WO2021157571A1 - Composition de résine durcissable, film de résine, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs - Google Patents

Composition de résine durcissable, film de résine, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs Download PDF

Info

Publication number
WO2021157571A1
WO2021157571A1 PCT/JP2021/003731 JP2021003731W WO2021157571A1 WO 2021157571 A1 WO2021157571 A1 WO 2021157571A1 JP 2021003731 W JP2021003731 W JP 2021003731W WO 2021157571 A1 WO2021157571 A1 WO 2021157571A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
preferable
ring
resin composition
compound
Prior art date
Application number
PCT/JP2021/003731
Other languages
English (en)
Japanese (ja)
Inventor
美沙樹 ▲高▼嶋
健太 山▲ざき▼
哲 村山
和臣 井上
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020227026284A priority Critical patent/KR20220123540A/ko
Priority to JP2021575807A priority patent/JP7453260B2/ja
Priority to CN202180012209.8A priority patent/CN115038755A/zh
Publication of WO2021157571A1 publication Critical patent/WO2021157571A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers

Definitions

  • the present invention relates to a curable resin composition, a resin film, a cured film, a laminate, a method for producing a cured film, and a semiconductor device.
  • Polyimide or polybenzoxazole is applied to various applications because it has excellent heat resistance and insulating properties.
  • the above application is not particularly limited, and examples of a semiconductor device for mounting include use as a material for an insulating film and a sealing material, or as a protective film. It is also used as a base film and coverlay for flexible substrates.
  • the polyimide or polybenzoxazole is used in the form of at least one resin selected from the group consisting of polyimides, polyimide precursors, polybenzoxazoles, and polybenzoxazole precursors.
  • a curable resin composition is applied to a base material by, for example, coating to form a resin film, and then exposed, developed, heated or the like as necessary to form a cured film on the base material.
  • the polyimide precursor and the polybenzoxazole precursor are cyclized by heating, for example, and become polyimide and polybenzoxazole in the cured film, respectively.
  • the curable resin composition can be applied by a known coating method or the like, for example, the degree of freedom in designing the shape, size, application position, etc. of the applied curable resin composition at the time of application is high. It can be said that it has excellent manufacturing adaptability.
  • the industrial application development of the above-mentioned curable resin composition is expected more and more.
  • Patent Document 1 describes at least one of a resin composed of a polyimide precursor, a polyimide, a polybenzoxazole precursor, and polybenzoxazole, a cross-linking agent, and a solvent that dissolves the resin at 25 ° C. in an amount of 5% by mass or more. Therefore, the solubility parameter distance between the first solvent selected from alcohols, esters, ketones, ethers, sulfur-containing compounds, carbonates and ureas and the first solvent is 3.0 to 11. Compositions containing a second solvent of .0 are described.
  • Patent Document 2 includes (a) a polyimide precursor or a polybenzoxazole precursor, a compound represented by a specific general formula (1), a compound represented by a specific general formula (2), and a sulfur atom. It is a resin composition containing one or more polar solvents selected from the group consisting of compounds, and the content of N-methyl-2-pyrrolidone (NMP) in the above resin composition is 0.1% by mass or less. , Resin compositions are described.
  • the present invention relates to a curable resin composition having excellent film thickness uniformity of a resin film obtained even when stored at a low temperature for a long period of time, a resin film obtained by applying the curable resin composition to a base material, and the curable resin.
  • An object of the present invention is to provide a cured film obtained by curing a composition, a laminate containing the cured film, a method for producing the cured film, and a semiconductor device containing the cured film or the laminate.
  • a curable resin composition containing at least two solvents From imidazole ring, triazole ring, oxazole ring, thiazole ring, pyrazole ring, isooxazole ring, isothiazole ring, tetrazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring, piperazine ring and triazine ring.
  • the curable resin composition according to ⁇ 1> further comprising a migration inhibitor which is a compound having one or more heterocycles and an amino group selected from the above group.
  • a migration inhibitor which is a compound having one or more heterocycles and an amino group selected from the above group.
  • ⁇ 3> Selected from the group consisting of 5-methylbenzotriazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, and 5-amino-1H-tetrazole.
  • the curable resin composition according to ⁇ 1> or ⁇ 2> further comprising a migration inhibitor which is at least one compound.
  • the solvent contains dimethyl sulfoxide and ethyl lactate, the content of ethyl lactate with respect to the total mass of the solvent is 40% by mass or more, and the content of ⁇ -butyrolactone with respect to the total mass of the solvent is 40% by mass or less.
  • ⁇ 6> The curable resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the solvent contains a solvent having an ether bond.
  • ⁇ 7> The curing according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the solvent having the second highest content in the above solvent is 20% by mass or more with respect to the total mass of the solvent.
  • ⁇ 8> The curable resin composition according to any one of ⁇ 1> to ⁇ 7>, further comprising a silane coupling agent.
  • ⁇ 9> The curable resin composition is used for storage in a storage container and is provided at least once for refrigeration at -15 to 16 ° C., and the filling ratio of the curable resin composition with respect to the total storage volume of the storage container during refrigeration is 50 to 50.
  • the curable resin composition according to any one of ⁇ 1> to ⁇ 8> which is 90%.
  • ⁇ 10> The curable resin composition according to any one of ⁇ 1> to ⁇ 9>, which is used for forming an interlayer insulating film for a rewiring layer.
  • ⁇ 11> A resin film obtained by applying the curable resin composition according to any one of ⁇ 1> to ⁇ 10> to a substrate.
  • ⁇ 12> The curable resin composition according to any one of ⁇ 1> to ⁇ 10>, or a cured film obtained by curing the resin film according to ⁇ 11>.
  • ⁇ 13> A laminate containing two or more layers of the cured film according to ⁇ 12> and containing a metal layer between any of the cured films.
  • ⁇ 14> A method for producing a cured film, which comprises a film forming step of applying the curable resin composition according to any one of ⁇ 1> to ⁇ 10> to a substrate to form a film.
  • the method for producing a cured film according to ⁇ 14> which comprises an exposure step of exposing the film and a developing step of developing the film.
  • the method for producing a cured film according to ⁇ 14> or ⁇ 15> which comprises a heating step of heating the film at 50 to 450 ° C.
  • a semiconductor device comprising the cured film according to ⁇ 12> or the laminate according to ⁇ 13>.
  • a curable resin composition having excellent film thickness uniformity of a resin film obtained even when stored at a low temperature for a long period of time, a resin film obtained by applying the curable resin composition to a base material, and the curing
  • a cured film obtained by curing a sex resin composition a laminate containing the cured film, a method for producing the cured film, and a semiconductor device containing the cured film or the laminate.
  • the present invention is not limited to the specified embodiments.
  • the numerical range represented by the symbol "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • the term "process” means not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the desired action of the process can be achieved.
  • the notation not describing substitution and non-substitution includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also exposure using particle beams such as an electron beam and an ion beam. Examples of the light used for exposure include the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, active rays such as electron beams, or radiation.
  • (meth) acrylate means both “acrylate” and “methacrylate”, or either
  • (meth) acrylic means both “acrylic” and “methacrylic", or
  • (meth) acryloyl means both “acryloyl” and “methacrylic", or either.
  • Me in the structural formula represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the total solid content means the total mass of all the components of the composition excluding the solvent.
  • the solid content concentration is the mass percentage of other components excluding the solvent with respect to the total mass of the composition.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are defined as polystyrene-equivalent values according to gel permeation chromatography (GPC measurement) unless otherwise specified.
  • GPC measurement gel permeation chromatography
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) for example, HLC-8220GPC (manufactured by Tosoh Corporation) is used, and guard columns HZ-L, TSKgel Super HZM-M, and TSKgel are used as columns. It can be obtained by using Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (manufactured by Tosoh Corporation).
  • the direction in which the layers are stacked on the base material is referred to as "upper", or if there is a photosensitive layer, the direction from the base material to the photosensitive layer is referred to as “upper”.
  • the opposite direction is referred to as "down”.
  • the composition may contain, as each component contained in the composition, two or more compounds corresponding to the component.
  • the content of each component in the composition means the total content of all the compounds corresponding to the component.
  • the temperature is 23 ° C.
  • the atmospheric pressure is 101,325 Pa (1 atm)
  • the relative humidity is 50% RH.
  • the combination of preferred embodiments is a more preferred embodiment.
  • the curable resin composition of the present invention is at least one resin selected from the group consisting of polyimide, polyimide precursor, polybenzoxazole, and polybenzoxazole precursor (hereinafter, also referred to as "specific resin"). In addition, it contains at least two kinds of solvents.
  • the curable resin composition of the present invention is excellent in film thickness uniformity of the resin film obtained even when stored at a low temperature for a long period of time. According to the study by the present inventors, after storing the curable resin composition containing one solvent alone at a low temperature (for example, 5 ° C or lower, further -5 ° C or lower, etc.) for a long period of time (for example, 6 months or more). It was found that when a resin film was formed by applying it to a base material, the film thickness uniformity of the obtained resin film was inferior. Inferior film thickness uniformity of the resin film means that there is a large difference in film thickness between the thin film thickness portion and the thick film thickness portion of the resin film.
  • the curable resin composition containing two or more kinds of solvents is excellent in the film thickness uniformity of the resin film obtained even when stored for a long period of time.
  • the mechanism by which the above effect is obtained is not clear, but it is presumed as follows.
  • a curable resin composition containing only one solvent When a curable resin composition containing only one solvent is stored at a low temperature for a long period of time, components having low solubility in the solvent may precipitate. In this way, when a certain component in the composition is precipitated, the concentration of the other component is locally increased and some reaction proceeds, or a component such as a polymerization inhibitor is precipitated and the polymerization proceeds. It is presumed that some of the components contained in the composition may be altered due to such reasons as the above. As described above, in the composition in which a part of the components is altered, it is considered that the film thickness uniformity of the resin film is inferior even if the precipitate is dissolved again by, for example, raising the temperature or stirring after storage. ..
  • the curable resin composition contains two or more kinds of solvents, even a component having a low solubility in a certain solvent contained in the composition is excellent in solubility in another solvent contained in the composition. In some cases, it is considered that the above precipitation is suppressed. As a result, it is presumed that the above-mentioned deterioration is suppressed and the film thickness uniformity of the resin film after storage is excellent.
  • the curable resin composition contains two or more kinds of polymers, it is contained in the curable resin composition even when stored at a low temperature for a long period of time, as compared with the case where one kind of polymer is contained alone. Since deterioration due to precipitation of components such as the polymer of the above, or cross-linking of cross-linking groups in the polymer and cross-linking groups in the cross-linking agent is suppressed, for example, resolution when the obtained resin film is subjected to development is also obtained. It is presumed that it is easy to improve.
  • the curable resin composition contains two or more kinds of solvents
  • a resin film is formed even when the curable resin composition is stored for a long period of time, especially at a low temperature, as compared with the case where one kind of solvent is contained alone. It is presumed that the distribution of the components in the resin film is likely to be close to uniform, and the chemical resistance of the obtained cured film is also likely to be improved.
  • the curable resin composition of the present invention contains at least two kinds of solvents.
  • a known solvent can be arbitrarily used.
  • the solvent is preferably an organic solvent.
  • the organic solvent include compounds such as esters, ethers, ketones, hydrocarbons, sulfoxides, amides, and alcohols.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, and ⁇ -butyrolactone.
  • alkylalkyloxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, Ethyl ethoxyacetate, etc.)
  • 3-alkyloxypropionate alkyl esters eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.) (eg, methyl 3-methoxypropionate, 3-methoxypropionate, etc.) Ethyl, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.)
  • 2-alkyloxypropionate alkyl esters eg, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, ethyl 2-alkyl
  • the esters are preferably acyclic ester compounds.
  • the acyclic ester compound refers to a compound having no cyclic structure (that is, a lactone structure) including an ester structure in the molecule.
  • ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol.
  • Suitable examples include monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol ethyl methyl ether, and propylene glycol monopropyl ether acetate.
  • ketones for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, dihydrolevoglucosenone and the like are preferable.
  • hydrocarbons for example, toluene, xylene, anisole, limonene and the like are preferable.
  • aromatic hydrocarbons or terpenes are preferable as the hydrocarbons.
  • sulfoxides for example, dimethyl sulfoxide is preferable.
  • a compound having a lactam structure or a compound having an ether bond and an amide bond in the structure is more preferable.
  • Commercially available products may be used as the amides, and examples of the commercially available products include the Equamid series manufactured by Idemitsu Kosan Co., Ltd. (for example, Equamid B-100 and Equamid M-100).
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, Diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, Examples thereof include ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methyl amyl alcohol, and diacetone alcohol. As ureas, N, N, N', N'-tetramethylurea, 1,3-dimethyl-2-imid
  • the curable resin composition of the present invention was selected from the group consisting of esters, ethers, ketones, hydrocarbons, sulfoxides, and amides from the viewpoint of film thickness uniformity. It preferably contains at least two species, including at least two species selected from the group consisting of amides and sulfoxides, or at least one species selected from the group consisting of amides and sulfoxides, and esters. More preferably, it contains at least one selected from the group consisting of ethers, ketones, and hydrocarbons, and contains at least two selected from the group consisting of amides and sulfoxides, or contains.
  • the curable resin composition of the present invention contains at least one selected from amides and a ketone from the viewpoint of resolution (particularly, resolution after the composition is stored at a low temperature for a long period of time). It is preferable to contain at least one selected from the above species, and more preferably to contain N-methyl-2-pyrrolidone and cyclopentanone.
  • the content of the solvent corresponding to the amides is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the content of the solvent corresponding to the ketones is preferably 20 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the curable resin composition of the present invention has an ether bond, which will be described later, from the viewpoint of chemical resistance of the obtained cured film (particularly, chemical resistance of the cured film after the composition is stored at a low temperature for a long period of time). It is preferable to contain at least one selected from the solvent having an ether bond and at least one selected from sulfoxides, and more preferably, a compound having an ether bond and an amide bond and dimethyl sulfoxide are contained in the above-mentioned structure. Preferably, it further preferably contains 3-butoxy-N, N-dimethylpropionamide and dimethyl sulfoxide.
  • the content of the solvent corresponding to the amides is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the content of the solvent corresponding to the sulfoxides is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the curable resin composition of the present invention has at least one selected from solvents having a boiling point of 160 ° C. or higher at 1 atm and a boiling point of 160 at 1 atm from the viewpoint of making it possible to form a thick resin film. It preferably contains at least one selected from solvents below ° C.
  • Solvents having a boiling point of 160 ° C or higher at 1 atm include ⁇ -butyrolactone (204 ° C), dimethyl sulfoxide (189 ° C), N-methyl-2-pyrrolidone (202 ° C), 3-butoxy-N, N-dimethyl. Propionamide (215 ° C.) and the like can be mentioned. Examples of the solvent having a boiling point of less than 160 ° C.
  • the content of the solvent having a boiling point of 160 ° C. or higher at 1 atm is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the content of the solvent having a boiling point of less than 160 ° C. at 1 atm is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the curable resin composition of the present invention contains at least two selected from an aprotic solvent, or at least one selected from an aprotic solvent and at least one selected from a protic solvent. It is preferable to include seeds. It is considered that when the curable resin composition of the present invention contains a protonic solvent, the film thickness uniformity is improved when the curable resin composition contains a compound having a salt structure such as an onium salt described later.
  • the aprotic solvent include ⁇ -butyrolactone, dimethyl sulfoxide, N-methyl-2-pyrrolidone, 3-butoxy-N, N-dimethylpropionamide, cyclopentanone, propylene glycol monomethyl ether acetate and the like.
  • the protic solvent examples include ethyl lactate.
  • the content of the aprotic solvent is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more, based on the total mass of the solvent. It is preferably 40% by mass or more, and particularly preferably 40% by mass or more.
  • the upper limit of the content is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the content of the protonic solvent is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, based on the total mass of the solvent. ..
  • the upper limit of the content is preferably 90% by mass or less, more preferably 80% by mass or less, further preferably 70% by mass or less, and particularly preferably 60% by mass or less. Further, it is also one of the preferable embodiments that the aprotic solvent is contained in an amount of 10 to 90% by mass and the protonic solvent is contained in an amount of 10 to 90% by mass with respect to the total mass of the solvent. In the above embodiment, it is preferable that the aprotic solvent is contained in an amount of 20 to 80% by mass and the protic solvent is contained in an amount of 20 to 80% by mass, and the aprotic solvent is contained in an amount of 40 to 80% by mass and the protic solvent is contained. It is more preferable to contain 20 to 60% by mass.
  • the curable resin composition of the present invention is selected from at least one selected from solvents having a molecular weight of 90 or more and a solvent having a molecular weight of less than 90 from the viewpoint of making it possible to form a thick resin film. It is preferable to include at least one of them.
  • the content of the solvent having a molecular weight of 90 or more is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the content of the solvent having a molecular weight of less than 90 is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the curable resin composition of the present invention includes at least one selected from solvents having an SP value of 21.4 MPa or more and a solvent having an SP value of less than 21.4 MPa from the viewpoint of film thickness uniformity. It is preferable to include at least one selected from. Solvents having an SP value of 21.4 MPa or more include ⁇ -butyrolactone (26.3 MPa), dimethyl sulfoxide (29.7 MPa), N-methyl-2-pyrrolidone (23.1 MPa), 3-butoxy-N, N. -Dimethylpropionamide (21.5 MPa) and the like can be mentioned.
  • the solvent having an SP value of less than 21.4 MPa examples include cyclopentanone (21.3 MPa), ethyl lactate (20.5 MPa), propylene glycol monomethyl ether acetate (23.1 MPa) and the like.
  • the temperature in parentheses indicates the SP value of each solvent.
  • the content of the solvent having an SP value of 21.4 MPa or more is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • the content of the solvent having an SP value of less than 21.4 MPa is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, based on the total mass of the solvent.
  • a solvent having an SP value higher than the SP value of the solute for example, a specific resin described later
  • a solvent having an SP value lower than the SP value of the solute should be used in combination. Is also preferable.
  • the difference in SP value between the solvent having the highest SP value and the solvent having the lowest SP value in the solvent contained in the curable resin composition of the present invention is 0.2. It is preferably about 11.5 MPa, more preferably 1.5 to 10.0 MPa. According to such an aspect, it is considered that the solubility of various solutes contained in the curable resin composition can be improved, so that the film thickness uniformity is likely to be excellent.
  • the SP value means the value of the solubility parameter.
  • the SP value in the present invention is the Hansen solubility parameter according to the formula explained in Hansen Solubility Parameter: A User's Handbook, Second Edition, CMHansen (2007), Taylor and Francis Group, LLC (HSPiP Manual). Specifically, the SP value is calculated by the following formula using the "Practical Hansen solubility parameter HSPiP 3rd edition” (software version 4.0.05).
  • (SP value) 2 ( ⁇ Hd) 2 + ( ⁇ Hp) 2 + ( ⁇ Hh) 2 Hd: Dispersion contribution Hp: Polarity contribution Hh: Hydrogen bond contribution
  • the curable resin composition of the present invention contains at least one solvent selected from the following group A and at least one solvent selected from the following group B, or contains the following group A. And at least one solvent selected from the group consisting of group B and at least one solvent selected from the following group C are preferably contained.
  • Group A Dimethyl sulfoxide
  • Group B N-methyl2-pyrrolidone, 3-butoxy-N, N-dimethylpropionamide
  • Group C ⁇ -butyrolactone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether acetate
  • the above group C is the following group C. 'Is more preferable.
  • Group C' Cyclopentanone, Ethyl Lactate, Propylene Glycol Monomethyl Ether Acetate
  • the solvent contains dimethyl sulfoxide and ethyl lactate, and the content of ethyl lactate with respect to the total mass of the solvent is 40% by mass or more. Aspects can be mentioned.
  • the content of the ethyl lactate is preferably 40 to 80% by mass, more preferably 45 to 60% by mass.
  • the content of ⁇ -butyrolactone with respect to the total mass of the solvent is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less. It is particularly preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably 1% by mass or less.
  • the lower limit of the content is not particularly limited, and may be 0% by mass or more.
  • the total content of dimethyl sulfoxide and ethyl lactate with respect to the total mass of the solvent is preferably 60% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more. More preferably, it is more preferably 90% by mass or more, further preferably 95% by mass or more, and most preferably 99% by mass or more.
  • the upper limit of the total content is not particularly limited and may be 100% by mass.
  • the curable resin composition of the present invention preferably contains a solvent having a nitrogen atom in the structure as a solvent, and more preferably contains a solvent having a nitrogen-containing heterocyclic structure.
  • the solvent having a nitrogen atom in the structure include the above-mentioned amides.
  • the compound having the above-mentioned lactam structure is preferable, and N-methyl-2-pyrrolidone is more preferable.
  • the content of the solvent having a nitrogen atom in the above structure is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and 40 to 60% by mass with respect to the total mass of the solvent. Is more preferable.
  • the curable resin composition of the present invention preferably contains a solvent having an ether bond as the solvent.
  • the solvent having an ether bond include the above-mentioned ethers and compounds having an ether bond and an amide bond in the structure of the above-mentioned amides.
  • the content of the solvent having an ether bond is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and 40 to 60% by mass with respect to the total mass of the solvent. Is more preferable.
  • the content of the solvent having the second highest content is preferably 20% by mass or more with respect to the total mass of the solvent.
  • the content is preferably 25% by mass or more, more preferably 30% by mass or more, and may be 40% by mass or more.
  • N-methylpyrrolidone is contained in an amount of 40% by mass
  • dimethyl sulfoxide is contained in an amount of 40% by mass
  • cyclopentanone is contained in an amount of 20% by mass
  • the content of the solvent having the second highest content is 40% by mass. %.
  • the curable resin composition of the present invention preferably has a water content of 5% by mass or less based on the total mass of the solvent from the viewpoints of suppressing coating defects during coating and improving storage stability. ..
  • the content of the water is preferably 3% by mass or less, more preferably 1% by mass or less, and further preferably 0.1% by mass or less. Moreover, the content of the said water may be 0 mass%.
  • the total content of the solvent is preferably such that the total solid content concentration of the curable resin composition of the present invention is 5 to 80% by mass, and is preferably 5 to 75% by mass. It is more preferably 10 to 70% by mass, further preferably 20 to 70% by mass, and even more preferably 40 to 70% by mass. preferable.
  • the solvent content may be adjusted according to the desired thickness and coating method.
  • the curable resin composition of the present invention may contain only two kinds of solvents, or may contain three or more kinds of solvents.
  • the curable resin composition of the present invention contains at least one resin (specific resin) selected from the group consisting of polyimide, polyimide precursor, polybenzoxazole and polybenzoxazole precursor.
  • the curable resin composition of the present invention preferably contains a polyimide or a polyimide precursor as the specific resin, and more preferably contains a polyimide precursor.
  • the specific resin preferably has a radically polymerizable group.
  • the curable resin composition preferably contains a photoradical polymerization initiator described later as a photosensitizer, contains a photoradical polymerization initiator described below as a photosensitizer, and is described later.
  • the radical cross-linking agent described above it is more preferable to contain the radical cross-linking agent described above, and it is further preferable to contain the photoradical polymerization initiator described below as the photosensitizer, the radical cross-linking agent described below, and the sensitizer described below.
  • a curable resin composition for example, a negative type photosensitive layer is formed.
  • the specific resin may have a polarity converting group such as an acid-decomposable group.
  • the curable resin composition preferably contains a photoacid generator described later as a photosensitizer. From such a curable resin composition, for example, a chemically amplified positive type photosensitive layer or a negative type photosensitive layer is formed.
  • polyimide precursor The type of the polyimide precursor used in the present invention is not particularly specified, but it is preferable that the polyimide precursor contains a repeating unit represented by the following formula (2). Equation (2) In formula (2), A 1 and A 2 independently represent an oxygen atom or NH, R 111 represents a divalent organic group, R 115 represents a tetravalent organic group, and R 113. And R 114 independently represent a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 in the formula (2) independently represent an oxygen atom or NH, and an oxygen atom is preferable.
  • R 111 in the formula (2) represents a divalent organic group.
  • the divalent organic group include a linear or branched aliphatic group, a cyclic aliphatic group and a group containing an aromatic group, and a linear or branched aliphatic group having 2 to 20 carbon atoms and a carbon number of carbon atoms.
  • a cyclic aliphatic group of 6 to 20, an aromatic group having 6 to 20 carbon atoms, or a group composed of a combination thereof is preferable, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferable.
  • a group represented by -Ar-L-Ar- is exemplified.
  • Ar is an aromatic group independently
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, ⁇ CO ⁇ , —S—. , -SO 2- or -NHCO-, or a group consisting of a combination of two or more of the above.
  • R 111 is preferably derived from diamine.
  • the diamine used for producing the polyimide precursor include linear or branched aliphatic, cyclic aliphatic or aromatic diamines. Only one kind of diamine may be used, or two or more kinds of diamines may be used. Specifically, a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 6 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, or a group consisting of a combination thereof. It is preferably a diamine containing, and more preferably a diamine containing a group consisting of an aromatic group having 6 to 20 carbon atoms. Examples of groups containing aromatic groups include:
  • * represents the binding site with other structures.
  • diamine examples include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,2- or 1 , 3-Diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4-) Aminocyclohexyl) methane, bis- (3-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine; m- or p-phenylenediamine, diaminotoluene, 4,4'- Or 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl;
  • diamines (DA-1) to (DA-18) described in paragraphs 0030 to 0031 of International Publication No. 2017/0385898 are also preferable.
  • a diamine having two or more alkylene glycol units in the main chain described in paragraphs 0032 to 0034 of International Publication No. 2017/0385898 is also preferably used.
  • R 111 is preferably represented by —Ar—L—Ar— from the viewpoint of the flexibility of the obtained organic film.
  • Ar is an aromatic group independently
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, ⁇ CO ⁇ , —S—. , -SO 2- or -NHCO-, or a group consisting of a combination of two or more of the above.
  • Ar is a phenylene group is preferably, L is an aliphatic hydrocarbon group having a fluorine atom in 1 carbon atoms which may be substituted or 2, -O -, - CO - , - S- or -SO 2 - is preferred .
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61) from the viewpoint of i-ray transmittance.
  • a divalent organic group represented by the formula (61) is more preferable.
  • Equation (51) In formula (51), R 50 to R 57 are independently hydrogen atoms, fluorine atoms or monovalent organic groups, and at least one of R 50 to R 57 is a fluorine atom, a methyl group or trifluoro. It is a methyl group, and each of * independently represents a bond site with a nitrogen atom in the formula (2).
  • the monovalent organic group of R 50 to R 57 includes an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Examples thereof include an alkyl fluoride group.
  • R 58 and R 59 are independently fluorine atoms or trifluoromethyl groups, respectively.
  • Examples of the diamine compound giving the structure of the formula (51) or (61) include 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2'-. Examples thereof include bis (fluoro) -4,4'-diaminobiphenyl and 4,4'-diaminooctafluorobiphenyl. These may be used alone or in combination of two or more.
  • diamines can also be preferably used.
  • R 115 in the formula (2) represents a tetravalent organic group.
  • a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or formula (6) is more preferable.
  • * independently represents a binding site with another structure.
  • R 112 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be replaced with a single bond or a fluorine atom, —O—, —CO ⁇ , —S—, —SO.
  • 2- , -NHCO-, and a group selected from a combination thereof are preferable, and a single bond, an alkylene group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, -O-,- More preferably, it is a group selected from CO-, -S- and -SO 2- , -CH 2- , -C (CF 3 ) 2- , -C (CH 3 ) 2- , -O-, More preferably, it is a divalent group selected from the group consisting of -CO-, -S- and -SO 2-.
  • R 115 include tetracarboxylic acid residues remaining after removal of the anhydride group from the tetracarboxylic dianhydride. Only one type of tetracarboxylic dianhydride may be used, or two or more types may be used.
  • the tetracarboxylic dianhydride is preferably represented by the following formula (O).
  • R 115 represents a tetravalent organic group.
  • a preferred range of R 115 has the same meaning as R 115 in formula (2), and preferred ranges are also the same.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-.
  • PMDA pyromellitic dianhydride
  • 3,3', 4,4'-biphenyltetracarboxylic dianhydride 3,3', 4,4'-.
  • tetracarboxylic dianhydrides (DAA-1) to (DAA-5) described in paragraph 0038 of International Publication No. 2017/038598 are also mentioned as preferable examples.
  • R 111 and R 115 has an OH group. More specifically, as R 111 , a residue of a bisaminophenol derivative can be mentioned.
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group, preferably containing a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy group, respectively. It is more preferable to contain an alkyleneoxy group. Further, it is preferable that at least one of R 113 and R 114 contains a polymerizable group, and it is more preferable that both contain a polymerizable group. As the polymerizable group, a radically polymerizable group is preferable because it is a group capable of undergoing a cross-linking reaction by the action of heat, radicals and the like.
  • the polymerizable group examples include a group having an ethylenically unsaturated bond, an alkoxymethyl group, a hydroxymethyl group, an acyloxymethyl group, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, a methylol group and an amino.
  • the group is mentioned.
  • a group having an ethylenically unsaturated bond is preferable.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, a (meth) allyl group, a group represented by the following formula (III), and the like, and a group represented by the following formula (III) is preferable.
  • R200 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, and a hydrogen atom or a methyl group is preferable.
  • * represents a binding site with another structure.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, -CH 2 CH (OH) CH 2- or a polyalkyleneoxy group. Examples of suitable R 201 are ethylene group, propylene group, trimethylene group, tetramethylene group, 1,2-butandyl group, 1,3-butandyl group, pentamethylene group, hexamethylene group, octamethylene group, dodecamethylene group.
  • alkylene group -CH 2 CH (OH) CH 2-
  • polyalkyleneoxy group ethylene group, propylene group, trimethylene group, -CH 2 CH (OH) CH 2- , polyalkyleneoxy group, etc.
  • a polyalkyleneoxy group is more preferred.
  • the polyalkyleneoxy group refers to a group in which two or more alkyleneoxy groups are directly bonded.
  • the alkylene groups in the plurality of alkyleneoxy groups contained in the polyalkyleneoxy group may be the same or different.
  • the sequence of the alkyleneoxy groups in the polyalkyleneoxy group may be a random sequence or a sequence having a block. It may be an array having a pattern such as alternating.
  • the carbon number of the alkylene group (including the carbon number of the substituent when the alkylene group has a substituent) is preferably 2 or more, more preferably 2 to 10, and 2 to 6. Is more preferable, 2 to 5 is more preferable, 2 to 4 is more preferable, 2 or 3 is particularly preferable, and 2 is most preferable.
  • the said alkylene group may have a substituent.
  • Preferred substituents include alkyl groups, aryl groups, halogen atoms and the like.
  • the number of alkyleneoxy groups contained in the polyalkyleneoxy group is preferably 2 to 20, more preferably 2 to 10, and even more preferably 2 to 6.
  • the polyalkyleneoxy group includes a polyethyleneoxy group, a polypropyleneoxy group, a polytrimethyleneoxy group, a polytetramethyleneoxy group, or a plurality of ethyleneoxy groups and a plurality of propylenes from the viewpoint of solvent solubility and solvent resistance.
  • a group in which an oxy group is bonded is preferable, a polyethyleneoxy group or a polypropyleneoxy group is more preferable, and a polyethyleneoxy group is further preferable.
  • the ethyleneoxy groups and the propyleneoxy groups may be randomly arranged or may be arranged by forming a block. , Alternate or the like may be arranged in a pattern. The preferred embodiment of the number of repetitions of the ethyleneoxy group and the like in these groups is as described above.
  • R 113 and R 114 are independently hydrogen atoms or monovalent organic groups.
  • the monovalent organic group include an aromatic group and an aralkyl group in which an acidic group is bonded to one, two or three carbons constituting the aryl group, preferably one.
  • Specific examples thereof include an aromatic group having an acidic group having 6 to 20 carbon atoms and an aralkyl group having an acidic group having 7 to 25 carbon atoms. More specifically, a phenyl group having an acidic group and a benzyl group having an acidic group can be mentioned.
  • the acidic group is preferably an OH group. It is also more preferable that R 113 or R 114 is a hydrogen atom, a 2-hydroxybenzyl group, a 3-hydroxybenzyl group and a 4-hydroxybenzyl group.
  • R 113 or R 114 is preferably a monovalent organic group.
  • the monovalent organic group preferably contains a linear or branched alkyl group, a cyclic alkyl group, or an aromatic group, and an alkyl group substituted with an aromatic group is more preferable.
  • the alkyl group preferably has 1 to 30 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • linear or branched alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group and an octadecyl group.
  • Isobutyl group isobutyl group, sec-butyl group, t-butyl group, 1-ethylpentyl group, 2-ethylhexyl group 2- (2- (2-methoxyethoxy) ethoxy) ethoxy group, 2- (2- (2) -Ethoxyethoxy) ethoxy) ethoxy) ethoxy group, 2- (2- (2- (2-methoxyethoxy) ethoxy) ethoxy) ethoxy group, and 2- (2- (2- (2- (2-ethoxyethoxy) ethoxy) ethoxy) Ethoxy group is mentioned.
  • the cyclic alkyl group may be a monocyclic cyclic alkyl group or a polycyclic cyclic alkyl group.
  • Examples of the monocyclic cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group.
  • Examples of the polycyclic cyclic alkyl group include an adamantyl group, a norbornyl group, a bornyl group, a phenyl group, a decahydronaphthyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a camphoroyl group, a dicyclohexyl group and a pinenyl group. Can be mentioned. Of these, the cyclohexyl group is most preferable from the viewpoint of achieving both high sensitivity. Further, as the alkyl group substituted with an aromatic group, a linear alkyl group substituted with an aromatic group described later is preferable.
  • aromatic group examples include substituted or unsubstituted benzene ring, naphthalene ring, pentalene ring, inden ring, azulene ring, heptalene ring, indacene ring, perylene ring, pentacene ring, acenaphthene ring, phenanthrene ring, and anthracene.
  • the benzene ring is most preferable.
  • R 113 is a hydrogen atom or R 114 is a hydrogen atom
  • R 113 is a hydrogen atom
  • R 114 is a hydrogen atom
  • the polyimide precursor forms a salt with a tertiary amine compound having an ethylenically unsaturated bond.
  • the tertiary amine compound having such an ethylenically unsaturated bond include N, N-dimethylaminopropyl methacrylate.
  • At least one of R 113 and R 114 may be a polar converting group such as an acid-degradable group.
  • the acid-degradable group is not particularly limited as long as it is decomposed by the action of an acid to produce an alkali-soluble group such as a phenolic hydroxy group or a carboxy group, but is not particularly limited, but is an acetal group, a ketal group, a silyl group, or a silyl ether group.
  • a tertiary alkyl ester group or the like is preferable, and an acetal group is more preferable from the viewpoint of exposure sensitivity.
  • the acid-degradable group examples include tert-butoxycarbonyl group, isopropoxycarbonyl group, tetrahydropyranyl group, tetrahydrofuranyl group, ethoxyethyl group, methoxyethyl group, ethoxymethyl group, trimethylsilyl group and tert-butoxycarbonylmethyl.
  • examples include a group, a trimethylsilyl ether group and the like. From the viewpoint of exposure sensitivity, an ethoxyethyl group or a tetrahydrofuranyl group is preferable.
  • the polyimide precursor has a fluorine atom in its structure.
  • the fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyimide precursor may be copolymerized with an aliphatic group having a siloxane structure.
  • the diamine component include bis (3-aminopropyl) tetramethyldisiloxane and bis (p-aminophenyl) octamethylpentasiloxane.
  • the repeating unit represented by the formula (2) is preferably the repeating unit represented by the formula (2-A). That is, it is preferable that at least one of the polyimide precursors used in the present invention is a precursor having a repeating unit represented by the formula (2-A). With such a structure, the width of the exposure latitude can be further widened. Equation (2-A)
  • a 1 and A 2 represent oxygen atoms
  • R 111 and R 112 each independently represent a divalent organic group
  • R 113 and R 114 each independently. It represents a hydrogen atom or a monovalent organic group
  • at least one of R 113 and R 114 is a group containing a polymerizable group, and it is preferable that both are groups containing a polymerizable group.
  • a 1, A 2, R 111 , R 113 and R 114 each independently have the same meaning as A 1, A 2, R 111 , R 113 and R 114 in formula (2), and preferred ranges are also the same .
  • R 112 has the same meaning as R 112 in formula (5), and preferred ranges are also the same.
  • the polyimide precursor may contain one type of repeating unit represented by the formula (2), but may contain two or more types. Further, it may contain a structural isomer of a repeating unit represented by the formula (2). Needless to say, the polyimide precursor may contain other types of repeating units in addition to the repeating unit of the above formula (2).
  • polyimide precursor in the present invention a polyimide precursor in which 50 mol% or more of all repeating units, further 70 mol% or more, particularly 90 mol% or more is a repeating unit represented by the formula (2) is used. Illustrated.
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 18,000 to 30,000, more preferably 20,000 to 27,000, and even more preferably 22,000 to 25,000.
  • the number average molecular weight (Mn) is preferably 7,200 to 14,000, more preferably 8,000 to 12,000, and even more preferably 9,200 to 11,200.
  • the degree of dispersion of the molecular weight of the polyimide precursor is preferably 2.5 or more, more preferably 2.7 or more, and further preferably 2.8 or more.
  • the upper limit of the dispersity of the molecular weight of the polyimide precursor is not particularly defined, but for example, 4.5 or less is preferable, 4.0 or less is more preferable, 3.8 or less is further preferable, and 3.2 or less is further preferable. Preferably, 3.1 or less is even more preferable, 3.0 or less is even more preferable, and 2.95 or less is particularly preferable.
  • the weight average molecular weight (Mw) is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, and even more preferably 15,000 to 40,000. Is.
  • the number average molecular weight (Mn) is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, and even more preferably 4,000 to 20,000.
  • the degree of dispersion of the molecular weight of the polyimide precursor is preferably 1.8 or more, more preferably 2.0 or more, and further preferably 2.2 or more.
  • the upper limit of the dispersity of the molecular weight of the polyimide precursor is not particularly determined, but for example, 7.0 or less is preferable, 6.5 or less is more preferable, and 6.0 or less is further preferable.
  • the degree of molecular weight dispersion is a value calculated by weight average molecular weight / number average molecular weight.
  • the polyimide used in the present invention may be an alkali-soluble polyimide or a polyimide that is soluble in a developing solution containing an organic solvent as a main component.
  • the alkali-soluble polyimide means a polyimide that dissolves 0.1 g or more at 23 ° C. in 100 g of a 2.38 mass% tetramethylammonium aqueous solution, and 0.5 g or more from the viewpoint of pattern forming property.
  • a polyimide that dissolves is preferable, and a polyimide that dissolves 1.0 g or more is more preferable.
  • the upper limit of the dissolution amount is not particularly limited, but is preferably 100 g or less.
  • the polyimide is preferably a polyimide having a plurality of imide structures in the main chain from the viewpoint of the film strength and the insulating property of the obtained organic film.
  • the "main chain” refers to the relatively longest binding chain among the molecules of the polymer compound constituting the resin, and the “side chain” refers to other binding chains.
  • the polyimide preferably has a fluorine atom.
  • the fluorine atom is preferably contained in, for example, R 132 in the repeating unit represented by the formula (4) described later, or R 131 in the repeating unit represented by the formula (4) described later, and is preferably contained in the formula (4) described later. It is more preferable that R 132 in the repeating unit represented by 4) or R 131 in the repeating unit represented by the formula (4) described later is contained as an alkyl fluoride group.
  • the amount of fluorine atoms with respect to the total mass of the polyimide is preferably 1 to 50 mol / g, and more preferably 5 to 30 mol / g.
  • the polyimide preferably has a silicon atom.
  • the silicon atom is preferably contained in R 131 in the repeating unit represented by the formula (4) described later, and is organically modified (poly ) in R 131 in the repeating unit represented by the formula (4) described later. ) It is more preferable that it is contained as a siloxane structure. Further, the silicon atom or the organically modified (poly) siloxane structure may be contained in the side chain of the polyimide, but is preferably contained in the main chain of the polyimide.
  • the amount of silicon atoms with respect to the total mass of the polyimide is preferably 0.01 to 5 mol / g, more preferably 0.05 to 1 mol / g.
  • the polyimide preferably has an ethylenically unsaturated bond.
  • the polyimide may have an ethylenically unsaturated bond at the end of the main chain or at the side chain, but it is preferably provided at the side chain.
  • the ethylenically unsaturated bond preferably has radical polymerization property.
  • the ethylenically unsaturated bond is preferably contained in R 132 in the repeating unit represented by the formula (4) described later or R 131 in the repeating unit represented by the formula (4) described later, and is preferably contained in the formula described later.
  • R 132 in the repeating unit represented by (4) or R 131 in the repeating unit represented by the formula (4) described later is contained as a group having an ethylenically unsaturated bond.
  • ethylenically unsaturated bond ethylene R 131 in the repeating unit represented by the preferably contained in R 131 in the repeating unit represented by the formula (4) described later, which will be described later Equation (4) It is more preferably contained as a group having a sex unsaturated bond.
  • Examples of the group having an ethylenically unsaturated bond include a group having a vinyl group which may be substituted, which is directly bonded to an aromatic ring such as a vinyl group, an allyl group and a vinylphenyl group, a (meth) acrylamide group, and a (meth) group.
  • Examples thereof include an acryloyloxy group and a group represented by the following formula (IV).
  • R 20 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, a hydrogen atom or a methyl group is preferable.
  • a (poly) alkyleneoxy group having 2 to 30 carbon atoms the alkylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 or 3; the number of repetitions is preferably 1 to 12 and 1 ⁇ 6 is more preferable, and 1 to 3 are particularly preferable), or a group in which two or more of these are combined is represented.
  • R 21 is preferably a group represented by any of the following formulas (R1) to (R3), and more preferably a group represented by the formula (R1).
  • L represents a single bond, an alkylene group having 2 to 12 carbon atoms, a (poly) alkyleneoxy group having 2 to 30 carbon atoms, or a group in which two or more of these are bonded
  • X Indicates an oxygen atom or a sulfur atom
  • * represents a bond site with another structure
  • represents a bond site with an oxygen atom to which R 201 in the formula (III) is bonded.
  • a preferred embodiment of the alkylene group having 2 to 12 carbon atoms in L or the (poly) alkyleneoxy group having 2 to 30 carbon atoms is the above-mentioned R 21 having 2 to 12 carbon atoms. This is the same as the preferred embodiment of 12 alkylene groups or (poly) alkyleneoxy groups having 2 to 30 carbon atoms.
  • X is preferably an oxygen atom.
  • * is synonymous with * in formula (IV), and the preferred embodiment is also the same.
  • the structure represented by the formula (R1) comprises, for example, a polyimide having a hydroxy group such as a phenolic hydroxy group and a compound having an isocyanato group and an ethylenically unsaturated bond (for example, 2-isocyanatoethyl methacrylate). Obtained by reacting.
  • the structure represented by the formula (R2) is obtained, for example, by reacting a polyimide having a carboxy group with a compound having a hydroxy group and an ethylenically unsaturated bond (for example, 2-hydroxyethyl methacrylate).
  • the structure represented by the formula (R3) is obtained by reacting, for example, a polyimide having a hydroxy group such as a phenolic hydroxy group with a compound having a glycidyl group and an ethylenically unsaturated bond (for example, glycidyl methacrylate). can get.
  • * represents a binding site with another structure, and is preferably a binding site with the main chain of polyimide.
  • the amount of the ethylenically unsaturated bond with respect to the total mass of the polyimide is preferably 0.05 to 10 mol / g, more preferably 0.1 to 5 mol / g.
  • the polyimide may have a crosslinkable group other than the ethylenically unsaturated bond.
  • the crosslinkable group other than the ethylenically unsaturated bond include a cyclic ether group such as an epoxy group and an oxetanyl group, an alkoxymethyl group such as a methoxymethyl group, and a methylol group.
  • the crosslinkable group other than the ethylenically unsaturated bond is preferably contained in R 131 in the repeating unit represented by the formula (4) described later, for example.
  • the amount of the crosslinkable group other than the ethylenically unsaturated bond with respect to the total mass of the polyimide is preferably 0.05 to 10 mol / g, more preferably 0.1 to 5 mol / g.
  • the polyimide may have a polarity converting group such as an acid-decomposable group.
  • the acid-decomposable group in the polyimide is the same as the acid-decomposable group described in R 113 and R 114 in the above formula (2), and the preferred embodiment is also the same.
  • the acid value of the polyimide is preferably 30 mgKOH / g or more, more preferably 50 mgKOH / g or more, and 70 mgKOH / g or more from the viewpoint of improving the developability. Is more preferable.
  • the acid value is preferably 500 mgKOH / g or less, more preferably 400 mgKOH / g or less, and even more preferably 200 mgKOH / g or less.
  • the acid value of the polyimide is preferably 2 to 35 mgKOH / g, and 3 to 30 mgKOH. / G is more preferable, and 5 to 20 mgKOH / g is even more preferable.
  • the acid value is measured by a known method, for example, by the method described in JIS K 0070: 1992.
  • an acid group having a pKa of 0 to 10 is preferable, and an acid group having a pKa of 3 to 8 is more preferable, from the viewpoint of achieving both storage stability and developability.
  • the pKa is a dissociation reaction in which hydrogen ions are released from an acid, and its equilibrium constant Ka is expressed by its negative common logarithm pKa.
  • pKa is a value calculated by ACD / ChemSketch (registered trademark) unless otherwise specified. Alternatively, the values published in "Revised 5th Edition Chemistry Handbook Basics" edited by the Chemical Society of Japan may be referred to.
  • the acid group is a polyvalent acid such as phosphoric acid
  • pKa is the first dissociation constant.
  • the polyimide preferably contains at least one selected from the group consisting of a carboxy group and a phenolic hydroxy group, and more preferably contains a phenolic hydroxy group.
  • the polyimide preferably has a phenolic hydroxy group.
  • the polyimide may have a phenolic hydroxy group at the end of the main chain or at the side chain.
  • the phenolic hydroxy group is preferably contained in, for example, R 132 in the repeating unit represented by the formula (4) described later, or R 131 in the repeating unit represented by the formula (4) described later.
  • the amount of the phenolic hydroxy group with respect to the total mass of the polyimide is preferably 0.1 to 30 mol / g, and more preferably 1 to 20 mol / g.
  • the polyimide used in the present invention is not particularly limited as long as it is a polymer compound having an imide ring, but preferably contains a repeating unit represented by the following formula (4), and is represented by the formula (4). More preferably, it is a compound containing a repeating unit and having a polymerizable group.
  • Equation (4) In formula (4), R 131 represents a divalent organic group and R 132 represents a tetravalent organic group. When having a polymerizable group, the polymerizable group may be located at at least one of R 131 and R 132 , or may be located at the end of the polyimide as shown in the following formula (4-1) or formula (4-2). It may be located in.
  • Equation (4-1) In formula (4-1), R133 is a polymerizable group, and the other groups are synonymous with formula (4). Equation (4-2) At least one of R 134 and R 135 is a polymerizable group, and if it is not a polymerizable group, it is an organic group, and the other group is synonymous with the formula (4).
  • the polymerizable group has the same meaning as the polymerizable group described in the above-mentioned polymerizable group possessed by the polyimide precursor and the like.
  • R 131 represents a divalent organic group. Examples of the divalent organic group include those similar to R 111 in the formula (2), and the preferred range is also the same. Further, as R 131 , a diamine residue remaining after removal of the amino group of diamine can be mentioned. Examples of the diamine include aliphatic, cyclic aliphatic or aromatic diamines. Specific examples include the example of R 111 in the formula (2) of the polyimide precursor.
  • R 131 is a diamine residue having at least two alkylene glycol units in the main chain from the viewpoint of more effectively suppressing the occurrence of warpage during firing. More preferably, it is a diamine residue containing two or more ethylene glycol chains, one or both of propylene glycol chains in one molecule, and more preferably, the above diamine residue, which does not contain an aromatic ring. It is a residue.
  • diamines containing two or more ethylene glycol chains and / or both of propylene glycol chains in one molecule include Jeffamine® KH-511, ED-600, ED-900, ED-2003, and EDR. -148, EDR-176, D-200, D-400, D-2000, D-4000 (trade name, manufactured by HUNTSMAN Co., Ltd.), 1- (2- (2- (2-aminopropoxy) ethoxy) Examples thereof include, but are not limited to, propoxy) propane-2-amine and 1- (1- (1- (2-aminopropoxy) propan-2-yl) oxy) propan-2-amine.
  • R 132 represents a tetravalent organic group.
  • examples of the tetravalent organic group include those similar to R 115 in the formula (2), and the preferred range is also the same.
  • R 132 includes a tetracarboxylic acid residue remaining after removal of an anhydride group from the tetracarboxylic dianhydride.
  • Specific examples include an example of R 115 in the polyimide precursor formula (2).
  • R 132 is preferably an aromatic diamine residue having 1 to 4 aromatic rings.
  • R 131 and R 132 has an OH group. More specifically, as R 131 , 2,2-bis (3-hydroxy-4-aminophenyl) propane, 2,2-bis (3-hydroxy-4-aminophenyl) hexafluoropropane, 2,2- Bis (3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, and the above (DA-1) to (DA-18) are preferable examples. As R 132 , the above (DAA-1) to (DAA-5) are more preferable examples.
  • the polyimide has a fluorine atom in its structure.
  • the content of fluorine atoms in the polyimide is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyimide may be copolymerized with an aliphatic group having a siloxane structure.
  • the diamine component include bis (3-aminopropyl) tetramethyldisiloxane and bis (p-aminophenyl) octamethylpentasiloxane.
  • the main chain end of polyimide may be sealed with an end-capping agent such as monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound or monoactive ester compound.
  • an end-capping agent such as monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound or monoactive ester compound.
  • monoamine acid anhydride
  • monocarboxylic acid monoacid chloride compound or monoactive ester compound.
  • monoactive ester compound preferable.
  • monoamine it is more preferable to use monoamine, and preferred compounds of monoamine include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, and 1-hydroxy-7.
  • the imidization rate (also referred to as "ring closure rate") of the polyimide is preferably 70% or more, more preferably 80% or more, from the viewpoint of the film strength, the insulating property, etc. of the obtained organic film. More preferably, it is 90% or more.
  • the upper limit of the imidization rate is not particularly limited, and may be 100% or less.
  • the imidization rate is measured by, for example, the following method. The infrared absorption spectrum of the polyimide is measured to determine the peak intensity P1 near 1377 cm -1, which is the absorption peak derived from the imide structure. Next, the polyimide is heat-treated at 350 ° C.
  • the polyimide may contain repeating units of the above formula (4), all containing one type of R 131 or R 132 , of the above formula (4) containing two or more different types of R 131 or R 132 . It may include repeating units. Further, the polyimide may contain other types of repeating units in addition to the repeating unit of the above formula (4).
  • Polyimide is, for example, a method of reacting a tetracarboxylic acid dianhydride with a diamine compound (partially replaced with a terminal encapsulant which is monoamine) at a low temperature, or a tetracarboxylic acid dianhydride (partly an acid) at a low temperature.
  • a polyimide precursor is obtained by using a method such as a method of reacting with an end-capping agent (replaced with an end-capping agent), and the polyimide precursor is completely imidized by using a known imidization reaction method, or an imide in the middle.
  • Synthesis using a method of stopping the conversion reaction and introducing a partially imidized structure and further, a method of introducing a partially imidized structure by blending a completely imidized polymer with its polyimide precursor.
  • a method of introducing a partially imidized structure by blending a completely imidized polymer with its polyimide precursor.
  • Examples of commercially available polyimide products include Durimide (registered trademark) 284 (manufactured by FUJIFILM Corporation) and Matrimide 5218 (manufactured by HUNTSMAN Corporation).
  • the weight average molecular weight (Mw) of the polyimide is preferably 5,000 to 70,000, more preferably 8,000 to 50,000, still more preferably 10,000 to 30,000. By setting the weight average molecular weight to 5,000 or more, the breakage resistance of the film after curing can be improved. In order to obtain an organic film having excellent mechanical properties, the weight average molecular weight is particularly preferably 20,000 or more. When two or more kinds of polyimides are contained, it is preferable that the weight average molecular weight of at least one kind of polyimide is in the above range. On the other hand, from the viewpoint of chemical resistance, the weight average molecular weight (Mw) of polyimide is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, and even more preferably 15,000 to 15,000. It is 40,000.
  • the polybenzoxazole precursor used in the present invention is not particularly defined for its structure and the like, but preferably contains a repeating unit represented by the following formula (3).
  • Equation (3) R 121 represents a divalent organic group, R 122 represents a tetravalent organic group, and R 123 and R 124 independently represent a hydrogen atom or a monovalent organic group. show.
  • R 123 and R 124 are synonymous with R 113 in the formula (2), respectively, and the preferable range is also the same. That is, at least one is preferably a polymerizable group.
  • R 121 represents a divalent organic group.
  • the divalent organic group a group containing at least one of an aliphatic group and an aromatic group is preferable.
  • the aliphatic group a linear aliphatic group is preferable.
  • R 121 is preferably a dicarboxylic acid residue. Only one type of dicarboxylic acid residue may be used, or two or more types may be used.
  • a dicarboxylic acid residue a dicarboxylic acid containing an aliphatic group and a dicarboxylic acid residue containing an aromatic group are preferable, and a dicarboxylic acid residue containing an aromatic group is more preferable.
  • a dicarboxylic acid containing an aliphatic group a dicarboxylic acid containing a linear or branched (preferably straight chain) aliphatic group is preferable, and a linear or branched (preferably straight chain) aliphatic group and two -COOH are preferable.
  • a dicarboxylic acid composed of is more preferable.
  • the number of carbon atoms of the linear or branched (preferably linear) aliphatic group is preferably 2 to 30, more preferably 2 to 25, further preferably 3 to 20, and 4 to 20. It is more preferably 15, and particularly preferably 5 to 10.
  • the linear aliphatic group is preferably an alkylene group.
  • dicarboxylic acid containing a linear aliphatic group examples include malonic acid, dimethylmalonic acid, ethylmalonic acid, isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2, 2-Dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid, hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3,3-Dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipic acid, 3-methyladipic acid, pimelliic acid, 2,2,6,6-tetramethylpimelic acid, suberin Acid, dodecafluorosveric acid, azelaic acid, sebacic acid, hexa
  • Z is a hydrocarbon group having 1 to 6 carbon atoms, and n is an integer of 1 to 6).
  • dicarboxylic acid containing an aromatic group a dicarboxylic acid having the following aromatic groups is preferable, and a dicarboxylic acid consisting of only a group having the following aromatic groups and two -COOH is more preferable.
  • A is -CH 2- , -O-, -S-, -SO 2- , -CO-, -NHCO-, -C (CF 3 ) 2- , and -C (CH 3 ) 2- Represents a divalent group selected from the group consisting of, and each independently represents a binding site with another structure.
  • dicarboxylic acid containing an aromatic group examples include 4,4'-carbonyldibenzoic acid, 4,4'-dicarboxydiphenyl ether, and terephthalic acid.
  • R 122 represents a tetravalent organic group.
  • the tetravalent organic group has the same meaning as R 115 in the above formula (2), and the preferable range is also the same.
  • R 122 is also preferably a group derived from a bisaminophenol derivative, and examples of the group derived from the bisaminophenol derivative include 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'.
  • bisaminophenol derivatives having the following aromatic groups are preferable.
  • X 1 represents -O-, -S-, -C (CF 3 ) 2- , -CH 2- , -SO 2- , -NHCO-, and * and # represent other structures, respectively.
  • R represents a hydrogen atom or a monovalent substituent, preferably a hydrogen atom or a hydrocarbon group, and more preferably a hydrogen atom or an alkyl group. Further, it is also preferable that R 122 has a structure represented by the above formula.
  • any two of the four * and # in total are the binding sites with the nitrogen atom to which R 122 in the formula (3) is bonded, and preferably R 122 in another 2 Exemplary ethynylphenylbiadamantane derivatives (3) is a binding site to the oxygen atom bonding, two * is a bond sites with an oxygen atom R 122 are attached in the formula (3) , And two # are the binding sites with the nitrogen atom to which R 122 in the formula (3) is bound, or two * are the binding sites with the nitrogen atom to which R 122 in the formula (3) is bound.
  • the site is a site and the two #s are the binding sites with the oxygen atom to which R 122 in the formula (3) is bonded, and the two * are the oxygen to which the R 122 in the formula (3) is bonded. It is more preferable that the binding site is a binding site with an atom and the two #s are the binding sites with a nitrogen atom to which R 122 in the formula (3) is bonded.
  • R 1 is a hydrogen atom, an alkylene, a substituted alkylene, -O-, -S-, -SO 2- , -CO-, -NHCO-, a single bond, or the following formula (A-). It is an organic group selected from the group of sc).
  • R 2 is any one of a hydrogen atom, an alkyl group, an alkoxy group, an acyloxy group, and a cyclic alkyl group, and may be the same or different.
  • R 3 is any of a hydrogen atom, a linear or branched alkyl group, an alkoxy group, an acyloxy group, and a cyclic alkyl group, and may be the same or different.
  • R 2 is an alkyl group and R 3 is an alkyl group has high transparency to i-rays and a high cyclization rate when cured at a low temperature. The effect can be maintained, which is preferable.
  • R 1 is an alkylene or a substituted alkylene.
  • the alkylene and the substituted alkylene according to R 1 include linear or branched alkyl groups having 1 to 8 carbon atoms, among which -CH 2- and -CH (CH 3 ).
  • -, -C (CH 3 ) 2 has sufficient solubility in a solvent while maintaining the effects of high transparency to i-rays and high cyclization rate when cured at low temperature. It is more preferable in that an excellent polybenzoxazole precursor can be obtained.
  • the polybenzoxazole precursor may contain other types of repeating units in addition to the repeating unit of the above formula (3). It is preferable to include the diamine residue represented by the following formula (SL) as another type of repeating unit in that the occurrence of warpage due to ring closure can be suppressed.
  • SL diamine residue represented by the following formula
  • Z has an a structure and a b structure
  • R 1s is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 2s is a hydrocarbon group having 1 to 10 carbon atoms.
  • at least one of R 3s, R 4s , R 5s , and R 6s is an aromatic group
  • the rest are hydrogen atoms or organic groups having 1 to 30 carbon atoms, which may be the same or different.
  • the polymerization of the a structure and the b structure may be block polymerization or random polymerization.
  • the mol% of the Z portion is 5 to 95 mol% for the a structure, 95 to 5 mol% for the b structure, and 100 mol% for a + b.
  • preferred Z includes those in which R 5s and R 6s in the b structure are phenyl groups.
  • the molecular weight of the structure represented by the formula (SL) is preferably 400 to 4,000, more preferably 500 to 3,000.
  • the tetracarboxylic dianhydride remaining after removal of the anhydride group from the tetracarboxylic dianhydride is further included as the repeating unit.
  • examples of such a tetracarboxylic acid residue include the example of R 115 in the formula (2).
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor is preferably 18,000 to 30,000, more preferably 20,000 to 29,000, and further, when used in the compositions described below. It is preferably 22,000 to 28,000.
  • the number average molecular weight (Mn) is preferably 7,200 to 14,000, more preferably 8,000 to 12,000, and even more preferably 9,200 to 11,200.
  • the degree of dispersion of the molecular weight of the polybenzoxazole precursor is preferably 1.4 or more, more preferably 1.5 or more, and further preferably 1.6 or more.
  • the upper limit of the dispersity of the molecular weight of the polybenzoxazole precursor is not particularly determined, but for example, it is preferably 2.6 or less, more preferably 2.5 or less, further preferably 2.4 or less, and 2.3 or less. Is more preferable, and 2.2 or less is even more preferable.
  • the polybenzoxazole is not particularly limited as long as it is a polymer compound having a benzoxazole ring, but is preferably a compound represented by the following formula (X), and a compound represented by the following formula (X). It is more preferable that the compound has a polymerizable group. As the polymerizable group, a radically polymerizable group is preferable. Further, it may be a compound represented by the following formula (X) and having a polarity converting group such as an acid-degradable group. In formula (X), R 133 represents a divalent organic group and R 134 represents a tetravalent organic group.
  • the polar converting group such as a polymerizable group or an acid-degradable group may be located at at least one of R 133 and R 134 , and may be located at least one of the following. It may be located at the end of the polybenzoxazole as shown in the formula (X-1) or the formula (X-2). Equation (X-1) In formula (X-1), at least one of R 135 and R 136 is a polar converting group such as a polymerizable group or an acid-degradable group, and is not a polar converting group such as a polymerizable group or an acid-degradable group.
  • R 137 is a polar converting group such as a polymerizable group or an acid-degradable group, the other is a substituent, and the other group is synonymous with the formula (X).
  • a polar converting group such as a polymerizable group or an acid-degradable group is synonymous with the polymerizable group described in the polymerizable group possessed by the above-mentioned polyimide precursor or the like.
  • R 133 represents a divalent organic group.
  • the divalent organic group include an aliphatic group and an aromatic group.
  • Specific examples include the example of R 121 in the formula (3) of the polybenzoxazole precursor. A preferred example thereof is the same as that of R 121.
  • R 134 represents a tetravalent organic group.
  • the tetravalent organic group include R 122 in the formula (3) of the polybenzoxazole precursor. A preferred example thereof is the same as that of R 122.
  • four conjugates of a tetravalent organic group exemplified as R 122 combine with a nitrogen atom and an oxygen atom in the above formula (X) to form a condensed ring.
  • R 134 when R 134 is the following organic group, it forms the following structure.
  • Polybenzoxazole preferably has an oxazoleization rate of 85% or more, more preferably 90% or more.
  • the upper limit is not particularly limited and may be 100%.
  • the oxazoleization rate is 85% or more, the membrane shrinkage due to ring closure that occurs when oxazoled by heating is reduced, and the occurrence of warpage can be suppressed more effectively.
  • the polybenzoxazole may contain repeating units of the above formula (X), all of which contain one R 131 or R 132, and of the above formula (X) containing two or more different types of R 131 or R 132. ) May include repeating units. Further, the polybenzoxazole may contain other types of repeating units in addition to the repeating unit of the above formula (X).
  • the resulting polybenzoxazole for example, a bis-aminophenol derivative, a dicarboxylic acid or the dicarboxylic acid containing R 133, is reacted with a compound selected from such dicarboxylic acid dichloride and dicarboxylic acid derivatives, the polybenzoxazole precursor ,
  • a compound selected from such dicarboxylic acid dichloride and dicarboxylic acid derivatives the polybenzoxazole precursor .
  • This is obtained by oxazole using a known oxazole reaction method.
  • an active ester-type dicarboxylic acid derivative obtained by reacting 1-hydroxy-1,2,3-benzotriazole or the like in advance may be used in order to increase the reaction yield or the like.
  • the weight average molecular weight (Mw) of polybenzoxazole is preferably 5,000 to 70,000, more preferably 8,000 to 50,000, and even more preferably 10,000 to 30,000. By setting the weight average molecular weight to 5,000 or more, the breakage resistance of the film after curing can be improved. In order to obtain an organic film having excellent mechanical properties, the weight average molecular weight is particularly preferably 20,000 or more. When two or more kinds of polybenzoxazole are contained, it is preferable that the weight average molecular weight of at least one kind of polybenzoxazole is in the above range.
  • a polyimide precursor or the like is obtained by reacting a dicarboxylic acid or a dicarboxylic acid derivative with a diamine.
  • the dicarboxylic acid or the dicarboxylic acid derivative is obtained by halogenating it with a halogenating agent and then reacting it with a diamine.
  • an organic solvent in the reaction.
  • the organic solvent may be one kind or two or more kinds.
  • the organic solvent can be appropriately determined depending on the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone and N-ethylpyrrolidone.
  • the polyimide may be produced by synthesizing a polyimide precursor and then cyclizing it by a method such as thermal imidization or chemical imidization (for example, promotion of cyclization reaction by acting a catalyst), or directly. , Polyimide may be synthesized.
  • non-halogen catalyst a known amidation catalyst containing no halogen atom can be used without particular limitation.
  • a boroxin compound, an N-hydroxy compound, a tertiary amine, a phosphoric acid ester, or an amine can be used.
  • carbodiimide compounds such as salts and urea compounds.
  • the carbodiimide compound include N, N'-diisopropylcarbodiimide, N, N'-dicyclohexylcarbodiimide and the like.
  • the end of the polyimide precursor or the like is used as an end-capping agent such as an acid anhydride, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound. It is preferable to seal. It is more preferable to use monoalcohol, phenol, thiol, thiophenol, and monoamine as the terminal encapsulant.
  • Preferred compounds of monoalcohols include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol, flufuryl alcohol, and isopropanol.
  • Preferred compounds of phenols include phenol, methoxyphenol, methylphenol, naphthalene-1-ol, naphthalene-2-ol and the like.
  • Preferred compounds of monoamine are aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene.
  • encapsulants for amino groups are carboxylic acid anhydrides, carboxylic acid chlorides, carboxylic acid bromides, sulfonic acid chlorides, anhydrous sulfonic acids, sulfonic acid carboxylic acid anhydrides and the like, with carboxylic acid anhydrides and carboxylic acid chlorides being more preferred. preferable.
  • Preferred compounds of carboxylic acid anhydrides include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride and the like.
  • Preferred compounds of the carboxylic acid chloride include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylic acid chloride, pivaloyl chloride, cyclohexanecarbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride, 1-adamantancarbonyl chloride. , Heptafluorobutyryl chloride, stearate chloride, benzoyl chloride, and the like.
  • a step of precipitating a solid may be included in the production of the polyimide precursor or the like.
  • the polyimide precursor or the like in the reaction solution can be precipitated in water, and the polyimide precursor or the like such as tetrahydrofuran can be dissolved in a soluble solvent to precipitate a solid.
  • the polyimide precursor or the like can be dried to obtain a powdery polyimide precursor or the like.
  • the content of the specific resin in the composition of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more, and more preferably 40% by mass or more, based on the total solid content of the composition. More preferably, it is more preferably 50% by mass or more.
  • the resin content in the composition of the present invention is preferably 99.5% by mass or less, more preferably 99% by mass or less, and 98% by mass or less, based on the total solid content of the composition. It is more preferably 97% by mass or less, and even more preferably 95% by mass or less.
  • the composition of the present invention may contain only one type of the specific resin, or may contain two or more types of the specific resin. When two or more kinds are included, the total amount is preferably in the above range.
  • the composition of the present invention may contain the above-mentioned specific resin and another resin (hereinafter, also simply referred to as “other resin”) different from the specific resin.
  • other resins include polyamide-imide, polyamide-imide precursor, phenol resin, polyamide, epoxy resin, polysiloxane, resin containing a siloxane structure, and acrylic resin.
  • acrylic resin by further adding an acrylic resin, a composition having excellent coatability can be obtained, and an organic film having excellent solvent resistance can be obtained.
  • the composition is formed by adding an acrylic resin having a weight average molecular weight of 20,000 or less and having a high polymerizable base value to the composition in place of the polymerizable compound described later or in addition to the polymerizable compound described later. It is possible to improve the coatability of an object, the solvent resistance of an organic film, and the like.
  • the content of the other resin is preferably 0.01% by mass or more, preferably 0.05% by mass or more, based on the total solid content of the composition. More preferably, it is more preferably 1% by mass or more, further preferably 2% by mass or more, further preferably 5% by mass or more, further preferably 10% by mass or more. ..
  • the content of the other resin in the composition of the present invention is preferably 80% by mass or less, more preferably 75% by mass or less, and 70% by mass, based on the total solid content of the composition. It is more preferably less than or equal to, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the content of the other resin may be low.
  • the content of the other resin is preferably 20% by mass or less, more preferably 15% by mass or less, and preferably 10% by mass or less, based on the total solid content of the composition. More preferably, it is more preferably 5% by mass or less, and even more preferably 1% by mass or less.
  • the lower limit of the content is not particularly limited, and may be 0% by mass or more.
  • the composition of the present invention may contain only one type of other resin, or may contain two or more types. When two or more kinds are included, the total amount is preferably in the above range.
  • the composition of the present invention preferably contains a photosensitizer.
  • a photosensitizer a photopolymerization initiator is preferable.
  • the composition of the present invention preferably contains a photopolymerization initiator as the photosensitizer.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the photoradical polymerization initiator is not particularly limited and may be appropriately selected from known photoradical polymerization initiators.
  • a photoradical polymerization initiator having photosensitivity to light rays in the ultraviolet region to the visible region is preferable.
  • it may be an activator that produces an active radical by causing some action with the photoexcited sensitizer.
  • an oxime compound described later is preferable.
  • the photoradical polymerization initiator contains at least one compound having a molar extinction coefficient of at least about 50 L ⁇ mol -1 ⁇ cm -1 within the range of about 300 to 800 nm (preferably 330 to 500 nm). Is preferable.
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using an ethyl acetate solvent with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • a known compound can be arbitrarily used as the photoradical polymerization initiator.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives and the like.
  • paragraphs 0165 to 0182 of JP2016-027357 and paragraphs 0138 to 0151 of International Publication No. 2015/199219 can be referred to, and the contents thereof are incorporated in the present specification.
  • Examples of the ketone compound include the compounds described in paragraph 0087 of JP-A-2015-087611, the contents of which are incorporated in the present specification.
  • KayaCure DETX manufactured by Nippon Kayaku Co., Ltd.
  • Nippon Kayaku Co., Ltd. is also preferably used.
  • a hydroxyacetophenone compound, an aminoacetophenone compound, and an acylphosphine compound can be preferably used as the photoradical polymerization initiator. More specifically, for example, the aminoacetophenone-based initiator described in JP-A-10-291969 and the acylphosphine oxide-based initiator described in Japanese Patent No. 4225898 can be used.
  • IRGACURE 184 (IRGACURE is a registered trademark)
  • DAROCUR 1173 As the hydroxyacetophenone-based initiator, IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, IRGACURE 500, IRGACURE-2959, and IRGACURE 127 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator commercially available products IRGACURE 907, IRGACURE 369, and IRGACURE 379 (trade names: all manufactured by BASF) can be used.
  • the compound described in JP-A-2009-191179 in which the absorption maximum wavelength is matched with a wavelength light source such as 365 nm or 405 nm, can also be used.
  • acylphosphine-based initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. Further, commercially available products such as IRGACURE-819 and IRGACURE-TPO (trade names: both manufactured by BASF) can be used.
  • metallocene compound examples include IRGACURE-784 and IRGACURE-784EG (both manufactured by BASF).
  • the photoradical polymerization initiator is more preferably an oxime compound.
  • the exposure latitude can be improved more effectively.
  • the oxime compound is particularly preferable because it has a wide exposure latitude (exposure margin) and also acts as a photocuring accelerator.
  • the compound described in JP-A-2001-233842 the compound described in JP-A-2000-080068, and the compound described in JP-A-2006-342166 can be used.
  • Preferred oxime compounds include, for example, compounds having the following structures, 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminobutane-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxy. Iminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropane-1-one, 3- (4-toluenesulfonyloxy) iminobutane-2-one , And 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one and the like.
  • an oxime compound (oxime-based photopolymerization initiator) as the photoradical polymerization initiator.
  • IRGACURE OXE 01 IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (above, manufactured by BASF), ADEKA PUTMER N-1919 (manufactured by ADEKA Corporation, Japanese Patent Application Laid-Open No. 2012-014052).
  • a radical polymerization initiator 2) is also preferably used.
  • TR-PBG-304 manufactured by Changshu Powerful Electronics New Materials Co., Ltd.
  • ADEKA ARCLUDS NCI-831 ADEKA ARCULDS NCI-930
  • DFI-091 manufactured by Daito Chemix Co., Ltd.
  • Daito Chemix Co., Ltd. can be used.
  • An oxime compound having the following structure can also be used.
  • an oxime compound having a fluorine atom examples include compounds described in JP-A-2010-262028, compounds 24, 36-40 described in paragraph 0345 of JP-A-2014-500852, and JP-A-2013. Examples thereof include the compound (C-3) described in paragraph 0101 of JP-A-164471.
  • Examples of the most preferable oxime compound include an oxime compound having a specific substituent shown in JP-A-2007-269779 and an oxime compound having a thioaryl group shown in JP-A-2009-191061.
  • the photoradical polymerization initiator is a trihalomethyltriazine compound, a benzyldimethylketal compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, or a triaryl.
  • More preferable photoradical polymerization initiators are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds and acetophenone compounds.
  • At least one compound selected from the group consisting of trihalomethyltriazine compounds, ⁇ -aminoketone compounds, oxime compounds, triarylimidazole dimers, and benzophenone compounds is more preferable, and metallocene compounds or oxime compounds are even more preferable, and oxime compounds are even more preferable. Is even more preferable.
  • the photoradical polymerization initiator is N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl such as benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michler ketone).
  • 2-benzyl such as benzophenone
  • benzoin ether compounds such as benzoin alkyl ether
  • benzoin compounds such as benzoin and alkyl benzoin
  • benzyl derivatives such as benzyl dimethyl ketal.
  • a compound represented by the following formula (I) can also be used.
  • RI00 is an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms, an alkoxy group having 1 to 12 carbon atoms, a phenyl group, and the like.
  • RI01 is a group represented by the formula (II). It is the same group as R I00, and R I02 to R I04 are independently alkyl groups having 1 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, or halogen atoms.
  • R I05 to R I07 are the same as R I 02 to R I 04 of the above formula (I).
  • the compounds described in paragraphs 0048 to 0055 of International Publication No. 2015/1254669 can also be used.
  • the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the composition of the present invention. It is more preferably 0.5 to 15% by mass, and even more preferably 1.0 to 10% by mass. Only one type of photopolymerization initiator may be contained, or two or more types may be contained. When two or more kinds of photopolymerization initiators are contained, the total amount is preferably in the above range.
  • the composition of the present invention preferably contains a photoacid generator as a photosensitizer.
  • a photoacid generator for example, acid is generated in the exposed portion of the composition layer, the solubility of the exposed portion in the developing solution (for example, an alkaline aqueous solution) is increased, and the exposed portion is affected by the developing solution. A positive pattern to be removed can be obtained.
  • the composition contains a photoacid generator and a polymerizable compound other than the radically polymerizable compound described later, for example, the acid generated in the exposed portion promotes the cross-linking reaction of the polymerizable compound.
  • the exposed portion may be more difficult to be removed by the developing solution than the non-exposed portion. According to such an aspect, a negative type pattern can be obtained.
  • the photoacid generator is not particularly limited as long as it generates an acid by exposure, but is an onium salt compound such as a quinonediazide compound, a diazonium salt, a phosphonium salt, a sulfonium salt, or an iodonium salt, an imide sulfonate, and an oxime.
  • onium salt compound such as a quinonediazide compound, a diazonium salt, a phosphonium salt, a sulfonium salt, or an iodonium salt, an imide sulfonate, and an oxime.
  • examples thereof include sulfonate compounds such as sulfonate, diazodisulfone, disulfone, and o-nitrobenzyl sulfonate.
  • the quinonediazide compound includes a polyhydroxy compound in which quinonediazide sulfonic acid is ester-bonded, a polyamino compound in which quinonediazide sulfonic acid is conjugated with a sulfonamide, and a polyhydroxypolyamino compound in which quinonediazide sulfonic acid is ester-bonded and a sulfonamide bond.
  • Examples thereof include those bonded by at least one of the above. In the present invention, for example, it is preferable that 50 mol% or more of all the functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide.
  • the quinone diazide either a 5-naphthoquinone diazidosulfonyl group or a 4-naphthoquinone diazidosulfonyl group is preferably used.
  • the 4-naphthoquinone diazidosulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinone diazidosulfonyl ester compound has absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • a 4-naphthoquinone diazidosulfonyl ester compound or a 5-naphthoquinone diazidosulfonyl ester compound depending on the wavelength to be exposed.
  • a naphthoquinone diazidosulfonyl ester compound having a 4-naphthoquinone diazidosulfonyl group and a 5-naphthoquinone diazidosulfonyl group may be contained in the same molecule, or a 4-naphthoquinone diazidosulfonyl ester compound and a 5-naphthoquinone diazidosulfonyl ester compound may be contained. It may be contained.
  • the naphthoquinone diazide compound can be synthesized by an esterification reaction between a compound having a phenolic hydroxy group and a quinone diazido sulfonic acid compound, and can be synthesized by a known method. By using these naphthoquinone diazide compounds, the resolution, sensitivity, and residual film ratio are further improved.
  • Examples of the naphthoquinone diazide compound include 1,2-naphthoquinone-2-diazide-5-sulfonic acid or 1,2-naphthoquinone-2-diazide-4-sulfonic acid, and salts or ester compounds of these compounds. Be done.
  • the photoacid generator is also preferably a compound containing an oxime sulfonate group (hereinafter, also simply referred to as “oxime sulfonate compound”).
  • oxime sulfonate compound is not particularly limited as long as it has an oxime sulfonate group, but the following formula (OS-1), the formula (OS-103) described later, the formula (OS-104), or the formula (OS-) It is preferably an oxime sulfonate compound represented by 105).
  • X 3 is an alkyl group, an alkoxyl group, or a halogen atom. If X 3 there are a plurality, each be the same or may be different. Alkyl group and an alkoxyl group represented by X 3 may have a substituent.
  • the halogen atom in the X 3, a chlorine atom or a fluorine atom is preferable.
  • m3 represents an integer of 0 to 3, and 0 or 1 is preferable. When m3 is 2 or 3, a plurality of X 3 may be the same or different.
  • R 34 represents an alkyl group or an aryl group, which is an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 5 carbon atoms, and carbon. It is preferably an alkoxyl group of numbers 1 to 5, a phenyl group optionally substituted with W, a naphthyl group optionally substituted with W or an anthranyl group optionally substituted with W.
  • W is a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 5 carbon atoms or an alkoxyl halide having 1 to 5 carbon atoms. It represents a group, an aryl group having 6 to 20 carbon atoms, and an aryl halide group having 6 to 20 carbon atoms.
  • oxime sulfonate compound represented by the formula (OS-1) are described in paragraphs 0064 to 0068 of JP2011-209692A and paragraph numbers 0158 to 0167 of JP2015-194674A. The following compounds are exemplified and their contents are incorporated herein.
  • R s1 represents an alkyl group, an aryl group or a heteroaryl group
  • R s6 which represents a group or a halogen atom and may be present in a plurality, independently represents a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group
  • Xs represents O or S.
  • ns represents 1 or 2
  • ms represents an integer of 0-6.
  • an alkyl group represented by R s1 preferably having 1 to 30 carbon atoms
  • an aryl group preferably having 6 to 30 carbon atoms
  • a heteroaryl group carbon
  • numbers 4 to 30 may have a substituent T.
  • R s2 is preferably a hydrogen atom, an alkyl group (preferably having 1 to 12 carbon atoms) or an aryl group (preferably having 6 to 30 carbon atoms). , Hydrogen atom or alkyl group is more preferable.
  • R s2 that may be present in two or more in the compound, one or two are preferably an alkyl group, an aryl group or a halogen atom, and one is more preferably an alkyl group, an aryl group or a halogen atom. It is particularly preferable that one is an alkyl group and the rest is a hydrogen atom.
  • the alkyl group or aryl group represented by R s2 may have a substituent T.
  • Xs represents O or S, and is preferably O.
  • the ring containing Xs as a ring member is a 5-membered ring or a 6-membered ring.
  • ns represents 1 or 2, and when Xs is O, ns is preferably 1, and when Xs is S, ns is. It is preferably 2.
  • the alkyl group represented by R s6 preferably having 1 to 30 carbon atoms
  • the alkyloxy group preferably having 1 to 30 carbon atoms
  • ms represents an integer of 0 to 6, preferably an integer of 0 to 2, more preferably 0 or 1, and 0. Is particularly preferable.
  • the compound represented by the above formula (OS-103) is particularly preferably a compound represented by the following formula (OS-106), formula (OS-110) or formula (OS-111).
  • the compound represented by the formula (OS-104) is particularly preferably a compound represented by the following formula (OS-107), and the compound represented by the above formula (OS-105) is a compound represented by the following formula (OS-105). -108) or a compound represented by the formula (OS-109) is particularly preferable.
  • R t1 represents an alkyl group, an aryl group or a heteroaryl group
  • R t7 represents a hydrogen atom or a bromine atom
  • R t8 represents a hydrogen atom and the number of carbon atoms. 1 to 8 alkyl groups, halogen atoms, chloromethyl groups, bromomethyl groups, bromoethyl groups, methoxymethyl groups, phenyl groups or chlorophenyl groups
  • R t9 represents hydrogen atoms, halogen atoms, methyl groups or methoxy groups
  • R t2 represents a hydrogen atom or a methyl group.
  • R t7 represents a hydrogen atom or a bromine atom, and is preferably a hydrogen atom.
  • R t8 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, or a phenyl group.
  • it represents a chlorophenyl group, preferably an alkyl group having 1 to 8 carbon atoms, a halogen atom or a phenyl group, more preferably an alkyl group having 1 to 8 carbon atoms, and an alkyl group having 1 to 6 carbon atoms. It is more preferable to have a methyl group, and it is particularly preferable to have a methyl group.
  • R t9 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and is preferably a hydrogen atom.
  • R t2 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • the three-dimensional structure (E, Z) of the oxime may be either one or a mixture.
  • Specific examples of the oxime sulfonate compound represented by the above formulas (OS-103) to (OS-105) include paragraph numbers 008 to 0995 of JP2011-209692A and paragraphs of JP2015-194674A.
  • the compounds of Nos. 0168 to 0194 are exemplified and their contents are incorporated herein.
  • oxime sulfonate compound containing at least one oxime sulfonate group include compounds represented by the following formulas (OS-101) and (OS-102).
  • Ru9 is a hydrogen atom, an alkyl group, an alkenyl group, an alkoxyl group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, Represents an aryl group or a heteroaryl group.
  • R u9 is a cyano group or an aryl group is more preferable, and the embodiment in which R u9 is a cyano group, a phenyl group or a naphthyl group is further preferable.
  • Ru2a represents an alkyl or aryl group.
  • Xu is -O-, -S-, -NH- , -NR u5-, -CH 2- , -CR u6 H- or CR u6 R u7.
  • Ru1 to Ru4 are independently hydrogen atom, halogen atom, alkyl group, alkenyl group, alkoxyl group, amino group, alkoxycarbonyl group and alkylcarbonyl group, respectively. , Arylcarbonyl group, amide group, sulfo group, cyano group or aryl group. 2 in turn, each may be bonded to each other to form a ring of the R u1 ⁇ R u4. At this time, the ring may be condensed to form a condensed ring together with the benzene ring.
  • R u1 ⁇ R u4 a hydrogen atom, preferably a halogen atom or an alkyl group, also aspects to form the at least two aryl groups bonded to each other of R u1 ⁇ R u4 preferred.
  • Ru1 to Ru4 are hydrogen atoms. Any of the above-mentioned substituents may further have a substituent.
  • the compound represented by the above formula (OS-101) is more preferably a compound represented by the formula (OS-102).
  • the three-dimensional structure (E, Z, etc.) of the oxime and the benzothiazole ring may be either one or a mixture.
  • Specific examples of the compound represented by the formula (OS-101) include the compounds described in paragraph numbers 0102 to 0106 of JP2011-209692 and paragraph numbers 0195 to 0207 of JP2015-194674. These contents are incorporated herein by reference.
  • the following b-9, b-16, b-31, and b-33 are preferable.
  • Examples of the onium salt compound or the sulfonate compound include the compounds described in paragraphs 0064 to 0122 of JP-A-2008-013646.
  • a commercially available product may be used as the photoacid generator.
  • Commercially available products include WPAG-145, WPAG-149, WPAG-170, WPAG-199, WPAG-336, WPAG-376, WPAG-370, WPAG-443, WPAG-469, WPAG-638, and WPAG-69 (any of which).
  • Omnicat 250 All manufactured by IGM Resins BV
  • Irgacure 250 All manufactured by Irgacure 270
  • Irgacure 290 all manufactured by BASF
  • MBZ-101 all manufactured by BASF
  • an organic halogenated compound can also be applied.
  • the organic halogenated compound include Wakabayashi et al., “Bull Chem. Soc Japan” 42, 2924 (1969), US Pat. No. 3,905,815, JP-A-46-4605, JP-A. 48-36281, JP-A-55-3270, JP-A-60-239736, JP-A-61-169835, JP-A-61-169837, JP-A-62-58241, JP-A-62- 212401, Japanese Patent Application Laid-Open No. 63-70243, Japanese Patent Application Laid-Open No. 63-298339, M.D. P.
  • an oxazole compound substituted with a trihalomethyl group an S-triazine compound
  • an organic borate compound can also be applied.
  • the organic borate compound include JP-A-62-143044, JP-A-62-150242, JP-A-9-188685, JP-A-9-188686, JP-A-9-188710, and JP-A-2000. -131837, JP-A-2002-107916, Japanese Patent No. 2764769, Japanese Patent Application No. 2000-310808, etc., and Kunz, Martin "Rad Tech '98. Proceeding Compound 19-22, 1998, Chicago" and the like.
  • Specific examples thereof include organic boron transition metal coordination complexes of JP-A-7-140589, JP-A-7-306527, and JP-A-7-292014.
  • a disulfone compound can also be applied as a photoacid generator.
  • examples of the disulfone compound include compounds described in JP-A-61-166544, Japanese Patent Application Laid-Open No. 2001-132318, and diazodisulfone compounds.
  • onium salt compound examples include S.I. I. Schlesinger, Photogr. Sci. Eng. , 18,387 (1974), T.K. S. The diazonium salt described in Bal et al, Polymer, 21,423 (1980), the ammonium salt described in US Pat. No. 4,069,055, JP-A-4-365549, etc., US Pat. No. 4,069, Phosphonium salts described in 055, 4,069,056, European Patents 104, 143, US Patents 339,049, 410,201, JP-A-2. -150848, Iodonium salt described in JP-A-2-296514, European Patent Nos.
  • onium salts examples include onium salts represented by the following general formulas (RI-I) to (RI-III).
  • Ar 11 represents an aryl group having 20 or less carbon atoms which may have 1 to 6 substituents, and preferred substituents are an alkyl group having 1 to 12 carbon atoms and 1 carbon number.
  • Z11 - represents a monovalent anion, a halogen ion, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonate ion, sulfinate ion, thiosulfonate ion, sulfate ion, surface stability
  • Perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonic acid ion, sulfinate ion are preferable.
  • Ar 21 and Ar 22 each represent an aryl group having 20 or less carbon atoms which may independently have 1 to 6 substituents, and preferred substituents have 1 to 12 carbon atoms.
  • Z 21 - represents a monovalent anion, a halogen ion, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonate ion, sulfinate ion, thiosulfonate ion, sulfate ion, stability, From the viewpoint of reactivity, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonic acid ion, sulfinate ion and carboxylate ion are preferable.
  • R 31 , R 32 , and R 33 each represent an aryl group or an alkyl group, an alkenyl group, or an alkynyl group having 20 or less carbon atoms which may independently have 1 to 6 substituents.
  • an aryl group from the viewpoint of reactivity and stability.
  • Preferred substituents include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 1 to 12 carbon atoms, an alkynyl group having 1 to 12 carbon atoms, an aryl group having 1 to 12 carbon atoms, and an alkoxy group having 1 to 12 carbon atoms.
  • Examples thereof include a group, a cyano group, a sulfonyl group, a thioalkyl group having 1 to 12 carbon atoms, and a thioaryl group having 1 to 12 carbon atoms.
  • Z31 - represents a monovalent anion, a halogen ion, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonate ion, sulfinate ion, thiosulfonate ion, sulfate ion, stability, reaction From the viewpoint of properties, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonic acid ion, sulfinate ion and carboxylate ion are preferable.
  • the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the composition of the present invention. It is more preferably 2 to 15% by mass. Only one type of photoacid generator may be contained, or two or more types may be contained. When two or more photoacid generators are contained, the total is preferably in the above range.
  • the composition of the present invention may contain a thermal polymerization initiator, and in particular, a thermal radical polymerization initiator.
  • a thermal radical polymerization initiator is a compound that generates radicals by heat energy to initiate or accelerate the polymerization reaction of a polymerizable compound. By adding the thermal radical polymerization initiator, the polymerization reaction of the resin and the polymerizable compound can be allowed to proceed in the heating step described later, so that the solvent resistance can be further improved.
  • thermal radical polymerization initiator examples include the compounds described in paragraphs 0074 to 0118 of JP-A-2008-063554.
  • the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the composition of the present invention. More preferably, it is 5 to 15% by mass. Only one type of thermal polymerization initiator may be contained, or two or more types may be contained. When two or more kinds of thermal polymerization initiators are contained, the total amount is preferably in the above range.
  • the composition of the present invention may contain a thermoacid generator.
  • the thermoacid generator generates an acid by heating and promotes a cross-linking reaction of at least one compound selected from a compound having a hydroxymethyl group, an alkoxymethyl group or an acyloxymethyl group, an epoxy compound, an oxetane compound and a benzoxazine compound. It has the effect of making it.
  • the thermal decomposition start temperature of the thermal acid generator is preferably 50 ° C. to 270 ° C., more preferably 50 ° C. to 250 ° C. Further, no acid is generated during drying (pre-baking: about 70 to 140 ° C.) after the composition is applied to the substrate, and during final heating (cure: about 100 to 400 ° C.) after patterning by subsequent exposure and development. It is preferable to select an acid-generating agent as the thermal acid generator because it can suppress a decrease in sensitivity during development.
  • the thermal decomposition start temperature is obtained as the peak temperature of the exothermic peak, which is the lowest temperature when the thermoacid generator is heated to 500 ° C. at 5 ° C./min in a pressure-resistant capsule. Examples of the device used for measuring the thermal decomposition start temperature include Q2000 (manufactured by TA Instruments).
  • the acid generated from the thermoacid generator is preferably a strong acid, for example, aryl sulfonic acid such as p-toluene sulfonic acid and benzene sulfonic acid, alkyl sulfonic acid such as methane sulfonic acid, ethane sulfonic acid and butane sulfonic acid, or trifluoromethane.
  • aryl sulfonic acid such as p-toluene sulfonic acid and benzene sulfonic acid
  • alkyl sulfonic acid such as methane sulfonic acid, ethane sulfonic acid and butane sulfonic acid
  • haloalkyl sulfonic acid such as sulfonic acid is preferable.
  • thermoacid generator include those described in paragraph 0055 of JP2013-072935A.
  • thermoacid generator the compound described in paragraph 0059 of JP2013-167742A is also preferable as the thermoacid generator.
  • the content of the thermoacid generator is preferably 0.01 part by mass or more, and more preferably 0.1 part by mass or more with respect to 100 parts by mass of the specific resin.
  • the content of the thermoacid generator is preferably 0.01 part by mass or more, and more preferably 0.1 part by mass or more with respect to 100 parts by mass of the specific resin.
  • 0.01 part by mass or more By containing 0.01 part by mass or more, the cross-linking reaction is promoted, so that the mechanical properties and solvent resistance of the organic film can be further improved.
  • 20 parts by mass or less is preferable, 15 parts by mass or less is more preferable, and 10 parts by mass or less is further preferable.
  • the curable resin composition of the present invention may further contain an onium salt.
  • the curable resin composition of the present invention contains a polyimide precursor or a polybenzoxazole precursor as a specific resin, it preferably contains an onium salt.
  • the type of onium salt and the like are not particularly specified, but ammonium salt, iminium salt, sulfonium salt, iodonium salt and phosphonium salt are preferably mentioned.
  • an ammonium salt or an iminium salt is preferable from the viewpoint of high thermal stability
  • a sulfonium salt, an iodonium salt or a phosphonium salt is preferable from the viewpoint of compatibility with a polymer.
  • the onium salt is a salt of a cation and an anion having an onium structure, and the cation and anion may or may not be bonded via a covalent bond. .. That is, the onium salt may be an intramolecular salt having a cation portion and an anion portion in the same molecular structure, or a cation molecule and an anion molecule, which are separate molecules, are ionically bonded. It may be an intermolecular salt, but it is preferably an intermolecular salt. Further, in the curable resin composition of the present invention, the cation portion or the cation molecule and the anion portion or the anion molecule may be bonded or dissociated by an ionic bond.
  • an ammonium cation, a pyridinium cation, a sulfonium cation, an iodonium cation or a phosphonium cation is preferable, and at least one cation selected from the group consisting of a tetraalkylammonium cation, a sulfonium cation and an iodonium cation is more preferable.
  • the onium salt used in the present invention may be a thermobase generator described later.
  • the thermal base generator refers to a compound that generates a base by heating, and examples thereof include a compound that generates a base when heated to 40 ° C. or higher.
  • ammonium salt means a salt of an ammonium cation and an anion.
  • R 1 to R 4 independently represent a hydrogen atom or a hydrocarbon group, and at least two of R 1 to R 4 may be bonded to each other to form a ring.
  • R 1 to R 4 are each independently preferably a hydrocarbon group, more preferably an alkyl group or an aryl group, and an alkyl group having 1 to 10 carbon atoms or 6 to 6 carbon atoms. It is more preferably 12 aryl groups.
  • R 1 to R 4 may have a substituent, and examples of the substituent include a hydroxy group, an aryl group, an alkoxy group, an aryloxy group, an arylcarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group and an aryloxy group. Examples thereof include a carbonyl group and an acyloxy group.
  • the ring may contain a hetero atom. Examples of the hetero atom include a nitrogen atom.
  • the ammonium cation is preferably represented by any of the following formulas (Y1-1) and (Y1-2).
  • R 101 represents an n-valent organic group
  • R 1 has the same meaning as R 1 in the formula (101)
  • Ar 101 and Ar 102 are each independently , Represents an aryl group
  • n represents an integer of 1 or more.
  • R 101 is preferably an aliphatic hydrocarbon, an aromatic hydrocarbon, or a group obtained by removing n hydrogen atoms from a structure in which these are bonded, and has 2 to 30 carbon atoms. More preferably, it is a group obtained by removing n hydrogen atoms from the saturated aliphatic hydrocarbon, benzene or naphthalene.
  • n is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1.
  • Ar 101 and Ar 102 are preferably phenyl groups or naphthyl groups, respectively, and more preferably phenyl groups.
  • the anion in the ammonium salt one selected from a carboxylic acid anion, a phenol anion, a phosphoric acid anion and a sulfuric acid anion is preferable, and a carboxylic acid anion is more preferable because both salt stability and thermodegradability can be achieved.
  • the ammonium salt is more preferably a salt of an ammonium cation and a carboxylic acid anion.
  • the carboxylic acid anion is preferably a divalent or higher carboxylic acid anion having two or more carboxy groups, and more preferably a divalent carboxylic acid anion.
  • the stability, curability and developability of the curable resin composition can be further improved.
  • the stability, curability and developability of the curable resin composition can be further improved.
  • the carboxylic acid anion is preferably represented by the following formula (X1).
  • EWG represents an electron-attracting group.
  • the electron-attracting group means that Hammett's substituent constant ⁇ m shows a positive value.
  • ⁇ m is a review by Yusuke Tono, Journal of Synthetic Organic Chemistry, Vol. 23, No. 8 (1965), p. It is described in detail in 631-642.
  • the EWG is preferably a group represented by the following formulas (EWG-1) to (EWG-6).
  • R x1 to R x3 independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxy group or a carboxy group, and Ar is an aromatic group. Represents.
  • the carboxylic acid anion is preferably represented by the following formula (XA).
  • L 10 represents a single bond or an alkylene group, an alkenylene group, an aromatic group, -NR X - represents and divalent connecting group selected from the group consisting a combination thereof, R X is , Hydrogen atom, alkyl group, alkenyl group or aryl group.
  • carboxylic acid anion examples include maleic acid anion, phthalate anion, N-phenyliminodiacetic acid anion and oxalate anion.
  • the onium salt in the present invention contains an ammonium cation as a cation from the viewpoint that the cyclization of the heterocyclic polymer-containing precursor is easily performed at a low temperature and the storage stability of the curable resin composition is easily improved.
  • the salt as an anion, it is preferable to contain an anion having a conjugate acid pKa (pKaH) of 2.5 or less, and more preferably to contain an anion having a pKa (pKaH) of 1.8 or less.
  • the lower limit of pKa is not particularly limited, but it is preferably -3 or more, preferably -2 or more, from the viewpoint that the generated base is not easily neutralized and the cyclization efficiency of the heterocyclic polymer-containing precursor or the like is improved.
  • the above is more preferable.
  • the above pKa includes Determination of Organic Structures by Physical Methods (authors: Brown, HC, McDaniel, D.H., Hafliger, O., Nachod, F.C.; See Nachod, FC; Academic Press, New York, 1955) and Data for Biochemical Research (Author: Dawson, RMC et al; Oxford, Clarendon Press, 19). Can be done. For compounds not described in these documents, the values calculated from the structural formulas using software of ACD / pKa (manufactured by ACD / Labs) shall be used.
  • ammonium salt examples include the following compounds, but the present invention is not limited thereto.
  • the iminium salt means a salt of an iminium cation and an anion.
  • the anion the same as the anion in the above-mentioned ammonium salt is exemplified, and the preferred embodiment is also the same.
  • a pyridinium cation is preferable.
  • a cation represented by the following formula (102) is also preferable.
  • R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group
  • R 7 represents a hydrocarbon group
  • at least two of R 5 to R 7 are bonded to each other to form a ring. It may be formed.
  • R 5 and R 6 are synonymous with R 1 to R 4 in the above formula (101), and the preferred embodiment is also the same.
  • R 7 preferably combines with at least one of R 5 and R 6 to form a ring.
  • the ring may contain a heteroatom. Examples of the hetero atom include a nitrogen atom. Further, as the ring, a pyridine ring is preferable.
  • the iminium cation is preferably represented by any of the following formulas (Y1-3) to (Y1-5).
  • R 101 represents an n-valent organic group
  • R 5 has the same meaning as R 5 in the formula (102)
  • R 7 is R in the formula (102) Synonymous with 7
  • n and m represent integers of 1 or more.
  • R 101 is preferably an aliphatic hydrocarbon, an aromatic hydrocarbon, or a group obtained by removing n hydrogen atoms from the structure to which these are bonded, and has 2 to 30 carbon atoms.
  • n is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1.
  • m is preferably 0 to 4, more preferably 1 or 2, and even more preferably 1.
  • iminium salt examples include the following compounds, but the present invention is not limited thereto.
  • the sulfonium salt means a salt of a sulfonium cation and an anion.
  • the anion the same as the anion in the above-mentioned ammonium salt is exemplified, and the preferred embodiment is also the same.
  • sulfonium cation a tertiary sulfonium cation is preferable, and a triarylsulfonium cation is more preferable. Further, as the sulfonium cation, a cation represented by the following formula (103) is preferable.
  • R 8 to R 10 each independently represent a hydrocarbon group.
  • R 8 to R 10 are each independently preferably an alkyl group or an aryl group, more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and 6 to 12 carbon atoms. It is more preferably an aryl group, and even more preferably a phenyl group.
  • R 8 to R 10 may have a substituent, and examples of the substituent include a hydroxy group, an aryl group, an alkoxy group, an aryloxy group, an arylcarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group and an aryloxy group.
  • Examples thereof include a carbonyl group and an acyloxy group.
  • an alkyl group or an alkoxy group as the substituent, more preferably to have a branched alkyl group or an alkoxy group, and a branched alkyl group having 3 to 10 carbon atoms or a branched alkyl group having 1 to 10 carbon atoms. It is more preferable to have 10 alkoxy groups.
  • R 8 to R 10 may be the same group or different groups, but from the viewpoint of synthetic suitability, they are preferably the same group.
  • sulfonium salt examples include the following compounds, but the present invention is not limited thereto.
  • the iodonium salt means a salt of an iodonium cation and an anion.
  • the anion the same as the anion in the above-mentioned ammonium salt is exemplified, and the preferred embodiment is also the same.
  • iodonium cation a diaryl iodonium cation is preferable. Further, as the iodonium cation, a cation represented by the following formula (104) is preferable.
  • R 11 and R 12 each independently represent a hydrocarbon group.
  • R 11 and R 12 are each independently preferably an alkyl group or an aryl group, more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and 6 to 12 carbon atoms. It is more preferably an aryl group, and even more preferably a phenyl group.
  • R 11 and R 12 may have a substituent, and examples of the substituent include a hydroxy group, an aryl group, an alkoxy group, an aryloxy group, an arylcarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, and an aryloxy group.
  • Examples thereof include a carbonyl group and an acyloxy group.
  • R 11 and R 12 may be the same group or different groups, but from the viewpoint of synthetic suitability, they are preferably the same group.
  • iodonium salt examples include the following compounds, but the present invention is not limited thereto.
  • the phosphonium salt means a salt of a phosphonium cation and an anion.
  • the anion the same as the anion in the above-mentioned ammonium salt is exemplified, and the preferred embodiment is also the same.
  • a quaternary phosphonium cation is preferable, and examples thereof include a tetraalkylphosphonium cation and a triarylmonoalkylphosphonium cation. Further, as the phosphonium cation, a cation represented by the following formula (105) is preferable.
  • R 13 to R 16 each independently represent a hydrogen atom or a hydrocarbon group.
  • R 13 to R 16 are each independently preferably an alkyl group or an aryl group, more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and 6 to 12 carbon atoms. It is more preferably an aryl group, and even more preferably a phenyl group.
  • R 13 to R 16 may have a substituent, and examples of the substituent include a hydroxy group, an aryl group, an alkoxy group, an aryloxy group, an arylcarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group and an aryloxy group.
  • Examples thereof include a carbonyl group and an acyloxy group.
  • R 13 to R 16 may be the same group or different groups, but from the viewpoint of synthetic suitability, they are preferably the same group.
  • phosphonium salt examples include the following compounds, but the present invention is not limited thereto.
  • the content of the onium salt is preferably 0.1 to 50% by mass with respect to the total solid content of the curable resin composition of the present invention.
  • the lower limit is more preferably 0.5% by mass or more, further preferably 0.85% by mass or more, and even more preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, further preferably 20% by mass or less, further preferably 10% by mass or less, 5% by mass or less, or 4% by mass or less.
  • the onium salt one kind or two or more kinds can be used. When two or more kinds are used, the total amount is preferably in the above range.
  • the curable resin composition of the present invention may further contain a thermosetting agent.
  • a thermosetting agent when the curable resin composition of the present invention contains a polyimide precursor or a polybenzoxazole precursor as the specific resin, it is preferable to contain a thermosetting agent.
  • the other thermobase generator may be a compound corresponding to the above-mentioned onium salt, or may be a thermobase generator other than the above-mentioned onium salt.
  • Examples of the thermobase generator other than the above-mentioned onium salt include nonionic thermobase generators. Examples of the nonionic thermobase generator include compounds represented by the formula (B1) or the formula (B2).
  • Rb 1 , Rb 2 and Rb 3 are independently organic groups, halogen atoms or hydrogen atoms having no tertiary amine structure. However, Rb 1 and Rb 2 do not become hydrogen atoms at the same time. Further, none of Rb 1 , Rb 2 and Rb 3 has a carboxy group.
  • the tertiary amine structure refers to a structure in which all three bonds of a trivalent nitrogen atom are covalently bonded to a hydrocarbon-based carbon atom. Therefore, this does not apply when the bonded carbon atom is a carbon atom forming a carbonyl group, that is, when an amide group is formed together with a nitrogen atom.
  • Rb 1 , Rb 2 and Rb 3 contains a cyclic structure, and it is more preferable that at least two of them contain a cyclic structure.
  • the cyclic structure may be either a monocyclic ring or a condensed ring, and a fused ring in which two monocyclic rings or two monocyclic rings are condensed is preferable.
  • the single ring is preferably a 5-membered ring or a 6-membered ring, and preferably a 6-membered ring.
  • a cyclohexane ring and a benzene ring are preferable, and a cyclohexane ring is more preferable.
  • Rb 1 and Rb 2 are hydrogen atoms, alkyl groups (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), and alkenyl groups (preferably 2 to 24 carbon atoms). , 2-18 is more preferred, 3-12 is more preferred), aryl groups (6-22 carbons are preferred, 6-18 are more preferred, 6-10 are more preferred), or arylalkyl groups (7 carbons). ⁇ 25 is preferable, 7 to 19 is more preferable, and 7 to 12 is even more preferable). These groups may have substituents as long as the effects of the present invention are exhibited. Rb 1 and Rb 2 may be coupled to each other to form a ring.
  • Rb 1 and Rb 2 are particularly linear, branched, or cyclic alkyl groups that may have substituents (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12). It is more preferably a cycloalkyl group which may have a substituent (preferably 3 to 24 carbon atoms, more preferably 3 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms) and having a substituent.
  • a cyclohexyl group which may be used is more preferable.
  • an alkyl group preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, further preferably 3 to 12 carbon atoms
  • an aryl group preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, 6 to 6.
  • alkoxy group (2 to 24 carbon atoms are preferable, 2 to 12 is more preferable, 2 to 6 is more preferable
  • arylalkyl group (7 to 23 carbon atoms is preferable, 7 to 19 is more preferable).
  • an arylalkenyl group (8 to 24 carbon atoms is preferable, 8 to 20 is more preferable, 8 to 16 is more preferable), and an alkoxyl group (1 to 24 carbon atoms is preferable, 2 to 2 to 24).
  • 18 is more preferable, 3 to 12 is more preferable), an aryloxy group (6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, 6 to 12 is more preferable), or an arylalkyloxy group (7 to 12 carbon atoms is more preferable).
  • 23 is preferable, 7 to 19 is more preferable, and 7 to 12 is even more preferable).
  • a cycloalkyl group (preferably having 3 to 24 carbon atoms, more preferably 3 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), an arylalkenyl group, and an arylalkyloxy group are preferable.
  • Rb 3 may further have a substituent as long as the effects of the present invention are exhibited.
  • the compound represented by the formula (B1) is preferably a compound represented by the following formula (B1-1) or the following formula (B1-2).
  • Rb 11 and Rb 12 , and Rb 31 and Rb 32 are the same as Rb 1 and Rb 2 in the formula (B1), respectively.
  • Rb 13 has an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, further preferably 3 to 12 carbon atoms) and an alkenyl group (preferably 2 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, 3 to 12 carbon atoms). Is more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 12 carbon atoms), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms). 7 to 12 is more preferable), and a substituent may be provided as long as the effects of the present invention are exhibited. Of these, Rb 13 is preferably an arylalkyl group.
  • Rb 33 and Rb 34 independently have a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 3 carbon atoms), and an alkenyl group (preferably 2 to 12 carbon atoms).
  • Rb 33 and Rb 34 independently have a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 3 carbon atoms), and an alkenyl group (preferably 2 to 12 carbon atoms).
  • 2 to 8 are more preferable, 2 to 3 are more preferable
  • aryl groups (6 to 22 carbon atoms are preferable, 6 to 18 are more preferable, 6 to 10 are more preferable
  • 23 is preferable, 7 to 19 is more preferable, and 7 to 11 is even more preferable), and a hydrogen atom is preferable.
  • Rb 35 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 3 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 10 carbon atoms). 8 is more preferable), aryl group (6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, 6 to 12 is more preferable), arylalkyl group (7 to 23 carbon atoms is preferable, 7 to 19 is more preferable). , 7-12 is more preferable), and an aryl group is preferable.
  • the compound represented by the formula (B1-1) is also preferable.
  • Rb 11 and Rb 12 have the same meanings as Rb 11 and Rb 12 in the formula (B1-1).
  • Rb 15 and Rb 16 are a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms), and an alkenyl group (preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms). More preferably, 2 to 3 are more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 10 carbon atoms), an arylalkyl group (preferably 7 to 23 carbon atoms, 7).
  • Rb 17 has an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 3 to 8 carbon atoms) and an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 carbon atoms). Is more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 12 carbon atoms), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms). 7 to 12 is more preferable), and an aryl group is particularly preferable.
  • the molecular weight of the nonionic thermobase generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less.
  • the lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
  • thermo base generators or specific examples of thermal base generators other than the above-mentioned onium salts include the following compounds.
  • the content of the other thermosetting agent is preferably 0.1 to 50% by mass with respect to the total solid content of the curable resin composition of the present invention.
  • the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, further preferably 20% by mass or less.
  • the thermobase generator one kind or two or more kinds can be used. When two or more kinds are used, the total amount is preferably in the above range.
  • the curable resin composition of the present invention preferably contains a cross-linking agent.
  • the cross-linking agent include radical cross-linking agents and other cross-linking agents.
  • the curable resin composition of the present invention preferably further contains a radical cross-linking agent.
  • the radical cross-linking agent is a compound having a radically polymerizable group.
  • a group containing an ethylenically unsaturated bond is preferable.
  • the group containing an ethylenically unsaturated bond include a group having an ethylenically unsaturated bond such as a vinyl group, an allyl group, a vinylphenyl group, and a (meth) acryloyl group.
  • the (meth) acryloyl group is preferable as the group containing the ethylenically unsaturated bond, and the (meth) acryloyl group is more preferable from the viewpoint of reactivity.
  • the radical cross-linking agent may be a compound having one or more ethylenically unsaturated bonds, but is more preferably a compound having two or more ethylenically unsaturated bonds.
  • the compound having two ethylenically unsaturated bonds is preferably a compound having two groups containing the above ethylenically unsaturated bonds.
  • the curable resin composition of the present invention preferably contains a compound having three or more ethylenically unsaturated bonds as a radical cross-linking agent.
  • the compound having 3 or more ethylenically unsaturated bonds a compound having 3 to 15 ethylenically unsaturated bonds is preferable, and a compound having 3 to 10 ethylenically unsaturated bonds is more preferable, and 3 to 6 compounds are more preferable.
  • the compound having is more preferable.
  • the compound having 3 or more ethylenically unsaturated bonds is preferably a compound having 3 or more groups containing the ethylenically unsaturated bond, and more preferably a compound having 3 to 15 ethylenically unsaturated bonds.
  • a compound having 3 to 10 is more preferable, and a compound having 3 to 6 is particularly preferable.
  • the radical cross-linking agent is particularly preferably a compound having two ethylenically unsaturated bonds.
  • the curable resin composition of the present invention has a compound having two ethylenically unsaturated bonds and three or more ethylenically unsaturated bonds. It is also preferable to include a compound.
  • the molecular weight of the radical cross-linking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the radical cross-linking agent is preferably 100 or more.
  • radical cross-linking agent examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides, which are preferably unsuitable.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having a nucleophilic substituent such as a hydroxy group, an amino group or a sulfanyl group with a monofunctional or polyfunctional isocyanate or an epoxy, or a monofunctional or polyfunctional group.
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having a parentionic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amines or thiols, and a halogeno group.
  • Substitution reaction products of unsaturated carboxylic acid esters or amides having a releasable substituent such as tosyloxy group and monofunctional or polyfunctional alcohols, amines and thiols are also suitable.
  • radical cross-linking agent a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable.
  • examples are polyethylene glycol di (meth) acrylate, trimethyl ethanetri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol.
  • a compound obtained by adding ethylene oxide or propylene oxide to a functional alcohol and then (meth) acrylated, is described in JP-A-48-041708, JP-A-50-006034, and JP-A-51-0371993.
  • Urethane (meth) acrylates such as those described in JP-A-48-064183, JP-A-49-043191, and JP-A-52-030490, the polyester acrylates, epoxy resins and (meth) acrylics. Examples thereof include polyfunctional acrylates and methacrylates such as epoxy acrylates which are reaction products with acids, and mixtures thereof. Further, the compounds described in paragraphs 0254 to 0257 of JP-A-2008-292970 are also suitable.
  • a polyfunctional (meth) acrylate obtained by reacting a polyfunctional carboxylic acid with a cyclic ether group such as glycidyl (meth) acrylate and a compound having an ethylenically unsaturated bond can also be mentioned.
  • a preferable radical cross-linking agent other than the above it has a fluorene ring and has an ethylenically unsaturated bond, which is described in JP-A-2010-160418, JP-A-2010-129825, Patent No. 4364216 and the like.
  • Compounds having two or more groups and cardo resins can also be used.
  • dipentaerythritol triacrylate (commercially available KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (commercially available KAYARAD D-320; Nihon Kayaku Co., Ltd.) ), A-TMMT: Shin-Nakamura Chemical Industry Co., Ltd.), Dipentaerythritol penta (meth) acrylate (commercially available KAYARAD D-310; Nippon Kayaku Co., Ltd.), Dipentaerythritol hexa (meth) ) Acrylate (commercially available KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH; manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), and these (meth) acryloyl groups are mediated by ethylene glycol residues or propylene glycol residues. A structure that is bonded together is preferable
  • SR-494 which is a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartmer
  • SR-209 manufactured by Sartmer which is a bifunctional methacrylate having four ethyleneoxy chains.
  • DPCA-60 a hexafunctional acrylate having 6 pentyleneoxy chains manufactured by Nippon Kayaku Co., Ltd.
  • TPA-330 a trifunctional acrylate having 3 isobutyleneoxy chains
  • urethane oligomer UAS-10 are examples of the radical cross-linking agent.
  • UAB-140 (manufactured by Nippon Paper Co., Ltd.), NK ester M-40G, NK ester 4G, NK ester M-9300, NK ester A-9300, UA-7200 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), DPHA-40H (Japan) Chemicals (manufactured by Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blemmer PME400 (manufactured by Nichiyu Co., Ltd.), etc. Can be mentioned.
  • radical cross-linking agent examples include urethane acrylates as described in Japanese Patent Publication No. 48-041708, Japanese Patent Application Laid-Open No. 51-037193, Japanese Patent Application Laid-Open No. 02-032293, and Japanese Patent Application Laid-Open No. 02-016765.
  • Urethane compounds having an ethylene oxide-based skeleton described in Japanese Patent Publication No. 58-049860, Japanese Patent Publication No. 56-017654, Japanese Patent Publication No. 62-039417, and Japanese Patent Publication No. 62-039418 are also suitable.
  • radical cross-linking agent compounds having an amino structure or a sulfide structure in the molecule, which are described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238, are used. You can also do it.
  • the radical cross-linking agent may be a radical cross-linking agent having an acid group such as a carboxy group or a phosphoric acid group.
  • the radical cross-linking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and an acid group is obtained by reacting an unreacted hydroxy group of the aliphatic polyhydroxy compound with a non-aromatic carboxylic acid anhydride.
  • a radical cross-linking agent provided with is more preferable.
  • the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol. Is a compound.
  • examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the preferable acid value of the radical cross-linking agent having an acid group is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g.
  • the acid value of the radical cross-linking agent is within the above range, it is excellent in manufacturing handleability and further excellent in developability. Moreover, the polymerizable property is good.
  • the acid value of the radical cross-linking agent having an acid group is preferably 0.1 to 300 mgKOH / g, and particularly preferably 1 to 100 mgKOH / g. The acid value is measured according to the description of JIS K 0070: 1992.
  • the curable resin composition of the present invention it is preferable to use bifunctional metaacrylate or acrylate from the viewpoint of pattern resolution and film elasticity.
  • the compound include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, and PEG200 diacrylate (polyethylene glycol diacrylate having a formula of polyethylene glycol chain).
  • examples of the bifunctional or higher functional radical cross-linking agent include diallyl phthalate and triallyl trimellitate.
  • a monofunctional radical cross-linking agent can be preferably used as the radical cross-linking agent.
  • examples of the monofunctional radical cross-linking agent include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, carbitol (meth) acrylate, and cyclohexyl (meth).
  • the content thereof is preferably more than 0% by mass and 60% by mass or less with respect to the total solid content of the curable resin composition of the present invention.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 50% by mass or less, and further preferably 30% by mass or less.
  • One type of radical cross-linking agent may be used alone, or two or more types may be mixed and used. When two or more types are used in combination, the total amount is preferably in the above range.
  • the curable resin composition of the present invention preferably contains another cross-linking agent different from the radical cross-linking agent described above.
  • the other cross-linking agent refers to a cross-linking agent other than the above-mentioned radical cross-linking agent, and a covalent bond is formed with another compound in the composition or a reaction product thereof by exposure to the above-mentioned photosensitizer.
  • the compound has a plurality of groups in the molecule for which the reaction to be formed is promoted, and the reaction of forming a covalent bond with another compound in the composition or a reaction product thereof is the action of an acid or a base.
  • a compound having a plurality of groups promoted by the above in the molecule is preferable.
  • the acid or base is preferably an acid or base generated from the photosensitizer in the exposure step.
  • a compound having at least one group selected from the group consisting of a methylol group and an alkoxymethyl group is preferable, and at least one group selected from the group consisting of a methylol group and an alkoxymethyl group is a nitrogen atom.
  • a compound having a structure directly bonded to is more preferable.
  • an amino group-containing compound such as melamine, glycoluryl, urea, alkylene urea, or benzoguanamine is reacted with formaldehyde or formaldehyde and alcohol, and the hydrogen atom of the amino group is changed to a methylol group or an alkoxymethyl group.
  • examples thereof include compounds having a substituted structure.
  • the method for producing these compounds is not particularly limited, and any compound having the same structure as the compound produced by the above method may be used. Further, it may be an oligomer formed by self-condensing the methylol groups of these compounds.
  • the cross-linking agent using melamine is a melamine-based cross-linking agent
  • the cross-linking agent using glycoluril, urea or alkylene urea is a urea-based cross-linking agent
  • the cross-linking agent using alkylene urea is an alkylene urea-based cross-linking agent.
  • a cross-linking agent using an agent or benzoguanamine is called a benzoguanamine-based cross-linking agent.
  • the curable resin composition of the present invention preferably contains at least one compound selected from the group consisting of a urea-based cross-linking agent and a melamine-based cross-linking agent, and preferably contains a glycoluril-based cross-linking agent and melamine, which will be described later. It is more preferable to contain at least one compound selected from the group consisting of system cross-linking agents.
  • melamine-based cross-linking agent examples include hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, hexabutoxybutyl melamine and the like.
  • urea-based cross-linking agent examples include monohydroxymethylated glycol uryl, dihydroxymethylated glycol uryl, trihydroxymethylated glycol uryl, tetrahydroxymethylated glycol uryl, monomethoxymethylated glycol uryl, and dimethoxymethylated glycol uryl.
  • Glycoluryl-based cross-linking agent such as bismethoxymethylurea, bisethoxymethylurea, bispropoxymethylurea, and bisbutoxymethylurea, Monohydroxymethylated ethylene urea or dihydroxymethylated ethylene urea, monomethoxymethylated ethylene urea, dimethoxymethylated ethylene urea, monoethoxymethylated ethylene urea, diethoxymethylated ethylene urea, monopropoxymethylated ethylene urea, dipropoxymethyl Ethylene urea-based cross-linking agents such as ethylene fluoride, monobutoxymethylated ethylene urea, or dibutoxymethylated ethylene urea, Monohydroxymethylated propylene urea, dihydroxymethylated propylene urea, monomethoxymethylated propylene urea, dimethoxymethylated propylene urea, monodiethoxymethylated propylene urea, diethoxymethylated propylene urea,
  • benzoguanamine-based cross-linking agent examples include monohydroxymethylated benzoguanamine, dihydroxymethylated benzoguanamine, trihydroxymethylated benzoguanamine, tetrahydroxymethylated benzoguanamine, monomethoxymethylated benzoguanamine, dimethoxymethylated benzoguanamine, and trimethoxymethylated benzoguanamine.
  • Tetramethoxymethylated benzoguanamine Tetramethoxymethylated benzoguanamine, monomethoxymethylated benzoguanamine, dimethoxymethylated benzoguanamine, trimethoxymethylated benzoguanamine, tetraethoxymethylated benzoguanamine, monopropoxymethylated benzoguanamine, dipropoxymethylated benzoguanamine, tripropoxymethylated benzoguanamine, tetrapropoxy Methylated benzoguanamine, monobutoxymethylated benzoguanamine, dibutoxymethylated benzoguanamine, tributoxymethylated benzoguanamine, tetrabutoxymethylated benzoguanamine and the like can be mentioned.
  • a compound having at least one group selected from the group consisting of a methylol group and an alkoxymethyl group at least one selected from the group consisting of a methylol group and an alkoxymethyl group on an aromatic ring (preferably a benzene ring).
  • a compound to which a group is directly bonded is also preferably used.
  • Specific examples of such compounds include benzenedimethanol, bis (hydroxymethyl) cresol, bis (hydroxymethyl) dimethoxybenzene, bis (hydroxymethyl) diphenyl ether, bis (hydroxymethyl) benzophenone, and hydroxymethylphenyl hydroxymethylbenzoate.
  • suitable commercially available products include 46DMOC, 46DMOEP (all manufactured by Asahi Organic Materials Industry Co., Ltd.), DML-PC, DML-PEP, DML-OC, and DML-OEP.
  • the curable resin composition of the present invention preferably contains at least one compound selected from the group consisting of an epoxy compound, an oxetane compound, and a benzoxazine compound as another cross-linking agent.
  • Epoxy compound (compound having an epoxy group)
  • the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy group undergoes a cross-linking reaction at 200 ° C. or lower, and the dehydration reaction derived from the cross-linking does not occur, so that film shrinkage is unlikely to occur. Therefore, the inclusion of the epoxy compound is effective in suppressing low-temperature curing and warpage of the curable resin composition.
  • the epoxy compound preferably contains a polyethylene oxide group.
  • the polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2 to 15.
  • epoxy compounds include bisphenol A type epoxy resin; bisphenol F type epoxy resin; propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, butylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether. , Trimethylol propantriglycidyl ether and other alkylene glycol type epoxy resins or polyhydric alcohol hydrocarbon type epoxy resins; polypropylene glycol diglycidyl ether and other polyalkylene glycol type epoxy resins; polymethyl (glycidyloxypropyl) siloxane and other epoxy groups Examples include, but are not limited to, containing silicones.
  • oxetane compound compound having an oxetanyl group
  • examples of the oxetane compound include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, and the like.
  • examples thereof include 3-ethyl-3- (2-ethylhexylmethyl) oxetane, 1,4-benzenedicarboxylic acid-bis [(3-ethyl-3-oxetanyl) methyl] ester and the like.
  • the Aron Oxetane series manufactured by Toagosei Co., Ltd. (for example, OXT-121, OXT-221, OXT-191, OXT-223) can be preferably used, and these can be used alone. Alternatively, two or more types may be mixed.
  • Benzoxazine compound (compound having a benzoxazolyl group) Since the benzoxazine compound is a cross-linking reaction derived from the ring-opening addition reaction, degassing does not occur during curing, and heat shrinkage is further reduced to suppress the occurrence of warpage, which is preferable.
  • benzoxazine compound are BA type benzoxazine, Bm type benzoxazine, Pd type benzoxazine, FA type benzoxazine (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), poly.
  • examples thereof include a benzoxazine adduct of a hydroxystyrene resin and a phenol novolac type dihydrobenzoxazine compound. These may be used alone or in combination of two or more.
  • the content of the other cross-linking agent is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the curable resin composition of the present invention. It is more preferably 0.5 to 15% by mass, and particularly preferably 1.0 to 10% by mass.
  • the other cross-linking agent may contain only one type, or may contain two or more types. When two or more other cross-linking agents are contained, the total is preferably in the above range.
  • the curable resin composition of the present invention was selected from the group consisting of a compound having a sulfonamide structure and a compound having a thiourea structure. It is preferable to further contain at least one compound.
  • the sulfonamide structure is a structure represented by the following formula (S-1).
  • R represents a hydrogen atom or an organic group
  • R may be bonded to another structure to form a ring structure
  • * may independently form a binding site with another structure. show.
  • the R is preferably the same group as R 2 in the following formula (S-2).
  • the compound having a sulfonamide structure may be a compound having two or more sulfonamide structures, but a compound having one sulfonamide structure is preferable.
  • the compound having a sulfonamide structure is preferably a compound represented by the following formula (S-2).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent organic group, and two or more of R 1 , R 2 and R 3 are bonded to each other. It may form a ring structure. It is preferable that R 1 , R 2 and R 3 are independently monovalent organic groups.
  • R 1 , R 2 and R 3 include a hydrogen atom, or an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an aryl group, an aryl ether group, and a carboxy group.
  • examples thereof include a carbonyl group, an allyl group, a vinyl group, a heterocyclic group, or a group in which two or more of these are combined.
  • the alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an isopropyl group, a 2-ethylhexyl group and the like.
  • a cycloalkyl group having 5 to 10 carbon atoms is preferable, and a cycloalkyl group having 6 to 10 carbon atoms is more preferable.
  • examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • an alkoxy group having 1 to 10 carbon atoms is preferable, and an alkoxy group having 1 to 5 carbon atoms is more preferable.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group and the like.
  • As the alkoxysilyl group an alkoxysilyl group having 1 to 10 carbon atoms is preferable, and an alkoxysilyl group having 1 to 4 carbon atoms is more preferable.
  • Examples of the alkoxysilyl group include a methoxysilyl group, an ethoxysilyl group, a propoxysilyl group and a butoxysilyl group.
  • aryl group an aryl group having 6 to 20 carbon atoms is preferable, and an aryl group having 6 to 12 carbon atoms is more preferable.
  • the aryl group may have a substituent such as an alkyl group. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group and a naphthyl group.
  • heterocyclic group examples include a triazole ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyrazole ring, an isooxazole ring, an isothiazole ring, a tetrazole ring, a pyridine ring, a pyridazine ring, and a pyrimididine ring.
  • R 1 is an aryl group and R 2 and R 3 are independently hydrogen atoms or alkyl groups are preferable.
  • Examples of compounds having a sulfonamide structure include benzenesulfonamide, dimethylbenzenesulfonamide, N-butylbenzenesulfonamide, sulfanylamide, o-toluenesulfonamide, p-toluenesulfonamide, hydroxynaphthalenesulfonamide, naphthalene-1.
  • the thiourea structure is a structure represented by the following formula (T-1).
  • R 4 and R 5 each independently represent a hydrogen atom or a monovalent organic group, and R 4 and R 5 may be combined to form a ring structure, where R 4 is.
  • the ring structure may be formed by combining with other structures to which * is bonded, R 5 may be combined with other structures to which * is bonded to form a ring structure, and * may be independently and others. Represents the site of connection with the structure of.
  • R 4 and R 5 are independently hydrogen atoms.
  • R 4 and R 5 include a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an aryl group, an aryl ether group, a carboxy group, and a carbonyl group.
  • examples thereof include an allyl group, a vinyl group, a heterocyclic group, or a group in which two or more of these are combined.
  • the alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an isopropyl group, a 2-ethylhexyl group and the like.
  • a cycloalkyl group having 5 to 10 carbon atoms is preferable, and a cycloalkyl group having 6 to 10 carbon atoms is more preferable.
  • examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • an alkoxy group having 1 to 10 carbon atoms is preferable, and an alkoxy group having 1 to 5 carbon atoms is more preferable.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group and the like.
  • As the alkoxysilyl group an alkoxysilyl group having 1 to 10 carbon atoms is preferable, and an alkoxysilyl group having 1 to 4 carbon atoms is more preferable.
  • Examples of the alkoxysilyl group include a methoxysilyl group, an ethoxysilyl group, a propoxysilyl group and a butoxysilyl group.
  • aryl group an aryl group having 6 to 20 carbon atoms is preferable, and an aryl group having 6 to 12 carbon atoms is more preferable.
  • the aryl group may have a substituent such as an alkyl group. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group and a naphthyl group.
  • heterocyclic group examples include a triazole ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyrazole ring, an isooxazole ring, an isothiazole ring, a tetrazole ring, a pyridine ring, a pyridazine ring, and a pyrimididine ring.
  • the compound having a thiourea structure may be a compound having two or more thiourea structures, but a compound having one thiourea structure is preferable.
  • the compound having a thiourea structure is preferably a compound represented by the following formula (T-2).
  • R 4 to R 7 each independently represent a hydrogen atom or a monovalent organic group, and at least two of R 4 to R 7 are bonded to each other to form a ring structure. You may.
  • R 4 and R 5 have the same meanings as R 4 and R 5 in formula (T-1), a preferable embodiment thereof is also the same.
  • R 6 and R 7 are independently monovalent organic groups.
  • the preferred embodiment of the monovalent organic group in R 6 and R 7 is the same as the preferred embodiment of the monovalent organic group in R 4 and R 5 in the formula (T-1). ..
  • Examples of compounds having a thiourea structure include N-acetylthiourea, N-allyl thiourea, N-allyl-N'-(2-hydroxyethyl) thiourea, 1-adamantyl thiourea, N-benzoyl thiourea, N, N'-.
  • Diphenylthiourea 1-benzyl-phenylthiourea, 1,3-dibutylthiourea, 1,3-diisopropylthiourea, 1,3-dicyclohexylthiourea, 1- (3- (trimethoxysilyl) propyl) -3-methylthiourea, trimethyl Examples thereof include thiourea, tetramethylthiourea, N, N-diphenylthiourea, ethylenethiourea (2-imidazolinthione), carbimazole, and 1,3-dimethyl-2-thiohydranthin.
  • the total content of the compound having a sulfonamide structure and the compound having a thiourea structure is preferably 0.05 to 10% by mass, preferably 0.1 to 5% by mass, based on the total mass of the curable resin composition of the present invention. It is more preferably%, and further preferably 0.2 to 3% by mass.
  • the curable resin composition of the present invention may contain only one compound selected from the group consisting of a compound having a sulfonamide structure and a compound having a thiourea structure, or may contain two or more compounds. When only one type is contained, the content of the compound is preferably within the above range, and when two or more types are contained, the total amount thereof is preferably within the above range.
  • the curable resin composition of the present invention preferably further contains a migration inhibitor.
  • a migration inhibitor By including the migration inhibitor, it is possible to effectively suppress the movement of metal ions derived from the metal layer (metal wiring) into the curable resin composition layer.
  • the migration inhibitor is not particularly limited, but a heterocycle (pyrazole ring, furan ring, thiophene ring, imidazole ring, triazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, etc.
  • a heterocycle pyrazole ring, furan ring, thiophene ring, imidazole ring, triazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, etc.
  • triazole compounds such as 1,2,4-triazole, benzotriazole, 5-methylbenzotriazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, Tetrazole-based compounds such as 1H-tetrazole, 5-phenyltetrazole and 5-amino-1H-tetrazole, and purine-based compounds such as purine, adenin and guanine can be preferably used.
  • the curable resin composition of the present invention has 5-methylbenzotriazole, 3-amino-1,2,4-triazole, and 3,5-diamino-1,2,4-triazole as migration inhibitors.
  • the curable resin composition of the present invention preferably contains a compound having an amino group as a migration inhibitor, more preferably contains a compound having a heterocycle and an amino group, and contains an imidazole ring, a triazole ring, and an oxazole ring.
  • an ion trap agent that traps anions such as halogen ions can also be used.
  • Examples of other migration inhibitors include rust preventives described in paragraph 0094 of JP2013-015701, compounds described in paragraphs 0073 to 0076 of JP2009-283711, and JP2011-059656.
  • the compounds described in paragraph 0052, the compounds described in paragraphs 0114, 0116 and 0118 of JP2012-194520A, the compounds described in paragraph 0166 of International Publication No. 2015/199219, and the like can be used.
  • the migration inhibitor include the following compounds.
  • the content of the migration inhibitor is preferably 0.01 to 5.0% by mass with respect to the total solid content of the curable resin composition, and is 0. It is more preferably 0.05 to 2.0% by mass, and further preferably 0.1 to 1.0% by mass.
  • the migration inhibitor may be only one type or two or more types. When there are two or more types of migration inhibitors, the total is preferably in the above range.
  • the curable resin composition of the present invention preferably contains a polymerization inhibitor.
  • polymerization inhibitor examples include hydroquinone, o-methoxyphenol, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, p-tert-butylcatechol, 1,4-benzoquinone, and diphenyl-p-benzoquinone.
  • the content of the polymerization inhibitor is, for example, 0.01 to 20.0% by mass with respect to the total solid content of the curable resin composition of the present invention. It is preferably 0.01 to 5% by mass, more preferably 0.02 to 3% by mass, and further preferably 0.05 to 2.5% by mass. Further, when the storage stability of the curable resin composition solution is required, an embodiment of 0.02 to 15.0% by mass is also preferable, and in that case, 0.05 to 10.0% by mass is more preferable. Is.
  • the polymerization inhibitor may be only one type or two or more types. When there are two or more types of polymerization inhibitors, the total is preferably in the above range.
  • the curable resin composition of the present invention preferably contains a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
  • a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
  • the metal adhesion improver include silane coupling agents, aluminum-based adhesive aids, titanium-based adhesive aids, compounds having a sulfonamide structure and compounds having a thiourea structure, phosphoric acid derivative compounds, ⁇ -ketoester compounds, amino compounds and the like. And so on.
  • the curable resin composition of the present invention includes a silane coupling agent, an aluminum-based adhesive aid, a titanium-based adhesive aid, a compound having a sulfonamide structure, a compound having a thiourea structure, a phosphoric acid derivative compound, and ⁇ .
  • -It is preferable to contain a ketoester compound, an amino compound and the like.
  • silane coupling agent examples include the compounds described in paragraph 0167 of International Publication No. 2015/199219, the compounds described in paragraphs 0062 to 0073 of JP-A-2014-191002, paragraphs of International Publication No. 2011/080992.
  • Examples include the compounds described in paragraph 0055. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP2011-128358A. Further, it is also preferable to use the following compounds as the silane coupling agent.
  • Et represents an ethyl group.
  • silane coupling agents include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycid.
  • the compounds described in paragraphs 0046 to 0049 of JP2014-186186A and the sulfide compounds described in paragraphs 0032 to 0043 of JP2013-072935 can also be used. ..
  • Aluminum-based adhesive aid examples include aluminum tris (ethylacetacetate), aluminumtris (acetylacetoneate), ethylacetacetate aluminum diisopropirate, and the like.
  • the content of the metal adhesive improving agent is preferably in the range of 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass, and further preferably 0. It is in the range of 5 to 5 parts by mass.
  • the metal adhesiveness improving agent may be only one kind or two or more kinds. When two or more types are used, the total is preferably in the above range.
  • the curable resin composition of the present invention preferably contains a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
  • a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
  • the metal adhesiveness improving agent the compounds described in paragraphs 0046 to 0049 of JP2014-186186A and the sulfide compounds described in paragraphs 0032 to 0043 of JP2013-072935 can also be used.
  • the content of the metal adhesion improver is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass, and further, with respect to 100 parts by mass of the heterocyclic polymer precursor. It is preferably in the range of 0.5 to 5 parts by mass. When it is at least the above lower limit value, the adhesiveness between the cured film and the metal layer after the curing step is good, and when it is at least the above upper limit value, the heat resistance and mechanical properties of the cured film after the curing step are good.
  • the metal adhesiveness improving agent may be only one kind or two or more kinds. When two or more types are used, the total is preferably in the above range.
  • the curable resin composition of the present invention contains various additives such as a sensitizer, a chain transfer agent, a surfactant, a higher fatty acid derivative, and inorganic particles, if necessary, as long as the effects of the present invention can be obtained.
  • additives such as a sensitizer, a chain transfer agent, a surfactant, a higher fatty acid derivative, and inorganic particles, if necessary, as long as the effects of the present invention can be obtained.
  • Curing agent, curing catalyst, filler, antioxidant, ultraviolet absorber, anti-aggregation agent and the like can be blended. When these additives are blended, the total blending amount is preferably 3% by mass or less of the solid content of the curable resin composition.
  • the curable resin composition of the present invention may contain a sensitizer.
  • the sensitizer absorbs specific active radiation and becomes an electron-excited state.
  • the sensitizer in the electron-excited state comes into contact with a thermosetting accelerator, a thermal radical polymerization initiator, a photoradical polymerization initiator, or the like, and acts such as electron transfer, energy transfer, and heat generation occur.
  • a thermosetting accelerator, the thermal radical polymerization initiator, and the photoradical polymerization initiator undergo a chemical change and decompose to generate radicals, acids, or bases.
  • Compounds such as system, cyanine system, phenothiazine system, pyropyrazole azomethine system, xanthene system, phthalocyanine system, penzopyran system, and indigo system can be used.
  • sensitizer examples include Michler's ketone, 4,4'-bis (diethylamino) benzophenone, 2,5-bis (4'-diethylaminobenzal) cyclopentane, and 2,6-bis (4'-diethylaminobenzal).
  • the content of the sensitizer may be 0.01 to 20% by mass with respect to the total solid content of the curable resin composition of the present invention. It is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass.
  • the sensitizer may be used alone or in combination of two or more.
  • the curable resin composition of the present invention may contain a chain transfer agent.
  • Chain transfer agents are defined, for example, in the Polymer Dictionary, Third Edition (edited by the Society of Polymer Science, 2005), pp. 683-684.
  • Examples of the chain transfer agent include RAFT (Reversible Addition Fragmentation chain Transfer), a group of compounds having -S-S-, -SO 2-S-, -NO-, SH, PH, SiH, and GeH in the molecule.
  • Dithiobenzoate, trithiocarbonate, dithiocarbamate, xantate compound and the like having a thiocarbonylthio group used for polymerization are used. They can donate hydrogen to low-activity radicals to generate radicals, or they can be oxidized and then deprotonated to generate radicals.
  • a thiol compound can be preferably used.
  • the content of the chain transfer agent is 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the curable resin composition of the present invention.
  • 1 to 10 parts by mass is more preferable, and 1 to 5 parts by mass is further preferable.
  • the chain transfer agent may be only one kind or two or more kinds. When there are two or more types of chain transfer agents, the total is preferably in the above range.
  • Each type of surfactant may be added to the curable resin composition of the present invention from the viewpoint of further improving the coatability.
  • the surfactant various types of surfactants such as fluorine-based surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone-based surfactants can be used.
  • the following surfactants are also preferable.
  • the parentheses indicating the repeating unit of the main chain represent the content (mol%) of each repeating unit
  • the parentheses indicating the repeating unit of the side chain represent the number of repetitions of each repeating unit.
  • the surfactant the compound described in paragraphs 0159 to 0165 of International Publication No. 2015/199219 can also be used.
  • a fluorine-based surfactant a fluorine-containing polymer having an ethylenically unsaturated group in the side chain can also be used as the fluorine-based surfactant.
  • Specific examples include the compounds described in paragraphs 0050 to 0090 and paragraphs 0289 to 0295 of JP2010-164965, the contents of which are incorporated herein.
  • Examples of commercially available products include Megafvck RS-101, RS-102, and RS-718K manufactured by DIC Corporation.
  • the fluorine content in the fluorine-based surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid saving property, and has good solubility in the composition.
  • silicone-based surfactant examples include Torre Silicone DC3PA, Torre Silicone SH7PA, Torre Silicone DC11PA, Torre Silicone SH21PA, Torre Silicone SH28PA, Torre Silicone SH29PA, Torre Silicone SH30PA, Torre Silicone SH8400 (all, Toray Dow Corning Co., Ltd.).
  • TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4452 (all manufactured by Momentive Performance Materials Co., Ltd.), KP341, KF6001, KF6002 (manufactured by Shin-Etsu Silicone Co., Ltd.) ), BYK307, BYK323, BYK330 (all manufactured by Big Chemie Co., Ltd.) and the like.
  • hydrocarbon-based surfactant examples include Pionin A-76, New Calgen FS-3PG, Pionin B-709, Pionin B-811-N, Pionin D-1004, Pionin D-3104, Pionin D-3605, and Pionin.
  • Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (eg, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, etc. Examples thereof include polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, and sorbitan fatty acid ester.
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • (meth) acrylic acid-based (co) polymer Polyflow No. 75, No. 77, No. 90, No. 95 manufactured by Kyoeisha Chemical Co., Ltd.
  • W001 manufactured by Yusho Co., Ltd.
  • anionic surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.), Sandet BL (manufactured by Sanyo Chemical Industries, Ltd.) and the like.
  • the content of the surfactant is 0.001 to 2.0% by mass based on the total solid content of the curable resin composition of the present invention. It is preferably 0.005 to 1.0% by mass, more preferably 0.005 to 1.0% by mass.
  • the surfactant may be only one kind or two or more kinds. When there are two or more types of surfactant, the total is preferably in the above range.
  • the curable resin composition of the present invention has a curable resin composition in the process of drying after application by adding a higher fatty acid derivative such as behenic acid or behenic acid amide in order to prevent polymerization inhibition due to oxygen. It may be unevenly distributed on the surface of an object.
  • a higher fatty acid derivative such as behenic acid or behenic acid amide
  • the content of the higher fatty acid derivative is 0.1 to 10% by mass based on the total solid content of the curable resin composition of the present invention. Is preferable.
  • the higher fatty acid derivative may be only one kind or two or more kinds. When there are two or more higher fatty acid derivatives, the total is preferably in the above range.
  • the resin composition of the present invention may contain inorganic particles.
  • specific examples of the inorganic particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and glass.
  • the average particle size of the inorganic particles is preferably 0.01 to 2.0 ⁇ m, more preferably 0.02 to 1.5 ⁇ m, further preferably 0.03 to 1.0 ⁇ m, and 0.04 to 0.5 ⁇ m. Especially preferable.
  • the mechanical properties of the cured film may deteriorate.
  • the average particle size of the inorganic particles exceeds 2.0 ⁇ m, the resolution may decrease due to scattering of exposure light.
  • the composition of the present invention may contain an ultraviolet absorber.
  • an ultraviolet absorber such as salicylate-based, benzophenone-based, benzotriazole-based, substituted acrylonitrile-based, or triazine-based can be used.
  • salicylate-based ultraviolet absorbers include phenyl salicylate, p-octylphenyl salicylate, pt-butylphenyl salicylate and the like
  • benzophenone-based ultraviolet absorbers include 2,2'-dihydroxy-4-.
  • Methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2- Hydroxy-4-octoxybenzophenone and the like can be mentioned.
  • benzotriazole-based ultraviolet absorbers include 2- (2'-hydroxy-3', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3).
  • Examples of the substituted acrylonitrile-based ultraviolet absorber include ethyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, and the like.
  • the triazine-based ultraviolet absorber 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) )-1,3,5-Triazine, 2- [4-[(2-Hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) Mono (hydroxyphenyl) triazine compounds such as -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin
  • the above-mentioned various ultraviolet absorbers may be used alone or in combination of two or more.
  • the composition of the present invention may or may not contain an ultraviolet absorber, but when it is contained, the content of the ultraviolet absorber is 0.001% by mass with respect to the total solid content mass of the composition of the present invention. It is preferably 1% by mass or less, and more preferably 0.01% by mass or more and 0.1% by mass or less.
  • the resin composition of the present embodiment may contain an organic titanium compound. Since the resin composition contains an organic titanium compound, a resin layer having excellent chemical resistance can be formed even when cured at a low temperature.
  • Examples of the organic titanium compound that can be used include those in which an organic group is bonded to a titanium atom via a covalent bond or an ionic bond.
  • Specific examples of the organic titanium compound are shown in I) to VII) below:
  • I) Titanium chelate compound Among them, a titanium chelate compound having two or more alkoxy groups is more preferable because the negative photosensitive resin composition has good storage stability and a good curing pattern can be obtained.
  • Specific examples are titanium bis (triethanolamine) diisopropoxyside, titanium di (n-butoxide) bis (2,4-pentanionate, titanium diisopropoxyside bis (2,4-pentanionate)).
  • Titanium diisopropoxyside bis tetramethylheptandionate
  • titanium diisopropoxyside bis ethylacetacetate
  • Tetraalkoxytitanium compounds For example, titanium tetra (n-butoxide), titanium tetraethoxide, titanium tetra (2-ethylhexoxyside), titanium tetraisobutoxide, titanium tetraisopropoxyside, titanium tetramethoxide.
  • Titanium Tetramethoxypropoxyside Titanium Tetramethylphenoxide, Titanium Tetra (n-Noniloxide), Titanium Tetra (n-Propoxide), Titanium Tetrasteeryloxyside, Titanium Tetrakiss [Bis ⁇ 2,2- (Aryloxymethyl) Butokiside ⁇ ] etc.
  • Titanosen compounds for example, pentamethylcyclopentadienyl titanium trimethoxide, bis ( ⁇ 5-2,4-cyclopentadiene-1-yl) bis (2,6-difluorophenyl) titanium, bis ( ⁇ 5-2, 2).
  • Titanium oxide compound For example, titanium oxide bis (pentanionate), titanium oxide bis (tetramethylheptandionate), phthalocyanine titanium oxide and the like.
  • Titanium tetraacetylacetone compound For example, titanium tetraacetylacetone.
  • Titanate Coupling Agent For example, isopropyltridodecylbenzenesulfonyl titanate and the like.
  • the organic titanium compound at least one compound selected from the group consisting of the above-mentioned I) titanium chelate compound, II) tetraalkoxytitanium compound, and III) titanocene compound has better chemical resistance. It is preferable from the viewpoint of playing.
  • -Pyrrole-1-yl) phenyl) titanium is preferred.
  • the blending amount is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the precursor of the cyclized resin. ..
  • the blending amount is 0.05 parts by mass or more, good heat resistance and chemical resistance are exhibited in the obtained curing pattern, while when it is 10 parts by mass or less, the storage stability of the composition is excellent.
  • the composition of the present invention may contain an antioxidant.
  • an antioxidant By containing an antioxidant as an additive, it is possible to improve the elongation characteristics of the film after curing and the adhesion with a metal material.
  • the antioxidant include phenol compounds, phosphite ester compounds, thioether compounds and the like.
  • the phenol compound any phenol compound known as a phenolic antioxidant can be used.
  • Preferred phenolic compounds include hindered phenolic compounds.
  • a compound having a substituent at a site (ortho position) adjacent to the phenolic hydroxy group is preferable.
  • a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable.
  • a compound having a phenol group and a phosphite ester group in the same molecule is also preferable.
  • a phosphorus-based antioxidant can also be preferably used.
  • a phosphorus-based antioxidant tris [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosfepine-6 -Il] Oxy] Ethyl] amine, Tris [2-[(4,6,9,11-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosfepin-2-yl] ) Oxy] ethyl] amine, ethylbis phosphite (2,4-di-tert-butyl-6-methylphenyl) and the like.
  • antioxidants include, for example, Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-50F, Adekastab AO-60, Adekastab AO-60G, Adekastab AO-80. , ADEKA STAB AO-330 (above, manufactured by ADEKA Corporation) and the like.
  • the antioxidant the compounds described in paragraphs 0023 to 0048 of Japanese Patent No. 6268967 can also be used.
  • the composition of the present invention may contain a latent antioxidant, if necessary.
  • the latent antioxidant is a compound in which the site that functions as an antioxidant is protected by a protecting group, and is heated at 100 to 250 ° C. or at 80 to 200 ° C. in the presence of an acid / base catalyst. As a result, a compound in which the protecting group is eliminated and functions as an antioxidant can be mentioned.
  • Examples of the latent antioxidant include compounds described in International Publication No. 2014/021023, International Publication No. 2017/030005, and JP-A-2017-008219.
  • Examples of commercially available products of latent antioxidants include ADEKA ARKULS GPA-5001 (manufactured by ADEKA Corporation) and the like.
  • preferred antioxidants include 2,2-thiobis (4-methyl-6-t-butylphenol), 2,6-di-t-butylphenol and compounds represented by the general formula (3).
  • R 5 represents a hydrogen atom or an alkyl group having 2 or more carbon atoms
  • R 6 represents an alkylene group having 2 or more carbon atoms
  • R 7 represents a 1- to tetravalent organic group containing at least one of an alkylene group having 2 or more carbon atoms, an O atom, and an N atom
  • k represents an integer of 1 to 4.
  • the compound represented by the general formula (3) suppresses oxidative deterioration of aliphatic groups and phenolic hydroxyl groups of the resin.
  • metal oxidation can be suppressed by the rust preventive action on the metal material.
  • k is more preferably an integer of 2 to 4.
  • R7 include an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an aryl group, an arylether group, a carboxyl group, a carbonyl group, an allyl group, a vinyl group, a heterocyclic group, and-.
  • R7 include an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an aryl group, an arylether group, a carboxyl group, a carbonyl group, an allyl group, a vinyl group, a heterocyclic group, and-.
  • Examples thereof include O-, -NH-, -NHNH-, and combinations thereof, and may further have a substituent.
  • alkyl ether and -NH- from the viewpoint of solubility in a developing solution and metal adhesion, and -NH- is more preferable from the viewpoint of metal adhesion due to interaction with resin and metal complex formation. preferable.
  • Examples of the compound represented by the following general formula (3) include the following, but the compound is not limited to the following structure.
  • the amount of the antioxidant added is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to the resin. If the amount added is less than 0.1 parts by mass, it is difficult to obtain the effect of improving the elongation characteristics after reliability and the adhesion to the metal material, and if it is more than 10 parts by mass, it is due to the interaction with the photosensitizer. , There is a risk of lowering the sensitivity of the resin composition. Only one type of antioxidant may be used, or two or more types may be used. When two or more kinds are used, it is preferable that the total amount thereof is within the above range.
  • the water content of the curable resin composition of the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and even more preferably less than 0.6% by mass from the viewpoint of coating surface properties.
  • Examples of the method for maintaining the water content include adjusting the humidity under storage conditions and reducing the porosity of the storage container.
  • the metal content of the curable resin composition of the present invention is preferably less than 5 mass ppm (parts per million), more preferably less than 1 mass ppm, still more preferably less than 0.5 mass ppm, from the viewpoint of insulating properties.
  • the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are contained, the total of these metals is preferably in the above range.
  • a raw material having a low metal content is selected as a raw material constituting the curable resin composition of the present invention.
  • Methods such as filtering the raw materials constituting the curable resin composition of the present invention with a filter, lining the inside of the apparatus with polytetrafluoroethylene or the like, and performing distillation under conditions in which contamination is suppressed as much as possible can be mentioned. be able to.
  • the curable resin composition of the present invention preferably has a halogen atom content of less than 500 mass ppm, more preferably less than 300 mass ppm, and more preferably 200 mass ppm from the viewpoint of wiring corrosiveness. Less than ppm is more preferred. Among them, those existing in the state of halogen ions are preferably less than 5 mass ppm, more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm.
  • the halogen atom include a chlorine atom and a bromine atom. It is preferable that the total of chlorine atom and bromine atom, or chlorine ion and bromine ion is in the above range, respectively.
  • ion exchange treatment and the like are preferably mentioned.
  • a conventionally known storage container can be used as the storage container for the curable resin composition of the present invention.
  • a multi-layer bottle having the inner wall of the container composed of 6 types and 6 layers of resin and 6 types of resin are used. It is also preferable to use a bottle having a layered structure. Examples of such a container include the container described in Japanese Patent Application Laid-Open No. 2015-123351.
  • the curable resin composition of the present invention is preferably used for forming an interlayer insulating film for a rewiring layer. In addition, it can also be used for forming an insulating film of a semiconductor device, forming a stress buffer film, and the like.
  • the curable resin composition of the present invention is used for storage in a storage container at least once for refrigeration at ⁇ 15 to 16 ° C., and is a curable resin composition for the total storage volume of the storage container during refrigeration.
  • the filling rate of the above is preferably 50 to 90%. It is presumed that the curable resin composition of the present invention can provide a resin film having excellent film thickness uniformity even after such storage.
  • Examples of the storage container include the above-mentioned storage container.
  • the refrigerating temperature is preferably 1 to 12 ° C, more preferably 3 to 10 ° C.
  • the time of refrigeration (when subjected to a plurality of refrigerations, the total time of the plurality of refrigerations) is preferably 1 hour to 100 days, more preferably 12 hours to 30 days. ..
  • the above storage is preferably performed under light-shielded conditions.
  • the filling rate is calculated as the total product of the curable resin composition with respect to the total storage volume of the storage container, and is preferably 50 to
  • the curable resin composition of the present invention can be prepared by mixing each of the above components.
  • the mixing method is not particularly limited, and a conventionally known method can be used.
  • the filter pore diameter may be, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, still more preferably 0.1 ⁇ m or less.
  • the filter material is preferably polytetrafluoroethylene, polyethylene or nylon.
  • the filter may be one that has been pre-cleaned with an organic solvent.
  • a plurality of types of filters may be connected in series or in parallel. When using a plurality of types of filters, filters having different pore diameters or materials may be used in combination. Moreover, you may filter various materials a plurality of times.
  • circulation filtration may be used.
  • the pressure to be pressurized is, for example, 0.01 MPa or more and 1.0 MPa or less, preferably 0.03 MPa or more and 0.9 MPa or less, and more preferably 0.05 MPa or more and 0.7 MPa or less. , 0.05 MPa or more and 0.3 MPa or less is more preferable.
  • impurities may be removed using an adsorbent. Filter filtration and impurity removal treatment using an adsorbent may be combined.
  • the adsorbent a known adsorbent can be used. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • the resin film of the present invention is obtained by applying the curable resin composition of the present invention to a base material.
  • the application method and the type of the base material are not particularly limited, but the application method and the base material in the film forming step described later are preferably mentioned.
  • the film thickness of the resin film the film thickness of the cured film described later can be set to the range described later.
  • the film thickness of the resin film may be determined in consideration of shrinkage due to curing and the like.
  • the cured film of the present invention is obtained by curing the curable resin composition of the present invention or the resin film of the present invention.
  • the film thickness of the cured film of the present invention can be, for example, 0.5 ⁇ m or more, and can be 1 ⁇ m or more. Further, the upper limit value can be 100 ⁇ m or less, and can be 30 ⁇ m or less.
  • the cured film of the present invention may be laminated in two or more layers, and further in three to seven layers to form a laminated body. It is preferable that the laminate of the present invention contains two or more cured films and includes a metal layer between any of the cured films. For example, a laminate containing at least a layer structure in which three layers of a first cured film, a metal layer, and a second cured film are laminated in this order is preferable.
  • the first cured film and the second cured film are both cured films of the present invention.
  • both the first cured film and the second cured film are curable of the present invention.
  • a preferred embodiment is a film obtained by curing the resin composition.
  • the curable resin composition of the present invention used for forming the first cured film and the curable resin composition of the present invention used for forming the second cured film have the same composition. It may be present, or it may be a composition having a different composition.
  • the metal layer in the laminate of the present invention is preferably used as metal wiring such as a rewiring layer.
  • Examples of applicable fields of the cured film of the present invention include an insulating film for a semiconductor device, an interlayer insulating film for a rewiring layer, a stress buffer film, and the like.
  • Other examples include forming a pattern by etching on a sealing film, a substrate material (base film or coverlay of a flexible printed circuit board, an interlayer insulating film), or an insulating film for mounting purposes as described above.
  • the cured film in the present invention can also be used for manufacturing plate surfaces such as offset plate surfaces or screen plate surfaces, for etching molded parts, and for manufacturing protective lacquers and dielectric layers in electronics, especially in microelectronics.
  • the method for producing a cured film of the present invention is a film forming in which the curable resin composition of the present invention is applied to a substrate to form a film (resin film). It is preferable to include a step.
  • the method for producing a cured film of the present invention preferably includes the film forming step, an exposure step for exposing the film, and a developing step for developing the film. Further, the method for producing a cured film of the present invention more preferably includes the film forming step and, if necessary, the developing step, and also includes a heating step of heating the film at 50 to 450 ° C. Specifically, it is also preferable to include the following steps (a) to (d).
  • A Film forming step of applying the curable resin composition to a substrate to form a film (curable resin composition layer)
  • Exposure step of exposing the film after the film forming step (c) Exposure Development step for developing the above-mentioned film
  • the method for producing a laminate according to a preferred embodiment of the present invention includes the method for producing a cured film of the present invention.
  • the method for producing the laminated body of the present embodiment is the step (a), the steps (a) to (c), or (a) after forming the cured film according to the above-mentioned method for producing the cured film. )-(D).
  • a laminated body can be obtained.
  • the production method includes a film forming step (layer forming step) in which the curable resin composition is applied to a substrate to form a film (layered). According to the film forming step, the resin film of the present invention can be obtained.
  • the type of base material can be appropriately determined depending on the application, but semiconductor-made base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical film, ceramic material, and thin-film deposition film, There are no particular restrictions on magnetic film, reflective film, metal substrate such as Ni, Cu, Cr, Fe, paper, SOG (Spin On Glass), TFT (thin film transistor) array substrate, plasma display panel (PDP) electrode plate, and the like. Further, these base materials may be provided with a layer such as an adhesion layer or an oxide layer on the surface thereof.
  • a semiconductor-made base material is particularly preferable, and a silicon base material, a Cu base material, and a molded resin base material are more preferable. Further, these substrates may be provided with a layer such as an adhesion layer or an oxide layer made of hexamethyldisilazane (HMDS) or the like on the surface.
  • HMDS hexamethyldisilazane
  • the base material for example, a plate-shaped base material (board) is used as the base material.
  • the shape of the base material is not particularly limited, and may be circular or rectangular, but is preferably rectangular.
  • the size of the base material is, for example, 100 to 450 mm in diameter, preferably 200 to 450 mm in a circular shape. If it is rectangular, for example, the length of the short side is 100 to 1000 mm, preferably 200 to 700 mm.
  • the resin layer or the metal layer serves as a base material.
  • Coating is preferable as a means for applying the curable resin composition to the base material.
  • the inkjet method and the like are exemplified. From the viewpoint of the uniformity of the thickness of the curable resin composition layer, a spin coating method, a slit coating method, a spray coating method, and an inkjet method are more preferable.
  • a resin layer having a desired thickness can be obtained by adjusting an appropriate solid content concentration and coating conditions according to the method. Further, the coating method can be appropriately selected depending on the shape of the base material.
  • a spin coating method, a spray coating method, an inkjet method, etc. are preferable, and for a rectangular base material, a slit coating method or a spray coating method is used.
  • the method, the inkjet method and the like are preferable.
  • the spin coating method for example, it may be applied at a rotation speed of 300 to 3,500 rpm for 10 to 180 seconds, and it may be applied at a rotation speed of 500 to 2,000 rpm for about 10 seconds to 1 minute. can. Further, it is also possible to apply a method of transferring a coating film previously formed on a temporary support by the above-mentioned application method onto a substrate.
  • a plurality of rotation speeds can be combined and applied.
  • the transfer method the production method described in paragraphs 0023, 0036 to 0051 of JP-A-2006-023696 and paragraphs 096 to 0108 of JP-A-2006-047592 can be preferably used in the present invention.
  • a step of removing the excess film at the edge of the base material may be performed. Examples of such a process include edge bead rinse (EBR), air knife, back rinse and the like.
  • EBR edge bead rinse
  • a pre-wetting step of applying various solvents to the base material before applying the resin composition to the base material to improve the wettability of the base material and then applying the resin composition may be adopted.
  • the production method of the present invention may include a step of forming the film (curable resin composition layer), followed by a film forming step (layer forming step), and then drying to remove the solvent.
  • the preferred drying temperature is 50 to 150 ° C., more preferably 70 ° C. to 130 ° C., still more preferably 90 ° C. to 110 ° C.
  • the drying time is exemplified by 30 seconds to 20 minutes, preferably 1 minute to 10 minutes, and more preferably 3 minutes to 7 minutes. If the amount of solvent in the curable resin composition solution is large, vacuum drying and heat drying can also be combined.
  • a hot plate, a hot air oven, or the like is used for heat drying, and the heating and drying is not particularly limited.
  • the production method of the present invention may include an exposure step of exposing the film (curable resin composition layer).
  • the amount of exposure is not particularly determined as long as the curable resin composition can be cured, but for example, it is preferable to irradiate 100 to 10,000 mJ / cm 2 in terms of exposure energy at a wavelength of 365 nm, and 200 to 8,000 mJ /. It is more preferable to irradiate with cm 2.
  • the exposure wavelength can be appropriately determined in the range of 190 to 1,000 nm, preferably 240 to 550 nm.
  • the exposure wavelengths are (1) semiconductor laser (wavelength 830 nm, 532 nm, 488 nm, 405 nm etc.), (2) metal halide lamp, (3) high-pressure mercury lamp, g-ray (wavelength 436 nm), h.
  • the curable resin composition of the present invention is particularly preferably exposed to a high-pressure mercury lamp, and above all, to be exposed to i-rays.
  • a broad (three wavelengths of g, h, and i rays) light source of a high-pressure mercury lamp and a semiconductor laser of 405 nm are also suitable.
  • the exposure method is not particularly limited as long as it exposes at least a part of the film made of the resin composition of the present invention, but exposure using a photomask, exposure by a laser direct imaging method, or the like is possible. Can be mentioned.
  • the production method of the present invention may include a developing step of developing (developing the above-mentioned film) the exposed film (curable resin composition layer).
  • a developing step of developing developing the above-mentioned film
  • the exposed film curable resin composition layer
  • an unexposed portion non-exposed portion
  • the developing method is not particularly limited as long as a desired pattern can be formed, and examples thereof include ejection of a developing solution from a nozzle, spray spraying, immersion of a developing solution in a base material, and the like, and ejection from a nozzle is preferably used.
  • the developing process includes a process in which the developing solution is continuously supplied to the base material, a step in which the developing solution is kept in a substantially stationary state on the base material, a step in which the developing solution is vibrated by ultrasonic waves or the like, and a combination thereof. Processes can be adopted.
  • the developing solution can be used without particular limitation as long as the unexposed portion (non-exposed portion) is removed.
  • a developing solution containing an organic solvent or an alkaline aqueous solution can be used.
  • the developer preferably contains an organic solvent having a ClogP value of -1 to 5, and more preferably contains an organic solvent having a ClogP value of 0 to 3.
  • the ClogP value can be obtained as a calculated value by inputting a structural formula in ChemBioDraw.
  • the organic solvent may be, as esters, for example, ethyl acetate, n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate.
  • alkyl alkyloxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate) , Ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.
  • 3-alkyloxypropionate alkyl esters eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.) , 3-Methylpropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.)
  • the developer is a developer containing an organic solvent
  • cyclopentanone and ⁇ -butyrolactone are particularly preferable, and cyclopentanone is more preferable in the present invention.
  • the developing solution may contain a surfactant.
  • the developer is a developer containing an organic solvent
  • 50% by mass or more of the developer is preferably an organic solvent
  • 70% by mass or more is more preferably an organic solvent
  • 90% by mass or more is organic. It is more preferably a solvent.
  • the developing solution may be 100% by mass of an organic solvent.
  • the developing solution is an alkaline aqueous solution
  • examples of the basic compound that the alkaline aqueous solution can contain include TMAH (tetramethylammonium hydroxide), KOH (potassium hydroxide), sodium carbonate and the like, and TMAH is preferable. ..
  • TMAH tetramethylammonium hydroxide
  • KOH potassium hydroxide
  • sodium carbonate sodium carbonate
  • TMAH is preferable.
  • the content of the basic compound in the developer is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and 0.3 to 3% by mass in the total mass of the developer. Is more preferable.
  • the method of supplying the developing solution is not particularly limited as long as a desired pattern can be formed, and the method of immersing the base material on which the film is formed in the developing solution and the method of supplying the developing solution to the film formed on the base material using a nozzle.
  • the type of nozzle is not particularly limited, and examples thereof include a straight nozzle, a shower nozzle, and a spray nozzle.
  • the method of supplying the developer with a straight nozzle or the method of continuously supplying the developer with a spray nozzle is preferable, and the developer is supplied to the image area. From the viewpoint of permeability, the method of supplying with a spray nozzle is more preferable. Further, after the developing solution is continuously supplied by the straight nozzle, the base material is spun to remove the developing solution from the base material, and after spin drying, the developing solution is continuously supplied by the straight nozzle again, and then the base material is spun to use the developing solution as the base material. A step of removing from the top may be adopted, and this step may be repeated a plurality of times.
  • a step in which the developer is continuously supplied to the base material a step in which the developer is kept in a substantially stationary state on the base material, and a step in which the developer is superposed on the base material.
  • a process of vibrating with a sound wave or the like and a process of combining them can be adopted.
  • the development time is preferably 10 seconds to 5 minutes.
  • the temperature of the developing solution at the time of development is not particularly specified, but is usually 20 to 40 ° C.
  • rinsing After the treatment with the developing solution, further rinsing may be performed.
  • the rinsing is preferably performed with a solvent different from that of the developing solution.
  • a solvent different from that of the developing solution For example, propylene glycol monomethyl ether acetate can be mentioned.
  • the rinsing time is preferably 5 seconds to 5 minutes.
  • a step of applying both a developer and a rinse solution may be included between the development and the rinse. The time of the above step is preferably 1 second to 5 minutes.
  • rinsing can be performed using a solvent contained in the curable resin composition.
  • the rinse solution may further contain other components.
  • other components include known surfactants and known defoamers.
  • the method of supplying the rinse liquid is not particularly limited as long as a desired pattern can be formed, and the method of immersing the base material in the rinse liquid, the method of supplying the base material with a paddle, the method of supplying the base material with the rinse liquid by a shower, and the base.
  • the method of supplying the rinse liquid with a spray nozzle is more preferable.
  • the type of nozzle is not particularly limited, and examples thereof include a straight nozzle, a shower nozzle, and a spray nozzle. That is, the rinsing step is preferably a step of supplying the rinsing liquid to the exposed film by a straight nozzle or continuously, and more preferably a step of supplying the rinsing liquid by a spray nozzle.
  • a step of continuously supplying the rinse liquid to the base material, a step of keeping the rinse liquid in a substantially stationary state on the base material, and a step of superimposing the rinse liquid on the base material A process of vibrating with a sound conditioner or the like and a process of combining them can be adopted.
  • the rinse solution include PGMEA (propylene glycol monoethyl ether acetate), IPA (isopropanol), and the like, preferably PGMEA.
  • water is preferable as the rinsing solution for development with a developing solution containing an alkaline aqueous solution.
  • the rinsing time is preferably 5 seconds to 1 minute.
  • the production method of the present invention preferably includes a step (heating step) of heating the developed film at 50 to 450 ° C.
  • the heating step is preferably included after the film forming step (layer forming step), the drying step, and the developing step.
  • the above-mentioned thermal base generator decomposes to generate a base, and the cyclization reaction of the precursor, which is a specific resin, proceeds.
  • the curable resin composition of the present invention may contain a radically polymerizable compound other than the precursor which is a specific resin, but may also cure a radically polymerizable compound other than the precursor which is an unreacted specific resin. It can be advanced in this step.
  • the heating temperature (maximum heating temperature) of the layer in the heating step is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, further preferably 140 ° C. or higher, and 150 ° C. or higher. Is even more preferable, 160 ° C. or higher is even more preferable, and 170 ° C. or higher is even more preferable.
  • the upper limit is preferably 500 ° C. or lower, more preferably 450 ° C. or lower, further preferably 350 ° C. or lower, further preferably 250 ° C. or lower, and preferably 220 ° C. or lower. Even more preferable.
  • the heating is preferably performed at a heating rate of 1 to 12 ° C./min from the temperature at the start of heating to the maximum heating temperature, more preferably 2 to 10 ° C./min, and even more preferably 3 to 10 ° C./min.
  • a heating rate of 1 to 12 ° C./min from the temperature at the start of heating to the maximum heating temperature, more preferably 2 to 10 ° C./min, and even more preferably 3 to 10 ° C./min.
  • the temperature at the start of heating it is preferable to carry out from the temperature at the start of heating to the maximum heating temperature at a heating rate of 1 to 8 ° C./sec, more preferably 2 to 7 ° C./sec, and 3 to 6 ° C. °C / sec is more preferable.
  • the temperature at the start of heating is preferably 20 ° C. to 150 ° C., more preferably 20 ° C. to 130 ° C., and even more preferably 25 ° C. to 120 ° C.
  • the temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature is started.
  • the temperature of the film (layer) after drying is higher than, for example, the boiling point of the solvent contained in the curable resin composition. It is preferable to gradually raise the temperature from a temperature as low as 30 to 200 ° C.
  • the heating time (heating time at the maximum heating temperature) is preferably 10 to 360 minutes, more preferably 20 to 300 minutes, and even more preferably 30 to 240 minutes.
  • the heating temperature is preferably 180 ° C. to 320 ° C., more preferably 180 ° C. to 260 ° C., from the viewpoint of adhesion between layers of the cured film. The reason is not clear, but it is considered that the ethynyl groups of the specific resin between the layers are undergoing a cross-linking reaction at this temperature.
  • Heating may be performed in stages. As an example, the temperature is raised from 25 ° C. to 180 ° C. at 3 ° C./min and held at 180 ° C. for 60 minutes, the temperature is raised from 180 ° C. to 200 ° C. at 2 ° C./min, and held at 200 ° C. for 120 minutes. , Etc. may be performed.
  • the heating temperature as the pretreatment step is preferably 100 to 200 ° C., more preferably 110 to 190 ° C., and even more preferably 120 to 185 ° C. In this pretreatment step, it is also preferable to perform the treatment while irradiating with ultraviolet rays as described in US Pat. No. 9,159,547.
  • the pretreatment step is preferably performed in a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes.
  • the pretreatment may be performed in two or more steps.
  • the pretreatment step 1 may be performed in the range of 100 to 150 ° C.
  • the pretreatment step 2 may be performed in the range of 150 to 200 ° C.
  • cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5 ° C./min.
  • the heating step is performed in an atmosphere having a low oxygen concentration by flowing an inert gas such as nitrogen, helium, or argon, or by performing the heating step in a vacuum in order to prevent decomposition of the specific resin.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, and more preferably 20 ppm (volume ratio) or less.
  • the heating means is not particularly limited, and examples thereof include a hot plate, an infrared furnace, an electric heating oven, and a hot air oven.
  • the production method of the present invention preferably includes a metal layer forming step of forming a metal layer on the surface of the developed film (curable resin composition layer).
  • metal layer existing metal types can be used without particular limitation, and copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold and tungsten are exemplified, and copper, aluminum, and these metals are exemplified.
  • the alloy containing the above is more preferable, and copper is further preferable.
  • the method for forming the metal layer is not particularly limited, and an existing method can be applied.
  • the methods described in JP-A-2007-157879, JP-A-2001-521288, JP-A-2004-214501, and JP-A-2004-101850 can be used.
  • photolithography, lift-off, electrolytic plating, electroless plating, etching, printing, and a method combining these can be considered. More specifically, a patterning method combining sputtering, photolithography and etching, and a patterning method combining photolithography and electroplating can be mentioned.
  • the thickness of the metal layer is preferably 0.1 to 50 ⁇ m, more preferably 1 to 10 ⁇ m at the thickest portion.
  • the production method of the present invention preferably further includes a laminating step.
  • the laminating step means that (a) a film forming step (layer forming step), (b) an exposure step, (c) a developing step, and (d) a heating step are performed again on the surface of the cured film (resin layer) or the metal layer. , A series of steps including performing in this order. However, the mode may be such that only the film forming step (a) is repeated. Further, (d) the heating step may be performed collectively at the end or the middle of the lamination. That is, the steps (a) to (c) may be repeated a predetermined number of times, and then the heating of (d) may be performed to cure the laminated curable resin composition layers all at once.
  • the (c) developing step may be followed by the (e) metal layer forming step, and even if the heating is performed each time (d), the (d) is collectively performed after laminating a predetermined number of times. Heating may be performed. Needless to say, the laminating step may further include the above-mentioned drying step, heating step, and the like as appropriate.
  • the surface activation treatment step may be further performed after the heating step, the exposure step, or the metal layer forming step.
  • An example of the surface activation treatment is plasma treatment.
  • the laminating step is preferably performed 2 to 20 times, more preferably 2 to 5 times, and even more preferably 3 to 5 times. Further, each layer in the laminating step may be a layer having the same composition, shape, film thickness, etc., or may be a different layer.
  • a cured film (resin layer) of the curable resin composition so as to cover the metal layer after the metal layer is provided.
  • Examples thereof include an embodiment in which the steps, (b) exposure steps, (c) development steps, and (e) metal layer forming steps are repeated in this order, and (d) heating steps are collectively provided at the end or in the middle.
  • the method for producing a laminate of the present invention preferably includes a surface activation treatment step of surface activating at least a part of the metal layer and the resin composition layer.
  • the surface activation treatment step is usually performed after the metal layer formation step, but after the development step, the surface activation treatment step may be performed on the resin composition layer, and then the metal layer formation step may be performed.
  • the surface activation treatment may be performed on at least a part of the metal layer, on at least a part of the exposed resin composition layer, or on the metal layer and the exposed resin composition layer. For both, you may go to at least part of each.
  • the surface activation treatment is preferably performed on at least a part of the metal layer, and it is preferable to perform the surface activation treatment on a part or all of the region of the metal layer in which the resin composition layer is formed on the surface.
  • the surface activation treatment is performed on a part or all of the resin composition layer (resin layer) after exposure.
  • the surface activation treatment includes plasma treatment of various raw material gases (oxygen, hydrogen, argon, nitrogen, nitrogen / hydrogen mixed gas, argon / oxygen mixed gas, etc.), corona discharge treatment, CF 4 / O 2 , NF 3 / O 2 , SF 6 , NF 3 , NF 3 / O 2 , surface treatment by ultraviolet (UV) ozone method, immersion in hydrochloric acid aqueous solution to remove oxide film, then amino group and thiol group It is selected from a dipping treatment in an organic surface treatment agent containing at least one compound and a mechanical roughening treatment using a brush, and a plasma treatment is preferable, and an oxygen plasma treatment using oxygen as a raw material gas is particularly preferable.
  • the energy is preferably 500 ⁇ 200,000J / m
  • the present invention also discloses a semiconductor device containing the cured film or laminate of the present invention.
  • the semiconductor device in which the curable resin composition of the present invention is used to form the interlayer insulating film for the rewiring layer the description in paragraphs 0213 to 0218 and the description in FIG. 1 of JP-A-2016-0273557 are taken into consideration. Yes, these contents are incorporated herein.
  • Examples and Comparative Examples> In each example, the components shown in Tables 1 to 7 below were mixed to obtain each curable resin composition. Further, in each Comparative Example, the components shown in Table 2 below were mixed to obtain each comparative composition. Specifically, the content of the components other than the solvent shown in Tables 1 to 7 was the amount (part by mass) shown in each column of Tables 1 to 7. Further, in each composition, the total content of the solvent is such that the solid content concentration (mass%) of the composition is the value shown in Tables 1 to 7, and the content ratio of each solvent is shown in Tables 1 to 7. The mass ratio was set to the numerical value described in each column of 7.
  • the obtained curable resin composition and comparative composition were pressure-filtered through a filter made of polytetrafluoroethylene having a pore width of 0.8 ⁇ m. Further, in Tables 1 to 7, the description of "-" indicates that the composition does not contain the corresponding component.
  • this reaction solution was cooled to -5 ° C or lower in an ice / methanol bath, and 9.59 g (0.090 mol) of butyryl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) was maintained while maintaining the reaction temperature at ⁇ 0 ° C or lower. ) And 34.5 g of a mixed solution of NMP were added dropwise. After the dropping was completed, the mixture was further stirred for 16 hours.
  • the reaction was diluted with 550 g of NMP and placed in a vigorously stirred 4 L deionized water / methanol (80/20 volume ratio) mixture, the precipitated white powder recovered by filtration and washed with deionized water. ..
  • the polymer was dried at 50 ° C.
  • resin A-1a 25.00 g of resin A-1a, 125 g of NMP and 125 g of methyl ethyl ketone were added to a 500 mL eggplant flask, and the mixture was concentrated under reduced pressure at 60 ° C. until the contents reached 160 g.
  • 0.43 g (1.85 mmol) of camphorsulfonic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • 5.12 g (0.065 mol) of 2,3-dihydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) ) was added, and the mixture was stirred at room temperature (23 ° C.) for 1.5 hours.
  • [Crosslinking agent] -B-1 Compound with the following structure-B-2: Dipentaerythritol hexaacrylate-B-3: Light ester BP-6EM (manufactured by Kyoei Kagaku Co., Ltd.)
  • Adhesive (silane coupling agent)] -D-1 A compound having the following structure-D-2: N- [3- (triethoxysilyl) propyl] maleamic acid-D-3: 3-methacryloxypropyltrimethoxysilane
  • [Migration inhibitor] -F-1 Compound with the following structure-F-2: 5-amino-1H-tetrazole-F-3: 3-amino-1,2,4-triazole-F-4: 3,5-diamino-1, 2,4-Triazole F-5: Adenine
  • NMP N-methyl-2-pyrrolidone
  • DMSO dimethyl sulfoxide
  • EL ethyl lactate
  • GBL ⁇ -butyrolactone
  • Cyptn cyclopentanone
  • EA 3-butoxy-N, N-dimethylpropionamide
  • PGMEA propylene Glycol monomethyl ether acetate
  • each curable resin composition or comparative composition immediately after preparation was applied (coated) in layers on a circular silicon wafer having a diameter of 8 inches by a spin coating method.
  • the coated silicon wafer was dried on a hot plate at 100 ° C. for 4 minutes to form a resin film having a film thickness of 19 ⁇ m on the silicon wafer.
  • the film thickness was an arithmetic mean value of the film thickness at 10 in-plane locations.
  • the film thickness of the resin film is measured at a total of 10 points at equal intervals including both ends of the resin film, and the difference between the maximum value and the minimum value of the measured values at the above 10 points is measured.
  • the maximum in-plane film thickness difference ( ⁇ m) was used.
  • the film thickness uniformity of the composition immediately after preparation was evaluated according to the following evaluation criteria. The evaluation results are shown in the column of "Film thickness uniformity (immediately after preparation)" in Tables 1 to 7. It can be said that the smaller the maximum in-plane film thickness difference ( ⁇ m), the better the film thickness uniformity of the resin film.
  • -Evaluation criteria- 10 The maximum in-plane film thickness difference ( ⁇ m) was 0.5 ⁇ m or less. 9: The maximum in-plane film thickness difference ( ⁇ m) exceeded 0.5 ⁇ m and was 0.6 ⁇ m or less. 8: The maximum in-plane film thickness difference ( ⁇ m) exceeded 0.6 ⁇ m and was 0.7 ⁇ m or less. 7: The maximum in-plane film thickness difference ( ⁇ m) exceeded 0.7 ⁇ m and was 0.8 ⁇ m or less. 6: The maximum in-plane film thickness difference ( ⁇ m) exceeded 0.8 ⁇ m and was 0.9 ⁇ m or less. 5: The maximum in-plane film thickness difference ( ⁇ m) exceeded 0.9 ⁇ m and was 1.0 ⁇ m or less.
  • the maximum in-plane film thickness difference ( ⁇ m) exceeded 1.0 ⁇ m and was 1.1 ⁇ m or less.
  • 3 The maximum in-plane film thickness difference ( ⁇ m) exceeded 1.1 ⁇ m and was 1.2 ⁇ m or less.
  • 2 The maximum in-plane film thickness difference ( ⁇ m) exceeded 1.2 ⁇ m and was 1.3 ⁇ m or less.
  • 1 The maximum in-plane film thickness difference ( ⁇ m) exceeded 1.3 ⁇ m.
  • each curable resin composition or comparative composition immediately after preparation is placed in a storage container and sealed, and stored under 7 ° C., light-shielding conditions and at 23 ° C., light-shielding conditions. The storage underneath was repeated every 24 hours and stored for 6 months. The filling rate of the curable resin composition with respect to the total storage volume of the storage container was 90%.
  • each curable resin composition or comparative composition is returned to room temperature (23 ° C.), and then spin-coated on a circular silicon wafer having a diameter of 8 inches.
  • the coating conditions and the amount of the composition used in the spin coating method were the same as the coating conditions and the amount of the composition in the spin coating method in terms of film thickness uniformity immediately after preparation.
  • the maximum in-plane film thickness difference ( ⁇ m) is calculated in the same manner as in the above-mentioned evaluation of film thickness uniformity with the composition immediately after preparation, and the same as the evaluation criteria in the evaluation of film thickness uniformity with the composition immediately after preparation.
  • the film thickness uniformity of the composition 6 months after preparation was evaluated according to the evaluation criteria of. The evaluation results are shown in the column of "Film thickness uniformity (6 months after preparation)" in Tables 1 to 7. It can be said that the smaller the maximum in-plane film thickness difference ( ⁇ m), the better the film thickness uniformity of the resin film.
  • the resin film was developed using cyclopentanone at 30 ° C. as a developing solution, and rinsed with PGMEA (propylene glycol monomethyl ether acetate).
  • PGMEA propylene glycol monomethyl ether acetate
  • the pattern after rinsing is observed with an optical microscope, and the arithmetic mean value of the minimum line width in which the silicon wafer is exposed at the bottom of the fuse box is defined as the "minimum line width" among the line widths from 5 ⁇ m to 25 ⁇ m in 1 ⁇ m increments.
  • the evaluation was made according to the following evaluation criteria. The evaluation results are shown in the "Resolution (immediately after preparation)" column of Tables 1 to 7. It can be said that the smaller the minimum line width is, the better the resolution (litho property) is.
  • the minimum line width was 7 ⁇ m or less.
  • 9 The minimum line width exceeded 7 ⁇ m and was 8 ⁇ m or less.
  • 8 The minimum line width exceeded 8 ⁇ m and was 9 ⁇ m or less.
  • 7 The minimum line width exceeded 9 ⁇ m and was 11 ⁇ m or less.
  • 6 The minimum line width exceeded 11 ⁇ m and was 13 ⁇ m or less.
  • 5 The minimum line width exceeded 13 ⁇ m and was 16 ⁇ m or less.
  • 4 The minimum line width exceeded 16 ⁇ m and was 19 ⁇ m or less.
  • 3 The minimum line width exceeded 19 ⁇ m and was 22 ⁇ m or less.
  • 2 The minimum line width exceeded 22 ⁇ m and was 24 ⁇ m or less.
  • 1 The minimum line width exceeds 24 ⁇ m.
  • the composition was stored for 6 months. After the above storage, in each Example or Comparative Example, each curable resin composition or comparative composition is returned to room temperature (23 ° C.), and then the above-mentioned "evaluation of resolution by the composition immediately after preparation” described above.
  • the evaluation was performed by the same evaluation method and evaluation criteria as in the above. The evaluation results are shown in the "Resolution (6 months after preparation)" column of Tables 1 to 7.
  • Chemical solution Set temperature 75 ° C
  • the composition of the chemical solution was as follows: Dimethyl sulfoxide (DMSO) 70% by mass Tetramethylammonium hydroxide (TMAH) 2.5% by mass 3-methoxy-3-methyl-1-butanol 10% by mass Water balance Evaluation conditions: The cured film was immersed in the chemical solution for 15 minutes, washed with water, and then the film thicknesses before and after the immersion were compared, and the residual film ratio (%) was calculated by the following formula.
  • DMSO Dimethyl sulfoxide
  • TMAH Tetramethylammonium hydroxide
  • Residual film ratio (%) film thickness of cured film after immersion ( ⁇ m) / film thickness of cured film before immersion ( ⁇ m) x 100
  • the evaluation was performed according to the following evaluation criteria, and the evaluation results are described in the column of "Chemical resistance (immediately after preparation)" in Tables 1 to 7. It can be said that the larger the residual film ratio (%), the better the chemical resistance.
  • -Evaluation criteria- 10 The residual film ratio (%) was 90.0% or more. 9: The residual film ratio (%) was 89.0% or more and less than 90.0%. 8: The residual film ratio (%) was 88.0% or more and less than 89.0%. 7: The residual film ratio (%) was 87.0% or more and less than 88.0%.
  • the residual film ratio (%) was 86.0% or more and less than 87.0%.
  • 5 The residual film ratio (%) was 85.0% or more and less than 86.0%.
  • 4 The residual film ratio (%) was 84.0% or more and less than 85.0%.
  • 3 The residual film ratio (%) was 83.0% or more and less than 84.0%.
  • 2 The residual film ratio (%) was 82.0% or more and less than 83.0%. 1: The residual film ratio (%) was less than 82.0%.
  • the composition was stored for 6 months. After the above storage, in each Example or Comparative Example, the curable resin composition or the comparative composition is returned to room temperature (23 ° C.), and then the above-mentioned “Chemical resistance evaluation by the composition immediately after preparation” described above.
  • the evaluation was performed by the same method and evaluation criteria as in the above. The evaluation results are shown in the column of "Chemical resistance (6 months after preparation)" in Tables 1 to 7.
  • the curable resin composition of the present invention is excellent in film thickness uniformity of the obtained resin film even after storage for 6 months.
  • the comparative composition according to Comparative Example 1 contains only one kind of solvent. It can be seen that the comparative composition according to Comparative Example 1 is inferior in film thickness uniformity of the obtained resin film after storage for 6 months.
  • Example 101 The curable resin composition used in Example 1 was applied in layers to the surface of the copper thin layer of the resin base material having the copper thin layer formed on the surface by a spin coating method, and dried at 100 ° C. for 4 minutes. After forming a curable resin composition layer having a thickness of 20 ⁇ m, exposure was performed using a stepper (NSR1505 i6, manufactured by Nikon Corporation). Exposure was performed through a mask (a binary mask with a pattern of 1: 1 line and space and a line width of 10 ⁇ m) at a wavelength of 365 nm. After the exposure, it was heated at 100 ° C. for 4 minutes.
  • NSR1505 i6 a binary mask with a pattern of 1: 1 line and space and a line width of 10 ⁇ m
  • the temperature was raised at a heating rate of 10 ° C./min under a nitrogen atmosphere, and after reaching 200 ° C., the temperature was maintained at 200 ° C. for 120 minutes to form an interlayer insulating film for the rewiring layer.
  • the interlayer insulating film for the rewiring layer was excellent in insulating properties. Moreover, when a semiconductor device was manufactured using these interlayer insulating films for the rewiring layer, it was confirmed that the semiconductor device operated without any problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wood Science & Technology (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne une composition de résine durcissable qui contient au moins une sorte de résine choisie dans un groupe constitué d'un polyimide, d'un précurseur de polyimide, d'un polybenzoxazole et d'un dérivé de polybenzoxazole, et au moins deux sortes de solvants. L'invention concerne également un film de résine constitué par application de ladite composition de résine durcissable sur un substrat, un film durci constitué par durcissement de ladite composition de résine durcissable, un stratifié contenant ledit film durci, un procédé de fabrication dudit film durci, et un dispositif à semi-conducteurs contenant ledit film durci ou ledit stratifié.
PCT/JP2021/003731 2020-02-03 2021-02-02 Composition de résine durcissable, film de résine, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs WO2021157571A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227026284A KR20220123540A (ko) 2020-02-03 2021-02-02 경화성 수지 조성물, 수지막, 경화막, 적층체, 경화막의 제조 방법, 및, 반도체 디바이스
JP2021575807A JP7453260B2 (ja) 2020-02-03 2021-02-02 硬化性樹脂組成物、樹脂膜、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
CN202180012209.8A CN115038755A (zh) 2020-02-03 2021-02-02 固化性树脂组合物、树脂膜、固化膜、层叠体、固化膜的制造方法及半导体器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020016381 2020-02-03
JP2020-016381 2020-02-03
JP2020-113627 2020-06-30
JP2020113627 2020-06-30

Publications (1)

Publication Number Publication Date
WO2021157571A1 true WO2021157571A1 (fr) 2021-08-12

Family

ID=77199290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003731 WO2021157571A1 (fr) 2020-02-03 2021-02-02 Composition de résine durcissable, film de résine, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs

Country Status (5)

Country Link
JP (1) JP7453260B2 (fr)
KR (1) KR20220123540A (fr)
CN (1) CN115038755A (fr)
TW (1) TW202138469A (fr)
WO (1) WO2021157571A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138606A1 (fr) * 2020-12-25 2022-06-30 富士フイルム株式会社 Composition de résine, produit durci, stratifié, méthode de production d'un produit durci, et dispositif semi-conducteur

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091573A (ja) * 2007-09-20 2009-04-30 Ube Ind Ltd ポリイミド膜の製造方法、及びポリアミック酸溶液組成物
JP2013015701A (ja) * 2011-07-05 2013-01-24 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
WO2016017497A1 (fr) * 2014-08-01 2016-02-04 日産化学工業株式会社 Composition de résine pour former un film durci
WO2016167038A1 (fr) * 2015-04-15 2016-10-20 東レ株式会社 Composition de résine résistant à la chaleur, procédé de fabrication d'un film de résine résistant à la chaleur, procédé de fabrication d'un film d'isolation intercouche ou d'un film protecteur de surface et procédé de fabrication de composant électronique ou de composant semi-conducteur
WO2017038664A1 (fr) * 2015-08-31 2017-03-09 富士フイルム株式会社 Composition, film durci, procédé de fabrication d'un film durci, procédé de fabrication d'un dispositif semi-conducteur et dispositif semi-conducteur
WO2017043474A1 (fr) * 2015-09-11 2017-03-16 富士フイルム株式会社 Procédé de production d'un matériau précurseur de polymère contenant un hétérocycle et application associée
WO2017170600A1 (fr) * 2016-03-31 2017-10-05 旭化成株式会社 Composition de résine photosensible, procédé pour fabriquer un motif en relief durci et appareil à semi-conducteur
WO2018043467A1 (fr) * 2016-08-31 2018-03-08 富士フイルム株式会社 Composition de résine et son application
WO2018151195A1 (fr) * 2017-02-20 2018-08-23 富士フイルム株式会社 Composition de résine photosensible, précurseur polymère contenant un noyau hétérocyclique, film durci, stratifié, procédé de production de film durci, et dispositif semi-conducteur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115233A1 (fr) 2013-01-28 2014-07-31 日立化成デュポンマイクロシステムズ株式会社 Composition de résine, procédé de fabrication de film durci avec motif, et élément semi-conducteur
US20200339754A1 (en) 2018-01-18 2020-10-29 Toray Industries, Inc. Resin composition for display substrate, resin film for display substrate and laminate body containing this, image display device, organic el display, and manufacturing method of these
TWI797291B (zh) * 2018-03-30 2023-04-01 日商富士軟片股份有限公司 感光性樹脂組成物、感光性樹脂組成物的製造方法、硬化膜、積層體、硬化膜的製造方法、積層體的製造方法及半導體器件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091573A (ja) * 2007-09-20 2009-04-30 Ube Ind Ltd ポリイミド膜の製造方法、及びポリアミック酸溶液組成物
JP2013015701A (ja) * 2011-07-05 2013-01-24 Hitachi Chemical Dupont Microsystems Ltd 感光性樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
WO2016017497A1 (fr) * 2014-08-01 2016-02-04 日産化学工業株式会社 Composition de résine pour former un film durci
WO2016167038A1 (fr) * 2015-04-15 2016-10-20 東レ株式会社 Composition de résine résistant à la chaleur, procédé de fabrication d'un film de résine résistant à la chaleur, procédé de fabrication d'un film d'isolation intercouche ou d'un film protecteur de surface et procédé de fabrication de composant électronique ou de composant semi-conducteur
WO2017038664A1 (fr) * 2015-08-31 2017-03-09 富士フイルム株式会社 Composition, film durci, procédé de fabrication d'un film durci, procédé de fabrication d'un dispositif semi-conducteur et dispositif semi-conducteur
WO2017043474A1 (fr) * 2015-09-11 2017-03-16 富士フイルム株式会社 Procédé de production d'un matériau précurseur de polymère contenant un hétérocycle et application associée
WO2017170600A1 (fr) * 2016-03-31 2017-10-05 旭化成株式会社 Composition de résine photosensible, procédé pour fabriquer un motif en relief durci et appareil à semi-conducteur
WO2018043467A1 (fr) * 2016-08-31 2018-03-08 富士フイルム株式会社 Composition de résine et son application
WO2018151195A1 (fr) * 2017-02-20 2018-08-23 富士フイルム株式会社 Composition de résine photosensible, précurseur polymère contenant un noyau hétérocyclique, film durci, stratifié, procédé de production de film durci, et dispositif semi-conducteur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138606A1 (fr) * 2020-12-25 2022-06-30 富士フイルム株式会社 Composition de résine, produit durci, stratifié, méthode de production d'un produit durci, et dispositif semi-conducteur

Also Published As

Publication number Publication date
JPWO2021157571A1 (fr) 2021-08-12
TW202138469A (zh) 2021-10-16
KR20220123540A (ko) 2022-09-07
JP7453260B2 (ja) 2024-03-19
CN115038755A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
JP7412530B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021172420A1 (fr) Composition de résine durcissable, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2022070730A1 (fr) Procédé de production de produit durci, procédé de production de corps multicouche, et procédé de production de dispositif à semiconducteur
WO2022138606A1 (fr) Composition de résine, produit durci, stratifié, méthode de production d'un produit durci, et dispositif semi-conducteur
JP2023159205A (ja) 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7470790B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7492003B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7483908B2 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
JP7334268B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
WO2021246457A1 (fr) Composition de résine durcissable, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2022045120A1 (fr) Composition de résine photosensible, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
JP7300511B2 (ja) 硬化膜の製造方法、光硬化性樹脂組成物、積層体の製造方法、及び、半導体デバイスの製造方法
WO2022045060A1 (fr) Composition de résine durcissable, produit durci, stratifié, procédé de production de produit durci, ainsi que dispositif à semi-conducteurs
JP7453260B2 (ja) 硬化性樹脂組成物、樹脂膜、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7367049B2 (ja) パターン形成方法、感光性樹脂組成物、積層体の製造方法、及び、半導体デバイスの製造方法
WO2021157306A1 (fr) Composition de résine, film durci, stratifié, procédé de fabrication de film durci et dispositif à semi-conducteur
WO2022050278A1 (fr) Composition de résine durcissable, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, dispositif à semi-conducteurs, et générateur de photobase
WO2022071226A1 (fr) Composition de résine, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2022145136A1 (fr) Composition de résine, produit durci, stratifié, procédé de production de produit durci, dispositif semi-conducteur, et composé
WO2022050135A1 (fr) Procédé de fabrication d'objet durci, procédé de fabrication de stratifié, et procédé de fabrication de dispositif à semi-conducteurs
JP7451681B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7454672B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱硬化性樹脂
JP7498281B2 (ja) 硬化性樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
JP7425088B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、樹脂
TWI841777B (zh) 硬化膜的製造方法、積層體的製造方法及電子元件的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575807

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227026284

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750889

Country of ref document: EP

Kind code of ref document: A1