WO2021159673A1 - 一种电迁移分离富集 6Li同位素的方法 - Google Patents

一种电迁移分离富集 6Li同位素的方法 Download PDF

Info

Publication number
WO2021159673A1
WO2021159673A1 PCT/CN2020/106555 CN2020106555W WO2021159673A1 WO 2021159673 A1 WO2021159673 A1 WO 2021159673A1 CN 2020106555 W CN2020106555 W CN 2020106555W WO 2021159673 A1 WO2021159673 A1 WO 2021159673A1
Authority
WO
WIPO (PCT)
Prior art keywords
crown
lithium
catholyte
trifluorosulfonyl
combination
Prior art date
Application number
PCT/CN2020/106555
Other languages
English (en)
French (fr)
Inventor
孙进贺
王明勇
黄超驰
贾永忠
张鹏瑞
景燕
邵斐
张茜
Original Assignee
中国科学院青海盐湖研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院青海盐湖研究所 filed Critical 中国科学院青海盐湖研究所
Publication of WO2021159673A1 publication Critical patent/WO2021159673A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/38Separation by electrochemical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/38Separation by electrochemical methods
    • B01D59/42Separation by electrochemical methods by electromigration; by electrophoresis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium

Definitions

  • the invention belongs to the technical field of lithium isotope separation and enrichment, and specifically relates to a method for electromigration separation and enrichment of 6 Li isotope.
  • High-abundance lithium isotopes play an important role in the national economy and national defense security.
  • 7 LiOH with an abundance of more than 99.9% is an acidity regulator for pressurized water reactors
  • 7 LiBeF is a neutron moderator for new molten salt reactors.
  • 30% to 90% abundance of 6 Li is an indispensable raw material for fusion reactors and hydrogen bombs, and is also used in various neutron detectors.
  • the natural abundances of 7 Li and 6 Li are 92.5% and 7.5%, respectively, which cannot be directly applied to the above-mentioned fields and must be isotopic separation.
  • the separation methods of lithium isotopes mainly include lithium amalgam method, laser method, extraction method, electromagnetic method, electrochemical method, etc.
  • the lithium amalgam method uses the difference in isotopic abundance between lithium amalgam and lithium ions in the solution to achieve isotope separation. According to public information, the lithium amalgam method is the only method for the industrial production of lithium isotopes, which requires the use of a large amount of mercury, which poses serious environmental hazards and has been phased out in European and American countries.
  • the extraction method is to use the difference in the abundance of lithium isotope in the aqueous phase and the organic phase to achieve isotope separation.
  • the existing methods for electrochemical separation of lithium isotopes can be divided into three types: aqueous solution method, molten salt method and organic solvent method.
  • the aqueous solution method mainly uses the difference in the electromigration rate of isotope ions in the aqueous solution or diaphragm to achieve separation.
  • the advantage of this method is that all electrode reactions occur in an aqueous solution, lithium ions generally do not undergo a reduction reaction, it is easy to realize continuous multi-stage separation, and the environmental protection pressure is low.
  • the lithium isotope separation factor is generally low, and the current utilization rate of the process is low.
  • the Japanese Atomic Energy Agency Tsuyoshi et al. used a thin film filled with ionic liquid in the middle to separate lithium isotopes by electrodialysis in an aqueous solution, and achieved a single separation factor as high as 1.4.
  • the separation factor increases with the proportion of lithium ions that migrate to the cathode. Decrease rapidly, when its proportion of the total amount of lithium ions in the system is close to 1%, the separation effect disappears.
  • the molten salt method mainly uses the difference in the electromigration rate of lithium isotope ions in high-temperature molten salt to achieve separation.
  • the method has the advantages of simple and reliable process, easy realization of multi-stage continuous separation, complexation of lithium ion anhydrous molecules, high single-stage separation factor, and high current utilization rate.
  • this method has problems such as high-temperature molten salt, chlorine, and metal lithium corrosion, and has extremely high requirements on the material of the device.
  • This method mostly controls the cathode atmosphere and directly oxidizes a small amount of metal lithium to avoid corrosion of the cathode by the metal lithium.
  • the Tokyo Institute of Technology in Japan has successively carried out research on mixed molten salt systems such as lithium chloride, lithium bromide and lithium nitrate, and obtained the best separation effect in the LiNO 3 -NH 4 NO 3 system, and obtained a small amount of 94.9% abundance of 6 Li samples .
  • Spanish Energy and Environmental Research Center Barrado et al. proposed an electrophoretic separation prototype based on lithium iodide molten salt.
  • the device uses quartz as the shell and lanthanum titanate lithium solid ion superconductor as the membrane.
  • the organic solvent method mainly uses the difference in the distribution ratio of lithium isotopes in the solvent, cathode and anode materials to achieve separation. Unlike the above two methods, lithium is generally in an ionic state. In the organic solvent method, lithium ions will be partially reduced to metal or formed Intercalation compound. The advantages of this method are that it can be operated at room temperature, the reaction conditions are mild, and its principles, materials and devices are basically the same as those of lithium ion batteries. The lithium ion battery industry can provide a good industrial foundation for this method. However, the upper-level enriched product of this method cannot be directly used as the next-level raw material, and it is difficult to carry out multi-stage continuous separation; the organic solvents used are mostly carbonate electrolytes, which are sensitive to air and water and require closed operation.
  • the extraction method can reach hundreds or even thousands of stages in order to meet the requirements for lithium isotope abundance in related application fields.
  • the extraction process will produce a huge amount of different lithium isotopes.
  • Abundant aqueous and organic phase solutions need to be processed. If the aqueous and organic phase solutions are not concentrated or stripped, they cannot be used in the next separation step.
  • a certain amount of organic phase is dissolved in the water phase. The reuse of the water phase and the organic phase is affected by the concentration, abundance and mutual dissolution of lithium ions, which is extremely difficult.
  • the main purpose of the present invention is to provide a method for electromigration separation and enrichment of 6 Li isotope to overcome the shortcomings of the prior art.
  • the embodiment of the present invention provides a method for electromigration separation and enrichment of 6 Li isotope, which includes:
  • the anode, the cathode, the anolyte, the catholyte, the middle bath solution, the first separation membrane and the second separation membrane together form an electromigration system, wherein the middle bath solution is the organic phase obtained in step (1),
  • the anolyte includes a lithium salt solution, the first isolation membrane is disposed between the anolyte and the middle section of the bath, and the second isolation membrane is disposed between the middle of the bath and the catholyte;
  • the principle of the present invention is that the complexing agent in the organic phase of the middle tank liquid acts as a bridge and screening agent at the same time.
  • the complexing ability of the complexing agent allows a large amount of lithium ions to enter the organic phase from the anode water phase, and the complexing
  • the instability also allows lithium ions to get rid of the complexing agent molecules into the aqueous phase of the cathode under the action of an electric field; when the lithium ions solvated in the aqueous phase are complexed with the complexing agent in the organic phase, the molecular structure of the complexing agent
  • the cavity removes most of the coordinated water molecules of lithium ions, so that the isotope lithium ions that migrate in the organic phase show a more obvious difference in mass and rate compared to the isotope lithium ions that migrate in the water phase, which strengthens the isotope separation of the system effect.
  • the present invention has the following beneficial effects:
  • the electrode liquids are all water-phase solutions, and the by-products are only hydrogen and oxygen;
  • the separation process does not require the selectivity of the complex to the lithium isotope, and the lithium ions that migrate to the catholyte are all enriched in 6 Li compared to the anolyte.
  • One aspect of the embodiments of the present invention provides a method for electromigration separation and enrichment of 6 Li isotope, which includes:
  • the anode, the cathode, the anolyte, the catholyte, the middle bath solution, the first separation membrane and the second separation membrane together form an electromigration system, wherein the middle bath solution is the organic phase obtained in step (1),
  • the anolyte includes a lithium salt solution, the first isolation membrane is disposed between the anolyte and the middle section of the bath, and the second isolation membrane is disposed between the middle of the bath and the catholyte;
  • the ionic liquid includes 1-butyl-3-methylimidazole bis(trifluorosulfonyl)imide, 1-octyl-3-methylimidazole bis(trifluorosulfonyl) Amide) imide salt, 1-hexyl-3-methylimidazole bis(trifluorosulfonyl) imide salt, 1-ethyl-3-methylimidazole bis(trifluorosulfonyl) imide salt, 1- Propyl-3-methylimidazole bis(trifluorosulfonyl)imide salt; N-butyl-N-methylpyrrole bis(trifluorosulfonyl)imide salt, N-butyl-N-methylpiperidine Pyridine bis(trifluorosulfonyl)imide salt, tetrabutylphosphine bis(trifluorosulfonyl)imide salt, tributylmethylamine bis(trifluorosulf
  • the diluent includes anisole, dichloromethane, chlorobenzene, dichlorobenzene, toluene, xylene, carbon tetrachloride, dichloroethane, petroleum ether, ethyl acetate, n-butanol, toluene Any one or a combination of two or more of, n-heptane, butyl acetate, isopropyl ether, and isobutanol, and is not limited thereto.
  • the complexing agent includes a crown ether compound, a crown ether compound derivative, a quinoline compound, a quinoline compound derivative, a cryptate compound, and a cryptate compound derivative. Any one or a combination of two or more of them is not limited to this.
  • the complexing agent is a neutral molecule, and the complexing agent has a coordination effect on lithium isotopes in the organic phase, and the number of coordination water molecules of lithium ions in the complex formed after the combination is less than 2 .
  • the crown ether compound and/or crown ether compound derivative includes aminobenzo12-crown-4, aminobenzo15-crown-5, aminobenzo15-crown-4, aminobenzo18 -Crown-6, monoazabenzo12-crown-4, monoazabenzo15-crown-5, monoazabenzo15-crown-4, monoazabenzo18-crown-6, methyl Acylbenzo-12-crown-4, formylbenzo-15-crown-5, formylbenzo-15-crown-4, formylbenzo-18-crown-6, aminobenzo12-crown- 4.
  • the quinoline compound and/or quinoline compound derivative includes 7-(4-ethyl-1-methyloctyl)-8-hydroxyquinoline, benzoquinoline, 4-methyl -10-hydroxybenzoquinoline, 4-nitro-7-ethyl-10-hydroxybenzoquinoline, 3-methanesulfonyl-7-chloro-10-mercaptobenzoquinoline, 1,10-N , Any one or a combination of two or more of N-4-benzenesulfonylbenzoquinolines, and is not limited thereto.
  • the cryptate compound and/or cryptate compound derivatives include cryptate (2, 2, 2), cryptate (2, 2, 1), cryptate (2, 1, 1), Cryptane (3,3,3), Cryptane (3,2,3), Cryptane (2,3,2), n-Azepine Cryptane (2,2,1), n-Azepine Any one or a combination of two or more of cryptands (2, 3, 3), wherein n is selected from any integer from 1 to 3, and is not limited thereto.
  • the volume ratio of the ionic liquid to the diluent in step (1) is 1:1-10.
  • the concentration of the complexing agent in the organic phase is 0.1 mol/L to 10 mol/L.
  • the anolyte includes a lithium salt solution, and is not limited thereto.
  • the lithium salt solution includes lithium salt and water.
  • the lithium salt includes lithium chloride, lithium bromide, lithium iodide, lithium acetate, lithium sulfate, lithium nitrate, lithium perchlorate, lithium trifluoroacetate, lithium bis(trifluoromethanesulfonyl)imide Any one or a combination of two or more, and is not limited to this.
  • the catholyte includes any one or a combination of two or more of ammonium salt solution, metal ion salt solution, and pure water.
  • the metal ion includes any one or a combination of two or more of lithium ion, sodium ion, and potassium ion, and is not limited thereto.
  • the concentration of ammonium ion and/or metal ion in the catholyte is below 0.1 mol/L.
  • the materials of the first isolation membrane and the second isolation membrane include any one or two of polypropylene, polyethylene, polytetrafluoroethylene, polyethersulfone, and polyvinylidene fluoride.
  • the combination of more than one kind is not limited to this.
  • the diameters of the pores of the first isolation membrane and the second isolation membrane are micron and/or submicron.
  • the material of the anode includes any one or a combination of two or more of carbon, platinum, glassy carbon, palladium, tungsten, and copper, and is not limited thereto.
  • the material of the cathode includes any one or a combination of two or more of carbon, platinum, glassy carbon, palladium, tungsten, and copper, and is not limited thereto.
  • the electric field used by the electromigration system includes a direct current electric field, and the applied time is 4 h to 72 h.
  • the application mode of the electric field includes any one of an uninterrupted electric field and an intermittent electric field, and is not limited thereto.
  • the voltage used by the electric field is any one of a fixed value voltage and a periodically and regularly adjusted voltage, and is not limited thereto.
  • the voltage used by the electric field can be constant, and its size can also be adjusted periodically with a certain rule.
  • the intensity of the electric field is: the voltage per centimeter of distance is 2V-50V.
  • the concentration of lithium ions in the lithium salt solution is 0.1 mol/L to 20 mol/L.
  • the concentration of lithium ions in the anolyte is lower than 0.05 mol/L, the anolyte is replaced with a new one.
  • the method further includes: applying the catholyte enriched in 6 Li obtained in step (3) as the catholyte again to step (2), and repeating steps (2) to (3) ), until the concentration of lithium ions in the obtained catholyte enriched with 6 Li reaches more than 2 mol/L.
  • step (3) the catholyte enriched in 6 Li with a lithium ion concentration above 2 mol/L obtained in step (3) is used as the lithium salt solution again to step (2) as the anolyte, and steps (2) to are repeated. (3), until the resultant abundance of 6 Li enriched catholyte 6 Li reaches the set value.
  • the concentration of lithium ions in the catholyte enriched with 6 Li is 2 mol/L to 10 mol/L.
  • the method is a multi-stage continuous separation process.
  • the middle section bath needs to be acid washed and regenerated; as mentioned above If the lithium isotope abundance of the two solutions is the same, they can be used directly.
  • both the anolyte and catholyte are externally circulated at a constant flow rate, and catholyte with different lithium isotope abundances are periodically collected, stored separately, and combined with organic phases with different lithium isotope abundances at different electric field application times Segment use.
  • the catholyte can be collected every 4h-8h and stored in a corresponding abundance storage tank; the stored catholyte can be reused until the lithium ion concentration When it reaches 2mol/L ⁇ 10mol/L, the catholyte can be directly used as the lithium salt solution for the anolyte. The above process is repeated until the lithium isotope reaches the set abundance.
  • the lithium salt solution is replaced with a new one.
  • the lithium ion in the catholyte reaches a set concentration, it can be used directly as the anolyte.
  • an acidic solution as the anolyte and apply an electric field to remove all lithium ions in the organic phase.
  • the organic phase is used as the middle bath solution, the lithium bromide solution is used as the anolyte, pure water is used as the catholyte, platinum is used as the anode, pure copper is used as the cathode, and the PTFE membrane is used as the isolation membrane.
  • the electric field voltage per centimeter is 2.0V , Collect the catholyte after 64h ⁇ 72h of electrification, the abundance of 6 Li is 7.60%;
  • step (3) Use the catholyte finally obtained in step (2) as the catholyte again, and repeat the operation of step (2) to collect the lithium ions migrated out of the lithium-loaded organic phase until the concentration of lithium ions in the catholyte reaches 2mol/L; Afterwards, replace with a new middle-section bath solution, and use the collected catholyte directly as the anolyte; after 10 cycles, the abundance of 6 Li in the catholyte reaches 10.00%.
  • the organic phase is used as the intermediate bath solution, the lithium iodide solution is used as the anolyte, the 0.01mol/L potassium chloride solution is used as the catholyte, graphite is used as the anode, glassy carbon is used as the cathode, and the PTFE membrane is used as the separator.
  • the electric field voltage at a distance of centimeters is 20V, and the catholyte is collected for 0h ⁇ 4h, and the abundance of 6 Li is 7.65%;
  • step (3) Use the catholyte finally obtained in step (2) as the catholyte again, and repeat the operation of step (2) to collect the lithium ions migrated out of the lithium-loaded organic phase until the concentration of lithium ions in the catholyte reaches 6mol/L; Afterwards, replace with a new middle-section bath solution, and use the collected catholyte directly as the anolyte; after 20 cycles, the abundance of 6 Li in the catholyte reaches 11.50%.
  • the organic phase is used as the intermediate bath solution, the lithium bis(trifluoromethanesulfonyl) imide solution is used as the anolyte, the 0.1 mol/L ammonium chloride solution is used as the catholyte, platinum is used as the anode, pure tungsten is used as the cathode, and polytetrafluoromethane is used as the cathode.
  • the vinyl fluoride membrane is used as an isolation membrane, the electric field voltage is 50V per centimeter distance, and the catholyte is collected for 12 to 16 hours of electricity, and the abundance of 6 Li is 7.68%;
  • step (3) Use the catholyte finally obtained in step (2) as the catholyte again, and repeat the operation of step (2) to collect the lithium ions migrated out of the lithium-loaded organic phase until the concentration of lithium ions in the catholyte reaches 10mol/L; Afterwards, replace with a new mid-section bath solution, and use the collected catholyte directly as the anolyte; after 40 cycles, the abundance of 6 Li in the catholyte reaches 12.00%.
  • composition taught by the present invention is also basically The above is composed of or composed of the described components, and the process taught by the present invention is basically composed of the described process steps or a set of described process steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电迁移分离富集 6Li同位素的方法,包括:将离子液体、稀释剂和络合剂均匀混合,形成有机相,作为中段槽液;之后使阳极、阴极、阳极液、阴极液、中段槽液、第一隔离膜与第二隔离膜共同构成电迁移体系;然后使所述电迁移体系通电,获得富集 6Li的阴极液;其中,所述中段槽液为前述所获有机相,所述阳极液包括锂盐溶液,所述第一隔离膜设置于阳极液与中段槽液之间,所述第二隔离膜设置于中段槽液与阴极液之间。所述方法操作简单,分离过程仅涉及电迁移工艺,可实现连续化生产,大大提高了分离效率,同时使用三段法进行电迁移,避免了有机相的电离分解。所有溶液相均可循环利用,工艺清洁环保,且对温度、湿度、空气等无特殊要求。

Description

一种电迁移分离富集 6Li同位素的方法 技术领域
本发明属于锂同位素分离富集技术领域,具体涉及一种电迁移分离富集 6Li同位素的方法。
背景技术
高丰度锂同位素在国民经济和国防安全中具有重要作用。99.9%以上丰度的 7LiOH是压水反应堆的酸度调节剂, 7LiBeF则为新型熔盐反应堆的中子慢化剂。30%~90%丰度的 6Li是聚变反应堆和氢弹不可或缺的原料,也被用于各种中子探测器。随着熔盐反应堆和聚变反应堆技术的成熟,未来数十年内国内外市场对 7Li和 6Li的需求将与日俱增。而 7Li和 6Li的自然丰度分别为92.5%和7.5%,均无法直接应用于上述领域,必须对其进行同位素分离。
锂同位素的分离方法主要包括锂汞齐法、激光法、萃取法、电磁法、电化学法等。锂汞齐法在于利用锂汞齐与溶液中锂离子存在的同位素丰度差异实现同位素分离。据公开资料,锂汞齐法是锂同位素工业化生产的唯一方法,其需要使用到大量的汞,存在严重的环境隐患,欧美国家已逐步淘汰。萃取法在于利用水相和有机相中锂同位素丰度的差异实现同位素分离,由于单级萃取的分离因子极低,为达到相关应用领域对锂同位素丰度的要求,萃取级数可达到几百级乃至上千级,萃取过程将产生的巨量液相需要处理,由此引起的繁琐的操作工艺和极高的生产成本都增大了该方法应用的难度。
现有的电化学分离锂同位素的方法可分为三种:水溶液法、熔盐法和有机溶剂法。水溶液法主要是利用同位素离子在水溶液或隔膜中电迁移速率的差异实现分离。该方法的优势在于电极反应均发生于水溶液,锂离子一般不发生还原反应,易于实现连续多级分离,且环保压力小。但由于锂离子在水溶液中强烈的水化作用,同位素离子电迁移速率比值差异急剧缩小,锂同位素分离因子一般较低,此外该工艺电流利用率较低。日本原子能机构Tsuyoshi等以中间夹层注有离子液体的薄膜在水溶液中电渗析分离锂同位素,取得了高达1.4的单次分离因子,但其分离因子随着迁移到阴极的锂离子比例增加,分离因子迅速下降,当其占体系中锂离子总量的比例接近1%时,分离 效应消失。天津工业大学王明霞等制备了冠醚功能化聚合物膜,将冠醚功能化聚合物膜与电场耦合用于锂同位素分离。熔盐法主要是利用锂同位素离子在高温熔盐中电迁移速率的差异实现分离。该方法的优势在于工艺简单可靠,易于实现多级连续化分离,锂离子无水分子络合,单级分离因子高,电流利用率高。但该方法存在高温熔盐、氯气和金属锂腐蚀等问题,对装置材质要求极高。该方法多控制阴极气氛,对少量生成的金属锂直接氧化,以避免金属锂对阴极的腐蚀。日本东京工业大学等相继对氯化锂、溴化锂和硝酸锂等混合熔盐体系开展研究,并在LiNO 3-NH 4NO 3体系获得最优分离效果,获取了少量94.9%丰度的 6Li样品。西班牙能源与环境研究中心Barrado等提出了基于碘化锂熔盐的电泳分离原型机,该装置以石英为壳,钛酸镧锂固态离子超导体为膜,据其预测,单条100级连续分离的生产线可年产15kg纯 6Li产品。有机溶剂法主要是利用锂同位素在溶剂、阴极、阳极材料中分配比差异实现分离,与上述两种方法中锂一般处于离子状态不同,有机溶剂法中的锂离子会被部分还原成金属或形成插层化合物。该方法的优势在于可室温操作,反应条件温和,且其原理、材料和装置与锂离子电池基本相同,锂离子电池产业可为该方法提供良好的产业基础。但该方法上一级富集产品无法直接用作下一级的原料,难以进行多级连续化分离;所用的有机溶剂多为碳酸酯类电解质,对空气和水敏感,需要密闭操作。
萃取法由于单级萃取的分离因子极低,为达到相关应用领域对锂同位素丰度的要求,萃取级数可达到几百级乃至上千级,萃取过程将产生的巨量的具有不同锂同位素丰度的水相和有机相溶液需要处理。如果水相和有机相溶液不进行浓缩或反萃处理,将无法用于下一级分离步骤。此外,水相中均溶解有一定量的有机相。水相和有机相的再利用受到锂离子浓度、丰度和相互溶解的影响,难度极大。常规电化学分离技术:水溶液中直接电迁移,由于水合作用的存在,水合同位素锂离子之间的质量差异极低,相应的分离因子也很低。熔盐电迁移技术存在高温熔盐、气体和金属锂腐蚀等问题,对装置材质要求极高。有机溶液中利用锂同位素在溶剂、阴极、阳极材料中分配比差异实现分离,该方法上一级富集产品多为金属锂或锂的固体化合物,无法直接用作下一级的原料,难以进行多级连续化分离;所用的有机溶剂也多为碳酸酯类电解质,对空气和水敏感,需要密闭操作。此外,现有的电化学分离技术绝大部分需要批次进样,且仅在锂离子迁移流的最前端和最末端具有明显的同位素分离效应,中间绝大部分锂离子迁移流没有分离效应,导致电流利用效率低。
发明内容
本发明的主要目的在于提供一种电迁移分离富集 6Li同位素的方法,以克服现有技术的不足。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种电迁移分离富集 6Li同位素的方法,其包括:
(1)将离子液体、稀释剂和络合剂均匀混合,形成有机相;
(2)使阳极、阴极、阳极液、阴极液、中段槽液、第一隔离膜与第二隔离膜共同构成电迁移体系,其中,所述中段槽液为步骤(1)所获有机相,所述阳极液包括锂盐溶液,所述第一隔离膜设置于阳极液与中段槽液之间,所述第二隔离膜设置于中段槽液与阴极液之间;
(3)使所述电迁移体系通电,获得富集 6Li的阴极液。
本发明的原理在于中段槽液有机相中的络合剂同时起到了桥梁和筛选剂的作用,络合剂的络合能力使得锂离子可以大量的从阳极水相进入有机相,其络合的不稳定性又使得锂离子可以在电场作用下摆脱络合剂分子进入阴极的水相;在水相中溶剂化的锂离子与有机相中络合剂络合时,络合剂分子结构中的空腔脱除了锂离子大部分的配位水分子,使得在有机相中迁移的同位素锂离子相对于水相中迁移的同位素锂离子表现出更为明显的质量和速率差异,强化了体系的同位素分离效应。
与现有技术相比,本发明的有益效果在于:
(1)电场作用下,锂同位素分离效应持续存在,锂同位素富集不存在离子迁移流的前端和末端限制,隔离膜无饱和容量限制;即使迁移至阴极液中的锂离子比例占到体系中锂总量的90%以上,仍有明显的同位素分离效应;
(2)本发明的多级连续化分离过程中操作简单,分离过程仅涉及电迁移工艺,上一级产品直接用作下一级原料,中间无需相转移或浓缩过程,可实现连续化生产;
(3)所有溶液相均可循环利用,工艺清洁环保;
(4)本发明工艺对温度、湿度、空气等无特殊要求,无需密封;
(5)电极液均采用水相溶液,副产物仅为氢气和氧气;
(6)分离过程对络合物对锂同位素的选择性无要求,迁移至阴极液的锂离子相对于阳极液均富集 6Li。
具体实施方式
鉴于现有技术的缺陷,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的一个方面提供了一种电迁移分离富集 6Li同位素的方法,其包括:
(1)将离子液体、稀释剂和络合剂均匀混合,形成有机相;
(2)使阳极、阴极、阳极液、阴极液、中段槽液、第一隔离膜与第二隔离膜共同构成电迁移体系,其中,所述中段槽液为步骤(1)所获有机相,所述阳极液包括锂盐溶液,所述第一隔离膜设置于阳极液与中段槽液之间,所述第二隔离膜设置于中段槽液与阴极液之间;
(3)使所述电迁移体系通电,获得富集 6Li的阴极液。
在一些较为具体的实施方案中,所述离子液体包括1-丁基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-辛基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-已基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-乙基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-丙基-3-甲基咪唑双(三氟磺酰)亚胺盐;N-丁基-N-甲基吡咯双(三氟磺酰)亚胺盐、N-丁基-N-甲基哌啶双(三氟磺酰)亚胺盐、四丁基膦双双(三氟磺酰)亚胺盐、三丁基甲基胺双(三氟磺酰)亚胺盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-乙烯基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-烯丙基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-苄基-3-甲基咪唑双(三氟磺酰)亚胺盐中的任意一种或两种以上的组合,且不限于此。
进一步的,所述稀释剂包括苯甲醚、二氯甲烷、氯苯、二氯苯、甲苯、二甲苯、四氯化碳、二氯乙烷、石油醚、乙酸乙酯、正丁醇、甲苯、正庚烷、乙酸丁酯、异丙醚、异丁醇中的任意一种或两种以上的组合,且不限于此。
在一些较为具体的实施方案中,所述络合剂包括冠醚类化合物、冠醚类化合物衍生物、喹啉类化合物、喹啉类化合物衍生物、穴醚类化合物、穴醚类化合物衍生物中的任意一种或两种以上的组合,且不限于此。
本发明中,所述络合剂为中性分子,所述络合剂在有机相中对锂同位素具有配位效应,结合后形成的络合物中锂离子的配位水分子数目在2以下。
进一步的,所述冠醚类化合物和/或冠醚类化合物衍生物包括氨基苯并12-冠-4、 氨基苯并15-冠-5、氨基苯并15-冠-4、氨基苯并18-冠-6、单氮杂苯并12-冠-4、单氮杂苯并15-冠-5、单氮杂苯并15-冠-4、单氮杂苯并18-冠-6、甲酰基苯并-12-冠-4、甲酰基苯并-15-冠-5、甲酰基苯并-15-冠-4、甲酰基苯并-18-冠-6、氨基苯并12-冠-4、氨基苯并15-冠-5、氨基苯并15-冠-4、氨基苯并18-冠-6、环己基苯并18-冠-6、环己基苯并15-冠-5、环己基苯并12-冠-4、4,4’-二叔丁基二苯并-30冠-10、4-叔丁基苯并-18冠-6、4-叔丁基苯并-15冠-5、4-叔丁基苯并-12冠-4、单氮杂苯并12-冠-4、单氮杂苯并15-冠-5、单氮杂苯并15-冠-4、单氮杂苯并18-冠-6、甲酰基苯并-12-冠-4、甲酰基苯并-15-冠-5、甲酰基苯并-15-冠-4、甲酰基苯并-18-冠-6、4-甲基-苯并-18-冠-6、4-甲基-苯并-15-冠-5、4-甲基-苯并-12-冠-4、对甲苯氧基联苯桥联双苯并-15-冠-5、金属杂12-冠-3中的任意一种或两种以上的组合,其中,所述金属包括钌和/或铑,且不限于此。
进一步的,所述喹啉类化合物和/或喹啉类化合物衍生物包括7-(4-乙基-1-甲基辛基)-8-羟基喹啉、苯并喹啉、4-甲基-10-羟基苯并喹啉、4-硝基-7-乙基-10-羟基苯并喹啉、3-甲磺酰基-7-氯-10-巯基苯并喹啉、1,10-N,N-4-苯磺酰基苯并喹啉中的任意一种或两种以上的组合,且不限于此。
进一步的,所述穴醚类化合物和/或穴醚类化合物衍生物包括包括穴醚(2,2,2)、穴醚(2,2,1)、穴醚(2,1,1)、穴醚(3,3,3)、穴醚(3,2,3)、穴醚(2,3,2)、n-氮杂环穴醚(2,2,1)、n-氮杂环穴醚(2,3,3)中的任意一种或两种以上的组合,其中,n选自1~3中的任一整数,且不限于此。
在一些较为具体的实施方案中,步骤(1)中所述离子液体与稀释剂的体积比为1:1~10。
进一步的,所述有机相中络合剂的浓度为0.1mol/L~10mol/L。
在一些较为具体的实施方案中,所述阳极液包括锂盐溶液,且不限于此。
进一步的,所述锂盐溶液包括锂盐和水。
进一步的,所述锂盐包括氯化锂、溴化锂、碘化锂、醋酸锂、硫酸锂、硝酸锂、高氯酸锂、三氟乙酸锂、双(三氟甲烷磺酰)亚胺锂中的任意一种或两种以上的组合,且不限于此。
进一步的,所述阴极液包括铵盐溶液、金属离子盐溶液、纯水中的任意一种或两种以上的组合。
进一步的,所述金属离子包括锂离子、钠离子、钾离子中的任意一种或两种以上的组合,且不限于此。
进一步的,所述阴极液中铵根离子和/或金属离子的浓度在0.1mol/L以下。
在一些较为具体的实施方案中,所述第一隔离膜、第二隔离膜的材质均包括聚丙烯、聚乙烯、聚四氟乙烯、聚醚砜、聚偏氟乙烯中的任意一种或两种以上的组合,且不限于此。
进一步的,所述第一隔离膜、第二隔离膜的孔道直径为微米级和/或亚微米级。
进一步的,所述阳极的材料包括碳、铂、玻碳、钯、钨、铜中的任意一种或两种以上的组合,且不限于此。
进一步的,所述阴极的材料包括碳、铂、玻碳、钯、钨、铜中的任意一种或两种以上的组合,且不限于此。
在一些较为具体的实施方案中,所述电迁移体系采用的电场包括直流电场,施加的时间为4h~72h。
进一步的,所述电场的施加方式包括不间断电场、间歇式电场中的任意一种,且不限于此。
进一步的,所述电场使用的电压为定值电压、周期性规律调整的电压中的任意一种,且不限于此。其中,电场使用的电压可以恒定不变,其大小也可以以一定的规律定期调整。
进一步的,所述电场的强度为:在每厘米距离上的电压为2V~50V。
在一些较为具体的实施方案中,所述锂盐溶液中锂离子的浓度为0.1mol/L~20mol/L。
进一步的,所述阳极液中锂离子的浓度低于0.05mol/L时,更换新的阳极液。
在一些较为具体的实施方案中,所述方法还包括:将步骤(3)所获富集 6Li的阴极液作为阴极液再次应用于步骤(2),并重复进行步骤(2)~(3),直至所获富集 6Li的阴极液中锂离子浓度达到2mol/L以上。
进一步的,将步骤(3)所获的锂离子浓度在2mol/L以上的富集 6Li的阴极液作为锂盐溶液再次应用于步骤(2)作为阳极液,并重复进行步骤(2)~(3),直至所获富集 6Li的阴极液中 6Li丰度达到设定值。
进一步的,所述富集 6Li的阴极液中锂离子的浓度为2mol/L~10mol/L。
进一步的,所述方法为多级连续化分离过程。
上述方法中,在更换新的阳极液时,如新阳极液中锂同位素丰度与旧阳极液(即电迁移后)的锂同位素丰度不一致时,需对中段槽液酸洗再生;如前述两种溶液锂同位素丰度一致,则可直接使用。
上述方法中,阳极液、阴极液均以恒定的流速各自进行外部循环,定期采集具有不同锂同位素丰度的阴极液,分别储存,配合具有不同锂同位素丰度的有机相在不同的电场施加时间段使用。
例如,在本发明的一些更为具体的实施方式中,可以每隔4h~8h收集阴极液,并将之储存于对应丰度的储罐内;储存的阴极液可重复使用,直至锂离子浓度达到2mol/L~10mol/L,阴极液可直接作为锂盐溶液直接用于阳极液。上述过程循环往复,直至锂同位素达到设定的丰度。
上述方法中,当阳极液锂离子浓度低于设定浓度时,更换新的锂盐溶液。依据分离目标,当阴极液中锂离子达到设定浓度时,可将其直接用作阳极液使用。如需再生有机相,以酸性溶液作为阳极液,施加电场,迁出有机相中全部锂离子即可。
下面结合若干优选实施例对本发明的技术方案做进一步详细说明,本实施例在以发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
下面所用的实施例中所采用的实验材料,如无特殊说明,均可由常规的生化试剂公司购买得到。
实施例1
(1)将1-丁基-3-甲基咪唑六氟磷酸盐和异丁醇以体积比1:1混合,溶解甲酰基苯并-15-冠-5,形成有机相,其中,甲酰基苯并-15-冠-5的浓度为0.1mol/L,配制锂离子浓度为0.1mol/L溴化锂溶液;
(2)以有机相作为中段槽液,溴化锂溶液作为阳极液,纯水作为阴极液,铂作为阳极,纯铜作为阴极,聚四氟乙烯膜作为隔离膜,每厘米距离的电场电压为2.0V,采集通电64h~72h的阴极液, 6Li的丰度7.60%;
(3)以步骤(2)最终所获的阴极液再次作为阴极液,并重复步骤(2)的操作,以采集负载锂的有机相迁出的锂离子,直至阴极液中的锂离子浓度达到2mol/L;之后,更换新的中段泳槽溶液,将采集的阴极液直接用作阳极液;10次循环后,阴极液 中 6Li的丰度达到10.00%。
实施例2
(1)将1-烯丙基-3-甲基咪唑双(三氟磺酰)亚胺盐和石油醚以体积比1:5混合,溶解1,10-N,N-4-苯磺酰基苯并喹啉,形成有机相,其中,1,10-N,N-4-苯磺酰基苯并喹啉的浓度为5mol/L,配制锂离子浓度为10mol/L碘化锂溶液;
(2)以有机相作为中段槽液,碘化锂溶液作为阳极液,0.01mol/L氯化钾溶液作为阴极液,石墨作为阳极,玻碳作为阴极,聚四氟乙烯膜作为隔离膜,每厘米距离的电场电压为20V,采集通电0h~4h的阴极液, 6Li的丰度7.65%;
(3)以步骤(2)最终所获的阴极液再次作为阴极液,并重复步骤(2)的操作,以采集负载锂的有机相迁出的锂离子,直至阴极液中的锂离子浓度达到6mol/L;之后,更换新的中段泳槽溶液,将采集的阴极液直接用作阳极液;20次循环后,阴极液中 6Li的丰度达到11.50%。
实施例3
(1)将N-丁基-N-甲基哌啶双(三氟磺酰)亚胺盐和二甲苯以体积比1:10混合,溶解穴醚(2,2,1),形成有机相,其中,穴醚(2,2,1)的浓度为10mol/L,配制锂离子浓度为20mol/L双(三氟甲烷磺酰)亚胺锂溶液;
(2)以有机相作为中段槽液,双(三氟甲烷磺酰)亚胺锂溶液作为阳极液,0.1mol/L氯化铵溶液作为阴极液,铂作为阳极,纯钨作为阴极,聚四氟乙烯膜作为隔离膜,每厘米距离的电场电压为50V,采集通电12h~16h的阴极液, 6Li的丰度7.68%;
(3)以步骤(2)最终所获的阴极液再次作为阴极液,并重复步骤(2)的操作,以采集负载锂的有机相迁出的锂离子,直至阴极液中的锂离子浓度达到10mol/L;之后,更换新的中段泳槽溶液,将采集的阴极液直接用作阳极液;40次循环后,阴极液中 6Li的丰度达到12.00%。
此外,本案发明人还参照前述实施例,以本说明书述及的其它原料、工艺操作、工艺条件进行了试验,并均获得了较为理想的结果。
本发明的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本发明,本发明的范围仅由权利要求书界定。在不背离所主张的本发明的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。
在本发明案中标题及章节的使用不意味着限制本发明;每一章节可应用于本发明 的任何方面、实施例或特征。
在本发明案通篇中,在将组合物描述为具有、包含或包括特定组份之处或者在将过程描述为具有、包含或包括特定过程步骤之处,预期本发明教示的组合物也基本上由所叙述组份组成或由所叙述组份组成,且本发明教示的过程也基本上由所叙述过程步骤组成或由所叙述过程步骤组组成。
应理解,各步骤的次序或执行特定动作的次序并非十分重要,只要本发明教示保持可操作即可。此外,可同时进行两个或两个以上步骤或动作。
尽管已参考说明性实施例描述了本发明,但所属领域的技术人员将理解,在不背离本发明的精神及范围的情况下可做出各种其它改变、省略及/或添加且可用实质等效物替代所述实施例的元件。另外,可在不背离本发明的范围的情况下做出许多修改以使特定情形或材料适应本发明的教示。因此,本文并不打算将本发明限制于用于执行本发明的所揭示特定实施例,而是打算使本发明将包含归属于所附权利要求书的范围内的所有实施例。此外,除非具体陈述,否则术语第一、第二等的任何使用不表示任何次序或重要性,而是使用术语第一、第二等来区分一个元素与另一元素。

Claims (10)

  1. 一种电迁移分离富集 6Li同位素的方法,其特征在于包括:
    (1)将离子液体、稀释剂和络合剂均匀混合,形成有机相;
    (2)使阳极、阴极、阳极液、阴极液、中段槽液、第一隔离膜与第二隔离膜共同构成电迁移体系,其中,所述中段槽液为步骤(1)所获有机相,所述阳极液包括锂盐溶液,所述第一隔离膜设置于阳极液与中段槽液之间,所述第二隔离膜设置于中段槽液与阴极液之间;
    (3)使所述电迁移体系通电,获得富集 6Li的阴极液。
  2. 根据权利要求1所述的方法,其特征在于:所述络合剂包括冠醚类化合物、冠醚类化合物衍生物、喹啉类化合物、喹啉类化合物衍生物、穴醚类化合物、穴醚类化合物衍生物中的任意一种或两种以上的组合;优选的,所述冠醚类化合物和/或冠醚类化合物衍生物包括氨基苯并12-冠-4、氨基苯并15-冠-5、氨基苯并15-冠-4、氨基苯并18-冠-6、单氮杂苯并12-冠-4、单氮杂苯并15-冠-5、单氮杂苯并15-冠-4、单氮杂苯并18-冠-6、甲酰基苯并-12-冠-4、甲酰基苯并-15-冠-5、甲酰基苯并-15-冠-4、甲酰基苯并-18-冠-6、氨基苯并12-冠-4、氨基苯并15-冠-5、氨基苯并15-冠-4、氨基苯并18-冠-6、环己基苯并18-冠-6、环己基苯并15-冠-5、环己基苯并12-冠-4、4,4’-二叔丁基二苯并-30冠-10、4-叔丁基苯并-18冠-6、4-叔丁基苯并-15冠-5、4-叔丁基苯并-12冠-4、单氮杂苯并12-冠-4、单氮杂苯并15-冠-5、单氮杂苯并15-冠-4、单氮杂苯并18-冠-6、甲酰基苯并-12-冠-4、甲酰基苯并-15-冠-5、甲酰基苯并-15-冠-4、甲酰基苯并-18-冠-6、4-甲基-苯并-18-冠-6、4-甲基-苯并-15-冠-5、4-甲基-苯并-12-冠-4、对甲苯氧基联苯桥联双苯并-15-冠-5、金属杂12-冠-3中的任意一种或两种以上的组合,其中,所述金属包括钌和/或铑;优选的,所述喹啉类化合物和/或喹啉类化合物衍生物包括7-(4-乙基-1-甲基辛基)-8-羟基喹啉、苯并喹啉、4-甲基-10-羟基苯并喹啉、4-硝基-7-乙基-10-羟基苯并喹啉、3-甲磺酰基-7-氯-10-巯基苯并喹啉、1,10-N,N-4-苯磺酰基苯并喹啉中的任意一种或两种以上的组合;优选的,所述穴醚类化合物和/或穴醚类化合物衍生物包括包括穴醚(2,2,2)、穴醚(2,2,1)、穴醚(2,1,1)、穴醚(3,3,3)、穴醚(3,2,3)、穴醚(2,3,2)、n-氮杂环穴醚(2,2,1)、n-氮杂环穴醚(2,3,3)中的任意一种或两种以上的组合,其中,n选自1~3中的任一整数;
    和/或,所述离子液体包括1-丁基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-辛基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-已基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-乙基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-丙基-3-甲基咪唑双(三氟磺酰)亚胺盐;N-丁基-N-甲基吡咯双(三氟磺酰)亚胺盐、N-丁基-N-甲基哌啶双(三氟磺酰)亚胺盐、四丁基膦双双(三氟磺酰)亚胺盐、三丁基甲基胺双(三氟磺酰)亚胺盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-乙烯基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-烯丙基-3-甲基咪唑双(三氟磺酰)亚胺盐、1-苄基-3-甲基咪唑双(三氟磺酰)亚胺盐中的任意一种或两种以上的组合;
    和/或,所述稀释剂包括苯甲醚、二氯甲烷、氯苯、二氯苯、甲苯、二甲苯、四氯化碳、二氯乙烷、石油醚、乙酸乙酯、正丁醇、甲苯、正庚烷、乙酸丁酯、异丙醚、异丁醇中的任意一种或两种以上的组合。
  3. 根据权利要求1所述的方法,其特征在于:步骤(1)中,所述离子液体与稀释剂的体积比为1:1~10。
  4. 根据权利要求1所述的方法,其特征在于:所述有机相中络合剂的浓度为0.1mol/L~10mol/L。
  5. 根据权利要求1所述的方法,其特征在于:所述阳极液包括锂盐溶液;优选的,所述锂盐溶液包括锂盐和水;优选的,所述锂盐包括氯化锂、溴化锂、碘化锂、醋酸锂、硫酸锂、硝酸锂、高氯酸锂、三氟乙酸锂、三氯乙酸锂、双(三氟甲烷磺酰)亚胺锂、氰化锂、硫氰酸锂、氢氧化锂中的任意一种或两种以上的组合;
    和/或,所述阴极液包括铵盐溶液、金属离子盐溶液、纯水中的任意一种或两种以上的组合;优选的,所述金属离子包括锂离子、钠离子、钾离子中的任意一种或两种以上的组合;优选的,所述阴极液中铵根离子和/或金属离子的浓度在0.1mol/L以下。
  6. 根据权利要求1所述的方法,其特征在于:所述第一隔离膜、第二隔离膜的材质均包括聚丙烯、聚乙烯、聚四氟乙烯、聚醚砜、聚偏氟乙烯中的任意一种或两种以上的组合;
    和/或,所述第一隔离膜、第二隔离膜的孔道直径为微米级和/或亚微米级。
  7. 根据权利要求1所述的方法,其特征在于:所述阳极的材料包括碳、铂、玻碳、钯、钨、铜中的任意一种或两种以上的组合;
    和/或,所述阴极的材料包括碳、铂、玻碳、钯、钨、铜中的任意一种或两种以上 的组合。
  8. 根据权利要求1所述的方法,其特征在于:所述电迁移体系采用的电场包括直流电场,施加的时间为4h~72h;优选的,所述电场的施加方式包括不间断电场和/或间歇式电场;优选的,所述电场的强度为:在每厘米距离上的电压为2V~50V。
  9. 根据权利要求1所述的方法,其特征在于:步骤(2)所述阳极液中锂离子的浓度为0.1mol/L~20mol/L。
  10. 根据权利要求1所述的方法,其特征在于还包括:将步骤(3)所获富集 6Li的阴极液作为阴极液再次应用于步骤(2),并重复进行步骤(2)~(3),直至所获富集 6Li的阴极液中锂离子浓度达到2mol/L以上;
    和/或,将步骤(3)所获的锂离子浓度在2mol/L以上的富集 6Li的阴极液作为锂盐溶液再次应用于步骤(2)作为阳极液,并重复进行步骤(2)~(3),直至所获富集 6Li的阴极液中 6Li丰度达到设定值;
    和/或,所述富集 6Li的阴极液中锂离子的浓度为2mol/L~10mol/L。
PCT/CN2020/106555 2020-02-14 2020-08-03 一种电迁移分离富集 6Li同位素的方法 WO2021159673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010092601.5A CN113262637B (zh) 2020-02-14 2020-02-14 一种电迁移分离富集6Li同位素的方法
CN202010092601.5 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021159673A1 true WO2021159673A1 (zh) 2021-08-19

Family

ID=77227193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106555 WO2021159673A1 (zh) 2020-02-14 2020-08-03 一种电迁移分离富集 6Li同位素的方法

Country Status (2)

Country Link
CN (1) CN113262637B (zh)
WO (1) WO2021159673A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115582021B (zh) * 2022-11-11 2023-09-12 中国科学院青海盐湖研究所 锂同位素的毛细管多级界面富集体系及分离富集方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371796A (en) * 1976-12-06 1978-06-26 Toyama Yakuhin Kougiyou Kk Method of continuously separating isotope by ion exchange
JP2010029797A (ja) * 2008-07-29 2010-02-12 Japan Atomic Energy Agency リチウム同位体分離濃縮法、装置、方法およびリチウムイオン選択的透過膜、並びにリチウム同位体濃縮物
CN102373341A (zh) * 2010-08-12 2012-03-14 独立行政法人日本原子力研究开发机构 锂的回收方法及锂的回收装置
WO2014127977A1 (de) * 2013-02-22 2014-08-28 Siemens Aktiengesellschaft Niedertemperaturverfahren zur herstellung von lithium aus schwerlöslichen lithiumsalzen
CN105536536A (zh) * 2015-12-17 2016-05-04 中国科学院青海盐湖研究所 一种萃取锂同位素的萃取体系
CN108060308A (zh) * 2017-12-12 2018-05-22 中南大学 一种从含锂溶液中分离锂的方法及装置
CN109200822A (zh) * 2018-11-16 2019-01-15 天津工业大学 一种电场耦合冠醚接枝聚合物多孔膜分离锂同位素的方法
CN110106369A (zh) * 2019-05-06 2019-08-09 清华大学 基于锂离子固态电解质的锂元素提取方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801194B (zh) * 2012-11-05 2017-08-29 中国科学院上海有机化学研究所 一种用于分离锂同位素的萃取剂及其应用
CN105536537B (zh) * 2015-12-17 2017-11-07 中国科学院青海盐湖研究所 一种萃取分离锂同位素的方法
JP7029798B2 (ja) * 2018-02-22 2022-03-04 国立大学法人弘前大学 リチウム同位体濃縮装置および多段式リチウム同位体濃縮装置、ならびにリチウム同位体濃縮方法
CN109439914B (zh) * 2019-01-08 2020-11-03 安徽工业大学 一种从废旧锂离子电池正极材料浸出液中选择性分离锂的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371796A (en) * 1976-12-06 1978-06-26 Toyama Yakuhin Kougiyou Kk Method of continuously separating isotope by ion exchange
JP2010029797A (ja) * 2008-07-29 2010-02-12 Japan Atomic Energy Agency リチウム同位体分離濃縮法、装置、方法およびリチウムイオン選択的透過膜、並びにリチウム同位体濃縮物
CN102373341A (zh) * 2010-08-12 2012-03-14 独立行政法人日本原子力研究开发机构 锂的回收方法及锂的回收装置
WO2014127977A1 (de) * 2013-02-22 2014-08-28 Siemens Aktiengesellschaft Niedertemperaturverfahren zur herstellung von lithium aus schwerlöslichen lithiumsalzen
CN105536536A (zh) * 2015-12-17 2016-05-04 中国科学院青海盐湖研究所 一种萃取锂同位素的萃取体系
CN108060308A (zh) * 2017-12-12 2018-05-22 中南大学 一种从含锂溶液中分离锂的方法及装置
CN109200822A (zh) * 2018-11-16 2019-01-15 天津工业大学 一种电场耦合冠醚接枝聚合物多孔膜分离锂同位素的方法
CN110106369A (zh) * 2019-05-06 2019-08-09 清华大学 基于锂离子固态电解质的锂元素提取方法及装置

Also Published As

Publication number Publication date
CN113262637A (zh) 2021-08-17
CN113262637B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
JP5897512B2 (ja) 重水の電解濃縮方法
Parker et al. Molecular plating: a method for the electrolytic formation of thin inorganic films
CN109200822A (zh) 一种电场耦合冠醚接枝聚合物多孔膜分离锂同位素的方法
CN110711502B (zh) 一种基于铷的高选择性分离膜及其分离富集方法
WO2021159674A1 (zh) 一种分离富集Li同位素的方法
CN113262636B (zh) 一种萃取-电迁移耦合分离富集7Li同位素的方法
WO2021159673A1 (zh) 一种电迁移分离富集 6Li同位素的方法
Honda et al. Lithium isotope enrichment by electrochemical pumping using solid lithium electrolytes
CN115094246A (zh) 一种基于流电极的连续电化学提锂系统
CN113999979A (zh) 一种连续运行电化学提锂系统及方法
Wang et al. Targeted electro-redox facilitating efficient delithiation of lithium manganese ion-sieve selective electrode
CN118001929A (zh) 一种含隔离室的双极膜电渗析装置及高纯度氢氧化锂的制备方法
CN116656965A (zh) 一种废旧锂电池中锂离子的分离回收装置及方法
CN113262639B (zh) 一种分离富集6Li同位素的方法
CN113265541B (zh) 一种萃取-电迁移耦合分离富集6Li同位素的方法
CN216514041U (zh) 一种连续运行电化学提锂系统
CN114039117B (zh) 一种废旧磷酸铁锂电池中锂的选择性回收方法
CN113262638B (zh) 一种分离富集7Li同位素的方法
EP3067977A1 (en) Method for operating redox flow battery
CN114759285A (zh) 废旧锂离子电池浸出液的处理方法
EP4164010A1 (en) Method for recovering hydrogen fuel cell of new energy vehicle
Wang et al. Electromigration separation of lithium isotopes: The effect of electrolytes
Zhao et al. Electromigration separation of lithium isotopes with B12C4, B15C5 and B18C6 systems
CN115261890B (zh) 一种电化学还原二氧化碳制备多孔碳质材料的方法
CN115999363B (zh) 一种锂同位素多级电化学分离方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919175

Country of ref document: EP

Kind code of ref document: A1