WO2021159839A1 - 一种溶胶凝胶法制备玻璃的生产设备及相关制备方法 - Google Patents

一种溶胶凝胶法制备玻璃的生产设备及相关制备方法 Download PDF

Info

Publication number
WO2021159839A1
WO2021159839A1 PCT/CN2020/135094 CN2020135094W WO2021159839A1 WO 2021159839 A1 WO2021159839 A1 WO 2021159839A1 CN 2020135094 W CN2020135094 W CN 2020135094W WO 2021159839 A1 WO2021159839 A1 WO 2021159839A1
Authority
WO
WIPO (PCT)
Prior art keywords
sol
filter
reaction kettle
filter screen
gel method
Prior art date
Application number
PCT/CN2020/135094
Other languages
English (en)
French (fr)
Inventor
陈雨叁
李乾
刘莹莹
张梦雯
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2021159839A1 publication Critical patent/WO2021159839A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the technical field of glass preparation, in particular to a production equipment for preparing glass by a sol-gel method and a related preparation method.
  • optical components play an important role in light beam transmission and shaping.
  • the precision of optical components (such as light transmission performance, surface structure accuracy, etc.) has an important impact on the efficiency and performance of the entire optical system.
  • plastic injection molding methods have been widely used; however, in the fields of high-brightness lighting and display, plastic optical components are easily deformed and deteriorated under the irradiation of high-energy beams, so In the high-end field, glass optical elements with a more stable structure are usually used.
  • the sol-gel method for preparing glass optical devices is widely used in mass production. Due to the numerous preparation process steps of the sol-gel method, especially the preparation of raw materials before the gel, a variety of raw materials and auxiliary materials are required to be added, which may cause gas to be mixed into the sol and cause pores to remain in the subsequent glass optical components.
  • the permeability of the component has a major impact.
  • the sol can be degassed at low pressure, so that the gas is discharged from the sol.
  • the present invention provides a sol-gel method for preparing glass production equipment that reduces internal defects and improves the light transmittance of glass optical elements, including A reactor, the upper part of the shell of the reactor is provided with an air inlet and outlet and a feeding port, and the lower part of the shell of the reactor is provided with a sol outlet, and the atmosphere in the cavity of the reactor can be controlled through the air inlet and outlet , The air pressure is controlled, the feeding port is used for injecting raw materials and pH value adjustment liquid; the cavity of the reaction kettle is provided with a filter screen and a stirrer, and the filter screen is provided at a position above the sol outlet for The surface of the solution in the cavity of the reaction kettle is filtered.
  • the shortest distance from the filter screen to the sol outlet is always greater than the distance from the filter screen to the preset liquid level in the cavity of the reaction kettle.
  • the filter screen is a movable filter screen, and the position of the preset liquid level is within the movable range of the filter screen.
  • the filter includes a first sub-filter and a second sub-filter, the first sub-filter is located above the second sub-filter, and the first sub-filter The pore size is larger than the pore size of the second sub-filter.
  • it further includes a motor, the motor and the agitator are connected by a connecting rod, and the connecting rod penetrates the shell of the reactor.
  • the filter screen is arranged on the connecting rod, and the filter screen is located above the agitator.
  • the connecting rod can move up and down, so that the filter screen and the agitator are located above and below the preset liquid level.
  • the present invention also provides a method for preparing glass by the sol-gel method, which adopts any of the above-mentioned production equipment and includes the following steps: Step 1: Prepare silica sol in the reactor; Step 2: Right The silica sol obtained in step one is vacuum degassed; step three: the silica sol obtained in step two is subjected to surface filtration; step four: the silica sol obtained in step three is injected into a mold for condensation Gelatinize.
  • the preparation of the silica sol is performed in the cavity of the reaction kettle in an inert atmosphere with low solubility.
  • the filter screen is a movable filter screen, and the filter screen is placed below the liquid surface of the silica sol before the step two, and in the step three, the The filter screen moves above the liquid surface of the silica sol.
  • the present invention includes the following beneficial effects: by setting the gas inlet and outlet for regulating the atmospheric pressure in the reactor on the shell of the reactor, and arranging the feed inlets for the raw materials and the pH adjustment liquid, the preparation of the sol,
  • the low-pressure degassing process can be carried out in the same reactor without transfer, thus avoiding the problem of impurities and bubbles mixed in the liquid transfer process;
  • a filter in the cavity of the reactor it is used for the cavity Filtering the surface of the solution in the body can eliminate the problem of premature gelation of the surface of the solution caused by low-pressure degassing, and ultimately improve the light transmittance of the glass optical device prepared.
  • FIG. 1 is a schematic diagram of the structure of the production equipment for preparing glass by the sol-gel method of the present invention.
  • the starting point of the present invention is to improve the light transmission performance of the sol-gel process product. For this reason, the preparation, defoaming and impurity removal processes of the sol are realized in the same production equipment, especially for the premature condensation of the surface caused by defoaming.
  • the impurity removal of the glue is realized in the same production equipment. On the one hand, it avoids the new bubble problem caused by the transfer. On the other hand, it can use the degassing atmosphere to solve the problem of gas dissolving into the sol under normal circumstances.
  • FIG. 1 is a schematic diagram of the structure of the production equipment for preparing glass by the sol-gel method of the present invention.
  • the production equipment 10 includes a reactor 100.
  • the reactor 100 includes a shell 110 and a cavity 120.
  • the upper part of the shell 110 of the reactor 100 is provided with an air inlet and outlet 112 and a feeding port 111, and the lower part of the shell 110 of the reactor 100 is provided with a sol Exit 114.
  • the atmosphere and air pressure in the cavity 120 of the reaction kettle 100 can be controlled through the air inlet and outlet 112. Specifically, the air pressure can be monitored by the air pressure gauge 113 on the housing 110.
  • the raw materials can be injected into the cavity of the reaction kettle through the feeding port 111, and the feeding port 111 can be used for injecting the pH adjustment liquid at the same time.
  • the sol outlet 114 at the lower part of the reaction kettle 100 is used to form a uniform sol and then lead the sol out of the reaction kettle 100.
  • the bottom of the reactor 100 is also provided with a lower discharge port 115, which is used to discharge the remaining waste liquid after the sol is discharged. It is understandable that the lower discharge port 115 is not necessary. After the production is completed, it can also be opened by opening the top of the reactor. Remove the remaining waste liquid by means of a cover.
  • the cavity 120 of the reactor 100 is provided with a filter screen 122 and a stirrer 133, wherein the filter screen 122 is provided at a position above the sol outlet 114, covering the cross section of the reactor, and is used to compare the surface of the solution in the cavity of the reactor. Filtration is performed; the agitator 133 is set at the preset position of the sol/solution in the reaction kettle, and is used for mixing the raw materials and the pH adjustment liquid.
  • the filter screen 122 is arranged above the sol outlet 114 instead of at the bottom of the reaction vessel, precisely because its function is to filter out the premature gel film on the surface of the sol, instead of filtering the entire sol.
  • the above characteristics of the reactor 100 make the sol-gel method to prepare glass for feeding, mixing, discharging, atmosphere control, air pressure control, and surface filtration all in the same container, avoiding the problem of gas mixing during the transfer process.
  • the shortest distance from the filter screen 122 to the sol outlet 114 is always greater than the distance from the filter screen 122 to the preset liquid level 1211 in the cavity of the reactor 100. That is, when the sol 121 is present in the reactor, the filter screen 122 is closer to the surface of the sol than to the sol outlet 114.
  • This technical solution makes it possible to reduce the relative movement distance with the surface of the sol when the filter screen 122 is responsible for filtering out the premature gel film layer on the surface of the sol, and reduce the influence of the filter screen on the sol.
  • the preset liquid level 1211 is the liquid level of the preset sol scale of the reaction kettle, and can float up and down on the scale, for example, ⁇ 3% of the volume of the scale.
  • a reactor can include multiple preset liquid level scales, for example, 2L, 1.5L, 1L, etc., and the setting of the filter screen 122 position corresponds to the preset liquid level scale set during the current production, which does not need to be satisfied. The positional relationship under all scales.
  • the filter screen 122 can be a movable filter screen, which can be moved up and down, and the preset position of the liquid surface 1211 is within the movable range of the filter screen 122, so that the filter screen 122 can be moved from below the liquid surface when the liquid surface is not moving. Move to above the liquid surface to complete the premature gel film filtration on the liquid surface.
  • the filter 122 includes a first sub-filter and a second sub-filter, wherein the first sub-filter is located above the second sub-filter, and the aperture of the first sub-filter is larger than that of the second sub-filter.
  • the aperture of the sub-filter can use the first sub-filter to filter the larger gel membrane layer block, and then use the second sub-filter to filter the smaller gel membrane layer block to avoid clogging of the filter screen.
  • the filter screen may also be a fixed filter screen, which needs to be disassembled from the fixed position, instead of moving up and down during the production process like a movable filter screen.
  • the filter screen needs to be set below the preset liquid level scale in advance. After the sol outlet is opened, the liquid level gradually drops, so that the gel film layer on the sol liquid surface is filtered by the filter screen.
  • the production equipment also includes a motor 131, the motor 131 and the agitator 133 are connected by a connecting rod 132, wherein the connecting rod 132 penetrates the shell 110 of the reactor 100 so that the motor is located outside the reactor 100.
  • the agitator 133 rotates to agitate the raw materials and make them uniformly mixed.
  • the technical solution ensures the tightness of the reactor, so that no new external air is mixed in during the stirring process.
  • the connecting rod 132 can either directly rotate together with the agitator, or drive the agitator 133 to rotate through a transmission rod inside the connecting rod.
  • the filter screen 122 is disposed on the connecting rod 132, and the filter screen 122 is located above the agitator 133.
  • the connecting rod can move up and down, so that the filter screen and the agitator are located above and below the preset liquid level. Specifically, when it is necessary to filter the gel film layer on the surface of the sol, the connecting rod is pulled up so that the filter screen moves above the liquid level to complete the filtration; when the raw material needs to be stirred, the connecting rod is inserted downward so that The stirrer is located below the liquid level.
  • the connecting rod cannot move up and down during the production process, and the natural drop of the sol liquid level causes the liquid level to pass through the filter to complete the filtration.
  • the present invention also provides a method for preparing glass by the sol-gel method using the above-mentioned production equipment, including the following steps: Step 1: Prepare silica sol in the reactor 100; Step 2: Obtain from step 1. The silica sol is degassed at low pressure; Step 3: Perform surface filtration on the silica sol obtained in Step 2; Step 4: Inject the silica sol obtained in Step 3 into the mold 200 to gel. details as follows.
  • step 1 the preparation of the silica sol is carried out in the cavity of the reaction kettle in an inert atmosphere with low solubility, which can ensure that less gas is mixed into the sol.
  • the degassing time is about 30 minutes, so that the bubbles entering the sol from the atmosphere of the cavity 120 of the reaction kettle during the stirring process are discharged.
  • pure rare gas such as helium, argon, krypton, nitrogen, etc.
  • gas inlet and outlet 112 preferably krypton with low solubility.
  • the sol outlet 114 is opened, and the sol is injected into the mold 200 along the pipe 300 to complete the injection molding of the sol, and then the gelation in the mold 200 in the sol is completed.
  • the wet gel is demolded to obtain a wet gel block.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

一种溶胶凝胶法制备玻璃的生产设备(10),包括反应釜(100),所述反应釜(100)的壳体(110)的上部设置有进出气口(112)和加料口(111),所述反应釜(100)的壳体(110)的下部设置有溶胶出口(114),可通过所述进出气口(112)对所述反应釜(100)的腔体(120)内的气氛、气压进行控制,所述加料口(111)用于注入原料和pH值调节液;所述反应釜(100)的腔体(120)内设置有滤网(122)和搅拌器(133),所述滤网(122)设置于所述溶胶出口(114)上方的位置,用于对所述反应釜(100)的腔体(120)内的溶液表面进行过滤。一种溶胶凝胶法制备玻璃的制备方法。该生产设备(10)及制备方法能够改善制得的玻璃光学器件的透光性能。

Description

一种溶胶凝胶法制备玻璃的生产设备及相关制备方法 技术领域
本发明涉及玻璃制备技术领域,特别是涉及一种溶胶凝胶法制备玻璃的生产设备及相关制备方法。
背景技术
在照明和显示等技术领域,光学元件承担了光束传导、整形的重要作用,光学元件的精密程度(如透光性能、表面结构精度等)对整个光学系统的效率、性能具有重要影响。为了得到结构精度高的光学元件,同时为了降低成本,塑料注塑成型的方法得到了广泛应用;然而,在高亮度照明、显示领域,塑料光学元件容易在高能量光束的照射下变形、劣化,因此在高端领域,通常采用结构更加稳定的玻璃光学元件。
同样为了降低成本,溶胶凝胶法制备玻璃光学器件被广泛应用于量产化的生产中。由于溶胶凝胶法制备工艺步骤繁多,尤其在凝胶前的原料配置过程中需要多种原料、辅料添加,可能导致气体混入溶胶中而导致后续的玻璃光学元件中残留有气孔,这对玻璃光学元件的通透性具有重大影响。为了解决溶胶中混入气体的问题,可对溶胶进行低压脱泡,使得气体从溶胶中排出。然而发明人发现,在低压脱泡过程中,会导致溶胶表层提前失水凝胶化,在局部形成一层凝胶薄膜,该凝胶薄膜沉降并混入溶胶中,在后续的凝胶化过程中形成内部的不均匀块,并最终导致玻璃光学元件的透光性下降。为此,需要一种更优的溶胶凝胶制备方法及配套的生产设备,以提高制备的玻璃光学元件的光学性能。
发明内容
针对上述现有技术的溶胶凝胶法制备玻璃光学器件容易产生内部缺陷的问题,本发明提供一种减少内部缺陷、提高玻璃光学元件的透光性的溶胶凝胶法制备玻璃的生产设备,包括反应釜,所述反应釜的壳体 的上部设置有进出气口和加料口,所述反应釜的壳体的下部设置有溶胶出口,可通过所述进出气口对所述反应釜的腔体内的气氛、气压进行控制,所述加料口用于注入原料和pH值调节液;所述反应釜的腔体内设置有滤网和搅拌器,所述滤网设置于所述溶胶出口上方的位置,用于对所述反应釜的腔体内的溶液表面进行过滤。
在一个实施方式中,所述滤网到所述溶胶出口的最短距离始终大于所述滤网到所述反应釜的腔体内的预设液面的距离。
在一个实施方式中,所述滤网为活动滤网,所述预设液面的位置位于所述滤网的活动范围之内。
在一个实施方式中,所述滤网包括第一子滤网和第二子滤网,所述第一子滤网位于所述第二子滤网的上方,且所述第一子滤网的孔径大于所述第二子滤网的孔径。
在一个实施方式中,还包括电机,所述电机与所述搅拌器通过连杆连接,所述连杆贯穿所述反应釜的壳体。
在一个实施方式中,所述滤网设置于所述连杆上,且所述滤网位于所述搅拌器上方。
在一个实施方式中,所述连杆可上下移动,以使得所述滤网及所述搅拌器位于预设液面的上下。
本发明还提供一种溶胶凝胶法制备玻璃的制备方法,采用上述任一项所述的生产设备,包括如下步骤:步骤一:在所述反应釜内制备二氧化硅溶胶;步骤二:对步骤一得到的所述二氧化硅溶胶真空脱泡;步骤三:对步骤二得到的所述二氧化硅溶胶进行表面过滤;步骤四:将步骤三得到的所述二氧化硅溶胶注入模具中凝胶化。
在一个实施方式中,在所述步骤一中,所述二氧化硅溶胶的制备在所述反应釜的腔体处于低溶解度的惰性气氛下进行。
在一个实施方式中,所述滤网为活动滤网,在所述步骤二之前将所述滤网置于所述二氧化硅溶胶的液面之下,并在所述步骤三中,将所述滤网移动至所述二氧化硅溶胶的液面之上。
与现有技术相比,本发明包括如下有益效果:通过在反应釜壳体上设置调控反应釜内气氛气压的进出气口,并设置各原料及pH值调节液 的加料口,使得溶胶的制备、低压脱泡过程都可以在同一个反应釜内进行,无需转移,从而避免了液体转移过程中混入杂质、气泡的问题;另一方面,通过在反应釜的腔体内设置滤网,用于对腔体内的溶液表面进行过滤,能够消除低压脱泡带来的溶液表面过早凝胶化问题,最终改善了制得的玻璃光学器件的透光性能。
附图说明
图1为本发明的溶胶凝胶法制备玻璃的生产设备的结构示意图。
具体实施方式
本发明的出发点在于提高溶胶凝胶法制品的透光性能,为此将溶胶的制备、脱泡和除杂过程在同一个生产设备中实现,特别是对因脱泡而产生的表面过早凝胶的除杂在同一个生产设备中实现,一方面避免了转移带来的新的气泡问题,一方面可以利用脱泡的气氛条件解决常规情况下气体溶解进入溶胶的问题。下面结合附图和实施方式对本发明实施例进行详细说明。
请参见图1,为本发明的溶胶凝胶法制备玻璃的生产设备的结构示意图。生产设备10包括反应釜100,反应釜100包括壳体110和腔体120,反应釜100的壳体110上部设置有进出气口112和加料口111,反应釜100的壳体110的下部设置有溶胶出口114。
可通过进出气口112对反应釜100的腔体120内的气氛、气压进行控制,具体地,可以通过壳体110上的气压表113对气压进行监控。
可通过加料口111将原料注入到反应釜的腔体内,加料口111可同时用于注入pH值调节液。
反应釜100下部的溶胶出口114用于形成均匀溶胶后将溶胶导出反应釜100。此外,反应釜100的底部还设置有下出料口115,用于待溶胶导出后排出剩余废液,可以理解,下出料口115并非必须,在生产完成后,也可以通过打开反应釜顶盖的方式取出剩余废液。
反应釜100的腔体120内设置有滤网122和搅拌器133,其中,滤网122设置于溶胶出口114上方的位置,覆盖反应釜的横截面,用于对 反应釜的腔体内的溶液表面进行过滤;搅拌器133设置于反应釜预设溶胶/溶液的位置,用于对原料及pH值调节液进行混料。在本发明中,滤网122设置于溶胶出口114上方而非设置于反应釜底部,正是由于其作用为滤除溶胶表面过早的凝胶膜层,并非对全体溶胶进行过滤除杂。
以上反应釜100的特征使得溶胶凝胶法制备玻璃的加料、混料、出料、气氛控制、气压控制和表面过滤都处于同一容器内,避免了转移过程中的气体混入问题。
在本发明的一个具体实施方式中,滤网122到溶胶出口114的最短距离始终大于滤网122到反应釜100的腔体内的预设液面1211的距离。即,当反应釜内存在溶胶121时,滤网122距离溶胶表面相对于距离溶胶出口114更近。该技术方案使得,当滤网122在承担滤除溶胶表面的过早凝胶膜层时,能够减少与溶胶表面的相对运动距离,减少滤网对溶胶的影响。在本发明中,预设液面1211为反应釜的预设溶胶刻度的液面,可在该刻度上下浮动,例如浮动该刻度体积的±3%。一个反应釜可包括多个预设液面刻度,例如可包括2L、1.5L、1L等多个刻度,滤网122位置的设置与当前生产时设置的预设液面刻度相对应,并非需要满足所有刻度下的位置关系。
滤网122可以为活动滤网,可上下移动,并且预设液面1211的位置位于滤网122的活动范围之内,使得在液面不动的情况下,滤网122可以从液面之下移动至液面之上,完成对液面的过早凝胶膜层的过滤。
在一个变形实施例中,滤网122包括第一子滤网和第二子滤网,其中,第一子滤网位于第二子滤网的上方,且第一子滤网的孔径大于第二子滤网的孔径。该技术方案可以利用第一子滤网将较大的凝胶膜层块过滤,然后利用第二子滤网过滤较小的凝胶膜层块,避免滤网堵塞。
在另一个实施例中,滤网也可以为固定式滤网,需要拆卸固定位置,而非如活动滤网般可在生产过程中上下移动。在该技术方案中,需要预先将滤网设置于预设液面刻度之下,待打开溶胶出口后,液面逐渐下降,使得溶胶液面的凝胶膜层被滤网过滤。
请继续参见图1,该生产设备还包括电机131,电机131与搅拌器133通过连杆132连接,其中,连杆132贯穿反应釜100的壳体110, 使得电机位于反应釜100的外部。在电机131的驱动下,搅拌器133转动,从而搅拌原料,使其混合均匀。该技术方案保证了反应釜的密封性,使得搅拌过程中不会混入新的外部气体。在本发明中,连杆132既可以直接与搅拌器一起整体转动,也可以通过连杆内部的传动杆带动搅拌器133转动。
在本实施例中,滤网122设置于连杆132上,且滤网122位于搅拌器133上方。连杆可上下移动,以使得滤网及搅拌器位于预设液面的上下。具体地,当需要对溶胶表面的凝胶膜层过滤时,将连杆向上抽起,使得滤网移动至液面以上以完成过滤;当需要对原料搅拌时,将连杆向下插入,使得搅拌器位于液面以下。
同样的,在本发明的一个变形实施例中,连杆无法在生产过程中上下移动,通过溶胶液面的自然下降使得液面穿过滤网完成过滤。
结合图1,利用上述生产设备本发明还提供了一种溶胶凝胶法制备玻璃的制备方法,包括如下步骤:步骤一:在反应釜100内制备二氧化硅溶胶;步骤二:对步骤一得到的二氧化硅溶胶低压脱泡;步骤三:对步骤二得到的二氧化硅溶胶进行表面过滤;步骤四:将步骤三得到的二氧化硅溶胶注入模具200中凝胶化。具体如下。
<步骤一>
将气相二氧化硅粉末和一定量的去离子水通过加料口111加入到如图1所示的反应釜100的腔体120中,将真空泵的抽气管与进出气口112连接;启动真空泵,进行抽真空操作,观察气压表113,当真空度达到0.1Mpa时,切换管路,向反应釜内通入纯净的稀有气体,氦气、氩气、氪气、氮气等,优选溶解度低的氪气,当气压恢复正常后,利用搅拌器133采用3000~8000转/min的转速进行搅拌分散,配制成二氧化硅质量分数为20%~45%的分散液。
通过加料口111向反应釜100中添加适量的稀盐酸溶液,调节分散液的pH,使其pH在1.3~2.8之间,并搅拌数分钟至数小时,使得pH值均匀。
通过加料口111向反应釜100中添加一定比例的正硅酸乙酯(或正硅酸甲酯),使得n(SiO2)/n(TEOS)的比值在2~4.5范围内,搅拌一定时 间后,待正硅酸乙酯水解形成溶胶溶液;搅拌60到300min。向反应釜100内加入适量的稀释的氨水调节溶胶pH,使其pH在2.5~5之间,能够使得溶胶在一定时间内形成凝胶。
在步骤一中,二氧化硅溶胶的制备在反应釜的腔体处于低溶解度的惰性气氛下进行,可以保证较少的气体混入溶胶中。
<步骤二>
将真空泵的抽气管与进出气口112连接,启动真空泵,进行真空脱泡,脱泡时间为约30min,使得在搅拌过程中由反应釜的腔体120的气氛进入溶胶的气泡被排出。
<步骤三>
脱泡结束后,从进出气口112通入纯净的稀有气体,氦气、氩气、氪气、氮气等,优选溶解度低的氪气。使得反应釜内的气压回到正大气压并维持在一个正压的稳定状态下。向上移动滤网122,对二氧化硅溶胶表面进行过滤。在本制备方法中,滤网为活动滤网,在步骤二之前将滤网置于二氧化硅溶胶的液面之下。
<步骤四>
之后打开溶胶出口114,溶胶顺着管道300注入模具200中,即完成了溶胶的注模,而后溶胶中模具200中完成凝胶化。
待凝胶化过程完成后,将湿凝胶脱模,得到湿凝胶块。将湿凝胶块放入恒温恒湿箱中干燥,温度40℃~90℃,湿度20%~90%。将干燥后的凝胶块放入管式炉中进行烧结,烧结温度为1000℃~1300℃,烧结时间为4h~20h,即得到透明的玻璃器件。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种溶胶凝胶法制备玻璃的生产设备,其特征在于,包括反应釜,所述反应釜的壳体的上部设置有进出气口和加料口,所述反应釜的壳体的下部设置有溶胶出口,可通过所述进出气口对所述反应釜的腔体内的气氛、气压进行控制,所述加料口用于注入原料和pH值调节液;
    所述反应釜的腔体内设置有滤网和搅拌器,所述滤网设置于所述溶胶出口上方的位置,用于对所述反应釜的腔体内的溶液表面进行过滤。
  2. 根据权利要求1所述的溶胶凝胶法制备玻璃的生产设备,其特征在于,所述滤网到所述溶胶出口的最短距离始终大于所述滤网到所述反应釜的腔体内的预设液面的距离。
  3. 根据权利要求1或2所述的溶胶凝胶法制备玻璃的生产设备,其特征在于,所述滤网为活动滤网,所述预设液面的位置位于所述滤网的活动范围之内。
  4. 根据权利要求1或2所述的溶胶凝胶法制备玻璃的生产设备,其特征在于,所述滤网包括第一子滤网和第二子滤网,所述第一子滤网位于所述第二子滤网的上方,且所述第一子滤网的孔径大于所述第二子滤网的孔径。
  5. 根据权利要求1所述的溶胶凝胶法制备玻璃的生产设备,其特征在于,还包括电机,所述电机与所述搅拌器通过连杆连接,所述连杆贯穿所述反应釜的壳体。
  6. 根据权利要求5所述的溶胶凝胶法制备玻璃的生产设备,其特征在于,所述滤网设置于所述连杆上,且所述滤网位于所述搅拌器上方。
  7. 根据权利要求6所述的溶胶凝胶法制备玻璃的生产设备,其特征在于,所述连杆可上下移动,以使得所述滤网及所述搅拌器位于预设液面的上下。
  8. 一种溶胶凝胶法制备玻璃的制备方法,采用如权利要求1至7中任一项所述的生产设备,包括如下步骤:
    步骤一:在所述反应釜内制备二氧化硅溶胶;
    步骤二:对步骤一得到的所述二氧化硅溶胶低压脱泡;
    步骤三:对步骤二得到的所述二氧化硅溶胶进行表面过滤;
    步骤四:将步骤三得到的所述二氧化硅溶胶注入模具中凝胶化。
  9. 根据权利要求8所述的溶胶凝胶法制备玻璃的制备方法,其特征在于,在所述步骤一中,所述二氧化硅溶胶的制备在所述反应釜的腔体处于低溶解度的惰性气氛下进行。
  10. 根据权利要求8所述的溶胶凝胶法制备玻璃的制备方法,其特征在于,所述滤网为活动滤网,在所述步骤二之前将所述滤网置于所述二氧化硅溶胶的液面之下,并在所述步骤三中,将所述滤网移动至所述二氧化硅溶胶的液面之上。
PCT/CN2020/135094 2020-02-11 2020-12-10 一种溶胶凝胶法制备玻璃的生产设备及相关制备方法 WO2021159839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010086044.6 2020-02-11
CN202010086044.6A CN113248120B (zh) 2020-02-11 2020-02-11 一种溶胶凝胶法制备玻璃的生产设备及相关制备方法

Publications (1)

Publication Number Publication Date
WO2021159839A1 true WO2021159839A1 (zh) 2021-08-19

Family

ID=77219534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135094 WO2021159839A1 (zh) 2020-02-11 2020-12-10 一种溶胶凝胶法制备玻璃的生产设备及相关制备方法

Country Status (2)

Country Link
CN (1) CN113248120B (zh)
WO (1) WO2021159839A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010030388A1 (en) * 1998-02-16 2001-10-18 Young-Sik Yoon Method of fabricating silica glass by sol-gel process
EP1310463A2 (en) * 2001-11-13 2003-05-14 Samsung Electronics Co., Ltd. Method for fabricating silica glass using sol-gel process
CN1438193A (zh) * 2002-02-16 2003-08-27 三星电子株式会社 在溶胶-凝胶工艺中除去大气泡的方法
CN101045609A (zh) * 2007-03-29 2007-10-03 复旦大学 一种适用于离子交换的掺锂玻璃薄膜的制备工艺
CN101108767A (zh) * 2005-12-16 2008-01-23 古河电子北美公司 利用气溶胶输送系统制造玻璃体的装置和方法
CN104525078A (zh) * 2014-11-27 2015-04-22 宁波远欧精细化工有限公司 一种低能耗反应釜
CN208852886U (zh) * 2018-07-09 2019-05-14 天津市建筑材料科学研究院有限公司 一种溶胶凝胶法制备双疏涂覆液的反应器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202336337U (zh) * 2011-11-23 2012-07-18 广州大学 一种氢化反应釜
CN207243905U (zh) * 2017-09-25 2018-04-17 福建省格兰尼生物工程股份有限公司 一种脂肪酶的自动反应器
CN207493682U (zh) * 2017-10-11 2018-06-15 华伦纳路新材料有限公司 新型反应釜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010030388A1 (en) * 1998-02-16 2001-10-18 Young-Sik Yoon Method of fabricating silica glass by sol-gel process
EP1310463A2 (en) * 2001-11-13 2003-05-14 Samsung Electronics Co., Ltd. Method for fabricating silica glass using sol-gel process
CN1438193A (zh) * 2002-02-16 2003-08-27 三星电子株式会社 在溶胶-凝胶工艺中除去大气泡的方法
CN101108767A (zh) * 2005-12-16 2008-01-23 古河电子北美公司 利用气溶胶输送系统制造玻璃体的装置和方法
CN101045609A (zh) * 2007-03-29 2007-10-03 复旦大学 一种适用于离子交换的掺锂玻璃薄膜的制备工艺
CN104525078A (zh) * 2014-11-27 2015-04-22 宁波远欧精细化工有限公司 一种低能耗反应釜
CN208852886U (zh) * 2018-07-09 2019-05-14 天津市建筑材料科学研究院有限公司 一种溶胶凝胶法制备双疏涂覆液的反应器

Also Published As

Publication number Publication date
CN113248120B (zh) 2023-12-22
CN113248120A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP2015502897A (ja) ゾルゲル溶液から目的物を製造する方法
EP2088128A1 (en) Method for the production of glassy monoliths via the sol-gel process
CN102642263B (zh) 光弹性模型的真空浇注工艺方法
WO2021159839A1 (zh) 一种溶胶凝胶法制备玻璃的生产设备及相关制备方法
RU2278079C2 (ru) Золь-гель способ получения сухих гелей больших размеров и модифицированных стекол
US6299822B1 (en) Method of fabricating silica glass by sol-gel process
KR20010019932A (ko) 실리카 솔의 초음파 분산 장치
US5676919A (en) Method for producing sintered lithium oxide granules
CN109669279A (zh) 一种防蓝光镜片的制作方法
US5919280A (en) Method for fabricating silica glass
KR100326174B1 (ko) 솔-젤 공법을 이용한 고순도 실리카 글래스 제조 방법
KR20180113817A (ko) 침상형 금속-실리카 복합 에어로겔 입자 제조방법 및 이에 의해 제조된 침상형 금속-실리카 복합 에어로겔 입자
US20220212362A1 (en) Composite transparent film, preparation method thereof, and method for continuous digital light processing ceramic 3d printing based on the same
WO2021135881A1 (zh) 一种微光学玻璃器件的制备方法
CN111017980A (zh) 一种高纯纳米氧化镧材料的制备方法
KR100722377B1 (ko) 투명 실리카 글래스의 제조 방법
JPH03187933A (ja) シリカガラスの製造方法
CN108274610A (zh) 一种适用于水基浆料凝胶注模成型工艺的模具
CN220657382U (zh) 一种带过滤的密闭投料装置
CN220758829U (zh) 一种纳米压印胶水配制装置
KR100312228B1 (ko) 실리카 글래스 제조용 몰드 장치
CN214914996U (zh) 一种药用辅料制备用溶解罐
KR20040056546A (ko) 투명 실리카 글래스의 제조 방법
CN113121107B (zh) 一种微光学玻璃器件的制备方法
SU1736704A1 (ru) Установка дл лить керамики под давлением

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918841

Country of ref document: EP

Kind code of ref document: A1