WO2021159903A1 - 一种窗口清洁装置、方法和水下设备 - Google Patents
一种窗口清洁装置、方法和水下设备 Download PDFInfo
- Publication number
- WO2021159903A1 WO2021159903A1 PCT/CN2021/071346 CN2021071346W WO2021159903A1 WO 2021159903 A1 WO2021159903 A1 WO 2021159903A1 CN 2021071346 W CN2021071346 W CN 2021071346W WO 2021159903 A1 WO2021159903 A1 WO 2021159903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base
- connecting rod
- plane
- guide rail
- window cleaning
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 197
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000007246 mechanism Effects 0.000 claims abstract description 79
- 238000007790 scraping Methods 0.000 claims abstract description 18
- 230000003287 optical effect Effects 0.000 claims description 75
- 230000005540 biological transmission Effects 0.000 claims description 19
- 230000001681 protective effect Effects 0.000 claims description 13
- 238000004146 energy storage Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 238000005452 bending Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 12
- 238000004891 communication Methods 0.000 description 11
- 230000009471 action Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 239000000645 desinfectant Substances 0.000 description 6
- 238000001802 infusion Methods 0.000 description 5
- 239000005304 optical glass Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/10—Cleaning by methods involving the use of tools characterised by the type of cleaning tool
- B08B1/16—Rigid blades, e.g. scrapers; Flexible blades, e.g. wipers
- B08B1/165—Scrapers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/18—Liquid substances or solutions comprising solids or dissolved gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/10—Cleaning by methods involving the use of tools characterised by the type of cleaning tool
- B08B1/12—Brushes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/30—Cleaning by methods involving the use of tools by movement of cleaning members over a surface
- B08B1/32—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
- B08B1/34—Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members rotating about an axis parallel to the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/02—Cleaning by the force of jets or sprays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/02—Cleaning by the force of jets or sprays
- B08B3/024—Cleaning by means of spray elements moving over the surface to be cleaned
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/0035—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
- B08B7/0057—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0006—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B13/00—Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
- H04B13/02—Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/10—Apparatus features
- A61L2202/17—Combination with washing or cleaning means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B2203/00—Details of cleaning machines or methods involving the use or presence of liquid or steam
- B08B2203/02—Details of machines or methods for cleaning by the force of jets or sprays
- B08B2203/0217—Use of a detergent in high pressure cleaners; arrangements for supplying the same
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/04—Wipers or the like, e.g. scrapers
- B60S1/44—Wipers or the like, e.g. scrapers the wiper blades having other than swinging movement, e.g. rotary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/04—Wipers or the like, e.g. scrapers
- B60S1/32—Wipers or the like, e.g. scrapers characterised by constructional features of wiper blade arms or blades
- B60S1/38—Wiper blades
- B60S2001/3827—Wiper blades characterised by the squeegee or blade rubber or wiping element
- B60S2001/3829—Wiper blades characterised by the squeegee or blade rubber or wiping element characterised by the material of the squeegee or coating thereof
- B60S2001/3834—Wiper blades characterised by the squeegee or blade rubber or wiping element characterised by the material of the squeegee or coating thereof equipped with brush-like elements
Definitions
- This application relates to the technical field of underwater equipment, and in particular to a window cleaning device, method and underwater equipment.
- Underwater wireless communication (UWC) between underwater mobile nodes or fixed nodes has also become an indispensable research technology.
- Underwater wireless communication (UWC) is mainly realized through the use of radio frequency (RF) electromagnetic waves, sound waves and light waves.
- RF radio frequency
- radio frequency suffers great loss in water and the transmission distance is very limited.
- the bandwidth of sound waves is limited and the delay is relatively long. Not suitable for underwater high-speed data transmission.
- Underwater optical wireless communication is a very potential alternative method. It transmits information data wirelessly in water through light waves (ie optical signals), and demodulates and detects them at the corresponding receiving end. It has been proven to be A communication method with many advantages, with the advantages of high bandwidth, high data transmission rate, low latency, and small size. For example, as described in US Patent Publication No. 795,332, 6B2, the UOWC system has been continuously developed and improved. In recent years, UOWC equipment and products have also been commercialized.
- a UOWC system includes two pairs of optical transmitters and receivers, which can realize two-way communication between two parties/nodes.
- the transmitter can have one or more light sources (LED or laser) and electronics for driving, modulating and controlling the light sources.
- the receiver may include a photodiode or photodiode and corresponding amplification and processing circuits. Underwater data exchange is carried out by transmitting optical signals from each optical transmitter to the corresponding optical receiver in two directions in the water medium.
- a pair of transmitters and receivers can be packaged in separate housings, or can be mounted in the same housing at the same time. Either way, the housing of such UOWC equipment is generally designed as a waterproof container with an optical window.
- FIG. 1 shows a schematic diagram of an underwater network based on UOWC technology, which consists of surface nodes: ships, buoys, surface stations, underwater vehicles: ROV, AUV and a series of submarine nodes. These nodes are equipped with UOWC equipment to complete the communication tasks between them, and then jointly explore the underwater environment.
- the buoy on the water surface can also be connected to the subsea node with an optical fiber, and then it can be wirelessly connected to other nodes.
- the buoy can also be a wireless node with UOWC equipment to send/receive data from AUV, ROV, and submarine nodes.
- the UOWC device carried by each wireless node will have an optical window covering its output/input port.
- the method of using mechanical devices to scrape off the sea creatures attached to the optical mirror is more suitable for the characteristics of UOWC equipment and its use scenarios.
- the optical window of the UOWC device is usually designed as a hemispherical or other curved shape instead of a flat plate. Therefore, it is necessary to develop an effective anti-biological adhesion technology that can be applied to optical windows of any geometric shape of UOWC equipment (such as spherical surfaces with different curvatures, polyhedral spheres or polyhedrons). At the same time, to ensure the long-term use effect, it needs to have the right The cleaning function of the wiper for cleaning.
- the present application provides a window cleaning device, which is suitable for cleaning optical mirror surfaces of spherical surfaces and polyhedrons with varying curvatures.
- the application also provides a window cleaning method and underwater equipment using the above device.
- a window cleaning device which includes: a cleaning brush and a scraper arm;
- the scraping arm includes: a first connecting rod, a varicose mechanism, a second connecting rod, and a scraping arm drive system;
- the second end of the first link is hinged to the first end of the second link
- the cleaning brush is hinged to the first end of the first connecting rod, and the rotating track and the rotating track at the hinged joint between the second end of the first connecting rod and the first end of the second connecting rod are all located at In the first plane, or the plane of the rotation track of the cleaning brush is parallel to the first plane;
- the second connecting rod can be driven to rotate by the scraping arm drive system, and the rotation track and the rotation track of the hinge are located in the first plane, or the rotation track of the second connecting rod is parallel to the plane On the first plane;
- the varicose mechanism can provide relative rotational force for the first connecting rod and the second connecting rod.
- the varicose mechanism can provide the first connecting rod and the second connecting rod with an opposing rotation force.
- the varicose mechanism includes: an energy storage element arranged between the first connecting rod and the second connecting rod;
- the energy storage element can provide the first connecting rod and the second connecting rod with an elastic restoring force that rotates opposite to each other.
- the energy storage element includes: a torsion spring, a nitrogen gas spring, and/or a highly elastic rubber band.
- the first connecting rod is an arc-shaped connecting rod.
- the wiper arm drive system includes: a first watertight motor
- the second end of the second link is connected to the output end of the wiper arm drive system.
- the cleaning brush includes: a cleaning blade, an arcuate piece, a supporting piece and an interface;
- the cleaning blade is installed on the inner concave surface of the arcuate piece, the arcuate piece is connected to the supporting piece, the interface is fixed on the supporting piece, and the interface is hinged to the first connecting rod. end.
- the cleaning brush further includes: a protective cover
- the inner side of the protective sleeve is installed on the outer convex surface of the arcuate piece, and the outer side of the protective sleeve has a "herringbone"-shaped water facing surface.
- the cleaning brush further includes: a cleaning nozzle system arranged on the supporting sheet.
- the cleaning brush further includes: an ultraviolet lamp system arranged on the supporting sheet.
- it further includes: a base, a base power device, and a guide rail;
- the scraper arm driving system is fixed to the base, and the base power device can drive the base to move along the guide rail, and the movement track is located in a second plane perpendicular to the first plane.
- the base includes: a base support plate and a base movement mechanism
- the scraper arm drive system is fixed to the base support plate, the base support plate is matched with the guide rail through the base movement mechanism, and the base movement mechanism has a nested and matched guide rail A degree of freedom restriction structure, the degree of freedom restriction structure restricts the base movement mechanism to only move along the guide rail.
- the base movement mechanism includes: four base rollers;
- Two of the base rollers are located on one side of the guide rail, two of the base rollers are located on the other side of the guide rail, and the two base rollers on the same side of the guide rail are located along the The guide rails are staggered; the four base rollers are located on the same plane.
- the base power device includes: a driving mechanism and a transmission mechanism
- the driving mechanism is arranged on the base, and the driving mechanism can cooperate with the guide rail through the transmission mechanism.
- the transmission mechanism includes: a base power gear and a base rack;
- the base power gear is arranged at the output end of the driving mechanism, the base rack is arranged along the guide rail, and the base power gear meshes with the base rack.
- An underwater equipment includes: an optical window, and further includes: the window cleaning device as described above.
- a window cleaning method adopts the window cleaning device as described above, and the window cleaning method includes:
- the varicose mechanism is the first connecting rod and the second connecting rod
- the rod provides a force for relative rotation
- the cleaning brush is attached to the optical window under the pressure of the first connecting rod.
- the window cleaning device further includes: a base, a base power device, and a guide rail;
- the scraper arm drive system is fixed to the base, and the base power device can drive the base to move along the guide rail, and the movement track is located in a second plane perpendicular to the first plane;
- the window cleaning method further includes:
- the base power device is controlled to drive the base to move along the guide rail in the second plane.
- the window cleaning device provided by the present application has such a structure and mode of action that the cleaning brush can adapt to various curved optical windows with varying curvatures, and keep the cleaning brush in close contact with the optical window. State to improve the cleaning effect.
- the present application also provides a window cleaning device and underwater equipment. Since the above window cleaning device is applied, it has the same beneficial effects. You can refer to the foregoing description.
- Figure 1 is a schematic diagram of an underwater network based on UOWC technology in the prior art
- 2a, 2b, and 2c are application scene diagrams of the window cleaning device of this application.
- Figure 3 is a schematic diagram of the structure of the window cleaning device of the application.
- Fig. 4 is an enlarged view of part A of the window cleaning device of the present application, that is, the schematic diagram of the structure of the cleaning brush of the present application;
- FIG. 5 is a schematic diagram of the structure of the washing mechanism in the window cleaning device of this application.
- Fig. 6 is a schematic diagram of the structure of the scraping arm in the window cleaning device of the present application.
- FIG. 7a, 7b, and 7c are schematic diagrams of the structure of the base and the guide rail in the window cleaning device of the present application.
- Figure 8 is a cross-sectional view of the base roller and the guide rail in the window cleaning device of the application.
- 9a, 9b, and 9c are diagrams of the working state of the window cleaning device of the present application along the meridian direction of the variable curvature mirror.
- 1 is an optical window
- 2 is a cleaning brush
- 201 is a cleaning blade
- 202 is a bow-shaped blade
- 203 is a support sheet
- 204 is a protective cover
- 205 is an interface
- 206 is a cleaning nozzle system
- 207 is an ultraviolet lamp system
- 2081 is a liquid storage tank
- 2082 It is a washing pump
- 2083 is an infusion tube
- 2084 is a spray switch
- 3 is the scraper arm, 301 is the first link, 302 is the varicose mechanism, 303 is the second link, and 304 is the scraper arm drive system;
- 5 is the base power unit, 501 is the second watertight motor, 502 is the base power gear, and 503 is the base rack;
- a is the hinge joint of the first connecting rod and the second connecting rod.
- the present application discloses a cleaning technology that can be used to prevent biological fouling on the surface of an optical window of an underwater wireless optical communication device.
- the optical window of any curvature is cleaned by mechanical removal.
- a window cleaning device is developed, which is used in conjunction with a cleaning brush, a scraper arm, a base, a base power device, and a guide rail.
- the guide rail can be conveniently installed on various underwater equipment equipped with underwater optical windows, and the cleaning brush runs along the guide rail to achieve the purpose of cleaning.
- the window cleaning device provided by the embodiment of the present application includes: a cleaning brush 2 and a scraping arm 3, the structure of which can be referred to as shown in FIG. 3;
- the scraper arm 3 includes: a first link 301, a varicose mechanism 302, a second link 303, and a scraper arm drive system 304, the structure of which can be referred to as shown in FIG. 6;
- the second end of the first link 301 is hinged to the first end of the second link 303;
- the cleaning brush 2 is hinged to the first end of the first connecting rod 301, and the rotation track of the rotation track and the hinge point a between the second end of the first connecting rod 301 and the first end of the second connecting rod 303 are all located in the first plane , Or the plane of the rotation track of the cleaning brush 2 is parallel to the first plane;
- the second link 303 can be driven to rotate by the scraper arm drive system 304, and the rotation track and the rotation track of the hinge a are both located in the first plane, or the plane of the rotation track of the second link 303 is parallel to the first plane;
- the varicose mechanism 302 can provide relative rotational force for the first connecting rod 301 and the second connecting rod 303 to realize that the cleaning brush 2 is close to the optical mirror optical window 1.
- the structure can be shown in FIGS. 9a, 9b and 9c.
- the scraper arm drive system 304 is fixed to the base 4;
- the wiper arm drive system 304 controls the rotation of the second connecting rod 303, and the first connecting rod 301 is rotated through the hinge a. Under the support of the flexure mechanism 302 and the wiper arm drive system 304, the cleaning brush 2 is received by the first connecting rod. The pressure applied by 301 and the supporting force of the optical window 1 make it closely fit the optical window 1.
- the wiper drive system 304 By controlling the wiper drive system 304 to rotate the second link 303 to a different position, the cleaning brush 2 will be driven in the first plane Movement (here can specifically be movement along the meridian direction of the spherical optical window 1.
- this article uses the first plane to describe along the meridian direction. Of course, the scope of protection of this solution is not limited to this.
- the first plane is also It can be no spherical center, or the optical window 1 is a non-spherical structure), and always close to the optical window 1.
- the window cleaning device provided by the embodiment of the present application has such a structure and mode of action that the cleaning brush 2 can adapt to a variety of curved surfaces with varying curvature along the meridian direction of the curved surface of the optical window 1, and maintain the cleaning brush.
- the device 2 is always in close contact with the optical window 1 to improve the cleaning effect.
- the varicose mechanism 302 can provide the first connecting rod 301 and the second connecting rod 303 with a force that rotates away from each other, and is particularly suitable for the hemispherical optical window 1 in this embodiment.
- the varicose mechanism 302 can also be designed to provide the first connecting rod 301 and the second connecting rod 303 with a force that rotates toward each other (ie, close to), so that the cleaning brush 2 is close to the optical mirror optical window 1.
- the varicose mechanism 302 includes: an energy storage element arranged between the first connecting rod 301 and the second connecting rod 303;
- the energy storage element can provide the first connecting rod 301 and the second connecting rod 303 with an opposing rotation force.
- the varicose mechanism 302 adopts an energy storage element, which can automatically control the varicose between the first connecting rod 301 and the second connecting rod 303 under the action of the elastic restoring force, and the structure is simple.
- linear push rods or other structures can also be added to control the varicose between the rods, and further control actions such as sensors are used, which will not be repeated here.
- the energy storage element includes a torsion spring, which can provide a reliable elastic restoring force.
- the torsion spring can be kept in a compressed state, and the first connecting rod 301 and the second connecting rod 303 can be provided with an opposing rotation force.
- the torsion spring can also be changed to other energy storage components, such as nitrogen gas springs, high elastic rubber bands, etc.
- the first connecting rod 301 is an arc-shaped connecting rod, which can better adapt to changes in the curvature of the optical window 1, avoid interference with the optical window 1 during movement, and keep the cleaning brush 2 pressed tightly, thereby expanding cleaning Scope.
- the arc-shaped first connecting rod 301 is particularly suitable for the spherical optical window 1 in this embodiment. Further, the arc of the first connecting rod 301 matches the optical window 1, so that the interference avoidance effect is better and the cleaning range is larger.
- the first connecting rod 301 is not limited to a circular arc shape, but may also have other structures, and preferably has a shape that matches the curvature of the optical window 1.
- the wiper arm drive system 304 includes: a first watertight motor
- the second end of the second link 303 is connected to the output end of the wiper drive system 304.
- the wiper drive system 304 uses the first watertight motor to drive the second connecting rod 303 to rotate. It has a simple structure and is suitable for underwater environments. It can also be equipped with a reducer and other mechanisms according to specific usage scenarios, such as motor + reducer or motor + other implementations Organization, I won’t repeat it here.
- the cleaning brush 2 includes: a cleaning blade 201, an arcuate blade 202, a supporting blade 203, and an interface 205, the structure of which can be referred to as shown in FIG. 4;
- the cleaning blade 201 is installed on the inner concave surface of the arcuate blade 202, the arcuate blade 202 is connected to the support sheet 203, the interface 205 is fixed on the support sheet 203, and the interface 205 is hinged to the first end of the first connecting rod 301.
- the arcuate sheet 202 has a certain degree of toughness and strength. Under the pressure exerted by the first connecting rod 301 and the optical window 1, the cleaning blade 201 will be close to the optical window 1.
- the above is to divide the structure of the cleaning brush 2 from a functional point of view, and multiple components can also be designed as an integrated structure, such as the arched piece 202 and the supporting piece 203, the supporting piece 203 and the interface 205, etc. Improve integration.
- the cleaning brush 2 further includes: a protective cover 204;
- the inner side of the protective sleeve 204 is installed on the convex surface of the bow-shaped piece 202 to protect and beautify the appearance;
- the strip 201 is closer to the optical window 1 better.
- the cleaning brush 2 further includes: a cleaning nozzle system 206 arranged on the supporting sheet 203.
- a cleaning nozzle system 206 arranged on the supporting sheet 203.
- the cleaning nozzle 206 continuously sprays disinfectant during the working process of the cleaning brush to clean the optical window 1 and the cleaning wiper 201, kill the attached sea creatures, and ensure the cleaning of the brush 2Long-term use without reducing the cleaning effect.
- the structure of the washing mechanism can be referred to as shown in FIG. 5.
- the cleaning brush 2 further includes: an ultraviolet lamp system 207 arranged on the supporting sheet 203.
- the ultraviolet lamp system 207 continuously emits ultraviolet rays to irradiate the optical window 1 and the cleaning blade 201 during the working process of the cleaning brush 2 to further kill the attached sea creatures and to ensure that the cleaning brush 2 is used for a long time without reducing the cleaning effect.
- the window cleaning device provided by the embodiment of the present application further includes: a base 4, a base power device 5 and a guide rail 6, the structure of which can be referred to as shown in FIG. 3;
- the scraper arm driving system 304 is fixed to the base 4, and the base power device 5 can drive the base 4 to move along the guide rail 6, and the movement track is located in a second plane perpendicular to the first plane to cover the optical window 1 larger Range to improve the cleaning effect.
- the base 4 will resist the structure of the scraper arm 3 and the external environment due to the support and limit of the guide rail 6. (Such as underwater ocean currents) the force applied to the base 4.
- the scraper arm drive system 304 controls the rotation of the second link 303, and takes the first link 301 to rotate through the hinge a.
- the scraper arm drive system 304 and the base 4 In the flexure mechanism 302 (such as the tension of the torsion spring compression), the scraper arm drive system 304 and the base 4, the guide rail Under the support of 6, the cleaning brush 2 is subjected to the pressure exerted by the first connecting rod 301 and the supporting force of the optical window 1, so that it fits tightly with the optical window 1, and the base 4 is driven along the guide rail by driving the base power device 5 6 movement, it can also control the wiper drive system 304 to rotate the second link 303 to different positions at the same time, which will drive the cleaning brush 2 to move in the second plane (this can be specifically along the weft direction of the optical window 1), And always close to the mirror surface.
- This structure and mode of action can make the cleaning brush 2 adapt to various curved surfaces with varying curvature along the latitude and longitude of the curved surface of the optical window 1, and keep the cleaning brush 2 in close contact with the optical window 1 at all times.
- the base 4 includes: a base support plate 401 and a base movement mechanism;
- the scraper arm drive system 304 is fixed to the base support plate 401.
- the base support plate 401 cooperates with the guide rail 6 through the base movement mechanism, and the base movement mechanism has a degree of freedom restriction structure that nests and cooperates with the guide rail 6, which limits the degree of freedom The structure restricts the base movement mechanism to only move along the guide rail 6 so that the device base 4 can adapt to the complex underwater currents and move smoothly along the guide rail 6.
- the base movement mechanism includes: four base rollers 402;
- Two base rollers 402 are located on one side of the guide rail 6, two base rollers 402 are located on the other side of the guide rail 6, and the two base rollers 402 located on the same side of the guide rail 6 are staggered along the guide rail 6;
- the base rollers 402 are located on the same plane;
- the four base rollers 402 form the above-mentioned degree of freedom restriction structure, and the structure can refer to Figure 7a, Figure 7b, Figure 7c and Figure 8 to limit the degrees of freedom of the base 4 in all directions, only The degree of freedom along the direction of movement of the guide rail 6 is retained.
- the four base rollers 402 rotate along their own axis in the groove of the guide rail 6, which greatly reduces the friction between the base 4 and the guide rail 6 during the movement process, and makes the device base
- the seat 4 can adapt to the complex ocean current under the water and move smoothly along the guide rail 6.
- the cooperation between the base 4 and the guide rail 6 can be realized by an alternative structure.
- the number of the base rollers 402 is not limited to four, as long as the cleaning brush 2 and the scraping arm 3 can move smoothly along the guide rail 6. It is sufficient to resist the submarine ocean current and the force of the optical window 1.
- the base power device 5 includes: a driving mechanism and a transmission mechanism
- the driving mechanism is arranged on the base 4, and the driving mechanism can cooperate with the guide rail 6 through the transmission mechanism.
- the driving mechanism includes: a second watertight motor 501, which has a simple structure and is suitable for underwater environments. It can also be equipped with mechanisms such as a reducer in combination with specific usage scenarios, such as a motor + a reducer or a motor + other actuators.
- the transmission mechanism includes: a base power gear 502 and a base rack 503;
- the base power gear 502 is arranged at the output end of the driving mechanism, the base rack 503 is arranged along the guide rail 6, and the base power gear 502 meshes with the base rack 503.
- the base 4 is driven by a driving mechanism to make the base power gear 502 mesh with the fixed base rack 503 installed on the guide rail 6 to drive the scraper arm 3 and the cleaning brush 2 to run along the guide rail 6.
- other transmission methods such as belt transmission, chain transmission, etc. can also be used, as long as the cleaning brush 2 and the scraping arm 3 can move along the guide rail 6.
- FIG. 2a, 2b, and 2c show application scene diagrams of the device of this application.
- 1 is an optical window with varying curvature (optical curved lens is taken as an example for illustration), which can be placed on a submarine base or mounted on any other equipment that works underwater.
- FIG. 3 is a schematic structural diagram of a window cleaning device of the application (here, a submarine lens cleaning device is taken as an example for illustration).
- the device is composed of a cleaning brush 2, a scraper arm 3, a base 4, a base power device 5 and a guide rail 6.
- FIG. 4 is a structural diagram of the cleaning brush 2 of the device, which is composed of a cleaning blade 201, an arcuate blade 202, a supporting blade 203, a protective cover 204, an interface 205, a cleaning nozzle system 206 and an ultraviolet lamp system 207.
- the cleaning scraper 201 is made of rubber material, and its function is to wipe the attached organisms and impurities on the glass of the optical window 1.
- the bow piece 202 is connected with the cleaning scraper 201 and the support piece 203, and has certain toughness and strength. It can be a rust-proof steel piece. Make the cleaning blade 201 close to the optical mirror surface.
- the supporting piece 203 is connected with the protective sleeve 204, the arcuate piece 202 and the interface 205, and is made of a metal anti-rust material with good rigidity and strength, or other materials with considerable strength.
- the interface 205 is used to connect the support piece 203 and the scraper arm 3.
- the protective sleeve 204 is used to wrap and protect the cleaning wiper 201, the bow-shaped blade 202 and other structures to protect and beautify the appearance. It can be specifically a rubber sleeve.
- the upper part of the protective sleeve 204 is designed to face the water surface in a "herringbone" shape, and the cleaning device is used to move When the water pressure is formed, the cleaning blade 201 can be better close to the optical glass mirror surface.
- a cleaning nozzle system 206 is installed on one side of the support sheet 203. By connecting its nozzle connector to the infusion tube 2803, the cleaning nozzle system 206 continuously sprays disinfectant during the operation of the cleaning brush 2 to clean the glass mirror and clean Scrape 201 to kill attached sea creatures.
- An ultraviolet lamp 207 is installed on the other side of the support sheet 203.
- the ultraviolet lamp 207 continuously emits ultraviolet rays to irradiate the glass surface and the cleaning blade 201 during the working process of the cleaning brush 2 to further kill the attached sea creatures. Due to the disinfectant And the role of ultraviolet light irradiation, the organisms attached to the cleaning brush 2 are eliminated, which can ensure that the cleaning device is used for a long time without reducing the cleaning effect.
- FIG. 5 is a schematic diagram of the washing mechanism of the seabed cleaning device of this application.
- the washing device includes a liquid storage tank 2801, a washing pump 2802, a liquid infusion tube 2803, and a spray switch 2804.
- the device is placed in an underwater equipment equipped with an optical mirror.
- the spray switch 2084 is activated, and the washing pump 2082 compresses the disinfectant in the liquid storage tank 2081 and delivers it to the cleaning brush through the infusion tube 2083.
- the nozzle system 206 washes and destroys attached sea creatures during the working process of the cleaning brush 2.
- FIG. 6 is a schematic diagram of the structure of the scraping arm 3 of the submarine lens cleaning device of the present application.
- the scraper arm 3 includes a first link 301, a varicose mechanism 302, a second link 303, and a scraper arm drive system 304.
- One end of the first connecting rod 301 is hinged with the interface 205, and the other end is hinged with the second connecting rod 303. It has a certain strength. Its shape is designed as an arc to avoid interference with the optical mirror surface and further expand the cleaning range.
- One end of the second link 303 is hinged with the first link 301, and the other end is connected with the output end of the wiper drive system 304 and the connection port on the base support plate 401.
- the first connecting rod 301 and the second connecting rod 303 are equipped with a varicose mechanism 302 inside their hinge joints.
- the wiper drive system 304 is a first watertight motor (which can be equipped with a reducer and other mechanisms according to specific usage scenarios).
- the output end is connected to the second connecting rod 303, and the rotation speed and torque of the driving system are transmitted to the second connecting rod 303.
- the arm driving system 304 is fixed on the base support plate 401.
- FIG. 8 is a cross-sectional view of the rollers and the guide rail 6 of the submarine lens cleaning device of the present application, wherein the base 4 is supported by the base support plate 401 and four base rollers 402.
- the base support plate 401 is equipped with a scraper arm structure and a cleaning brush.
- the four base rollers 402 cooperate with the guide rail 6. It can be seen from FIG. 8 that the guide rail 6 is nested and matched with the four base rollers 402 to limit the degree of freedom of the base 4 in all directions, and only retain the degree of freedom along the direction of the guide rail.
- the base power device 5 is composed of a second watertight motor 501 (which can be equipped with a reducer and other mechanisms according to specific usage scenarios), a base power gear 502 and a base rack 503.
- the second watertight motor 501 is fixed on the base support plate 401.
- the base power gear 502 is fixed on the output shaft of the second watertight motor 501 and meshes with the base rack.
- the submarine lens cleaning device When the base power device 5 is activated during operation, the submarine lens cleaning device will reciprocately run along the circular arc guide 6 in the circumferential direction.
- the base 4 When the seabed lens cleaning device is at a certain position on the circumference of the guide rail 6, the base 4 will resist the scraping arm structure on it and the force exerted by the underwater ocean current on the base due to the support and limitation of the guide rail 6.
- the scraping arm drive system 304 controls the second link 303 to rotate along the hinge joint a, and the flexure mechanism 302 is always in a compressed state.
- FIGS. 9a, 9b and 9c are diagrams of the working state of the cleaning brush and the scraping arm mechanism in the direction of the mirror surface when the seabed lens cleaning device is at a certain circumferential position of the circular track.
- the base 4 When the seabed lens cleaning device is at a fixed height from the plane of the guide rail 6, the base 4 will resist the scraping arm structure on it and the force exerted by the underwater ocean current on the base due to the support and limit of the guide rail 6.
- the scraping arm drive system 304 controls the second link 303 to rotate along the hinge joint a, and the flexure mechanism 302 is always in a compressed state.
- the motor torque of the wiper drive system and the base guide rail, the cleaning brush is subjected to the pressure exerted by the first connecting rod 301 and the mirror support force, so that it is tightly attached to the glass mirror and is driven by
- the base power device 5 drives the base power gear 502 to mesh with the base rack 503, the driving device moves along the circumferential direction of the guide rail, and at the same time controls the wiper drive system 304 to rotate the second link 303 to different positions, which will drive the cleaning brush Always adhere to the mirror surface along the weft direction of the optical glass mirror surface.
- This structure and mode of action can make the cleaning brush adapt to various curved surfaces with varying curvature along the latitude direction of the glass curved surface, and keep the cleaning brush in close contact with the optical glass mirror surface.
- the structure of the underwater device equipped with the optical mirror is not changed, and it is suitable for various underwater devices;
- the cleaning device is used in conjunction with the guide 6 to be used in the submarine environment, the mechanism is simple and elegant, can adapt to the underwater complex ocean currents, and ensures the reliability of the mechanism.
- the embodiment of the present application also provides an underwater device, including: an optical window 1, and further including: the window cleaning device as described above.
- the underwater equipment can meet the cleaning requirements of the optical mirror surface whose curvature changes along the warp and latitude directions.
- the whole installation structure is simple and seventeen, has a wide application range, few parts and driving devices, low cost, good effect and easy maintenance.
- the embodiment of the present application also provides a window cleaning method, using the window cleaning device as described above, and the window cleaning method includes:
- the scraper arm drive system 304 to drive the second link 303 to rotate in the first plane or to rotate in a plane parallel to the first plane, to drive the first link 301 and the cleaning brush 2 to rotate in the first plane, or to drive the A connecting rod 301 and the cleaning brush 2 rotate in a plane parallel to the first plane.
- the flexure mechanism 302 provides relative rotational force for the first connecting rod 301 and the second connecting rod 303.
- the cleaning brush 2 is in the first connecting rod.
- the optical window 1 is attached under the pressure of 301. Here, it can specifically move along the warp direction of the spherical optical window 1, and the detailed working process can be referred to the foregoing description, which will not be repeated here.
- the window cleaning method also includes:
- the control base power device 5 drives the base 4 to move along the guide rail 6 in the second plane.
- it can specifically move along the latitude direction of the spherical optical window 1, and the detailed working process can be referred to the previous description, which will not be repeated here.
- the movement of the above-mentioned first plane and the second plane can be carried out at the same time.
- the implementation of this solution proposes a cleaning technology that can be used to prevent biological fouling on the surface of the optical window of an underwater wireless optical communication device.
- the present application is characterized in that the optical window of arbitrary curvature is cleaned by means of mechanical removal.
- a window cleaning device is developed, which is used in conjunction with a cleaning brush, a scraper arm, a base, a base power device, and a guide rail.
- the guide rail can be conveniently installed on various underwater equipment equipped with underwater optical windows, and the cleaning brush runs along the guide rail to achieve the purpose of cleaning.
- the core advantage of the device is that the mechanism is simple and can adapt to submarine optical windows of various curvatures.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Cleaning In General (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
一种窗口清洁装置、应用窗口清洁装置的窗口清洁方法和水下设备,窗口清洁装置包括:清洁刷器(2)和刮臂(3);刮臂(3)包括:第一连杆(301)、曲张机构(302)、第二连杆(303)和刮臂驱动系统(304);第一连杆(301)的第二端铰接于第二连杆(303)的第一端;清洁刷器(2)铰接于第一连杆(301)的第一端,且转动轨迹与第一连杆(301)第二端和第二连杆(303)第一端之间铰接处(a)的转动轨迹均位于第一平面内,或者平行于第一平面;第二连杆(303)能够由刮臂驱动系统(304)驱使转动,且转动轨迹与铰接处(a)的转动轨迹均位于第一平面内,或者平行于第一平面;曲张机构(302)能够为第一连杆(301)和第二连杆(303)提供相对转动的作用力。
Description
本申请要求于2020年2月3日申请的、申请号为202010091069.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及水下设备技术领域,特别涉及一种窗口清洁装置、方法和水下设备。
地球上水域面积广阔,超过70%的表面积被海水覆盖,近年来,水下环境探索,尤其是海洋探索引起了越来越多的关注。带有分布式节点(如船,浮标,ROV,AUV和海底节点)的水下网络已经被部署应用到水下环境协作三维立体观测和监控之中。水下移动节点或固定节点之间的水下无线通信(UWC)也进而成为必不可少的研究技术。水下无线通信(UWC)主要通过使用射频(RF)电磁波、声波和光波来实现,然而,射频在水中受到极大损耗,传输距离十分受限,而声波的带宽有限且延迟相对较长,因此不适合水下高速数据传输。水下光学无线通信(UOWC)是一种极具潜力的替代方法,将信息数据在水中通过光波进行无线传输(即光信号),并在对应的接收端进行解调和检测,已被证明是一种具有着诸多优势的通信方法,具备带宽高,数据传输速率高,低延迟,体积小等优点。例如美国专利公开No.795,332,6B2中所述,UOWC系统一直不断的被发展和改良,近年来UOWC设备和产品也已商业化。
一个UOWC系统包含两对光发送器和接收器,可实现两方/节点之间的双向通信。发射器可以具有一个或多个光源(LED或激光)以及用于驱动,调制和控制光源的电子设备。另一方面,接收器可以包括光电二极管或光电二极管以及相应的放大和处理电路。水下数据交换是通过在水介质中的两个方向上将光信号从每个光发射器传输到相应的光接收器来进行的。
一对发射器和接收器可以被分别封装在单独的外壳中,也可以是同时装在同一个个外壳中。无论哪种方式,这样的UOWC设备的外壳一般都被设计成一个带有光学窗口的防水容器。
图1显示基于UOWC技术的水下网络示意图,由水面节点:船,浮标,水面站,水下航行器:ROV,AUV和一系列的海底节点。这些节点都配备了UOWC设备,以完成它们之间的通信任务,进而共同进行水下环境探索。在使用场景中,也可以将水面上的浮标用光纤连接到海底节点,然后将其与其他节点无线连接。此外,浮标也可以是带有UOWC设备的无线节点,从AUV,ROV,海底节点发送/接收数据。每个无线节点携带的UOWC设备都会具有覆盖其输出/输入端口的光学窗口。
由于此通信技术依赖于光信号从发光元件(即发光二极管或激光)到光电探测器的传输,因此UOWC设备的光学窗口必须是透明的,任何形式的遮挡都会影响数据传输的质量。然而UOWC设备在水下工作的时,海底动植物会黏附在其光学窗口上,影响信号传输。要保证UOWC设备有效工作,必须设法将其光学窗口上的附着生物清除。
为了解决UOWC设备在水下工作时海底生物黏附在其光学窗口上问题,近年来人们提出了许多防生物附着的方法,主要分为以下几类:1.使用防污涂料,但该方法不能应用于上述通信设备,因为涂料会降低透明度并增加粗糙度而影响光信号的透射和折射;2.运用紫外线辐射也可以有效防止表面的生物污垢,但是单独依靠此方式除附着物时能耗较高,不适用于诸如独立海底节点之类的自容设备;3.应用机械装置,采用机械方法刮除附着的生物。相比于纯靠紫外线辐射的方法耗能较少,并且在去除附着生物的同时,不影响光信设备正常工作。综上,采用机械装置刮除光学镜面附着海生物的方法较适合UOWC设备特点及其使用场景。
实际应用中,UOWC设备为了匹配发射器/接受器的有效面积,满足所需的光的方向和场,以及抵抗水下压力,其光学窗口通常设计成半球形或其他曲面形状,而非平板,因此,需要开发出一种可适用于UOWC设备的任意几何形状的光学窗口(例如具有不同弧度的球形表面,多面球形或多面体)的有效防生物附着技术,同时要保证长期使用效果,需具备对清洁刮器进行清洁的功能。
有鉴于此,本申请提供了一种窗口清洁装置,可适用于曲率变化的球面及多面体的光学镜面清洁。
本申请还提供了一种应用上述装置的窗口清洁方法和水下设备。
为实现上述目的,本申请提供如下技术方案:
一种窗口清洁装置,其中,包括:清洁刷器和刮臂;
所述刮臂包括:第一连杆、曲张机构、第二连杆和刮臂驱动系统;
所述第一连杆的第二端铰接于所述第二连杆的第一端;
所述清洁刷器铰接于所述第一连杆的第一端,且转动轨迹与所述第一连杆第二端和所述第二连杆第一端之间铰接处的转动轨迹均位于第一平面内,或者所述清洁刷器的转动轨迹所在平面平行于所述第一平面;
所述第二连杆能够由所述刮臂驱动系统驱使转动,且转动轨迹与所述铰接处的转动轨迹均位于所述第一平面内,或者所述第二连杆的转动轨迹所在平面平行于所述第一平面;
所述曲张机构能够为所述第一连杆和所述第二连杆提供相对转动的作用力。
在一实施例中,所述曲张机构能够为所述第一连杆和所述第二连杆提供相背转动的作用力。
在一实施例中,所述曲张机构包括:设置在所述第一连杆和所述第二连杆之间的储能元件;
所述储能元件能够为所述第一连杆和所述第二连杆提供相背转动的弹性回复力。
在一实施例中,所述储能元件包括:扭簧、氮气弹簧和/或高弹性橡皮筋。
在一实施例中,所述第一连杆为圆弧状连杆。
在一实施例中,所述刮臂驱动系统包括:第一水密电机;
所述第二连杆的第二端连接于所述刮臂驱动系统的输出端。
在一实施例中,所述清洁刷器包括:清洁刮条、弓形片、支撑片和接口;
所述清洁刮条安装在所述弓形片的内凹面,所述弓形片与所述支撑片连接,所述接口固定于所述支撑片上,所述接口铰接于所述第一连杆的第一端。
在一实施例中,所述清洁刷器还包括:保护套;
所述保护套的内侧面安装于所述弓形片的外凸面,所述保护套的外侧面具有“人”字形迎水面。
在一实施例中,所述清洁刷器还包括:设置于所述支撑片的清洁喷嘴系。
在一实施例中,所述清洁刷器还包括:设置于所述支撑片的紫外线灯系。
在一实施例中,还包括:基座、基座动力装置和导轨;
所述刮臂驱动系统固定于所述基座,所述基座动力装置能够驱使所述基座沿所述导轨运动,且运动轨迹位于垂直于所述第一平面的第二平面内。
在一实施例中,所述基座包括:基座支撑板和基座运动机构;
所述刮臂驱动系统固定于所述基座支撑板,所述基座支撑板通过所述基座运动机构与所述导轨配合,且所述基座运动机构具有与所述导轨嵌套配合的自由度限制结构,所述自由度限制结构限制所述基座运动机构只能够沿所述导轨运动。
在一实施例中,所述基座运动机构包括:四个基座滚轮;
其中两个所述基座滚轮位于所述导轨的一侧,两个所述基座滚轮位于所述导轨的另一侧,且位于所述导轨同侧的两个所述基座滚轮沿所述导轨导向错开设置;四个所述基座滚轮位于同一平面。
在一实施例中,所述基座动力装置包括:驱动机构和传动机构,
所述驱动机构设置于所述基座,所述驱动机构能够通过所述传动机构与所述导轨配合。
在一实施例中,所述传动机构包括:基座动力齿轮和基座齿条;
所述基座动力齿轮设置于所述驱动机构的输出端,所述基座齿条沿所述导轨设置,所述基座动力齿轮与所述基座齿条啮合。
一种水下设备,包括:光学窗口,还包括:如上所述的窗口清洁装置。
一种窗口清洁方法,采用如上述的窗口清洁装置,所述窗口清洁方法包括:
控制所述刮臂驱动系统驱使所述第二连杆在所述第一平面内转动或在平行所述第一平面的平面内转动,带动所述第一连杆和所述清洁刷器在所述第一平面内转动,或者带动所述第一连杆和所述清洁刷器在平行所述第一平面的平面内转动,所述曲张机构为所述第一连杆和所述第二连杆提供相对转动的作用力,所述清洁刷器在所述第一连杆的压力作用下贴合光学窗口。
在一实施例中,所述窗口清洁装置,还包括:基座、基座动力装置和导轨;
所述刮臂驱动系统固定于所述基座,所述基座动力装置能够驱使所述基座沿所述导轨运动,且运动轨迹位于垂直于所述第一平面的第二平面内;
所述窗口清洁方法还包括:
控制所述基座动力装置驱使所述基座沿所述导轨在所述第二平面内运动。
从上述的技术方案可以看出,本申请提供的窗口清洁装置,这种结构及作用方式可使清洁刷器适应变化曲率的多种曲面形状的光学窗口,保持清洁刷器始终与光学窗口紧贴状态,以提高清洁效果。
本申请还提供了一种窗口清洁装置和水下设备,由于应用了上述的窗口清洁装置,也就具有相同的有益效果,可以参照前文叙述。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中基于UOWC技术的水下网络示意图;
图2a、图2b和图2c为本申请窗口清洁装置的应用场景图;
图3为本申请窗口清洁装置的结构示意图;
图4为本申请窗口清洁装置A部放大图,即本申请清洁刷器的结构示意图;
图5为本申请窗口清洁装置中洗涤机构的结构示意图;
图6为本申请窗口清洁装置中刮臂的结构示意图;
图7a、图7b和图7c为本申请窗口清洁装置中基座及导轨的结构示意图;
图8为本申请窗口清洁装置中基座滚轮与导轨的截面配合图;
图9a、图9b和图9c为本申请窗口清洁装置沿变曲率镜面经线方向工作状态图。
其中,1为光学窗口;
2为清洁刷器,201为清洁刮条,202为弓形片,203为支撑片,204为保护套,205为接口,206为清洁喷嘴系,207为紫外线灯系,2081为储液罐,2082为洗涤泵,2083为输液管,2084为喷液开关;
3为刮臂,301为第一连杆,302为曲张机构,303为第二连杆,304为刮臂驱动系统;
4为基座,401为基座支撑板,402为基座滚轮;
5为基座动力装置,501为第二水密电机,502为基座动力齿轮,503为基座齿条;
6为导轨;
a为第一连杆与第二连杆铰接处。
本申请公开了一种可用于防止水下无线光通信设备的光学窗口表面的生物结垢的清洁技术。采用机械去除的方式对任意曲率的光学窗口进行清洁处理。具体的,研发一种窗口清洁装置,由清洁刷器、刮臂、基座、基座动力装置和导轨配合使用。使用时导轨可以方便的安装在搭载水下光学窗口的各种水下设备上,清洁刷器沿导轨运行,达到清洁的目的。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的窗口清洁装置,包括:清洁刷器2和刮臂3,其结构可以参照图3所示;
该刮臂3包括:第一连杆301、曲张机构302、第二连杆303和刮臂驱动系统304,其结构可以参照图6所示;
其中,第一连杆301的第二端铰接于第二连杆303的第一端;
清洁刷器2铰接于第一连杆301的第一端,且转动轨迹与第一连杆301第二端和第二连杆303第一端之间铰接处a的转动轨迹均位于第一平面内,或者清洁刷器2的转动轨迹所在平面平行于第一平面;
第二连杆303能够由刮臂驱动系统304驱使转动,且转动轨迹与铰接处a的转动轨迹均位于第一平面内,或者第二连杆303的转动轨迹所在平面平行于第一平面;
曲张机构302能够为第一连杆301和第二连杆303提供相对转动的作用力,以实现清洁刷器2贴紧光学镜面光学窗口1,其结构可以参照图9a、9b和9c所示。
在工作时,刮臂驱动系统304固定于基座4;
刮臂驱动系统304控制第二连杆303转动,通过铰接处a带着第一连杆301转动,在曲张机构302和刮臂驱动系统304的支撑作用下,清洁刷器2受到第一连杆301施加的压力和光学窗口1支撑力,使其与光学窗口1紧紧贴合;通过控制刮臂驱动系统304转动第二连杆303至不同位置,将驱使清洁刷器2在第一平面内运动(在此可具体为沿着球形光学窗口1的经线方向运动,为了方便描述,本文以第一平面沿经线方向进行说明,当然本方案的保护范围并不仅仅局限于此,第一平面还可为不过球心,或光学窗口1是非球形的其他结构),并始终贴紧光学窗口1。
从上述的技术方案可以看出,本申请实施例提供的窗口清洁装置,这种结构及作用方式可使清洁刷器2适应沿光学窗口1曲面经线方向变化曲率的多种曲面形状,保持清洁刷器2始终与光学窗口1紧贴状态,以提高清洁效果。
作为优选,曲张机构302能够为第一连杆301和第二连杆303提供相背(即远离)转动的作用力,特别适用于本实施例中半球形的光学窗口1。当然,还可以将曲张机构302设计成能够为第一连杆301和第二连杆303提供相向(即靠近)转动的作用力,以实现清洁刷器2贴紧光学镜面光学窗口1。
具体的,曲张机构302包括:设置在第一连杆301和第二连杆303之间的储能元件;
该储能元件能够为第一连杆301和第二连杆303提供相背转动的作用力。曲张机构302采用储能元件,在其弹性回复力的作用下可以自动控制第一连杆301和第二连杆303之间的曲张,结构简单。当然,也可增加直线推杆或其他结构来控制杆间曲张,并进一步借助传感器等控制动作,在此不再赘述。
为了进一步优化上述的技术方案,储能元件包括:扭簧,能够提供可靠的弹性回复力。具体的,通过选型,可使扭簧一直处于压缩状态,为第一连杆301和第二连杆303提供相背转动的作用力。当然,还可以将扭簧更改为别的储能元件,如氮气弹簧、高弹性橡皮筋等替代。
作为优选,第一连杆301为圆弧状连杆,能够更好适应光学窗口1的曲率变化,避免运动过程中与光学窗口1的干涉,保持对清洁刷器2的压紧,从而扩大清洁范围。圆弧状的第一连杆301尤其适用于本实施例中球形的光学窗口1,进一步的,第一连杆301的弧度与光学窗口1相匹配,避免干涉效果更佳,清洁范围更大。当然,第一连杆301并不只限定于圆弧状,也可以是其他结构,优选为形状配合光学窗口1的曲率变化。
在本实施例中,刮臂驱动系统304包括:第一水密电机;
第二连杆303的第二端连接于刮臂驱动系统304的输出端。刮臂驱动系统304采用第一水密电机驱使第二连杆303转动,结构简单,适用于水下环境,还可结合具体的使用场景配备减速器等机构,如电机+减速器或电机+其余执行机构,在此不再赘述。
作为优选,清洁刷器2包括:清洁刮条201、弓形片202、支撑片203和接口205,其结构可以参照图4所示;
其中,清洁刮条201安装在弓形片202的内凹面,弓形片202与支撑片203连接,接口205固定于支撑片203上,接口205铰接于第一连杆301的第一端。弓形片202,具备一定韧性和强度,在第一连杆301施加的压力和光学窗口1作用下,将使得清洁刮条201贴紧光学窗口1。当然,以上是从功能角度对清洁刷器2的结构进行了划分,还可以将其中的多个组成部分设计为一体式结构,如弓形片202和支撑片203,支撑片203和接口205等,提高集成度。
进一步的,清洁刷器2还包括:保护套204;
该保护套204的内侧面安装于弓形片202的外凸面,保护及美化外观;保护套204的外侧面具有“人”字形迎水面,利用清洁刷器2运动时形成水压,可以让清洁刮条201更好地贴近光学窗口1。
具体的,清洁刷器2还包括:设置于支撑片203的清洁喷嘴系206。通过连接到洗涤机构的输液管2083,清洁喷嘴系206在清洁刷器工作过程中持续喷出消毒液,以清洁光学窗口1及清洁刮条201,杀灭附着的海生物,可保证清洁刷器2长期使用而不降低清洁效果。洗涤机构的结构可以参照图5所示。
在一实施例中,清洁刷器2还包括:设置于支撑片203的紫外线灯系207。紫外线灯系207在清洁刷器2工作过程中持续发射紫外线照射光学窗口1及清洁刮条201,进一步杀灭附着的海生物,可保证清洁刷器2长期使用而不降低清洁效果。
本申请实施例提供的窗口清洁装置,还包括:基座4、基座动力装置5和导轨6,其结构可以参照图3所示;
其中,刮臂驱动系统304固定于基座4,基座动力装置5能够驱使基座4沿导轨6运动,且运动轨迹位于垂直于第一平面的第二平面内,以覆盖光学窗口1更大范围,提高清洁效果。
以图3所示情形为例,当清洁刷器2处于距离导轨6平面某一固定高度位置时,基座4由于导轨6的支撑和限位,将抵御其上的刮臂3结构以及外部环境(如水下洋流)施加给基座4的作用力。刮臂驱动系统304控制第二连杆303转动,通过铰接处a带着第一连杆301转动,在曲张机构302(如扭簧压缩的张力)、刮臂驱动系统304及基座4、导轨6的支撑作用下,清洁刷器2受到第一连杆301施加的压力和光学窗口1支撑力,使其与光学窗口1紧紧贴合;通过驱动基座动力装置5驱使基座4沿导轨6运动,还可同时控制刮臂驱动系统304转动第二连杆303至不同位置,将驱使清洁刷器2在第二平面内运动(在此可具体为沿着光学窗口1的纬线方向),并始终贴紧镜面。这种结构及作用方式可使清洁刷器2适应沿光学窗口1曲面纬线方向变化曲率的各种曲面形状,保持清洁刷器2始终与光学窗口1紧贴状态。
具体的,基座4包括:基座支撑板401和基座运动机构;
刮臂驱动系统304固定于基座支撑板401,基座支撑板401通过基座运动机构与导轨6配合,且基座运动机构具有与导轨6嵌套配合的自由度限制结构,该自由度限制结构限制基座运动机构只能够沿导轨6运动,使得装置基座4能适应水底复杂洋流并沿导轨6顺畅运动。
进一步的,基座运动机构包括:四个基座滚轮402;
其中两个基座滚轮402位于导轨6的一侧,两个基座滚轮402位于导轨6的另一侧,且位于导轨6同侧的两个基座滚轮402沿导轨6导向错开设置;四个基座滚轮402位于同一平面;四个基座滚轮402组成上述自由度限制结构,其结构可以参照图7a、图7b、图7c和图8所示,实现限制基座4各方向自由度,只保留沿导轨6运动方向的自由度。同时,当基座4相对于导轨6运行时,四个基座滚轮402在导轨6凸槽内沿自身轴线方向转动,大大减小了基座4移动过程与导轨6的摩擦力,使得装置基座4能适应水底复杂洋流并沿导轨6顺畅运动。当然,基座4与导轨6间的配合方式可采用替代结构来实现,如基座滚轮402的个数不限于四个,只要能保证清洁刷器2和刮臂3沿着导轨6顺畅运动,抗击海底洋流、光学窗口1作用力即可。
在本实施例中,基座动力装置5包括:驱动机构和传动机构,
其中,驱动机构设置于基座4,驱动机构能够通过传动机构与导轨6配合。具体的,驱动机构包括:第二水密电机501,结构简单,适用于水下环境,还可结合具体的使用场景配备减速器等机构,如电机+减速器或电机+其余执行机构。
作为优选,传动机构包括:基座动力齿轮502和基座齿条503;
其中,基座动力齿轮502设置于驱动机构的输出端,基座齿条503沿导轨6设置,基座动力齿轮502与基座齿条503啮合。基座4通过驱动机构驱动,使基座动力齿轮502与安装在导轨6上的固定基座齿条503相啮合,带动刮臂3和清洁刷器2沿导轨6方向运行。当然,还可用其他传动方式如带传动、链传动等实现,只要是能使得清洁刷器2和刮臂3沿着导轨6运动即可。
下面结合具体实施例对本方案作进一步介绍:
如图2a、图2b和图2c所示为本申请装置应用场景图。其中1为曲率变化的光学窗口(在此以光学曲面镜头为例进行说明),可置于海底基座或搭载在其他任意工作于水下的设备上。图3为本申请窗口清洁装置(在此以海底镜头清洁装置为例进行说明)结构示意图,该装置由清洁刷器2、刮臂3、基座4、基座动力装置5和导轨6组成。
图4为该装置清洁刷器2的结构图,其由清洁刮条201、弓形片202、支撑片203、保护套204、接口205、清洁喷嘴系206和紫外线灯系207组成。清洁刮条201采用橡胶材质,作用是刮拭光学窗口1玻璃上的附着生物及杂质。弓形片202与清洁刮条201及支撑片203连接,具备一定韧性和强度,可具体为防锈钢片,出厂时呈弓形,在第一连杆301施加的压力和镜面支撑力作用下,将使得清洁刮条201贴紧光学镜面。支撑片203与保护套204、弓形片202及接口205连接,采用刚度强度较好的金属防锈材料,或具备相当强度的其他材料。接口205用于连接支撑片203与刮臂3。保护套204用于包裹保护清洁刮条201、弓形片202等结构,保护及美化外观,可具体为橡胶套;同时保护套204的上部的外形设计成“人”字形迎水面,利用清洁装置运动时形成水压,可以让清洁刮条201更好地贴近光学玻璃镜面。在支撑片203的一侧安装有清洁喷嘴系206,通过将其喷嘴接头连接到输液管2803上,清洁喷嘴系206在清洁刷器2工作过程中持续喷出消毒液,以清洁玻璃镜面及清洁刮条201,杀灭附着的海生物。在支撑片203的另一侧安装紫外灯系207,紫外灯系207在清洁刷器2工作过程中持续发射紫外线照射玻璃面及清洁刮条201,近一步杀灭附着的海生物,由于消毒液及紫外灯照射的作用,清洁刷器2上附着的生物被消灭,可保证清洁装置长期使用而不降低清洁效果。
图5为本申请海底清洁装置洗涤机构示意图。如图所示,洗涤装置包括储液罐2801、洗涤泵2802、输液管2803及喷液开关2804等组成。该装置放置于搭载光学镜面的水下设备内,海底清洁装置工作时,启动喷液开关2084,洗涤泵2082将储液罐2081内的消毒液压缩并通过输液管2083输送至清洁刷器的清洁喷嘴系206处,在清洁刷器2工作过程中冲刷与消灭附着的海生物。
图6为本申请海底镜头清洁装置刮臂3的结构示意图。如图所示,刮臂3包括第一连杆301、曲张机构302、第二连杆303和刮臂驱动系统304组成。第一连杆301一端与接口205铰接,另一端与第二连杆303铰接,具备一定强度,其形状设计为圆弧状是为了避免与光学镜面干涉,近一步扩大清洁范围。第二连杆303一端与第一连杆301铰接,另一端与刮臂驱动系统304的输出端及基座支撑板401上的连接口连接。第一连杆301及第二连杆303在其铰接处内部安装曲张机构302。刮臂驱动系统304为第一水密电机(可结合具体的使用场景配备减速器等机构),输出端与第二连杆303连接,将驱动系统的转速与力矩传递给第二连杆303,刮臂驱动系统304固定于基座支撑板401上。
图7a、图7b和图7c为本申请海底镜头清洁装置基座及导轨6示意图,图8为本申请海底镜头清洁装置基座滚轮与导轨6截面配合图,其中基座4由基座支撑板401和四个基座滚轮402组成。基座支撑板401上搭载刮臂结构及清洁刷器。四个基座滚轮402与导轨6配合,从图8可见,导轨6通过与四个基座滚轮402嵌套配合,限制基座4各方向自由度,只保留沿导轨运动方向的自由度,同时,当基座4相对于导轨运行时,四个滚轮在导轨凸槽内沿自身轴线方向转动,大大减小了基座4移动过程与导轨6的摩擦力,使得装置能适应水底复杂洋流并沿导轨顺畅运动。基座动力装置5由第二水密电机501(可结合具体的使用场景配备减速器等机构)、基座动力齿轮502及基座齿条503组成。第二水密电机501固定于基座支撑板401上。基座动力齿轮502固定于第二水密电机501输出轴上,并与基座齿条相啮合。工作时启动水密电机501,电机将转速及扭矩传递给基座动力齿轮502并通过与基座齿条啮合传动带动装置沿圆导轨运动。
工作时启动基座动力装置5,则海底镜头清洁装置将沿着圆弧导轨6往复周向运行。当海底镜头清洁装置处于导轨6圆周某一位置时,基座4由于导轨6的支撑和限位,将抵御其上的刮臂结构以及水下洋流施加给基座的作用力。刮臂驱动系统304控制第二连杆303沿着铰接处a转动,曲张机构302一直处于压缩状态。在曲张机构302张力、刮臂驱动系统电机力矩及基座导轨的支撑作用下,清洁刷器受到第一连杆301施加的压力和镜面支撑力,使其与玻璃镜面紧紧贴合,通过控制刮臂驱动系统304转动第二连杆303至不同位置,将驱使清洁刷器沿着光学玻璃镜面的经线方向运动,并始终贴紧镜面。这种结构及作用方式可使清洁刷器适应沿玻璃曲面经线方向变化曲率的各种曲面形状,保持清洁刷器始终与光学玻璃镜面紧贴状态。如图9a、图9b和图9c所示为海底镜头清洁装置处于圆轨某一圆周位置时,清洁刷器及刮臂机构沿镜面经线方向工作状态图。
当海底镜头清洁装置处于距离导轨6平面某一固定高度位置时,基座4由于导轨6的支撑和限位,将抵御其上的刮臂结构以及水下洋流施加给基座的作用力。刮臂驱动系统304控制第二连杆303沿着铰接处a转动,曲张机构302一直处于压缩状态。在曲张机构302张力、刮臂驱动系统电机力矩及基座导轨的支撑作用下,清洁刷器受到第一连杆301施加的压力和镜面支撑力,使其与玻璃镜面紧紧贴合,通过驱动基座动力装置5,带动基座动力齿轮502与基座齿条503啮合,驱动装置沿导轨周向运动,同时控制刮臂驱动系统304转动第二连杆303至不同位置,将驱使清洁刷器沿着光学玻璃镜面的纬线方向始终贴紧镜面。这种结构及作用方式可使清洁刷器适应沿玻璃曲面纬线方向变化曲率的各种曲面形状,保持清洁刷器始终与光学玻璃镜面紧贴状态。
与现有技术相比,本方案优点如下:
1、适用范围广,可适用于曲率变化的球面及多面体的水下光学镜面清洁(需结合具体的使用场景配备不同形状导轨6);
2、不改变搭载光学镜面的水下装置本身结构,适用于各种水下装置;
3、结合水下清洁装置的使用场景及清洁刷器的受力情况,精心设计,除去喷射消毒液及紫外线照灯系统,整个装置的清洁动作只由一个刮臂驱动电机及基座驱动电机完成。结构简单紧凑,不引入复杂机构,零件及驱动装置少,成本低效果好且易于维护;
4、清洁装置与导轨6配合使用运用于海底环境,机构简约精巧,能适应水下复杂洋流,保证机构工作的可靠性
5、机构由于工作工程中持续喷射消毒液,并照射紫外线,不仅能加强消灭附着物的效果,还能同时对清洁刷器进行自清洁,使机构长期维持较好的清洁效果。
本申请实施例还提供了一种水下设备,包括:光学窗口1,还包括:如上述的窗口清洁装置。该水下设备可满足曲率沿着经线及纬线方向变化的光学镜面的清洁需求。整个装结构简单精巧、适用范围广、零件及驱动装置少,成本低效果好且易于维护。
本申请实施例还提供了一种窗口清洁方法,采用如上述的窗口清洁装置,该窗口清洁方法包括:
控制刮臂驱动系统304驱使第二连杆303在第一平面内转动或者在平行第一平面的平面内转动,带动第一连杆301和清洁刷器2在第一平面内转动,或者带动第一连杆301和清洁刷器2在平行第一平面的平面内转动,曲张机构302为第一连杆301和第二连杆303提供相对转动的作用力,清洁刷器2在第一连杆301的压力作用下贴合光学窗口1。在此可具体为沿着球形光学窗口1的经线方向运动,详细工作过程可以参照前文说明,在此不再赘述。
进一步的,窗口清洁方法还包括:
控制基座动力装置5驱使基座4沿导轨6在第二平面内运动。在此可具体为沿着球形光学窗口1的纬线方向运动,详细工作过程可以参照前文说明,在此不再赘述。上述第一平面和第二平面的运动可以同时进行。
综上所述,本方案实施提出一种可用于防止水下无线光通信设备的光学窗口表面的生物结垢的清洁技术。本申请的特征在于采用机械去除的方式对任意曲率的光学窗口进行清洁处理。具体的,研发一种窗口清洁装置,由清洁刷器、刮臂、基座、基座动力装置和导轨配合使用。使用时导轨可以方便的安装在搭载水下光学窗口的各种水下设备上,清洁刷器沿导轨运行,达到清洁的目的。该装置核心优点在于机构简单且能适应各种曲率的海底光学窗口。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (18)
- 一种窗口清洁装置,其中,包括:清洁刷器(2)和刮臂(3);所述刮臂(3)包括:第一连杆(301)、曲张机构(302)、第二连杆(303)和刮臂驱动系统(304);所述第一连杆(301)的第二端铰接于所述第二连杆(303)的第一端;所述清洁刷器(2)铰接于所述第一连杆(301)的第一端,且转动轨迹与所述第一连杆(301)第二端和所述第二连杆(303)第一端之间铰接处(a)的转动轨迹均位于第一平面内,或者所述清洁刷器(2)的转动轨迹所在平面平行于所述第一平面;所述第二连杆(303)能够由所述刮臂驱动系统(304)驱使转动,且转动轨迹与所述铰接处(a)的转动轨迹均位于所述第一平面内,或者所述第二连杆(303)的转动轨迹所在平面平行于所述第一平面;所述曲张机构(302)能够为所述第一连杆(301)和所述第二连杆(303)提供相对转动的作用力。
- 根据权利要求1所述的窗口清洁装置,其中,所述曲张机构(302)能够为所述第一连杆(301)和所述第二连杆(303)提供相背转动的作用力。
- 根据权利要求1所述的窗口清洁装置,其中,所述曲张机构(302)包括:设置在所述第一连杆(301)和所述第二连杆(303)之间的储能元件;所述储能元件能够为所述第一连杆(301)和所述第二连杆(303)提供相背转动的弹性回复力。
- 根据权利要求3所述的窗口清洁装置,其中,所述储能元件包括:扭簧、氮气弹簧和/或高弹性橡皮筋。
- 根据权利要求1所述的窗口清洁装置,其中,所述第一连杆(301)为圆弧状连杆。
- 根据权利要求1所述的窗口清洁装置,其中,所述刮臂驱动系统(304)包括:第一水密电机;所述第二连杆(303)的第二端连接于所述刮臂驱动系统(304)的输出端。
- 根据权利要求1所述的窗口清洁装置,其中,所述清洁刷器(2)包括:清洁刮条(201)、弓形片(202)、支撑片(203)和接口(205);所述清洁刮条(201)安装在所述弓形片(202)的内凹面,所述弓形片(202)与所述支撑片(203)连接,所述接口(205)固定于所述支撑片(203)上,所述接口(205)铰接于所述第一连杆(301)的第一端。
- 根据权利要求7所述的窗口清洁装置,其中,所述清洁刷器(2)还包括:保护套(204);所述保护套(204)的内侧面安装于所述弓形片(202)的外凸面,所述保护套(204)的外侧面具有“人”字形迎水面。
- 根据权利要求7所述的窗口清洁装置,其中,所述清洁刷器(2)还包括:设置于所述支撑片(203)的清洁喷嘴系(206)。
- 根据权利要求7所述的窗口清洁装置,其中,所述清洁刷器(2)还包括:设置于所述支撑片(203)的紫外线灯系(207)。
- 根据权利要求1所述的窗口清洁装置,其中,还包括:基座(4)、基座动力装置(5)和导轨(6);所述刮臂驱动系统(304)固定于所述基座(4),所述基座动力装置(5)能够驱使所述基座(4)沿所述导轨(6)运动,且运动轨迹位于垂直于所述第一平面的第二平面内。
- 根据权利要求11所述的窗口清洁装置,其中,所述基座(4)包括:基座支撑板(401)和基座运动机构;所述刮臂驱动系统(304)固定于所述基座支撑板(401),所述基座支撑板(401)通过所述基座运动机构与所述导轨(6)配合,且所述基座运动机构具有与所述导轨(6)嵌套配合的自由度限制结构,所述自由度限制结构限制所述基座运动机构只能够沿所述导轨(6)运动。
- 根据权利要求12所述的窗口清洁装置,其中,所述基座运动机构包括:四个基座滚轮(402);其中两个所述基座滚轮(402)位于所述导轨(6)的一侧,两个所述基座滚轮(402)位于所述导轨(6)的另一侧,且位于所述导轨(6)同侧的两个所述基座滚轮(402)沿所述导轨(6)导向错开设置;四个所述基座滚轮(402)位于同一平面。
- 根据权利要求11所述的窗口清洁装置,其中,所述基座动力装置(5)包括:驱动机构和传动机构,所述驱动机构设置于所述基座(4),所述驱动机构能够通过所述传动机构与所述导轨(6)配合。
- 根据权利要求14所述的窗口清洁装置,其中,所述传动机构包括:基座动力齿轮(502)和基座齿条(503);所述基座动力齿轮(502)设置于所述驱动机构的输出端,所述基座齿条(503)沿所述导轨(6)设置,所述基座动力齿轮(502)与所述基座齿条(503)啮合。
- 一种水下设备,包括:光学窗口(1),其中,还包括:如权利要求1-15任意一项所述的窗口清洁装置。
- 一种窗口清洁方法,其中,采用如权利要求1-15任意一项所述的窗口清洁装置,所述窗口清洁方法包括:控制所述刮臂驱动系统(304)驱使所述第二连杆(303)在所述第一平面内转动或在平行所述第一平面的平面内转动,带动所述第一连杆(301)和所述清洁刷器(2)在所述第一平面内转动,或者带动所述第一连杆(301)和所述清洁刷器(2)在平行所述第一平面的平面内转动,所述曲张机构(302)为所述第一连杆(301)和所述第二连杆(303)提供相对转动的作用力,所述清洁刷器(2)在所述第一连杆(301)的压力作用下贴合光学窗口(1)。
- 根据权利要求17所述的窗口清洁方法,其中,所述窗口清洁装置,还包括:基座(4)、基座动力装置(5)和导轨(6);所述刮臂驱动系统(304)固定于所述基座(4),所述基座动力装置(5)能够驱使所述基座(4)沿所述导轨(6)运动,且运动轨迹位于垂直于所述第一平面的第二平面内;所述窗口清洁方法还包括:控制所述基座动力装置(5)驱使所述基座(4)沿所述导轨(6)在所述第二平面内运动。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/887,128 US11638934B2 (en) | 2020-02-13 | 2022-08-12 | Optical window cleaning device, optical window cleaning method and underwater optical device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010091069.5A CN113245247B (zh) | 2020-02-13 | 2020-02-13 | 一种窗口清洁装置、方法和水下设备 |
CN202010091069.5 | 2020-02-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/887,128 Continuation US11638934B2 (en) | 2020-02-13 | 2022-08-12 | Optical window cleaning device, optical window cleaning method and underwater optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021159903A1 true WO2021159903A1 (zh) | 2021-08-19 |
Family
ID=77220061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/071346 WO2021159903A1 (zh) | 2020-02-13 | 2021-01-13 | 一种窗口清洁装置、方法和水下设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11638934B2 (zh) |
CN (1) | CN113245247B (zh) |
WO (1) | WO2021159903A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023154592A1 (en) * | 2022-02-10 | 2023-08-17 | ClearCam Inc. | Methods, devices and systems for cleaning an imaging element with a translatable cleaning element |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113245247B (zh) * | 2020-02-13 | 2022-08-30 | 鹏城实验室 | 一种窗口清洁装置、方法和水下设备 |
CN115532683A (zh) * | 2022-10-20 | 2022-12-30 | 仇萍萍 | 一种广播电视卫星传输微波天线清理装置 |
CN115802637B (zh) * | 2023-02-08 | 2023-05-05 | 苏州康尼格电子科技股份有限公司 | Pcba封装设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10216049A (ja) * | 1997-02-07 | 1998-08-18 | Matsushita Electric Ind Co Ltd | 球形ハウジング用ワイパー装置 |
CN102179389A (zh) * | 2011-02-18 | 2011-09-14 | 江苏省电力试验研究院有限公司 | 球型摄像头自动清洁装置 |
CN205008291U (zh) * | 2015-09-17 | 2016-02-03 | 重庆交通大学 | 水下清洗机械手 |
CN107377430A (zh) * | 2017-07-31 | 2017-11-24 | 苏州大贝岩电子科技有限公司 | 一种用于清洁水下机器人的半球形观察窗的清扫机构 |
CN207491081U (zh) * | 2017-12-08 | 2018-06-12 | 惠州百图丽实业有限公司 | 一种半球型摄像头 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE366257B (zh) * | 1972-03-27 | 1974-04-22 | U Jaervinen | |
CN2079482U (zh) * | 1990-09-07 | 1991-06-26 | 汤允武 | 擦窗器 |
DE19954147A1 (de) * | 1999-11-11 | 2001-05-31 | Volkswagen Ag | Scheibenwischer |
US20020073493A1 (en) * | 2000-12-19 | 2002-06-20 | Walton Charles A. | System for cleaning underwater surfaces, improvements and variations |
JP2006198602A (ja) * | 2004-12-24 | 2006-08-03 | Tanaka Mach:Kk | ドーム用ワイパー装置 |
DE202009012431U1 (de) * | 2009-09-15 | 2011-02-10 | A. Raymond Et Cie S.C.S. | Verbindungseinrichtung für eine Scheibenwischeranlage |
EP2773999A4 (en) * | 2011-11-02 | 2015-05-27 | Jeffrey Aldred | METHOD AND DEVICE FOR CLEANING A TRANSPARENT HOUSING OF A DIVEABLE CAMERA |
US9776219B2 (en) * | 2013-01-17 | 2017-10-03 | Raytheon Company | Method and apparatus for removing biofouling from a protected surface in a liquid environment |
US8567963B1 (en) * | 2013-03-13 | 2013-10-29 | Michael Thomas Criscuolo | System for a self-cleaning/wiping protective dome integrated into an outdoor camera housing |
JP6211417B2 (ja) * | 2013-12-27 | 2017-10-11 | 株式会社エーエスシー | 監視カメラ装置 |
US9731688B2 (en) * | 2014-10-31 | 2017-08-15 | Waymo Llc | Passive wiper system |
US9855925B2 (en) * | 2014-10-31 | 2018-01-02 | Waymo Llc | Control for passive wiper system |
DE102014116681B4 (de) * | 2014-11-14 | 2022-10-13 | Kautex Textron Gmbh & Co. Kg | Fahrzeugintegriertes Sicht- und Reinigungssystem |
CN104841655B (zh) * | 2015-05-30 | 2016-07-06 | 国网山东济南市历城区供电公司 | 球形摄像头的清洁装置 |
CN105170508A (zh) * | 2015-09-25 | 2015-12-23 | 国网山东商河县供电公司 | 变电站摄像头清洁装置 |
CN205056525U (zh) * | 2015-09-30 | 2016-03-02 | 青岛市光电工程技术研究院 | 一种水下窗口清洗装置 |
JP6282624B2 (ja) * | 2015-10-22 | 2018-02-21 | 株式会社ミツバ | ワイパ装置 |
CN107139887B (zh) * | 2017-06-30 | 2022-02-01 | 奇瑞汽车股份有限公司 | 一种汽车刮水器 |
CN108769490B (zh) * | 2018-07-18 | 2020-09-22 | 南通珂艾宸网络技术有限公司 | 高成像质量监控摄像头 |
US10782520B2 (en) * | 2018-07-24 | 2020-09-22 | Ford Global Technologies, Llc | Cleaning system for vehicle sensor |
US11279324B2 (en) * | 2018-09-26 | 2022-03-22 | Waymo Llc | Rotary wiper system |
US11097695B2 (en) * | 2018-10-30 | 2021-08-24 | Waymo Llc | Non-contact cleaning system |
CN109454039B (zh) * | 2018-11-08 | 2021-06-04 | 蔡恩祈 | 一种高速公路监控摄像头用自动清理结构 |
CN113245247B (zh) * | 2020-02-13 | 2022-08-30 | 鹏城实验室 | 一种窗口清洁装置、方法和水下设备 |
-
2020
- 2020-02-13 CN CN202010091069.5A patent/CN113245247B/zh active Active
-
2021
- 2021-01-13 WO PCT/CN2021/071346 patent/WO2021159903A1/zh active Application Filing
-
2022
- 2022-08-12 US US17/887,128 patent/US11638934B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10216049A (ja) * | 1997-02-07 | 1998-08-18 | Matsushita Electric Ind Co Ltd | 球形ハウジング用ワイパー装置 |
CN102179389A (zh) * | 2011-02-18 | 2011-09-14 | 江苏省电力试验研究院有限公司 | 球型摄像头自动清洁装置 |
CN205008291U (zh) * | 2015-09-17 | 2016-02-03 | 重庆交通大学 | 水下清洗机械手 |
CN107377430A (zh) * | 2017-07-31 | 2017-11-24 | 苏州大贝岩电子科技有限公司 | 一种用于清洁水下机器人的半球形观察窗的清扫机构 |
CN207491081U (zh) * | 2017-12-08 | 2018-06-12 | 惠州百图丽实业有限公司 | 一种半球型摄像头 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023154592A1 (en) * | 2022-02-10 | 2023-08-17 | ClearCam Inc. | Methods, devices and systems for cleaning an imaging element with a translatable cleaning element |
Also Published As
Publication number | Publication date |
---|---|
CN113245247A (zh) | 2021-08-13 |
US11638934B2 (en) | 2023-05-02 |
CN113245247B (zh) | 2022-08-30 |
US20220379350A1 (en) | 2022-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021159903A1 (zh) | 一种窗口清洁装置、方法和水下设备 | |
Kaushal et al. | Underwater optical wireless communication | |
US20160121009A1 (en) | Optical Communication Systems and Methods | |
US20170348739A1 (en) | Method and Apparatus for Removing Biofouling From a Protected Surface in a Liquid Environment | |
CN106423929B (zh) | 光伏发电板清洗装置 | |
CN110435845B (zh) | 一种旋转式船体清污机器人 | |
CN210526806U (zh) | 一种旋转式船体清污机器人 | |
CN209768722U (zh) | 一种节能型通信塔用驱鸟装置 | |
JP2012040538A (ja) | 海中ケーブルなどの清掃装置 | |
GB2480337A (en) | Wave energy converter with an orientating mechanism | |
US10359023B2 (en) | Articulating wave energy conversion system using a compound lever-arm barge | |
Mittal et al. | Different Communication Technologies and Challenges for implementing Under Water Sensor Network | |
Alexander et al. | Practical applications of free-space optical underwater communication | |
CN109433749A (zh) | 一种适用于小尺寸金属管道的反射式激光清洗设备 | |
Mendez et al. | A comparative study of underwater wireless optical communication for three different communication links | |
CN113996592A (zh) | 一种基于智能家居的水槽超声波净化系统及其使用方法 | |
KR102382466B1 (ko) | 로프형 계류라인 수중 청소로봇 | |
CN210357745U (zh) | 一种喷涂专用简易机器人 | |
CN214338040U (zh) | 一种智能吊篮无线视频监控装置 | |
CN115489686B (zh) | 一种仿生水母与蜘蛛式船底清污机器人 | |
CN114285492A (zh) | 一种水下可见光通信用组件及其通信流程 | |
Mittal et al. | Different Communication Technologies and Challenges for Implementing UWSN | |
CN219678477U (zh) | 一种空气到水跨介质激光致声通信装置 | |
KR102705619B1 (ko) | 수중 광무선통신용 렌즈 보호 장치 및 수중 이동체의 수중 광무선통신 방법 | |
CN118385165A (zh) | 一种新型的浅海水下通信装置及其使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21753662 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/04/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21753662 Country of ref document: EP Kind code of ref document: A1 |