the thickness sensor 22 may be a laser thickness sensor, an eddy current thickness sensor, a magnetic thickness sensor, a capacitive thickness sensor, an ultrasonic thickness sensor, and the like.
  • the embodiments of the present disclosure are not limited.
  • the thickness sensor 22 detects the thickness mutation point on the unequal thickness current collector 10 and outputs a voltage mutation signal. After receiving the voltage abrupt change signal, the correction controller compares it with a preset voltage abrupt signal, and then determines whether the unequal thickness current collector 10 is offset and the direction of the offset.
  • the thickness sensor 22 is used to detect the thickness mutation point on the unequal-thickness current collector 10 and output a plurality of voltage mutation values; wherein, the thickness sensor 22 detects that the unequal-thickness current collector changes from thickness to thinner, and the voltage mutation value corresponds to Positive or negative value, the thickness sensor 22 detects that the unequal thickness current collector changes from thin to thick, and the voltage mutation value corresponds to a negative or positive value (for example, the thickness sensor 22 detects that the unequal thickness current collector changes from thick to thin, and the voltage The sudden change value corresponds to a positive value, the thickness sensor 22 detects that the unequal thickness current collector changes from thin to thick, and the voltage sudden change value corresponds to a negative value; or the thickness sensor 22 detects that the unequal thickness current collector changes from thick to thin, and the voltage sudden change value corresponds to If it is a negative value, the thickness sensor 22 detects that the unequal-thickness current collector changes from thin to thick, and the voltage mutation value corresponds to a positive value). After the correction controller receives
  • the thickness sensor 22 is an eddy current thickness sensor as an example for description.
  • FIG. 5 is a schematic diagram of the position and structure of the eddy current thickness sensor corresponding to the unequal thickness current collector 10.
  • the eddy current thickness sensor includes a first sensor 221, a second sensor 222, and a frame 223.
  • the frame 223 has a U-shaped structure. The two ends of the U-shaped structure are provided with a first sensor 221 and a second sensor 222, respectively. And the first sensor 221 and the second sensor 222 are both arranged inside the U-shaped structure.
  • the detection method of the thickness of the unequal-thickness current collector 10 through the above-mentioned eddy current thickness sensor is: the U-shaped structure of the frame 223 reciprocates left and right, so that the first sensor 221 and the second sensor 222 can scan the unequal-thickness current collector back and forth. 10.
  • the eddy current thickness sensor scans to the thickness change point of the unequal thickness current collector 10, the distance between the sensor probe and the unequal thickness current collector 10 will change, causing the output voltage of the eddy current thickness sensor to change.
  • d is a constant value; if the scan is from the lug area 122 to the coating area 121, then (S1+S2 If the value of) increases, the value of d decreases; if during scanning, the coating area 121 is scanned to the tab area 122, the value of (S1+S2) decreases, and the value of d increases.
  • the output voltage will change. By comparing with the preset voltage, a voltage difference is obtained, which is transmitted to the correction controller as an output signal after passing through the amplifier.
  • the frame body 223 reciprocates left and right. For example, the frame body 223 moves from the far left to the far right as the first cycle, and then moves from the far right to the left as the second cycle.
  • the frame body 223 moves in the first cycle, there are three positions that change from the tab area 122 to the coating area 121, and there are also three positions that change from the coating area 121 to the tab area 122, and the frame body 223 performs the first cycle.
  • the cycle moves, there are a total of six sudden changes in thickness, and there will be a voltage sudden change signal.
  • the first sensor 221 and the second sensor 222 detect the change from the thinner coating area 121 to the thicker tab area 122; when the value of the voltage sudden change is negative, the first sensor The sensor 221 and the second sensor 222 detect from the thicker tab area 122 to the thinner coating area 121.
  • the sensor probe of the first sensor 221 and the sensor probe of the second sensor 222 scan from the tab area 122 To the coating area 121, the voltage suddenly changes to a negative value.
  • the sensor probe of the first sensor 221 and the sensor probe of the second sensor 222 scan from the coating area 121 to the tab area 122, and the voltage abruptly becomes Positive value.
  • the first sensor 221 and the second sensor 222 will send six voltage mutation values to the correction controller, which are three positive values and three negative values.
  • the correction controller After the correction controller receives the above-mentioned six voltage mutation values, it compares with the preset voltage mutation values and finds that the preset voltage mutation values are also three positive values and three negative values, indicating that the current collector of unequal thickness is 10 If the conveyance does not deviate, there is no need to control the deviation correction mechanism 21 to perform a deviation correction action.
  • the sensor probe of the first sensor 221 and the sensor probe of the second sensor 222 cannot detect the coating area 121 to the rightmost.
  • the thickness change point of the tab area 122 After the frame body 223 moves from the far left to the far right to complete the first cycle of movement, the first sensor 221 and the second sensor 222 will send five voltage changes to the correction controller, which are respectively Two positive values and three negative values. After the correction controller receives the above five voltage sudden changes, it compares with the preset voltage sudden changes. Among them, the preset voltage sudden changes are three positive values and three negative values.
  • the correction controller sends the first correction signal to the correction mechanism 21 to correct the deviation. After receiving the first correction signal, the mechanism 21 corrects the deviation of the unequal thickness current collector 10 to the left.
  • the sensor probe of the first sensor 221 and the sensor probe of the second sensor 222 cannot detect the leftmost tab area 122 to At the sudden change point of the thickness of the coating area 121, the frame body 223 moves from the leftmost to the rightmost after the first cycle of movement is completed, the first sensor 221 and the second sensor 222 will send five voltage sudden changes to the correction controller, which are respectively Three positive values and two negative values. After the correction controller receives the above five voltage mutation values, it is compared with the preset voltage mutation values. Among them, the preset voltage mutation values are three positive values and three negative values.
  • the correction controller sends the second correction signal to the correction mechanism 21 to correct the deviation. After the mechanism 21 receives the second correction signal, the unequal thickness current collector 10 is corrected to the right.
  • the thickness sensor 22 reciprocates along the width direction of the unequal thickness current collector 10 and is located on the side of the unequal thickness current collector 10.
  • the correction controller calculates the time when the mutation point signal appears and compares it with the preset time when the mutation point signal appears. , Determine the deviation direction of the unequal thickness current collector 10 and send a correction signal.
  • the correction controller calculates that the time for the thickness change point to appear is longer than the preset time, it means that the unequal thickness current collector 10 has shifted away from the initial thickness sensor 22, and the correction controller controls the correction mechanism 21 Correction toward the position of the initial thickness sensor 22, and then the unequal thickness current collector 10 is corrected toward the position of the initial thickness sensor; if the correction controller calculates that the time for the thickness change point to appear is shorter than the preset time, it means The unequal-thickness current collector 10 deviates toward the position close to the initial thickness sensor 22, and the correction controller controls the correction mechanism 21 to correct the deviation toward a position away from the initial thickness sensor 22, and then makes the unequal-thickness current collector 10 move away from the initial thickness The position of the sensor is corrected.
  • the thickness sensor 22 is an eddy current thickness sensor, and the frame body 223 reciprocates left and right. For example, the frame body 223 moves from the rightmost to the leftmost, and then from the leftmost to the rightmost for one cycle.
  • the preset time is 1s, and when the frame 223 moves for one cycle, the first sensor 221 and the second sensor 222 move from the rightmost to the first The moving time of each thickness change point is 1s. If the conveyance of the unequal-thickness current collector 10 shifts to the left, the time for the first sudden thickness change point to appear will be prolonged (more than 1s), for example: 1.5s, the rectification controller will send a rectification signal to control the rectification mechanism 21 to Right correction.
  • the correction controller will send a correction signal to control the correction mechanism 21 to Left correction. After the frame body 223 moves for one cycle, the calculation in the correction controller is reset to zero, and then when the frame body 223 moves for another cycle, the counting is restarted to perform real-time correction of the unequal thickness current collector 10.
  • it further includes a displacement sensor that moves synchronously with the thickness sensor 22, which is electrically connected to the correction controller, and the displacement sensor is used to detect the displacement of the thickness change point on the unequal thickness current collector 10 and output a position signal.
  • the correction controller receives the position signal of the thickness change point and compares it with the preset position signal of the thickness change point, determines the deviation direction of the unequal thickness current collector 10 and sends a correction signal.
  • the thickness sensor 22 and the displacement sensor move synchronously.
  • the thickness sensor 22 cooperates with the displacement sensor.
  • the displacement sensor also synchronously detects the position of the thickness sudden change point, and then through the correction controller and the preset Comparing the position of the thickness change point, if the thickness change point position shifts to the left, the correction controller controls the correction mechanism 21 to correct the deviation; if the thickness change point position shifts to the right, the correction controller controls the correction mechanism 21 Correct the deviation to the left.
  • the frame body 223 reciprocates left and right, for example, the frame body 223 moves from the rightmost to the leftmost, and then from the leftmost to the rightmost as a cycle.
  • the first sensor 221 and the second sensor 222 detect the change from the thicker tab area 122 to the thinner coating area 121; when the value of the voltage sudden change is positive, the first sensor 221 And the second sensor 222 detects from the thinner coating area 121 to the thicker tab area 122.
  • the displacement sensor synchronously detects the displacement of the thickness sudden change point.
  • Both the thickness sensor 22 and the displacement sensor send signals to the correction controller, and the correction controller can detect the thickness sensor 22
  • the sudden change point of thickness corresponds to the displacement of the sudden change point, and corresponds to the preset thickness sudden change point and the displacement of the sudden change point, and it is determined whether the conveyance of the unequal thickness current collector 10 is offset.
  • the points where the voltages detected by the thickness sensor 22 suddenly become negative values correspond to the corresponding displacements, respectively.
  • Is the first preset position signal; the points where the voltages detected by the thickness sensor 22 suddenly become positive values correspond to the corresponding displacement meanings, and are respectively the second preset position signals.
  • the correction controller compares the first position signal with the first preset position signal, and finds that the position is shifted to the left (the displacement of the point where the voltage detected by the displacement sensor changes to a positive value is the second position signal and Send to the correction controller, the correction controller compares the second position signal with the second preset position signal and finds that the position is shifted to the left), then the correction controller sends a correction signal to control the correction mechanism 21 to correct the deviation to the right.
  • the correction controller compares the first position signal with the first preset position signal, and finds that the position shifts to the right (the displacement of the point where the voltage detected by the displacement sensor changes to a positive value is the second position signal and Send to the correction controller, the correction controller compares the second position signal with the second preset position signal and finds that the position is shifted to the right), then the correction controller sends a correction signal to control the correction mechanism 21 to correct the deviation to the left.
  • the displacement sensor is an existing displacement sensor, as long as the displacement sensor can detect the position information of the thickness change point is within the protection scope of the present disclosure.
  • the correction mechanism 21 includes a correction motor (not shown), a correction frame (not shown), a first correction roller 211 and a second correction roller 212, the output shaft of the correction motor is connected to the correction frame, and the first correction passing roller Both the 2133 and the second correction roller 2134 are fixed on the correction frame, and the correction controller is electrically connected to the correction motor.
  • the unequal-thickness current collector 10 passes through the first correcting roller 211 and the second correcting roller 212 in sequence during transportation.
  • the correction controller sends the first correction signal to the correction motor. After receiving the first correction signal, the correction motor works to control the deviation of the correction frame to the left.
  • the first correction passing roller 2133 and the second correction passing roller 2134 are fixed on the correction frame. Correct the deviation of the unequal thickness current collector 10 to the left.
  • the correction controller sends the second correction signal to the correction motor, the correction motor works after receiving the second correction signal, and controls the correction frame to shift to the right.
  • the first correction passing roller 2133 and the second correction passing roller fixed on the correction frame 2134 corrects the deviation of the unequal thickness current collector 10 to the right.
  • the first sensor 221 and the second sensor 222 are respectively arranged on the upper and lower sides of the unequal-thickness collector 10, the unequal-thickness collector 10 is arranged horizontally, and the frame 223 moves horizontally to the left and right, so that the thickness of the unequal-thickness collector 10 can be detected More precise.
  • the tension interruption mechanism 24 is located between the first passing roller 23 and the coating back roller 251.
  • the unequal thickness current collectors 10 at the front and rear ends of the tension separation mechanism 24 can be tension separated, and the tension fluctuation of the first pass roller 23 at the front end can be avoided.
  • the current collector 10 of unequal thickness has wrinkles, which affects the coating effect or breaks the belt.
  • the tension interruption mechanism 24 includes an active roller 241 and a pressing roller 242, and the conveying path passes between the active roller 241 and the pressing roller 242, and the pressing roller 242 is used to pressurize the current collector 10 of unequal thickness on the conveying path.
  • the unequal-thickness current collectors 10 at the front and rear ends of the active roller 241 can be tensioned off, and the wrinkles of the unequal-thickness current collectors 10 at the coating back roller 251 can be further avoided. Make the coating effect better.
  • the first passing roller 23 is located between the second passing roller 26 and the tension interruption mechanism 24, and the conveying path passes through the peripheral surface of the first passing roller 23, and the conveying between the driving roller 241 and the coating back roller 251
  • the length of the path is smaller than the length of the conveying path between the driving roller 241 and the first passing roller 23.
  • the distance between the driving roller 241 and the tension interruption mechanism 24 is close, and there is no other over rollers that cause tension fluctuations, and the tension is more stable for subsequent coating.
  • the length of the conveying path between the active roller 241 and the coating back roller 251 refers to the distance between the line where the unequal thickness current collector 10 leaves the active roller 241 and the line where the unequal thickness current collector 10 enters the coating back roller 251.
  • the distance is the distance between the unequal-thickness collector 10 at the outlet end of the active roller 241 and the unequal-thickness collector 10 at the inlet end of the coating back roller 251.
  • the length of the conveying path between the driving roller 241 and the first passing roller 23 refers to the distance from the line where the unequal thickness current collector 10 leaves the first passing roller 23 to the line where the unequal thickness current collector 10 enters the driving roller 241. That is, the distance between the unequal-thickness collector 10 at the outlet end of the first passing roller 23 and the unequal-thickness collector 10 at the inlet end of the active roller 241.
  • the coating device 20 may also include multiple pass rollers, which can make the unequal-thickness current collector 10 under tension during the conveying process, so as to convey the unequal-thickness current collector 10 And coating.
  • the width direction indicated by the arrow in FIG. 7 is the extension direction of the tab area 122 and the coating area 121, and the length direction indicated by the arrow in FIG. The conveying direction of the thick current collector 10.
  • FIG. 8 is a schematic diagram of the second position structure of the coating die 252 corresponding to the unequal thickness current collector 10.
  • the coating die 252 is provided with a nozzle 2521, and the nozzle 2521 can coat the coating area 121 on the width of the current collector 10 of unequal thickness.
  • the nozzle 2521 is a flat nozzle, and the length of the flat nozzle corresponds to the width of the unequal thickness current collector 10.
  • the width direction unequal thickness current collector 10 can be processed. Coating.
  • the coating controller is electrically connected to the coating die 252 for controlling the opening or closing of the coating die 252.
  • the unequal-thickness current collector 10 on the coating back roller 251 is the tab area 122 and the coating area 121 alternately arranged at intervals, respectively. If the unequal-thickness current collector 10 corresponding to the nozzle 2521 of the coating die 252 is the coating area 121, the coating controller controls the coating die 252 to open, spray the slurry through the nozzle 2521, and perform the coating area 121 Coated.
  • the coating controller controls the coating die 252 to close to prevent the nozzle 2521 from spraying slurry and avoid coating the tab area 122. Cloth slurry.
  • the coating controller is electrically connected to the thickness sensor 22.
  • the coating back roller 251 has a coating area.
  • the thickness sensor 22 detects that the unequal-thickness current collector 10 at the entrance of the coating area changes from thickness to thinner (it can be explained that the unequal-thickness current collector entering the coating back roller 251 is
  • the first signal is obtained when the coating zone 121 of 10)
  • the thickness sensor 22 sends the first signal to the coating controller, and the coating controller controls the coating die 252 to open to coat the coating zone 121.
  • the thickness sensor 22 detects that the unequal-thickness current collector 10 at the inlet end of the coating area changes from thin to thick (it can be explained that the lug area 122 of the unequal-thickness collector 10 that enters the coating back roller 251) is obtained. Signal, the thickness sensor 22 sends a second signal to the coating controller, and the coating controller controls the coating die 252 to close to avoid coating the tab area 122.
  • the thickness sensor 22 is located on the side of the unequal-thickness current collector 10.
  • the unequal-thickness current collector 10 is continuously transported toward the rear end.
  • the positions of the frame body 223 of the U-shaped structure and the first sensor 221 and the second sensor 222 installed on the frame body 223 remain unchanged.
  • the conveying length of the end is a certain value, assuming that the distance is S3.
  • the length of each section of the coating area 121 is a fixed value
  • the distance of each section of the tab area 122 in the conveying direction is a fixed value L1
  • the distance of each section of the coating area 121 in the conveying direction is a fixed value L2
  • the conveying speed of the unequal-thickness collector 10 is a constant value V
  • the unequal-thickness collector 10 passes through the eddy current sensor (the connection between the sensor probe of the first sensor 221 and the sensor probe of the second sensor 222 is not equal
  • the coating controller controls the coating die 252 to open after the T1 time, and the coating die 252 is just right.
  • the coating area 121 at the entrance end of the coating area is coated.
  • the unequal-thickness current collector 10 After the unequal-thickness current collector 10 is transported for T2 time, when the voltage suddenly changes to a positive value, it indicates that the first sensor 221 and the second sensor 222 detect the change from the thinner coating area 121 to the thicker tab area 122, and then coating The cloth die head 252 is turned on for T2 time and then turned off. After the unequal-thickness current collector 10 is transported for T3 time, the voltage suddenly changes to a negative value, indicating that the first sensor 221 and the second sensor 222 detect from the thicker tab area 122 to the thinner coating area 121, then the coating The die 252 is closed for T3 time and then opened.
  • the coating controller controls the coating die 252 to open for T2 time, and then closes for T3 time, and so on.
  • the coating die 252 needs to be adjusted. Adjust the timing of opening and closing. details as follows:
  • the coating controller calculates When the time is greater than T2, the coating controller controls the coating die 252 to open after a time period T1 that is greater than the time range T2. If the length of one section of the coating zone 121 is too short, the signal of the sudden change of the voltage to a negative value and a sudden change to a positive value is transmitted to the coating controller. The coating controller calculates that the time is less than T2, and the coating controller controls the coating. The cloth die head 252 is turned on less than the time range T2 after the time T1. The opening time of the coating die 252 is based on the interval between the actual voltage sudden change to a negative value and a sudden change to a positive value.
  • the coating controller calculates When the time is greater than T3, the coating controller controls the coating die 252 to close after a time period T1 that is greater than the time range T3. If the length of one of the tab regions 122 is too short, the signal of the sudden change of the voltage to a positive value and a sudden change to a negative value is transmitted to the coating controller. The coating controller calculates that the time is less than T3, and the coating controller controls the coating. The cloth die 252 closes less than the time range of T3 after the time T1. The closing time of the coating die 252 is based on the time interval between the actual voltage sudden change to a positive value and a sudden change to a negative value.
  • the coating controller calculates that the time is greater than T2, and the coating The cloth controller controls the coating die 252 to turn on more than the time range T2 after the time T1 has passed. If the conveying speed of the unequal thickness current collector 10 becomes faster, the signal of the sudden change of the voltage to a negative value and a sudden change to a positive value is transmitted to the coating controller, and the coating controller calculates that the time is less than T2, and the coating controller controls The coating die 252 is opened after the time T1 is less than the time range T2. The opening time of the coating die 252 is based on the interval between the actual voltage sudden change to a negative value and a sudden change to a positive value.
  • the coating controller calculates that the time is greater than T3, and the coating
  • the cloth controller controls the coating die 252 to close after the TI time is greater than the T3 time range. If the conveying speed of the unequal-thickness current collector 10 becomes faster, the signal of the sudden change of the voltage to a positive value and a sudden change to a negative value is transmitted to the coating controller. The coating controller calculates that the time is less than T3, and the coating controller controls the coating.
  • the cloth die 252 closes less than the time range of T3 after the time T1. The closing time of the coating die 252 is based on the time interval between the actual voltage sudden change to a positive value and a sudden change to a negative value.
  • the coating die 252 If it becomes normal again after a period of change, then control the coating die 252 to turn on for T2 time, and then turn off for T3 time, and repeat the procedure.
  • the coating area 121 of the unequal thickness current collector 10 can be accurately coated during the transportation of the unequal thickness current collector 10, and the tab area 122 can be prevented from being coated.
  • the correction mechanism 21 may be a self-correction mechanism 21, which may correct the deviation of the current collector 10 of unequal thickness during transportation.
  • the coating device of the present disclosure can accurately coat the coating area of the unequal-thickness current collector without coating the tab area, and then can ensure that the active material distribution in the unequal-thickness current collector is more reasonable, so that the coating area An active material layer is formed on the electrode area, and the tab area does not contain active material, which can then make the current collector of unequal thickness meet the overcurrent capacity of the tab area, and can avoid the waste of the metal coating at the coating area, and then in the secondary battery It has good application prospects and is suitable for industrial production.

Abstract

一种涂布装置及不等厚集流体的涂布方法,属于二次电池的加工技术领域。涂布装置用于对不等厚集流体涂布活性物质形成活性物质层。沿不等厚集流体的宽度方向间隔交替设置的涂覆区和极耳区,涂覆区和极耳区均沿不等厚集流体的长度方向延伸,极耳区的厚度大于涂覆区的厚度。涂布装置包括厚度传感器、纠偏控制器和纠偏机构。厚度传感器用于检测不等厚集流体上的厚度突变点并输出突变点信号。纠偏控制器用于接收突变点信号,并将接收到的突变点信号与预设的厚度突变点信号比较,确定不等厚集流体是否偏移以及偏移方向并发出纠偏信号。纠偏机构用于接收到纠偏信号,并做出与偏移方向相反的纠偏动作。此涂布装置使用涂布方法,能够准确对涂覆区进行涂布。

Description

一种涂布装置及不等厚集流体的涂布方法
相关申请的交叉引用
本公开要求于2020年02月11日提交中国专利局的申请号为202010085740.5、名称为“一种涂布装置及不等厚集流体的涂布方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开要求于2020年02月11日提交的中国专利局的申请号为202020160438.7、名称为“一种涂布装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及二次电池的加工技术领域,具体而言,涉及一种涂布装置及不等厚集流体的涂布方法。
背景技术
现有二次电池中使用的复合集流体的结构包括:高分子层,设置于高分子层相对两侧的金属镀层,每层金属镀层均包括极耳区和涂覆区,涂覆区用于涂布活性物质形成活性物质层,极耳区用于连接极耳,将金属镀层上的电流汇集后导流至极柱处。
发明内容
发明人发现,涂覆区的主要作用在于涂覆活性物质,对过流能力的要求相对较低;极耳区的主要作用是保障电流顺利导出到极柱,对过流能力要求较高。现有技术中极耳区和涂覆区的金属镀层的厚度一致,容易导致极耳区的过流能力不够,而涂覆区的过流能力过大的问题。所以,发明人发明一种新的集流体,增加极耳区的厚度,即极耳区的厚度大于涂覆区的厚度,使极耳区的金属镀层的厚度大于涂覆区的金属镀层的厚度,以提升极耳区的过流能力,减弱涂覆区的过流能力,由于提升二次电池的性能,且可以减少涂覆区处的金属镀层的浪费。
不等厚集流体中,较薄区域的涂覆区用来涂覆活性物质形成活性物质层,较厚区域的极耳区用来连接极耳,所以,需要对不等厚集流体进行准确涂布(仅在涂布区涂覆活性物质层,极耳区不涂覆活性物质层)。不等厚集流体在输送的过程中,可能会发生偏移,如果不等厚集流体发生偏移以后,就会出现极耳区存在活性物质,而涂覆区则未涂覆活性物质或者活性物质减少等现象,继而不能够准确涂布活性物质。
本公开的目的在于提供一种涂布装置及不等厚集流体的涂布方法,能够准确对不等厚集流体进行涂布,避免极耳区涂覆不必要的活性物质。
第一方面,本公开实施例提供一种涂布装置,用于对不等厚集流体涂布活性物质。不 等厚集流体包括沿不等厚集流体的宽度方向间隔交替设置的涂覆区和极耳区,涂覆区和极耳区均沿不等厚集流体的长度方向延伸,极耳区的厚度大于涂覆区的厚度。涂布装置包括厚度传感器、纠偏控制器和纠偏机构。厚度传感器用于检测不等厚集流体上的厚度突变点并输出突变点信号。纠偏控制器能接收突变点信号,并能将接收到的突变信号与预设的厚度突变点信号比较,而后根据比较结果确定不等厚集流体是否偏移以及偏移方向并发出纠偏信号。纠偏机构与厚度传感器沿不等厚集流体的输送路径依次设置,纠偏机构用于接收到纠偏信号,并做出与偏移方向相反的纠偏动作。
先通过厚度传感器检测不等厚集流体的厚度变化点,并将厚度突变点的突变点信号输送给纠偏控制器,纠偏控制器确认不等厚集流体的偏移方向以后,将纠偏信号发送给纠偏机构,通过纠偏机构对不等厚集流体向与纠偏方向相反的方向进行纠偏,可以对输送偏移的不等厚集流体及时进行纠偏,以便后续对不等厚集流体进行准确涂布。
本公开较佳的实施例中,厚度传感器用于检测不等厚集流体上的厚度突变点并输出电压突变信号。纠偏控制器用于接收电压突变信号,并能将接收到的电压突变信号与预设的电压突变信号比较,并根据比较结果确定不等厚集流体是否偏移以及偏移方向并发出纠偏信号。
通过电压突变信号的输送以及比较来确定不等厚集流体是否偏移以及偏移方向,以便能够快速确定不等厚集流体的偏移方向,而后对不等厚集流体进行纠偏,有利于后续对不等厚集流体进行准确涂布。
本公开较佳的实施例中,涂布装置还包括与厚度传感器同步运动的位移传感器,其用于检测不等厚集流体上的厚度突变点的位置并输出位置信号。纠偏控制器用于接收厚度突变点的位置信号,并将接收到的位置信号。纠偏控制器用于接收厚度突变点的位置信号,并将接收到的与预设的厚与预设的厚度突变点的位置信号比较,并根据比较结果确定不等厚集流体是否偏移以及偏移方向并发出纠偏信号。
厚度传感器与位移传感器同步运动,厚度传感器检测到厚度突变点时,位移传感器同步检测该厚度突变点的位置并输出位置信号,然后通过位置信号的传输和比较,确定不等厚集流体是否偏移以及偏移方向,如果厚度突变点的位置向左偏移,则纠偏控制器控制纠偏机构向右纠偏;如果厚度突变点的位置向右偏移,则纠偏控制器控制纠偏机构向左纠偏,以纠正不等厚集流体的偏移,便于后续对不等厚集流体进行准确涂布。
本公开较佳的实施例中,厚度传感器被配置成沿不等厚集流体的宽度方向往复运动且位于不等厚集流体的侧面。厚度传感器扫描一个周期时,检测到第一个厚度突变点并输出突变信号,纠偏控制器接收到突变点信号以后,计算突变点信号出现的时间,与预设的突变点信号出现的时间比较,确定不等厚集流体的偏移方向并发出纠偏信号。
如果纠偏控制器计算到厚度突变点出现的时间相较于预设的时间更长,则说明不等厚集流体朝向远离起始厚度传感器的位置偏移,则纠偏控制器控制纠偏机构朝向起始厚度传感器的位置纠偏,继而使得不等厚集流体朝向起始厚度传感器的位置纠偏;如果纠偏控制器计算到厚度突变点出现的时间相较于预设的时间更短,则说明不等厚集流体朝向靠近起始厚度传感器的位置偏移,则纠偏控制器控制纠偏机构朝向远离起始厚度传感器的位置纠偏,继而使得不等厚集流体朝向远离起始厚度传感器的位置纠偏。
本公开较佳的实施例中,厚度传感器用于检测不等厚集流体上的厚度突变点并输出多个电压突变值;其中,厚度传感器检测到不等厚集流体由厚变薄,电压突变值对应为正值或负值,厚度传感器检测到不等厚集流体由薄变厚,电压突变值对应为负值或正值。纠偏控制器接收到电压突变值以后,将正值的个数与预设的正值的个数比较以及负值的个数与预设的负值的个数比较,而后根据比较结果确定不等厚集流体的偏移方向。
直接将电压突变的值的个数与预设的电压突变的值的个数进行比较,更加精确计算出不等厚集流体的偏移方向,以便对其进行纠偏。
本公开较佳的实施例中,沿输送路径,纠偏机构位于厚度传感器的前端。不等厚集流体在输送过程中,先经过纠偏机构,再经过厚度传感器,当厚度传感器检测到不等厚集流体的输送发生偏移时,通过纠偏控制器控制纠偏机构进行纠偏,纠偏后的不等厚集流体会输送至厚度传感器处,而后再进行厚度突变点的检测、传输以及比较等,能够及时检测出纠偏机构的纠偏是否到位或纠偏是否过多,以便进一步进行纠偏修正。
本公开较佳的实施例中,涂布装置还包括涂布背辊和涂布模头,输送路径经过涂布背辊的周面且涂布背辊位于厚度传感器的后端,涂布模头朝向涂布背辊上的输送路径。
对不等厚集流体纠偏以后,将其输送至涂布背辊处,通过涂布模头对涂覆区进行涂布,可以使涂布模头涂布的区域均为涂覆区,以便精确涂布。
本公开较佳的实施例中,涂布装置还包括位于输送路径的张力隔断机构,张力隔断机构位于厚度传感器和涂布背辊之间。
张力隔断机构设置在涂布背辊前端,可以避免前端的过辊的张力波动导致涂布背辊上的基材褶皱,影响涂布效果或者形成断带。
本公开较佳的实施例中,张力隔断机构包括主动辊和压辊,输送路径穿过主动辊和压辊之间,压辊用于对输送路径上的不等厚集流体加压。
通过主动辊和压辊的配合设置,可以对不等厚集流体进行更好地张力隔断,且张力隔断以后,可以进一步避免涂布背辊处的基材褶皱,涂布效果更好。
本公开较佳的实施例中,主动辊的外径大于压辊的外径,输送路径在主动辊上形成包覆角。
可以在避免不等厚集流体打皱的同时节省涂布装置的占用空间。
本公开较佳的实施例中,涂布装置还包括第一过辊,输送路径经过第一过辊的周面,第一过辊位于厚度传感器和张力隔断机构之间,主动辊与涂布背辊之间的输送路径的长度小于主动辊与第一过辊之间的输送路径的长度。
主动辊靠近张力隔断机构的距离近,没有其他过辊导致张力波动,张力更稳定,以便后续涂布。
第二方面,本公开实施例提供一种不等厚集流体的涂布方法,适用于上述涂布装置。涂布方法包括:将不等厚集流体设置于输送路径上,且不等厚集流体经过纠偏机构和厚度传感器。使用厚度传感器检测不等厚集流体的厚度突变点并输出突变点信号。纠偏控制器接收到突变点信号,并将其与预设的厚度突变点信号比较,确定不等厚集流体的偏移方向并发出纠偏信号。纠偏机构用于接收到纠偏信号,并做出与偏移方向相反的纠偏动作。
可以对输送偏移的不等厚集流体及时进行纠偏,以便对不等厚集流体进行准确涂布。
第三方面,本公开实施例提供一种涂布装置,用于对不等厚集流体涂布活性物质形成活性物质层。不等厚集流体包括沿不等厚集流体的长度方向间隔交替设置的涂覆区和极耳区,涂覆区和极耳区均沿不等厚集流体的宽度方向延伸,极耳区的厚度大于涂覆区的厚度。涂布装置包括沿不等厚集流体的输送路径依次设置用于检测不等厚集流体厚度的厚度传感器和涂布背辊。用于对不等厚集流体进行涂布的涂布模头;以及用于控制涂布模头开启或关闭的涂布控制器,涂布控制器与厚度传感器电连接。涂布背辊上具有涂布区域,当厚度传感器检测到涂布区域的进口端的不等厚集流体是由厚变薄时得到第一信号,厚度传感器将第一信号发送给涂布控制器,涂布控制器控制涂布模头开启。当厚度传感器检测到涂布区域的进口端的不等厚集流体是由薄变厚时得到第二信号,厚度传感器将第二信号发送给涂布控制器,涂布控制器控制涂布模头关闭。
在不等厚集流体经过涂布背辊的时候,由于涂覆区和极耳区间隔交替设置,在极耳区经过涂布背辊的时候,不进行涂布,在涂覆区经过涂布背辊的时候,再进行涂布。通过厚度传感器的设置,可以确定经过涂布背辊的位置是涂覆区还是极耳区,从而可以通过控制涂布模头的开关,对涂覆区进行准确涂布。
第四方面,本公开实施例提供一种不等厚集流体的涂布方法,适用于上述涂布装置。涂布方法包括:将不等厚集流体设置于输送路径上,且不等厚集流体经过厚度传感器和涂布背辊。当厚度传感器检测到涂布区域的进口端的不等厚集流体是由厚变薄时得到第一信号,厚度传感器将第一信号发送给涂布控制器,涂布控制器控制涂布模头开启。当厚度传感器检测到涂布区域的进口端的不等厚集流体是由薄变厚时得到第二信号,厚度传感器将第二信号发送给涂布控制器,涂布控制器控制涂布模头关闭。
可以确定经过涂布背辊的位置是涂覆区还是极耳区,从而可以通过控制涂布模头的开关,对涂覆区进行准确涂布。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图也属于本公开的保护范围。
图1为不等厚集流体的层结构示意图;
图2为涂布装置的结构示意图;
图3为不等厚集流体的第一平面结构示意图;
图4为涂布模头与不等厚集流体对应的第一位置结构示意图;
图5为电涡流厚度传感器与不等厚集流体对应的位置结构示意图;
图6为电涡流厚度流传感器的原理框图;
图7为不等厚集流体的第二平面结构示意图;
图8为涂布模头与不等厚集流体对应的第二位置结构示意图。
图标:10-不等厚集流体;11-绝缘层;12-第一导电层;13-第二导电层;121-涂覆区;122-极耳区;20-涂布装置;21-纠偏机构;22-厚度传感器;23-第一过辊;24-张力隔断机构;25-涂布机构;251-涂布背辊;252-涂布模头;2521-喷口;2522-遮挡部;221-第一传感器;222-第二传感器;223-架体;211-第一纠偏辊;212-第二纠偏辊;26-第二过辊;241-主动辊;242-压辊。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行描述。
图1为不等厚集流体10的层结构示意图。请参阅图1,不等厚集流体10为三层结构,具体地,包括位于中间层的绝缘层11和位于绝缘层11相对两侧的第一导电层12和第二导电层13。其中,第一导电层12和第二导电层13均包括间隔交替设置的涂覆区121和极耳区122,涂覆区121用于涂覆活性物质形成活性物质层,极耳区122用于连接极耳。为了提高极耳区122的过流能力,又避免涂覆区121的过流能力过大,发明人设计了不等厚集流体10。
不等厚集流体10就是指第一导电层12和第二导电层13中分别对应极耳区122和涂覆区121的厚度不相等,其中,极耳区122的厚度大于涂覆区121的厚度,以便极耳区122 处连接极耳,涂覆区121处涂覆活性物质形成活性物质层。为了对不等厚集流体10的涂覆区121涂布活性物质层,发明人对涂布装置20进行改进,具体如下:
图2为涂布装置20的结构示意图。请参阅图2,涂布装置20包括放卷辊(图未示)、纠偏机构21、纠偏控制器(图未示)、厚度传感器22、第一过辊23、张力隔断机构24、涂布机构25和收卷辊(图未示)。不等厚集流体10卷料从放卷辊上放卷,沿着输送路径经过纠偏机构21、厚度传感器22、第一过辊23、张力隔断机构24和涂布机构25进行输送,并使用收卷辊收卷。
本公开实施例中,涂布机构25包括涂布背辊251和涂布模头252,输送路径经过涂布背辊251的周面,涂布模头252朝向涂布背辊251上的输送路径。也就是说,在输送不等厚集流体10的时候,不等厚集流体10包覆至少一部分涂布背辊251的周面,涂布模头252将浆料涂布在涂布背辊251周面上的不等厚集流体10的涂覆区121。其中,涂布模头252与涂布背辊251上的不等厚集流体10之间具有一定的距离,以便将浆料均匀喷涂在不等厚集流体10上。
第一种涂布方式:如果不等厚集流体10为具有一定幅宽的长卷料,涂覆区121和极耳区122均沿不等厚集流体10的长度方向延伸。也就是说,如果将不等厚集流体10设置在涂布装置20上,涂覆区121与极耳区122的延伸方向与不等厚集流体10的输送方向是一致的。
图3为不等厚集流体10的第一平面结构示意图。请参阅图3,图中箭头所指的长度方向为极耳区122和涂覆区121的延伸方向,涂覆区121和极耳区122沿不等厚集流体10的宽度方向间隔交替设置,不等厚集流体10设置在涂布装置20上以后,不等厚集流体10的输送方向为不等厚集流体10的长度方向。
图4为涂布模头252与不等厚集流体10对应的第一位置结构示意图。请参阅图4,不等厚集流体10位于涂布背辊251的周面上以后,不等厚集流体10的横截面如图4所示,为了对不等厚集流体10的涂覆区121涂覆活性物质层,并且避免对不等厚集流体10的极耳区122涂覆活性物质层,对涂布模头252的结构进行了如下设置。如图4所示,涂布模头252的具有多个间隔设置的喷口2521,喷口2521对应涂覆区121,以便对涂覆区121涂覆活性物质层,相邻的两个喷口2521之间设置有遮挡部2522,遮挡部2522对应极耳区122,避免极耳区122上涂覆活性物质层。
本公开实施例中,通过纠偏控制器控制纠偏机构21对不等厚集流体10的输送路径进行纠偏,纠偏控制器与厚度传感器22和纠偏机构21均电连接,通过厚度传感器22、纠偏控制器以及纠偏机构21的配合设置,可以使不等厚集流体10输送至涂布背辊251上以后,涂布模头252的喷口2521对应不等厚集流体10的涂覆区121,以便进行准确地涂布。
由于不等厚集流体10中的涂覆区121和极耳区122处会有厚度差,厚度传感器22位于不等厚集流体10的侧面,且厚度传感器22能够沿不等厚集流体10的宽度方向往复运动,使用厚度传感器22检测不等厚集流体10上的厚度突变点,厚度传感器22可以检测不等厚集流体10的厚度差的位置,并输出突变点信号,纠偏控制器接收到突变点信号与预设的厚度突变点信号比较,确定不等厚集流体10是否偏移以及偏移方向并发出纠偏信号。纠偏机构21接收到纠偏信号,并做出与偏移方向相反的纠偏动作。
例如:厚度传感器22检测到不等厚集流体10上的厚度突变点,厚度传感器22向纠偏控制器发生第一突变点信号(其中,第一突变点信号是为了与后续的第二突变点信号区分开来,并不是说是一个突变点信号),纠偏控制器接收到第一突变点信号后与第一突变点信号对应的预设的厚度突变点信号进行比较,确定不等厚集流体10向右偏移,则纠偏控制器向纠偏机构21发送第一纠偏信号(其中,第一纠偏信号只是为了与后续的第二纠偏信号区分开来,但不能理解为指示或暗示相对重要性),纠偏机构21接收到第一纠偏信号后,使不等厚集流体10朝左纠偏。
厚度传感器22检测到不等厚集流体10上的厚度突变点,厚度传感器22向纠偏控制器发生第二突变点信号,纠偏控制器接收到第二突变点信号后与第二突变点信号对应预设的厚度突变点信号比较,确定不等厚集流体10向左偏移,则纠偏控制器向纠偏机构21发送第二纠偏信号,纠偏机构21接收到第二纠偏信号后,使不等厚集流体10朝右纠偏。
本公开实施例中,厚度传感器22可以是激光厚度传感器、电涡流厚度传感器、磁性厚度传感器、电容厚度传感器以及超声波厚度传感器等。本公开实施例不做限定。
可选地,厚度传感器22检测不等厚集流体10上的厚度突变点并输出电压突变信号。纠偏控制器接收到电压突变信号后与预设的电压突变信号比较,而后确定不等厚集流体10是否偏移以及偏移方向。
进一步地,厚度传感器22用于检测不等厚集流体10上的厚度突变点并输出多个电压突变值;其中,厚度传感器22检测到不等厚集流体由厚变薄,电压突变值对应为正值或负值,厚度传感器22检测到不等厚集流体由薄变厚,电压突变值对应为负值或正值(例如:厚度传感器22检测到不等厚集流体由厚变薄,电压突变值对应为正值,厚度传感器22检测到不等厚集流体由薄变厚,电压突变值对应为负值;或厚度传感器22检测到不等厚集流体由厚变薄,电压突变值对应为负值,厚度传感器22检测到不等厚集流体由薄变厚,电压突变值对应为正值)。纠偏控制器接收到电压突变值以后,将正值的个数与预设的正值的个数比较以及负值的个数与预设的负值的个数比较,来确定不等厚集流体10的偏移方向。
下面以厚度传感器22为电涡流厚度传感器为例进行说明。图5为电涡流厚度传感器与不等厚集流体10对应的位置结构示意图。请参阅图5,电涡流厚度传感器包括第一传感器 221、第二传感器222和架体223,架体223为U型结构,U型结构的两端分别设置第一传感器221和第二传感器222,且第一传感器221和第二传感器222均设置于U型结构的内侧。
通过上述电涡流厚度传感器对不等厚集流体10的厚度的检测方式为:U型结构的架体223左右往复移动,可以使第一传感器221和第二传感器222左右来回扫描不等厚集流体10。当电涡流厚度传感器扫描到不等厚集流体10的厚度突变点时,传感器探头与不等厚集流体10之间的距离会发生变化,从而引起电涡流厚度传感器的输出电压发生变化。
图6为电涡流厚度传感器的原理框图。请一并参阅图5和图6,通过第一传感器221检测不等厚集流体10的第一导电层12的外表面与第一传感器221的传感器探头之间的距离S1,通过第二传感器222检测不等厚集流体10的第二导电层13的外表面与第二传感器222的传感器探头之间的距离S2,第一传感器221与第二传感器222之间的距离为一定值D,所以,不等厚集流体10的厚度d=D-(S1+S2)。如果扫描的过程中,一直位于极耳区122或者一直位于涂覆区121,则d为常值;如果扫描的过程中,是从极耳区122扫描至涂覆区121,则(S1+S2)的值增大,d的值减小;如果扫描的过程中,是从涂覆区121扫描至极耳区122,则(S1+S2)的值减小,d的值增大。d的值增大或减小,输出电压均会发生变化,通过与预设电压进行比较运算,得到一个电压差,经过放大器后作为输出信号传输给纠偏控制器。
请继续参阅图5,架体223左右往复移动,如,架体223从最左移动到最右为第一周期,再从最右移动到最左为第二周期。架体223进行第一周期移动时,从极耳区122到涂覆区121变化的位置有三处,从涂覆区121到极耳区122变化的位置也有三处,则架体223进行第一周期移动时,共有六个厚度突变点会出现电压突变信号。例如:电压突变的值为正值时,第一传感器221和第二传感器222检测到从较薄的涂覆区121至较厚的极耳区122;电压突变的值为负值时,第一传感器221和第二传感器222检测到从较厚的极耳区122到较薄的涂覆区121。正常情况下,架体223从最左移动到最右的整个过程中,架体223自最左开始移动时,第一传感器221的传感器探头和第二传感器222的传感器探头从极耳区122扫描至涂覆区121,电压突变为负值,架体223移动至最右时,第一传感器221的传感器探头和第二传感器222的传感器探头从涂覆区121扫描至极耳区122,电压突变为正值。架体223从最左到最右移动完成第一周期的移动以后,第一传感器221和第二传感器222会输送给纠偏控制器六个电压突变值,分别是三个正值,三个负值,纠偏控制器接收到上述六个电压突变值以后,与预设的电压突变值比较,发现预设的电压突变值也是三个正值,三个负值,则说明不等厚集流体10的输送未发生偏移,则不需要控制纠偏机构21进行执行纠偏动作。
如果不等厚集流体10的输送右偏,当架体223自最左开始移动时,第一传感器221的传感器探头和第二传感器222的传感器探头不能够检测到最右边的涂覆区121到极耳区122的厚度突变点,架体223从最左到最右移动完成第一周期的移动以后,第一传感器221和第二传感器222会输送给纠偏控制器五个电压突变值,分别是两个正值,三个负值,纠偏控制器接收到上述五个电压突变值以后,与预设的电压突变值比较,其中,预设的电压突变值是三个正值,三个负值,发现相对预设的电压突变值,检测的电压突变值少了一个正值,则说明不等厚集流体10的输送向右偏移,纠偏控制器发送第一纠偏信号给纠偏机构21,纠偏机构21接收到第一纠偏信号后,使不等厚集流体10朝左纠偏。
如果不等厚集流体10的输送左偏,当架体223自最左开始移动时,第一传感器221的传感器探头和第二传感器222的传感器探头不能够检测到最左边的极耳区122到涂覆区121的厚度突变点,架体223从最左到最右移动完成第一周期的移动以后,第一传感器221和第二传感器222会输送给纠偏控制器五个电压突变值,分别是三个正值,两个负值,纠偏控制器接收到上述五个电压突变值以后,与预设的电压突变值比较,其中,预设的电压突变值是三个正值,三个负值,发现相对预设的电压突变值,检测的电压突变值少了一个负值,则说明不等厚集流体10的输送向左偏移,纠偏控制器发送第二纠偏信号给纠偏机构21,纠偏机构21接收到第二纠偏信号后,使不等厚集流体10朝右纠偏。
在另一个实施例中,厚度传感器22沿不等厚集流体10的宽度方向进行往复运动,且位于不等厚集流体10的侧面。厚度传感器22扫描一个周期时,检测到第一个厚度突变点并输出突变信号,纠偏控制器接收到突变点信号以后,计算突变点信号出现的时间,与预设的突变点信号出现的时间比较,确定不等厚集流体10的偏移方向并发出纠偏信号。
如果纠偏控制器计算到厚度突变点出现的时间相较于预设的时间更长,则说明不等厚集流体10朝向远离起始厚度传感器22的位置偏移,则纠偏控制器控制纠偏机构21朝向起始厚度传感器22的位置纠偏,继而使得不等厚集流体10朝向起始厚度传感器的位置纠偏;如果纠偏控制器计算到厚度突变点出现的时间相较于预设时间更短,则说明不等厚集流体10朝向靠近起始厚度传感器22的位置偏移,则纠偏控制器控制纠偏机构21朝向远离起始厚度传感器22的位置纠偏,继而使得不等厚集流体10朝向远离起始厚度传感器的位置纠偏。
请继续参阅图5,厚度传感器22为电涡流厚度传感器,架体223左右往复移动,如,架体223从最右移动到最左、再从最左移动到最右为一个周期。电压突变的值为负值时,第一传感器221和第二传感器222检测到从较厚的极耳区122到较薄的涂覆区121,架体223往复运动的时候,第一传感器221和第二传感器222检测到的第一个厚度突变点为从较厚的极耳区122到较薄的涂覆区121的突变点,电压突变为负值,并将该电压信号发送 给纠偏控制器,纠偏控制器可以计算出第一传感器221和第二传感器222检测到第一个厚度突变点时,架体223的移动时间(第一传感器221和第二传感器222移动的初始点到第一个厚度突变点的时间间隔)。
可选地,假如不等厚集流体10的输送未发生偏移,则预设时间为1s,架体223移动一个周期的时候,第一传感器221和第二传感器222从最右移动到第一个厚度突变点的移动时间为1s。如果不等厚集流体10的输送向左偏移,则第一个厚度突变点出现的时间会延长(大于1s),例如:为1.5s,则纠偏控制器发出纠偏信号,控制纠偏机构21向右纠偏。如果不等厚集流体10的输送向右偏移,则第一个厚度突变点出现的时间会缩短(小于1s),例如:为0.5s,则纠偏控制器发出纠偏信号,控制纠偏机构21向左纠偏。架体223每移动一个周期以后,纠偏控制器内的计算归零,然后在架体223移动另一个周期的时候,重新进行计数,以对不等厚集流体10进行实时纠偏。
在其他实施例中,还包括与厚度传感器22同步运动的位移传感器,位移传感器与纠偏控制器电连接,位移传感器用于检测不等厚集流体10上的厚度突变点的位移并输出位置信号。纠偏控制器接收到厚度突变点的位置信号与预设的厚度突变点的位置信号比较,确定不等厚集流体10的偏移方向并发出纠偏信号。
厚度传感器22与位移传感器同步运动,通过厚度传感器22与位移传感器配合,厚度传感器22检测到厚度突变点时,位移传感器也同步检测到该厚度突变点的位置,然后通过纠偏控制器与预设的厚度突变点的位置相比较,如果厚度突变点的位置向左偏移,则纠偏控制器控制纠偏机构21向右纠偏;如果厚度突变点的位置向右偏移,则纠偏控制器控制纠偏机构21向左纠偏。
请继续参阅图5,架体223左右往复移动,如,架体223从最右移动到最左、再从最左移动到最右为一个周期。电压突变的值为负值时,第一传感器221和第二传感器222检测到从较厚的极耳区122到较薄的涂覆区121;电压突变的值为正值时,第一传感器221和第二传感器222检测到从较薄的涂覆区121到较厚的极耳区122。当厚度传感器22检测到电压突变为负值时,位移传感器同步检测到该厚度突变点的位移,厚度传感器22和位移传感器均将信号发送给纠偏控制器,纠偏控制器可以将厚度传感器22检测到的厚度突变点与突变点的位移对应,并与预设的厚度突变点和突变点的位移对应,确定不等厚集流体10的输送是否偏移。
可选地,假如不等厚集流体10的输送未发生偏移,架体223移动一个周期的时候,厚度传感器22检测到的各电压突变为负值的点与相应的位移一一对应,分别为第一预设位置信号;厚度传感器22检测到的各电压突变为正值的点与相应的位移意义对应,分别为第二预设位置信号。
如果不等厚集流体10的输送向左偏移,电压突变为负值的点向左偏移,相应地,位移传感器检测到的电压突变为负值的点的位移为第一位置信号并发送给纠偏控制器,纠偏控制器将第一位置信号与第一预设位置信号进行比较,发现位置向左偏移(位移传感器检测到的电压突变为正值的点的位移为第二位置信号并发送给纠偏控制器,纠偏控制器将第二位置信号与第二预设位置信号进行比较,发现位置向左偏移),则纠偏控制器发出纠偏信号,控制纠偏机构21向右纠偏。
如果不等厚集流体10的输送向右偏移,电压突变为负值的点向右偏移,相应地,位移传感器检测到的电压突变为负值的点的位移为第一位置信号并发送给纠偏控制器,纠偏控制器将第一位置信号与第一预设位置信号进行比较,发现位置向右偏移(位移传感器检测到的电压突变为正值的点的位移为第二位置信号并发送给纠偏控制器,纠偏控制器将第二位置信号与第二预设位置信号进行比较,发现位置向右偏移),则纠偏控制器发出纠偏信号,控制纠偏机构21向左纠偏。
需要说明的是:位移传感器为现有的位移传感器,只要能够检测到厚度突变点的位置信息的位移传感器均为本公开的保护范围之内。
可选地,纠偏机构21包括纠偏电机(图未示)、纠偏架(图未示)、第一纠偏辊211和第二纠偏辊212,纠偏电机的输出轴连接纠偏架,第一纠偏过辊2133和第二纠偏过辊2134均固定于纠偏架上,纠偏控制器电连接纠偏电机。
不等厚集流体10在输送的过程中,依次经过第一纠偏辊211和第二纠偏辊212。纠偏控制器发出第一纠偏信号给纠偏电机,纠偏电机接收到第一纠偏信号后工作,控制纠偏架向左偏移,固定在纠偏架上的第一纠偏过辊2133和第二纠偏过辊2134将不等厚集流体10朝左纠偏。当纠偏控制器发出第二纠偏信号给纠偏电机,纠偏电机接收到第二纠偏信号后工作,控制纠偏架向右偏移,固定在纠偏架上的第一纠偏过辊2133和第二纠偏过辊2134将不等厚集流体10朝右纠偏。
为了使电涡流厚度传感器的检测结构更加准确,可选地,还包括第二过辊26,输送路径依次经过第二纠偏辊212的周面和第二过辊26的周面,在第二纠偏辊212和第二过辊26上均形成包覆角,第二过辊26位于第一过辊23的前端,不等厚集流体10经过第二纠偏辊212的周面和第二过辊26的周面之间时,不等厚集流体10水平设置。第一传感器221和第二传感器222分别设置在不等厚集流体10的上下两侧,不等厚集流体10水平设置,架体223水平左右移动,可以使不等厚集流体10的厚度检测更加精确。
本公开实施例中,张力隔断机构24位于第一过辊23和涂布背辊251之间。通过张力隔断机构24的设置,可以将位于张力隔断机构24的前端和后端的不等厚集流体10进行张力隔断,可以避免前端的第一过辊23的张力波动导致涂布背辊251上的不等厚集流体10 出现褶皱,影响涂布效果或者断带。
可选地,张力隔断机构24包括主动辊241和压辊242,输送路径穿过主动辊241和压辊242之间,压辊242用于对输送路径上的不等厚集流体10加压。通过主动辊241和压辊242的配合设置,可以将位于主动辊241前端和后端的不等厚集流体10进行张力隔断,可以进一步避免涂布背辊251处的不等厚集流体10褶皱,使得涂布效果更好。
主动辊241的外径大于压辊242的外径,输送路径在主动辊241上形成包覆角,不等厚集流体10在主动辊241上形成包覆角。可选地,在主动辊241上形成包覆角可以避免不等厚集流体10打皱,且压辊242的外径较小可以节约涂布装置的占用空间。
本公开实施例中,第一过辊23位于第二过辊26和张力隔断机构24之间,输送路径经过第一过辊23的周面,主动辊241与涂布背辊251之间的输送路径的长度小于主动辊241与第一过辊23之间的输送路径的长度。主动辊241与张力隔断机构24的距离近,没有其他过辊导致张力波动,张力更稳定,以便后续涂布。
其中,主动辊241与涂布背辊251之间的输送路径的长度是指不等厚集流体10脱离主动辊241的线到不等厚集流体10进入涂布背辊251的线之间的距离,也就是不等厚集流体10在主动辊241的出口端到不等厚集流体10在涂布背辊251的进口端之间的距离。主动辊241与第一过辊23之间的输送路径的长度是指不等厚集流体10脱离第一过辊23的线到不等厚集流体10进入主动辊241的线之间的距离,也就是不等厚集流体10在第一过辊23的出口端到不等厚集流体10在主动辊241的进口端之间的距离。
需要说明的是:根据实际生产的需求,涂布装置20还可以包括多个过辊,可以使不等厚集流体10在输送过程中处于张紧状态,以便对不等厚集流体10进行输送和涂布。
第二种涂布方式:第二种涂布方式提供的涂布装置20是在第一种涂布方式提供的涂布装置20的技术方案的基础上进行的改进,第一种涂布方式的技术方案同样适用于第二种涂布方式的技术方案,下面主要对区别处进行具体描述。
第二种涂布方式中,图7为不等厚集流体10的第二平面结构示意图。请参阅图7,不等厚集流体10为具有一定幅宽的长卷料,涂覆区121和极耳区122均沿不等厚集流体10的宽度方向延伸,涂覆区121和极耳区122沿不等厚集流体10的长度方向间隔交替设置。也就是说,如果将不等厚集流体10设置在涂布装置20上,涂覆区121与极耳区122的延伸方向与不等厚集流体10的延伸方向是大概垂直的。
图7中箭头所指的宽度方向为极耳区122和涂覆区121的延伸方向,图7中箭头所指的长度方向是不等厚集流体10设置在涂布装置20上以后,不等厚集流体10的输送方向。
其中,图8为涂布模头252与不等厚集流体10对应的第二位置结构示意图。请参阅图8,涂布模头252上设置有一个喷口2521,一个喷口2521可以对不等厚集流体10的幅宽 上的涂覆区121进行涂覆。可选地,喷口2521为扁口,扁口的长度与不等厚集流体10的幅宽对应,当涂布模头252的喷口2521打开以后,可以对宽度方向的不等厚集流体10进行涂布。
涂布控制器与涂布模头252电连接,用于控制涂布模头252开启或关闭。当不等厚集流体10输送至涂布背辊251的周面上以后,位于涂布背辊251上的不等厚集流体10分别为间隔交替设置的极耳区122和涂覆区121,如果与涂布模头252的喷口2521对应的不等厚集流体10为涂覆区121,则涂布控制器控制涂布模头252开启,通过喷口2521喷涂浆料,对涂覆区121进行涂覆。如果涂布模头252的喷口2521对应的不等厚集流体10为极耳区122,则涂布控制器控制涂布模头252关闭,避免喷口2521喷涂浆料,避免极耳区122处涂布浆料。
本公开实施例中,涂布控制器与厚度传感器22电连接。涂布背辊251上具有涂布区域,当厚度传感器22检测到涂布区域的进口端的不等厚集流体10是由厚变薄(可以说明进入涂布背辊251的为不等厚集流体10的涂覆区121)时得到第一信号,厚度传感器22将第一信号发送给涂布控制器,涂布控制器控制涂布模头252开启,对涂覆区121进行涂覆。当厚度传感器22检测到涂布区域的进口端的不等厚集流体10是由薄变厚(可以说明进入涂布背辊251的为不等厚集流体10的极耳区122)时得到第二信号,厚度传感器22将第二信号发送给涂布控制器,涂布控制器控制涂布模头252关闭,避免对极耳区122进行涂布。
可选地,厚度传感器22位于不等厚集流体10的侧面,第一传感器221和第二传感器222在扫描不等厚集流体10的时候,不等厚集流体10不断地朝后端输送,但U型结构的架体223以及架体223上安装的第一传感器221和第二传感器222的位置不变。且第一传感器221的传感器探头以及第二传感器222的传感器探头的连线穿过的不等厚集流体10的点(电涡流厚度传感器处的不等厚集流体10)到涂布区域的进口端的输送长度为一定值,假设距离为S3。
正常情况下,每一段涂覆区121的长度方向的距离为定值,每一段极耳区122的输送方向的距离为定值L1,每一段涂覆区121的输送方向的距离为定值L2,不等厚集流体10的输送速度为定值V,则不等厚集流体10从涡流传感器处(第一传感器221的传感器探头和第二传感器222的传感器探头的连线穿过的不等厚集流体10的位置)输送至涂布区域的时间是T1=S3/V,为定值。
当电涡流厚度传感器的电压突变为负值时,表明第一传感器221和第二传感器222检测到从较厚的极耳区122到较薄的涂覆区121,此时,将信号传递给涂布控制器,由于检测到的涂覆区121输送至涂布区域的进口端的时间为T1,则涂布控制器控制涂布模头252 经过了T1时间以后开启,则涂布模头252刚好对涂布区域的进口端处的涂覆区121进行涂覆。在不等厚集流体10输送T2时间后,电压突变为正值时,表明第一传感器221和第二传感器222检测到从较薄的涂覆区121至较厚的极耳区122,则涂布模头252开启了T2时间以后关闭。在不等厚集流体10输送T3时间后,电压突变为负值,说明第一传感器221和第二传感器222检测到从较厚的极耳区122到较薄的涂覆区121,则涂布模头252关闭了T3时间以后开启。也就是说,正常情况下,不等厚集流体10在输送的过程中,只要电压突变为负值与突变为正值的间隔时间为T2,电压突变为正值到电压突变为负值的间隔时间为T3,则不需要涂布控制器重新对涂布模头252发送控制信号,涂布模头252按照规律进行控制涂布模头252开启T2时间,再关闭T3时间,如此反复即可。
如果不等厚集流体10在制作的过程中,其中一段涂覆区121或极耳区122的长度发生变化,或者不等厚集流体10的输送速度发生变化,则需要对涂布模头252的开启和关闭的时机进行调整。具体如下:
如果不等厚集流体10在制作的过程中,其中一段涂覆区121的长度过长,则将电压突变为负值与突变为正值的信号传递给涂布控制器,涂布控制器计算到该时间大于T2,涂布控制器控制涂布模头252经过T1时间后开启大于T2时间范围。如果其中一段涂覆区121的长度过短,则将电压突变为负值与突变为正值的信号传递给涂布控制器,涂布控制器计算到该时间小于T2,涂布控制器控制涂布模头252经过T1时间后开启小于T2时间范围。涂布模头252开启的时间按照实际的电压突变为负值与突变为正值的间隔时间为准。
如果不等厚集流体10在制作的过程中,其中一段极耳区122的长度过长,则将电压突变为正值与突变为负值的信号传递给涂布控制器,涂布控制器计算到该时间大于T3,涂布控制器控制涂布模头252经过T1时间后关闭大于T3时间范围。如果其中一段极耳区122的长度过短,则将电压突变为正值与突变为负值的信号传递给涂布控制器,涂布控制器计算到该时间小于T3,涂布控制器控制涂布模头252经过T1时间后关闭小于T3时间范围。涂布模头252关闭的时间按照实际的电压突变为正值与突变为负值的间隔时间为准。
如果不等厚集流体10在输送的过程中,速度变慢,则将电压突变为负值与突变为正值的信号传递给涂布控制器,涂布控制器计算到该时间大于T2,涂布控制器控制涂布模头252经过T1时间后开启大于T2时间范围。如果不等厚集流体10的输送速度变快,则将电压突变为负值与突变为正值的信号传递给涂布控制器,涂布控制器计算到该时间小于T2,涂布控制器控制涂布模头252经过T1时间后开启小于T2时间范围。涂布模头252开启的时间按照实际的电压突变为负值与突变为正值的间隔时间为准。
如果不等厚集流体10在输送的过程中,速度变慢,则将电压突变为正值与突变为负值的信号传递给涂布控制器,涂布控制器计算到该时间大于T3,涂布控制器控制涂布模头252 经过TI时间以后关闭大于T3时间范围。如果不等厚集流体10的输送速度变快,将电压突变为正值与突变为负值的信号传递给涂布控制器,涂布控制器计算到该时间小于T3,涂布控制器控制涂布模头252经过T1时间后关闭小于T3时间范围。涂布模头252关闭的时间按照实际的电压突变为正值与突变为负值的间隔时间为准。
如果经过一段变化以后,又变为正常情况,则再控制涂布模头252开启T2时间,再关闭T3时间,如此反复即可。通过上述设置,可以在不等厚集流体10输送的过程中,准确地对不等厚集流体10的涂覆区121进行涂布,并避免极耳区122被涂布。
在其他实施例中,也可以将每一次电压突变为负值与电压突变为正值的信号传递给涂布控制器,涂布控制器不断计算两个突变为正值与突变为负值之间的时间差以及突变为负值与突变为正值之间的时间差,从而通过涂布控制器控制涂布模头252开启的时间以及关闭的时间,以便进行准确涂布。
需要说明的是:由于厚度传感器22和涂布模头252的距离是固定的,厚度传感器22将信号输送给涂布控制器,涂布控制器再发出控制信号控制涂布模头252的开启或关闭需要一定的时间,所以,其需要设定一定的延时时间。
第二种涂布方式中,纠偏机构21可以是自纠偏机构21,可以对输送中的不等厚集流体10进行纠偏。
以上仅为本公开的一部分实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开的涂布装置能够准确对不等厚集流体的涂覆区进行涂布,而不对极耳区进行涂布,继而能够保证不等厚集流体中活性物质分布更合理,使得涂覆区上形成活性物质层,而极耳区不含有活性物质,继而能够使得不等厚集流体满足极耳区的过流能力,且可以避免涂覆区处的金属镀层的浪费,继而在二次电池中有良好的应用前景,适合应用于工业生产。

Claims (26)

  1. 一种涂布装置,其特征在于,用于对不等厚集流体涂布活性物质形成活性物质层,其包括:
    厚度传感器,用于检测所述不等厚集流体上的厚度突变点并输出突变点信号;
    纠偏控制器,所述纠偏控制器用于接收所述突变点信号,并所述突变点信号与预设的厚度突变点信号比较,确定所述不等厚集流体是否偏移以及偏移方向并发出纠偏信号;
    纠偏机构,所述纠偏机构与所述厚度传感器沿所述不等厚集流体的输送路径依次设置,所述纠偏机构用于接收到所述纠偏信号,并作出与所述偏移方向相反的纠偏动作。
  2. 根据权利要求1所述的涂布装置,其特征在于,所述厚度传感器用于检测所述不等厚集流体上的厚度突变点并输出电压突变信号;
    所述纠偏控制器用于接收所述电压突变信号,将上述电压突变信号与预设的电压突变信号比较来确定所述不等厚集流体是否偏移以及偏移方向并发出纠偏信号。
  3. 根据权利要求2所述的涂布装置,其特征在于,涂布装置还包括与厚度传感器同步运动的位移传感器,所述位移传感器用于检测所述不等厚集流体上的厚度突变点的位移并输出位置信号;
    所述纠偏控制器用于接收所述厚度突变点的位置信号,并将所述位置信号与预设的厚度突变点的位置信号比较,确定所述不等厚集流体是否偏移以及偏移方向并发出纠偏信号。
  4. 根据权利要求2所述的涂布装置,其特征在于,所述厚度传感器被配置成沿所述不等厚集流体的宽度方向往复运动且位于所述不等厚集流体的侧面;
    所述厚度传感器扫描一个周期时,检测到第一个厚度突变点并输出突变信号,所述纠偏控制器接收到所述突变点信号以后,计算所述突变点信号出现的时间,与预设的突变点信号出现的时间比较,确定所述不等厚集流体是否偏移以及偏移方向并发出纠偏信号。
  5. 根据权利要求2所述的涂布装置,其特征在于,所述厚度传感器用于检测所述不等厚集流体上的厚度突变点并输出多个电压突变值;其中,所述厚度传感器检测到由厚变薄,所述电压突变值对应为正值或负值,所述厚度传感器检测到由薄变厚,电压突变值对应为负值或正值;
    所述纠偏控制器接收到所述电压突变值以后,将正值的个数与预设的正值的个数比较以及负值的个数与预设的负值的个数比较,来确定所述不等厚集流体的偏移方向。
  6. 根据权利要求1-5任一项所述的涂布装置,其特征在于,沿所述输送路径,所述纠偏机构位于所述厚度传感器的前端。
  7. 根据权利要求1-6任一项所述的涂布装置,其特征在于,所述厚度传感器为电涡流厚度传感器。
  8. 根据权利要求7所述的涂布装置,其特征在于,所述电涡流厚度传感器包括第一传感器、第二传感器和架体,架体为U型结构,U型结构的两端分别设置第一传感器和第二传感器,且第一传感器和第二传感器均设置于U型结构的内侧。
  9. 根据权利要求8所述的涂布装置,其特征在于,所述第一传感器和所述第二传感器分别设置在不等厚集流体的上下两侧。
  10. 根据权利要求1-9任一项所述的涂布装置,其特征在于,所述纠偏机构包括纠偏电机、纠偏架、第一纠偏辊和第二纠偏辊,纠偏电机的输出轴连接纠偏架,第一纠偏过辊和第二纠偏过辊均固定于纠偏架上,纠偏控制器电连接纠偏电机。
  11. 根据权利要求1-10任一项所述的涂布装置,其特征在于,所述涂布装置还包括涂布背辊和涂布模头,所述输送路径经过所述涂布背辊的周面且所述涂布背辊位于所述厚度传感器的后端,所述涂布模头朝向所述涂布背辊上的所述输送路径。
  12. 根据权利要求11所述的涂布装置,其特征在于,涂布模头具有多个间隔设置的喷口,喷口对应涂覆区,相邻的两个喷口之间设置有遮挡部,遮挡部对应极耳区。
  13. 根据权利要求11或12所述的涂布装置,其特征在于,所述涂布装置还包括位于输送路径的张力隔断机构,张力隔断机构位于厚度传感器和涂布背辊之间。
  14. 根据权利要求13所述的涂布装置,其特征在于,所述张力隔断机构包括主动辊和压辊,输送路径穿过主动辊和压辊之间,压辊用于对所述输送路径上的所述不等厚集流体加压。
  15. 根据权利要求14所述的涂布装置,其特征在于,主动辊的外径大于压辊的外径,输送路径在主动辊上形成包覆角。
  16. 根据权利要求14或15任一项所述的涂布装置,其特征在于,所述涂布装置还包括第一过辊,第一过辊位于厚度传感器和所述张力隔断机构之间,输送路径经过第一过辊的周面。
  17. 根据权利要求16所述的涂布装置,其特征在于,所述主动辊与所述涂布背辊之间的输送路径的长度小于所述主动辊与所述第一过辊之间的输送路径的长度。
  18. 根据权利要求17所述的涂布装置,其特征在于,所述涂布装置还包括第二过辊,沿输送路径,第二过辊位于第一过辊的前端,输送路径依次经过第二纠偏辊的周面和第二过辊的周面并在第二纠偏辊和第二过辊上均形成包覆角。
  19. 根据权利要求1-18任一项所述的涂布装置,其特征在于,所述不等厚集流体包括沿所述不等厚集流体的宽度方向间隔交替设置的涂覆区和极耳区,所述涂覆区和所述极耳区均沿所述不等厚集流体的长度方向延伸,所述极耳区的厚度大于所述涂覆区的厚度。
  20. 一种涂布装置,其特征在于,用于对不等厚集流体涂布活性物质形成活性物质层,所述涂布装置包括用于检测所述不等厚集流体厚度的厚度传感器;
    涂布背辊和涂布模头,输送路径经过所述涂布背辊的周面且所述涂布背辊位于所述厚度传感器的后端,所述涂布模头朝向所述涂布背辊上的所述输送路径,所述涂布模头用于对所述不等厚集流体进行涂布;以及用于控制所述涂布模头开启或关闭的涂布控制器,所述涂布控制器与所述厚度传感器电连接;
    所述涂布背辊上具有涂布区域,当所述厚度传感器检测到所述涂布区域的进口端的不等厚集流体是由厚变薄时得到第一信号,所述厚度传感器将所述第一信号发送给所述涂布控制器,所述涂布控制器控制所述涂布模头开启;
    当所述厚度传感器检测到所述涂布区域的进口端的不等厚集流体是由薄变厚时得到第二信号,所述厚度传感器将所述第二信号发送给所述涂布控制器,所述涂布控制器控制所述涂布模头关闭。
  21. 根据权利要求20所述的涂布装置,其特征在于,所述不等厚集流体包括沿所述不等厚集流体的长度方向间隔交替设置的涂覆区和极耳区,所述涂覆区和所述极耳区均沿所述不等厚集流体的宽度方向延伸,所述极耳区的厚度大于所述涂覆区的厚度。
  22. 一种不等厚集流体的涂布方法,其特征在于,适用于权利要求1-19任一项所述的涂布装置,所述涂布方法包括:
    将所述不等厚集流体设置于所述输送路径上,且所述不等厚集流体经过所述纠偏机构和所述厚度传感器;
    使用所述厚度传感器检测所述不等厚集流体的厚度突变点并输出突变点信号;
    所述纠偏控制器接收到所述突变点信号与预设的厚度突变点信号比较,确定所述不等厚集流体的偏移方向并发出纠偏信号;
    所述纠偏机构接收到所述纠偏信号,并作出与所述偏移方向相反的纠偏动作。
  23. 根据权利要求22所述的不等厚集流体的涂布方法,其特征在于,使用位移传感器检测所述不等厚集流体上的厚度突变点的位移并输出位置信号;纠偏控制器接收到所述厚度突变点的位置信号,并将所述位置信号与预设的厚度突变点的位置信号比较,确定所述不等厚集流体是否偏移以及的偏移方向并发出纠偏信号。
  24. 根据权利要求22或23所述的不等厚集流体的涂布方法,其特征在于,控制所 述厚度传感器沿所述不等厚集流体的宽度方向往复运动,所述厚度传感器扫描一个周期时,检测到第一个厚度突变点并输出突变信号,所述纠偏控制器接收到所述突变点信号以后,计算所述突变点信号出现的时间,与预设的突变点信号出现的时间比较,确定所述不等厚集流体是否偏移以及的偏移方向并发出纠偏信号。
  25. 根据权利要求22-24任一项所述的不等厚集流体的涂布方法,其特征在于,使用所述厚度传感器检测所述不等厚集流体上的厚度突变点并输出多个电压突变值;其中,所述厚度传感器检测到由厚变薄,所述电压突变值对应为正值或负值,所述厚度传感器检测到由薄变厚,电压突变值对应为负值或正值;
    所述纠偏控制器接收到所述电压突变值以后,将正值的个数与预设的正值的个数比较以及负值的个数与预设的负值的个数比较,来确定所述不等厚集流体的偏移方向。
  26. 一种不等厚集流体的涂布方法,其特征在于,适用于权利要求20或21所述的涂布装置,所述涂布方法包括:
    将所述不等厚集流体设置于所述输送路径上,且所述不等厚集流体经过所述厚度传感器和所述涂布背辊;
    当所述厚度传感器检测到所述涂布区域的进口端的不等厚集流体是由厚变薄时得到第一信号,所述厚度传感器将所述第一信号发送给所述涂布控制器,所述涂布控制器控制所述涂布模头开启;
    当所述厚度传感器检测到所述涂布区域的进口端的不等厚集流体是由薄变厚时得到第二信号,所述厚度传感器将所述第二信号发送给所述涂布控制器,所述涂布控制器控制所述涂布模头关闭。
PCT/CN2021/071606 2020-02-11 2021-01-13 一种涂布装置及不等厚集流体的涂布方法 WO2021159909A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/882,698 US11777071B2 (en) 2020-02-11 2022-08-08 Coating device, and coating method for non-uniform thickness current collector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010085740 2020-02-11
CN202020160438.7U CN211455837U (zh) 2020-02-11 2020-02-11 一种涂布装置
CN202020160438.7 2020-02-11
CN202010085740.5 2020-02-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/882,698 Continuation US11777071B2 (en) 2020-02-11 2022-08-08 Coating device, and coating method for non-uniform thickness current collector

Publications (1)

Publication Number Publication Date
WO2021159909A1 true WO2021159909A1 (zh) 2021-08-19

Family

ID=77292058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071606 WO2021159909A1 (zh) 2020-02-11 2021-01-13 一种涂布装置及不等厚集流体的涂布方法

Country Status (2)

Country Link
US (1) US11777071B2 (zh)
WO (1) WO2021159909A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287609A (zh) * 2022-08-30 2022-11-04 新倍司特系统科技(苏州)有限公司 一种均匀涂覆大面积厚涂层的设备及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116199023B (zh) * 2023-04-27 2023-09-29 宁德时代新能源科技股份有限公司 绕卷机构纠偏的控制方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323886A (ja) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd 間欠塗工ピッチ測定検査装置
CN102773200A (zh) * 2012-08-09 2012-11-14 深圳市浩能科技有限公司 一种挤压模头调节装置
CN207810821U (zh) * 2017-12-21 2018-09-04 东莞市魔方新能源科技有限公司 一种隔膜纠偏装置
CN207834445U (zh) * 2018-01-22 2018-09-07 天津力神电池股份有限公司 一种电池极片在碾压过程中的纠偏设备
CN108525958A (zh) * 2018-02-28 2018-09-14 天津力神电池股份有限公司 一种新型的电池极片浆料涂敷机的纠偏装置
CN211455837U (zh) * 2020-02-11 2020-09-08 深圳市海瀚新能源技术有限公司 一种涂布装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744574B2 (ja) * 1995-10-20 2006-02-15 Tdk株式会社 間欠塗布方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323886A (ja) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd 間欠塗工ピッチ測定検査装置
CN102773200A (zh) * 2012-08-09 2012-11-14 深圳市浩能科技有限公司 一种挤压模头调节装置
CN207810821U (zh) * 2017-12-21 2018-09-04 东莞市魔方新能源科技有限公司 一种隔膜纠偏装置
CN207834445U (zh) * 2018-01-22 2018-09-07 天津力神电池股份有限公司 一种电池极片在碾压过程中的纠偏设备
CN108525958A (zh) * 2018-02-28 2018-09-14 天津力神电池股份有限公司 一种新型的电池极片浆料涂敷机的纠偏装置
CN211455837U (zh) * 2020-02-11 2020-09-08 深圳市海瀚新能源技术有限公司 一种涂布装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287609A (zh) * 2022-08-30 2022-11-04 新倍司特系统科技(苏州)有限公司 一种均匀涂覆大面积厚涂层的设备及方法

Also Published As

Publication number Publication date
US20220384772A1 (en) 2022-12-01
US11777071B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
US11777071B2 (en) Coating device, and coating method for non-uniform thickness current collector
US9050618B2 (en) Double-sided coating apparatus and double-sided coating method
WO2016143511A1 (ja) 塗布装置
CN110880580B (zh) 辊压装置
JP5565031B2 (ja) 両面間欠塗布装置
US20100167176A1 (en) Manufacturing apparatus and method for fuel cell electrode material assembly, and fuel cell
CN105489846A (zh) 极片补锂方法及系统
US20110102809A1 (en) Apparatus detecting a position of a functional layer on an electrode
CN214243120U (zh) 一种涂布纠偏装置及涂布系统
CN211455837U (zh) 一种涂布装置
US20220199965A1 (en) Supply device
WO2023029640A1 (zh) 涂布质量检测方法及系统
CN109622296B (zh) 一种双面涂布机装置及其控制方法
CN205264795U (zh) 极片补锂系统
US11088358B2 (en) Method of manufacturing electrode plate and device for manufacturing electrode plate
KR102537218B1 (ko) 전극시트 이송 장치 및 방법
CN116730073A (zh) 一种用于极片放卷、纠偏、切割的装置
US20210249643A1 (en) Method for manufacturing electrode by switching contact region of roll surface upon abnormality detection
KR20210154051A (ko) 전극 제조방법 및 상기 전극 제조방법에 의해 제조된 전극
KR20220010373A (ko) 전극 시트의 주행 조절 시스템 및 이를 이용한 전극 제조방법
CN220277477U (zh) 一种双面涂布对齐度系统
CN112474208A (zh) 一种双面间歇涂布装置
US20210207262A1 (en) Vacuum-coating system, and method for coating a strip-type material
CN217411255U (zh) 涂布机
JP2015178095A (ja) 金属帯の塗布方法及び塗布装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754013

Country of ref document: EP

Kind code of ref document: A1