WO2021159667A1 - 正畸微螺钉导板的制造方法及正畸微螺钉导板 - Google Patents

正畸微螺钉导板的制造方法及正畸微螺钉导板 Download PDF

Info

Publication number
WO2021159667A1
WO2021159667A1 PCT/CN2020/104916 CN2020104916W WO2021159667A1 WO 2021159667 A1 WO2021159667 A1 WO 2021159667A1 CN 2020104916 W CN2020104916 W CN 2020104916W WO 2021159667 A1 WO2021159667 A1 WO 2021159667A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
microscrew
guide plate
orthodontic
hollow cylinder
Prior art date
Application number
PCT/CN2020/104916
Other languages
English (en)
French (fr)
Inventor
卫彦
陈贵
韩冰
赵一姣
王勇
吕汶諠
张云帆
Original Assignee
北京大学口腔医学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学口腔医学院 filed Critical 北京大学口腔医学院
Publication of WO2021159667A1 publication Critical patent/WO2021159667A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/002Orthodontic computer assisted systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0089Implanting tools or instruments
    • A61C8/009Implanting tools or instruments for selecting the right implanting element, e.g. templates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0093Features of implants not otherwise provided for
    • A61C8/0096Implants for use in orthodontic treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the invention belongs to the technical field of orthodontics, and more specifically, relates to a method for manufacturing an orthodontic microscrew guide plate and an orthodontic microscrew guide plate.
  • microscrews can provide absolute anchorage, and do not rely on patient cooperation. It has the advantages of small size and flexible use. It has been widely used in clinical practice since the 1990s, especially for some complex and severe cases. The treatment of malocclusion has played an important role.
  • microscrew implantation is a minor surgical operation, which has risks and complications such as damage to the normal anatomy and postoperative infection. The biggest risk is damage to the tooth root. The teeth cannot be retained.
  • scholars have been designing various guide plates to assist the implantation of microscrews since 2005.
  • the microscrew guides currently reported in the literature have a complicated design process and the accuracy cannot fully meet the clinical needs.
  • the purpose of the present invention is to provide a method for manufacturing an orthodontic micro screw guide plate and an orthodontic micro screw guide plate, simplify the design process of the micro screw guide plate, improve accuracy and efficiency, and reduce the risk of micro implant nail implantation surgery.
  • the present invention provides a method for manufacturing an orthodontic microscrew guide plate, which includes the following steps:
  • a three-dimensional model of a hollow cylinder and a pair of fixed plates is established on the virtual dental jaw model according to the implantation point and the surgical approach, and then a three-dimensional model of the connecting rod is established to replace the hollow cylinder
  • the three-dimensional model is connected with the three-dimensional model of the pair of fixed plates to form the three-dimensional model of the orthodontic micro-screw guide plate;
  • the step 2) includes:
  • the step 2) further includes:
  • the scanning head of the intraoral scanner is extended into the patient's mouth to scan along the surface of the dentition.
  • the step 2.3) includes:
  • the step 3) includes:
  • the tooth image data and the alveolar bone image data are separated to extract the three-dimensional image data of the tooth.
  • the step 4) includes:
  • the step 5) includes:
  • the implantation point of the microscrew is selected and the implantation direction is designed, so that the microscrew can enter the soft tissue and be located between two adjacent tooth roots, thereby determining the operation Approach.
  • the step 6) includes:
  • the step 7) includes:
  • the orthodontic micro-screw guide plate is manufactured by three-dimensional printing.
  • the present invention also provides an orthodontic microscrew guide plate, which is made by the above method, and includes:
  • the hollow cylinder is stepped, including a large-diameter end and a small-diameter end, the plane of the axis of the hollow cylinder divides the hollow cylinder into two parts, the two parts pass between Connector connection
  • a pair of fixing plates are respectively connected to a part of the hollow cylinder by a connecting rod, and the pair of fixing plates are respectively used for fixing on the adjacent occlusal surfaces on both sides of the microscrew implantation point ;
  • the small diameter end of the hollow cylinder faces the microscrew implantation point and the axis direction of the hollow cylinder is the same as
  • the implantation directions of the microscrews coincide, the small diameter end is used to constrain the implantation direction of the microscrew, and the large diameter end is used to constrain the implantation direction of the microscrew implant handle.
  • the orthodontic microscrew guide plate of the present invention When using the orthodontic microscrew guide plate of the present invention, a pair of fixing plates are placed on both sides of the microscrew implantation point adjacent to the occlusal surface, and the microscrew and implant handle are doubled through the hollow cylinder during the implantation process. Constraint, after the tip of the microscrew enters the appropriate depth of the alveolar bone, cut the connector, remove the hollow cylinder, and remove a pair of fixing plates to complete the implantation process.
  • the use of the orthodontic microscrew guide plate of the present invention can be more beneficial
  • the improvement of the accuracy of the placement of the microscrews can greatly reduce the risk of micro-implant nail implantation surgery, and can assist in the realization of the implantation nail implantation operation in difficult areas.
  • Fig. 1 shows a flow chart of a method for manufacturing an orthodontic microscrew guide plate according to an embodiment of the present invention.
  • Fig. 2 shows a buccal-lingual view of a dual-constrained split orthodontic microscrew guide plate according to an embodiment of the present invention.
  • Fig. 3 shows an occlusive gingival view of a dual-constraint split orthodontic microscrew guide plate according to an embodiment of the present invention.
  • Fig. 4 shows a mesio-distal view of a dual-constraint split orthodontic microscrew guide plate according to an embodiment of the present invention.
  • the manufacturing method of the orthodontic microscrew guide plate of the present invention includes the following steps:
  • the technician can design the most ideal dental model in the virtual dental model based on the soft tissue and tooth root information in the virtual dental model Microscrew approach, and establish a three-dimensional model of the orthodontic microscrew guide on this, so that the orthodontic microscrew guide is more in line with the patient’s oral structure, and the direction and position of the microscrew implantation are more accurately restricted to avoid misunderstandings.
  • the damage to the tooth root is more conducive to the improvement of the accuracy of the micro-screw implantation position, and the risk of micro-implant screw implantation surgery is greatly reduced.
  • the use of this method can reduce the difficulty of designing the orthodontic micro-screw guide and improve the design efficiency.
  • the orthodontic microscrew guide plate prepared by the above steps can fully integrate the information of the soft tissues of the periodontal tissue in the mouth and the hard tissues of the tooth root and the jaw to design the best microscrew implantation site, thereby improving the success rate and stability of the microscrew operation.
  • the CBCT image is the cone beam CT image.
  • step 2) includes:
  • the oral scan data contains the information of the periodontal tissue in the mouth, and the operator can determine the implantation point of the micro screw according to the position of the attached gum, thereby improving the success rate and stability of the micro screw operation.
  • step 2) also includes:
  • the scanning head of the intraoral scanner When scanning the patient's gums and dentition with the intraoral scanner, the scanning head of the intraoral scanner is inserted into the patient's mouth and scans along the surface of the dentition.
  • step 2.3) includes:
  • step 3) includes:
  • the tooth image data and the alveolar bone image data are separated to extract the three-dimensional image data of the teeth.
  • the dentition information extracted by adjusting the CBCT threshold includes the root position, and the operator can refer to the root position to plan the microscrew implantation position, thereby improving the safety and stability of the implantation.
  • step 4) includes:
  • the dentition model scan data, the three-dimensional image data of the teeth, and the oral scan data are overlapped according to the crown shape matching of all teeth in the mouth. This operation can make the overlap more accurate, thereby enabling the actual implantation position and virtual design of the microscrew The part in the middle has a higher degree of overlap.
  • step 5) includes:
  • the implantation point of the microscrew is selected and the implantation direction is designed, so that the microscrew can enter the soft tissue and be located between two adjacent tooth roots, thereby determining the surgical approach.
  • step 6) includes:
  • step 7) includes:
  • the orthodontic micro-screw guide is produced by three-dimensional printing.
  • the integration of three-dimensional printing has a fast speed, a small error, and a higher degree of fit in use.
  • the orthodontic microscrew guide plate of the present invention includes:
  • the hollow cylinder is stepped, including a large-diameter end and a small-diameter end.
  • the plane of the axis of the hollow cylinder divides the hollow cylinder into two parts, and the two parts are connected by a connecting piece;
  • a pair of fixing plates, a pair of fixing plates are respectively connected to a part of the hollow cylinder by a connecting rod, a pair of fixing plates are respectively used for fixing on the adjacent occlusal surfaces on both sides of the microscrew implantation point;
  • the small diameter end of the hollow cylinder faces the microscrew implantation point and the axis direction of the hollow cylinder coincides with the implantation direction of the microscrew.
  • the small diameter end is used to constrain the implantation direction of the microscrew, and the large diameter end is used to constrain the implantation direction of the microscrew implant handle.
  • the orthodontic microscrew guide plate of the present invention when used, a pair of fixing plates are placed on both sides of the microscrew implantation point adjacent to the occlusal surface, and the microscrew and the implant handle are performed through the hollow cylinder during the implantation process. Double restraint, after the tip of the microscrew enters the appropriate depth of the alveolar bone, cut the connector, remove the hollow cylinder, and remove a pair of fixing plates to complete the implantation process.
  • the orthodontic microscrew guide plate of the present invention can be more It is conducive to the improvement of the accuracy of the microscrew implantation position, can greatly reduce the risk of microimplantation nail implantation surgery, and can assist in the realization of the implantation nail implantation operation in difficult areas.
  • an annular retention groove is provided along the circumference of the large-diameter end, the connecting piece is a retention apron, and the retention apron is sleeved on the large-diameter end and located in the retention groove Slot.
  • the retention apron is used to connect a pair of arc-shaped restraining bodies to facilitate shearing, and the retention groove can be used to prevent the retention apron from moving on the hollow cylinder.
  • the depth of the retention groove is 0.8mm-1mm, and the width is 0.8mm-1.2mm.
  • a visible window is provided on the side wall of the hollow cylinder, and the visible window penetrates the small diameter end along the axial direction of the hollow cylinder and extends to the middle of the large diameter end.
  • the implantation of the microscrews can be observed during the implantation process to ensure the smooth progress of the microscrew implantation operation.
  • the visible window is located at the partition of the hollow cylinder.
  • the width of the visible window is 2.5-3.5mm.
  • the shape of a pair of fixing plates respectively fits with the occlusal surface and the occlusal surface of the high point of the adjacent tooth axial surface on both sides of the microscrew implantation point.
  • the shape of the fixing plate is matched with the occluding surface and the occlusal surface of the high point of the axial surface, so that the positioning of the hollow cylinder is more accurate and stable.
  • the wall thickness at the large-diameter end is 1 mm-1.2 mm, and the wall thickness at the small-diameter end is 0.6 mm-0.8 mm.
  • the connecting rod is a cylindrical rod with a diameter of 0.4mm-0.6mm.
  • Figure 1 shows a flow chart of a method for manufacturing an orthodontic microscrew guide according to this embodiment
  • Figure 2 shows a buccal-lingual view of the dual-constraint split orthodontic microscrew guide according to this embodiment
  • Figure 3 shows The occlusal gingival view of the dual-constraint split orthodontic microscrew guide plate according to this embodiment is shown
  • FIG. 4 shows a mesio-distal view of the dual-constraint split orthodontic microscrew guide plate according to this embodiment.
  • the manufacturing method of orthodontic microscrew guide plate includes the following steps:
  • GeomagicWrap2017 software (a kind of scanning data processing software) to make the three-dimensional image data of teeth and oral scan data coincide with the scan data of the dentition model through the crown shape, and fix the scan data of the dentition model, three-dimensional image data of the teeth and the oral scan Based on the relative position of the data, a virtual dental model is established.
  • the virtual dental model includes three-dimensional data of the tooth root and soft tissue.
  • the size of the orthodontic micro-screw guide plate can be adjusted according to different brands of micro-screws and handle designs, and it can also be customized according to preferences.
  • the technician can design the most ideal micro-screw insertion in the virtual dental model based on the soft tissue and tooth root information in the virtual dental model.
  • a three-dimensional model of the orthodontic micro-screw guide is established, so that the orthodontic micro-screw guide is more in line with the patient’s oral structure, and the direction and position of the micro-screw implantation are more accurately restricted to avoid damage to the root of the tooth. , It is more conducive to the improvement of the accuracy of micro screw implantation position, and greatly reduces the risk of micro implant screw implantation surgery.
  • the orthodontic microscrew guide includes:
  • a pair of arc-shaped constraining bodies 1 are buckled with each other through connecting pieces to form a hollow cylinder.
  • the hollow cylinder is stepped and includes a large-diameter end 1.2 and a small-diameter end 1.1.
  • the wall thickness of the large-diameter end 1.2 is 1mm and the wall of the small-diameter end 1.1 The thickness is 0.7mm.
  • the retention groove 3 has a depth of 0.8mm and a width of 1mm.
  • the part is a retention apron 4 sleeved on the large diameter end 1.2 and located in the retention groove 3.
  • the cross-section of the retention apron 4 is circular, with a diameter of 2mm, and the visible window 2 is located at the center of a pair of arc-shaped constraining bodies 1.
  • the joints are respectively recessed to the inside of a pair of arc-shaped restraining bodies 1.
  • the visible window 2 penetrates the small diameter end 1.1 along the axial direction of the hollow cylinder and extends to the middle of the large diameter end 1.2.
  • the width of the visible window 2 is 3mm;
  • the shape of a pair of fixing plates 6 respectively conform to the occlusal and occlusal surfaces of the high points of the adjacent tooth axial surfaces on both sides of the microscrew implantation point.
  • Each fixing plate 6 is connected to an arc-shaped restraining body 1 through a connecting rod 5 ,
  • the connecting rod 5 is a cylindrical rod with a diameter of 0.5mm;
  • each arc-shaped constraining body 1 is integrally formed with a connecting rod 5 and a fixed plate 6 through three-dimensional printing.
  • the small diameter end 1.1 of the hollow cylinder faces the microscrew implantation point and the axis direction of the hollow cylinder is the same as the implantation direction of the microscrew Overlap, the small diameter end 1.1 restricts the implantation direction of the microscrew, and the large diameter end 1.2 restricts the implantation direction of the microscrew implant handle.
  • a pair of fixed plates are placed on the adjacent occlusal surfaces of the microscrew implantation point, and the microscrew and implant handle are double-constrained through the hollow cylinder during the implantation process, and the microscrew tip enters the alveolar bone After the depth is suitable, cut the connecting piece, remove the hollow cylinder, and take off a pair of fixing plates 3 to complete the implantation process.
  • the use of the orthodontic microscrew guide plate of the present invention can be more conducive to the improvement of the accuracy of the microscrew implantation position , Can greatly reduce the risk of micro-implant nail implantation operation, and can assist in the realization of the implantation nail implantation operation in difficult areas.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种正畸微螺钉导板的制造方法及正畸微螺钉导板,包括:1)制作患者的牙列模型;2)获取患者的CBCT影像数据、口腔扫描数据及牙列模型扫描数据;3)从CBCT影像数据中获取牙齿三维图像数据;4)将牙齿三维图像数据、口腔扫描数据及牙列模型扫描数据建立虚拟牙颌模型;5)根据虚拟牙颌模型确定微螺钉的植入点及手术入路;6)在虚拟牙颌模型上根据植入点及手术入路建立正畸微螺钉导板的三维模型;7)输出正畸微螺钉导板的三维模型数据,根据三维模型数据制得正畸微螺钉导板。使用正畸微螺钉导板能更有利于微螺钉植入位置精准度的提高,可以大幅降低微种植钉植入手术风险。

Description

正畸微螺钉导板的制造方法及正畸微螺钉导板 技术领域
本发明属于牙齿正畸技术领域,更具体地,涉及一种正畸微螺钉导板的制造方法及正畸微螺钉导板。
背景技术
相比正畸传统支抗,微螺钉能够提供绝对支抗,同时不依赖于患者配合,具有体积小、使用灵活等优势,自20世纪90年代以来在临床上被广泛使用,特别对于一些复杂严重错合畸形的治疗起到了重要的作用。然而,微螺钉植入属于小型外科手术,存在损伤正常解剖结构、术后感染等风险和并发症,其中最大的风险是损伤牙根,轻者擦伤牙骨质,重则造成牙根纵裂,导致牙齿无法保留。为了有效规避牙根损伤的风险,学者们从2005年开始设计各种导板以辅助微螺钉植入,目前文献报道的微螺钉导板存在设计过程复杂,精准度尚不能完全满足临床需要等问题。
因此,期待研发一种正畸微螺钉导板的制造方法及正畸微螺钉导板,简化微螺钉导板的设计过程,提高精度和效率,使制得的微螺钉导板能够辅助正畸微螺钉精确植入,避免微螺钉植入过程中损伤牙根,便于临床应用。
发明内容
本发明的目的是提供一种正畸微螺钉导板的制造方法及正畸微螺钉导板,简化微螺钉导板的设计过程,提高精度和效率,降低微种植钉植入手术风险。
为了实现上述目的,本发明提供一种正畸微螺钉导板的制造方法,包 括以下步骤:
1)制作患者的牙列模型;
2)获取所述患者的CBCT影像数据、口腔扫描数据及牙列模型扫描数据;
3)从所述CBCT影像数据中获取牙齿三维图像数据;
4)将所述牙齿三维图像数据、所述口腔扫描数据及所述牙列模型扫描数据通过牙冠外形进行匹配,建立虚拟牙颌模型;
5)根据所述虚拟牙颌模型确定微螺钉的植入点及手术入路;
6)在所述虚拟牙颌模型上根据所述植入点及所述手术入路建立空心圆柱体及一对固定板的三维模型,之后建立连杆的三维模型以将所述空心圆柱体的三维模型与所述一对固定板的三维模型连接起来,形成所述正畸微螺钉导板的三维模型;
7)输出所述正畸微螺钉导板的三维模型数据,根据所述三维模型数据制得所述正畸微螺钉导板。
优选地,所述步骤2)包括:
2.1)通过CBCT扫描仪扫描患者的颌骨及牙列,得到包含颌骨及牙列的所述CBCT影像数据;
2.2)通过口内扫描仪扫描患者的牙龈和牙列,得到包含软组织和牙冠的所述口腔扫描数据;
2.3)通过模型扫描仪扫描患者的牙列模型,得到所述牙列模型扫描数据。
优选地,所述步骤2)还包括:
通过CBCT扫描仪对患者进行扫描时,使患者眶耳平面与地面平行,面中线与地面垂直,牙颌保持牙尖交错位咬合关系;
通过口内扫描仪扫描患者的牙龈和牙列时,将所述口内扫描仪的扫描头伸进患者口腔,沿着牙列表面进行扫描。
优选地,所述步骤2.3)包括:
扫描所述牙列模型的上颌、下颌及上、下颌在牙尖交错位时的咬合状态,获得所述牙列模型扫描数据。
优选地,所述步骤3)包括:
通过调整CBCT影像数据的阈值,使牙齿影像数据与牙槽骨影像数据分离,以提取出所述牙齿三维图像数据。
优选地,所述步骤4)包括:
4.1)以所述牙列模型扫描数据为基准,使所述牙齿三维图像数据通过牙冠外形与所述牙列模型扫描数据重合;
4.2)以所述牙列模型扫描数据为基准,使所述口腔扫描数据通过牙冠外形与所述牙列模型扫描数据及所述牙齿三维图像数据重合;
4.3)固定所述牙列模型扫描数据、所述牙齿三维图像数据及所述口腔扫描数据的相对位置,建立所述虚拟牙颌模型,所述虚拟牙颌模型包括牙根及软组织三维数据。
优选地,所述步骤5)包括:
在所述虚拟牙颌模型中,根据软组织及牙根位置,选取微螺钉的植入点并设计植入方向,使所述微螺钉能够进入软组织且位于两个相邻的牙根之间,从而确定手术入路。
优选地,所述步骤6)包括:
6.1)在所述植入点处建立所述空心圆柱体的三维模型,使所述空心圆柱体的小径端朝向所述植入点;
6.2)根据所述手术入路校准所述空心圆柱体的轴线方向,使所述空心圆柱体的轴线方向与微螺钉的植入方向重合并经过所述植入点;
6.3)将所述空心圆柱体沿轴线所在的平面分割成两部分;
6.4)分别在所述植入点两侧的邻牙合面上建立所述固定板的三维模型;
6.5)建立所述连杆的三维模型将所述一对固定板的三维模型与所述空 心圆柱体的三维模型连接,形成所述正畸微螺钉导板的三维模型。
优选地,所述步骤7)包括:
根据所述正畸微螺钉导板的三维模型数据,通过三维打印制得所述正畸微螺钉导板。
本发明还提供一种正畸微螺钉导板,由上述方法制得,包括:
空心圆柱体,所述空心圆柱体呈阶梯状,包括大径端和小径端,所述空心圆柱体轴线所在的平面将所述空心圆柱体分割成两个部分,所述两个部分之间通过连接件连接;
一对固定板,所述一对固定板分别通过连杆连接于所述空心圆柱体的其中一部分,所述一对固定板分别用于固定在微螺钉植入点两侧的邻牙合面上;
当所述一对固定板分别固定于微螺钉植入点两侧的邻牙合面时,所述空心圆柱体的小径端朝向所述微螺钉植入点且所述空心圆柱体的轴线方向与所述微螺钉的植入方向重合,所述小径端用于约束微螺钉的植入方向,所述大径端用于约束微螺钉种植手柄的种植方向。
本发明的有益效果在于:
1、通过患者的CBCT影像数据、口腔扫描数据及牙列模型扫描数据建立虚拟牙颌模型后,技术人员可根据虚拟牙颌模型中的软组织及牙根信息在虚拟牙颌模型中设计最理想的微螺钉入路,并在此上建立正畸微螺钉导板的三维模型,使正畸微螺钉导板在使时与患者的口腔结构更契合,对微螺钉种植方向和位置的约束更准确,避免对牙根造成损坏,更有利于微微螺钉植入位置精准度的提高,大幅降低微种植钉植入手术风险,使用本方法能够降低正畸微螺钉导板的设计难度,提高设计效率。
2、本发明的正畸微螺钉导板在使用时,将一对固定板放置在微螺钉植入点的两侧邻牙合面,通过空心圆柱体在植入过程对微螺钉及种植手柄进行双重约束,在微螺钉尖端进入牙槽骨适合深度后,剪断连接件,取下空 心圆柱体,并取下一对固定板,完成植入过程,使用本发明的正畸微螺钉导板能更有利于微螺钉植入位置精准度的提高,可以大幅降低微种植钉植入手术风险,并能辅助实现高难度区域的种植钉植入手术。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施方式中,相同的参考标号通常代表相同部件。
图1示出了根据本发明的一个实施例的正畸微螺钉导板的制造方法的流程图。
图2示出了根据本实用新型的一个实施例的双约束分体式正畸微螺钉导板的颊舌向视图。
图3示出了根据本实用新型的一个实施例的双约束分体式正畸微螺钉导板的牙合龈向视图。
图4示出了根据本实用新型的一个实施例的双约束分体式正畸微螺钉导板的近远中向视图。
附图标记说明
1、空心圆柱体;1.1、小径端;1.2、大径端;2、可视窗口;3、固位槽沟;4、固位皮圈;5、连杆;6、固定板。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加 透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明的正畸微螺钉导板的制造方法包括以下步骤:
1)制作患者的牙列模型;
2)获取患者的CBCT影像数据、口腔扫描数据及牙列模型扫描数据;
3)从CBCT影像数据中获取牙齿三维图像数据;
4)将牙齿三维图像数据、口腔扫描数据及牙列模型扫描数据通过牙冠外形进行匹配,建立虚拟牙颌模型;
5)根据虚拟牙颌模型确定微螺钉的植入点及手术入路;
6)在虚拟牙颌模型上根据植入点及手术入路建立空心圆柱体及一对固定板的三维模型,之后建立连杆的三维模型以将空心圆柱体的三维模型与一对固定板的三维模型连接起来,形成正畸微螺钉导板的三维模型;
7)输出正畸微螺钉导板的三维模型数据,根据三维模型数据制得正畸微螺钉导板。
具体地,通过患者的CBCT影像数据、口腔扫描数据及牙列模型扫描数据建立虚拟牙颌模型后,技术人员可根据虚拟牙颌模型中的软组织及牙根信息在虚拟牙颌模型中设计最理想的微螺钉入路,并在此上建立正畸微螺钉导板的三维模型,使正畸微螺钉导板在使时与患者的口腔结构更契合,对微螺钉种植方向和位置的约束更准确,避免对牙根造成损坏,更有利于微微螺钉植入位置精准度的提高,大幅降低微种植钉植入手术风险,使用 本方法能够降低正畸微螺钉导板的设计难度,提高设计效率。
经过以上步骤制得的正畸微螺钉导板能够充分结合口内牙周软组织及牙根、颌骨等硬组织信息设计最佳微螺钉植入部位,从而提高微螺钉手术的成功率和稳定性。
其中,CBCT影像即为锥形束CT影像。
作为优选方案,步骤2)包括:
2.1)通过CBCT扫描仪扫描患者的颌骨及牙列,得到包含颌骨及牙列的CBCT影像数据;
2.2)通过口内扫描仪扫描患者的牙龈和牙列,得到包含软组织和牙冠的口腔扫描数据;
2.3)通过模型扫描仪扫描患者的牙列模型,得到牙列模型扫描数据。
具体地,口腔扫描数据包含口内牙周组织信息,操作人员可根据附着龈的位置确定微螺钉的植入点,从而提高微螺钉手术的成功率和稳定性。
作为优选方案,步骤2)还包括:
通过CBCT扫描仪对患者进行扫描时,使患者眶耳平面与地面平行,面中线与地面垂直,牙颌保持牙尖交错位咬合关系;
通过口内扫描仪扫描患者的牙龈和牙列时,将口内扫描仪的扫描头伸进患者口腔,沿着牙列表面进行扫描。
作为优选方案,步骤2.3)包括:
扫描牙列模型的上颌、下颌及上、下颌在牙尖交错位时的咬合状态,获得牙列模型扫描数据。
作为优选方案,步骤3)包括:
通过调整CBCT影像数据的阈值,使牙齿影像数据与牙槽骨影像数据分离,以提取出牙齿三维图像数据。
具体地,通过调整CBCT阈值提取出的牙列信息包含牙根位置,操作人员可参考牙根位置拟定微螺钉植入位置,从而提高植入的安全性和稳定 性。
作为优选方案,步骤4)包括:
4.1)以牙列模型扫描数据为基准,使牙齿三维图像数据通过牙冠外形与牙列模型扫描数据重合;
4.2)以牙列模型扫描数据为基准,使口腔扫描数据通过牙冠外形与牙列模型扫描数据及牙齿三维图像数据重合;
4.3)固定牙列模型扫描数据、牙齿三维图像数据及口腔扫描数据的相对位置,建立虚拟牙颌模型,虚拟牙颌模型包括牙根及软组织三维数据。
具体地,将牙列模型扫描数据、牙齿三维图像数据及口腔扫描数据根据口内所有牙齿的牙冠外形匹配进行重叠,这样的操作可以使重叠更加准确,进而使微螺钉实际植入部位和虚拟设计中的部位重合度更高。
作为优选方案,步骤5)包括:
在虚拟牙颌模型中,根据软组织及牙根位置,选取微螺钉的植入点并设计植入方向,使微螺钉能够进入软组织且位于两个相邻的牙根之间,从而确定手术入路。
作为优选方案,步骤6)包括:
6.1)在植入点处建立空心圆柱体的三维模型,使空心圆柱体的小径端朝向植入点;
6.2)根据手术入路校准空心圆柱体的轴线方向,使空心圆柱体的轴线方向与微螺钉的植入方向重合并经过植入点;
6.3)将空心圆柱体沿轴线所在的平面分割成两部分;
6.4)分别在植入点两侧的邻牙合面上建立固定板的三维模型;
6.5)建立连杆的三维模型将一对固定板的三维模型与空心圆柱体的三维模型连接,形成正畸微螺钉导板的三维模型。
作为优选方案,步骤7)包括:
根据正畸微螺钉导板的三维模型数据,通过三维打印制得正畸微螺钉 导板。
具体地,通过三维打印一体成型速度快,误差小,使用时契合度更高。
本发明的正畸微螺钉导板,包括:
空心圆柱体,空心圆柱体呈阶梯状,包括大径端和小径端,空心圆柱体轴线所在的平面将空心圆柱体分割成两个部分,两个部分之间通过连接件连接;
一对固定板,一对固定板分别通过连杆连接于空心圆柱体的其中一部分,一对固定板分别用于固定在微螺钉植入点两侧的邻牙合面上;
当一对固定板分别固定于微螺钉植入点两侧的邻牙合面时,空心圆柱体的小径端朝向微螺钉植入点且空心圆柱体的轴线方向与微螺钉的植入方向重合,小径端用于约束微螺钉的植入方向,大径端用于约束微螺钉种植手柄的种植方向。
具体地,本发明的正畸微螺钉导板在使用时,将一对固定板放置在微螺钉植入点的两侧邻牙合面,通过空心圆柱体在植入过程对微螺钉及种植手柄进行双重约束,在微螺钉尖端进入牙槽骨适合深度后,剪断连接件,取下空心圆柱体,并取下一对固定板,完成植入过程,使用本发明的正畸微螺钉导板能更有利于微螺钉植入位置精准度的提高,可以大幅降低微种植钉植入手术风险,并能辅助实现高难度区域的种植钉植入手术。
作为优选方案,在空心圆柱体的大径端的外壁上,沿大径端的周向设有环形的固位沟槽,连接件为固位皮圈,固位皮圈套设于大径端且位于固位沟槽中。
具体地,利用固位皮圈连接一对弧形约束体便于剪断,通过设置固位沟槽能够防止固位皮圈在空心圆柱体上窜动。
作为优选方案,固位沟槽的深度为0.8mm-1mm,宽度为0.8mm-1.2mm。
作为优选方案,空心圆柱体的侧壁上设有可视窗口,可视窗口沿空心圆柱体的轴向贯通小径端并延伸至大径端的中部。
具体地,通过这个可视窗口能够在植入过程中观察微螺钉的植入情况,保证微螺钉植入手术的顺利进行。
作为优选方案,可视窗口位于空心圆柱体的分割处。
作为优选方案,可视窗口的宽度为2.5-3.5mm。
作为优选方案,一对固定板的形状分别与微螺钉植入点两侧的邻牙轴面外形高点的合方及咬合面契合。
具体地,固定板的形状分别与轴面外形高点的合方及咬合面契合,使空心圆柱体的定位更准确、稳定。
作为优选方案,大径端的壁厚为1mm-1.2mm,小径端的壁厚为0.6mm-0.8mm。
作为优选方案,连杆为圆柱形杆,直径为0.4mm-0.6mm。
实施例
图1示出了根据本实施例的正畸微螺钉导板的制造方法的流程图;图2示出了根据本实施例的双约束分体式正畸微螺钉导板的颊舌向视图;图3示出了根据本实施例的双约束分体式正畸微螺钉导板的牙合龈向视图;图4示出了根据本实施例的双约束分体式正畸微螺钉导板的近远中向视图。
如图1-图4所示,
正畸微螺钉导板的制造方法,包括以下步骤:
1)制作患者的牙列模型;
2)使患者眶耳平面与地面平行,面中线与地面垂直,牙颌保持牙尖交错位咬合关系,通过CBCT扫描仪扫描患者的颌骨及牙列,得到包含颌骨及牙列的CBCT影像数据;
3)将3shapeTrios扫描仪的扫描头伸进患者口腔,沿着牙列表面描患者的牙龈和牙列,得到包含软组织和牙冠的口腔扫描数据;
4)用3shape扫描仪扫描牙列模型的上颌、下颌及上、下颌在牙尖交错位时的咬合状态,获得牙列模型扫描数据;
5)应用MIMICS18.0软件(一种医学影像控制系统)对CBCT影像数据进行重建,通过调整CBCT影像数据的阈值,分离牙齿及牙槽骨数据,获取牙齿三维图像数据;
6)应用GeomagicWrap2017软件(一种扫描数据处理软件),使牙齿三维图像数据及口腔扫描数据通过牙冠外形与牙列模型扫描数据重合,并固定牙列模型扫描数据、牙齿三维图像数据及口腔扫描数据的相对位置,建立虚拟牙颌模型,虚拟牙颌模型中包括了牙根及软组织三维数据。
7)在虚拟牙颌模型中,根据软组织及牙根位置,选取微螺钉的植入点并设计植入方向,使微螺钉能够进入软组织且位于两个相邻的牙根之间,从而确定手术入路;
8)应用3ShapeApplianceDesigner TM软件(一种牙科矫治器设计软件)导入虚拟牙颌模型,在虚拟牙颌模型的植入点处建立空心圆柱体的三维模型,使空心圆柱体的小径端朝向植入点,再根据手术入路校准空心圆柱体的轴线方向,使空心圆柱体的轴线方向与微螺钉的植入方向重合并经过植入点,将空心圆柱体沿轴线所在的平面分割成两部分,分别在植入点两侧的邻牙合面上建立固定板的三维模型,建立连杆的三维模型将一对固定板的三维模型与空心圆柱体的三维模型连接,形成正畸微螺钉导板的三维模型。
9)输出正畸微螺钉导板的三维模型数据,根据正畸微螺钉导板的三维模型数据,通过三维打印制得正畸微螺钉导板。
可根据不同品牌的微螺钉及手柄设计调整正畸微螺钉导板的尺寸,也可根据喜好进行个性化设计。
通过患者的CBCT影像数据、口腔扫描数据及牙列模型扫描数据建立虚拟牙颌模型后,技术人员可根据虚拟牙颌模型中的软组织及牙根信息在虚拟牙颌模型中设计最理想的微螺钉入路,并在此上建立正畸微螺钉导板的三维模型,使正畸微螺钉导板在使时与患者的口腔结构更契合,对微螺 钉种植方向和位置的约束更准确,避免对牙根造成损坏,更有利于微微螺钉植入位置精准度的提高,大幅降低微种植钉植入手术风险。
该正畸微螺钉导板,包括:
一对弧形约束体1通过连接件相互扣合形成空心圆柱体,空心圆柱体呈阶梯状,包括大径端1.2和小径端1.1,大径端1.2的壁厚为1mm,小径端1.1的壁厚为0.7mm,在空心圆柱体的大径端1.2的外壁上,沿大径端1.2的周向设有环形的固位沟槽3,固位沟槽3的深度为0.8mm,宽度为1mm,连接件为固位皮圈4套设于大径端1.2且位于固位沟槽3中,固位皮圈4的截面为圆形,直径2mm,可视窗口2位于一对弧形约束体1的连接处,且分别向一对弧形约束体1内侧凹陷,可视窗口2沿空心圆柱体的轴向贯通小径端1.1并延伸至大径端1.2的中部,可视窗口2的宽度为3mm;一对固定板6的形状分别与微螺钉植入点两侧的邻牙轴面外形高点的合方及咬合面契合,每个固定板6通过一个连杆5连接于一个弧形约束体1,连杆5为圆柱形杆,直径为0.5mm;
其中,每个弧形约束体1与一个连杆5及一个固定板6通过三维打印一体成型。
当一对固定板6分别固定于微螺钉植入点两侧的邻牙合面时,空心圆柱体的小径端1.1朝向微螺钉植入点且空心圆柱体的轴线方向与微螺钉的植入方向重合,使小径端1.1约束微螺钉的植入方向,大径端1.2约束微螺钉种植手柄的种植方向。
在使用时,将一对固定板放置在微螺钉植入点的两侧邻牙合面,通过空心圆柱体在植入过程对微螺钉及种植手柄进行双重约束,在微螺钉尖端进入牙槽骨适合深度后,剪断连接件,取下空心圆柱体,并取下一对固定板3,完成植入过程,使用本发明的正畸微螺钉导板能更有利于微螺钉植入位置精准度的提高,可以大幅降低微种植钉植入手术风险,并能辅助实现高难度区域的种植钉植入手术。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

  1. 一种正畸微螺钉导板的制造方法,其特征在于,包括以下步骤:
    1)制作患者的牙列模型;
    2)获取所述患者的CBCT影像数据、口腔扫描数据及牙列模型扫描数据;
    3)从所述CBCT影像数据中获取牙齿三维图像数据;
    4)将所述牙齿三维图像数据、所述口腔扫描数据及所述牙列模型扫描数据通过牙冠外形进行匹配,建立虚拟牙颌模型;
    5)根据所述虚拟牙颌模型确定微螺钉的植入点及手术入路;
    6)在所述虚拟牙颌模型上根据所述植入点及所述手术入路建立空心圆柱体及一对固定板的三维模型,之后建立连杆的三维模型以将所述空心圆柱体的三维模型与所述一对固定板的三维模型连接起来,形成正畸微螺钉导板的三维模型;
    7)输出所述正畸微螺钉导板的三维模型数据,根据所述三维模型数据制得所述正畸微螺钉导板。
  2. 根据权利要求1所述的正畸微螺钉导板的制造方法,其特征在于,所述步骤2)包括:
    2.1)通过CBCT扫描仪扫描患者的颌骨及牙列,得到包含颌骨及牙列的所述CBCT影像数据;
    2.2)通过口内扫描仪扫描患者的牙龈和牙列,得到包含软组织和牙冠的所述口腔扫描数据;
    2.3)通过模型扫描仪扫描患者的牙列模型,得到所述牙列模型扫描数据。
  3. 根据权利要求2所述的正畸微螺钉导板的制造方法,其特征在于, 所述步骤2)还包括:
    通过CBCT扫描仪对患者进行扫描时,使患者眶耳平面与地面平行,面中线与地面垂直,牙颌保持牙尖交错位咬合关系;
    通过口内扫描仪扫描患者的牙龈和牙列时,将所述口内扫描仪的扫描头伸进患者口腔,沿着牙列表面进行扫描。
  4. 根据权利要求2所述的正畸微螺钉导板的制造方法,其特征在于,所述步骤2.3)包括:
    扫描所述牙列模型的上颌、下颌及上、下颌在牙尖交错位时的咬合状态,获得所述牙列模型扫描数据。
  5. 根据权利要求1所述的正畸微螺钉导板的制造方法,其特征在于,所述步骤3)包括:
    通过调整CBCT影像数据的阈值,使牙齿影像数据与牙槽骨影像数据分离,以提取出所述牙齿三维图像数据。
  6. 根据权利要求1所述的正畸微螺钉导板的制造方法,其特征在于,所述步骤4)包括:
    4.1)以所述牙列模型扫描数据为基准,使所述牙齿三维图像数据通过牙冠外形与所述牙列模型扫描数据重合;
    4.2)以所述牙列模型扫描数据为基准,使所述口腔扫描数据通过牙冠外形与所述牙列模型扫描数据及所述牙齿三维图像数据重合;
    4.3)固定所述牙列模型扫描数据、所述牙齿三维图像数据及所述口腔扫描数据的相对位置,建立所述虚拟牙颌模型,所述虚拟牙颌模型包括牙根及软组织三维数据。
  7. 根据权利要求6所述的正畸微螺钉导板的制造方法,其特征在于,所述步骤5)包括:
    在所述虚拟牙颌模型中,根据软组织及牙根位置,选取微螺钉的植入点并设计植入方向,使所述微螺钉能够进入软组织且位于两个相邻的牙根之间,从而确定手术入路。
  8. 根据权利要求1所述的正畸微螺钉导板的制造方法,其特征在于,所述步骤6)包括:
    6.1)在所述植入点处建立所述空心圆柱体的三维模型,使所述空心圆柱体的小径端朝向所述植入点;
    6.2)根据所述手术入路校准所述空心圆柱体的轴线方向,使所述空心圆柱体的轴线方向与微螺钉的植入方向重合并经过所述植入点;
    6.3)将所述空心圆柱体沿轴线所在的平面分割成两部分;
    6.4)分别在所述植入点两侧的邻牙合面上建立所述固定板的三维模型;
    6.5)建立所述连杆的三维模型将所述一对固定板的三维模型与所述空心圆柱体的三维模型连接,形成所述正畸微螺钉导板的三维模型。
  9. 根据权利要求1所述的正畸微螺钉导板的制造方法,其特征在于,所述步骤7)包括:
    根据所述正畸微螺钉导板的三维模型数据,通过三维打印制得所述正畸微螺钉导板。
  10. 一种正畸微螺钉导板,根据权利要求1-9中任一项所述的正畸微螺钉导板的制造方法制得,其特征在于,包括:
    空心圆柱体,所述空心圆柱体呈阶梯状,包括大径端和小径端,所述空心圆柱体轴线所在的平面将所述空心圆柱体分割成两个部分,所述两个 部分之间通过连接件连接;
    一对固定板,所述一对固定板分别通过连杆连接于所述空心圆柱体的其中一部分,所述一对固定板分别用于固定在微螺钉植入点两侧的邻牙合面上;
    当所述一对固定板分别固定于微螺钉植入点两侧的邻牙合面时,所述空心圆柱体的小径端朝向所述微螺钉植入点且所述空心圆柱体的轴线方向与所述微螺钉的植入方向重合,所述小径端用于约束微螺钉的植入方向,所述大径端用于约束微螺钉种植手柄的种植方向。
PCT/CN2020/104916 2020-02-10 2020-07-27 正畸微螺钉导板的制造方法及正畸微螺钉导板 WO2021159667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010085012.4A CN111214299B (zh) 2020-02-10 2020-02-10 正畸微螺钉导板的制造方法及正畸微螺钉导板
CN202010085012.4 2020-02-10

Publications (1)

Publication Number Publication Date
WO2021159667A1 true WO2021159667A1 (zh) 2021-08-19

Family

ID=70826128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104916 WO2021159667A1 (zh) 2020-02-10 2020-07-27 正畸微螺钉导板的制造方法及正畸微螺钉导板

Country Status (2)

Country Link
CN (1) CN111214299B (zh)
WO (1) WO2021159667A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111214299B (zh) * 2020-02-10 2020-12-11 北京大学口腔医学院 正畸微螺钉导板的制造方法及正畸微螺钉导板
CN114176806B (zh) * 2021-12-10 2024-01-26 北京大学口腔医学院 一种正畸种植支抗植入导板及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012019410A1 (de) * 2011-10-04 2013-04-04 Joachim Weber Langzeitretentionsvorrichtung
CN104323865A (zh) * 2014-10-13 2015-02-04 首都医科大学附属北京口腔医院 正畸微螺钉植入用导板及其制作方法
CN205849564U (zh) * 2016-04-26 2017-01-04 中山大学孙逸仙纪念医院 引导移植骨牙种植的3d打印的定位器
CN107582191A (zh) * 2017-09-06 2018-01-16 广州医科大学附属口腔医院(广州医科大学羊城医院) 一种制作正畸用微种植体植入导板的方法
CN109316254A (zh) * 2018-11-19 2019-02-12 深圳市倍康美医疗电子商务有限公司 一种正畸种植支抗导板的制造方法和正畸种植支抗导板
CN208838148U (zh) * 2018-02-09 2019-05-10 郭晓东 用于骨盆髋臼骨折的通道螺钉体外导向装置
CN110215301A (zh) * 2019-07-03 2019-09-10 深圳市倍康美医疗电子商务有限公司 植钉导板的制作方法及植钉导板
CN111214299A (zh) * 2020-02-10 2020-06-02 北京大学口腔医学院 正畸微螺钉导板的制造方法及正畸微螺钉导板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104042352B (zh) * 2013-03-13 2016-03-02 西安市恒惠科技有限公司 牙齿的激光扫描数据和断层扫描数据的匹配方法
CN103598920B (zh) * 2013-12-04 2017-11-07 杭州六维齿科医疗技术有限公司 全牙缺失的牙种植手术导板及其制作方法
CN106806030B (zh) * 2015-11-30 2018-08-10 北京大学口腔医学院 一种冠根三维模型融合方法
CN105662608A (zh) * 2015-12-18 2016-06-15 北京大学口腔医学院 一种三维数据牙齿冠根整合的方法
CN107928818A (zh) * 2017-11-21 2018-04-20 北京大清西格科技有限公司 一种用于牙科种植手术用导板的设计与制作方法
CN110189352B (zh) * 2019-05-21 2023-07-07 重庆布瑞斯科技有限公司 一种基于口腔cbct图像的牙根提取方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012019410A1 (de) * 2011-10-04 2013-04-04 Joachim Weber Langzeitretentionsvorrichtung
CN104323865A (zh) * 2014-10-13 2015-02-04 首都医科大学附属北京口腔医院 正畸微螺钉植入用导板及其制作方法
CN205849564U (zh) * 2016-04-26 2017-01-04 中山大学孙逸仙纪念医院 引导移植骨牙种植的3d打印的定位器
CN107582191A (zh) * 2017-09-06 2018-01-16 广州医科大学附属口腔医院(广州医科大学羊城医院) 一种制作正畸用微种植体植入导板的方法
CN208838148U (zh) * 2018-02-09 2019-05-10 郭晓东 用于骨盆髋臼骨折的通道螺钉体外导向装置
CN109316254A (zh) * 2018-11-19 2019-02-12 深圳市倍康美医疗电子商务有限公司 一种正畸种植支抗导板的制造方法和正畸种植支抗导板
CN110215301A (zh) * 2019-07-03 2019-09-10 深圳市倍康美医疗电子商务有限公司 植钉导板的制作方法及植钉导板
CN111214299A (zh) * 2020-02-10 2020-06-02 北京大学口腔医学院 正畸微螺钉导板的制造方法及正畸微螺钉导板

Also Published As

Publication number Publication date
CN111214299A (zh) 2020-06-02
CN111214299B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
US9283055B2 (en) Method for establishing drill trajectory for dental implants
WO2021004279A1 (zh) 牙支持式导板、粘膜支持式导板、骨支持式导板及其制备和使用方法
CN113412098B (zh) 数字三维牙齿模型牙科系统
JP2019504719A (ja) デンタルインプラントドリルガイドの作製方法
WO2021159667A1 (zh) 正畸微螺钉导板的制造方法及正畸微螺钉导板
KR101550369B1 (ko) 치아 임플란트 시술을 위한 서지컬 가이드 및 크라운, 어버트먼트 제조방법
US11564781B2 (en) Healing abutment system for configuring crown abutments at an implant site
CN209122496U (zh) 正畸支抗钉植入导板
CN110946663B (zh) 一种3d打印的微种植钉导板及其设计方法
US20160346066A1 (en) Margin Ring and Method of Making Dental Crown Using the Margin Ring
CN213993777U (zh) 一种新型颧牙槽嵴微种植支抗钉定位导向装置
CN114098964A (zh) 一种无牙颌导航系统及方法
CN115137505B (zh) 基于数字化技术的标准牙颌固位导板的制作工艺
CN112057191A (zh) 一种上颌窦提升侧壁开窗指示导板及其制作方法
CN114668533B (zh) 一种数字化根盾导板及制作方法
CN215306848U (zh) 一种用于正畸支抗钉植入的导板
TWI772773B (zh) 植牙手術導板及其製備方法
KR20200117614A (ko) 스크류 가이더 및 그의 제조방법
CN109498184B (zh) 根尖切除手术导板制造方法、系统及计算机可读取纪录媒体
RU2698296C1 (ru) Способ фиксации хирургического шаблона для установки стоматологических имплантатов в беззубую верхнюю челюсть
TWI384966B (zh) 植牙導引模板及骨釘咬合定位器
CN220988953U (zh) 牙周内窥镜探针头
CN210077878U (zh) 微创骨皮质切开术3d打印手术导板
CN219516609U (zh) 牙种植定位导板
KR101944250B1 (ko) 환자맞춤형 악교정 수술 보조장치의 가공방법 및 가공용 지그 결합 환자맞춤형 악교정 수술 보조장치 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918351

Country of ref document: EP

Kind code of ref document: A1