WO2021157639A1 - 触媒層付きイオン交換膜、イオン交換膜および電解水素化装置 - Google Patents

触媒層付きイオン交換膜、イオン交換膜および電解水素化装置 Download PDF

Info

Publication number
WO2021157639A1
WO2021157639A1 PCT/JP2021/004037 JP2021004037W WO2021157639A1 WO 2021157639 A1 WO2021157639 A1 WO 2021157639A1 JP 2021004037 W JP2021004037 W JP 2021004037W WO 2021157639 A1 WO2021157639 A1 WO 2021157639A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
layer
exchange membrane
fluoropolymer
catalyst layer
Prior art date
Application number
PCT/JP2021/004037
Other languages
English (en)
French (fr)
Inventor
康介 角倉
慎太朗 早部
拓久央 西尾
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021575848A priority Critical patent/JPWO2021157639A1/ja
Priority to CN202180012939.8A priority patent/CN115066515A/zh
Priority to AU2021215607A priority patent/AU2021215607A1/en
Priority to EP21750069.3A priority patent/EP4101946A1/en
Publication of WO2021157639A1 publication Critical patent/WO2021157639A1/ja
Priority to US17/878,275 priority patent/US20220396890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an ion exchange membrane with a catalyst layer, an ion exchange membrane, and an electrolytic hydrogenation apparatus.
  • a method for producing a hydrogenated organic substance for example, cyclohexane, methylcyclohexane, decahydronaphthalene, etc.
  • a method for adding hydrogen to an aromatic compound for example, benzene, toluene, naphthalene, etc.
  • an electrolytic hydrogenation method for aromatic compounds has been studied instead of the above method from the viewpoint of simplifying the production of hydrogenated organic substances.
  • Electrolytic hydrogenation of aromatic compounds is carried out, for example, by using an electrolytic hydrogenation apparatus having a structure in which a cathode and an anode are separated by an ion exchange membrane.
  • Patent Document 1 describes an electrolyte membrane (product name "NRE-212CS", manufactured by DuPont, a membrane made of a fluoropolymer having a sulfonic acid group) and an electrolyte membrane as ion exchange membranes in an electrolytic hydrogenation apparatus.
  • a cathode catalyst layer-electrolyte membrane conjugate having a zirconium oxide layer provided on the surface on the anode (anode) side and a catalyst layer provided on the surface on the cathode (cathode) side of the electrolyte membrane is disclosed.
  • the present invention has been made in view of the above circumstances, and an ion exchange membrane with a catalyst layer, an ion exchange membrane, and an electrolytic hydrogen that can lower the electrolytic voltage and increase the current efficiency at the time of electrolytic hydrogenation of an aromatic compound.
  • the subject is to provide a chemical device.
  • the present inventors have divided the inorganic particle layer, the layer containing the first fluoropolymer (Sa), the layer containing the second fluoropolymer (Sb), and the catalyst layer.
  • the ion exchange membrane with the catalyst layer is provided in this order and the ion exchange capacity of the first fluoropolymer is lower than the ion exchange capacity of the second fluoropolymer
  • the inorganic particle layer of the ion exchange membrane with the catalyst layer is placed on the anode side.
  • a desired effect can be obtained by using an electrolytic fluoropolymer in which the catalyst layer of the ion exchange membrane with a catalyst layer is arranged on the cathode side, and have reached the present invention.
  • L is an n + 1 valent perfluorohydrocarbon group which may contain an etheric oxygen atom
  • M is a hydrogen atom, an alkali metal or a quaternary ammonium cation
  • n is 1 or 2.
  • An inorganic particle layer containing inorganic particles and a binder, and A layer (Sa) containing a first fluoropolymer having a sulfonic acid type functional group, and A layer (Sb) containing a second fluoropolymer having a sulfonic acid type functional group is provided in this order.
  • An ion exchange membrane in which the ion exchange capacity of the first fluoropolymer is lower than the ion exchange capacity of the second fluoropolymer [10]
  • the ion exchange membrane according to [9] which has a concavo-convex structure at the interface on the inorganic particle layer side of the layer (Sa).
  • the ion exchange membrane with a catalyst layer is arranged in the electrolytic cell so as to separate the anode and the cathode.
  • An electrolytic hydrogenation apparatus in which the inorganic particle layer of the ion exchange membrane with a catalyst layer is arranged on the anode side, and the catalyst layer of the ion exchange membrane with a catalyst layer is arranged on the cathode side.
  • an ion exchange membrane with a catalyst layer, an ion exchange membrane, and an electrolytic hydrogenation apparatus capable of lowering the electrolytic voltage and increasing the current efficiency during electrolytic hydrogenation of an aromatic compound. ..
  • the "ion exchange membrane” is a membrane containing a polymer having an ion exchange group.
  • the "ion exchange group” is a group capable of exchanging at least a part of the ions contained in this group with another ion, and examples thereof include the following carboxylic acid type functional group and sulfonic acid type functional group.
  • the "carboxylic acid type functional group” means a carboxylic acid group (-COOH) or a carboxylic acid base (-COOM 1 , where M 1 is an alkali metal or a quaternary ammonium base).
  • “Sulfonic acid type functional group” means a sulfonic acid group (-SO 3 H) or a sulfonic acid base (-SO 3 M 2 ; where M 2 is an alkali metal or a quaternary ammonium base). do.
  • the "precursor layer” is a layer (membrane) containing a polymer having a group capable of converting into an ion exchange group.
  • the "group that can be converted into an ion-exchange group” means a group that can be converted into an ion-exchange group by a known treatment such as a hydrolysis treatment or an acidification treatment.
  • the "group that can be converted into a sulfonic acid type functional group” means a group that can be converted into a sulfonic acid type functional group by a known treatment such as a hydrolysis treatment or an acid type treatment.
  • fluorine-containing polymer means a polymer compound having a fluorine atom in the molecule.
  • Perfluorocarbon polymer means a polymer in which all hydrogen atoms bonded to carbon atoms in the polymer are replaced with fluorine atoms. Some of the fluorine atoms in the perfluorocarbon polymer may be replaced with one or both of chlorine and bromine atoms.
  • monomer is meant a compound having a polymerization-reactive carbon-carbon unsaturated double bond.
  • fluorine-containing monomer means a monomer having a fluorine atom in the molecule.
  • the structural unit is meant a monomer-derived moiety that is present in the polymer and constitutes the polymer.
  • the structural unit derived from this monomer is a divalent structural unit generated by cleavage of this unsaturated double bond.
  • the structural unit may be a structural unit obtained by chemically converting, for example, hydrolyzing, the structural unit after forming a polymer having the structure of a certain structural unit.
  • the structural unit derived from each monomer may be described by adding "unit" to the monomer name.
  • Reinforcing material means a material used to improve the strength of an ion exchange membrane.
  • the reinforcing material is a material derived from the reinforcing cloth.
  • “Reinforcing cloth” means a cloth used as a raw material for a reinforcing material for improving the strength of an ion exchange membrane.
  • the "reinforcing thread” is a thread constituting the reinforcing cloth, and is a thread made of a material that does not elute even when the reinforcing cloth is immersed in an alkaline aqueous solution (for example, an aqueous solution of sodium hydroxide having a concentration of 32% by mass). be.
  • a “sacrificial thread” is a thread that constitutes a reinforcing cloth, and is a material that is eluted with an alkaline aqueous solution and / or a process solution (for example, an electrolyte solution or an aromatic compound used for electrolytic hydrogenation of an aromatic compound). It is a thread containing.
  • the "eluting hole” means a hole formed as a result of the sacrificial yarn being eluted into an alkaline aqueous solution.
  • "Reinforced precursor membrane” means a membrane in which a reinforcing cloth is arranged in the precursor layer.
  • the numerical range represented by using “ ⁇ ” means a range including the numerical values before and after " ⁇ " as the lower limit value and the upper limit value.
  • the thickness of each layer at the time of drying of the ion exchange membrane with the catalyst layer is obtained by drying the ion exchange membrane with the catalyst layer at 90 ° C. for 2 hours, and then observing the cross section of the ion exchange membrane with the catalyst layer with an optical microscope. Obtain using software. If the surface of the layer has irregularities, the thickness of the 10 concave portions in the layer and the thickness of the 10 convex portions in the layer are measured, and the arithmetic mean value of the total thickness of 20 points is calculated. The thickness of.
  • the "TQ value” is a value related to the molecular weight of the polymer, and represents a temperature indicating a volumetric flow velocity: 100 mm 3 / sec.
  • the volumetric flow velocity is a value indicating the amount of polymer that flows out when the polymer is melted and discharged from an orifice (diameter: 1 mm, length: 1 mm) at a constant temperature under a pressure of 3 MPa in units of mm 3 / sec. be.
  • the "ion exchange capacity" is a value calculated as follows. First, the fluoropolymer is placed in a glove box in which dry nitrogen is flowed for 24 hours, and the dry mass of the fluoropolymer is measured. Then, the fluoropolymer is immersed in a 2 mol / L sodium chloride aqueous solution at 60 ° C. for 1 hour.
  • the fluoropolymer After washing the fluoropolymer with ultrapure water, the fluoropolymer is taken out, and the solution in which the fluoropolymer is immersed is titrated with a 0.1 mol / L sodium hydroxide aqueous solution to determine the ion exchange capacity of the fluoropolymer. ..
  • the ion exchange membrane with a catalyst layer of the present invention comprises an inorganic particle layer containing inorganic particles and a binder, and a first fluoropolymer having a sulfonic acid type functional group (hereinafter, also referred to as “fluoropolymer (S1)"). It has a layer (Sa) containing a layer (Sa), a layer (Sb) containing a second fluoropolymer having a sulfonic acid type functional group (hereinafter, also referred to as “fluoropolymer (S2)”), and a catalyst layer in this order. ..
  • the ion exchange capacity of the fluoropolymer (S1) is lower than the ion exchange capacity of the fluoropolymer (S2).
  • the ion exchange membrane with a catalyst layer of the present invention is preferably used for electrolytic hydrogenation of aromatic compounds.
  • electrolytic hydrogenation of aromatic compounds can be achieved.
  • the electrolytic voltage can be lowered and the current efficiency can be increased. The details of this reason have not been clarified, but it is presumed to be due to the following reasons.
  • the ion exchange film with a catalyst layer is arranged in an electrolytic cell so as to separate an anode chamber in which an anode is arranged and a cathode chamber in which a cathode is arranged, and an aqueous electrolyte solution is provided in the anode chamber. Is supplied, and an aromatic compound is supplied to the cathode chamber.
  • protons (H + ) generated by electrolysis of water in the anode chamber move to the cathode side via an ion exchange membrane with a catalyst layer, and the surface of the catalyst layer is surfaced. It is believed that hydrogenation of aromatic compounds occurs in the vicinity due to proton addition.
  • the hydrogenation reaction of the aromatic compound on the cathode side occurs on the catalyst layer. Specifically, it is considered that hydrogen activated on the catalyst contained in the catalyst layer and the aromatic compound come into contact with each other, electrons flow into the hydrogen, and hydrogenation of the aromatic compound occurs.
  • the presence of water around the catalyst makes it difficult for the aromatic compound to approach the reaction field around the catalyst.
  • the activated hydrogen reacts with the electrons to generate hydrogen in the cathode chamber, which causes a problem that the current efficiency is lowered.
  • an electrolyte membrane having a low ion exchange capacity is less likely to allow moisture to pass through than an electrolyte membrane having a high ion exchange capacity, and can increase current efficiency, but improves the electrolytic voltage.
  • the electrolyte membrane having a high ion exchange capacity allows moisture to pass through more easily than the electrolyte membrane having a low ion exchange capacity, lowers the current efficiency, but can reduce the electrolytic voltage.
  • the present inventors have formed a multi-layer structure of the electrolyte membrane, and arranged a layer (Sa) containing a fluoropolymer (S1) having a low ion exchange capacity on the anode side to increase the ion exchange capacity.
  • an aqueous electrolyte solution is supplied to the anode chamber, and the aromatic compound is supplied to the cathode chamber.
  • an ion exchange membrane with a catalyst layer having a single-layer electrolyte membrane is used, the surface of the electrolyte membrane on the anode chamber side is in contact with the aqueous electrolyte solution, and the surface of the electrolyte membrane on the cathode chamber side is in contact with the aromatic compound. do. Then, the ion exchange membrane with the catalyst layer may be wrinkled due to the difference in the degree of swelling between the opposing surfaces of the ion exchange membrane with the catalyst layer.
  • the present inventors can arrange the layer (Sa) containing the fluoropolymer (S1) on the anode side and the layer (Sb) containing the fluoropolymer (S2) on the cathode side. , It was found that the occurrence of wrinkles in the ion exchange membrane with a catalyst layer can be suppressed. This is presumed to be due to the following reasons. Since the fluoropolymer (S1) has a lower ion exchange capacity than the fluoropolymer (S2), it is less likely to swell due to moisture.
  • the fluoropolymer (S2) since the fluoropolymer (S2) has a higher ion exchange capacity than the fluoropolymer (S1), it is less likely to swell due to an organic solvent (aromatic compound). Therefore, the degree of swelling of the fluoropolymer (S1) due to moisture and the degree of swelling of the fluoropolymer (S2) due to the aromatic compound were balanced, and the occurrence of wrinkles on the surface of the ion exchange membrane with the catalyst layer could be suppressed. Conceivable.
  • FIG. 1 is a schematic cross-sectional view showing an example of an ion exchange membrane with a catalyst layer of the present invention.
  • the ion exchange membrane 1 with a catalyst layer includes an electrolyte 12 composed of a layer 12A which is a layer (Sa) and a layer 12B which is a layer (Sb), and an inorganic particle layer arranged on the surface of the layer 12A. It has 14 and a catalyst layer 16 arranged on the surface of the layer 12B, and the reinforcing material 20 is arranged in the electrolyte membrane 12.
  • the layer 12A which is the layer (Sa), may be a layer containing the fluoropolymer (S1), but a layer made of only the fluoropolymer (S1) containing no material other than the fluoropolymer (S1) is preferable. That is, the layer (Sa) is preferably a layer made of a fluoropolymer (S1).
  • the layer 12A is arranged on the anode side of the layer 12B.
  • the thickness of the layer 12A at the time of drying is preferably 5 to 60 ⁇ m, more preferably 10 to 40 ⁇ m, and particularly preferably 10 to 30 ⁇ m.
  • the thickness of the layer 12A at the time of drying is at least the above lower limit value, the mechanical strength of the ion exchange membrane 1 with the catalyst layer is improved, and the current efficiency is more excellent.
  • the thickness of the layer 12A at the time of drying is not more than the above upper limit value, the electric resistance of the ion exchange membrane 1 with the catalyst layer can be suppressed low.
  • the layer 12A preferably has an uneven structure at the interface on the inorganic particle layer 14 side.
  • the aqueous electrolyte solution is likely to be supplied between the anode and the anode side of the ion exchange membrane 1 with the catalyst layer (that is, the inorganic particle layer 14 side of the layer 12A).
  • the aqueous electrolyte solution is easily removed. As a result, it is possible to suppress a decrease in the effective electrolysis area, so that an increase in the electrolysis voltage can be suppressed.
  • the uneven structure having an interface on the inorganic particle layer side of the layer (Sa) is a structure (hereinafter, also referred to as “convex portion”) raised from the layer (Sb) toward the inorganic particle layer in the plane. It means a structure having a plurality of particles in the direction and having the shortest distance from the apex of the convex portion to the lowest position of the convex portion (hereinafter, also referred to as “height of the convex portion”) of 2 ⁇ m or more.
  • FIG. 2 is a partially enlarged view of a cross section of the ion exchange membrane with a catalyst layer of the present invention. In the example of FIG.
  • the layer 12A has a plurality of convex portions B continuously formed at the interface on the inorganic particle layer 14 side.
  • the height of the convex portion B corresponds to the shortest distance D1 from the position P1 corresponding to the apex of the convex portion B (convex portion B2) to the lowest position P2 of the convex portion B (convex portion B2).
  • the height of the convex portion is measured as follows. First, the ion exchange membrane with the catalyst layer is cut along the thickness direction, and an enlarged image (for example, 100 times) of the cross section of the ion exchange membrane with the catalyst layer by an optical microscope (product name "BX-51", manufactured by Olympus Corporation) is used. ). Next, the height of the convex portion at the interface on the inorganic particle layer 14 side of the layer 12A (the shortest distance D1 in FIG. 2) is measured from the photographed enlarged image.
  • the height of the convex portion is 2 ⁇ m or more, and 2 to 80 ⁇ m is preferable, and 10 to 50 ⁇ m is particularly preferable, from the viewpoint of more excellent current efficiency.
  • the convex portions are preferably formed continuously in the in-plane direction of the layer (Sa), and are preferably formed at a periodic pitch.
  • the average distance between the vertices of the convex portions is preferably 20 to 500 ⁇ m, more preferably 50 to 400 ⁇ m from the viewpoint of further improving the current efficiency. 100 to 300 ⁇ m is particularly preferable.
  • the average distance between the vertices of the convex portion is the shortest distance between the vertices of the adjacent convex portions, and means the arithmetic mean value between the vertices of 10 different points. In the example of FIG.
  • the shortest distance between the vertices of the adjacent convex portions is the shortest distance from the position T1 corresponding to the apex of the convex portion B1 to the position T2 corresponding to the apex of the convex portion B2 adjacent to the convex portion B1.
  • the shortest distance between the vertices of adjacent convex portions is measured using the enlarged image described in the above-mentioned measurement of the height of the convex portions.
  • Specific examples of the method of forming the concavo-convex structure at the interface of the layer (Sa) on the inorganic particle layer side include a method of blasting the layer (Sa) and a film or metal mold having the concavo-convex structure with the layer (Sa). Method, method of removing particles after heat-pressing the layer (Sa) and solid particles, method of using a film or metal mold having an uneven structure when forming the layer (Sa), on a film having an uneven structure A method of forming a layer (Sa) can be mentioned. Further, a method in which the layer (Sa), the reinforcing material and the layer (Sb) are laminated in this order and vacuum suction is performed can also be used.
  • an uneven structure corresponding to the surface shape of the reinforcing material can be formed on the surface of the layer (Sa).
  • the method of using a film having a concavo-convex structure when forming the layer (Sa) is preferable because it is relatively simple and less impurities are mixed in due to the treatment, so that a film having stable performance can be obtained.
  • the film having an uneven structure polyethylene and polypropylene are preferable from the viewpoint of molding processability and chemical resistance.
  • the layer 12A has a concavo-convex structure at the interface on the inorganic particle layer 14 side is shown, but the present invention is not limited to this, and the interface on the inorganic particle layer 14 side in the layer 12A has a concavo-convex structure. You do not have to have it.
  • the layer (Sa) may contain one type of fluoropolymer (S1) alone, or may contain two or more types of fluoropolymer (S1).
  • the layer (Sa) may contain a polymer other than the fluoropolymer (S1) (hereinafter, also referred to as another polymer), but it is preferably substantially made of the fluoropolymer (S1).
  • Substantially composed of the fluoropolymer (S1) means that the content of the fluoropolymer (S1) is 90% by mass or more with respect to the total mass of the polymers in the layer (Sa).
  • the upper limit of the content of the fluoropolymer (S1) is 100% by mass with respect to the total mass of the polymer in the layer (Sa).
  • polymers include a polymer of a heterocyclic compound containing one or more nitrogen atoms in the ring, and a heterocycle containing one or more nitrogen atoms in the ring and an oxygen atom and / or a sulfur atom.
  • examples thereof include one or more polyazole compounds selected from the group consisting of polymers of compounds.
  • the polyazole compound include polyimidazole compound, polybenzimidazole compound, polybenzobisimidazole compound, polybenzoxazole compound, polyoxazole compound, polythiazole compound, and polybenzothiazole compound.
  • examples of other polymers include polyphenylene sulfide resin and polyphenylene ether resin.
  • the fluoropolymer (S1) preferably contains a unit based on a fluoroolefin and a unit having a sulfonic acid type functional group and a fluorine atom.
  • the fluorine-containing olefin include fluoroolefins having one or more fluorine atoms in the molecule and having 2 to 3 carbon atoms.
  • Specific examples of the fluoroolefin include tetrafluoroethylene (hereinafter, also referred to as “TFE”), chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, and hexafluoropropylene.
  • TFE is preferable because it is excellent in the production cost of the monomer, the reactivity with other monomers, and the characteristics of the obtained fluoropolymer (S1).
  • the fluorine-containing olefin one type may be used alone, or two or more types may be used in combination.
  • L is an n + 1 valent perfluorohydrocarbon group which may contain an ethereal oxygen atom.
  • the etheric oxygen atom may be located at the end of the perfluorohydrocarbon group or between carbon atoms.
  • the number of carbon atoms in the n + 1-valent perfluorohydrocarbon group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
  • the divalent perfluoroalkylene group may be either linear or branched.
  • M is a hydrogen atom, alkali metal or quaternary ammonium cation.
  • n is 1 or 2.
  • the unit represented by the formula (1) includes a unit represented by the formula (1-1), a unit represented by the formula (1-2), a unit represented by the formula (1-3), or a unit represented by the formula (1-3).
  • the unit represented by 1-4) is preferable. Equation (1-1)-[CF 2- CF (-OR f1- SO 3 M)]- Equation (1-2)-[CF 2- CF (-R f1- SO 3 M)]-
  • R f1 is a perfluoroalkylene group which may contain an oxygen atom between carbon atoms.
  • the number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
  • R f2 is a perfluoroalkylene group that may contain an oxygen atom between a single bond or a carbon atom and a carbon atom.
  • the number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
  • R f3 is a perfluoroalkylene group that may contain an oxygen atom between a single bond or a carbon atom and a carbon atom.
  • the number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
  • r is 0 or 1.
  • m is 0 or 1.
  • M is a hydrogen atom, alkali metal or quaternary ammonium cation.
  • Equation (1-5) [CF 2- CF (-(CF 2 ) x- (OCF 2 CFY) y- O- (CF 2 ) z- SO 3 M)]- x is 0 or 1, y is an integer of 0 to 2, z is an integer of 1 to 4, and Y is F or CF 3 .
  • M is as described above.
  • w is an integer of 1 to 8 and x is an integer of 1 to 5.
  • M is as described above. -[CF 2- CF (-O- (CF 2 ) w- SO 3 M)]- -[CF 2 -CF (-O-CF 2 CF (CF 3 ) -O- (CF 2 ) w- SO 3 M)]- -[CF 2 -CF (-(O-CF 2 CF (CF 3 )) x- SO 3 M)]-
  • W in the formula is an integer from 1 to 8.
  • M in the formula is as described above. -[CF 2- CF (-(CF 2 ) w- SO 3 M)]- -[CF 2- CF (-CF 2- O- (CF 2 ) w- SO 3 M)]-
  • the unit represented by the formula (1-3) As the unit represented by the formula (1-3), the unit represented by the formula (1-3-1) is preferable.
  • the definition of M in the formula is as described above.
  • R f4 is a linear perfluoroalkylene group having 1 to 6 carbon atoms
  • R f5 is a single bond or a linear linear group having 1 to 6 carbon atoms which may contain an oxygen atom between carbon atoms. It is a perfluoroalkylene group.
  • the definitions of r and M are as described above.
  • the unit represented by the formula (1-4) is preferable.
  • the definitions of R f1 , R f2 and M in the formula are as described above.
  • one type may be used alone, or two or more types may be used in combination.
  • the fluoropolymer (S1) may contain a unit based on a fluoroolefin and a unit based on a monomer other than the unit having a sulfonic acid type functional group and a fluorine atom (hereinafter, also referred to as another monomer).
  • the content of units based on other monomers is preferably 30% by mass or less with respect to all the units in the fluoropolymer (S1) from the viewpoint of maintaining the ion exchange performance.
  • the ion exchange capacity of the fluorine-containing polymer (S1) is preferably 0.5 to 1.1 mm equivalent / gram dry resin, more preferably 0.6 to 1.1 mm equivalent / gram dry resin, and 0.6 to 1 0.0 equivalent / gram dry resin is particularly preferred.
  • the ion exchange capacity of the fluoropolymer (S1) is at least the above lower limit value, the electric resistance of the ion exchange membrane 1 with the catalyst layer becomes low, and the electrolytic voltage can be made lower. Further, when the ion exchange capacity of the fluoropolymer (S1) is equal to or less than the above upper limit value, the current efficiency is more excellent.
  • the layer 12B which is the layer (Sb), may be a layer containing the fluoropolymer (S2), but a layer composed only of the fluoropolymer (S2) containing no material other than the fluoropolymer (S2) is preferable. That is, the layer (Sb) is preferably a layer made of a fluoropolymer (S2).
  • the layer 12B is arranged on the cathode side of the layer 12A.
  • the layer 12B is shown as a single layer in FIG. 1, it may be a layer formed from a plurality of layers.
  • the type of the structural unit constituting the fluoropolymer (S2) and the ratio of the structural unit having a sulfonic acid type functional group may be different in each layer.
  • the ion exchange capacity of the fluoropolymer (S2) contained in each layer is higher than the ion exchange capacity of the fluoropolymer (S1) contained in the layer 12A. ..
  • each layer of the layer 12B is arranged from the inorganic particle layer 14 toward the catalyst layer 16 so that the ion exchange capacity increases. As a result, delamination of each layer constituting the layer 12B can be suppressed.
  • the thickness of the layer 12B at the time of drying (the total of the layers 12B when it is formed from a plurality of layers) is preferably 50 to 500 ⁇ m, more preferably 50 to 200 ⁇ m, and particularly preferably 50 to 150 ⁇ m.
  • the thickness of the layer 12B at the time of drying is at least the above lower limit value, the mechanical strength of the ion exchange membrane 1 with the catalyst layer is improved, and the current efficiency is more excellent.
  • the thickness of the layer (Sb) 12B at the time of drying is not more than the above upper limit value, the electric resistance of the ion exchange membrane 1 with the catalyst layer can be suppressed low.
  • the layer (Sb) may contain one type of fluoropolymer (S2) alone, or may contain two or more types of fluoropolymer (S2).
  • the layer (Sb) may contain a polymer other than the fluoropolymer (S2), but is preferably substantially composed of the fluoropolymer (S2).
  • substantially composed of the fluoropolymer (S2) means that the content of the fluoropolymer (S2) is 90% by mass or more with respect to the total mass of the polymers in the layer (Sb).
  • the upper limit of the content of the fluoropolymer (S2) is 100% by mass with respect to the total mass of the polymer in the layer (Sb).
  • Specific examples of the polymer other than the fluoropolymer (S2) are the same as those of the polymer (other polymer) other than the fluoropolymer (S1) described above.
  • the fluoropolymer (S2) it is preferable to use the same polymer except that the ion exchange capacity is different from that of the fluoropolymer (S1). Both the ion exchange capacity of the fluoropolymer (S1) and the fluoropolymer (S2) can be adjusted by changing the content of the ion exchange group in the fluoropolymer (S1) or the fluoropolymer (S2).
  • the ion exchange capacity of the fluorine-containing polymer (S2) is preferably 0.7 to 2.0 mm equivalent / gram dry resin, more preferably 0.7 to 1.5 mm equivalent / gram dry resin, and 0.7 to 1 .4 mm equivalent / gram dry resin is even more preferred, and 0.8-1.4 mm equivalent / gram dry resin is particularly preferred.
  • the ion exchange capacity of the fluoropolymer (S2) is at least the above lower limit value, the electric resistance of the ion exchange membrane with the catalyst layer becomes low, and the electrolytic voltage can be made lower. Further, when the ion exchange capacity of the fluoropolymer (S2) is equal to or less than the above upper limit value, the current efficiency is more excellent.
  • the absolute value of the difference between the ion exchange capacity of the fluorine-containing polymer (S1) and the ion exchange capacity of the fluorine-containing polymer (S2) is more effective for the present invention.
  • 0.1 to 1.4 mm equivalent / gram dry resin is preferable, 0.1 to 0.65 mm equivalent / gram dry resin is more preferable, and 0.1 to 0.6 mm equivalent / gram dry resin is preferable. More preferably, 0.1-0.5 eq / gram dry resin is particularly preferred.
  • the ion exchange capacity of the fluoropolymer (S1) and the layer arranged on the most layer (Sa) side among the layers constituting the layer (Sb) is preferably 0.1 to 1.4 mm equivalent / gram dry resin from the viewpoint of more exerting the effect of the present invention, and is 0. .1 to 0.65 eq / gram dry resin is more preferred, and 0.1 to 0.5 eq / gram dry resin is particularly preferred.
  • the absolute value of the difference in the ion exchange capacity of the fluoropolymer (S2) contained in each layer constituting the layer (Sb) is more effective for the present invention. From this point of view, 0.1 to 0.65 mm equivalent / gram dry resin is preferable, 0.1 to 0.5 mm equivalent / gram dry resin is more preferable, and 0.1 to 0.3 mm equivalent / gram dry resin is preferable. Resin is particularly preferred.
  • the inorganic particle layer 14 is a layer containing the inorganic particles and a binder, and is arranged on the surface of the layer 12A opposite to the arrangement surface of the layer 12B.
  • the inorganic particle layer is provided to suppress the adhesion of the oxygen gas layer (Sa) generated by the electrolysis of the aqueous electrolyte solution to the surface and to suppress the increase in the electrolytic voltage.
  • the thickness of the inorganic particle layer 14 is preferably 1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and particularly preferably 1 to 20 ⁇ m from the viewpoint of further reducing the electrolytic voltage.
  • the inorganic particles those having hydrophilicity are preferable. Specifically, at least one selected from the group consisting of oxides, nitrides and carbides of Group 4 or Group 14 elements is preferable, SiO 2 , SiC, ZrO 2 and ZrC are more preferable, and ZrO 2 is more preferable. Especially preferable.
  • the average particle size of the inorganic particles is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 5 ⁇ m, and even more preferably 0.5 to 3 ⁇ m.
  • the average particle size of the inorganic particles is at least the above lower limit value, a high gas adhesion suppressing effect can be obtained.
  • the average particle size of the inorganic particles is not more than the above upper limit value, the resistance of the inorganic particles to fall off is excellent.
  • the average particle size of the inorganic particles is a known particle size distribution measuring device (laser diffraction / scattering type particles manufactured by Microtrac Bell), which uses a laser diffraction / scattering method as a measurement principle for a dispersion liquid in which inorganic particles are dispersed in a solvent. It is a value of 50% diameter (D 50 ) obtained by calculating the volume average from the particle size distribution measured by a diameter distribution measuring device or a device similar thereto.
  • D 50 50% diameter
  • a hydrophilic one is preferable, a fluoropolymer having a carboxylic acid group or a sulfonic acid group is preferable, and a fluoropolymer having a sulfonic acid group is more preferable.
  • the fluorine-containing polymer may be a homopolymer of a monomer having a carboxylic acid group or a sulfonic acid group, and is a copolymer of a monomer having a carboxylic acid group or a sulfonic acid group and a monomer copolymerizable with this monomer. May be good.
  • the mass ratio of the binder to the total mass of the inorganic particles and the binder in the inorganic particle layer is preferably 0.1 to 0.5.
  • the binder ratio in the inorganic particle layer is at least the above lower limit value, the resistance to dropping of the inorganic particles is excellent.
  • the binder ratio in the inorganic particle layer is not more than the above upper limit value, a high gas adhesion suppressing effect can be obtained.
  • the inorganic particle layer When the surface of the layer (Sa) on the inorganic particle layer side has a concavo-convex structure, the inorganic particle layer preferably has a surface shape of a concavo-convex structure that follows the concavo-convex structure of the layer (Sa) (see FIG. 1).
  • the catalyst layer 16 is a layer containing a catalyst, and is arranged on the surface of the layer 12B opposite to the arrangement surface of the layer 12A.
  • the catalyst include a supported catalyst in which a platinum, a platinum alloy, or a catalyst containing platinum having a core-shell structure is supported on a carbon carrier, an iridium oxide catalyst, an alloy containing iridium oxide, and iridium oxide having a core-shell structure.
  • Examples include catalysts.
  • the carbon carrier include carbon black powder.
  • the catalyst layer 16 may further contain a polymer having an ion exchange group from the viewpoint of suppressing the fall of the catalyst.
  • a polymer having an ion exchange group examples include a fluoropolymer having an ion exchange group.
  • the catalyst layer 16 is formed on the surface of the layer 12B, that is, a so-called zero gap structure is shown, but the present invention is not limited to this, and the catalyst layer 16 is formed in the layer 12B via another layer. It may be formed on top of it. That is, another layer may be formed between the catalyst layer 16 and the layer 12B.
  • a carbon felt that functions as a cathode and a gas diffusion layer may be provided on the surface of the layer (Sb), and a catalyst layer may be formed on the surface of the carbon felt.
  • the reinforcing material 20 is arranged in the electrolyte 12.
  • the reinforcing material 20 is a material that reinforces the electrolyte membrane 12, and is derived from the reinforcing cloth.
  • the reinforcing cloth is composed of a warp and a weft, and it is preferable that the warp and the weft are orthogonal to each other. As shown in FIG. 1, the reinforcing cloth may have the reinforcing thread 22 and the sacrificial thread 24, but may not have the sacrificial thread 24.
  • a yarn containing a perfluorocarbon polymer is preferable, a yarn containing polytetrafluoroethylene (hereinafter, also referred to as “PTFE”) is more preferable, and a PTFE yarn composed of only PTFE is further preferable.
  • PTFE polytetrafluoroethylene
  • At least the sacrificial yarn 24 is subjected to a pretreatment (for example, a treatment of immersing the reinforcing precursor membrane in an alkaline aqueous solution) or a process solution (that is, an electrolyte solution or an aromatic compound used for electrolytic hydrogenation of an aromatic compound). It is a thread that partially elutes.
  • the sacrificial yarn 24 is preferably a yarn eluted by the process liquid.
  • the one sacrificial yarn 24 may be a monofilament composed of one filament or a multifilament composed of two or more filaments.
  • the sacrificial yarn 24 includes a PET yarn composed of PET only, a PET / PBT yarn composed of a mixture of PET and polybutylene terephthalate (hereinafter, also referred to as “PBT”), a PBT yarn composed of PBT only, or polytrimethylene terephthalate (hereinafter, also referred to as “PBT”).
  • PBT polybutylene terephthalate
  • PBT polytrimethylene terephthalate
  • a PTT yarn consisting of only "PTT” is preferable, and a PET yarn is more preferable.
  • the embodiment having the reinforcing material 20 is shown, but the present invention is not limited to this, and the ion exchange membrane with the catalyst layer of the present invention may not have the reinforcing material.
  • the reinforcing material 20 is arranged between the layer 12A and the layer 12B, but the position of the reinforcing material is not limited to this, and even if the reinforcing material 20 is arranged in the layer 12A, for example. It may be arranged in the layer 12B.
  • steps (i) to The order of carrying out (iv) is not particularly limited, but it is preferable to carry out the steps (i), the step (ii), the step (iii) and the step (iv) in this order. Further, the step (ii), the step (i), the step (iii), and the step (iv) may be carried out in this order.
  • Step (i) As a method for producing the precursor film, a layer (Sa') containing a fluoropolymer (S1') and a layer (Sb') containing a fluoropolymer (S2') are arranged in this order, and a laminated roll or a laminated roll or A method of laminating these using a vacuum laminating device can be mentioned.
  • the precursor membrane may be a reinforced precursor membrane having a reinforcing material including a reinforcing thread.
  • the layer (Sa'), the reinforcing material, and the layer (Sb') are arranged in this order to obtain a reinforced precursor film according to the above method.
  • the opposite surface of the arrangement surface of the layer (Sb') in the layer (Sa') may be subjected to a treatment for having an uneven structure by using any of the above-mentioned methods.
  • the layer (Sa') containing the fluoropolymer (S1') is converted into the layer (Sa) containing the fluoropolymer (S1), and the layer containing the fluoropolymer (S2').
  • (Sb') is converted into a layer (Sb) containing a fluoropolymer (S2).
  • the fluorine-containing polymer (S1') is a copolymerization of a fluorine-containing olefin and a monomer having a group capable of converting into a sulfonic acid type functional group and a fluorine atom (hereinafter, also referred to as "fluorine-containing monomer (S1'))). It is preferably a polymer.
  • a method for copolymerizing the fluoropolymer (S1') known methods such as solution polymerization, suspension polymerization, and emulsion polymerization can be adopted.
  • fluoropolymer-containing olefin examples include those exemplified above, and TFE is preferable because it is excellent in the production cost of the monomer, the reactivity with other monomers, and the characteristics of the obtained fluoropolymer (S1).
  • TFE is preferable because it is excellent in the production cost of the monomer, the reactivity with other monomers, and the characteristics of the obtained fluoropolymer (S1).
  • the fluorine-containing olefin one type may be used alone, or two or more types may be used in combination.
  • Examples of the fluorine-containing monomer (S1') include compounds having one or more fluorine atoms in the molecule, having an ethylenic double bond, and having a group capable of converting into a sulfonic acid type functional group. ..
  • L and n in the formula (2) are as described above.
  • A is a group that can be converted into a sulfonic acid type functional group.
  • the group that can be converted into a sulfonic acid type functional group is preferably a functional group that can be converted into a sulfonic acid type functional group by hydrolysis.
  • Specific examples of the group that can be converted into a sulfonic acid type functional group include -SO 2 F, -SO 2 Cl, and -SO 2 Br.
  • the A's may be the same or different from each other.
  • Examples of the compound represented by the formula (2) include a compound represented by the formula (2-1), a compound represented by the formula (2-2), a compound represented by the formula (2-3), and a compound represented by the formula (2-3).
  • the compound represented by 2-4) and the compound represented by the formula (2-3) are preferable.
  • R f1 , R f2 , r and A in the formula are as described above.
  • R f1 , R f2 , R f3 , r, m and A in the formula are as described above.
  • CF 2 CF- (CF 2 ) x- (OCF 2 CFY) y- O- (CF 2 ) z- SO 3 M
  • M, x, y, z and Y in the formula are as described above.
  • w is an integer of 1 to 8 and x is an integer of 1 to 5.
  • CF 2 CF-O- (CF 2 ) w- SO 2 F
  • CF 2 CF-O-CF 2 CF (CF 3 ) -O- (CF 2 ) w- SO 2 F
  • CF 2 CF- [O-CF 2 CF (CF 3 )] x- SO 2 F
  • W in the formula is an integer from 1 to 8.
  • CF 2 CF- (CF 2 ) w- SO 2 F
  • CF 2 CF-CF 2- O- (CF 2 ) w- SO 2 F
  • the compound represented by the formula (2-3) is preferable.
  • R f4 , R f5 , r and A in the formula are as described above.
  • the compound represented by the formula (2-4) is preferable.
  • R f1 , R f2 and A in the formula are as described above.
  • fluorine-containing monomer (S1') one type may be used alone, or two or more types may be used in combination.
  • other monomers may be used for producing the fluorinated polymer (S1'). Examples of other monomers include those exemplified above.
  • the range of the TQ value of the fluoropolymer (S1') is preferably 150 to 350 ° C., more preferably 170 to 300 ° C., and more preferably 200 to 200 ° C. from the viewpoint of mechanical strength and film forming property as an ion exchange membrane with a catalyst layer. 250 ° C. is more preferable.
  • the fluoropolymer (S2') is different from the fluoropolymer (S1') except that the fluoropolymer (S1) is produced so that the ion exchange capacity of the fluoropolymer (S1) is different when converted to the fluoropolymer (S2). It is preferable to use a similar polymer.
  • the method for forming the inorganic particle layer is not particularly limited, but for example, a method of applying an inorganic particle dispersion liquid containing inorganic particles, a binder and a solvent to the surface of the layer (Sa') and drying the coated layer of the inorganic particle dispersion liquid.
  • the coating conditions and the drying conditions are not particularly limited, and known conditions can be adopted.
  • the inorganic particles and the binder contained in the inorganic particle dispersion are as described above.
  • the solvent contained in the inorganic particle dispersion is not particularly limited, and water or an organic solvent can be used.
  • Step (iii) As a specific example of the method of converting a group that can be converted into a sulfonic acid type functional group in the precursor film into a sulfonic acid type functional group, a method of subjecting the precursor film to a treatment such as hydrolysis treatment or acid type treatment is used. Can be mentioned. Of these, a method in which the precursor membrane and the alkaline aqueous solution are brought into contact with each other is preferable.
  • the above-mentioned reinforced precursor membrane is used as the precursor membrane, at least a part of the sacrificial yarn contained in the reinforced precursor membrane is hydrolyzed and eluted by the action of the alkaline aqueous solution.
  • the method of bringing the precursor membrane into contact with the alkaline aqueous solution include a method of immersing the precursor membrane in the alkaline aqueous solution and a method of spray-coating the surface of the precursor membrane with the alkaline aqueous solution.
  • the temperature of the alkaline aqueous solution is preferably 30 to 100 ° C, particularly preferably 40 to 100 ° C.
  • the contact time between the precursor membrane and the alkaline aqueous solution is preferably 3 to 150 minutes, particularly preferably 5 to 50 minutes.
  • the alkaline aqueous solution preferably contains an alkali metal hydroxide, a water-soluble organic solvent and water.
  • the alkali metal hydroxide include sodium hydroxide and potassium hydroxide.
  • the water-soluble organic solvent is an organic solvent that is easily dissolved in water, and specifically, an organic solvent having a solubility in 1000 ml (20 ° C.) of water of 0.1 g or more is preferable, and 0 An organic solvent of .5 g or more is particularly preferable.
  • the water-soluble organic solvent preferably contains at least one selected from the group consisting of aprotic organic solvents, alcohols and amino alcohols, and particularly preferably contains an aprotic organic solvent.
  • the water-soluble organic solvent one type may be used alone, or two or more types may be used in combination.
  • aprotic organic solvent examples include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and dimethyl sulfoxide.
  • alcohols include methanol, ethanol, isopropanol, butanol, methoxyethoxyethanol, butoxyethanol, butylcarbitol, hexyloxyethanol, octanol, 1-methoxy-2-propanol, and ethylene glycol.
  • amino alcohols include ethanolamine, N-methylethanolamine, N-ethylethanolamine, 1-amino-2-propanol, 1-amino-3-propanol, 2-aminoethoxyethanol and 2-aminothio. Examples thereof include ethoxyethanol and 2-amino-2-methyl-1-propanol.
  • the concentration of the alkali metal hydroxide is preferably 1 to 60% by mass, particularly preferably 3 to 55% by mass in the alkaline aqueous solution.
  • the content of the water-soluble organic solvent is preferably 1 to 60% by mass, particularly preferably 3 to 55% by mass in the alkaline aqueous solution.
  • the concentration of water is preferably 39 to 80% by mass in the alkaline aqueous solution.
  • a treatment for removing the alkaline aqueous solution may be performed.
  • the method for removing the alkaline aqueous solution include a method of washing the precursor membrane contacted with the alkaline aqueous solution with water.
  • the obtained membrane may be brought into contact with the acidic aqueous solution to convert the ion exchange group into an acid type.
  • the method of bringing the precursor membrane into contact with the acidic aqueous solution include a method of immersing the precursor membrane in the acidic aqueous solution and a method of spray-coating the surface of the precursor membrane with the acidic aqueous solution.
  • the acidic aqueous solution preferably contains an acid component and water.
  • the acid component include hydrochloric acid and sulfuric acid.
  • the method for forming the catalyst layer is not particularly limited, but for example, a catalyst dispersion liquid containing a catalyst, a polymer having an ion exchange group and a solvent is applied to the surface of the layer (Sb'), and the coating layer of the catalyst dispersion liquid is dried.
  • the method can be mentioned.
  • the coating conditions and the drying conditions are not particularly limited, and known conditions can be adopted.
  • the polymer having a catalyst and an ion exchange group contained in the catalyst dispersion is as described above.
  • the solvent contained in the catalyst dispersion is not particularly limited, and water or an organic solvent can be used.
  • the ion exchange membrane of the present invention has an inorganic particle layer containing inorganic particles and a binder, a layer (Sa) containing a first fluoropolymer having a sulfonic acid type functional group, and a second fluoropolymer having a sulfonic acid type functional group.
  • a layer (Sb) containing a polymer and a layer (Sb) containing a polymer are provided in this order. Further, the ion exchange capacity of the first fluoropolymer is lower than the ion exchange capacity of the second fluoropolymer.
  • FIG. 3 is a cross-sectional view showing an example of the ion exchange membrane of the present invention.
  • the ion exchange membrane 10 includes an electrolyte 12 composed of a layer 12A which is a layer (Sa) and a layer 12B which is a layer (Sb), and an inorganic particle layer 14 arranged on the surface of the layer 12A.
  • the reinforcing material 20 is arranged in the electrolyte membrane 12.
  • the surface of the layer 12A on the inorganic particle layer 14 side has an uneven structure.
  • the ion exchange membrane of the present invention has the same configuration as the ion exchange membrane with a catalyst layer of the present invention except that it does not have the catalyst layer of the ion exchange membrane with a catalyst layer of the present invention, and the preferred embodiment is also the same. Is.
  • the details of each layer of the ion exchange membrane of the present invention are the same as those of the ion exchange membrane with the catalyst layer of the present invention, and thus the description thereof will be omitted.
  • the method for producing the ion exchange membrane of the present invention is not particularly limited.
  • the step ( It can be obtained by carrying out a step other than iv).
  • the ion exchange membrane of the present invention is suitably used for producing the ion exchange membrane with a catalyst layer of the present invention.
  • the electrolytic hydrogenation apparatus of the present invention includes an electrolytic cell including an anode and a cathode, and an ion exchange membrane with a catalyst layer of the present invention, and the ion exchange membrane with a catalyst layer is the anode and the cathode.
  • the inorganic particle layer of the ion exchange membrane with the catalyst layer is arranged on the anode side, and the catalyst layer of the ion exchange membrane with the catalyst layer is the above. It is located on the cathode side. Since the electrolytic hydrogenation apparatus of the present invention has the ion exchange membrane with the catalyst layer described above, the electrolytic voltage can be lowered and the current efficiency can be increased at the time of electrolytic hydrogenation of the aromatic compound.
  • FIG. 4 is a schematic view showing an example of the electrolytic hydrogenation apparatus of the present invention.
  • the electrolytic hydrogenation apparatus 100 divides an electrolytic cell 110 having a cathode 112 and an anode 114, and the inside of the electrolytic cell 110 into a cathode chamber 116 on the cathode 112 side and an anode chamber 118 on the anode 114 side. It has an ion exchange film 1 with a catalyst layer mounted in the electrolytic cell 110 as described above.
  • the ion exchange membrane 1 with a catalyst layer is mounted in the electrolytic cell 110 so that the inorganic particle layer 14 is on the anode 114 side and the catalyst layer 16 is on the cathode 112 side.
  • the cathode 112 may be arranged in contact with the ion exchange membrane 1 with a catalyst layer, or may be arranged at a distance from the ion exchange membrane 1 with a catalyst layer.
  • the material constituting the cathode 112 and the cathode chamber 116 stainless steel, nickel and the like are preferable.
  • the material constituting the anode 114 and the anode chamber 118 include stainless steel and nickel.
  • the surfaces of the cathode 112 and the anode 114, which are the electrode base materials, are preferably coated with, for example, ruthenium oxide, iridium oxide, or the like.
  • the electrolytic aqueous solution is supplied to the anode chamber 118 in which the anode 114 is arranged, and the aromatic compound is contained in the cathode chamber 116 in which the cathode 112 is arranged.
  • aromatic compounds include benzene, toluene and naphthalene.
  • An aqueous electrolyte solution is a solution in which an electrolyte is dissolved in water. Examples of the electrolyte include sulfuric acid and nitric acid. The concentration of the electrolyte is not particularly limited.
  • protons (H + ) generated by electrolysis of the aqueous electrolyte solution in the anode chamber 118 move to the cathode chamber 116 side via the ion exchange membrane 1 with a catalyst layer. Then, hydrogenation of the aromatic compound by protonation occurs in the vicinity of the surface of the catalyst layer 16, and a hydrogenated organic substance is obtained in the cathode chamber 116.
  • hydrogenated organic substances include cyclohexane, methylcyclohexane, decahydronaphthalene and the like.
  • Examples 1 to 8 are examples, and examples 9 to 12 are comparative examples. However, the present invention is not limited to these examples.
  • CF 2 CF 2 and the monomer (X) represented by the following formula (X) are copolymerized to obtain a fluoropolymer (S1') (ion exchange capacity: 0.65 equivalent / gram dry resin). rice field.
  • CF 2 CF-O-CF 2 CF (CF 3 ) -O-CF 2 CF 2- SO 2 F ... (X)
  • the fluoropolymer (S1') was molded by a melt extrusion method to obtain a film A (thickness: 20 ⁇ m) made of the fluoropolymer (S1').
  • the fluoropolymer (S2') was molded by a melt extrusion method to obtain a film B (film thickness: 20 ⁇ m) made of the fluoropolymer (S2').
  • the fluoropolymer (S3') was molded by a melt extrusion method to obtain a film C (thickness: 20 ⁇ m) made of the fluoropolymer (S3').
  • the fluoropolymer (S3') was molded by a melt extrusion method to obtain a film D (thickness: 40 ⁇ m) made of the fluoropolymer (S3').
  • the fluoropolymer (S3') was molded by a melt extrusion method to obtain a film E (thickness: 80 ⁇ m) made of the fluoropolymer (S3').
  • the fluoropolymer (S4') was molded by a melt extrusion method to obtain a film F (thickness: 20 ⁇ m) made of the fluoropolymer (S4').
  • the fluoropolymer (S4') was molded by a melt extrusion method to obtain a film G (film thickness: 80 ⁇ m) made of the fluoropolymer (S4').
  • the fluoropolymer (S5') was molded by a melt extrusion method to obtain a film H (film thickness: 80 ⁇ m) made of the fluoropolymer (S5').
  • the fluoropolymer (S5') was molded by a melt extrusion method to obtain a film I (film thickness: 100 ⁇ m) made of the fluoropolymer (S5').
  • a 50 denier yarn made of PTFE was used as a warp yarn and a weft yarn, and plain weave was performed so that the density of the PTFE yarn was 80 yarns / inch to obtain a woven fabric 1.
  • the basis weight of the woven cloth 1 was 38 g / m 2 .
  • the warp and weft were composed of slit yarn.
  • inorganic particle paste 29.0% by mass of zirconium oxide (average particle size: 1 ⁇ m), 1.3% by mass of methylcellulose, 4.6% by mass of cyclohexanol, 1.5% by mass of cyclohexane and 63.6% by mass of water are mixed. Then, an inorganic particle paste (inorganic particle dispersion) was obtained.
  • Example 1 Film A, reinforcing cloth, film I, and PET film for mold release (thickness: 100 ⁇ m) are stacked in this order, with the PET film for mold release facing down, between film A and film I in a constant temperature bath set at 220 ° C. The air was heated while sucking vacuum to integrate the layers, and then the peeling PET film was peeled off to obtain a reinforced precursor film 1-1. Next, the inorganic particle paste was transferred to the surface of the film A in the electrolyte membrane by a roll press to obtain a reinforced precursor membrane 1-2 in which the inorganic particle layer was arranged on the surface of the film A. The amount of zirconium oxide adhered was 20 g / m 2 .
  • Water / ethanol 40/60 (mass) of a polymer (ion exchange capacity: 1.10 eq / gram dry resin) obtained by copolymerizing TFE with the above-mentioned monomer (X) and hydrolyzing and acid-treating the polymer (ion exchange capacity: 1.10 eq / gram dry resin). %) Dispersed in a solvent having a solid content concentration of 25.8% (hereinafter, also referred to as “dispersion liquid X”) was obtained.
  • cathode catalyst ink (cathode catalyst ink). Catalyst dispersion) was obtained.
  • the cathode catalyst ink was applied onto the ETFE sheet with a die coater, dried at 80 ° C., and further heat-treated at 150 ° C. for 15 minutes to obtain a cathode catalyst layer decal having a platinum content of 0.4 mg / cm 2.
  • the surface of the ion exchange membrane 1 on which the inorganic particle layer is not formed and the surface of the cathode catalyst layer decal where the catalyst layer exists are opposed to each other, and heat-pressed at a press temperature of 150 ° C. for a press time of 2 minutes and a pressure of 3 MPa. Then, the ion exchange membrane 1 and the cathode catalyst layer are joined, the temperature is lowered to 70 ° C., the pressure is released and taken out, the ETFE sheet of the cathode catalyst layer decal is peeled off, and the catalyst of Example 1 having the catalyst layer is provided. A layered ion exchange membrane was obtained.
  • Carbon felt was bonded to the surface of the catalyst layer of the obtained ion exchange membrane as a cathode to obtain an ion exchange membrane-cathode conjugate with a catalyst layer.
  • the cathode area of the ion exchange membrane-cathode junction with the catalyst layer was 25 cm 2.
  • Example 2 The film F and the film H were heat-bonded to obtain a multilayer film FH.
  • Film A, reinforcing cloth, multilayer film FH, and release PET film (thickness: 100 ⁇ m) are stacked in this order, with the release PET film facing down, and film A and multilayer film FH in a constant temperature bath set at 220 ° C. The air between them was heated while sucking vacuum to integrate the layers, and then the peeling PET film was peeled off to obtain a reinforced precursor film 2-1.
  • the multilayer film FH was arranged so that the film F side was the reinforcing cloth side.
  • An ion exchange membrane-cathode conjugate with a catalyst layer of Example 2 was obtained in the same manner as in Example 1 except that the reinforced precursor membrane 2-1 was used instead of the reinforced precursor membrane 1-1.
  • Example 3 Film C and film H were heat-bonded to obtain a multilayer film CH.
  • An ion exchange membrane-cathode conjugate with a catalyst layer of Example 3 was obtained in the same manner as in Example 2 except that the multilayer film CH was used instead of the multilayer film FH.
  • the multilayer film CH was arranged so that the film C side was the reinforcing cloth side.
  • Example 4 The film C and the film G were heat-bonded to obtain a multilayer film CG.
  • An ion exchange membrane-cathode conjugate with a catalyst layer of Example 4 was obtained in the same manner as in Example 2 except that the multilayer film CG was used instead of the multilayer film FH.
  • the multilayer film CG was arranged so that the film C side was the reinforcing cloth side.
  • Example 5 The film B and the film E were heat-bonded to obtain a multilayer film BE.
  • An ion exchange membrane-cathode conjugate with a catalyst layer of Example 5 was obtained in the same manner as in Example 2 except that the multilayer film BE was used instead of the multilayer film FH.
  • the multilayer film BE was arranged so that the film B side was the reinforcing cloth side.
  • Example 6 Film C and film H were heat-bonded to obtain a multilayer film CH.
  • An ion exchange membrane-cathode conjugate with a catalyst layer of Example 6 was obtained in the same manner as in Example 2 except that a multilayer film CH was used instead of the multilayer film FH and a film B was used instead of film A.
  • the multilayer film CH was arranged so that the film C side was the reinforcing cloth side.
  • Example 7 An ion exchange membrane-cathode conjugate with a catalyst layer of Example 7 was obtained in the same manner as in Example 1 except that film D was used instead of film A and film H was used instead of film I.
  • Example 8 An ion exchange membrane-cathode junction with a catalyst layer of Example 8 was obtained in the same manner as in Example 3 except that a reinforcing cloth was not used.
  • Example 9 An ion exchange membrane-cathode junction with a catalyst layer of Example 9 was obtained in the same manner as in Example 3 except that the inorganic particle layer was not provided on the surface of the film A.
  • Example 10 An ion exchange membrane-cathode conjugate with a catalyst layer of Example 10 was obtained in the same manner as in Example 1 except that a film J (trade name “Nafion 115”, The Chemours Company) was used instead of the ion exchange membrane 1.
  • a film J trade name “Nafion 115”, The Chemours Company
  • Example 11 An inorganic particle layer is formed on one surface of film J (trade name "Nafion 115", The Chemours Company, a film composed of a fluoropolymer having a sulfonic acid group) in the same manner as in Example 1, and the film is provided with an inorganic particle layer. Obtained film J. An ion exchange membrane-cathode conjugate with a catalyst layer of Example 11 was obtained in the same manner as in Example 1 except that the film J with an inorganic particle layer was used. The catalyst layer was formed on the surface of the film J opposite to the inorganic particle layer.
  • film J trade name "Nafion 115"
  • the Chemours Company a film composed of a fluoropolymer having a sulfonic acid group
  • the ion exchange membrane with a catalyst layer obtained as described above was used for various evaluation tests.
  • the evaluation results are shown in Table 1.
  • IEC means the ion exchange capacity of the fluoropolymer.
  • Thickness means the thickness of each layer in the ion exchange membrane with the catalyst layer, and was the same as the thickness of each film used for producing the ion exchange membrane with the catalyst layer.
  • the “low IEC layer” means a layer made of a fluoropolymer having the lowest ion exchange capacity among the electrolyte membranes constituting the ion exchange membrane with a catalyst layer, that is, a layer (Sa).
  • the "high IEC layer” means a layer (Sb) containing a fluoropolymer having a higher ion exchange capacity than the "low IEC layer” among the electrolyte membranes constituting the ion exchange membrane with a catalyst layer. do.
  • the type of film used was described in the "Low IEC layer” column.
  • the electrolyte membrane has a multi-layer structure, a layer containing a fluoropolymer having a low ion exchange capacity (low IEC layer) is arranged on the anode side, and an inorganic particle layer is provided on the surface of the low IEC layer. Therefore, it was shown that the electrolytic voltage can be lowered and the current efficiency can be increased during the electrolytic hydrogenation of the aromatic compound (Examples 1 to 8).
  • Example 12 The formation surface of the inorganic particle layer (that is, the film A side) in the ion exchange membrane-cathode junction with the catalyst layer is arranged on the cathode side, and the formation surface of the catalyst layer (that is, the film I side) is arranged on the anode side. Then, when the same evaluation as in Example 1 was carried out, the voltage suddenly increased and electrolytic hydrogenation could not be carried out. The reason for this is considered to be that the film A and the film I were peeled off.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2020-018828 filed on February 6, 2020 are cited here and incorporated as the disclosure of the present invention. ..
  • Ion exchange membrane with catalyst layer 10 Ion exchange membrane 12 Electrolyte membrane 12A layer (Sa) 12B layer (Sb) 14 Inorganic particle layer 16 Catalyst layer 20 Reinforcing material 22 Reinforcing thread 24 Sacrificial thread 26 Filament 28 Elution hole 100 Electrolytic hydrogenator 110 Electrolytic cell 112 Cathode 114 Anode 116 Cathode chamber 118 Anode chamber B, B1, B2 Convex parts D1, D2 Shortest Distance P1, P2 position T1, T2 position

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)

Abstract

芳香族化合物の電解水素化の際に、電解電圧を低くでき、かつ、電流効率を高くできる触媒層付きイオン交換膜、イオン交換膜、および、電解水素化装置の提供。 本発明の触媒層付きイオン交換膜は、無機物粒子およびバインダーを含む無機物粒子層と、スルホン酸型官能基を有する第1含フッ素ポリマーを含む層(Sa)と、スルホン酸型官能基を有する第2含フッ素ポリマーを含む層(Sb)と、触媒層と、をこの順に有し、上記第1含フッ素ポリマーのイオン交換容量が、上記第2含フッ素ポリマーのイオン交換容量よりも低い。

Description

触媒層付きイオン交換膜、イオン交換膜および電解水素化装置
 本発明は、触媒層付きイオン交換膜、イオン交換膜および電解水素化装置に関する。
 水素付加有機物(例えば、シクロヘキサン、メチルシクロヘキサンおよびデカヒドロナフタレン等)の製造方法としては、水素化反応器で芳香族化合物(例えば、ベンゼン、トルエン、ナフタレン等)に水素を付加する方法が知られている。
 近年、水素付加有機物の製造が簡便化できる等の点から、上記方法の代わりに、芳香族化合物の電解水素化方法が検討されている。芳香族化合物の電解水素化は、例えば、イオン交換膜によって陰極と陽極とが区切られた構造を有する電解水素化装置を用いて実施される。
 特許文献1には、電解水素化装置におけるイオン交換膜として、電解質膜(製品名「NRE-212CS」、DuPont社製、スルホン酸基を有する含フッ素ポリマーから構成された膜)と、電解質膜のアノード(陽極)側の表面に設けられた酸化ジルコニウム層と、電解質膜のカソード(陰極)側の表面に設けられた触媒層と、を有するカソード触媒層-電解質膜接合体が開示されている。
特許第6400410号
 近年、電解水素化装置を用いた芳香族化合物の電解水素化において、水素付加有機物の生産効率をより向上させる点から、電解電圧のさらなる低減および電流効率のさらなる向上が求められている。
 本発明者らは、特許文献1を参照にして、無機物粒子層と、スルホン酸型官能基を有する含フッ素ポリマーを含む層と、触媒層と、をこの順に有する触媒層付きイオン交換膜を電解水素化装置に適用したところ、芳香族化合物の電解水素化の際における電解電圧および電流効率の少なくとも一方の点で、改善の余地があることを知見した。
 本発明は、上記実情に鑑みてなされ、芳香族化合物の電解水素化の際に、電解電圧を低くでき、かつ、電流効率を高くできる触媒層付きイオン交換膜、イオン交換膜、および、電解水素化装置の提供を課題とする。
 本発明者らは、上記課題について鋭意検討した結果、無機物粒子層と、第1含フッ素ポリマーを含む層(Sa)と、第2含フッ素ポリマーを含む層(Sb)と、触媒層と、をこの順に有する触媒層付きイオン交換膜であって、第1含フッ素ポリマーのイオン交換容量が第2含フッ素ポリマーのイオン交換容量よりも低い場合、触媒層付きイオン交換膜の無機物粒子層を陽極側に配置し、かつ、触媒層付きイオン交換膜の触媒層を陰極側に配置した電解水素化装置を用いれば、所望の効果が得られることを見出し、本発明に至った。
 すなわち、発明者らは、以下の構成により上記課題が解決できることを見出した。
[1] 無機物粒子およびバインダーを含む無機物粒子層と、
 スルホン酸型官能基を有する第1含フッ素ポリマーを含む層(Sa)と、
 スルホン酸型官能基を有する第2含フッ素ポリマーを含む層(Sb)と、
 触媒層と、をこの順に有し、
 上記第1含フッ素ポリマーのイオン交換容量が、上記第2含フッ素ポリマーのイオン交換容量よりも低い、触媒層付きイオン交換膜。
[2] 上記層(Sa)における上記無機物粒子層側の界面に凹凸構造を有する、[1]に記載の触媒層付きイオン交換膜。
[3] さらに、補強糸を含む補強材を有する、[1]または[2]に記載の触媒層付きイオン交換膜。
[4] 上記第1含フッ素ポリマーのイオン交換容量が、0.5~1.1ミリ当量/グラム乾燥樹脂である、[1]~[3]のいずれかに記載の触媒層付きイオン交換膜。
[5] 上記第2含フッ素ポリマーのイオン交換容量が、0.7~2.0ミリ当量/グラム乾燥樹脂である、[1]~[4]のいずれかに記載の触媒層付きイオン交換膜。
[6] 前記スルホン酸型官能基を有する第1含フッ素ポリマーが、含フッ素オレフィンに基づく単位、ならびに、スルホン酸型官能基およびフッ素原子を有する単位を含む、[1]~[5]のいずれかに記載の触媒層付きイオン交換膜。
[7] 前記含フッ素オレフィンがテトラフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニリデン、フッ化ビニルまたはヘキサフルオロプロピレンである、[6]に記載の触媒層付きイオン交換膜。
[8] 前記スルホン酸型官能基およびフッ素原子を有する単位が、式(1)で表される単位である[6]または[7]に記載の触媒層付きイオン交換膜。
 式(1)  -[CF-CF(-L-(SOM))]-
 式中Lは、エーテル性酸素原子を含んでいてもよいn+1価のペルフルオロ炭化水素基であり、Mは、水素原子、アルカリ金属または第4級アンモニウムカチオンであり、nは、1または2である。
[9] 無機物粒子およびバインダーを含む無機物粒子層と、
 スルホン酸型官能基を有する第1含フッ素ポリマーを含む層(Sa)と、
 スルホン酸型官能基を有する第2含フッ素ポリマーを含む層(Sb)と、をこの順に有し、
 上記第1含フッ素ポリマーのイオン交換容量が、上記第2含フッ素ポリマーのイオン交換容量よりも低い、イオン交換膜。
[10] 上記層(Sa)における上記無機物粒子層側の界面に凹凸構造を有する、[9]に記載のイオン交換膜。
[11] さらに、補強糸を含む補強材を有する、[9]または[10]に記載のイオン交換膜。
[12] 上記第1含フッ素ポリマーのイオン交換容量が、0.5~1.1ミリ当量/グラム乾燥樹脂である、[9]~[11]のいずれかに記載のイオン交換膜。
[13] 上記第2含フッ素ポリマーのイオン交換容量が、0.7~2.0ミリ当量/グラム乾燥樹脂である、[9]~[12]のいずれかに記載のイオン交換膜。
[14] [1]~[8]のいずれかに記載の触媒層付きイオン交換膜の製造方法であって、
 [9]に記載のイオン交換膜を得て、上記層(Sb)上に触媒層を設ける、触媒層付きイオン交換膜の製造方法。
[15] 陽極と、陰極と、を備える電解槽と、
 [1]~[8]のいずれかに記載の触媒層付きイオン交換膜と、を有し、
 上記触媒層付きイオン交換膜が、上記陽極と上記陰極とを区切るように上記電解槽内に配置されており、
 上記触媒層付きイオン交換膜の上記無機物粒子層が上記陽極側に配置され、かつ、上記触媒層付きイオン交換膜の上記触媒層が上記陰極側に配置されている、電解水素化装置。
[16] 上記陽極が配置された陽極室に電解質水溶液が供給され、上記陰極が配置された陰極室に芳香族化合物が供給される、[15]に記載の電解水素化装置。
 本発明によれば、芳香族化合物の電解水素化の際に、電解電圧を低くでき、かつ、電流効率を高くできる触媒層付きイオン交換膜、イオン交換膜、および、電解水素化装置を提供できる。
本発明の触媒層付きイオン交換膜の一例を示す模式断面図である。 本発明の触媒層付きイオン交換膜の一例を示す模式断面図の部分拡大図である。 本発明のイオン交換膜の一例を示す模式断面図である。 本発明の電解水素化装置の一例を示す模式図である。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「イオン交換膜」とは、イオン交換基を有するポリマーを含む膜である。
 「イオン交換基」とは、この基に含まれるイオンの少なくとも一部を、他のイオンに交換しうる基であり、下記のカルボン酸型官能基、スルホン酸型官能基等が挙げられる。
 「カルボン酸型官能基」とは、カルボン酸基(-COOH)、またはカルボン酸塩基(-COOM。ただし、Mはアルカリ金属または第4級アンモニウム塩基である。)を意味する。
 「スルホン酸型官能基」とは、スルホン酸基(-SOH)、またはスルホン酸塩基(-SO。ただし、Mはアルカリ金属または第4級アンモニウム塩基である。)を意味する。
 「前駆体層」とは、イオン交換基に変換できる基を有するポリマーを含む層(膜)である。
 「イオン交換基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、イオン交換基に変換できる基を意味する。
 「スルホン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、スルホン酸型官能基に変換できる基を意味する。
 「含フッ素ポリマー」とは、分子中にフッ素原子を有する高分子化合物を意味する。
 「パーフルオロカーボンポリマー」とは、ポリマー中の炭素原子に結合している水素原子の全部がフッ素原子に置換されたポリマーを意味する。パーフルオロカーボンポリマー中のフッ素原子の一部は、塩素原子および臭素原子の一方または両方で置換されていてもよい。
 「モノマー」とは、重合反応性の炭素-炭素不飽和二重結合を有する化合物を意味する。
 「含フッ素モノマー」とは、分子中にフッ素原子を有するモノマーを意味する。
 「構成単位」とは、ポリマー中に存在してポリマーを構成する、モノマーに由来する部分を意味する。例えば、構成単位が炭素-炭素不飽和二重結合を有するモノマーの付加重合により生じる場合、このモノマーに由来する構成単位は、この不飽和二重結合が開裂して生じた2価の構成単位である。また、構成単位は、ある構成単位の構造を有するポリマーを形成した後に、この構成単位を化学的に変換、たとえば加水分解処理して得られた構成単位であってもよい。なお、以下において、場合により、個々のモノマーに由来する構成単位を、そのモノマー名に「単位」を付した名称で記載することがある。
 「補強材」とは、イオン交換膜の強度を向上させるために用いられる材料を意味する。補強材は、補強布に由来する材料である。
 「補強布」とは、イオン交換膜の強度を向上させるための補強材の原料として用いられる布を意味する。
 「補強糸」とは、補強布を構成する糸であり、補強布をアルカリ性水溶液(例えば、濃度が32質量%の水酸化ナトリウム水溶液)に浸漬しても溶出することのない材料からなる糸である。
 「犠牲糸」とは、補強布を構成する糸であり、アルカリ性水溶液、および/または、プロセス液(例えば、芳香族化合物の電解水素化に用いる電解質溶液または芳香族化合物)によって、溶出する材料を含む糸である。
 「溶出孔」とは、犠牲糸がアルカリ性水溶液に溶出した結果、生成する孔を意味する。
 「強化前駆体膜」とは、前駆体層中に補強布が配置された膜を意味する。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 触媒層付きイオン交換膜の乾燥時における各層の厚さは、触媒層付きイオン交換膜を90℃で2時間乾燥させた後、触媒層付きイオン交換膜の断面を光学顕微鏡にて観察し、画像ソフトを用いて求める。なお、層の表面に凹凸が存在する場合、層における10点の凹部分の厚さと、層における10点の凸部分の厚さと、を測定し、合計20点の厚さの算術平均値を層の厚さとする。
 「TQ値」とは、ポリマーの分子量に関係する値であって、容量流速:100mm/秒を示す温度を表す。容量流速は、ポリマーを3MPaの加圧下に一定温度のオリフィス(径:1mm、長さ:1mm)から溶融、流出させたときの流出するポリマーの量をmm/秒の単位で示した値である。TQ値が高いほど、高分子量である。
 「イオン交換容量」は、次のようにして算出される値である。まず、乾燥窒素を流したグローブボックス中に含フッ素ポリマーを24時間おき、含フッ素ポリマーの乾燥質量を測定する。その後、含フッ素ポリマーを2モル/Lの塩化ナトリウム水溶液に60℃で1時間浸漬する。含フッ素ポリマーを超純水で洗浄した後、取り出し、含フッ素ポリマーを浸漬していた液を0.1モル/Lの水酸化ナトリウム水溶液で滴定することによって、含フッ素ポリマーのイオン交換容量を求める。
[触媒層付きイオン交換膜]
 本発明の触媒層付きイオン交換膜は、無機物粒子およびバインダーを含む無機物粒子層と、スルホン酸型官能基を有する第1含フッ素ポリマー(以下、「含フッ素ポリマー(S1)」ともいう。)を含む層(Sa)と、スルホン酸型官能基を有する第2含フッ素ポリマー(以下、「含フッ素ポリマー(S2)」ともいう。)を含む層(Sb)と、触媒層と、をこの順に有する。
 また、上記含フッ素ポリマー(S1)のイオン交換容量が、上記含フッ素ポリマー(S2)のイオン交換容量よりも低い。
 本発明の触媒層付きイオン交換膜は、芳香族化合物の電解水素化に用いることが好ましい。本発明の触媒層付きイオン交換膜を電解水素化装置に適用する際に、無機物粒子層を陽極側に配置し、かつ、触媒層を陰極側に配置すれば、芳香族化合物の電解水素化の際に、電解電圧を低くでき、かつ、電流効率を高くできる。
 この理由の詳細は明らかになっていないが、以下の理由によるものと推測される。
 電解水素化装置において、触媒層付きイオン交換膜は、陽極が配置された陽極室と、陰極が配置された陰極室と、を区切るように電解槽内に配置されており、陽極室に電解質水溶液が供給され、陰極室に芳香族化合物が供給されている。このような電解水素化装置を駆動させた場合、陽極室における水の電気分解によって生じたプロトン(H)が触媒層付きイオン交換膜を介して陰極側に移動して、触媒層の表面の付近においてプロトン付加による芳香族化合物の水素化が起こると考えられている。
 ここで、陰極側での芳香族化合物の水素化反応は、触媒層上で起こる。具体的には、触媒層に含まれる触媒上で活性化された水素と、芳香族化合物と、が接触し、そこに電子が流れ込み、芳香族化合物の水素化が起こると考えられている。
 しかしながら、触媒周辺に水分が存在すると、芳香族化合物が触媒周辺の反応場に接近しづらくなる。その結果、活性化した水素と電子とが反応し、陰極室で水素が発生するので、電流効率が低下するという問題が生じる。
 一方で、イオン交換容量の低い電解質膜は、イオン交換容量の高い電解質膜よりも水分を通しにくく、電流効率を高くできるが、電解電圧を向上させる。
 また、イオン交換容量の高い電解質膜は、イオン交換容量の低い電解質膜よりも、水分を通しやすく、電流効率を低くさせるが、電解電圧を低減できる。
 本発明者らは、上記事項を考慮した結果、電解質膜を複層構造にして、イオン交換容量の低い含フッ素ポリマー(S1)を含む層(Sa)を陽極側に配置し、イオン交換容量の高い含フッ素ポリマー(S2)を含む層(Sb)を陰極側に配置した場合、陽極室から陰極室への水分の移動が抑制される結果、電流効率を向上できることを見出した。また、このような電解質膜を用いることで、低電圧での電解が可能になることも見出した。
 ここで、電解水素化装置を用いた芳香族化合物の電解水素化では、陽極室に電解質水溶液が供給され、陰極室に芳香族化合物が供給される。この場合、単層の電解質膜を有する触媒層付きイオン交換膜を用いた場合、電解質膜の陽極室側の面が電解質水溶液と接触し、電解質膜の陰極室側の面が芳香族化合物と接触する。そうすると、触媒層付きイオン交換膜の対向する表面間での膨潤度合いの差によって、触媒層付きイオン交換膜にシワが入る場合がある。その結果、電解電圧の上昇や、電流効率の低下が起こる場合がある。
 この問題に対して、本発明者らは、含フッ素ポリマー(S1)を含む層(Sa)を陽極側に配置し、含フッ素ポリマー(S2)を含む層(Sb)を陰極側に配置すれば、触媒層付きイオン交換膜のシワの発生を抑制できることを見出した。これは、以下の理由によるものと推測される。
 含フッ素ポリマー(S1)は、含フッ素ポリマー(S2)と比べてイオン交換容量が低いため、水分によって膨潤しにくい。一方で、含フッ素ポリマー(S2)は、含フッ素ポリマー(S1)と比べてイオン交換容量が高いため、有機溶媒(芳香族化合物)によって膨潤しにくい。そのため、含フッ素ポリマー(S1)の水分による膨潤度合いと、含フッ素ポリマー(S2)の芳香族化合物による膨潤度合いと、が釣り合って、触媒層付きイオン交換膜の表面におけるシワの発生を抑制できたと考えられる。
 以下、本発明の触媒層付きイオン交換膜を図1に基づいて説明するが、本発明は図1の内容に限定されるものではない。
 図1は、本発明の触媒層付きイオン交換膜の一例を示す模式断面図である。図1に示すように、触媒層付きイオン交換膜1は、層(Sa)である層12Aおよび層(Sb)である層12Bからなる電解質12と、層12Aの表面に配置された無機物粒子層14と、層12Bの表面に配置された触媒層16と、を有し、電解質膜12の中に補強材20が配置されている。
 <層(Sa)>
 層(Sa)である層12Aは、含フッ素ポリマー(S1)を含む層であればよいが、含フッ素ポリマー(S1)以外の材料を含まない含フッ素ポリマー(S1)のみからなる層が好ましい。つまり、層(Sa)は、含フッ素ポリマー(S1)からなる層であることが好ましい。
 後述する電解水素化装置に触媒層付きイオン交換膜1を適用する場合には、層12Aは、層12Bよりも陽極側に配置される。
 乾燥時の層12Aの厚さは、5~60μmが好ましく、10~40μmがより好ましく、10~30μmが特に好ましい。乾燥時の層12Aの厚さが上記下限値以上であれば、触媒層付きイオン交換膜1の機械的強度が向上し、また、電流効率がより優れる。乾燥時の層12Aの厚さが上記上限値以下であれば、触媒層付きイオン交換膜1の電気抵抗を低く抑えられる。
 図1に示すように、層12Aは、無機物粒子層14側の界面に凹凸構造を有することが好ましい。無機物粒子層14側の界面に凹凸構造を有する場合、陽極と、触媒層付きイオン交換膜1の陽極側(すなわち、層12Aの無機物粒子層14側)との間に電解質水溶液が供給されやすくなり、また、電解質水溶液が抜けやすくなる。これにより、有効電解面積の低下を抑制できるので、電解電圧の上昇を抑制できる。
 本発明において、層(Sa)における無機物粒子層側の界面に有する凹凸構造とは、層(Sb)から無機物粒子層に向かって隆起した構造(以下、「凸部」ともいう。)を面内方向に複数有し、かつ、凸部の頂点から凸部の最も低い位置までの最短距離(以下、「凸部の高さ」ともいう。)が2μm以上である構造を意味する。
 図2は、本発明の触媒層付きイオン交換膜の断面の部分拡大図である。図2の例では、層12Aは、無機物粒子層14側の界面に連続的に形成された凸部Bを複数有している。凸部Bの高さは、凸部B(凸部B2)の頂点に対応する位置P1から凸部B(凸部B2)の最も低い位置P2までの最短距離D1に相当する。
 凸部の高さは、次のようにして測定される。
 まず、触媒層付きイオン交換膜を厚み方向に沿って切断して、光学顕微鏡(製品名「BX-51」、オリンパス社製)による触媒層付きイオン交換膜の断面の拡大画像(例えば、100倍)を撮影する。次に、撮影した拡大画像から、層12Aにおける無機物粒子層14側の界面における凸部の高さ(図2の最短距離D1)を測定する。
 凸部の高さは、2μm以上であり、電流効率がより優れる点から、2~80μmが好ましく、10~50μmが特に好ましい。
 凸部は、層(Sa)の面内方向に連続的に形成されていることが好ましく、周期的なピッチで形成されていることが好ましい。
 層(Sa)の無機物粒子層側の表面が凹凸構造を有する場合、凸部の頂点間の平均距離は、電流効率がより向上する点から、20~500μmが好ましく、50~400μmがより好ましく、100~300μmが特に好ましい。
 本発明において、凸部の頂点間の平均距離とは、隣接する凸部の頂点間の最短距離であって、異なる10点の頂点間における算術平均値を意味する。
 図2の例では、隣接する凸部の頂点間の最短距離は、凸部B1の頂点に対応する位置T1から、凸部B1に隣接する凸部B2の頂点に対応する位置T2までの最短距離D2に相当する。
 隣接する凸部の頂点間の最短距離は、上述の凸部の高さの測定で説明した拡大画像を用いて測定する。
 層(Sa)の無機物粒子層側の界面に凹凸構造を形成する方法の具体例としては、層(Sa)をブラスト処理する方法、層(Sa)と凹凸構造を持つフィルムまたは金属型を加熱プレスする方法、層(Sa)と固体粒子を加熱プレスした後、粒子を除去する方法、層(Sa)を形成する際に凹凸構造を持つフィルムや金属型を用いる方法、凹凸構造を持つフィルム上に層(Sa)を形成する方法、が挙げられる。
 また、層(Sa)、補強材および層(Sb)をこの順に積層し、真空吸引を行う方法も用いることができる。これにより、補強材の表面形状に応じた凹凸構造が層(Sa)の表面に形成できる。
 層(Sa)を形成する際に凹凸構造を持つフィルムを使用する方法は、比較的簡便であり、処理による不純物混入が少ないため安定した性能の膜が得られるため好ましい。
 凹凸構造を持つフィルムは、成形加工性および耐薬品性の観点から、ポリエチレン、ポリプロピレンが好ましい。
 なお、図1の例では、層12Aが無機物粒子層14側の界面に凹凸構造を有する場合を示したが、これに限定されず、層12Aにおける無機物粒子層14側の界面は、凹凸構造を有していなくてもよい。
(含フッ素ポリマー(S1))
 層(Sa)は、含フッ素ポリマー(S1)を1種単独で含んでいてもよく、含フッ素ポリマー(S1)を2種以上含んでいてもよい。
 層(Sa)は、含フッ素ポリマー(S1)以外のポリマー(以下、他のポリマーともいう)を含んでいてもよいが、実質的に含フッ素ポリマー(S1)からなるのが好ましい。実質的に含フッ素ポリマー(S1)からなるとは、層(Sa)中のポリマーの合計質量に対して、含フッ素ポリマー(S1)の含有量が90質量%以上であることを意味する。含フッ素ポリマー(S1)の含有量の上限は、層(Sa)中のポリマーの合計質量に対して、100質量%である。
 他のポリマーの具体例としては、環内に窒素原子を1個以上含む複素環化合物の重合体、並びに、環内に窒素原子を1個以上と酸素原子および/または硫黄原子とを含む複素環化合物の重合体からなる群から選択される1種以上のポリアゾール化合物が挙げられる。
 ポリアゾール化合物の具体例としては、ポリイミダゾール化合物、ポリベンズイミダゾール化合物、ポリベンゾビスイミダゾール化合物、ポリベンゾオキサゾール化合物、ポリオキサゾール化合物、ポリチアゾール化合物、ポリベンゾチアゾール化合物が挙げられる。
 また、触媒層付きイオン交換膜の耐酸化性の点から、他のポリマーとしては、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂も挙げられる。
 含フッ素ポリマー(S1)は、含フッ素オレフィンに基づく単位、ならびに、スルホン酸型官能基およびフッ素原子を有する単位を含むのが好ましい。
 含フッ素オレフィンとしては、例えば、分子中に1個以上のフッ素原子を有する炭素数が2~3のフルオロオレフィンが挙げられる。フルオロオレフィンの具体例としては、テトラフルオロエチレン(以下、「TFE」ともいう。)、クロロトリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、ヘキサフルオロプロピレンが挙げられる。なかでも、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマー(S1)の特性に優れる点から、TFEが好ましい。
 含フッ素オレフィンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 スルホン酸型官能基およびフッ素原子を有する単位としては、式(1)で表される単位が好ましい。
 式(1)  -[CF-CF(-L-(SOM))]-
 式(1)中、Lは、エーテル性酸素原子を含んでいてもよいn+1価のペルフルオロ炭化水素基である。
 エーテル性酸素原子は、ペルフルオロ炭化水素基中の末端に位置していても、炭素原子-炭素原子間に位置していてもよい。
 n+1価のペルフルオロ炭化水素基中の炭素数は、1以上が好ましく、2以上が特に好ましく、20以下が好ましく、10以下が特に好ましい。
 Lとしては、エーテル性酸素原子を含んでいてもよいn+1価のペルフルオロ脂肪族炭化水素基であり、n=1の態様である、エーテル性酸素原子を含んでいてもよい2価のペルフルオロアルキレン基、または、n=2の態様である、エーテル性酸素原子を含んでいてもよい3価のペルフルオロ脂肪族炭化水素基が特に好ましい。
 上記2価のペルフルオロアルキレン基は、直鎖状および分岐鎖状のいずれであってもよい。
 Mは、水素原子、アルカリ金属または第4級アンモニウムカチオンである。
 nは、1または2である。
 式(1)で表される単位としては、式(1-1)で表される単位、式(1-2)で表される単位、式(1-3)で表される単位または式(1-4)で表される単位が好ましい。
 式(1-1)  -[CF-CF(-O-Rf1-SOM)]-
 式(1-2)  -[CF-CF(-Rf1-SOM)]-
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 Rf1は、炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基である。上記ペルフルオロアルキレン基中の炭素数は、1以上が好ましく、2以上が特に好ましく、20以下が好ましく、10以下が特に好ましい。
 Rf2は、単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基である。上記ペルフルオロアルキレン基中の炭素数は、1以上が好ましく、2以上が特に好ましく、20以下が好ましく、10以下が特に好ましい。
 Rf3は、単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基である。上記ペルフルオロアルキレン基中の炭素数は、1以上が好ましく、2以上が特に好ましく、20以下が好ましく、10以下が特に好ましい。
 rは0または1である。
 mは0または1である。
 Mは水素原子、アルカリ金属または第4級アンモニウムカチオンである。
 式(1-1)で表される単位および式(1-2)で表される単位としては、式(1-5)で表される単位がより好ましい。
 式(1-5)  -[CF-CF(-(CF-(OCFCFY)-O-(CF-SOM)]-
 xは0または1であり、yは0~2の整数であり、zは1~4の整数であり、YはFまたはCFである。Mは、上述した通りである。
 式(1-1)で表される単位の具体例としては、以下の単位が挙げられる。式中のwは1~8の整数であり、xは1~5の整数である。式中のMの定義は、上述した通りである。
 -[CF-CF(-O-(CF-SOM)]-
 -[CF-CF(-O-CFCF(CF)-O-(CF-SOM)]-
 -[CF-CF(-(O-CFCF(CF))-SOM)]-
 式(1-2)で表される単位の具体例としては、以下の単位が挙げられる。式中のwは1~8の整数である。式中のMの定義は、上述した通りである。
 -[CF-CF(-(CF-SOM)]-
 -[CF-CF(-CF-O-(CF-SOM)]-
 式(1-3)で表される単位としては、式(1-3-1)で表される単位が好ましい。式中のMの定義は、上述した通りである。
Figure JPOXMLDOC01-appb-C000003
 Rf4は炭素数1~6の直鎖状のペルフルオロアルキレン基であり、Rf5は単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよい炭素数1~6の直鎖状のペルフルオロアルキレン基である。rおよびMの定義は、上述した通りである。
 式(1-3-1)で表される単位の具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(1-4)で表される単位としては、式(1-4-1)で表される単位が好ましい。式中のRf1、Rf2およびMの定義は、上述した通りである。
Figure JPOXMLDOC01-appb-C000005
 式(1-4-1)で表される単位の具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 スルホン酸型官能基およびフッ素原子を有する単位は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 含フッ素ポリマー(S1)は、含フッ素オレフィンに基づく単位、並びに、スルホン酸型官能基およびフッ素原子を有する単位以外のモノマー(以下、他のモノマーともいう)に基づく単位を含んでいてもよい。
 他のモノマーの具体例としては、CF=CFRf6(ただし、Rf6は炭素数2~10のペルフルオロアルキル基である。)、CF=CF-ORf7(ただし、Rf7は炭素数1~10のペルフルオロアルキル基である。)、CF=CFO(CFCF=CF(ただし、vは1~3の整数である。)が挙げられる。
 他のモノマーに基づく単位の含有量は、イオン交換性能の維持の点から、含フッ素ポリマー(S1)中の全単位に対して、30質量%以下が好ましい。
 含フッ素ポリマー(S1)のイオン交換容量は、0.5~1.1ミリ当量/グラム乾燥樹脂が好ましく、0.6~1.1ミリ当量/グラム乾燥樹脂がより好ましく、0.6~1.0当量/グラム乾燥樹脂が特に好ましい。
 含フッ素ポリマー(S1)のイオン交換容量が上記下限値以上であれば、触媒層付きイオン交換膜1の電気抵抗が低くなり、電解電圧をより低くできる。また、含フッ素ポリマー(S1)のイオン交換容量が上記上限値以下であれば、電流効率がより優れる。
 <層(Sb)>
 層(Sb)である層12Bは、含フッ素ポリマー(S2)を含む層であればよいが、含フッ素ポリマー(S2)以外の材料を含まない含フッ素ポリマー(S2)のみからなる層が好ましい。つまり、層(Sb)は、含フッ素ポリマー(S2)からなる層であることが好ましい。
 後述する電解水素化装置に触媒層付きイオン交換膜1を適用する場合には、層12Bは、層12Aよりも陰極側に配置される。
 図1では、層12Bは単層として示されているが、複数の層から形成される層であってもよい。層12Bが複数の層から形成される場合、各層において、含フッ素ポリマー(S2)を構成する構成単位の種類やスルホン酸型官能基を有する構成単位の割合を異なる構成としてもよい。
 なお、層12Bが複数の層から形成されている場合は、各層に含まれる含フッ素ポリマー(S2)のイオン交換容量が、層12Aに含まれる含フッ素ポリマー(S1)のイオン交換容量よりも高い。
 また、層12Bが複数の層から形成されている場合、無機物粒子層14から触媒層16に向かって、イオン交換容量が高くなるように層12Bの各層が配置されていることが好ましい。これにより、層12Bを構成する各層の層間剥離を抑制できる。
 乾燥時の層12Bの厚さ(層12Bが複数の層から形成されている場合はその合計)は、50~500μmが好ましく、50~200μmがより好ましく、50~150μmが特に好ましい。乾燥時の層12Bの厚さが上記下限値以上であれば、触媒層付きイオン交換膜1の機械的強度が向上し、また、電流効率がより優れる。乾燥時の層(Sb)12Bの厚さが上記上限値以下であれば、触媒層付きイオン交換膜1の電気抵抗を低く抑えられる。
(含フッ素ポリマー(S2))
 層(Sb)は、含フッ素ポリマー(S2)を1種単独で含んでいてもよく、含フッ素ポリマー(S2)を2種以上含んでいてもよい。
 層(Sb)は、含フッ素ポリマー(S2)以外のポリマーを含んでいてもよいが、実質的に含フッ素ポリマー(S2)からなるのが好ましい。実質的に含フッ素ポリマー(S2)からなるとは、層(Sb)中のポリマーの合計質量に対して、含フッ素ポリマー(S2)の含有量が90質量%以上であることを意味する。含フッ素ポリマー(S2)の含有量の上限は、層(Sb)中のポリマーの合計質量に対して、100質量%である。
 含フッ素ポリマー(S2)以外のポリマーの具体例は、上述の含フッ素ポリマー(S1)以外のポリマー(他のポリマー)と同様である。
 含フッ素ポリマー(S2)は、含フッ素ポリマー(S1)とイオン交換容量が異なる以外は同様のポリマーを用いることが好ましい。
 含フッ素ポリマー(S1)および含フッ素ポリマー(S2)のイオン交換容量はいずれも、含フッ素ポリマー(S1)または含フッ素ポリマー(S2)中のイオン交換基の含有量を変化させることで調節できる。
 含フッ素ポリマー(S2)のイオン交換容量は、0.7~2.0ミリ当量/グラム乾燥樹脂が好ましく、0.7~1.5ミリ当量/グラム乾燥樹脂がより好ましく、0.7~1.4ミリ当量/グラム乾燥樹脂が更により好ましく、0.8~1.4ミリ当量/グラム乾燥樹脂が特に好ましい。
 含フッ素ポリマー(S2)のイオン交換容量が上記下限値以上であれば、触媒層付きイオン交換膜の電気抵抗が低くなり、電解電圧をより低くできる。また、含フッ素ポリマー(S2)のイオン交換容量が上記上限値以下であれば、電流効率がより優れる。
 層(Sb)が単層である場合、含フッ素ポリマー(S1)のイオン交換容量と、含フッ素ポリマー(S2)のイオン交換容量との差の絶対値は、本発明の効果がより発揮される点から、0.1~1.4ミリ当量/グラム乾燥樹脂が好ましく、0.1~0.65ミリ当量/グラム乾燥樹脂がより好ましく、0.1~0.6ミリ当量/グラム乾燥樹脂が更に好ましく、0.1~0.5ミリ当量/グラム乾燥樹脂が特に好ましい。
 層(Sb)が複数の層から形成されている場合、含フッ素ポリマー(S1)のイオン交換容量と、層(Sb)を構成する層のうち最も層(Sa)側に配置されている層に含まれる含フッ素ポリマー(S2)のイオン交換容量と、の差の絶対値は、本発明の効果がより発揮される点から、0.1~1.4ミリ当量/グラム乾燥樹脂が好ましく、0.1~0.65ミリ当量/グラム乾燥樹脂がより好ましく、0.1~0.5ミリ当量/グラム乾燥樹脂が特に好ましい。
 層(Sb)が複数の層から形成されている場合、層(Sb)を構成する各層に含まれる含フッ素ポリマー(S2)のイオン交換容量の差の絶対値は、本発明の効果がより発揮される点から、0.1~0.65ミリ当量/グラム乾燥樹脂が好ましく、0.1~0.5ミリ当量/グラム乾燥樹脂がより好ましく、0.1~0.3ミリ当量/グラム乾燥樹脂が特に好ましい。
 <無機物粒子層>
 無機物粒子層14は、無機物粒子と、バインダーとを含む層であり、層12Aにおける層12Bの配置面とは反対側の表面に配置されている。
 電解質水溶液の電気分解により生じる酸素ガスが層(Sa)の表面に付着すると、芳香族化合物の電解水素化の際に電解電圧が高くなる。無機物粒子層は、電解質水溶液の電気分解により生じる酸素ガスの層(Sa)の表面への付着を抑制し、電解電圧の上昇を抑制するために設けられる。
 無機物粒子層14の厚さは、電解電圧をより低減できる点から、1~50μmが好ましく、1~30μmがより好ましく、1~20μmが特に好ましい。
 無機物粒子としては、親水性を有するものが好ましい。具体的には、第4族元素または第14族元素の酸化物、窒化物および炭化物からなる群から選ばれる少なくとも1種が好ましく、SiO、SiC、ZrO、ZrCがより好ましく、ZrOが特に好ましい。
 無機物粒子の平均粒子径は、0.01~10μmが好ましく、0.01~5μmがより好ましく、0.5~3μmがさらに好ましい。無機物粒子の平均粒子径が上記下限値以上であれば、高いガス付着抑制効果が得られる。無機物粒子の平均粒子径が上記上限値以下であれば、無機物粒子の脱落耐性に優れる。
 無機物粒子の平均粒子径は、無機物粒子を溶媒に分散させた分散液を、レーザー回折・散乱法を測定原理とした公知の粒度分布測定装置(マイクロトラック・ベル社製のレーザー回折・散乱式粒子径分布測定装置またはこれに準じた装置)によって測定したときの粒度分布より体積平均を算出して求められる50%径の値(D50)である。
 バインダーとしては、親水性を有するものが好ましく、カルボン酸基またはスルホン酸基を有する含フッ素ポリマーが好ましく、スルホン酸基を有する含フッ素ポリマーがより好ましい。含フッ素ポリマーは、カルボン酸基またはスルホン酸基を有するモノマーのホモポリマーであってもよく、カルボン酸基またはスルホン酸基を有するモノマーと、このモノマーと共重合可能なモノマーとのコポリマーであってもよい。
 無機物粒子層における無機物粒子およびバインダーの合計質量に対する、バインダーの質量比(以下、「バインダー比」ともいう。)は、0.1~0.5が好ましい。無機物粒子層におけるバインダー比が上記下限値以上であれば、無機物粒子の脱落耐性に優れる。無機物粒子層におけるバインダー比が上記上限値以下であれば、高いガス付着抑制効果が得られる。
 層(Sa)における無機物粒子層側の表面が凹凸構造を有する場合、無機物粒子層は、層(Sa)の凹凸構造に追従した凹凸構造の表面形状を有することが好ましい(図1参照)。
 <触媒層>
 触媒層16は、触媒を含む層であり、層12Bにおける層12Aの配置面とは反対側の表面に配置されている。
 触媒の具体例としては、カーボン担体に、白金、白金合金またはコアシェル構造を有する白金を含む触媒を担持した担持触媒、酸化イリジウム触媒、酸化イリジウムを含有する合金、コアシェル構造を有する酸化イリジウムを含有する触媒が挙げられる。カーボン担体としては、カーボンブラック粉末が挙げられる。
 触媒層16は、触媒の脱落を抑制する点から、イオン交換基を有するポリマーをさらに含んでいてもよい。イオン交換基を有するポリマーとしては、イオン交換基を有する含フッ素ポリマーが挙げられる。
 図1の例では、触媒層16が層12Bの表面に形成された、いわゆるゼロギャップ構造である場合を示したが、これに限定されず、触媒層16は、他の層を介して層12Bの上に形成されていてもよい。つまり、触媒層16と層12Bとの間に、他の層が形成されていてもよい。
 例えば、層(Sb)の表面に、陰極およびガス拡散層として機能するカーボンフェルトが設けられており、カーボンフェルトの表面に触媒層が形成されていてもよい。
 <補強材>
 補強材20は、電解質12中に配置されている。
 補強材20は、電解質膜12を補強する材料であり、補強布に由来する。補強布は、経糸と緯糸とからなり、経糸と緯糸が直交していることが好ましい。図1に示すように、補強布は、補強糸22と犠牲糸24とを有していてもよいが、犠牲糸24を有していなくてもよい。
 補強糸22としては、パーフルオロカーボンポリマーを含む糸が好ましく、ポリテトラフルオロエチレン(以下、「PTFE」ともいう。)を含む糸がより好ましく、PTFEのみからなるPTFE糸がさらに好ましい。
 犠牲糸24は、前処理(例えば、強化前駆体膜をアルカリ性水溶液に浸漬する処理)、または、プロセス液(すなわち、芳香族化合物の電解水素化に用いる電解質溶液または芳香族化合物)によって、その少なくとも一部が溶出する糸である。
 中でも、犠牲糸24は、プロセス液によって溶出する糸であることが好ましい。これにより、触媒層付きイオン交換膜1の製造後から芳香族化合物の電解水素化のコンディショニング運転の前までの触媒層付きイオン交換膜1の取り扱い性に優れ、また、電解水素化装置の運転中に犠牲糸1が溶解することで、電解電圧をより低減できる。
 1本の犠牲糸24は、1本のフィラメントからなるモノフィラメントであっても、2本以上のフィラメントからなるマルチフィラメントであってもよい。
 犠牲糸24としては、PETのみからなるPET糸、PETおよびポリブチレンテレフタレート(以下、「PBT」ともいう。)の混合物からなるPET/PBT糸、PBTのみからなるPBT糸、またはポリトリメチレンテレフタレート(以下、「PTT」ともいう。)のみからなるPTT糸が好ましく、PET糸がより好ましい。
 図1の例では、犠牲糸24の一部が残存し、犠牲糸24のフィラメント26の溶解残りの周りに溶出孔28が形成されている。これにより、触媒層付きイオン交換膜1の製造後から芳香族化合物の電解水素化のコンディショニング運転の前までの触媒層付きイオン交換膜1の取り扱いや、コンディショニング運転の際の電解槽への触媒層付きイオン交換膜1の設置時において、触媒層付きイオン交換膜1にクラック等の破損が発生しにくくなる。
 図1の例では、補強材20を有する態様を示したが、これに限定されず、本発明の触媒層付きイオン交換膜は、補強材を有していなくてもよい。
 また、図1の例では、補強材20が層12Aと層12Bとの間に配置されているが、補強材の位置はこれに限定されず、例えば、層12Aの中に配置されていてもよいし、層12Bの中に配置されていてもよい。
 <触媒層付きイオン交換膜の製造方法>
 本発明の触媒層付きイオン交換膜の製造方法の一例を以下に示す。本発明の触媒層付きイオン交換膜の製造方法は、以下の工程(i)~工程(iv)を含むことが好ましい。これにより、上述した本発明の触媒層付きイオン交換膜が得られる。
 工程(i):スルホン酸型官能基に変換できる基を有する含フッ素ポリマー(S1’)を含む層(Sa’)と、スルホン酸型官能基に変換できる基を有する含フッ素ポリマー(S2’)を含む層(Sb’)と、がこの順に積層された前駆体膜を得る工程
 工程(ii):層(Sa’)の表面に、無機物粒子層を形成する工程
 工程(iii):前駆体膜中のスルホン酸型官能基に変換できる基を、スルホン酸型官能基に変換する工程
 工程(iv):層(Sb’)の表面に、触媒層を形成する工程
 ここで、工程(i)~(iv)の実施順序は特に限定されないが、工程(i)、工程(ii)、工程(iii)および工程(iv)の順に実施することが好ましい。また、工程(ii)、工程(i)、工程(iii)および工程(iv)の順に実施してもよい。
 以下、本発明の触媒層付きイオン交換膜の製造方法の一例について、工程毎に説明する。
 (工程(i))
 前駆体膜の製造方法としては、含フッ素ポリマー(S1’)を含む層(Sa’)と、含フッ素ポリマー(S2’)を含む層(Sb’)と、をこの順に配置し、積層ロールまたは真空積層装置を用いてこれらを積層する方法が挙げられる。
 前駆体膜は、補強糸を含む補強材を有する強化前駆体膜であってもよい。この場合、例えば、層(Sa’)と、補強材と、層(Sb’)とをこの順に配置し、上記方法にしたがって強化前駆体膜を得る。
 層(Sa’)における層(Sb’)のは配置面の反対面は、上述したいずれかの方法を用いて、凹凸構造を有するための処理が施されてもよい。
 後述の工程(iii)によって、含フッ素ポリマー(S1’)を含む層(Sa’)は、含フッ素ポリマー(S1)を含む層(Sa)に変換され、含フッ素ポリマー(S2’)を含む層(Sb’)は、含フッ素ポリマー(S2)を含む層(Sb)に変換される。
 含フッ素ポリマー(S1’)は、含フッ素オレフィンと、スルホン酸型官能基に変換できる基およびフッ素原子を有するモノマー(以下、「含フッ素モノマー(S1’)ともいう。」)と、の共重合ポリマーであるのが好ましい。
 含フッ素ポリマー(S1’)の共重合の方法は、溶液重合、懸濁重合、乳化重合等の公知の方法を採用できる。
 含フッ素オレフィンとしては、先に例示したものが挙げられ、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマー(S1)の特性に優れる点から、TFEが好ましい。
 含フッ素オレフィンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 含フッ素モノマー(S1’)としては、分子中に1個以上のフッ素原子を有し、エチレン性の二重結合を有し、かつ、スルホン酸型官能基に変換できる基を有する化合物が挙げられる。
 含フッ素モノマー(S1’)としては、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマー(S1)の特性に優れる点から、式(2)で表される化合物が好ましい。
 式(2)  CF=CF-L-(A)
 式(2)中のLおよびnの定義は、上述した通りである。
 Aは、スルホン酸型官能基に変換できる基である。スルホン酸型官能基に変換できる基は、加水分解によってスルホン酸型官能基に変換し得る官能基が好ましい。スルホン酸型官能基に変換できる基の具体例としては、-SOF、-SOCl、-SOBrが挙げられる。式(2)中にAが2個存在する場合には、Aは互いに同じであっても異なっていてもよい。
 式(2)で表される化合物としては、式(2-1)で表される化合物、式(2-2)で表される化合物、式(2-3)で表される化合物、式(2-4)で表される化合物および式(2-3)で表される化合物が好ましい。
 式(2-1)  CF=CF-O-Rf1-A
 式(2-2)  CF=CF-Rf1-A
Figure JPOXMLDOC01-appb-C000007
 式中のRf1、Rf2、rおよびAの定義は、上述した通りである。
Figure JPOXMLDOC01-appb-C000008
 式中のRf1、Rf2、Rf3、r、mおよびAの定義は、上述した通りである。
 式(2-5)  CF=CF-(CF-(OCFCFY)-O-(CF-SO
 式中のM、x、y、zおよびYの定義は、上述した通りである。
 式(2-1)で表される化合物の具体例としては、以下の化合物が挙げられる。式中のwは1~8の整数であり、xは1~5の整数である。
 CF=CF-O-(CF-SO
 CF=CF-O-CFCF(CF)-O-(CF-SO
 CF=CF-[O-CFCF(CF)]-SO
 式(2-2)で表される化合物の具体例としては、以下の化合物が挙げられる。式中のwは、1~8の整数である。
 CF=CF-(CF-SO
 CF=CF-CF-O-(CF-SO
 式(2-3)で表される化合物としては、式(2-3-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
 式中のRf4、Rf5、rおよびAの定義は、上述した通りである。
 式(2-3-1)で表される化合物の具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(2-4)で表される化合物としては、式(2-4-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式中のRf1、Rf2およびAの定義は、上述した通りである。
 式(2-4-1)で表される化合物の具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 含フッ素モノマー(S1’)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 含フッ素ポリマー(S1’)の製造には、含フッ素オレフィンおよび含フッ素モノマー(S1’)に加えて、さらに他のモノマーを用いてもよい。他のモノマーとしては、先に例示したものが挙げられる。
 含フッ素ポリマー(S1’)のTQ値の範囲は、触媒層付きイオン交換膜としての機械的強度および製膜性の点から、150~350℃が好ましく、170~300℃がより好ましく、200~250℃がさらに好ましい。
 含フッ素ポリマー(S2’)は、含フッ素ポリマー(S2)に変換した際に、含フッ素ポリマー(S1)のイオン交換容量が異なるように製造される以外は、上記含フッ素ポリマー(S1’)と同様のポリマーを用いることが好ましい。
 (工程(ii))
 無機物粒子層の形成方法は特に限定されないが、例えば、層(Sa’)の表面に、無機物粒子、バインダーおよび溶媒を含む無機物粒子分散液を塗布し、無機物粒子分散液の塗布層を乾燥させる方法が挙げられる。
 塗布条件および乾燥条件は特に限定されず、公知の条件を採用できる。
 無機物粒子分散液に含まれる無機物粒子およびバインダーは上述の通りである。無機物粒子分散液に含まれる溶媒は特に限定されず、水や有機溶媒を用いることができる。
 (工程(iii))
 前駆体膜中のスルホン酸型官能基に変換できる基を、スルホン酸型官能基に変換する方法の具体例としては、前駆体膜に加水分解処理または酸型化処理等の処理を施す方法が挙げられる。
 なかでも、前駆体膜とアルカリ性水溶液とを接触させる方法が好ましい。
 前駆体膜として上述した強化前駆体膜を用いた場合、強化前駆体膜中に含まれる犠牲糸の少なくとも一部は、アルカリ性水溶液の作用によって加水分解して溶出する。
 前駆体膜とアルカリ性水溶液とを接触させる方法の具体例としては、前駆体膜をアルカリ性水溶液中に浸漬する方法、前駆体膜の表面にアルカリ性水溶液をスプレー塗布する方法が挙げられる。
 アルカリ性水溶液の温度は、30~100℃が好ましく、40~100℃が特に好ましい。前駆体膜とアルカリ性水溶液との接触時間は、3~150分が好ましく、5~50分が特に好ましい。
 アルカリ性水溶液は、アルカリ金属水酸化物、水溶性有機溶剤および水を含むのが好ましい。
 アルカリ金属水酸化物としては、水酸化ナトリウムおよび水酸化カリウムが挙げられる。
 本明細書において、水溶性有機溶剤とは、水に容易に溶解する有機溶剤であり、具体的には、水1000ml(20℃)に対する溶解性が、0.1g以上の有機溶剤が好ましく、0.5g以上の有機溶剤が特に好ましい。水溶性有機溶剤は、非プロトン性有機溶剤、アルコール類およびアミノアルコール類からなる群より選ばれる少なくとも1種を含むのが好ましく、非プロトン性有機溶剤を含むのが特に好ましい。
 水溶性有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非プロトン性有機溶剤の具体例としては、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンが挙げられ、ジメチルスルホキシドが好ましい。
 アルコール類の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、メトキシエトキシエタノール、ブトキシエタノール、ブチルカルビトール、ヘキシルオキシエタノール、オクタノール、1-メトキシ-2-プロパノール、エチレングリコールが挙げられる。
 アミノアルコール類の具体例としては、エタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、1-アミノ-2-プロパノール、1-アミノ-3-プロパノール、2-アミノエトキシエタノール、2-アミノチオエトキシエタノール、2-アミノ-2-メチル-1-プロパノールが挙げられる。
 アルカリ金属水酸化物の濃度は、アルカリ性水溶液中、1~60質量%が好ましく、3~55質量%が特に好ましい。
 水溶性有機溶剤の含有量は、アルカリ性水溶液中、1~60質量%が好ましく、3~55質量%が特に好ましい。
 水の濃度は、アルカリ性水溶液中、39~80質量%が好ましい。
 前駆体膜とアルカリ性水溶液との接触後に、アルカリ性水溶液を除去する処理を行ってもよい。アルカリ性水溶液を除去する方法としては、例えば、アルカリ性水溶液で接触させた前駆体膜を水洗する方法が挙げられる。
 前駆体膜とアルカリ性水溶液との接触後に、得られた膜を酸性水溶液と接触させて、イオン交換基を酸型に変換してもよい。
 前駆体膜と酸性水溶液とを接触させる方法の具体例としては、前駆体膜を酸性水溶液中に浸漬する方法、前駆体膜の表面に酸性水溶液をスプレー塗布する方法が挙げられる。
 酸性水溶液は、酸成分および水を含むのが好ましい。
 酸成分の具体例としては、塩酸、硫酸が挙げられる。
 (工程(iv))
 触媒層の形成方法は特に限定されないが、例えば、層(Sb’)の表面に、触媒、イオン交換基を有するポリマーおよび溶媒を含む触媒分散液を塗布し、触媒分散液の塗布層を乾燥させる方法が挙げられる。
 塗布条件および乾燥条件は特に限定されず、公知の条件を採用できる。
 触媒分散液に含まれる触媒およびイオン交換基を有するポリマーは上述の通りである。触媒分散液に含まれる溶媒は特に限定されず、水や有機溶媒を用いることができる。
[イオン交換膜]
 本発明のイオン交換膜は、無機物粒子およびバインダーを含む無機物粒子層と、スルホン酸型官能基を有する第1含フッ素ポリマーを含む層(Sa)と、スルホン酸型官能基を有する第2含フッ素ポリマーを含む層(Sb)と、をこの順に有する。
 また、上記第1含フッ素ポリマーのイオン交換容量が、第2含フッ素ポリマーのイオン交換容量よりも低い。
 図3は、本発明のイオン交換膜の一例を示す断面図である。図3に示すように、イオン交換膜10は、層(Sa)である層12Aおよび層(Sb)である層12Bからなる電解質12と、層12Aの表面に配置された無機物粒子層14と、を有し、電解質膜12の中に補強材20が配置されている。図3に示すように、層12Aにおける無機物粒子層14側の表面は、凹凸構造を有する。
 本発明のイオン交換膜は、本発明の触媒層付きイオン交換膜が有する触媒層を有してない以外は、本発明の触媒層付きイオン交換膜と同様の構成であり、好適な態様も同様である。
 本発明のイオン交換膜の各層の詳細については、本発明の触媒層付きイオン交換膜と同様であるので、その説明を省略する。
 本発明のイオン交換膜の製造方法は特に限定されないが、例えば、上述の本発明の触媒層付きイオン交換膜の製造方法の一例として示した工程(i)~工程(iv)のうち、工程(iv)以外の工程を実施することで得られる。
 本発明のイオン交換膜は、本発明の触媒層付きイオン交換膜の製造に好適に用いられる。
[電解水素化装置]
 本発明の電解水素化装置は、陽極と、陰極と、を備える電解槽と、本発明の触媒層付きイオン交換膜と、を有し、上記触媒層付きイオン交換膜が、上記陽極と上記陰極とを区切るように上記電解槽内に配置されており、上記触媒層付きイオン交換膜の上記無機物粒子層が上記陽極側に配置され、かつ、上記触媒層付きイオン交換膜の上記触媒層が上記陰極側に配置されている。
 本発明の電解水素化装置は、上述した触媒層付きイオン交換膜を有するので、芳香族化合物の電解水素化の際に、電解電圧を低くでき、かつ、電流効率を高くできる。
 本発明の電解水素化装置の一態様について、図4を例にして説明する。図4は、本発明の電解水素化装置の一例を示す模式図である。
 図4に示すように、電解水素化装置100は、陰極112および陽極114を備える電解槽110と、電解槽110内を陰極112側の陰極室116と、陽極114側の陽極室118とに区切るように電解槽110内に装着される触媒層付きイオン交換膜1とを有する。
 図4に示すように、触媒層付きイオン交換膜1は、無機物粒子層14が陽極114側、触媒層16が陰極112側となるように電解槽110内に装着されている。
 陰極112は、触媒層付きイオン交換膜1に接触させて配置してもよく、触媒層付きイオン交換膜1との間に間隔をあけて配置してもよい。
 陰極112および陰極室116を構成する材料としては、ステンレス、ニッケル等が好ましい。
 陽極114および陽極室118を構成する材料としては、ステンレス、ニッケル等が挙げられる。
 電極基材である陰極112および陽極114などの表面は、たとえば、酸化ルテニウム、酸化イリジウム等でコーティングされることが好ましい。
 電解水素化装置100によって芳香族化合物を電解水素化する場合、陽極114が配置された陽極室118には、電解水溶液が供給され、陰極112が配置された陰極室116には、芳香族化合物が供給される。
 芳香族化合物の具体例としては、ベンゼン、トルエン、ナフタレンが挙げられる。
 電解質水溶液は、電解質を水に溶解させた溶液である。電解質としては、硫酸、硝酸等が挙げられる。電解質の濃度は、特に限定されない。
 電解水素化装置100を駆動させた場合、陽極室118中の電解質水溶液の電気分解によって生じたプロトン(H)が、触媒層付きイオン交換膜1を介して陰極室116側に移動する。そして、触媒層16の表面の付近において、プロトン付加による芳香族化合物の水素化が起こって、陰極室116内で水素付加有機物が得られる。
 水素付加有機物の具体例としては、シクロヘキサン、メチルシクロヘキサンおよびデカヒドロナフタレン等が挙げられる。
 以下、例を挙げて本発明を詳細に説明する。例1~例8は実施例であり、例9~例12は比較例である。ただし本発明はこれらの例に限定されない。
[触媒層付きイオン交換膜の各層の膜厚、含フッ素ポリマーのイオン交換容量]
 上述した方法にしたがって測定した。
[電解電圧および電流効率の評価試験]
 有効通電面積が1.5dm(電解面サイズが縦150mm×横100mm)の試験用電解槽内に、触媒層が形成されてない面が陽極に面するように触媒層付きイオン交換膜-陽極接合体を配置した。なお、陽極としては、SUS304製パンチドメタル(短径5mm、長径10mm)にルテニウム入りラネーニッケルを電着した電極を用いた。また、陽極と触媒層付きイオン交換膜が直接接し、ギャップが生じないように設置した。
 陰極室に供給するトルエンの流量が5mL/minとなり、陽極室に供給する1Mの硫酸水溶液の流量が10mL/minとなるように調節しながら、温度65℃、電流密度:400mA/cmの条件で、トルエンの電解水素化を行い、運転開始から1日後の電解電圧(V)および電流効率(%)を測定し、下記基準により評価した。
(電解電圧)
 ◎:2.3V以下
 ○:2.3V超、2.4V以下
 ×:2.4V超
(電流効率)
 ◎:98%以上
 ○:96%以上98%未満
 ×:96%未満
[含フッ素ポリマー(S1’)の製造]
 CF=CFと下記式(X)で表されるモノマー(X)とを共重合して、含フッ素ポリマー(S1’)(イオン交換容量:0.65ミリ当量/グラム乾燥樹脂)を得た。
 CF=CF-O-CFCF(CF)-O-CFCF-SOF ・・・(X)
[含フッ素ポリマー(S2’)の製造]
 CF=CFとモノマー(X)とを共重合して、含フッ素ポリマー(S2’)(イオン交換容量:0.80ミリ当量/グラム乾燥樹脂)を得た。
[含フッ素ポリマー(S3’)の製造]
 CF=CFとモノマー(X)とを共重合して、含フッ素ポリマー(S3’)(イオン交換容量:1.00ミリ当量/グラム乾燥樹脂)を得た。
[含フッ素ポリマー(S4’)の製造]
 CF=CFとモノマー(X)とを共重合して、含フッ素ポリマー(S4’)(イオン交換容量:1.10ミリ当量/グラム乾燥樹脂)を得た。
[含フッ素ポリマー(S5’)の製造]
 CF=CFとモノマー(X)とを共重合して、含フッ素ポリマー(S5’)(イオン交換容量:1.25ミリ当量/グラム乾燥樹脂)を得た。
 なお、上記[含フッ素ポリマー(S1’)の製造]~[含フッ素ポリマー(S5’)の製造]中に記載のイオン交換容量は、含フッ素ポリマー(S1’)~(S5’)を後述する手順で加水分解した際に得られる含フッ素ポリマーのイオン交換容量を表す。
[フィルムAの製造]
 含フッ素ポリマー(S1’)を溶融押し出し法により成形し、含フッ素ポリマー(S1’)からなるフィルムA(膜厚:20μm)を得た。
[フィルムBの製造]
 含フッ素ポリマー(S2’)を溶融押し出し法により成形し、含フッ素ポリマー(S2’)からなるフィルムB(膜厚:20μm)を得た。
[フィルムCの製造]
 含フッ素ポリマー(S3’)を溶融押し出し法により成形し、含フッ素ポリマー(S3’)からなるフィルムC(膜厚:20μm)を得た。
[フィルムDの製造]
 含フッ素ポリマー(S3’)を溶融押し出し法により成形し、含フッ素ポリマー(S3’)からなるフィルムD(膜厚:40μm)を得た。
[フィルムEの製造]
 含フッ素ポリマー(S3’)を溶融押し出し法により成形し、含フッ素ポリマー(S3’)からなるフィルムE(膜厚:80μm)を得た。
[フィルムFの製造]
 含フッ素ポリマー(S4’)を溶融押し出し法により成形し、含フッ素ポリマー(S4’)からなるフィルムF(膜厚:20μm)を得た。
[フィルムGの製造]
 含フッ素ポリマー(S4’)を溶融押し出し法により成形し、含フッ素ポリマー(S4’)からなるフィルムG(膜厚:80μm)を得た。
[フィルムHの製造]
 含フッ素ポリマー(S5’)を溶融押し出し法により成形し、含フッ素ポリマー(S5’)からなるフィルムH(膜厚:80μm)を得た。
[フィルムIの製造]
 含フッ素ポリマー(S5’)を溶融押し出し法により成形し、含フッ素ポリマー(S5’)からなるフィルムI(膜厚:100μm)を得た。
[補強布の製造]
 PTFEからなる50デニールの糸を経糸および緯糸に用い、PTFE糸の密度が80本/インチとなるように平織して織布1を得た。織布1の目付量は、38g/mであった。なお、経糸および緯糸は、スリットヤーンで構成されていた。
[無機物粒子ペーストの調製]
 酸化ジルコニウム(平均粒子径:1μm)の29.0質量%、メチルセルロースの1.3質量%、シクロヘキサノールの4.6質量%、シクロヘキサンの1.5質量%および水の63.6質量%を混合し、無機物粒子ペースト(無機物粒子分散液)を得た。
[例1]
 フィルムA、補強布、フィルムI、離型用PETフィルム(厚さ:100μm)の順に重ね、離型用PETフィルムを下にして、220℃に設定した恒温槽にてフィルムAとフィルムIの間の空気を真空吸引しながら加熱して、各層を一体化させた後、剥離用PETフィルムを剥がして、強化前駆体膜1-1を得た。
 次に、ロールプレスによって、電解質膜におけるフィルムAの表面に無機物粒子ペーストを転写して、フィルムAの表面に無機物粒子層が配置された強化前駆体膜1-2を得た。なお、酸化ジルコニウムの付着量は、20g/mとした。
 ジメチルスルホキシド/水酸化カリウム/水=30/5.5/64.5(質量比)の溶液に、強化前駆体膜1-2を95℃で30分間浸漬し、強化前駆体膜1-2中のスルホン酸型官能基に変換できる基を加水分解して、K型のスルホン酸型官能基に変換した後、水洗した。その後、得られた膜を1M硫酸に浸漬し、末端基をK型からH型に変換した後、乾燥して、イオン交換膜1を得た。
 TFEと上記モノマー(X)とを共重合し、加水分解および酸処理を経て酸型としたポリマー(イオン交換容量:1.10ミリ当量/グラム乾燥樹脂)を水/エタノール=40/60(質量%)の溶媒に固形分濃度25.8%で分散させた分散液(以下、「分散液X」ともいう。)を得た。
 カーボン粉末に白金を46質量%担持した担持触媒(田中貴金属工業社製 “TEC10E50E”)(11g)に水(59.4g)、エタノール(39.6g)を加え、超音波ホモジナイザーを用いて混合粉砕し、触媒の分散液を得た。
 触媒の分散液に、分散液X(20.1g)とエタノール(11g)とゼオローラ-H(日本ゼオン製)(6.3g)とをあらかじめ混合・混練した混合液(29.2g)とを加えた。さらに、得られた分散液に、水(3.66g)、エタノール(7.63g)を加えてペイントコンディショナーを用いて60分間混合し、固形分濃度を10.0質量%とし、カソード触媒インク(触媒分散液)を得た。
 ETFEシート上にカソード触媒インクをダイコーターで塗布し、80℃で乾燥させ、さらに150℃で15分間熱処理を施し、白金量が0.4mg/cmのカソード触媒層デカールを得た。
 イオン交換膜1の無機物粒子層が形成されていない面と、カソード触媒層デカールの触媒層が存在する面とを対向させ、プレス温度150℃でプレス時間2分間、圧力3MPaの条件で加熱プレスして、イオン交換膜1とカソード触媒層とを接合し、温度を70℃まで下げたのち圧力を解放して取り出し、カソード触媒層デカールのETFEシートを剥離して、触媒層を有する例1の触媒層付きイオン交換膜を得た。得られたイオン交換膜の触媒層の表面に、陰極としてカーボンフェルトを接合し、触媒層付きイオン交換膜-陰極接合体を得た。
 なお、触媒層付きイオン交換膜-陰極接合体の陰極面積は、25cmであった。
[例2]
 フィルムFおよびフィルムHを加熱圧着して、多層フィルムFHを得た。
 フィルムA、補強布、多層フィルムFH、離型用PETフィルム(厚さ:100μm)の順に重ね、離型用PETフィルムを下にして、220℃に設定した恒温槽にてフィルムAと多層フィルムFHの間の空気を真空吸引しながら加熱して、各層を一体化させた後、剥離用PETフィルムを剥がして、強化前駆体膜2-1を得た。
 なお、多層フィルムFHのフィルムF側が補強布側になるように配置した。
 強化前駆体膜1-1の代わりに、強化前駆体膜2-1を用いた以外は、例1と同様にして、例2の触媒層付きイオン交換膜-陰極接合体を得た。
[例3]
 フィルムCおよびフィルムHを加熱圧着して、多層フィルムCHを得た。
 多層フィルムFHの代わりに多層フィルムCHを用いた以外は、例2と同様にして、例3の触媒層付きイオン交換膜-陰極接合体を得た。なお、多層フィルムCHのフィルムC側が補強布側になるように配置した。
[例4]
 フィルムCおよびフィルムGを加熱圧着して、多層フィルムCGを得た。
 多層フィルムFHの代わりに多層フィルムCGを用いた以外は、例2と同様にして、例4の触媒層付きイオン交換膜-陰極接合体を得た。なお、多層フィルムCGのフィルムC側が補強布側になるように配置した。
[例5]
 フィルムBおよびフィルムEを加熱圧着して、多層フィルムBEを得た。
 多層フィルムFHの代わりに多層フィルムBEを用いた以外は、例2と同様にして、例5の触媒層付きイオン交換膜-陰極接合体を得た。なお、多層フィルムBEのフィルムB側が補強布側になるように配置した。
[例6]
 フィルムCおよびフィルムHを加熱圧着して、多層フィルムCHを得た。
 多層フィルムFHの代わりに多層フィルムCHを用い、フィルムAの代わりにフィルムBを用いた以外は、例2と同様にして、例6の触媒層付きイオン交換膜-陰極接合体を得た。なお、多層フィルムCHのフィルムC側が補強布側になるように配置した。
[例7]
 フィルムAの代わりにフィルムDを用い、フィルムIの代わりにフィルムHを用いた以外は、例1と同様にして、例7の触媒層付きイオン交換膜-陰極接合体を得た。
[例8]
 補強布を用いなかった以外は、例3と同様にして、例8の触媒層付きイオン交換膜-陰極接合体を得た。
[例9]
 フィルムAの表面に無機物粒子層を設けなかった以外は、例3と同様にして、例9の触媒層付きイオン交換膜-陰極接合体を得た。
[例10]
 イオン交換膜1の代わりに、フィルムJ(商品名「Nafion115」、Chemours社)を用いた以外は、例1と同様にして、例10の触媒層付きイオン交換膜-陰極接合体を得た。
[例11]
 フィルムJ(商品名「Nafion115」、Chemours社、スルホン酸基を有する含フッ素ポリマーから構成された膜)の一方の面に、例1と同様の方法で無機物粒子層を形成し、無機物粒子層付きフィルムJを得た。
 無機物粒子層付きフィルムJを用いた以外は、例1と同様にして、例11の触媒層付きイオン交換膜-陰極接合体を得た。なお、触媒層は、フィルムJにおける無機物粒子層とは反対側の表面に形成した。
[評価結果]
 上記のようにして得られた触媒層付きイオン交換膜を各種評価試験に用いた。評価結果を表1に示す。
 ここで、表1中、「IEC」は、含フッ素ポリマーのイオン交換容量を意味する。
 表1中、「膜厚」は、触媒層付きイオン交換膜中の各層の膜厚を意味し、触媒層付きイオン交換膜の作製に用いた各フィルムの膜厚と同じであった。
 表1中、「低IEC層」とは、触媒層付きイオン交換膜を構成する電解質膜中で、最もイオン交換容量が低い含フッ素ポリマーからなる層、すなわち層(Sa)を意味する。また、「高IEC層」とは、触媒層付きイオン交換膜を構成する電解質膜中で、「低IEC層」よりもイオン交換容量が高い含フッ素ポリマーを含む層、すなわち層(Sb)を意味する。ただし、電解質膜として、1種類のフィルムを用いた場合には、「低IEC層」の欄に使用したフィルムの種類を記載した。
Figure JPOXMLDOC01-appb-T000013
 表1に示す通り、電解質膜を複層構造にして、イオン交換容量の低い含フッ素ポリマーを含む層(低IEC層)を陽極側に配置し、無機物粒子層を低IEC層の表面に設けることで、芳香族化合物の電解水素化の際に、電解電圧を低くでき、かつ、電流効率を高くできることが示された(例1~8)。
 また、例1の触媒層付きイオン交換膜を用いて、無機物粒子層の表面に、陰極としてカーボンフェルトを接合し、例12の触媒層付きイオン交換膜-陰極接合体を得た。例12触媒層付きイオン交換膜-陰極接合体における無機物粒子層の形成面(すなわち、フィルムA側)を陰極側に配置し、触媒層の形成面(すなわち、フィルムI側)を陽極側に配置して、例1と同様の評価を実施したところ、電圧が急上昇して、電解水素化を実施できなかった。この理由としては、フィルムAとフィルムIとが剥離したためと考えられる。
 なお、2020年2月6日に出願された日本特許出願2020-018828号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 1 触媒層付きイオン交換膜
 10 イオン交換膜
 12 電解質膜
 12A 層(Sa)
 12B 層(Sb)
 14 無機物粒子層
 16 触媒層
 20 補強材
 22 補強糸
 24 犠牲糸
 26 フィラメント
 28 溶出孔
 100 電解水素化装置
 110 電解槽
 112 陰極
 114 陽極
 116 陰極室
 118 陽極室
 B,B1,B2 凸部
 D1,D2 最短距離
 P1,P2 位置
 T1,T2 位置

Claims (16)

  1.  無機物粒子およびバインダーを含む無機物粒子層と、
     スルホン酸型官能基を有する第1含フッ素ポリマーを含む層(Sa)と、
     スルホン酸型官能基を有する第2含フッ素ポリマーを含む層(Sb)と、
     触媒層と、をこの順に有し、
     前記第1含フッ素ポリマーのイオン交換容量が、前記第2含フッ素ポリマーのイオン交換容量よりも低い、触媒層付きイオン交換膜。
  2.  前記層(Sa)における前記無機物粒子層側の界面に凹凸構造を有する、請求項1に記載の触媒層付きイオン交換膜。
  3.  さらに、補強糸を含む補強材を有する、請求項1または2に記載の触媒層付きイオン交換膜。
  4.  前記第1含フッ素ポリマーのイオン交換容量が、0.5~1.1ミリ当量/グラム乾燥樹脂である、請求項1~3のいずれか1項に記載の触媒層付きイオン交換膜。
  5.  前記第2含フッ素ポリマーのイオン交換容量が、0.7~2.0ミリ当量/グラム乾燥樹脂である、請求項1~4のいずれか1項に記載の触媒層付きイオン交換膜。
  6.  前記スルホン酸型官能基を有する第1含フッ素ポリマーが、含フッ素オレフィンに基づく単位、ならびに、スルホン酸型官能基およびフッ素原子を有する単位を含む、請求項1~5のいずれか1項に記載の触媒層付きイオン交換膜。
  7.  前記含フッ素オレフィンがテトラフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニリデン、フッ化ビニルまたはヘキサフルオロプロピレンである、請求項6に記載の触媒層付きイオン交換膜。
  8.  前記スルホン酸型官能基およびフッ素原子を有する単位が、式(1)で表される単位である、請求項6または7に記載の触媒層付きイオン交換膜。
     式(1)  -[CF-CF(-L-(SOM))]-
     式中Lは、エーテル性酸素原子を含んでいてもよいn+1価のペルフルオロ炭化水素基であり、Mは、水素原子、アルカリ金属または第4級アンモニウムカチオンであり、nは、1または2である。
  9.  無機物粒子およびバインダーを含む無機物粒子層と、
     スルホン酸型官能基を有する第1含フッ素ポリマーを含む層(Sa)と、
     スルホン酸型官能基を有する第2含フッ素ポリマーを含む層(Sb)と、をこの順に有し、
     前記第1含フッ素ポリマーのイオン交換容量が、前記第2含フッ素ポリマーのイオン交換容量よりも低い、イオン交換膜。
  10.  前記層(Sa)における前記無機物粒子層側の界面に凹凸構造を有する、請求項9に記載のイオン交換膜。
  11.  さらに、補強糸を含む補強材を有する、請求項9または10に記載のイオン交換膜。
  12.  前記第1含フッ素ポリマーのイオン交換容量が、0.5~1.1ミリ当量/グラム乾燥樹脂である、請求項9~11のいずれか1項に記載のイオン交換膜。
  13.  前記第2含フッ素ポリマーのイオン交換容量が、0.7~2.0ミリ当量/グラム乾燥樹脂である、請求項9~12のいずれか1項に記載のイオン交換膜。
  14.  請求項1~8のいずれか1項に記載の触媒層付きイオン交換膜の製造方法であって、
     請求項9に記載のイオン交換膜を得て、前記層(Sb)上に触媒層を設ける、触媒層付きイオン交換膜の製造方法。
  15.  陽極と、陰極と、を備える電解槽と、
     請求項1~8のいずれか1項に記載の触媒層付きイオン交換膜と、を有し、
     前記触媒層付きイオン交換膜が、前記陽極と前記陰極とを区切るように前記電解槽内に配置されており、
     前記触媒層付きイオン交換膜の前記無機物粒子層が前記陽極側に配置され、かつ、前記触媒層付きイオン交換膜の前記触媒層が前記陰極側に配置されている、電解水素化装置。
  16.  前記陽極が配置された陽極室に電解質水溶液が供給され、前記陰極が配置された陰極室に芳香族化合物が供給される、請求項15に記載の電解水素化装置。
PCT/JP2021/004037 2020-02-06 2021-02-04 触媒層付きイオン交換膜、イオン交換膜および電解水素化装置 WO2021157639A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021575848A JPWO2021157639A1 (ja) 2020-02-06 2021-02-04
CN202180012939.8A CN115066515A (zh) 2020-02-06 2021-02-04 带催化剂层的离子交换膜、离子交换膜及电解氢化装置
AU2021215607A AU2021215607A1 (en) 2020-02-06 2021-02-04 Ion Exchange Membrane with Catalyst Layer, Ion Exchange Membrane and Electrolytic Hydrogenation Apparatus
EP21750069.3A EP4101946A1 (en) 2020-02-06 2021-02-04 Ion exchange membrane with catalyst layer, ion exchange membrane, and electrolytic hydrogenation device
US17/878,275 US20220396890A1 (en) 2020-02-06 2022-08-01 Ion exchange membrane with catalyst layer, ion exchange membrane and electrolytic hydrogenation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020018828 2020-02-06
JP2020-018828 2020-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/878,275 Continuation US20220396890A1 (en) 2020-02-06 2022-08-01 Ion exchange membrane with catalyst layer, ion exchange membrane and electrolytic hydrogenation apparatus

Publications (1)

Publication Number Publication Date
WO2021157639A1 true WO2021157639A1 (ja) 2021-08-12

Family

ID=77200669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004037 WO2021157639A1 (ja) 2020-02-06 2021-02-04 触媒層付きイオン交換膜、イオン交換膜および電解水素化装置

Country Status (6)

Country Link
US (1) US20220396890A1 (ja)
EP (1) EP4101946A1 (ja)
JP (1) JPWO2021157639A1 (ja)
CN (1) CN115066515A (ja)
AU (1) AU2021215607A1 (ja)
WO (1) WO2021157639A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038133A1 (ja) * 2021-09-13 2023-03-16 Agcエンジニアリング株式会社 イオン交換膜及び触媒層付きイオン交換膜の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039184A (ja) * 1983-08-12 1985-02-28 Asahi Glass Co Ltd 塩化アルカリ電解槽
JPS60243292A (ja) * 1984-05-18 1985-12-03 Asahi Glass Co Ltd 高濃度カ性ソ−ダの製造方法
JPH02301584A (ja) * 1989-05-16 1990-12-13 Asahi Glass Co Ltd 塩化アルカリ電解槽
JPH06231778A (ja) * 1993-01-29 1994-08-19 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2002216800A (ja) * 2001-01-19 2002-08-02 Honda Motor Co Ltd 複合高分子電解質膜及びその製造方法
WO2016072506A1 (ja) * 2014-11-07 2016-05-12 旭硝子株式会社 塩化アルカリ電解用イオン交換膜及び塩化アルカリ電解装置
JP2018062647A (ja) * 2016-10-13 2018-04-19 旭硝子株式会社 含フッ素イオン透過性隔膜の製造方法、電解装置の製造方法、ガスの製造方法、水素ガスおよび酸素ガスの製造方法、ならびに塩素ガスの製造方法
JP6400410B2 (ja) 2014-09-25 2018-10-03 国立大学法人横浜国立大学 有機ケミカルハイドライド製造用電解セル
JP2020018828A (ja) 2018-07-31 2020-02-06 川湖科技股▲分▼有限公司 調節機構

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242111B1 (en) * 1986-04-07 1992-07-01 Tosoh Corporation Method for producing a metal salt by electrolysis
JP6798548B2 (ja) * 2016-03-29 2020-12-09 Agc株式会社 ペルフルオロブロックポリマー、液状組成物、固体高分子電解質膜、および固体高分子形燃料電池用膜電極接合体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039184A (ja) * 1983-08-12 1985-02-28 Asahi Glass Co Ltd 塩化アルカリ電解槽
JPS60243292A (ja) * 1984-05-18 1985-12-03 Asahi Glass Co Ltd 高濃度カ性ソ−ダの製造方法
JPH02301584A (ja) * 1989-05-16 1990-12-13 Asahi Glass Co Ltd 塩化アルカリ電解槽
JPH06231778A (ja) * 1993-01-29 1994-08-19 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2002216800A (ja) * 2001-01-19 2002-08-02 Honda Motor Co Ltd 複合高分子電解質膜及びその製造方法
JP6400410B2 (ja) 2014-09-25 2018-10-03 国立大学法人横浜国立大学 有機ケミカルハイドライド製造用電解セル
WO2016072506A1 (ja) * 2014-11-07 2016-05-12 旭硝子株式会社 塩化アルカリ電解用イオン交換膜及び塩化アルカリ電解装置
JP2018062647A (ja) * 2016-10-13 2018-04-19 旭硝子株式会社 含フッ素イオン透過性隔膜の製造方法、電解装置の製造方法、ガスの製造方法、水素ガスおよび酸素ガスの製造方法、ならびに塩素ガスの製造方法
JP2020018828A (ja) 2018-07-31 2020-02-06 川湖科技股▲分▼有限公司 調節機構

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038133A1 (ja) * 2021-09-13 2023-03-16 Agcエンジニアリング株式会社 イオン交換膜及び触媒層付きイオン交換膜の製造方法

Also Published As

Publication number Publication date
AU2021215607A1 (en) 2022-08-25
EP4101946A1 (en) 2022-12-14
JPWO2021157639A1 (ja) 2021-08-12
CN115066515A (zh) 2022-09-16
US20220396890A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
WO2020162511A1 (ja) 膜電極接合体、水電解装置
JP6612410B2 (ja) イオン交換膜
JP7384036B2 (ja) 固体高分子電解質膜、膜電極接合体および水電解装置
JPWO2018070444A1 (ja) アルカリ水電解用隔膜およびアルカリ水電解装置
JP6954269B2 (ja) 塩化アルカリ電解用イオン交換膜、その製造方法及び塩化アルカリ電解装置
JP6577644B2 (ja) イオン交換膜
KR101967087B1 (ko) 이온 교환막
WO2021157639A1 (ja) 触媒層付きイオン交換膜、イオン交換膜および電解水素化装置
WO2016027862A1 (ja) 塩化アルカリ電解用イオン交換膜および塩化アルカリ電解装置
JP6927191B2 (ja) 塩化アルカリ電解用イオン交換膜、塩化アルカリ電解用イオン交換膜の製造方法および塩化アルカリ電解装置
WO2022050363A1 (ja) 膜電極接合体、固体高分子電解質膜、水電解装置および電解水素化装置
JP2018095663A (ja) イオン交換膜
WO2022085630A1 (ja) 電解質膜、電解装置およびレドックスフロー電池
WO2024058172A1 (ja) 固体高分子電解質膜、膜電極接合体、膜電極接合体の製造方法及び水電解装置
WO2024058177A1 (ja) 固体高分子電解質膜、膜電極接合体、膜電極接合体の製造方法及び水電解装置
CN113166431B (zh) 复合颗粒及离子交换膜
WO2023085206A1 (ja) 固体高分子型水電解用膜電極接合体および水電解装置
WO2023277068A1 (ja) 固体高分子型水電解用膜電極接合体および水電解装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575848

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021215607

Country of ref document: AU

Date of ref document: 20210204

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021750069

Country of ref document: EP

Effective date: 20220906