WO2022045060A1 - Composition de résine durcissable, produit durci, stratifié, procédé de production de produit durci, ainsi que dispositif à semi-conducteurs - Google Patents

Composition de résine durcissable, produit durci, stratifié, procédé de production de produit durci, ainsi que dispositif à semi-conducteurs Download PDF

Info

Publication number
WO2022045060A1
WO2022045060A1 PCT/JP2021/030784 JP2021030784W WO2022045060A1 WO 2022045060 A1 WO2022045060 A1 WO 2022045060A1 JP 2021030784 W JP2021030784 W JP 2021030784W WO 2022045060 A1 WO2022045060 A1 WO 2022045060A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
preferable
compound
carbon atoms
resin composition
Prior art date
Application number
PCT/JP2021/030784
Other languages
English (en)
Japanese (ja)
Inventor
健太 吉田
修平 山口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022544581A priority Critical patent/JP7498281B2/ja
Priority to KR1020237006261A priority patent/KR20230043166A/ko
Publication of WO2022045060A1 publication Critical patent/WO2022045060A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a curable resin composition, a cured product, a laminate, a method for producing a cured product, and a semiconductor device.
  • Polyimide or polybenzoxazole is applied to various applications because it has excellent heat resistance and insulating properties.
  • the application is not particularly limited, and examples thereof include a semiconductor device for mounting as a material for an insulating film or a sealing material, or a protective film. It is also used as a base film and coverlay for flexible substrates.
  • the polyimide or polybenzoxazole is used in the form of a curable resin composition containing at least one resin selected from the group consisting of a polyimide precursor and a polybenzoxazole precursor.
  • a curable resin composition is applied to a base material by, for example, coating to form a resin film, and then exposed, developed, heated or the like as necessary to apply the cured product onto the base material.
  • the polyimide precursor and the polybenzoxazole precursor are cyclized by heating, for example, and become polyimide and polybenzoxazole in the cured product, respectively.
  • the curable resin composition can be applied by a known coating method or the like, for example, there is a high degree of freedom in designing the shape, size, application position, etc. of the applied curable resin composition at the time of application. It can be said that it has excellent manufacturing adaptability.
  • the above-mentioned curable resin composition is expected to be increasingly applied in industry.
  • Patent Document 1 contains a polyimide precursor, at least one resin of polyimide, and at least one urethane (meth) acrylate, and the urethane (meth) acrylate is specified in one molecule.
  • a photosensitive resin composition having a partial structure, 4 to 15 (meth) acrylate groups, and a urethane structure is described.
  • curable resin composition containing at least one resin selected from the group consisting of a polyimide precursor and a polybenzoxazole precursor, improvement in chemical resistance of the obtained cured product is required.
  • the present invention relates to a curable resin composition capable of obtaining a cured product having excellent chemical resistance, a cured product obtained by curing the curable resin composition, a laminate containing the cured product, and a method for producing the cured product.
  • An object of the present invention is to provide a semiconductor device containing the cured product or the laminate.
  • ⁇ 1> At least one resin selected from the group consisting of a polyimide precursor and a polybenzoxazole precursor, and Curing containing compound B having at least one structure and a polymerizable group selected from the group consisting of an oxalic acid monoester structure, an oxalic acid diester structure, an oxalic acid monoamide structure, an oxalic acid diamide structure and an oxalic acid ester amide structure.
  • ⁇ 2> The curable resin composition according to ⁇ 1>, wherein the compound B is a compound represented by the following formula (1).
  • X 1 and X 2 are independently -O- or -NZ-, Z is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, and R 2 is a hydrogen atom or 1 to 20 carbon atoms. It is a monovalent organic group of, and R 1 represents a monovalent organic group including a polymerizable group.
  • ⁇ 3> The curable resin composition according to ⁇ 1> or ⁇ 2>, wherein the polymerizable group is a radically polymerizable group.
  • ⁇ 4> The curable resin composition according to any one of ⁇ 1> to ⁇ 3>, further comprising at least one of a photopolymerization initiator and a thermosetting initiator.
  • ⁇ 5> The curable resin composition according to any one of ⁇ 1> to ⁇ 3>, further comprising a photopolymerization initiator.
  • ⁇ 6> The curable resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the resin contains a repeating unit represented by the formula (2).
  • a 1 and A 2 independently represent an oxygen atom or -NH-
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 independently represent a hydrogen atom or a monovalent organic group, respectively.
  • ⁇ 7> The curable resin composition according to any one of ⁇ 1> to ⁇ 6>, which is used for forming an interlayer insulating film for a rewiring layer.
  • ⁇ 8> A cured product obtained by curing the curable resin composition according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> A laminated body containing two or more layers made of the cured product according to ⁇ 8> and containing a metal layer between any of the layers made of the cured product.
  • a method for producing a cured product which comprises a film forming step of applying the curable resin composition according to any one of ⁇ 1> to ⁇ 7> onto a substrate to form a film.
  • ⁇ 11> The method for producing a cured product according to ⁇ 10>, which comprises an exposure step of selectively exposing the film and a developing step of developing the film with a developer to form a pattern.
  • ⁇ 12> The method for producing a cured product according to ⁇ 10> or ⁇ 11>, which comprises a heating step of heating the film at 50 to 450 ° C.
  • a semiconductor device comprising the cured product according to ⁇ 8> or the laminate according to ⁇ 9>.
  • a curable resin composition capable of obtaining a cured product having excellent chemical resistance, a cured product obtained by curing the curable resin composition, a laminate containing the cured product, and the production of the cured product.
  • Methods and semiconductor devices comprising the cured product or the laminate are provided.
  • the present invention is not limited to the specified embodiments.
  • the numerical range represented by the symbol "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • the term "process” means not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended action of the process can be achieved.
  • the notation not describing substitution and non-substitution also includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams, unless otherwise specified. Examples of the light used for exposure include emission line spectra of mercury lamps, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, active rays such as electron beams, or radiation.
  • (meth) acrylate means both “acrylate” and “methacrylate”, or either
  • (meth) acrylic means both “acrylic” and “methacrylic", or.
  • Any, and “(meth) acryloyl” means both “acryloyl” and “methacrylic”, or either.
  • Me in the structural formula represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the total solid content means the total mass of all the components of the composition excluding the solvent.
  • the solid content concentration is the mass percentage of other components excluding the solvent with respect to the total mass of the composition.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) method and are defined as polystyrene-equivalent values unless otherwise specified.
  • GPC gel permeation chromatography
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) for example, HLC-8220GPC (manufactured by Tosoh Corporation) is used, and guard columns HZ-L, TSKgel Super HZM-M, and TSKgel are used as columns. It can be obtained by connecting and using Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (all manufactured by Tosoh Corporation) in series.
  • the molecular weights shall be measured using THF (tetrahydrofuran) as an eluent.
  • NMP N-methyl-2-pyrrolidone
  • the detection in the GPC measurement shall be performed by using a detector having a wavelength of 254 nm of UV rays (ultraviolet rays).
  • UV rays ultraviolet rays
  • a third layer or element may be further interposed between the reference layer and the other layer, and the reference layer and the other layer need not be in contact with each other.
  • the direction in which the layers are stacked on the base material is referred to as "upper", or if there is a resin composition layer, the direction from the base material to the resin composition layer is referred to as "upper”. And the opposite direction is called "down". It should be noted that such a vertical setting is for convenience in the present specification, and in an actual embodiment, the "up" direction in the present specification may be different from the vertical upward direction.
  • the composition may contain, as each component contained in the composition, two or more compounds corresponding to the component.
  • the content of each component in the composition means the total content of all the compounds corresponding to the component.
  • the temperature is 23 ° C.
  • the atmospheric pressure is 101,325 Pa (1 atmospheric pressure)
  • the relative humidity is 50% RH.
  • a combination of preferred embodiments is a more preferred embodiment.
  • the curable resin composition of the present invention (hereinafter, also simply referred to as “resin composition”) is at least one resin selected from the group consisting of a polyimide precursor and a polybenzoxazole precursor (hereinafter, “specific resin”). ”), And at least one structure and a polymerizable group selected from the group consisting of a oxalic acid monoester structure, a oxalic acid diester structure, a oxalic acid monoamide structure, a oxalic acid diamide structure and a oxalate esteramide structure.
  • a oxalic acid monoester structure a oxalic acid diester structure
  • a oxalic acid monoamide structure a oxalic acid diamide structure
  • oxalate esteramide structure a oxalate esteramide structure.
  • the curable resin composition of the present invention may be a negative type curable resin composition or a positive type curable resin composition, but is preferably a negative type curable resin composition. ..
  • the negative type curable resin composition refers to a composition in which an unexposed portion (non-exposed portion) is removed by a developer when a layer formed from the curable resin composition is exposed.
  • the positive type curable resin composition refers to a composition in which an exposed portion (exposed portion) is removed by a developing solution when a layer formed from the curable resin composition is exposed.
  • the curable resin composition of the present invention preferably further contains at least one of a photopolymerization initiator and a thermal polymerization initiator, and more preferably further contains a photopolymerization initiator. By containing a photopolymerization initiator, it can be used as a negative type curable resin composition. Further, by containing the thermal polymerization initiator, it can be used as a negative type curable resin composition or a positive type cur
  • the curable resin composition of the present invention is excellent in chemical resistance of the obtained cured product.
  • the mechanism by which the above effect is obtained is unknown, but it is presumed as follows.
  • the curable resin composition of the present invention contains compound B. At least one structure selected from the group consisting of an oxalic acid monoester structure, an oxalic acid diester structure, an oxalic acid monoamide structure, an oxalic acid diamide structure and an oxalic acid ester amide structure contained in compound B is highly polar and can be obtained. It is considered to aggregate in the cured product. Therefore, it is considered that the permeation of the chemical solution is suppressed in the obtained cured product, and the cured product has excellent chemical resistance.
  • the cured product has excellent chemical resistance
  • another curable resin composition containing a solvent is further applied and cured on the cured product obtained by curing the curable resin composition of the present invention, and the laminated body is cured. It is considered that the dissolution of the cured product is suppressed even if the cured product comes into contact with the developing solution or other curable resin composition in the case of producing the above.
  • a polar solvent such as dimethyl sulfoxide (DMSO) or N-methylpyrrolidone (NMP)
  • an alkaline aqueous solution such as a tetramethylammonium hydroxide (TMAH) aqueous solution
  • TMAH tetramethylammonium hydroxide
  • compound B has a polymerizable group
  • the polymerizable groups in compound B or the polymerizable group in compound B and other components for example, a polyimide precursor, a polybenzoxazole precursor, etc.
  • a polymer containing at least one structure selected from the group consisting of an oxalic acid monoester structure, an oxalic acid diester structure, an oxalic acid monoamide structure, an oxalic acid diamide structure and an oxalic acid ester amide structure is highly flexible.
  • the cured product to be obtained is also excellent in film strength (break elongation).
  • the ring closure reaction is promoted by improving the motility of the polymer due to the effect of compound B during curing (for example, during curing by a heating step described later), which is also film strength (break elongation).
  • compound B is polymerized by containing at least one structure selected from the group consisting of an oxalic acid monoester structure, an oxalic acid diester structure, an oxalic acid monoamide structure, an oxalic acid diamide structure and an oxalic acid ester amide structure.
  • Patent Documents 1 and 2 do not describe or suggest a specific resin and a curable resin composition containing compound B.
  • the curable resin composition of the present invention contains at least one resin (specific resin) selected from the group consisting of a polyimide precursor and a polybenzoxazole precursor.
  • the curable resin composition of the present invention preferably contains a polyimide precursor as the specific resin. Further, the specific resin preferably contains a repeating unit represented by the formula (2) described later.
  • the specific resin has a polymerizable group.
  • the polymerizable group in the specific resin include known polymerizable groups such as a radical polymerizable group, an epoxy group, an oxetanyl group, a methylol group and an alkoxymethyl group.
  • a group having an ethylenically unsaturated bond is preferable.
  • the group having an ethylenically unsaturated bond include a group having a vinyl group which may be substituted and directly bonded to an aromatic ring such as a vinyl group, an allyl group and a vinylphenyl group, a (meth) acrylamide group and a (meth) group. Examples thereof include an acryloyloxy group, and a (meth) acryloyloxy group is preferable.
  • the specific resin preferably contains a radically polymerizable group.
  • the curable resin composition preferably contains a photoradical polymerization initiator described later as a photosensitizer, contains a photoradical polymerization initiator described later as a photosensitizer, and is described later. It is more preferable to contain the radical cross-linking agent described below, and it is further preferable to contain the photoradical polymerization initiator described below as the photosensitizer, the radical cross-linking agent described below, and the sensitizer described below. From such a curable resin composition, for example, a negative photosensitive layer is formed.
  • the specific resin may have a polar conversion group such as an acid-decomposable group.
  • the curable resin composition preferably contains a photoacid generator described later as a photosensitive agent. From such a curable resin composition, for example, a chemically amplified positive type photosensitive layer or a negative type photosensitive layer is formed.
  • the polyimide precursor used in the present invention is not particularly specified, such as its type, but preferably contains a repeating unit represented by the following formula (2).
  • a 1 and A 2 independently represent an oxygen atom or -NH-
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 in the formula (2) independently represent an oxygen atom or —NH—, and an oxygen atom is preferable.
  • R 111 in the formula (2) represents a divalent organic group.
  • the divalent organic group include a linear or branched aliphatic group, a cyclic aliphatic group and a group containing an aromatic group, and a linear or branched aliphatic group having 2 to 20 carbon atoms and a carbon number of carbon atoms are exemplified.
  • a cyclic aliphatic group having 3 to 20, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof is preferable, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferable.
  • the hydrocarbon group in the chain may be substituted with a group containing a heteroatom, and in the cyclic aliphatic group and the aromatic group, the hydrocarbon group of the ring member is a heteroatom. It may be substituted with a group containing.
  • Preferred embodiments of the present invention exemplify the groups represented by -Ar- and -Ar-L-Ar-, and particularly preferably the groups represented by -Ar-L-Ar-.
  • Ar is an aromatic group independently
  • L is a single bond, an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-,. -S-, -SO 2- or -NHCO-, or a group consisting of a combination of two or more of the above.
  • R 111 is preferably derived from diamine.
  • the diamine used for producing the polyimide precursor include linear or branched aliphatic, cyclic aliphatic or aromatic diamines. Only one kind of diamine may be used, or two or more kinds of diamines may be used. Specifically, a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof. The diamine containing the above is preferable, and the diamine containing an aromatic group having 6 to 20 carbon atoms is more preferable.
  • the hydrocarbon group in the chain may be substituted with a group containing a heteroatom, and in the cyclic aliphatic group and the aromatic group, the hydrocarbon group of the ring member is a heteroatom. It may be substituted with a containing group.
  • groups containing aromatic groups include:
  • O)-, -S-, -SO 2- , -NHCO-, or a group selected from a combination thereof is preferable, and a single bond or a group having 1 to 3 carbon atoms which may be substituted with a fluorine atom may be used.
  • * represents a binding site with another structure.
  • diamine examples include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,2- or 1 , 3-Diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4-) Aminocyclohexyl) methane, bis- (3-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine; m- or p-phenylenediamine, diaminotoluene, 4,4'- Or 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl;
  • diamines (DA-1) to (DA-18) described in paragraphs 0030 to 0031 of International Publication No. 2017/038598 are also preferable.
  • a diamine having two or more alkylene glycol units in the main chain described in paragraphs 0032 to 0034 of International Publication No. 2017/038598 is also preferably used.
  • R 111 is preferably represented by ⁇ Ar—L—Ar— from the viewpoint of the flexibility of the obtained organic film.
  • Ar is an aromatic group independently
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S—. , -SO 2- or -NHCO-, or a group consisting of a combination of two or more of the above.
  • Ar is preferably a phenylene group
  • L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S— or —SO2- . ..
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or formula (61) from the viewpoint of i-ray transmittance.
  • a divalent organic group represented by the formula (61) is more preferable.
  • Equation (51) In formula (51), R 50 to R 57 are independently hydrogen atoms, fluorine atoms or monovalent organic groups, and at least one of R 50 to R 57 is a fluorine atom, a methyl group or trifluoro. It is a methyl group, and * independently represents a bonding site with a nitrogen atom in the formula (2).
  • the monovalent organic group of R 50 to R 57 includes an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Examples thereof include an alkyl fluoride group.
  • R 58 and R 59 are each independently a fluorine atom, a methyl group, or a trifluoromethyl group, and * is an independent binding site with a nitrogen atom in formula (2). show.
  • Examples of the diamine giving the structure of the formula (51) or (61) include 2,2'-dimethylbenzidine, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, and 2,2'-bis. (Fluoro) -4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl and the like can be mentioned. These may be used alone or in combination of two or more.
  • R 115 in the formula (2) represents a tetravalent organic group.
  • a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or formula (6) is more preferable.
  • * independently represents a binding site with another structure.
  • R 112 is a single bond or divalent linking group, which may be replaced with a single bond or a fluorine atom, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, —O—, It is preferably a group selected from -CO-, -S-, -SO 2- , and -NHCO-, and a combination thereof, and is a single bond, which may be substituted with a fluorine atom and has 1 to 1 carbon atoms.
  • it is a group selected from 3 alkylene groups, -O-, -CO-, -S- and -SO 2- , and -CH 2- , -C (CF 3 ) 2- , -C ( CH 3 ) It is more preferably a divalent group selected from the group consisting of 2-, -O-, -CO-, -S- and -SO 2- .
  • R 111 may have a structure containing a polymerizable group.
  • R 111 may have a structure derived from a diamine compound having a polymerizable group.
  • the diamine compound having a polymerizable group is not particularly limited, but is preferably a compound containing an aromatic ring structure, and is a compound having a structure in which a structure containing an amino group and a polymerizable group is directly linked to the aromatic ring structure. Is more preferable.
  • a group having an ethylenically unsaturated bond, a cyclic ether group, a methylol group or a group containing an alkoxymethyl group is preferable, and a vinyl group, a (meth) allyl group, a (meth) acrylamide group and a (meth) acryloxy are preferable.
  • a group, a maleimide group, a vinylphenyl group, an epoxy group, an oxetanyl group, a methylol group or an alkoxymethyl group is more preferable, and a (meth) acryloxy group, a (meth) acrylamide group, an epoxy group, a methylol group or an alkoxymethyl group is further preferable.
  • R 115 include tetracarboxylic acid residues remaining after removal of the anhydride group from the tetracarboxylic dianhydride.
  • the polyimide precursor may contain only one type of tetracarboxylic dianhydride residue or two or more types as a structure corresponding to R 115 .
  • the tetracarboxylic dianhydride is preferably represented by the following formula (O).
  • R 115 represents a tetravalent organic group.
  • the preferred range of R 115 is synonymous with R 115 in the formula (2), and the preferred range is also the same.
  • tetracarboxylic acid dianhydride examples include pyromellitic acid dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-.
  • PMDA pyromellitic acid dianhydride
  • 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride 3,3', 4,4'-.
  • tetracarboxylic dianhydrides (DAA-1) to (DAA-5) described in paragraph 0038 of International Publication No. 2017/038598 are also mentioned as preferable examples.
  • R 111 and R 115 has an OH group. More specifically, as R 111 , a residue of a bisaminophenol derivative can be mentioned.
  • R 113 and R 114 in the formula (2) independently represent a hydrogen atom or a monovalent organic group, respectively.
  • the monovalent organic group preferably contains a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy group.
  • at least one of R 113 and R 114 contains a polymerizable group, and it is more preferable that both contain a polymerizable group.
  • at least one of R 113 and R 114 contains two or more polymerizable groups.
  • the polymerizable group a radically polymerizable group is preferable because it is a group capable of undergoing a cross-linking reaction by the action of heat, radicals and the like.
  • the polymerizable group examples include a group having an ethylenically unsaturated bond, an alkoxymethyl group, a hydroxymethyl group, an acyloxymethyl group, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group and an amino group. Be done.
  • a group having an ethylenically unsaturated bond is preferable.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (for example, a vinylphenyl group), and a (meth) acrylamide group.
  • R200 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, and a hydrogen atom or a methyl group is preferable.
  • * represents a binding site with another structure.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, -CH 2 CH (OH) CH 2- , a cycloalkylene group or a polyalkyleneoxy group.
  • R 201 examples include alkylene groups such as ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group and dodecamethylene group, 1,2-butanjiyl group, 1, 3-Butanjiyl group, -CH 2 CH (OH) CH 2- , polyalkyleneoxy group, alkylene group such as ethylene group, propylene group, -CH 2 CH (OH) CH 2- , cyclohexyl group, polyalkylene An oxy group is more preferable, and an alkylene group such as an ethylene group and a propylene group, or a polyalkylene oxy group is further preferable.
  • alkylene groups such as ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group and dodecamethylene group, 1,2-butanjiyl group, 1, 3-Butanjiyl group,
  • the polyalkyleneoxy group refers to a group to which two or more alkyleneoxy groups are directly bonded.
  • the alkylene group in the plurality of alkyleneoxy groups contained in the polyalkyleneoxy group may be the same or different.
  • the sequence of the alkyleneoxy groups in the polyalkyleneoxy group may be a random sequence or a sequence having a block. It may be an array having a pattern such as alternating.
  • the carbon number of the alkylene group (including the carbon number of the substituent when the alkylene group has a substituent) is preferably 2 or more, more preferably 2 to 10, and 2 to 6.
  • the alkylene group may have a substituent.
  • Preferred substituents include alkyl groups, aryl groups, halogen atoms and the like.
  • the number of alkyleneoxy groups contained in the polyalkyleneoxy group is preferably 2 to 20, more preferably 2 to 10, and even more preferably 2 to 6.
  • the polyalkyleneoxy group from the viewpoint of solvent solubility and solvent resistance, a polyethyleneoxy group, a polypropyleneoxy group, a polytrimethylethyleneoxy group, a polytetramethyleneoxy group, or a plurality of ethyleneoxy groups and a plurality of propylenes.
  • a group bonded to an oxy group is preferable, a polyethyleneoxy group or a polypropyleneoxy group is more preferable, and a polyethyleneoxy group is further preferable.
  • the ethyleneoxy groups and the propyleneoxy groups may be randomly arranged or may be arranged by forming a block. , Alternate or the like may be arranged in a pattern. The preferred embodiment of the number of repetitions of the ethyleneoxy group and the like in these groups is as described above.
  • R 113 is a hydrogen atom or R 114 is a hydrogen atom
  • R 113 is a hydrogen atom
  • R 114 is a hydrogen atom
  • the polyimide precursor forms a salt with a tertiary amine compound having an ethylenically unsaturated bond.
  • the tertiary amine compound having such an ethylenically unsaturated bond include N, N-dimethylaminopropyl methacrylate.
  • R 113 and R 114 may be a polar conversion group such as an acid-degradable group.
  • the acid-degradable group is not particularly limited as long as it decomposes by the action of an acid to produce an alkali-soluble group such as a phenolic hydroxy group or a carboxy group, but is not particularly limited, but is an acetal group, a ketal group, a silyl group, or a silyl ether group.
  • a tertiary alkyl ester group or the like is preferable, and an acetal group or a ketal group is more preferable from the viewpoint of exposure sensitivity.
  • the acid-degradable group examples include tert-butoxycarbonyl group, isopropoxycarbonyl group, tetrahydropyranyl group, tetrahydrofuranyl group, ethoxyethyl group, methoxyethyl group, ethoxymethyl group, trimethylsilyl group and tert-butoxycarbonylmethyl.
  • examples include a group, a trimethylsilyl ether group and the like. From the viewpoint of exposure sensitivity, an ethoxyethyl group or a tetrahydrofuranyl group is preferable.
  • the polyimide precursor has a fluorine atom in its structure.
  • the fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyimide precursor may be copolymerized with an aliphatic group having a siloxane structure.
  • the diamine an embodiment using bis (3-aminopropyl) tetramethyldisiloxane, bis (p-aminophenyl) octamethylpentasiloxane, or the like can be mentioned.
  • the repeating unit represented by the formula (2) is preferably a repeating unit represented by the formula (2-A). That is, it is preferable that at least one of the polyimide precursors used in the present invention is a precursor having a repeating unit represented by the formula (2-A). By including the repeating unit represented by the formula (2-A) in the polyimide precursor, it becomes possible to further widen the width of the exposure latitude. Equation (2-A) In formula (2-A), A 1 and A 2 represent oxygen atoms, R 111 and R 112 each independently represent a divalent organic group, and R 113 and R 114 each independently. Representing a hydrogen atom or a monovalent organic group, at least one of R 113 and R 114 is a group containing a polymerizable group, and it is preferable that both are groups containing a polymerizable group.
  • a 1 , A 2 , R 111 , R 113 , and R 114 are independently synonymous with A 1 , A 2 , R 111 , R 113 , and R 114 in the formula (2), and the preferred ranges are also the same. .. R 112 has the same meaning as R 112 in the formula (5), and the preferred range is also the same.
  • the polyimide precursor may contain one type of repeating unit represented by the formula (2), but may contain two or more types. Further, it may contain a structural isomer of a repeating unit represented by the formula (2). Needless to say, the polyimide precursor may contain other types of repeating units in addition to the repeating units of the above formula (2).
  • the content of the repeating unit represented by the formula (2) is 50 mol% or more of all the repeating units.
  • the total content is more preferably 70 mol% or more, further preferably 90 mol% or more, and particularly preferably more than 90 mol%.
  • the upper limit of the total content is not particularly limited, and all the repeating units in the polyimide precursor except the terminal may be the repeating unit represented by the formula (2).
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, and even more preferably 15,000 to 40,000.
  • the number average molecular weight (Mn) is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, and even more preferably 4,000 to 20,000.
  • the degree of dispersion of the molecular weight of the polyimide precursor is preferably 1.5 or more, more preferably 1.8 or more, and further preferably 2.0 or more.
  • the upper limit of the dispersity of the molecular weight of the polyimide precursor is not particularly determined, but for example, it is preferably 7.0 or less, more preferably 6.5 or less, still more preferably 6.0 or less.
  • the degree of molecular weight dispersion is a value calculated by weight average molecular weight / number average molecular weight.
  • the resin composition contains a plurality of types of polyimide precursors as the specific resin, it is preferable that the weight average molecular weight, the number average molecular weight, and the degree of dispersion of at least one type of polyimide precursor are in the above range. Further, it is also preferable that the weight average molecular weight, the number average molecular weight, and the degree of dispersion calculated by using the plurality of types of polyimide precursors as one resin are within the above ranges.
  • the polybenzoxazole precursor used in the present invention is not particularly defined for its structure and the like, but preferably contains a repeating unit represented by the following formula (3).
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represent a hydrogen atom or a monovalent organic group. show.
  • R 123 and R 124 are synonymous with R 113 in the formula (2), respectively, and the preferable range is also the same. That is, at least one is preferably a polymerizable group.
  • R 121 represents a divalent organic group.
  • the divalent organic group a group containing at least one of an aliphatic group and an aromatic group is preferable.
  • the aliphatic group a linear aliphatic group is preferable.
  • R 121 is preferably a dicarboxylic acid residue. Only one type of dicarboxylic acid residue may be used, or two or more types may be used.
  • a dicarboxylic acid residue a dicarboxylic acid containing an aliphatic group and a dicarboxylic acid residue containing an aromatic group are preferable, and a dicarboxylic acid residue containing an aromatic group is more preferable.
  • a dicarboxylic acid containing an aliphatic group a dicarboxylic acid containing a linear or branched (preferably straight chain) aliphatic group is preferable, and a linear or branched (preferably straight chain) aliphatic group and two -COOH are preferable.
  • a dicarboxylic acid consisting of is more preferable.
  • the number of carbon atoms of the linear or branched (preferably linear) aliphatic group is preferably 2 to 30, more preferably 2 to 25, still more preferably 3 to 20, and 4 to 20. It is more preferably 15, and particularly preferably 5 to 10.
  • the linear aliphatic group is preferably an alkylene group.
  • dicarboxylic acid containing a linear aliphatic group examples include malonic acid, dimethylmalonic acid, ethylmalonic acid, isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2, 2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid, hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3,3-Didimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipic acid, 3-methyladipic acid, pimelic acid, 2,2,6,6-tetramethylpimeric acid, sverin Acid, dodecafluorosveric acid, azelaic acid, sebacic acid, s
  • Z is a hydrocarbon group having 1 to 6 carbon atoms, and n is an integer of 1 to 6).
  • dicarboxylic acid containing an aromatic group a dicarboxylic acid having the following aromatic groups is preferable, and a dicarboxylic acid consisting of only a group having the following aromatic groups and two -COOH is more preferable.
  • A is -CH 2- , -O-, -S-, -SO 2- , -CO-, -NHCO-, -C (CF 3 ) 2- , and -C (CH 3 ) 2- Represents a divalent group selected from the group consisting of, and * represents a binding site with another structure independently.
  • dicarboxylic acid containing an aromatic group examples include 4,4'-carbonyldibenzoic acid, 4,4'-dicarboxydiphenyl ether, and terephthalic acid.
  • R 122 represents a tetravalent organic group.
  • the tetravalent organic group has the same meaning as R 115 in the above formula (2), and the preferable range is also the same.
  • R 122 is also preferably a group derived from a bisaminophenol derivative, and examples of the group derived from a bisaminophenol derivative include, for example, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'.
  • bisaminophenol derivatives having the following aromatic groups are preferable.
  • X 1 represents -O-, -S-, -C (CF 3 ) 2- , -CH 2- , -SO 2- , -NHCO-, and * and # represent other structures, respectively.
  • R represents a hydrogen atom or a monovalent substituent, preferably a hydrogen atom or a hydrocarbon group, and more preferably a hydrogen atom or an alkyl group. Further, it is also preferable that R 122 has a structure represented by the above formula.
  • any two of the four * and # in total are the bonding sites with the nitrogen atom to which R 122 in the formula (3) is bonded, and The other two are preferably the bonding sites with the oxygen atom to which R 122 in the formula (3) is bonded, and the two * are the bonding sites with the oxygen atom to which the R 122 in the formula (3) is bonded.
  • two # are the bonding sites with the nitrogen atom to which R 122 in the formula (3) is bonded, or two * are the bonding sites with the nitrogen atom to which R 122 in the formula (3) is bonded.
  • the site is a site and the two #s are the bonding sites with the oxygen atom to which the R 122 in the formula (3) is bonded, and the two * are the oxygen to which the R 122 in the formula (3) is bonded. It is more preferable that it is a bond site with an atom and the two #s are bond sites with a nitrogen atom to which R 122 in the formula (3) is bonded.
  • the bisaminophenol derivative is also preferably a compound represented by the formula (As).
  • R 1 is a hydrogen atom, an alkylene, a substituted alkylene, -O-, -S-, -SO 2- , -CO-, -NHCO-, a single bond, or the following formula (A-). It is an organic group selected from the group of sc).
  • R 2 is any one of a hydrogen atom, an alkyl group, an alkoxy group, an acyloxy group, and a cyclic alkyl group, and may be the same or different.
  • R 3 is any of a hydrogen atom, a linear or branched alkyl group, an alkoxy group, an acyloxy group, and a cyclic alkyl group, and may be the same or different.
  • R3 having a substituent at the ortho position of the phenolic hydroxy group , that is, R3 is considered to bring the distance between the carbonyl carbon of the amide bond and the hydroxy group closer, and at low temperature. It is particularly preferable in that the effect of increasing the cyclization rate when cured is further enhanced.
  • R 2 is an alkyl group and R 3 is an alkyl group has high transparency to i-rays and a high cyclization rate when cured at a low temperature. The effect can be maintained, which is preferable.
  • R 1 is an alkylene or a substituted alkylene.
  • the alkylene and the substituted alkylene according to R 1 include linear or branched alkyl groups having 1 to 8 carbon atoms, among which -CH 2- and -CH (CH 3 ).
  • -, -C (CH 3 ) 2 has sufficient solubility in a solvent while maintaining the effects of high transparency to i-rays and high cyclization rate when cured at low temperature. It is more preferable in that an excellent polybenzoxazole precursor can be obtained.
  • the polybenzoxazole precursor may contain other types of repeating units in addition to the repeating units of the above formula (3).
  • the polybenzoxazole precursor preferably contains a diamine residue represented by the following formula (SL) as another type of repeating unit in that the generation of warpage associated with ring closure can be suppressed.
  • Z has an a structure and a b structure
  • R 1s is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 2s is a hydrocarbon group having 1 to 10 carbon atoms.
  • at least one of R 3s , R 4s , R 5s , and R 6s is an aromatic group
  • the rest is a hydrogen atom or an organic group having 1 to 30 carbon atoms, which may be the same or different.
  • the polymerization of the a structure and the b structure may be block polymerization or random polymerization.
  • the mol% of the Z portion is 5 to 95 mol% for the a structure, 95 to 5 mol% for the b structure, and 100 mol% for a + b.
  • preferred Z includes those in which R 5s and R 6s in the b structure are phenyl groups.
  • the molecular weight of the structure represented by the formula (SL) is preferably 400 to 4,000, more preferably 500 to 3,000.
  • the tetracarboxylic acid residue remaining after removal of the anhydride group from the tetracarboxylic dianhydride is further contained as the repeating unit.
  • the repeating unit Is also preferable.
  • examples of such a tetracarboxylic acid residue include the example of R 115 in the formula (2).
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor is, for example, preferably 18,000 to 30,000, more preferably 20,000 to 29,000, still more preferably 22,000 to 28, It is 000.
  • the number average molecular weight (Mn) is preferably 7,200 to 14,000, more preferably 8,000 to 12,000, and even more preferably 9,200 to 11,200.
  • the degree of dispersion of the molecular weight of the polybenzoxazole precursor is preferably 1.4 or more, more preferably 1.5 or more, still more preferably 1.6 or more.
  • the upper limit of the dispersity of the molecular weight of the polybenzoxazole precursor is not particularly determined, but for example, 2.6 or less is preferable, 2.5 or less is more preferable, 2.4 or less is further preferable, and 2.3 or less. Is more preferable, and 2.2 or less is even more preferable.
  • the weight average molecular weight, the number average molecular weight, and the dispersity of at least one polybenzoxazole precursor may be within the above ranges. preferable. Further, it is also preferable that the weight average molecular weight, the number average molecular weight, and the degree of dispersion calculated by using the plurality of types of polybenzoxazole precursors as one resin are within the above ranges.
  • the polyimide precursor and the like can be, for example, a method of reacting a tetracarboxylic acid dianhydride with a diamine at a low temperature, or reacting a tetracarboxylic acid dianhydride with a diamine at a low temperature to obtain a polyamic acid, and a condensing agent or an alkylating agent.
  • the remaining dicarboxylic acid can be obtained by acid-halogenizing it with a halogenating agent and reacting it with a diamine.
  • a method in which a diester is obtained from tetracarboxylic acid dianhydride and an alcohol, and then the remaining dicarboxylic acid is acid-halogenated with a halogenating agent and reacted with diamine is more preferable.
  • Examples of the condensing agent include dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N, Examples thereof include N'-discusin imidazole carbonate and trifluoroacetic anhydride.
  • Examples of the alkylating agent include N, N-dimethylformamide dimethylacetal, N, N-dimethylformamide diethylacetal, N, N-dialkylformamidedialkylacetal, trimethyl orthoformate, triethyl orthoformate and the like.
  • halogenating agent examples include thionyl chloride, oxalyl chloride, phosphorus oxychloride and the like.
  • an organic solvent in the reaction.
  • the organic solvent may be one kind or two or more kinds.
  • the organic solvent can be appropriately determined depending on the raw material, but is pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone, N-ethylpyrrolidone, ethyl propionate, dimethylacetamide, dimethylformamide, tetrahydrofuran, ⁇ -butyrolactone and the like. Is exemplified.
  • the basic compound may be one kind or two or more kinds.
  • the basic compound can be appropriately determined depending on the raw material, but triethylamine, diisopropylethylamine, pyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, N, N-dimethyl-4-amino. Examples thereof include pyridine and the like.
  • -End sealant- In the method of producing a polyimide precursor or the like, it is preferable to seal the carboxylic acid anhydride, the acid anhydride derivative, or the amino group remaining at the resin terminal of the polyimide precursor or the like in order to further improve the storage stability.
  • examples of the terminal encapsulant include monoalcohol, phenol, thiol, thiophenol, monoamine, etc., and are reactive and stable in the film. From the viewpoint of properties, it is more preferable to use monoalcohol, phenols and monoamines.
  • Preferred compounds of monoalcohols include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol and flufuryl alcohol, and isopropanol.
  • Preferred compounds of phenols include phenols such as phenol, methoxyphenol, methylphenol, naphthalene-1-ol, naphthalene-2-ol and hydroxystyrene.
  • Preferred compounds of monoamine include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene and 1-hydroxy-6-.
  • Aminonaphthalene 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1- Carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-amino Naphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4 -Aminobenzene sulfonic acid, 3-amino-4,6-di
  • encapsulants for amino groups are carboxylic acid anhydrides, carboxylic acid chlorides, carboxylic acid bromides, sulfonic acid chlorides, anhydrous sulfonic acids, sulfonic acid carboxylic acid anhydrides and the like, with carboxylic acid anhydrides and carboxylic acid chlorides being more preferred. preferable.
  • Preferred compounds for carboxylic acid anhydrides include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic acid anhydride, 5-norbornen-2,3-dicarboxylic acid anhydride and the like.
  • Preferred compounds for the carboxylic acid chloride include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylate chloride, pivaloyl chloride, cyclohexanecarbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride and 1-adamantancarbonyl chloride.
  • Heptafluorobutyryl chloride stearate chloride, benzoyl chloride, and the like.
  • a step of precipitating a solid may be included in the production of a polyimide precursor or the like. Specifically, the water-absorbing by-product of the dehydration condensing agent coexisting in the reaction solution was filtered off as necessary, and then obtained in a poor solvent such as water, an aliphatic lower alcohol, or a mixed solution thereof. By adding the polymer component and precipitating the polymer component, it is precipitated as a solid, and by drying, a polyimide precursor or the like can be obtained. In order to improve the degree of purification, operations such as redissolution, reprecipitation and drying of the polyimide precursor may be repeated. Further, a step of removing ionic impurities using an ion exchange resin may be included.
  • the content of the specific resin in the resin composition of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more, and more preferably 40% by mass or more, based on the total solid content of the resin composition. More preferably, it is more preferably 50% by mass or more. Further, the content of the resin in the resin composition of the present invention is preferably 99.5% by mass or less, more preferably 99% by mass or less, and 98% by mass, based on the total solid content of the resin composition. % Or less, more preferably 97% by mass or less, and even more preferably 95% by mass or less.
  • the resin composition of the present invention may contain only one type of specific resin, or may contain two or more types. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the resin composition of the present invention contains at least two kinds of resins.
  • the resin composition of the present invention may contain two or more kinds of the specific resin and another resin described later in total, or may contain two or more kinds of the specific resin, but the specific resin may be contained. It is preferable to include two or more kinds.
  • the resin composition of the present invention contains two or more kinds of specific resins, for example, two or more kinds of polyimides which are polyimide precursors and have different structures derived from dianhydride (R 115 in the above formula (2)). It preferably contains a precursor.
  • the resin composition of the present invention may contain the above-mentioned specific resin and another resin different from the specific resin (hereinafter, also simply referred to as “other resin”).
  • Other resins include phenolic resin, polyamide, epoxy resin, polysiloxane, resin containing siloxane structure, (meth) acrylic resin, (meth) acrylamide resin, urethane resin, butyral resin, styryl resin, polyether resin, polyester resin. And so on.
  • a (meth) acrylic resin a resin composition having excellent coatability can be obtained, and a pattern (cured product) having excellent solvent resistance can be obtained.
  • a high polymerizable base value having a weight average molecular weight of 20,000 or less for example, the molar amount of the polymerizable group contained in 1 g of the resin. (1 ⁇ 10 -3 mol / g or more)
  • a (meth) acrylic resin By adding a (meth) acrylic resin to the resin composition, the coatability of the resin composition, the solvent resistance of the pattern (cured product), etc. can be improved. can.
  • the content of the other resin is preferably 0.01% by mass or more, preferably 0.05% by mass or more, based on the total solid content of the resin composition. It is more preferably 1% by mass or more, further preferably 2% by mass or more, further preferably 5% by mass or more, and further preferably 10% by mass or more. More preferred. Further, the content of other resins in the resin composition of the present invention is preferably 80% by mass or less, more preferably 75% by mass or less, and more preferably 70% by mass, based on the total solid content of the resin composition. It is more preferably 0% by mass or less, further preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the content of the other resin may be low.
  • the content of the other resin is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass or less, based on the total solid content of the resin composition. Is more preferable, 5% by mass or less is further preferable, and 1% by mass or less is even more preferable.
  • the lower limit of the content is not particularly limited, and may be 0% by mass or more.
  • the resin composition of the present invention may contain only one type of other resin, or may contain two or more types. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the curable resin composition of the present invention has at least one structure selected from the group consisting of an oxalic acid monoester structure, an oxalic acid diester structure, an oxalic acid monoamide structure, an oxalic acid diamide structure, and an oxalic acid ester amide structure (hereinafter,). , Also referred to as "specific structure”) and compound B having a polymerizable group.
  • the oxalic acid monoester structure is a structure represented by the following formula (S-1), in which one * is directly bonded to a monovalent or divalent or higher valent hydrocarbon group.
  • the oxalic acid diester structure is a structure represented by the following formula (S-1), in which both * are directly bonded to a monovalent or divalent or higher valent hydrocarbon group.
  • the hydrocarbon groups bonded to the above two * may be the same or different.
  • the oxalic acid monoamide structure is a structure represented by the following formula (S-2), in which * bonded to a nitrogen atom is directly bonded to a monovalent or divalent or higher valent hydrocarbon group to form oxygen.
  • the oxalic acid diamide structure refers to a structure in which two *'s are directly bonded to a monovalent or divalent or higher valent hydrocarbon group in the following formula (S-3), respectively.
  • the hydrocarbon groups bonded to the above two * may be the same or different.
  • the oxalic acid ester amide structure means a structure in which two * are directly bonded to a monovalent or divalent or higher valent hydrocarbon group in the following formula (S-2), respectively.
  • the hydrocarbon groups bonded to the above two * may be the same or different.
  • the formula (S-1) is preferable from the viewpoint of compatibility of each component (for example, a solvent, a resin, or a component other than these) in the resin composition.
  • RN independently represents a hydrogen atom or a monovalent organic group, and * independently represents a binding site with another structure.
  • RN preferably represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and further preferably representing a hydrogen atom. .. Further, when there are a plurality of RNs in the equation, these RNs may be the same or different.
  • the hydrocarbon group may be an aromatic hydrocarbon group, an aliphatic hydrocarbon group, or a group represented by a bond thereof, but is an aromatic hydrocarbon group or an aliphatic hydrocarbon group. It is preferably an alkyl group, and more preferably an alkyl group.
  • Compound B may contain only one specific structure or may contain two or more. When compound B contains two or more specific structures, the specific structures may be the same or different.
  • the content of the specific structure in compound B is preferably 0.0001 to 0.1 mol / g, more preferably 0.001 to 0.01 mol / g.
  • Examples of the polymerizable group contained in the compound B include known polymerizable groups such as a radically polymerizable group, an epoxy group, an oxetanyl group, a methylol group, an alkoxymethyl group, an alkoxysilyl group, a blocked isocyanate group and an oxazolyl group.
  • a radically polymerizable group, an epoxy group or an alkoxysilyl group is preferable, and a radically polymerizable group is more preferable.
  • the radically polymerizable group a group having an ethylenically unsaturated bond is preferable.
  • Examples of the group having an ethylenically unsaturated bond include a vinyl group, an allyl group, a maleimide group, a vinylphenyl group, a (meth) acrylamide group, a (meth) acryloyloxy group and the like, and a (meth) acryloyloxy group is preferable.
  • the alkoxysilyl group may be any of a monoalkoxysilyl group, a dialkoxysilyl group, and a trialkoxysilyl group, but a dialkoxysilyl group or a trialkoxysilyl group is preferable, and a trialkoxysilyl group is more preferable.
  • the number of carbon atoms of the alkoxy in the alkoxysilyl group is preferably 1 to 10, more preferably 1 to 4, further preferably 1 or 2, and particularly preferably 2.
  • Compound B may contain only one polymerizable group or may contain two or more, but from the viewpoint of chemical resistance of the obtained compound, it is preferably contained in two or more, and more preferably 2 to 10. It is more preferable to include 2 to 6.
  • compound B contains two or more polymerizable groups, the structures of the respective polymerizable groups may be the same or different.
  • the content of the polymerizable group in compound B is preferably 0.0001 to 0.1 mol / g, more preferably 0.001 to 0.008 mol / g.
  • compound B is preferably a compound represented by the following formula (1).
  • X 1 and X 2 are independently -O- or -NZ-, Z is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, and R 2 is a hydrogen atom or 1 to 20 carbon atoms. It is a monovalent organic group of, and R 1 represents a monovalent organic group including a polymerizable group.
  • X 1 and X 2 are independently -O- or -NZ-, and both are preferably -O-, or both are preferably -NH-, and both are preferable. -O- is more preferable. Further, it is preferable that at least one of X 1 and X 2 is —O— in terms of compatibility of each component (for example, a solvent, a resin, or a component other than these) in the resin composition. Further, when at least one of X 1 and X 2 is -NZ-, the cohesiveness is strong and it is preferable in terms of chemical resistance.
  • Z is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and more preferably a hydrogen atom.
  • the hydrocarbon group may be an aromatic hydrocarbon group, an aliphatic hydrocarbon group, or a group represented by a bond thereof, but is an aromatic hydrocarbon group or an aliphatic hydrocarbon group. It is preferably an alkyl group, and more preferably an alkyl group.
  • R 1 represents a monovalent organic group containing a polymerizable group. Preferred embodiments of the polymerizable group are as described as preferred embodiments of the polymerizable group contained in the above-mentioned compound B.
  • R 1 is preferably a group represented by the following formula (P-1).
  • L 1 represents a single bond or m + 1 valent linking group
  • a 2 represents a polymerizable group
  • m represents an integer of 1 or more
  • * represents a binding site with X 1 . ..
  • L 1 is preferably a single bond, a hydrocarbon group, an ether bond, a carbonyl group, a thioether bond, a sulfonyl group, -NR N- , or a group in which two or more of these are bonded, preferably a single bond.
  • a bond, or a hydrocarbon group, an ether bond, a carbonyl group, -NR N- , or a group in which two or more of these are bonded is more preferable, and it is represented by a hydrocarbon group or a bond between a hydrocarbon group and an ether bond. Groups are even more preferred.
  • the RN represents a hydrogen atom or a hydrocarbon group, and a hydrogen atom, an alkyl group or an aryl group is more preferable, a hydrogen atom or an alkyl group is further preferable, and a hydrogen atom is particularly preferable.
  • a saturated aliphatic hydrocarbon group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or a group represented by a combination thereof is preferable. More preferably, it is a saturated aliphatic hydrocarbon group of 1 to 10, a group obtained by removing two or more hydrogen atoms from the benzene ring, or a group represented by a bond thereof.
  • a 2 represents the polymerizable group described as the polymerizable group contained in the above-mentioned compound B, and the preferred embodiment is also the same.
  • m is preferably an integer of 1 to 15, more preferably an integer of 1 to 10, further preferably an integer of 1 to 5, and an integer of 1 to 3. Is particularly preferable, and 1 is most preferable.
  • m is 1 and L 1 is a hydrocarbon group, a (poly) alkyleneoxy group, or a group represented by a combination thereof is also preferable.
  • the hydrocarbon group is preferably an alkylene group, a divalent aromatic hydrocarbon group, or a group represented by a combination thereof, and more preferably an alkylene group or a phenylene group.
  • the (poly) alkyleneoxy group means an alkyleneoxy group or a polyalkyleneoxy group.
  • the polyalkyleneoxy group means a group in which two or more alkyleneoxy groups are directly bonded.
  • the alkylene group in the plurality of alkyleneoxy groups contained in the polyalkyleneoxy group may be the same or different.
  • the sequence of the alkyleneoxy groups in the polyalkyleneoxy group may be a random sequence or a sequence having a block. It may be an array having a pattern such as alternating.
  • an alkylene group having 1 to 30 carbon atoms is preferable, an alkylene group having 1 to 20 carbon atoms is more preferable, and an alkylene group having 1 to 10 carbon atoms is further preferable.
  • an aromatic hydrocarbon group having 6 to 30 carbon atoms is preferable, an aromatic hydrocarbon group having 6 to 20 carbon atoms is more preferable, a phenylene group or a naphthylene group is more preferable, and a phenylene group is preferable.
  • an alkylene group in the (poly) alkyleneoxy group an alkylene group having 2 to 10 carbon atoms is preferable, an alkylene group having 2 to 4 carbon atoms is more preferable, an ethylene group or a propylene group is more preferable, and an ethylene group is further preferable. ..
  • the number of alkyleneoxy groups contained in the polyalkyleneoxy group is preferably 2 to 20, more preferably 2 to 10, further preferably 2 to 5, and particularly preferably 2 to 4. preferable.
  • R 1 is preferably a group represented by the following formula, but is not limited thereto.
  • * represents the binding site with X 1 in the formula (1)
  • R independently represents a hydrogen atom or a methyl group
  • Et represents an ethyl group
  • n represents the number of repetitions. It is preferably ⁇ 10.
  • R 2 is preferably a monovalent organic group containing a hydrogen atom and a polymerizable group, or a monovalent organic group containing a polymerizable group, and is a monovalent organic group containing a polymerizable group. It is preferably an organic group.
  • R 2 is a monovalent organic group containing a polymerizable group
  • the preferred embodiment of R 2 is the same as the preferred embodiment of R 1 described above.
  • R 1 and R 2 may be the same group or different groups. An embodiment in which R 1 and R 2 are the same group is also one of the preferred embodiments of the present invention.
  • R 2 is a group represented by the formula (P-1), the above description of "binding site with X 1 " shall be read as "binding site with X 2 ".
  • R 2 is a monovalent organic group containing no polymerizable group
  • R 2 is preferably a hydrocarbon group having 1 to 20 carbon atoms, and is preferably a hydrocarbon group having 1 to 4 carbon atoms. Is more preferable, and an alkyl group having 1 to 4 carbon atoms is further preferable.
  • the molecular weight of compound B (in the case of having a molecular weight distribution, the weight average molecular weight) is preferably 100 to 2000, and more preferably 150 to 1000.
  • the compound B include, but are not limited to, compounds having the following structures.
  • Et represents an ethyl group
  • n and m independently represent the number of repetitions, and an integer of 2 to 10 is preferable.
  • the curable resin composition of the present invention preferably contains 0.01 to 20% by mass, more preferably 0.1 to 10% by mass, and 0.5 to 5% of compound B with respect to 100 parts by mass of the resin. It is more preferable to contain% by mass.
  • the curable resin composition of the present invention may contain compound B alone or in combination of two or more. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the resin composition of the present invention preferably contains a solvent.
  • a solvent a known solvent can be arbitrarily used.
  • the solvent is preferably an organic solvent.
  • the organic solvent include compounds such as esters, ethers, ketones, cyclic hydrocarbons, sulfoxides, amides, ureas and alcohols.
  • esters include ethyl acetate, -n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, and ⁇ -butyrolactone.
  • alkyl oxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, etc.) Ethyl ethoxyacetate, etc.)
  • alkyl oxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, etc.) Ethyl ethoxyacetate, etc.)
  • 3-alkyloxypropionate alkyl esters eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
  • ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, and ethylene glycol monoethyl ether.
  • ketones for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, dihydrolevoglucosenone and the like are preferable.
  • cyclic hydrocarbons for example, aromatic hydrocarbons such as toluene, xylene and anisole, and cyclic terpenes such as limonene are preferable.
  • sulfoxides for example, dimethyl sulfoxide is preferable.
  • N, N, N', N'-tetramethylurea, 1,3-dimethyl-2-imidazolidinone and the like are preferable.
  • Alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, Diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, Examples thereof include ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methyl amyl alcohol, and diacetone alcohol.
  • the solvent is preferably a mixture of two or more types from the viewpoint of improving the properties of the coated surface.
  • the solvent content is preferably such that the total solid content concentration of the resin composition of the present invention is 5 to 80% by mass, and is preferably 5 to 75% by mass. It is more preferably 10 to 70% by mass, and even more preferably 20 to 70% by mass.
  • the solvent content may be adjusted according to the desired thickness of the coating film and the coating method.
  • the resin composition of the present invention may contain only one type of solvent, or may contain two or more types of solvent. When two or more kinds of solvents are contained, the total is preferably in the above range.
  • the resin composition of the present invention preferably contains a polymerization initiator that can initiate polymerization by light and / or heat.
  • the resin composition of the present invention preferably contains at least one of a photopolymerization initiator and a thermal polymerization initiator, and particularly preferably contains a photopolymerization initiator.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the photoradical polymerization initiator is not particularly limited and may be appropriately selected from known photoradical polymerization initiators. For example, a photoradical polymerization initiator having photosensitivity to light rays in the ultraviolet region to the visible region is preferable. Further, it may be an active agent that causes some action with a photoexcited sensitizer and generates an active radical.
  • the photoradical polymerization initiator contains at least one compound having a molar extinction coefficient of at least about 50 L ⁇ mol -1 ⁇ cm -1 within a wavelength range of about 240 to 800 nm (preferably 330 to 500 nm). Is preferable.
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using an ethyl acetate solvent with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • a known compound can be arbitrarily used.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives and the like.
  • paragraphs 0165 to 0182 of JP2016-027357 and paragraphs 0138 to 0151 of International Publication No. 2015/199219 can be referred to, and the contents thereof are incorporated in the present specification. Further, paragraphs 0065 to 0111 of JP-A-2014-130173, compounds described in Japanese Patent No.
  • ketone compound for example, the compound described in paragraph 0087 of JP-A-2015-087611 is exemplified, and the content thereof is incorporated in the present specification.
  • Kayacure-DETX-S manufactured by Nippon Kayaku Co., Ltd.
  • Nippon Kayaku Co., Ltd. is also preferably used.
  • a hydroxyacetophenone compound, an aminoacetophenone compound, and an acylphosphine compound can be preferably used as the photoradical polymerization initiator. More specifically, for example, the aminoacetophenone-based initiator described in JP-A No. 10-291969 and the acylphosphine oxide-based initiator described in Japanese Patent No. 4225898 can be used, and the contents thereof are described in the present specification. Be incorporated.
  • Examples of the ⁇ -hydroxyketone initiator include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (all manufactured by IGM Resins BV), IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, and DAROCUR 1173.
  • Omnirad 184 Omnirad 1173
  • Omnirad 2959 Omnirad 127
  • IRGACURE 184 IRGACURE is a registered trademark
  • DAROCUR 1173 DAROCUR 1173
  • DAROCUR 1173 DAROCUR 1173.
  • -2959, IRGACURE 127 (trade name: both manufactured by BASF) can be used.
  • Omnirad 907 As the ⁇ -aminoketone-based initiators, Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (all manufactured by IGM Resins BV), IRGACURE 907, IRGACURE 369, and IRGACURE 369, all of which are IRGACURE 37. (Manufactured by the company) can be used.
  • the aminoacetophenone-based initiator the compound described in JP-A-2009-191179, in which the maximum absorption wavelength is matched with a wavelength light source such as 365 nm or 405 nm, can also be used, and the contents thereof are incorporated in the present specification.
  • acylphosphine oxide-based initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • Omnirad 819, Omnirad TPO (all manufactured by IGM Resins BV), IRGACURE-819 and IRGACURE-TPO (trade name: all manufactured by BASF) can be used.
  • metallocene compound examples include IRGACURE-784, IRGACURE-784EG (all manufactured by BASF), Keycure VIS 813 (manufactured by King Brother Chem), and the like.
  • the photoradical polymerization initiator is more preferably an oxime compound.
  • the oxime compound By using the oxime compound, it becomes possible to improve the exposure latitude more effectively.
  • the oxime compound is particularly preferable because it has a wide exposure latitude (exposure margin) and also acts as a photocuring accelerator.
  • oxime compound examples include the compound described in JP-A-2001-233842, the compound described in JP-A-2000-080068, the compound described in JP-A-2006-342166, and J. Am. C. S. The compound according to Perkin II (1979, pp. 1653-1660), J. Mol. C. S. The compound described in Perkin II (1979, pp. 156-162), the compound described in Journal of Photopolisr Science and Technology (1995, pp. 202-232), the compound described in JP-A-2000-066385, the compound described in JP-A-2000-066385. Compounds described in JP-A-2004-534797, compounds described in JP-A-2017-109766, compounds described in Japanese Patent No.
  • Preferred oxime compounds include, for example, compounds having the following structures, 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminovtan-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxy. Iminopentan-3-one, 2-acetoxyimimino-1-phenylpropane-1-one, 2-benzoyloxyimino-1-phenylpropane-1-one, 3- (4-toluenesulfonyloxy) iminobutane-2-one , And 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one and the like.
  • an oxime compound (oxime-based photoradical polymerization initiator) as the photoradical polymerization initiator.
  • IRGACURE OXE 01 IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (above, manufactured by BASF), ADEKA PTOMER N-1919 (manufactured by ADEKA Corporation, JP-A-2012-014052).
  • a radical polymerization initiator 2) is also preferably used.
  • TR-PBG-304, TR-PBG-305 manufactured by Changzhou Powerful Electronics New Materials Co., Ltd.
  • Adeka Arkuru's NCI-730, NCI-831 and Adeka Arkuru's NCI-930 are also used. be able to.
  • DFI-091 manufactured by Daito Chemix Co., Ltd.
  • SpeedCure PDO manufactured by SARTOMER ARCEMA
  • an oxime compound having the following structure can also be used.
  • an oxime compound having a fluorene ring can also be used.
  • Specific examples of the oxime compound having a fluorene ring include the compound described in JP-A-2014-137466 and the compound described in Japanese Patent No. 06636081, and the contents thereof are incorporated in the present specification.
  • an oxime compound having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring can also be used.
  • Specific examples of such oxime compounds include the compounds described in WO 2013/083505, the contents of which are incorporated herein.
  • an oxime compound having a fluorine atom It is also possible to use an oxime compound having a fluorine atom.
  • an oxime compound include the compounds described in JP-A-2010-262028, the compounds 24, 36-40 described in paragraph 0345 of JP-A-2014-500852, and JP-A-2013.
  • the compound (C-3) and the like described in paragraph 0101 of the publication No. 164471 are mentioned, and the contents thereof are incorporated in the present specification.
  • an oxime compound having a nitro group can be used as the photopolymerization initiator.
  • the oxime compound having a nitro group is also preferably a dimer.
  • Specific examples of the oxime compound having a nitro group include the compounds described in paragraphs 0031 to 0047 of JP2013-114249A and paragraphs 0008-0012 and 0070-0079 of JP-A-2014-137466. Examples of the compounds described in paragraphs 0007 to 0025 of Japanese Patent No. 4223071 are incorporated herein by reference. Further, examples of the oxime compound having a nitro group include ADEKA ARKULS NCI-831 (manufactured by ADEKA Corporation).
  • an oxime compound having a benzofuran skeleton can also be used.
  • Specific examples include OE-01 to OE-75 described in International Publication No. 2015/036910.
  • an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton can also be used.
  • Examples of such a photopolymerization initiator include the compounds described in International Publication No. 2019/088055, and the contents thereof are incorporated in the present specification.
  • an oxime compound having an aromatic ring group Ar OX1 having an electron-attracting group introduced into the aromatic ring (hereinafter, also referred to as oxime compound OX) can also be used.
  • the electron-attracting group of the aromatic ring group Ar OX1 include an acyl group, a nitro group, a trifluoromethyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group and a cyano group.
  • the benzoyl group may have a substituent.
  • the substituent include a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic group, a heterocyclic oxy group, an alkenyl group, an alkylsulfanyl group and an arylsulfanyl group.
  • an acyl group or an amino group more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group or an amino group, and more preferably an alkoxy group or an alkyl group. It is more preferably a sulfanyl group or an amino group.
  • the oxime compound OX is preferably at least one selected from the compound represented by the formula (OX1) and the compound represented by the formula (OX2), and more preferably the compound represented by the formula (OX2). preferable.
  • RX1 is an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group.
  • RX2 contains an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group and an aryl.
  • RX3 to RX14 independently represent a hydrogen atom or a substituent. However, at least one of RX10 to RX14 is an electron-withdrawing group.
  • RX12 is an electron-withdrawing group and RX10 , RX11 , RX13 and RX14 are hydrogen atoms.
  • oxime compound OX examples include the compounds described in paragraphs 0083 to 0105 of Japanese Patent No. 4600600, the contents of which are incorporated in the present specification.
  • the most preferable oxime compound includes an oxime compound having a specific substituent shown in JP-A-2007-269779 and an oxime compound having a thioaryl group shown in JP-A-2009-191061. Incorporated herein.
  • the photoradical polymerization initiator includes a trihalomethyltriazine compound, a benzyldimethylketal compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, and a triaryl.
  • a trihalomethyltriazine compound Selected from the group consisting of imidazole dimer, onium salt compound, benzothiazole compound, benzophenone compound, acetophenone compound and its derivative, cyclopentadiene-benzene-iron complex and its salt, halomethyloxadiazole compound, 3-aryl substituted coumarin compound.
  • Compounds are preferred.
  • photoradical polymerization initiators are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds and acetophenone compounds.
  • At least one compound selected from the group consisting of a trihalomethyltriazine compound, an ⁇ -aminoketone compound, a metallocene compound, an oxime compound, a triarylimidazole dimer, and a benzophenone compound is more preferable, and a metallocene compound or an oxime compound is further preferable. ..
  • the photoradical polymerization initiator is N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl such as benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michler ketone).
  • -Aromatic ketones such as -2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanol-1, alkylanthraquinone, etc.
  • benzoin ether compounds such as benzoin alkyl ether
  • benzoin compounds such as benzoin and alkyl benzoin
  • benzyl derivatives such as benzyl dimethyl ketal.
  • a compound represented by the following formula (I) can also be used.
  • R I00 is an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms, an alkoxy group having 1 to 12 carbon atoms, a phenyl group, and the like.
  • RI01 is a group represented by the formula (II). It is the same group as RI00 , and RI02 to RI04 are independently alkyl groups having 1 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, or halogen atoms.
  • R I05 to R I 07 are the same as R I 02 to R I 04 of the above formula (I).
  • the photoradical polymerization initiator the compounds described in paragraphs 0048 to 0055 of International Publication No. 2015/125469 can also be used, and the contents thereof are incorporated in the present specification.
  • a bifunctional or trifunctional or higher functional photoradical polymerization initiator may be used as the photoradical polymerization initiator.
  • two or more radicals are generated from one molecule of the photoradical polymerization initiator, so that good sensitivity can be obtained.
  • the crystallinity is lowered, the solubility in a solvent or the like is improved, the precipitation is less likely to occur with time, and the stability of the resin composition with time can be improved. ..
  • bifunctional or trifunctional or higher functional photo-radical polymerization initiator are described in JP-A-2010-527339, JP-A-2011-524436, International Publication No. 2015/004565, and JP-A-2016-532675.
  • G) the oxime esters photoinitiator described in paragraph No. 0007 of Cmpd1-7 described in International Publication No. 2016/034943, JP-A-2017-523465, JP-A-2017-167399.
  • the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition of the present invention. It is more preferably 0.5 to 15% by mass, and even more preferably 1.0 to 10% by mass. Only one type of photopolymerization initiator may be contained, or two or more types may be contained. When two or more kinds of photopolymerization initiators are contained, the total amount is preferably in the above range. Since the photopolymerization initiator may also function as a thermal polymerization initiator, cross-linking with the photopolymerization initiator may be further promoted by heating an oven, a hot plate, or the like.
  • the resin composition may contain a sensitizer.
  • the sensitizer absorbs specific active radiation and becomes an electronically excited state.
  • the sensitizer in the electron-excited state comes into contact with the thermal radical polymerization initiator, the photoradical polymerization initiator, and the like, and acts such as electron transfer, energy transfer, and heat generation occur.
  • the thermal radical polymerization initiator and the photoradical polymerization initiator undergo a chemical change and decompose to generate a radical, an acid or a base.
  • Usable sensitizers include benzophenone, Michler's ketone, coumarin, pyrazole azo, anilino azo, triphenylmethane, anthracinone, anthracene, anthrapyridone, benzylidene, oxonol, pyrazole triazole azo.
  • Pyridone azo, cyanine, phenothiazine, pyrrolopyrazole azomethine, xanthene, phthalocyanine, penzopyran, indigo and the like can be used.
  • sensitizer examples include Michler's ketone, 4,4'-bis (diethylamino) benzophenone, 2,5-bis (4'-diethylaminobenzal) cyclopentane, and 2,6-bis (4'-diethylaminobenzal).
  • the content of the sensitizer is preferably 0.01 to 20% by mass, preferably 0.1 to 15% by mass, based on the total solid content of the resin composition. It is more preferably present, and even more preferably 0.5 to 10% by mass.
  • the sensitizer may be used alone or in combination of two or more.
  • the resin composition of the present invention may contain a chain transfer agent.
  • Chain transfer agents are defined, for example, in the Polymer Dictionary, Third Edition (edited by the Society of Polymer Science, 2005), pp. 683-684.
  • Examples of the chain transfer agent include RAFT (Reversible Addition Fragmentation chain Transfer), which is a group of compounds having -S-S-, -SO2 -S-, -NO-, SH, PH, SiH, and GeH in the molecule.
  • Dithiobenzoate having a thiocarbonylthio group, trithiocarbonate, dithiocarbamate, xantate compound and the like used for polymerization are used. They can donate hydrogen to low-activity radicals to generate radicals, or they can be oxidized and then deprotonated to generate radicals.
  • thiol compounds can be preferably used.
  • the content of the chain transfer agent is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the resin composition of the present invention. 1 to 10 parts by mass is more preferable, and 0.5 to 5 parts by mass is further preferable.
  • the chain transfer agent may be only one kind or two or more kinds. When there are two or more types of chain transfer agents, the total is preferably in the above range.
  • the resin composition of the present invention preferably contains a photoacid generator.
  • the photoacid generator represents a compound that generates at least one of Bronsted acid and Lewis acid by irradiation with light of 200 nm to 900 nm.
  • the irradiated light is preferably light having a wavelength of 300 nm to 450 nm, and more preferably light having a wavelength of 330 nm to 420 nm.
  • the photoacid generator is a photoacid generator capable of generating an acid by being exposed to light when used alone or in combination with a sensitizer.
  • generated acids include hydrogen halide, carboxylic acid, sulfonic acid, sulfinic acid, thiosulfinic acid, phosphoric acid, phosphoric acid monoester, phosphoric acid diester, boron derivative, phosphorus derivative, antimony derivative, halogen peroxide, etc. Sulfonamide and the like are preferably mentioned.
  • Examples of the photoacid generator used in the resin composition of the present invention include quinone diazide compounds, oxime sulfonate compounds, organic halogenated compounds, organic borate compounds, disulfone compounds, onium salt compounds and the like.
  • Organic halogen compounds, oxime sulfonate compounds, and onium salt compounds are preferable from the viewpoint of sensitivity and storage stability, and oxime esters are preferable from the viewpoint of mechanical properties of the film to be formed.
  • the quinone diazide compound is a monovalent or polyvalent hydroxy compound with an ester bond of quinone diazide sulfonic acid, a monovalent or polyvalent amino compound with quinone diazide sulfonic acid conjugated with a sulfonamide, and a polyhydroxypolyamino compound with quinone diazide.
  • Examples thereof include those in which the sulfonic acid of the above is ester-bonded and / or sulfonic acid-bonded.
  • All the functional groups of these polyhydroxy compounds, polyamino compounds, and polyhydroxypolyamino compounds may not be substituted with quinonediazide, but it is preferable that 40 mol% or more of all the functional groups are substituted with quinonediazide on average. ..
  • a quinone diazide compound By containing such a quinone diazide compound, it is possible to obtain a resin composition that is sensitive to i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of a mercury lamp which is a general ultraviolet ray. ..
  • hydroxy compound phenol, trihydroxybenzophenone, 4methoxyphenol, isopropanol, octanol, t-Bu alcohol, cyclohexanol, naphthol, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP- PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, Methylenetris-FR -CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC, DML-PTBP, DML-34X, DML-EP, DML-POP, Dimethylol-BisOC-P, DML -PFP, DML-PSBP, DML-MTrisPC, Tri
  • the amino compounds include aniline, methylaniline, diethylamine, butylamine, 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4.
  • ′ -Diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfide and the like can be mentioned, but the present invention is not limited thereto.
  • polyhydroxypolyamino compound examples include, but are not limited to, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane and 3,3'-dihydroxybenzidine. ..
  • the quinone diazide compound contains an ester with a phenol compound and a 4-naphthoquinone diazidosulfonyl group. This makes it possible to obtain higher sensitivity to i-line exposure and higher resolution.
  • the content of the quinonediazide compound used in the resin composition of the present invention is preferably 1 to 50 parts by mass, more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the resin. It is preferable to set the content of the quinonediazide compound in this range because the contrast between the exposed portion and the unexposed portion can be obtained and the sensitivity can be further increased. Further, a sensitizer or the like may be added as needed.
  • the photoacid generator is preferably a compound containing an oxime sulfonate group (hereinafter, also simply referred to as "oxime sulfonate compound").
  • the oxime sulfonate compound is not particularly limited as long as it has an oxime sulfonate group, but the following formula (OS-1), the formula (OS-103) described later, the formula (OS-104), or the formula (OS-). It is preferably the oxime sulfonate compound represented by 105).
  • X3 represents an alkyl group, an alkoxy group, or a halogen atom. When a plurality of X3s exist, they may be the same or different from each other.
  • the alkyl group and the alkoxy group in X3 may have a substituent.
  • As the alkyl group in X3 a linear or branched alkyl group having 1 to 4 carbon atoms is preferable.
  • As the alkoxy group in X3 a linear or branched alkoxy group having 1 to 4 carbon atoms is preferable.
  • halogen atom in X3 a chlorine atom or a fluorine atom is preferable.
  • m3 represents an integer of 0 to 3, and 0 or 1 is preferable. When m3 is 2 or 3 , the plurality of X3s may be the same or different.
  • R 34 represents an alkyl group or an aryl group, which is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 5 carbon atoms, and carbon. It is preferably an alkoxy group of numbers 1 to 5, a phenyl group which may be substituted with W, a naphthyl group which may be substituted with W, or an anthranyl group which may be substituted with W.
  • W is a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 5 carbon atoms or an alkoxy halide having 1 to 5 carbon atoms.
  • m3 is 3
  • X3 is a methyl group
  • X3 is substituted at the ortho position
  • R34 is a linear alkyl group having 1 to 10 carbon atoms, 7,
  • a compound having a 7-dimethyl-2-oxonorbornylmethyl group or a p-tolyl group is particularly preferable.
  • oxime sulfonate compound represented by the formula (OS-1) are described in paragraphs 0064 to 0068 of JP2011-200969A and paragraph numbers 0158 to 0167 of JP2015-194674A. The following compounds are exemplified and their contents are incorporated herein.
  • R s1 represents an alkyl group, an aryl group or a heteroaryl group
  • R s2, which may be present in a plurality of R s2 independently represents a hydrogen atom, an alkyl group and an aryl group
  • R s6 which represents a group or a halogen atom and may be present in a plurality, independently represents a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group
  • Xs represents O or S.
  • ns represents 1 or 2
  • ms represents an integer from 0 to 6.
  • an alkyl group represented by R s1 preferably 1 to 30 carbon atoms
  • an aryl group preferably 6 to 30 carbon atoms
  • a heteroaryl group carbon
  • numbers 4 to 30 may have a known substituent as long as the effects of the present invention can be obtained.
  • R s2 is preferably a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms) or an aryl group (preferably 6 to 30 carbon atoms).
  • Hydrogen atom or alkyl group is more preferable.
  • the Rs2 that may be present in two or more in the compound, one or two are preferably an alkyl group, an aryl group or a halogen atom, and one is more preferably an alkyl group, an aryl group or a halogen atom. It is particularly preferable that one is an alkyl group and the rest is a hydrogen atom.
  • the alkyl group or aryl group represented by R s2 may have a known substituent as long as the effects of the present invention can be obtained.
  • Xs represents O or S, and is preferably O.
  • the ring containing Xs as a ring member is a 5-membered ring or a 6-membered ring.
  • ns represents 1 or 2, and when Xs is O, ns is preferably 1, and when Xs is S, ns is. It is preferably 2.
  • the alkyl group represented by R s6 preferably having 1 to 30 carbon atoms
  • the alkyloxy group preferably having 1 to 30 carbon atoms
  • ms represents an integer of 0 to 6, preferably an integer of 0 to 2, more preferably 0 or 1, and 0. Is particularly preferable.
  • the compound represented by the above formula (OS-103) is particularly preferably a compound represented by the following formula (OS-106), formula (OS-110) or formula (OS-111).
  • the compound represented by the formula (OS-104) is particularly preferably a compound represented by the following formula (OS-107), and the compound represented by the above formula (OS-105) is a compound represented by the following formula (OS-105). -108) or a compound represented by the formula (OS-109) is particularly preferable.
  • R t1 represents an alkyl group, an aryl group or a heteroaryl group
  • R t7 represents a hydrogen atom or a bromine atom
  • R t8 represents a hydrogen atom and the number of carbon atoms. 1 to 8 alkyl groups, halogen atoms, chloromethyl groups, bromomethyl groups, bromoethyl groups, methoxymethyl groups, phenyl groups or chlorophenyl groups
  • R t9 represents hydrogen atoms, halogen atoms, methyl groups or methoxy groups
  • R t2 represents a hydrogen atom or a methyl group.
  • R t7 represents a hydrogen atom or a bromine atom, and is preferably a hydrogen atom.
  • R t8 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, and a phenyl group.
  • it represents a chlorophenyl group, preferably an alkyl group having 1 to 8 carbon atoms, a halogen atom or a phenyl group, more preferably an alkyl group having 1 to 8 carbon atoms, and an alkyl group having 1 to 6 carbon atoms. It is more preferable to have a methyl group, and it is particularly preferable to have a methyl group.
  • R t9 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and is preferably a hydrogen atom.
  • R t2 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • the three-dimensional structure (E, Z) of the oxime may be either one or a mixture.
  • Specific examples of the oxime sulfonate compound represented by the above formulas (OS-103) to (OS-105) include paragraph numbers 008 to 0995 of JP2011-209692 and paragraphs of JP-A-2015-194674.
  • the compounds of Nos. 0168 to 0194 are exemplified and their contents are incorporated herein.
  • oxime sulfonate compound containing at least one oxime sulfonate group include compounds represented by the following formulas (OS-101) and (OS-102).
  • Ru9 is a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, and the like. Represents an aryl group or a heteroaryl group.
  • R u9 is a cyano group or an aryl group is more preferable, and the embodiment in which R u9 is a cyano group, a phenyl group or a naphthyl group is further preferable.
  • Ru2a represents an alkyl group or an aryl group.
  • Xu is -O-, -S-, -NH-, -NR u5- , -CH 2- , -CR u6 H- or CR u6 R u7.
  • R u5 to R u7 each independently represent an alkyl group or an aryl group.
  • Ru1 to Ru4 are independently hydrogen atom, halogen atom, alkyl group, alkenyl group, alkoxy group, amino group, alkoxycarbonyl group and alkylcarbonyl group, respectively. , Arylcarbonyl group, amide group, sulfo group, cyano group or aryl group.
  • Two of R u1 to R u4 may be bonded to each other to form a ring. At this time, the ring may be condensed to form a fused ring together with the benzene ring.
  • R u1 to Ru4 a hydrogen atom, a halogen atom or an alkyl group is preferable, and an embodiment in which at least two of Ru1 to Ru4 are bonded to each other to form an aryl group is also preferable. Above all, it is preferable that all of Ru1 to Ru4 are hydrogen atoms. Any of the above-mentioned substituents may further have a substituent.
  • the compound represented by the above formula (OS-101) is more preferably a compound represented by the formula (OS-102).
  • the three-dimensional structure (E, Z, etc.) of the oxime and the benzothiazole ring may be either one or a mixture.
  • Specific examples of the compound represented by the formula (OS-101) include the compounds described in paragraphs 0102 to 0106 of JP-A-2011-20969 and paragraph numbers 0195 to 0207 of JP-A-2015-194674. And these contents are incorporated herein.
  • the following b-9, b-16, b-31, and b-33 are preferable.
  • Examples of commercially available products include WPAG-336 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), WPAG-443 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), MBZ-101 (manufactured by Midori Kagaku Co., Ltd.), and the like. Can be done.
  • organic halogenated compound examples include Wakabayashi et al., “Bull Chem. Soc Japan” 42, 2924 (1969), US Pat. No. 3,905,815, Japanese Patent Publication No. 46-4605, JP-A. 48-36281, 55-32070, 60-239736, 61-169835, 61-169837, 62-58241, , Japanese Patent Application Laid-Open No. 62-212401, Japanese Patent Application Laid-Open No. 63-70243, Japanese Patent Application Laid-Open No. 63-298339, M.D. P.
  • an oxazole compound substituted with a trihalomethyl group an S-triazine compound is given as a preferable example. More preferably, an s-triazine derivative in which at least one mono, di, or trihalogen-substituted methyl group is attached to the s-triazine ring, specifically, for example, 2,4,6-tris (monochromomethyl)-.
  • Examples of the organic borate compound include JP-A-62-143044, JP-A-62-150242, JP-A-9-188685, JP-A-9-188686, and JP-A-9-188710.
  • Japanese Patent Application Laid-Open No. 2000-131837 Japanese Patent Application Laid-Open No. 2002-107916, Japanese Patent Application Laid-Open No. 2764769, Japanese Patent Application Laid-Open No. 2002-116539, etc., and Kunz, Martin "Rad Tech '98.
  • organic boron sulfonium complex or the organic boron oxosulfonium described in JP-A-6-157623, JP-A-6-175564, JP-A-6-175561.
  • Specific examples thereof include organic boron transition metal coordination complexes of JP-A-7-128785, JP-A-7-140589, JP-A-7-306527, JP-A-7-292014, and the like. Incorporated herein.
  • disulfone compound examples include compounds described in JP-A-61-166544, Japanese Patent Application Laid-Open No. 2001-132318, and diazodisulfone compounds.
  • onium salt compound examples include S. I. Schlesinger, Photogr. Sci. Eng. , 18,387 (1974), T.I. S. The diazonium salt described in Bal et al, Polymer, 21, 423 (1980), the ammonium salt described in US Pat. No. 4,069,055, JP-A-4-365049, etc., US Pat. No. 4,069 , 055, 4,069,056, European Patents 104, 143, US Patents 339, 049, 410, 201, Japanese Patent Application Laid-Open No. Iodonium salt described in Japanese Patent Application Laid-Open No. 2-150848, Japanese Patent Application Laid-Open No.
  • onium salts examples include onium salts represented by the following general formulas (RI-I) to (RI-III).
  • Ar 11 represents an aryl group having 20 or less carbon atoms which may have 1 to 6 substituents, and preferred substituents are an alkyl group having 1 to 12 carbon atoms and 2 carbon atoms.
  • Z 11 - represents a monovalent anion, which is a halogen ion, a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonic acid ion, a sulfinate ion, a thiosulfonic acid ion, and a sulfate ion, and is stable.
  • perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonic acid ion, and sulfinate ion are preferable.
  • Ar 21 and Ar 22 each represent an aryl group having 1 to 20 carbon atoms which may independently have 1 to 6 substituents, and preferred substituents have 1 to 12 carbon atoms.
  • Z21 - represents a monovalent anion, which is a halogen ion, a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonic acid ion, a sulfinate ion, a thiosulfonic acid ion, and a sulfate ion, and is stable and reacts. From the viewpoint of sex, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonic acid ion, sulfinate ion and carboxylate ion are preferable.
  • R 31 , R 32 , and R 33 each have an aryl group or an alkyl group, an alkenyl group, or an alkynyl group having 6 to 20 carbon atoms, which may independently have 1 to 6 substituents. It is preferably an aryl group from the viewpoint of reactivity and stability.
  • Preferred substituents include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 1 to 12 carbon atoms, and an alkoxy group having 1 to 12 carbon atoms.
  • Examples thereof include an alkylamide group having 1 to 12 or an arylamide group, a carbonyl group, a carboxy group, a cyano group, a sulfonyl group, a thioalkyl group having 1 to 12 carbon atoms and a thioaryl group having 1 to 12 carbon atoms.
  • Z 31 - represents a monovalent anion, which is a halogen ion, a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonic acid ion, a sulfinate ion, a thiosulfonic acid ion, a sulfate ion, and stability.
  • perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonic acid ion, sulfinate ion and carboxylate ion are preferable.
  • preferable photoacid generators include the following.
  • the photoacid generator is preferably used in an amount of 0.1 to 20% by mass, more preferably 0.5 to 18% by mass, and more preferably 0.5 to 10% by mass, based on the total solid content of the resin composition. It is more preferably used, more preferably 0.5 to 3% by mass, and even more preferably 0.5 to 1.2% by mass.
  • the photoacid generator may be used alone or in combination of two or more. In the case of a combination of a plurality of types, it is preferable that the total amount thereof is within the above range. It is also preferable to use it in combination with a sensitizer in order to impart photosensitivity to a desired light source.
  • the composition of the present invention may contain a thermoacid generator.
  • the thermoacid generator generates an acid by heating and promotes a cross-linking reaction of at least one compound selected from a compound having a hydroxymethyl group, an alkoxymethyl group or an acyloxymethyl group, an epoxy compound, an oxetane compound and a benzoxazine compound. It has the effect of making it.
  • the thermal decomposition start temperature of the thermal acid generator is preferably 50 ° C. to 270 ° C., more preferably 50 ° C. to 250 ° C. Further, no acid is generated when the composition is dried after being applied to the substrate (pre-bake: about 70 to 140 ° C.), and when the final heating (cure: about 100 to 400 ° C.) is performed after patterning by subsequent exposure and development. It is preferable to select an acid-generating agent as the thermal acid generator because it can suppress a decrease in sensitivity during development.
  • the thermal decomposition start temperature is determined as the peak temperature of the exothermic peak, which is the lowest temperature when the thermal acid generator is heated to 500 ° C. at 5 ° C./min in a pressure-resistant capsule. Examples of the device used for measuring the thermal decomposition start temperature include Q2000 (manufactured by TA Instruments).
  • the acid generated from the thermal acid generator is preferably a strong acid, for example, aryl sulfonic acid such as p-toluene sulfonic acid and benzene sulfonic acid, alkyl sulfonic acid such as methane sulfonic acid, ethane sulfonic acid and butane sulfonic acid, or trifluoromethane.
  • aryl sulfonic acid such as p-toluene sulfonic acid and benzene sulfonic acid
  • alkyl sulfonic acid such as methane sulfonic acid, ethane sulfonic acid and butane sulfonic acid
  • haloalkyl sulfonic acid such as sulfonic acid is preferable.
  • thermoacid generator include those described in paragraph 0055 of JP2013-072935.
  • those that generate an alkyl sulfonic acid having 1 to 4 carbon atoms or a haloalkyl sulfonic acid having 1 to 4 carbon atoms are more preferable from the viewpoint that there is little residue in the organic film and it is difficult to deteriorate the physical properties of the organic film.
  • JP2013-167742A is also preferable as the thermal acid generator.
  • the content of the thermoacid generator is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more with respect to 100 parts by mass of the specific resin.
  • the content of the thermoacid generator is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more with respect to 100 parts by mass of the specific resin.
  • the resin composition of the present invention may contain a base generator.
  • the base generator is a compound capable of generating a base by a physical or chemical action.
  • Preferred base generators for the resin composition of the present invention include thermal base generators and photobase generators.
  • the resin composition contains a precursor of a cyclized resin, it is preferable that the resin composition contains a base generator.
  • the resin composition contains a thermal base generator, for example, the cyclization reaction of the precursor can be promoted by heating, and the mechanical properties and chemical resistance of the cured product become good. The performance as an interlayer insulating film for a wiring layer is improved.
  • the base generator may be an ionic base generator or a nonionic base generator.
  • Examples of the base generated from the base generator include secondary amines and tertiary amines.
  • the base generator according to the present invention is not particularly limited, and a known base generator can be used.
  • Known base generators include, for example, carbamoyloxime compounds, carbamoylhydroxylamine compounds, carbamic acid compounds, formamide compounds, acetoamide compounds, carbamates compounds, benzylcarbamate compounds, nitrobenzylcarbamate compounds, sulfonamide compounds, imidazole derivative compounds, and amineimides.
  • Compounds, pyridine derivative compounds, ⁇ -aminoacetophenone derivative compounds, quaternary ammonium salt derivative compounds, pyridinium salts, ⁇ -lactone ring derivative compounds, amineimide compounds, phthalimide derivative compounds, acyloxyimino compounds and the like can be used.
  • Specific examples of the compound of the nonionic base generator include a compound represented by the formula (B1), the formula (B2), or the formula (B3).
  • Rb 1 , Rb 2 and Rb 3 are independently organic groups, halogen atoms or hydrogen atoms having no tertiary amine structure. However, Rb 1 and Rb 2 do not become hydrogen atoms at the same time. Further, none of Rb 1 , Rb 2 and Rb 3 has a carboxy group.
  • the tertiary amine structure refers to a structure in which all three bonds of a trivalent nitrogen atom are covalently bonded to a hydrocarbon-based carbon atom. Therefore, this does not apply when the bonded carbon atom is a carbon atom forming a carbonyl group, that is, when an amide group is formed together with a nitrogen atom.
  • Rb 1 , Rb 2 and Rb 3 contains a cyclic structure, and it is more preferable that at least two of them contain a cyclic structure.
  • the cyclic structure may be either a monocyclic ring or a condensed ring, and a monocyclic ring or a condensed ring in which two monocyclic rings are condensed is preferable.
  • the single ring is preferably a 5-membered ring or a 6-membered ring, and more preferably a 6-membered ring.
  • a cyclohexane ring and a benzene ring are preferable, and a cyclohexane ring is more preferable.
  • Rb 1 and Rb 2 are a hydrogen atom, an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), and an alkenyl group (preferably 2 to 24 carbon atoms).
  • 2-18 is more preferred, 3-12 is more preferred
  • ⁇ 25 is preferable, 7 to 19 is more preferable, and 7 to 12 is even more preferable).
  • Rb 1 and Rb 2 may be coupled to each other to form a ring.
  • Rb 1 and Rb 2 are particularly linear, branched, or cyclic alkyl groups which may have substituents (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12). It is more preferably a cycloalkyl group which may have a substituent (preferably 3 to 24 carbon atoms, more preferably 3 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms) and having a substituent.
  • substituents preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12
  • It is more preferably a cycloalkyl group which may have a substituent (preferably 3 to 24 carbon atoms, more preferably 3 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms) and having a substituent.
  • cyclohexyl groups are more preferred.
  • Rb 3 examples include an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms) and an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, 6 to 18). ⁇ 10 is more preferable), an alkenyl group (preferably 2 to 24 carbon atoms, more preferably 2 to 12 carbon atoms), an arylalkyl group (preferably 7 to 23 carbon atoms, 7 to 19 carbon atoms are more preferable).
  • 7 to 12 are more preferable), an arylalkenyl group (preferably 8 to 24 carbon atoms, more preferably 8 to 20 carbon atoms, still more preferably 8 to 16 carbon atoms), an alkoxyl group (preferably 1 to 24 carbon atoms, 2 to 2 to 24).
  • 18 is more preferred, 3 to 12 are more preferred), aryloxy groups (6 to 22 carbons are preferred, 6 to 18 are more preferred, 6 to 12 are even more preferred), or arylalkyloxy groups (7 to 12 carbons).
  • 23 is preferable, 7 to 19 is more preferable, and 7 to 12 is even more preferable).
  • a cycloalkyl group (preferably 3 to 24 carbon atoms, more preferably 3 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), an arylalkenyl group, and an arylalkyloxy group are preferable.
  • Rb 3 may further have a substituent as long as the effect of the present invention is exhibited.
  • the compound represented by the formula (B1) is preferably a compound represented by the following formula (B1-1) or the following formula (B1-2).
  • Rb 11 and Rb 12 , and Rb 31 and Rb 32 are the same as Rb 1 and Rb 2 in the formula (B1), respectively.
  • Rb 13 has an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, further preferably 3 to 12 carbon atoms) and an alkenyl group (preferably 2 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, 3 to 12 carbon atoms). Is more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 12 carbon atoms), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms). 7 to 12 is more preferable), and a substituent may be provided as long as the effect of the present invention is exhibited.
  • Rb 13 is preferably an arylalkyl group.
  • Rb 33 and Rb 34 independently have a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 3 carbon atoms), and an alkenyl group (preferably 2 to 12 carbon atoms).
  • Rb 33 and Rb 34 independently have a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 3 carbon atoms), and an alkenyl group (preferably 2 to 12 carbon atoms).
  • 2 to 8 are more preferable, 2 to 3 are more preferable
  • aryl groups (6 to 22 carbon atoms are preferable, 6 to 18 are more preferable, 6 to 10 are more preferable
  • 23 is preferable, 7 to 19 is more preferable, and 7 to 11 is even more preferable), and a hydrogen atom is preferable.
  • Rb 35 has an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms) and an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 10 carbon atoms). 8 is more preferable), aryl group (6 to 22 carbon atoms are preferable, 6 to 18 is more preferable, 6 to 12 is more preferable), arylalkyl group (7 to 23 carbon atoms are preferable, 7 to 19 is more preferable). , 7-12 is more preferable), and an aryl group is preferable.
  • the compound represented by the formula (B1-1) is also preferable.
  • Rb 11 and Rb 12 are synonymous with Rb 11 and Rb 12 in the formula (B1-1).
  • Rb 15 and Rb 16 are a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms), and an alkenyl group (preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms). More preferably, 2 to 3 is more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 10 carbon atoms), an arylalkyl group (preferably 7 to 23 carbon atoms, 7).
  • Rb 17 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 3 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 carbon atoms). Is more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 12 carbon atoms), and an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms). 7 to 12 is more preferable), and an aryl group is particularly preferable.
  • L is a divalent hydrocarbon group having a saturated hydrocarbon group on the path of the connecting chain connecting the adjacent oxygen atom and the carbon atom, and the number of atoms on the path of the connecting chain is Represents a hydrocarbon group having 3 or more.
  • RN1 and RN2 each independently represent a monovalent organic group.
  • linking chain refers to an atomic chain on a path connecting two atoms or a group of atoms to be linked, which is connected at the shortest (minimum number of atoms).
  • L is composed of a phenylene ethylene group, has an ethylene group as a saturated hydrocarbon group, and the linking chain is composed of four carbon atoms, and is on the path of the linking chain. (That is, the number of atoms constituting the connecting chain, hereinafter also referred to as "linking chain length" or "connecting chain length”) is 4.
  • the number of carbon atoms in L in the formula (B3) is preferably 3 to 24.
  • the upper limit is more preferably 12 or less, further preferably 10 or less, and particularly preferably 8 or less.
  • the lower limit is more preferably 4 or more.
  • the upper limit of the linking chain length of L is preferably 12 or less, more preferably 8 or less, still more preferably 6 or less, and 5 The following is particularly preferable.
  • the chain length of L is preferably 4 or 5, and most preferably 4.
  • Specific preferred compounds of the base generator include, for example, the compounds described in paragraphs 0102 to 0168 of International Publication No. 2020/06614 and the compounds described in paragraph numbers 0143 to 0177 of International Publication No. 2018/038002. Can be mentioned.
  • the base generator contains a compound represented by the following formula (N1).
  • RN1 and RN2 each independently represent a monovalent organic group
  • RC1 represents a hydrogen atom or a protecting group
  • L represents a divalent linking group
  • L is a divalent linking group, preferably a divalent organic group.
  • the linking chain length of the linking group is preferably 1 or more, and more preferably 2 or more.
  • the upper limit is preferably 12 or less, more preferably 8 or less, and even more preferably 5 or less.
  • the linking chain length is the number of atoms present in the atomic arrangement that is the shortest route between the two carbonyl groups in the equation.
  • RN1 and RN2 each independently represent a monovalent organic group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), and a hydrocarbon group (preferably 3 to 12 carbon atoms). It is preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 10 carbon atoms), and specifically, an aliphatic hydrocarbon group (preferably 1 to 12 carbon atoms). Is more preferable) or an aromatic hydrocarbon group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 10 carbon atoms), and an aliphatic hydrocarbon can be mentioned. Group is preferred.
  • an aliphatic hydrocarbon group may have a substituent, and the aliphatic hydrocarbon group and the aromatic hydrocarbon group are contained in the aliphatic hydrocarbon chain or the aromatic ring. It may have an oxygen atom in the substituent.
  • an embodiment in which the aliphatic hydrocarbon group has an oxygen atom in the hydrocarbon chain is exemplified.
  • a linear or branched chain alkyl group, a cyclic alkyl group, a group related to a combination of a chain alkyl group and a cyclic alkyl group, and an oxygen atom are contained in the chain.
  • Examples thereof include alkyl groups having.
  • the linear or branched chain alkyl group preferably has 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, and even more preferably 3 to 12 carbon atoms.
  • the linear or branched chain alkyl group is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, or an isopropyl group.
  • Examples thereof include a group, an isobutyl group, a secondary butyl group, a tertiary butyl group, an isopentyl group, a neopentyl group, a tertiary pentyl group, and an isohexyl group.
  • the cyclic alkyl group preferably has 3 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
  • the group related to the combination of the chain alkyl group and the cyclic alkyl group preferably has 4 to 24 carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 4 to 12 carbon atoms.
  • Examples of the group related to the combination of the chain alkyl group and the cyclic alkyl group include a cyclohexylmethyl group, a cyclohexylethyl group, a cyclohexylpropyl group, a methylcyclohexylmethyl group, an ethylcyclohexylethyl group and the like.
  • the alkyl group having an oxygen atom in the chain is preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 2 to 4 carbon atoms.
  • the alkyl group having an oxygen atom in the chain may be chain-like or cyclic, and may be linear or branched. Among them, alkyl groups having 5 to 12 carbon atoms are preferable for RN1 and RN2 from the viewpoint of increasing the boiling point of the decomposition-generated base described later.
  • a group having a cyclic alkyl group or an alkyl group having 1 to 8 carbon atoms is preferable.
  • RN1 and RN2 may be connected to each other to form an annular structure.
  • oxygen atoms or the like may be contained in the chain.
  • the cyclic structure formed by RN1 and RN2 may be a monocyclic ring or a condensed ring, but a monocyclic ring is preferable.
  • a 5-membered ring or a 6-membered ring containing a nitrogen atom in the formula (N1) is preferable, and for example, a pyrrol ring, an imidazole ring, a pyrazole ring, a pyrroline ring, a pyrrolidine ring, an imidazolidine ring, and the like.
  • Examples thereof include a pyrazolidine ring, a piperidine ring, a piperazine ring, a morpholine ring and the like, and a pyrroline ring, a pyrrolidine ring, a piperidine ring, a piperazine ring, a morpholine ring and the like are preferable.
  • RC1 represents a hydrogen atom or a protecting group, and a hydrogen atom is preferable.
  • the protecting group a protecting group that decomposes by the action of an acid or a base is preferable, and a protecting group that decomposes by an acid is preferable.
  • the protecting group include a chain or cyclic alkyl group or a chain or cyclic alkyl group having an oxygen atom in the chain.
  • the chain or cyclic alkyl group include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a cyclohexyl group and the like.
  • Specific examples of the chain-like alkyl group having an oxygen atom in the chain include an alkyloxyalkyl group, and more specifically, a methyloxymethyl (MOM) group, an ethyloxyethyl (EE) group and the like. Can be mentioned.
  • Examples of the cyclic alkyl group having an oxygen atom in the chain include an epoxy group, a glycidyl group, an oxetanyl group, a tetrahydrofuranyl group, a tetrahydropyranyl (THP) group and the like.
  • the divalent linking group constituting L is not particularly specified, but a hydrocarbon group is preferable, and an aliphatic hydrocarbon group is more preferable.
  • the hydrocarbon group may have a substituent, or may have an atom of a type other than a carbon atom in the hydrocarbon chain. More specifically, it is preferably a divalent hydrocarbon linking group which may have an oxygen atom in the chain, and a divalent aliphatic hydrocarbon which may have an oxygen atom in the chain. More preferably, a divalent aromatic hydrocarbon group, or a group relating to a combination of a divalent aliphatic hydrocarbon group which may have an oxygen atom in the chain and a divalent aromatic hydrocarbon group.
  • a divalent aliphatic hydrocarbon group which may have an oxygen atom in the chain is more preferable. It is preferable that these groups do not have an oxygen atom.
  • the divalent hydrocarbon linking group preferably has 1 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, and even more preferably 2 to 6 carbon atoms.
  • the divalent aliphatic hydrocarbon group preferably has 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms.
  • the divalent aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and even more preferably 6 to 10 carbon atoms.
  • the group (for example, an arylene alkyl group) relating to the combination of the divalent aliphatic hydrocarbon group and the divalent aromatic hydrocarbon group preferably has 7 to 22 carbon atoms, more preferably 7 to 18 carbon atoms, and 7 to 18 carbon atoms. 10 is more preferable.
  • linking group L examples include a linear or branched chain alkylene group, a cyclic alkylene group, a group related to a combination of a chain alkylene group and a cyclic alkylene group, and an alkylene group having an oxygen atom in the chain.
  • a linear or branched chain alkaneylene group, a cyclic alkaneylene group, an arylene group, or an arylene alkylene group is preferable.
  • the linear or branched chain alkylene group preferably has 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 4 carbon atoms.
  • the cyclic alkylene group preferably has 3 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • the group related to the combination of the chain alkylene group and the cyclic alkylene group preferably has 4 to 24 carbon atoms, more preferably 4 to 12 carbon atoms, and even more preferably 4 to 6 carbon atoms.
  • the alkylene group having an oxygen atom in the chain may be chain-like or cyclic, and may be linear or branched.
  • the alkylene group having an oxygen atom in the chain is preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms.
  • the linear or branched chain-like alkenylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 2 to 3 carbon atoms.
  • the cyclic alkenylene group preferably has 3 to 12 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • the arylene group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and even more preferably 6 to 10 carbon atoms.
  • the arylene alkylene group preferably has 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms, and even more preferably 7 to 11 carbon atoms.
  • a chain alkylene group, a cyclic alkylene group, an alkylene group having an oxygen atom in the chain, a chain alkenylene group, an arylene group and an arylene alkylene group are preferable, and a 1,2-ethylene group and a propandiyl group (particularly 1, 3-Propanediyl group), cyclohexanediyl group (especially 1,2-cyclohexanediyl group), vinylene group (especially cisvinylene group), phenylene group (1,2-phenylene group), phenylene methylene group (especially 1,2-phenylene) Methylene group) and ethyleneoxyethylene group (particularly 1,2-ethyleneoxy-1,2-ethylene group) are more preferable.
  • Examples of the base generator include the following, but the present invention is not construed as being limited thereto.
  • the molecular weight of the non-ionic base generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less.
  • the lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
  • Specific preferable compounds of the ionic base generator include, for example, the compounds described in paragraphs 0148 to 0163 of International Publication No. 2018/038002.
  • ammonium salt examples include, but are not limited to, the following compounds.
  • iminium salt examples include, but are not limited to, the following compounds.
  • the content of the base generator is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the resin in the resin composition of the present invention.
  • the lower limit is more preferably 0.3 parts by mass or more, and further preferably 0.5 parts by mass or more.
  • the upper limit is more preferably 30 parts by mass or less, further preferably 20 parts by mass or less, further preferably 10 parts by mass or less, 5 parts by mass or less, or 4 parts by mass or less.
  • the base generator one kind or two or more kinds can be used. When two or more types are used, the total amount is preferably in the above range.
  • the resin composition of the present invention may contain another polymerizable compound in combination with compound B.
  • the polymerizable compound include radical cross-linking agents and other cross-linking agents.
  • the resin composition of the present invention preferably contains a radical cross-linking agent.
  • the radical cross-linking agent is a compound having a radically polymerizable group.
  • a group containing an ethylenically unsaturated bond is preferable.
  • Examples of the group containing an ethylenically unsaturated bond include a group having an ethylenically unsaturated bond such as a vinyl group, an allyl group, a vinylphenyl group, a (meth) acryloyl group, a maleimide group, and a (meth) acrylamide group.
  • a (meth) acryloyl group As the group containing an ethylenically unsaturated bond, a (meth) acryloyl group, a (meth) acrylamide group and a vinylphenyl group are preferable, and from the viewpoint of reactivity, a (meth) acryloyl group is more preferable.
  • the radical cross-linking agent is preferably a compound having one or more ethylenically unsaturated bonds, but more preferably a compound having two or more ethylenically unsaturated bonds.
  • the radical cross-linking agent may have three or more ethylenically unsaturated bonds.
  • As the compound having two or more ethylenically unsaturated bonds a compound having 2 to 15 ethylenically unsaturated bonds is preferable, and a compound having 2 to 10 ethylenically unsaturated bonds is more preferable, and 2 to 6 compounds are more preferable.
  • the compound having is more preferable.
  • the resin composition of the present invention comprises a compound having two ethylenically unsaturated bonds and a compound having three or more ethylenically unsaturated bonds. It is also preferable to include.
  • the molecular weight of the radical cross-linking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the radical cross-linking agent is preferably 100 or more.
  • radical cross-linking agent examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides, and are preferable.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having a nucleophilic substituent such as a hydroxy group, an amino group or a sulfanyl group with a monofunctional or polyfunctional isocyanate group or an epoxy group, or a monofunctional or polymorphic acid group.
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having a polyelectron substituent such as an isocyanate group or an epoxy group with monofunctional or polyfunctional alcohols, amines and thiols, and a halogeno group.
  • Substitution reaction products of unsaturated carboxylic acid esters or amides having a desorbing substituent such as tosyloxy group and monofunctional or polyfunctional alcohols, amines and thiols are also suitable.
  • radical cross-linking agent a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable.
  • examples are polyethylene glycol di (meth) acrylate, trimethyl ethanetri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol.
  • Examples thereof include polyfunctional acrylates and methacrylates such as epoxy acrylates which are reaction products with acrylic acid, and mixtures thereof.
  • the compounds described in paragraphs 0254 to 0257 of JP-A-2008-292970 are also suitable.
  • a polyfunctional (meth) acrylate obtained by reacting a polyfunctional carboxylic acid with a cyclic ether group such as glycidyl (meth) acrylate and a compound having an ethylenically unsaturated bond can also be mentioned.
  • a preferable radical cross-linking agent other than the above it has a fluorene ring and has an ethylenically unsaturated bond, which is described in JP-A-2010-160418, JP-A-2010-129825, Patent No. 4364216 and the like.
  • Compounds having two or more groups and cardo resins can also be used.
  • the compound described in JP-A No. 10-062986 together with specific examples as the formulas (1) and (2), which is obtained by adding ethylene oxide or propylene oxide to a polyfunctional alcohol and then (meth) acrylated, is also available. It can be used as a radical cross-linking agent.
  • dipentaerythritol triacrylate (commercially available KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (commercially available KAYARAD D-320; Nihon Kayaku Co., Ltd.) ), A-TMMT: Shin Nakamura Chemical Industry Co., Ltd.), Dipentaerythritol penta (meth) acrylate (commercially available KAYARAD D-310; Nippon Kayaku Co., Ltd.), Dipentaerythritol hexa (meth) ) Acrylate (commercially available KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH; manufactured by Shin Nakamura Chemical Industry Co., Ltd.), and these (meth) acryloyl groups are mediated by ethylene glycol residues or propylene glycol residues. A structure that is bonded together is preferable.
  • SR-494 which is a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartmer
  • SR-209 manufactured by Sartmer which is a bifunctional methacrylate having four ethyleneoxy chains.
  • DPCA-60 a hexafunctional acrylate having 6 pentyleneoxy chains manufactured by Nippon Kayaku Co., Ltd.
  • TPA-330 a trifunctional acrylate having 3 isobutyleneoxy chains
  • urethane oligomer UAS-10 are examples of the radical cross-linking agent.
  • UAB-140 (manufactured by Nippon Paper Co., Ltd.), NK Ester M-40G, NK Ester 4G, NK Ester M-9300, NK Ester A-9300, UA-7200 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), DPHA-40H (Japan) Chemicals (manufactured by Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blemmer PME400 (manufactured by Nichiyu Co., Ltd.), etc. Can be mentioned.
  • radical cross-linking agent examples include urethane acrylates as described in Japanese Patent Publication No. 48-041708, Japanese Patent Application Laid-Open No. 51-037193, Japanese Patent Laid-Open No. 02-0322293, and Japanese Patent Laid-Open No. 02-016765.
  • Urethane compounds having an ethylene oxide-based skeleton described in Japanese Patent Publication No. 58-049860, Japanese Patent Publication No. 56-017654, Japanese Patent Publication No. 62-039417, and Japanese Patent Publication No. 62-039418 are also suitable.
  • radical cross-linking agent compounds having an amino structure or a sulfide structure in the molecule, which are described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238, are used. You can also do it.
  • the radical cross-linking agent may be a radical cross-linking agent having an acid group such as a carboxy group or a phosphoric acid group.
  • the radical cross-linking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and an acid group is obtained by reacting an unreacted hydroxy group of the aliphatic polyhydroxy compound with a non-aromatic carboxylic acid anhydride.
  • the radical cross-linking agent provided with the above is more preferable.
  • the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol. Is a compound.
  • examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the acid value of the radical cross-linking agent having an acid group is preferably 0.1 to 300 mgKOH / g, and particularly preferably 1 to 100 mgKOH / g.
  • the acid value of the radical cross-linking agent is within the above range, it is excellent in manufacturable handling and further excellent in developability. Moreover, the polymerizability is good.
  • the acid value is measured according to the description of JIS K 0070: 1992.
  • the resin composition it is preferable to use bifunctional methacrylate or acrylate from the viewpoint of pattern resolution and film elasticity.
  • Specific compounds include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, PEG (polyethylene glycol) 200 diacrylate, PEG200 dimethacrylate, PEG600 diacrylate, and PEG600 dimethacrylate.
  • the PEG200 diacrylate is a polyethylene glycol diacrylate having a polyethylene glycol chain formula of about 200.
  • a monofunctional radical cross-linking agent can be preferably used as the radical cross-linking agent from the viewpoint of suppressing warpage associated with the control of the elastic modulus of the pattern (cured product).
  • Examples of the monofunctional radical cross-linking agent include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, carbitol (meth) acrylate, and cyclohexyl (meth). ) Acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc.
  • N-vinyl compounds such as N-vinylpyrrolidone and N-vinylcaprolactam, allylglycidyl ether and the like are preferably used.
  • the monofunctional radical cross-linking agent a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable in order to suppress volatilization before exposure.
  • the bifunctional or higher functional cross-linking agent include allyl compounds such as diallyl phthalate and triallyl trimellitate.
  • the content thereof is preferably more than 0% by mass and 60% by mass or less with respect to the total solid content of the resin composition of the present invention.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 50% by mass or less, and further preferably 30% by mass or less.
  • One type of radical cross-linking agent may be used alone, or two or more types may be mixed and used. When two or more types are used in combination, the total amount is preferably within the above range.
  • the resin composition of the present invention contains another cross-linking agent different from the above-mentioned radical cross-linking agent.
  • the other cross-linking agent refers to a cross-linking agent other than the above-mentioned radical cross-linking agent, and is a reaction of another compound in the composition or a reaction thereof by exposure to the above-mentioned photoacid generator or photobase generator.
  • a compound having a plurality of groups in the molecule that promotes a reaction to form a covalent bond with the product is preferable, and a covalent bond is formed with another compound in the composition or a reaction product thereof.
  • a compound having a plurality of groups in the molecule in which the reaction to be formed is promoted by the action of an acid or a base is preferable.
  • the acid or base is preferably an acid or base generated from a photoacid generator or a photobase generator in the exposure step.
  • a compound having at least one group selected from the group consisting of an acyloxymethyl group, a methylol group and an alkoxymethyl group is preferable, and the compound is selected from the group consisting of an acyloxymethyl group, a methylol group and an alkoxymethyl group.
  • a compound having a structure in which at least one of the above groups is directly bonded to a nitrogen atom is more preferable.
  • an amino group-containing compound such as melamine, glycoluril, urea, alkylene urea, or benzoguanamine is reacted with formaldehyde or formaldehyde and alcohol, and the hydrogen atom of the amino group is changed to an acyloxymethyl group, a methylol group or a methylol group.
  • examples thereof include compounds having a structure substituted with an alkoxymethyl group.
  • the method for producing these compounds is not particularly limited, and any compound having the same structure as the compound produced by the above method may be used. Further, it may be an oligomer formed by self-condensing the methylol groups of these compounds.
  • the cross-linking agent using melamine is a melamine-based cross-linking agent
  • the cross-linking agent using glycoluril, urea or alkylene urea is a urea-based cross-linking agent
  • the cross-linking agent using alkylene urea is an alkylene urea-based cross-linking agent.
  • a cross-linking agent using an agent or benzoguanamine is called a benzoguanamine-based cross-linking agent.
  • the resin composition of the present invention preferably contains at least one compound selected from the group consisting of a urea-based cross-linking agent and a melamine-based cross-linking agent, and is preferably a glycoluril-based cross-linking agent and a melamine-based cross-linking agent described later. It is more preferred to include at least one compound selected from the group consisting of agents.
  • the alkoxymethyl group or the acyloxymethyl group is directly substituted on the aromatic group or the nitrogen atom having the following urea structure, or on triazine.
  • the alkoxymethyl group or acyloxymethyl group contained in the above compound preferably has 2 to 5 carbon atoms, preferably 2 or 3 carbon atoms, and more preferably 2 carbon atoms.
  • the total number of alkoxymethyl groups and acyloxymethyl groups contained in the above compound is preferably 1 to 10, more preferably 2 to 8, and particularly preferably 3 to 6.
  • the molecular weight of the compound is preferably 1500 or less, preferably 180 to 1200.
  • R 100 represents an alkyl group or an acyl group.
  • R 101 and R 102 each independently represent a monovalent organic group and may be bonded to each other to form a ring.
  • Examples of the compound in which the alkoxymethyl group or the acyloxymethyl group is directly substituted with the aromatic group include compounds as shown in the following general formula.
  • X represents a single-bonded or divalent organic group
  • each R 104 independently represents an alkyl group or an acyl group
  • R 103 is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or an aralkyl group.
  • R 103 is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or an aralkyl group.
  • R 103 is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or an aralkyl group.
  • R 103 is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or an aralkyl group.
  • R 4 represents a group that decomposes by the action of an acid to produce an alkali-soluble group
  • It represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R5 represents a group desorbed by the action
  • R 105 independently represents an alkyl group or an alkenyl group, a, b and c are independently 1 to 3, d is 0 to 4, e is 0 to 3, and f is 0 to 3. A + d is 5 or less, b + e is 4 or less, and c + f is 4 or less.
  • R 5 in a group that decomposes by the action of an acid to produce an alkali-soluble group a group that is eliminated by the action of an acid, and a group represented by -C (R 4 ) 2 COOR 5 , for example, -C (R 36 ).
  • R 36 to R 39 each independently represent an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may be coupled to each other to form a ring.
  • an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
  • the alkyl group may be linear or branched.
  • cycloalkyl group a cycloalkyl group having 3 to 12 carbon atoms is preferable, and a cycloalkyl group having 3 to 8 carbon atoms is more preferable.
  • the cycloalkyl group may have a monocyclic structure or a polycyclic structure such as a fused ring.
  • the aryl group is preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, and more preferably a phenyl group.
  • aralkyl group an aralkyl group having 7 to 20 carbon atoms is preferable, and an aralkyl group having 7 to 16 carbon atoms is more preferable.
  • the above-mentioned aralkyl group is intended to be an aryl group substituted with an alkyl group, and preferred embodiments of these alkyl and aryl groups are the same as those of the above-mentioned preferred embodiments of alkyl and aryl groups.
  • the alkenyl group is preferably an alkenyl group having 3 to 20 carbon atoms, and more preferably an alkenyl group having 3 to 16 carbon atoms. Further, these groups may further have a known substituent as long as the effect of the present invention can be obtained.
  • R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the group that decomposes by the action of an acid to produce an alkali-soluble group, or the group that is desorbed by the action of an acid is preferably a tertiary alkyl ester group, an acetal group, a cumyl ester group, an enol ester group, or the like. More preferably, it is a tertiary alkyl ester group or an acetal group.
  • Examples of the compound having an alkoxymethyl group include the following structures.
  • Examples of the compound having an acyloxymethyl group include compounds in which the alkoxymethyl group of the following compound is changed to an acyloxymethyl group.
  • Examples of the compound having an alkoxymethyl group or acyloxymethyl in the molecule include, but are not limited to, the following compounds.
  • the compound containing at least one of an alkoxymethyl group and an acyloxymethyl group a commercially available compound may be used, or a compound synthesized by a known method may be used. From the viewpoint of heat resistance, a compound in which an alkoxymethyl group or an acyloxymethyl group is directly substituted on an aromatic ring or a triazine ring is preferable.
  • melamine-based cross-linking agent examples include hexamethoxymethyl melamine, hexaethoxymethyl melamine, hexapropoxymethyl melamine, hexabutoxybutyl melamine and the like.
  • urea-based cross-linking agent examples include monohydroxymethylated glycol uryl, dihydroxymethylated glycol uryl, trihydroxymethylated glycol uryl, tetrahydroxymethylated glycol uryl, monomethoxymethylated glycol uryl, and dimethoxymethylated glycol.
  • Uril trimethoxymethylated glycol uryl, tetramethoxymethylated glycol uryl, monoethoxymethylated glycol uryl, diethoxymethylated glycol uryl, triethoxymethylated glycol uryl, tetraethoxymethylated glycol uryl, monopropoxymethylated glycol uryl , Dipropoxymethylated glycol uryl, tripropoxymethylated glycol uryl, tetrapropoxymethylated glycol uryl, monobutoxymethylated glycol uryl, dibutoxymethylated glycol uryl, tributoxymethylated glycol uryl, or tetrabutoxymethylated glycol
  • Glycoluril-based cross-linking agents such as uryl; Urea-based cross-linking agents such as bismethoxymethylurea, bisethoxymethylurea, bispropoxymethylurea, and bisbutoxymethylurea, Monohydroxymethylated ethylene urea or dihydroxymethylated ethylene urea,
  • benzoguanamine-based cross-linking agent examples include monohydroxymethylated benzoguanamine, dihydroxymethylated benzoguanamine, trihydroxymethylated benzoguanamine, tetrahydroxymethylated benzoguanamine, monomethoxymethylated benzoguanamine, dimethoxymethylated benzoguanamine, and trimethoxymethylated benzoguanamine.
  • Tetramethoxymethylated benzoguanamine Tetramethoxymethylated benzoguanamine, monoethoxymethylated benzoguanamine, diethoxymethylated benzoguanamine, triethoxymethylated benzoguanamine, tetraethoxymethylated benzoguanamine, monopropoxymethylated benzoguanamine, dipropoxymethylated benzoguanamine, tripropoxymethylated benzoguanamine, tetra Examples thereof include propoxymethylated benzoguanamine, monobutoxymethylated benzoguanamine, dibutoxymethylated benzoguanamine, tributoxymethylated benzoguanamine, tetrabutoxymethylated benzoguanamine and the like.
  • a compound having at least one group selected from the group consisting of a methylol group and an alkoxymethyl group at least one selected from the group consisting of a methylol group and an alkoxymethyl group on an aromatic ring (preferably a benzene ring).
  • Compounds to which the group of the species is directly bonded are also preferably used. Specific examples of such compounds include benzenedimethanol, bis (hydroxymethyl) cresol, bis (hydroxymethyl) dimethoxybenzene, bis (hydroxymethyl) diphenyl ether, bis (hydroxymethyl) benzophenone, and hydroxymethylphenyl hydroxymethylbenzoate.
  • suitable commercially available products include 46DMOC, 46DMOEP (all manufactured by Asahi Organic Materials Industry Co., Ltd.), DML-PC, DML-PEP, DML-OC, and DML-OEP.
  • the resin composition of the present invention contains at least one compound selected from the group consisting of an epoxy compound, an oxetane compound, and a benzoxazine compound as another cross-linking agent.
  • the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy group undergoes a cross-linking reaction at 200 ° C. or lower, and the dehydration reaction derived from the cross-linking does not occur, so that film shrinkage is unlikely to occur. Therefore, the inclusion of the epoxy compound is effective in suppressing low temperature curing and warpage of the resin composition of the present invention.
  • the epoxy compound preferably contains a polyethylene oxide group.
  • the polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2 to 15.
  • epoxy compounds include bisphenol A type epoxy resin; bisphenol F type epoxy resin; propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, butylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether. , Trimethylol propane Triglycidyl ether and other alkylene glycol type epoxy resins or polyhydric alcohol hydrocarbon type epoxy resins; Polyalkylene glycol type epoxy resins such as polypropylene glycol diglycidyl ether; Polymethyl (glycidyloxypropyl) siloxane and other epoxy groups Examples include, but are not limited to, contained silicone.
  • n is an integer of 1 to 5
  • m is an integer of 1 to 20.
  • n is preferably 1 to 2 and m is preferably 3 to 7 from the viewpoint of achieving both heat resistance and improvement in elongation.
  • oxetane compound compound having an oxetanyl group
  • the oxetane compound include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, and the like.
  • examples thereof include 3-ethyl-3- (2-ethylhexylmethyl) oxetane, 1,4-benzenedicarboxylic acid-bis [(3-ethyl-3-oxetanyl) methyl] ester, and the like.
  • Aron Oxetane series (for example, OXT-121, OXT-221) manufactured by Toagosei Co., Ltd. can be preferably used, and these can be used alone or in combination of two or more. good.
  • benzoxazine compound examples include Pd-type benzoxazine, Fa-type benzoxazine (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), a benzoxazine adduct of a polyhydroxystyrene resin, and a phenol novolac-type dihydrobenzo.
  • examples include oxazine compounds. These may be used alone or in combination of two or more.
  • the content of the other cross-linking agent is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, and 0. It is more preferably 5 to 15% by mass, and particularly preferably 1.0 to 10% by mass.
  • the other cross-linking agent may be contained in only one kind, or may be contained in two or more kinds. When two or more other cross-linking agents are contained, the total is preferably in the above range.
  • the resin composition of the present invention preferably contains a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
  • a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
  • the metal adhesion improver include a silane coupling agent having an alkoxysilyl group, an aluminum-based adhesive aid, a titanium-based adhesive aid, a compound having a sulfone amide structure and a compound having a thiourea structure, a phosphoric acid derivative compound, and a ⁇ -ketoester. Examples thereof include compounds and amino compounds.
  • silane coupling agent examples include the compound described in paragraph 0167 of International Publication No. 2015/199219, the compound described in paragraphs 0062 to 0073 of JP-A-2014-191002, paragraph of International Publication No. 2011/080992.
  • examples thereof include the compounds described in paragraph 0055 and the compounds described in paragraphs 0067 to 0078 of JP-A-2018-173573, the contents of which are incorporated herein by reference.
  • silane coupling agents examples include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycid.
  • Aluminum-based adhesive aid examples include aluminum tris (ethyl acetoacetate), aluminum tris (acetyl acetonate), ethyl acetoacetate aluminum diisopropylate, and the like.
  • the content of the metal adhesive improving agent is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and further preferably 0. It is in the range of 5 to 5 parts by mass.
  • the metal adhesiveness improving agent may be only one kind or two or more kinds. When two or more types are used, it is preferable that the total is in the above range.
  • the resin composition of the present invention preferably further contains a migration inhibitor.
  • a migration inhibitor By including the migration inhibitor, it is possible to effectively suppress the movement of metal ions derived from the metal layer (metal wiring) into the membrane.
  • the migration inhibitor is not particularly limited, but has a heterocyclic ring (pyran ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isooxazole ring, isothiazole ring, tetrazole ring, pyridine ring, etc.
  • triazole compounds such as 1,2,4-triazole, benzotriazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 1H-tetrazole, 5- Tetrazole-based compounds such as phenyltetrazole and 5-amino-1H-tetrazole can be preferably used.
  • an ion trap agent that traps anions such as halogen ions can also be used.
  • Examples of other migration inhibitors include the rust preventive agent described in paragraph 0094 of JP2013-015701, the compound described in paragraphs 0073 to 0076 of JP2009-283711, and JP-A-2011-059656.
  • the compounds described in paragraph 0052, the compounds described in paragraphs 0114, 0116 and 0118 of JP2012-194520A, the compounds described in paragraph 0166 of International Publication No. 2015/199219, and the like can be used. The content is incorporated herein.
  • the migration inhibitor include the following compounds.
  • the content of the migration inhibitor is preferably 0.01 to 5.0% by mass with respect to the total solid content of the resin composition of the present invention. , 0.05 to 2.0% by mass, more preferably 0.1 to 1.0% by mass.
  • the migration inhibitor may be only one kind or two or more kinds. When there are two or more types of migration inhibitors, the total is preferably in the above range.
  • the resin composition of the present invention preferably contains a polymerization inhibitor.
  • the polymerization inhibitor include phenol-based compounds, quinone-based compounds, amino-based compounds, N-oxyl-free radical compound-based compounds, nitro-based compounds, nitroso-based compounds, heteroaromatic ring-based compounds, and metal compounds.
  • Specific compounds of the polymerization inhibitor include p-hydroquinone, o-hydroquinone, o-methoxyphenol, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, p-tert-butylcatechol, 1, 4-benzoquinone, diphenyl-p-benzoquinone, 4,4'-thiobis (3-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenyl Hydroxyamine primary cerium salt, N-nitroso-N-phenylhydroxyamine aluminum salt, N-nitrosodiphenylamine, N-phenylnaphthylamine, ethylenediamine tetraacetic acid, 1,2-cyclohexanediamine tetraacetic acid, glycol etherdiamine tetraacetic acid, 2, 6-di-tert-butyl-4-methylphenol
  • polymerization inhibitor described in paragraph 0060 of JP-A-2015-127817 and the compound described in paragraphs 0031 to 0046 of International Publication No. 2015/125469 can also be used, and the contents thereof are described in the present specification. Be incorporated.
  • the content of the polymerization inhibitor is preferably 0.01 to 20% by mass, preferably 0 to 20% by mass, based on the total solid content of the resin composition of the present invention. It is more preferably 0.02 to 15% by mass, and even more preferably 0.05 to 10% by mass.
  • the polymerization inhibitor may be only one kind or two or more kinds. When there are two or more types of polymerization inhibitors, the total is preferably in the above range.
  • the resin composition of the present invention preferably contains an acid scavenger in order to reduce the change in performance with time from exposure to heating.
  • the acid scavenger refers to a compound that can capture the generated acid by being present in the system, and is preferably a compound having low acidity and high pKa.
  • the acid trapping agent a compound having an amino group is preferable, a primary amine, a secondary amine, a tertiary amine, an ammonium salt, a tertiary amine and the like are preferable, and a primary amine, a secondary amine, a tertiary amine and an ammonium salt are preferable.
  • the acid scavenger include a compound having an imidazole structure, a diazabicyclo structure, an onium structure, a trialkylamine structure, an aniline structure or a pyridine structure, an alkylamine derivative having a hydroxyl group and / or an ether bond, and an aniline having a hydroxyl group and / or an ether bond. Derivatives and the like can be preferably mentioned.
  • the acid scavenger is a salt having a cation selected from ammonium, diazonium, iodonium, sulfonium, phosphonium, pyridinium and the like, and an anion of an acid having a lower acidity than the acid generated by the acid generator. Is preferable.
  • Examples of the acid scavenger having an imidazole structure include imidazole, 2,4,5-triphenylimidazole, benzimidazole, 2-phenylbenzimidazole and the like.
  • As an acid scavenger having a diazabicyclo structure 1,4-diazabicyclo [2,2,2] octane, 1,5-diazabicyclo [4,3,0] nona-5-ene, 1,8-diazabicyclo [5,4] , 0] Undekar 7-En and the like.
  • Examples of the acid trapping agent having an onium structure include tetrabutylammonium hydroxide, triarylsulfoniumhydroxydo, phenacylsulfoniumhydroxydo, sulfoniumhydroxydo having a 2-oxoalkyl group, specifically triphenylsulfoniumhydroxydo and tris (specifically, triphenylsulfonium hydroxide, tris ( Examples thereof include t-butylphenyl) sulfonium hydroxide, bis (t-butylphenyl) iodonium hydroxide, phenacylthiophenium hydroxide, and 2-oxopropylthiophenium hydroxide.
  • Examples of the acid scavenger having a trialkylamine structure include tri (n-butyl) amine and tri (n-octyl) amine.
  • Examples of the acid scavenger having an aniline structure include 2,6-diisopropylaniline, N, N-dimethylaniline, N, N-dibutylaniline, N, N-dihexylaniline and the like.
  • Examples of the acid scavenger having a pyridine structure include pyridine, 4-methylpyridine and the like.
  • alkylamine derivative having a hydroxyl group and / or an ether bond examples include ethanolamine, diethanolamine, triethanolamine, N-phenyldiethanolamine, tris (methoxyethoxyethyl) amine and the like.
  • aniline derivative having a hydroxyl group and / or an ether bond examples include N, N-bis (hydroxyethyl) aniline and the like.
  • preferred acid trapping agents include ethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, hexylamine, dodecylamine, cyclohexylamine, cyclohexylmethylamine, cyclohexyldimethylamine, aniline, N-methylaniline, N.
  • N-dimethylaniline diphenylamine, pyridine, butylamine, isobutylamine, dibutylamine, tributylamine, dicyclohexylamine, DBU (diazabicycloundecene), DABCO (1,4-diazabicyclo [2.2.2] octane), N, N-diisopropylethylamine, tetramethylammonium hydroxide, ethylenediamine, 1,5-diaminopentane, N-methylhexylamine, N-methyldicyclohexylamine, trioctylamine, N-ethylethylenediamine, N, N-diethylethylenediamine, N, N, N', N'-tetrabutyl-1,6-hexanediamine, spermidin, diaminocyclohexane, bis (2-methoxyethyl) amine, piperidine, methylpiperidin
  • the composition according to the present invention may or may not contain an acid scavenger, but when it is contained, the content of the acid scavenger is usually 0.001 to 0 based on the total solid content of the composition. It is 10% by mass, preferably 0.01 to 5% by mass.
  • the acid generator / acid scavenger (molar ratio) is more preferably 5.0 to 200, still more preferably 7.0 to 150.
  • the resin composition of the present invention comprises various additives such as a surfactant, a higher fatty acid derivative, a thermal polymerization initiator, an inorganic particle, and an ultraviolet absorber, if necessary, as long as the effects of the present invention can be obtained.
  • Organic titanium compounds, antioxidants, antiaggregating agents, phenolic compounds, other polymer compounds, plasticizers and other auxiliaries eg, antifoaming agents, flame retardant agents, etc.
  • properties such as film physical characteristics can be adjusted.
  • the total blending amount is preferably 3% by mass or less of the solid content of the resin composition of the present invention.
  • surfactant various surfactants such as a fluorine-based surfactant, a silicone-based surfactant, and a hydrocarbon-based surfactant can be used.
  • the surfactant may be a nonionic surfactant, a cationic surfactant, or an anionic surfactant.
  • the liquid characteristics (particularly, fluidity) when prepared as a coating liquid are further improved, and the uniformity of the coating thickness and the liquid saving property are further improved. can do. That is, when a film is formed by using a coating liquid to which a composition containing a surfactant is applied, the interfacial tension between the surface to be coated and the coating liquid is reduced, and the wettability to the surface to be coated is improved. , The applicability to the surface to be coated is improved. Therefore, it is possible to more preferably form a film having a uniform thickness with small thickness unevenness.
  • fluorine-based surfactant examples include Megafuck F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, F437, F475, and F479.
  • F482, F554, F780, RS-72-K above, manufactured by DIC Co., Ltd.
  • Florard FC430, FC431, FC171, Novek FC4430, FC4432 aboveve, manufactured by 3M Japan Ltd.
  • the compounds described in paragraphs 0015 to 0158 of JP-A-2015-117327 and the compounds described in paragraphs 0117 to 0132 of JP-A-2011-132503 can also be used. Incorporated herein.
  • a block polymer can also be used as the fluorine-based surfactant, and specific examples thereof include compounds described in JP-A-2011-89090, the contents of which are incorporated in the present specification.
  • the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy groups and propyleneoxy groups) (meth).
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used, and the following compounds are also exemplified as the fluorine-based surfactant used in the present invention.
  • the weight average molecular weight of the above compounds is preferably 3,000 to 50,000, more preferably 5,000 to 30,000.
  • a fluorine-based surfactant a fluorine-containing polymer having an ethylenically unsaturated group in the side chain can also be used as the fluorine-based surfactant. Specific examples thereof include the compounds described in paragraphs 0050 to 0090 and 0289 to 0295 of JP2010-164965, the contents of which are incorporated in the present specification. Examples of commercially available products include Megafuck RS-101, RS-102, and RS-718K manufactured by DIC Corporation.
  • the fluorine content in the fluorine-based surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity in the thickness of the coating film and liquid saving, and has good solubility in the composition.
  • silicone-based surfactant examples include Torre Silicone DC3PA, Torre Silicone SH7PA, Torre Silicone DC11PA, Torre Silicone SH21PA, Torre Silicone SH28PA, Torre Silicone SH29PA, Torre Silicone SH30PA, Torre Silicone SH8400 (all, Toray Dow Corning Co., Ltd.). ), TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4452 (all manufactured by Momentive Performance Materials), KP-341, KF6001, KF6002 (all manufactured by Shinetsu Silicone Co., Ltd.) ), BYK307, BYK323, BYK330 (all manufactured by Big Chemie Co., Ltd.) and the like.
  • hydrocarbon-based surfactant examples include Pionin A-76, Newcalgen FS-3PG, Pionin B-709, Pionin B-811-N, Pionin D-1004, Pionin D-3104, Pionin D-3605, and Pionin.
  • Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (eg, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ethers, polyoxyethylene stearyl ethers, etc. Examples thereof include polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, and sorbitan fatty acid ester.
  • organosiloxane polymer KP-341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • (meth) acrylic acid-based (co) polymer Polyflow No. 75, No. 77, No. 90, No. 95 manufactured by Kyoeisha Chemical Co., Ltd.
  • W001 manufactured by Yusho Co., Ltd.
  • anion-type surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.), Sandet BL (manufactured by Sanyo Chemical Industries, Ltd.) and the like.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass, based on the total solid content of the composition.
  • the resin composition of the present invention is added with a higher fatty acid derivative such as behenic acid or behenic acid amide, and the resin composition of the present invention is dried in the process of drying after application. It may be unevenly distributed on the surface of.
  • the content of the higher fatty acid derivative is preferably 0.1 to 10% by mass with respect to the total solid content of the resin composition of the present invention.
  • the higher fatty acid derivative may be only one kind or two or more kinds. When there are two or more higher fatty acid derivatives, the total is preferably in the above range.
  • the resin composition of the present invention may contain a thermal polymerization initiator, and may particularly contain a thermal radical polymerization initiator.
  • the thermal radical polymerization initiator is a compound that generates radicals by heat energy to initiate or accelerate the polymerization reaction of a polymerizable compound. Since the polymerization reaction of the resin and the polymerizable compound can be promoted by adding the thermal radical polymerization initiator, the solvent resistance can be further improved. Further, the above-mentioned photopolymerization initiator may also have a function of initiating polymerization by heat, and may be added as a thermal polymerization initiator.
  • thermal radical polymerization initiator examples include the compounds described in paragraphs 0074 to 0118 of JP-A-2008-063554, the contents of which are incorporated in the present specification.
  • the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition of the present invention. , More preferably 0.5 to 15% by mass. Only one type of thermal polymerization initiator may be contained, or two or more types may be contained. When two or more kinds of thermal polymerization initiators are contained, the total amount is preferably in the above range.
  • the resin composition of the present invention may contain inorganic particles.
  • specific examples of the inorganic particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and glass.
  • the average particle size of the inorganic particles is preferably 0.01 to 2.0 ⁇ m, more preferably 0.02 to 1.5 ⁇ m, further preferably 0.03 to 1.0 ⁇ m, and 0.04 to 0.5 ⁇ m. Especially preferable.
  • the average particle size of the inorganic particles is a primary particle size and a volume average particle size.
  • the volume average particle size can be measured by a dynamic light scattering method using Nanotrac WAVE II EX-150 (manufactured by Nikkiso Co., Ltd.). If the above measurement is difficult, it can be measured by a centrifugal sedimentation light transmission method, an X-ray transmission method, or a laser diffraction / scattering method.
  • the composition of the present invention may contain an ultraviolet absorber.
  • an ultraviolet absorber such as salicylate-based, benzophenone-based, benzotriazole-based, substituted acrylonitrile-based, or triazine-based can be used.
  • salicylate-based ultraviolet absorbers include phenylsalicylate, p-octylphenyl salicylate, pt-butylphenyl salicylate and the like
  • benzophenone-based ultraviolet absorbers include 2,2'-dihydroxy-4-.
  • Methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2- Hydroxyl-4-octoxybenzophenone and the like can be mentioned.
  • benzotriazole-based ultraviolet absorbers include 2- (2'-hydroxy-3', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole and 2- (2'-hydroxy-3).
  • Examples of the substituted acrylonitrile-based ultraviolet absorber include ethyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, and the like.
  • the triazine-based ultraviolet absorber 2- [4-[(2-hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) )-1,3,5-Triazine, 2- [4-[(2-Hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) Mono (hydroxyphenyl) triazine compounds such as -1,3,5-triazine, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin
  • the above-mentioned various ultraviolet absorbers may be used alone or in combination of two or more.
  • the composition of the present invention may or may not contain an ultraviolet absorber, but when it is contained, the content of the ultraviolet absorber is 0.001% by mass with respect to the total solid content mass of the composition of the present invention. It is preferably 1% by mass or less, and more preferably 0.01% by mass or more and 0.1% by mass or less.
  • the resin composition of the present embodiment may contain an organic titanium compound. Since the resin composition contains an organic titanium compound, a resin layer having excellent chemical resistance can be formed even when cured at a low temperature.
  • Examples of the organic titanium compound that can be used include those in which an organic group is bonded to a titanium atom via a covalent bond or an ionic bond.
  • Specific examples of the organic titanium compound are shown in I) to VII) below:
  • I) Titanium chelate compound Among them, a titanium chelate compound having two or more alkoxy groups is more preferable because the resin composition has good storage stability and a good curing pattern can be obtained.
  • Specific examples include titanium bis (triethanolamine) diisopropoxyside, titanium di (n-butoxide) bis (2,4-pentanegenate), and titanium diisopropoxiside bis (2,4-pentanegeonate).
  • Titanium Alkoxy Titanium Compounds For example, Titanium Tetra (n-Butoxide), Titanium Tetraethoxide, Titanium Tetra (2-ethylhexoxyside), Titanium Tetraisobutoxide, Titanium Tetraisopropoxyside, Titanium Tetramethoxide , Titanium Tetramethoxypropoxyside, Titanium Tetramethylphenoxide, Titanium Tetra (n-Noniloxide), Titanium Tetra (n-Propoxide), Titanium Tetrasteeryloxyside, Titanium Tetrakiss [Bis ⁇ 2,2- (Aryloxymethyl) Butokiside ⁇ ] etc.
  • Titanocene compounds for example, pentamethylcyclopentadienyl titanium trimethoxide, bis ( ⁇ 5-2,4-cyclopentadiene-1-yl) bis (2,6-difluorophenyl) titanium, bis ( ⁇ 5-2, 2). 4-Cyclopentadiene-1-yl) bis (2,6-difluoro-3- (1H-pyrrole-1-yl) phenyl) titanium and the like.
  • Monoalkoxytitanium compound For example, titaniumtris (dioctylphosphate) isopropoxyside, titaniumtris (dodecylbenzenesulfonate) isopropoxyside and the like.
  • Titanium oxide compound For example, titanium oxide bis (pentanionate), titanium oxide bis (tetramethylheptandionate), phthalocyanine titanium oxide and the like.
  • the organic titanium compound at least one compound selected from the group consisting of the above-mentioned I) titanium chelate compound, II) tetraalkoxytitanium compound, and III) titanosen compound has better chemical resistance. It is preferable from the viewpoint of playing.
  • -Pyrrole-1-yl) phenyl) titanium is preferred.
  • the blending amount is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the specific resin.
  • the blending amount is 0.05 parts by mass or more, good heat resistance and chemical resistance are more effectively exhibited in the obtained curing pattern, while when it is 10 parts by mass or less, the storage stability of the composition Excellent.
  • the composition of the present invention may contain an antioxidant.
  • an antioxidant By containing an antioxidant as an additive, it is possible to improve the elongation characteristics of the film after curing and the adhesion with a metal material.
  • the antioxidant include phenol compounds, phosphite ester compounds, thioether compounds and the like.
  • the phenol compound any phenol compound known as a phenolic antioxidant can be used.
  • Preferred phenolic compounds include hindered phenolic compounds.
  • a compound having a substituent at a site (ortho position) adjacent to the phenolic hydroxy group is preferable.
  • a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable.
  • a compound having a phenol group and a phosphite ester group in the same molecule is also preferable.
  • a phosphorus-based antioxidant can also be preferably used.
  • antioxidants include, for example, Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-50F, Adekastab AO-60, Adekastab AO-60G, and Adekastab AO-80. , ADEKA STAB AO-330 (above, manufactured by ADEKA Corporation) and the like.
  • the antioxidant the compounds described in paragraphs 0023 to 0048 of Japanese Patent No. 6268967 can also be used, and the contents thereof are incorporated in the present specification.
  • the composition of the present invention may contain a latent antioxidant, if necessary.
  • the latent antioxidant is a compound in which the site that functions as an antioxidant is protected by a protecting group, and is heated at 100 to 250 ° C. or at 80 to 200 ° C. in the presence of an acid / base catalyst. This includes compounds in which the protecting group is desorbed and functions as an antioxidant.
  • Examples of the latent antioxidant include compounds described in International Publication No. 2014/021023, International Publication No. 2017/030005, and JP-A-2017-008219, the contents of which are incorporated in the present specification.
  • Examples of commercially available products of latent antioxidants include ADEKA ARKULS GPA-5001 (manufactured by ADEKA Corporation).
  • preferred antioxidants include 2,2-thiobis (4-methyl-6-t-butylphenol), 2,6-di-t-butylphenol and compounds of formula (3).
  • R 5 represents a hydrogen atom or an alkyl group having 2 or more carbon atoms (preferably 2 to 10 carbon atoms), and R 6 represents an alkylene having 2 or more carbon atoms (preferably 2 to 10 carbon atoms). Represents a group.
  • R 7 represents a 1- to tetravalent organic group containing at least one of an alkylene group having 2 or more carbon atoms (preferably 2 to 10 carbon atoms), an oxygen atom, and a nitrogen atom.
  • k represents an integer of 1 to 4.
  • the compound represented by the formula (3) suppresses the oxidative deterioration of the aliphatic group and the phenolic hydroxyl group of the resin.
  • metal oxidation can be suppressed by the rust preventive action on the metal material.
  • R 7 includes an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an aryl group, an arylether group, a carboxyl group, a carbonyl group, an allyl group, a vinyl group and a heterocyclic group.
  • -O-, -NH-, -NHNH-, a combination thereof and the like can be mentioned, and may further have a substituent.
  • alkyl ether group and -NH- from the viewpoint of solubility in a developing solution and metal adhesion
  • -NH- is preferable from the viewpoint of interaction with a resin and metal adhesion due to metal complex formation. More preferred.
  • Examples of the compound represented by the general formula (3) include the following, but the compound is not limited to the following structure.
  • the amount of the antioxidant added is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to the resin.
  • the addition amount is 0.1 part by mass or more, the effect of improving the elongation property and the adhesion to the metal material can be easily obtained even in a high temperature and high humidity environment, and when the addition amount is 10 parts by mass or less, for example, photosensitive is exhibited.
  • the interaction with the agent improves the sensitivity of the resin composition.
  • Only one kind of antioxidant may be used, or two or more kinds may be used. When two or more types are used, it is preferable that the total amount thereof is within the above range.
  • the resin composition of the present embodiment may contain an anti-aggregation agent, if necessary.
  • the antiaggregating agent include sodium polyacrylate and the like.
  • one type of anti-aggregation agent may be used alone, or two or more types may be used in combination.
  • the composition of the present invention may or may not contain an anti-aggregation agent, but when it is contained, the content of the anti-aggregation agent is 0.01% by mass with respect to the total solid content mass of the composition of the present invention. It is preferably 10% by mass or less, and more preferably 0.02% by mass or more and 5% by mass or less.
  • the resin composition of the present embodiment may contain a phenolic compound, if necessary.
  • phenolic compound include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, and BisP-CP.
  • one type of phenolic compound may be used alone, or two or more types may be used in combination.
  • the composition of the present invention may or may not contain a phenolic compound, but when it is contained, the content of the phenolic compound is 0.01% by mass with respect to the total solid content mass of the composition of the present invention. It is preferably 30% by mass or more, and more preferably 0.02% by mass or more and 20% by mass or less.
  • Examples of other polymer compounds include siloxane resins, (meth) acrylic polymers copolymerized with (meth) acrylic acid, novolak resins, resole resins, polyhydroxystyrene resins and copolymers thereof.
  • the other polymer compound may be a modified product into which a cross-linking group such as a methylol group, an alkoxymethyl group, or an epoxy group is introduced.
  • one type of other polymer compound may be used alone, or two or more types may be used in combination.
  • the composition of the present invention may or may not contain other polymer compounds, but when it is contained, the content of the other polymer compounds is 0 with respect to the total solid content mass of the composition of the present invention. It is preferably 0.01% by mass or more and 30% by mass or less, and more preferably 0.02% by mass or more and 20% by mass or less.
  • the viscosity of the resin composition of the present invention can be adjusted by adjusting the solid content concentration of the resin composition. From the viewpoint of the coating film thickness, 1,000 mm 2 / s to 12,000 mm 2 / s is preferable, 2,000 mm 2 / s to 10,000 mm 2 / s is more preferable, and 3,000 mm 2 / s to 8,000 mm. 2 / s is more preferable. Within the above range, it becomes easy to obtain a highly uniform coating film.
  • the coated surface condition may deteriorate. ..
  • the water content of the resin composition of the present invention is preferably less than 2.0% by mass, more preferably less than 1.5% by mass, and even more preferably less than 1.0% by mass. If it is 2.0% or more, the storage stability of the resin composition may be impaired. Examples of the method for maintaining the water content include adjusting the humidity under storage conditions and reducing the porosity of the storage container during storage.
  • the metal content of the resin composition of the present invention is preferably less than 5 mass ppm (parts per million), more preferably less than 1 mass ppm, still more preferably less than 0.5 mass ppm.
  • the metal include sodium, potassium, magnesium, calcium, iron, copper, chromium, nickel and the like, but metals contained as a complex of an organic compound and a metal are excluded. When a plurality of metals are contained, it is preferable that the total of these metals is in the above range.
  • the resin composition of the present invention selects a raw material having a low metal content as the raw material constituting the resin composition of the present invention.
  • examples thereof include a method of filtering the raw materials constituting the product by a filter, a method of lining the inside of the device with polytetrafluoroethylene or the like, and performing distillation under conditions in which contamination is suppressed as much as possible.
  • the resin composition of the present invention preferably has a halogen atom content of less than 500 mass ppm, more preferably less than 300 mass ppm, and less than 200 mass ppm from the viewpoint of wiring corrosiveness. Is more preferable. Among them, those existing in the state of halogen ions are preferably less than 5 mass ppm, more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm.
  • the halogen atom include a chlorine atom and a bromine atom. It is preferable that the total amount of chlorine atom and bromine atom, or chlorine ion and bromine ion is in the above range, respectively.
  • ion exchange treatment and the like are preferably mentioned.
  • a conventionally known storage container can be used as the storage container for the resin composition of the present invention.
  • a multi-layer bottle having a container inner wall made of 6 types and 6 layers of resin and 6 types of resin are used for the purpose of suppressing contamination of raw materials and the resin composition of the present invention with impurities. It is also preferable to use a bottle having a 7-layer structure. Examples of such a container include the container described in Japanese Patent Application Laid-Open No. 2015-123351.
  • the cured product of the present invention is a cured product obtained by curing the resin composition of the present invention.
  • the curing of the resin composition is preferably by heating, more preferably the heating temperature is in the range of 120 ° C to 400 ° C, further preferably in the range of 140 ° C to 380 ° C, and 170 ° C. It is particularly preferable that the temperature is in the range of about 350 ° C.
  • the form of the cured product of the resin composition is not particularly limited, and can be selected according to the intended use, such as a film shape, a rod shape, a spherical shape, and a pellet shape.
  • the cured product is preferably in the form of a film.
  • this cured product can be used for forming a protective film on the wall surface, forming via holes for conduction, adjusting impedance, capacitance or internal stress, and providing heat dissipation function. You can also choose the shape.
  • the film thickness of this cured product (film made of the cured product) is preferably 0.5 ⁇ m or more and 150 ⁇ m or less.
  • the shrinkage rate of the resin composition of the present invention when cured is preferably 50% or less, more preferably 45% or less, still more preferably 40% or less.
  • the imidization reaction rate of the cured product of the resin composition of the present invention is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. If it is less than 70%, the mechanical properties of the cured product may be inferior.
  • the elongation at break of the cured product of the resin composition of the present invention is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.
  • the glass transition temperature (Tg) of the cured product of the resin composition of the present invention is preferably 180 ° C. or higher, more preferably 210 ° C. or higher, and even more preferably 230 ° C. or higher.
  • the resin composition of the present invention can be prepared by mixing each of the above components.
  • the mixing method is not particularly limited, and a conventionally known method can be used. For mixing, mixing with a stirring blade, mixing with a ball mill, mixing by rotating the tank itself, or the like can be adopted.
  • the temperature during mixing is preferably 10 to 30 ° C, more preferably 15 to 25 ° C.
  • the filter hole diameter may be, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, still more preferably 0.1 ⁇ m or less.
  • the filter material is preferably polytetrafluoroethylene, polyethylene or nylon. When the material of the filter is polyethylene, it is more preferable to use HDPE (high density polyethylene).
  • the filter may be one that has been pre-cleaned with an organic solvent. In the filter filtration step, a plurality of types of filters may be connected in series or in parallel for use.
  • filters having different pore diameters or materials may be used in combination.
  • the connection mode include a mode in which an HDPE filter having a hole diameter of 1 ⁇ m is connected in series as the first stage and an HDPE filter having a hole diameter of 0.2 ⁇ m is connected in series as the second stage.
  • various materials may be filtered a plurality of times. When filtering multiple times, circulation filtration may be used. Moreover, you may pressurize and perform filtration.
  • the pressure to be pressurized is, for example, 0.01 MPa or more and 1.0 MPa or less, preferably 0.03 MPa or more and 0.9 MPa or less, and more preferably 0.05 MPa or more and 0.7 MPa or less. , 0.05 MPa or more and 0.5 MPa or less is more preferable.
  • impurities may be removed using an adsorbent. Filter filtration and impurity removal treatment using an adsorbent may be combined.
  • the adsorbent a known adsorbent can be used. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • the resin composition filled in the bottle may be placed under reduced pressure to perform a step of degassing.
  • the method for producing a cured product of the present invention preferably includes a film forming step of applying a resin composition onto a substrate to form a film. Further, in the method for producing a cured product of the present invention, the film forming step, the exposure step of selectively exposing the film formed by the film forming step, and the film exposed by the exposure step are developed using a developing solution. It is more preferable to include a developing step of forming a pattern.
  • the method for producing a cured product of the present invention includes the film forming step, the exposure step, the developing step, and the heating step for heating the pattern obtained by the developing step and the post-development for exposing the pattern obtained by the developing step.
  • the production method of the present invention includes the above-mentioned film forming step and the above-mentioned step of heating the film.
  • the production method of the present invention includes the above-mentioned film forming step and the above-mentioned step of heating the film.
  • the resin composition of the present invention can be applied to a substrate to form a film and can be used in a film forming step.
  • the method for producing a cured product of the present invention preferably includes a film forming step of applying a resin composition onto a substrate to form a film.
  • the type of base material can be appropriately determined depending on the application, but semiconductor-made base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical film, ceramic material, and thin-film deposition film, Any of a metal base material such as a magnetic film, a reflective film, Ni, Cu, Cr, and Fe (for example, a base material formed of metal, or a base material in which a metal layer is formed by, for example, plating or thin film deposition, etc.). (May be good), paper, SOG (Spin On Glass), TFT (thin film film) array base material, mold base material, electrode plate of plasma display panel (PDP), and the like, and are not particularly limited.
  • semiconductor-made base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical film, ceramic material, and thin-film deposition film
  • a metal base material such as a magnetic film, a reflective film, Ni, Cu,
  • a semiconductor-made base material is particularly preferable, and a silicon base material, a Cu base material, and a molded base material are more preferable. Further, these substrates may be provided with a layer such as an adhesion layer or an oxide layer made of hexamethyldisilazane (HMDS) or the like on the surface thereof.
  • the shape of the base material is not particularly limited, and may be circular or rectangular. The size of the base material is, for example, 100 to 450 mm in diameter, preferably 200 to 450 mm in a circular shape. If it is rectangular, for example, the length of the short side is 100 to 1000 mm, preferably 200 to 700 mm.
  • a plate-shaped base material (substrate), preferably a panel-shaped base material (board) is used as the base material.
  • a resin composition when a resin composition is applied to the surface of a resin layer (for example, a layer made of a cured product) or the surface of a metal layer to form a film, the resin layer or the metal layer becomes a base material.
  • Coating is preferable as a means for applying the resin composition of the present invention on a substrate.
  • the means to be applied include a dip coating method, an air knife coating method, a curtain coating method, a wire bar coating method, a gravure coating method, an extrusion coating method, a spray coating method, a spin coating method, and a slit coating method.
  • An inkjet method and the like are exemplified. From the viewpoint of film thickness uniformity, a spin coating method, a slit coating method, a spray coating method, or an inkjet method is more preferable, and spin coating is performed from the viewpoint of film thickness uniformity and productivity.
  • the method and the slit coating method are preferable. By adjusting the solid content concentration and the coating conditions of the resin composition according to the method, a film having a desired thickness can be obtained.
  • the coating method can be appropriately selected depending on the shape of the substrate.
  • a spin coating method, a spray coating method, an inkjet method, etc. are preferable, and for a rectangular substrate, a slit coating method or a spray coating method is preferable.
  • the method, the inkjet method and the like are preferable.
  • the spin coating method for example, it can be applied at a rotation speed of 500 to 3,500 rpm for about 10 seconds to 3 minutes. Further, it is also possible to apply a method of transferring a coating film previously applied onto a temporary support by the above-mentioned application method onto a substrate.
  • the production method described in paragraphs 0023 and 0036 to 0051 of JP-A-2006-023696 and paragraphs 0090 to 0108 of JP-A-2006-047592 can be suitably used in the present invention.
  • a step of removing the excess film at the end of the base material may be performed. Examples of such a process include edge bead rinse (EBR), back rinse and the like.
  • EBR edge bead rinse
  • a pre-wet step of applying various solvents to the base material before applying the resin composition to the base material to improve the wettability of the base material and then applying the resin composition may be adopted.
  • the film may be subjected to a step (drying step) of drying the film (layer) formed to remove the solvent after the film forming step (layer forming step). That is, the method for producing a cured product of the present invention may include a drying step of drying the film formed by the film forming step. Further, it is preferable that the drying step is performed after the film forming step and before the exposure step.
  • the drying temperature of the film in the drying step is preferably 50 to 150 ° C, more preferably 70 ° C to 130 ° C, still more preferably 90 ° C to 110 ° C. Further, drying may be performed by reducing the pressure.
  • the drying time is exemplified by 30 seconds to 20 minutes, preferably 1 minute to 10 minutes, more preferably 2 minutes to 7 minutes.
  • the film may be subjected to an exposure step of selectively exposing the film. That is, the method for producing a cured product of the present invention may include an exposure step of selectively exposing the film formed by the film forming step. Selective exposure means exposing a part of the film. Further, by selectively exposing the film, an exposed region (exposed portion) and an unexposed region (non-exposed portion) are formed on the film.
  • the exposure amount is not particularly determined as long as the resin composition of the present invention can be cured, but for example, it is preferably 50 to 10,000 mJ / cm 2 in terms of exposure energy at a wavelength of 365 nm, and 200 to 8,000 mJ / cm 2 . Is more preferable.
  • the exposure wavelength can be appropriately set in the range of 190 to 1,000 nm, preferably 240 to 550 nm.
  • the exposure wavelengths are as follows: (1) semiconductor laser (wavelength 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm etc.), (2) metal halide lamp, (3) high-pressure mercury lamp, g-ray (wavelength).
  • the resin composition of the present invention is particularly preferably exposed to a high-pressure mercury lamp, and above all, to be exposed to i-rays.
  • the exposure light used for exposure includes light having a wavelength of 405 nm.
  • the exposure method is not particularly limited as long as it is a method in which at least a part of the film made of the resin composition of the present invention is exposed, but exposure using a photomask, exposure by a laser direct imaging method, or the like is possible. Can be mentioned.
  • the film may be subjected to a step of heating after exposure (post-exposure heating step). That is, the method for producing a cured product of the present invention may include a post-exposure heating step of heating the film exposed by the exposure step.
  • the post-exposure heating step can be performed after the exposure step and before the developing step.
  • the heating temperature in the post-exposure heating step is preferably 50 ° C to 140 ° C, more preferably 60 ° C to 120 ° C.
  • the heating time in the post-exposure heating step is preferably 30 seconds to 300 minutes, more preferably 1 minute to 10 minutes.
  • the heating rate in the post-exposure heating step is preferably 1 to 12 ° C./min, more preferably 2 to 10 ° C./min, and even more preferably 3 to 10 ° C./min from the temperature at the start of heating to the maximum heating temperature. Further, the heating rate may be appropriately changed during heating.
  • the heating means in the post-exposure heating step is not particularly limited, and a known hot plate, oven, infrared heater, or the like can be used. Further, it is also preferable to carry out the heating in an atmosphere having a low oxygen concentration by flowing an inert gas such as nitrogen, helium or argon.
  • the film after exposure may be subjected to a developing step of developing with a developing solution to form a pattern.
  • the method for producing a cured product of the present invention may include a developing step of developing a film exposed by the exposure step with a developing solution to form a pattern.
  • a developing step of developing a film exposed by the exposure step with a developing solution to form a pattern By performing the development, one of the exposed portion and the non-exposed portion of the film is removed, and a pattern is formed.
  • the development in which the non-exposed portion of the film is removed by the developing step is called negative type development
  • the development in which the exposed portion of the film is removed by the developing step is called positive type development.
  • Examples of the developing solution used in the developing step include an alkaline aqueous solution or a developing solution containing an organic solvent.
  • the developing solution is an alkaline aqueous solution
  • examples of the basic compound that the alkaline aqueous solution can contain include inorganic alkalis, primary amines, secondary amines, tertiary amines, and quaternary ammonium salts.
  • TMAH Tetramethylammonium Hydroxide
  • potassium hydroxide sodium carbonate, sodium hydroxide, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-butylamine, triethylamine, methyldiethylamine , Dimethylethanolamine, Triethanolamine, Tetraethylammonium Hydroxide, Tetrapropylammonium Hydroxide, Tetrabutylammonium Hydroxide, Tetrapentyl Ammonium Hydroxide, Tetrahexyl Ammonium Hydroxide, Tetraoctyl Ammonium Hydroxide, Ethyltrimethylammonium Hydroxide , Butyltrimethylammonium Hydroxide, Methyltriamylammonium Hydroxide, Dibutyldipentylammonium Hydroxide, dimethylbis (2-Hydroxyethyl) Ammonium Hydroxide, tri
  • the content of the basic compound in the developing solution is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, and 0.3 to 3% by mass in the total mass of the developing solution. Is more preferable.
  • the organic solvent may be used as esters such as ethyl acetate, n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, etc.
  • alkyl alkyloxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxy
  • ethers for example, diethylene glycol dimethyl ether, tetrahydrofuran, Ethyl glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene Glycol monoethyl ether acetate, propylene Glycolmonopropyl ether acetate and the like, and as ketones
  • Aromatic hydrocarbons such as toluene, xylene and anisole, cyclic terpenes such as limonene, dimethylsulfoxide as sulfoxides, and methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol and diethylene glycol as alcohols.
  • Preferable examples thereof include propylene glycol, methylisobutylcarbinol, triethyleneglycol and the like
  • examples of the amides include N-methylpyrrolidone, N-ethylpyrrolidone and dimethylformamide.
  • the developer contains an organic solvent
  • one type or a mixture of two or more types of organic solvent can be used.
  • a developer containing at least one selected from the group consisting of cyclopentanone, ⁇ -butyrolactone, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and cyclohexanone is particularly preferable, and cyclopentanone and ⁇ -butyrolactone are preferable.
  • a developer containing at least one selected from the group consisting of dimethyl sulfoxide and dimethyl sulfoxide is more preferable, and a developer containing cyclopentanone is most preferable.
  • the content of the organic solvent with respect to the total mass of the developer is preferably 50% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more. Is more preferable, and 90% by mass or more is particularly preferable. Further, the content may be 100% by mass.
  • the developer may further contain other components.
  • other components include known surfactants and known defoaming agents.
  • the method of supplying the developing solution is not particularly limited as long as a desired pattern can be formed, and the method of immersing the base material on which the film is formed in the developing solution and the method of supplying the developing solution to the film formed on the base material using a nozzle.
  • the type of nozzle is not particularly limited, and examples thereof include a straight nozzle, a shower nozzle, and a spray nozzle.
  • the method of supplying the developing solution with a straight nozzle or the method of continuously supplying the developing solution with a spray nozzle is preferable. From the viewpoint of permeability, the method of supplying with a spray nozzle is more preferable. Further, after the developer is continuously supplied by the straight nozzle, the base material is spun to remove the developer from the base material, and after spin drying, the developer is continuously supplied by the straight nozzle again, and then the base material is spun to use the developer as the base material. A step of removing from the top may be adopted, and this step may be repeated a plurality of times.
  • the method of supplying the developer in the developing process includes a process in which the developer is continuously supplied to the substrate, a process in which the developer is kept in a substantially stationary state on the substrate, and a process in which the developer is superposed on the substrate.
  • a process of vibrating with a sound wave or the like and a process of combining them can be adopted.
  • the development time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • the temperature of the developing solution at the time of development is not particularly determined, but is preferably 10 to 45 ° C, more preferably 18 ° C to 30 ° C.
  • the pattern may be further washed (rinsed) with the rinsing solution. Further, a method such as supplying a rinse liquid before the developer in contact with the pattern is completely dried may be adopted.
  • the developing solution is an alkaline aqueous solution
  • water can be used as the rinsing solution.
  • the developer is a developer containing an organic solvent, for example, a solvent different from the solvent contained in the developer (for example, water or an organic solvent different from the organic solvent contained in the developer) is used as the rinse solution. be able to.
  • the esters include, for example, ethyl acetate, -n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate.
  • alkyl alkyloxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, methoxyacetic acid) Eth
  • Ethyl acid acid, etc. methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutate, ethyl 2-oxobutate, etc.
  • ethers for example, diethylene glycol dimethyl ether, tetrahydrofuran.
  • Ethyl Glycol Monomethyl Ether Ethyl Glycol Monoethyl Ether, Methyl Cellosolve Acetate, Ethyl Cellosolve Acetate, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monoethyl Ether, Diethylene Glycol Monobutyl Ether, Ethyl Glycol Monomethyl Ether (PGME), Ethyl Glycol Monomethyl Ether Acetate (PGMEA), Propylene glycol monoethyl ether acetate, propionate Lopyrene glycol monopropyl ether acetate and the like, and as ketones, for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone and the like, and as cyclic hydrocarbons, for example.
  • ketones for example, methyl ethyl ketone, cyclohexanone, cycl
  • Aromatic hydrocarbons such as toluene, xylene, anisole, cyclic terpenes such as limonene, dimethylsulfoxide as sulfoxides, and methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol, diethylene glycol as alcohols.
  • Propylene glycol, methylisobutylcarbinol, triethyleneglycol and the like, and examples of the amides include N-methylpyrrolidone, N-ethylpyrrolidone, dimethylformamide and the like.
  • the rinsing liquid contains an organic solvent
  • one type or a mixture of two or more types of organic solvent can be used.
  • cyclopentanone, ⁇ -butyrolactone, dimethyl sulfoxide, N-methylpyrrolidone, cyclohexanone, PGMEA, PGME are particularly preferable, cyclopentanone, ⁇ -butyrolactone, dimethyl sulfoxide, PGMEA, PGME are more preferable, and cyclohexanone and PGMEA are preferable. More preferred.
  • the rinsing liquid contains an organic solvent
  • 50% by mass or more of the rinsing liquid is preferably an organic solvent, 70% by mass or more is more preferably an organic solvent, and 90% by mass or more is an organic solvent. Is more preferable.
  • the rinse liquid may be 100% by mass of an organic solvent.
  • the rinse solution may further contain other components.
  • other components include known surfactants and known defoaming agents.
  • the method of supplying the rinsing liquid is not particularly limited as long as a desired pattern can be formed, and the method of immersing the base material in the rinsing liquid, the method of supplying the rinsing liquid to the base material by filling, and the method of supplying the rinsing liquid to the base material by a shower.
  • the method of supplying the rinse liquid with a shower nozzle, a straight nozzle, a spray nozzle, etc. there is a method of supplying the rinse liquid with a spray nozzle is preferable. From the viewpoint of the permeability of the rinse liquid into the image portion, the method of supplying with a spray nozzle is more preferable.
  • the type of nozzle is not particularly limited, and examples thereof include a straight nozzle, a shower nozzle, and a spray nozzle.
  • the rinsing step is preferably a step of supplying the rinsing liquid to the exposed film by a straight nozzle or continuously, and more preferably a step of supplying the rinsing liquid by a spray nozzle.
  • a method of supplying the rinse liquid in the rinsing step a step of continuously supplying the rinse liquid to the base material, a step of keeping the rinse liquid in a substantially stationary state on the base material, and a step of superimposing the rinse liquid on the base material.
  • a process of vibrating with a sonic or the like and a process of combining them can be adopted.
  • the rinsing time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • the temperature of the rinsing liquid at the time of rinsing is not particularly determined, but is preferably 10 to 45 ° C, more preferably 18 ° C to 30 ° C.
  • the pattern obtained by the developing step (in the case of performing the rinsing step, the pattern after rinsing) may be subjected to a heating step of heating the pattern obtained by the above-mentioned development. That is, the method for producing a cured product of the present invention may include a heating step of heating the pattern obtained by the developing step. Further, the method for producing a cured product of the present invention may include a pattern obtained by another method without performing a developing step, or a heating step of heating the film obtained by the film forming step. In the heating step, the resin such as the polyimide precursor is cyclized to become the resin such as polyimide.
  • the heating temperature (maximum heating temperature) in the heating step is preferably 50 to 450 ° C, more preferably 150 to 350 ° C, further preferably 150 to 250 ° C, further preferably 160 to 250 ° C, and particularly preferably 160 to 230 ° C. preferable.
  • the heating step is preferably a step of promoting the cyclization reaction of the polyimide precursor in the pattern by the action of the base or the like generated from the base generator by heating.
  • the heating in the heating step is preferably performed at a heating rate of 1 to 12 ° C./min from the temperature at the start of heating to the maximum heating temperature.
  • the temperature rising rate is more preferably 2 to 10 ° C./min, even more preferably 3 to 10 ° C./min.
  • the temperature at the start of heating it is preferable to carry out from the temperature at the start of heating to the maximum heating temperature at a heating rate of 1 to 8 ° C./sec, more preferably 2 to 7 ° C./sec, and 3 to 6 ° C. °C / sec is more preferable.
  • the temperature at the start of heating is preferably 20 ° C to 150 ° C, more preferably 20 ° C to 130 ° C, and even more preferably 25 ° C to 120 ° C.
  • the temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature is started.
  • the resin composition of the present invention when applied onto a substrate and then dried, it is the temperature of the film (layer) after drying, for example, from the boiling point of the solvent contained in the resin composition of the present invention.
  • the heating time (heating time at the maximum heating temperature) is preferably 5 to 360 minutes, more preferably 10 to 300 minutes, and even more preferably 15 to 240 minutes.
  • the heating temperature is preferably 30 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C. or higher, from the viewpoint of adhesion between layers. It is particularly preferable that the temperature is 120 ° C. or higher.
  • the upper limit of the heating temperature is preferably 350 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 240 ° C. or lower.
  • Heating may be performed in stages. As an example, the temperature is raised from 25 ° C. to 120 ° C. at 3 ° C./min and held at 120 ° C. for 60 minutes, the temperature is raised from 120 ° C. to 180 ° C. at 2 ° C./min, and the temperature is kept at 180 ° C. for 120 minutes. , And so on. It is also preferable to perform the treatment while irradiating with ultraviolet rays as described in US Pat. No. 9,159,547. It is possible to improve the characteristics of the film by such a pretreatment step.
  • the pretreatment step may be performed in a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes.
  • the pretreatment may be performed in two or more steps, for example, the first pretreatment step may be performed in the range of 100 to 150 ° C., and then the second pretreatment step may be performed in the range of 150 to 200 ° C. good. Further, cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5 ° C./min.
  • the heating step is preferably carried out in an atmosphere having a low oxygen concentration by flowing an inert gas such as nitrogen, helium or argon or under reduced pressure in order to prevent decomposition of the specific resin.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, and more preferably 20 ppm (volume ratio) or less.
  • the heating means in the heating step is not particularly limited, and examples thereof include a hot plate, an infrared furnace, an electric heating oven, a hot air oven, and an infrared oven.
  • the method for producing a cured product of the present invention may include a post-development exposure step for exposing the pattern obtained by the developing step.
  • the method for producing a cured product of the present invention may include a heating step and a post-development exposure step, or may include only one of a heating step and a post-development exposure step.
  • the post-development exposure step for example, a reaction in which cyclization of a polyimide precursor or the like is promoted by exposure to a photobase generator or a reaction in which desorption of acid-degradable groups is promoted by exposure to a photoacid generator is promoted. can do.
  • the post-development exposure step at least a part of the pattern obtained in the development step may be exposed, but it is preferable that all of the above patterns are exposed.
  • the exposure amount in the post-development exposure step is preferably 50 to 20,000 mJ / cm 2 and more preferably 100 to 15,000 mJ / cm 2 in terms of exposure energy at a wavelength at which the photosensitive compound has sensitivity. preferable.
  • the post-development exposure step can be performed using, for example, the light source in the above-mentioned exposure step, and it is preferable to use broadband light.
  • the pattern obtained by the developing step may be subjected to the metal layer forming step of forming the metal layer on the pattern.
  • the method for producing a cured product of the present invention includes a metal layer forming step of forming a metal layer on a pattern obtained by a developing step (preferably one provided in at least one of a heating step and a post-development exposure step). Is preferable.
  • metal layer existing metal species can be used without particular limitation, and examples thereof include copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold, tungsten, tin, silver, and alloys containing these metals. Copper and aluminum are more preferred, and copper is even more preferred.
  • the method for forming the metal layer is not particularly limited, and an existing method can be applied.
  • the methods described in JP-A-2007-157879, JP-A-2001-521288, JP-A-2004-214501, JP-A-2004-101850, US Pat. No. 7,788,181B2, US Pat. No. 9,177,926B2 are used. can do.
  • photolithography, PVD (physical vapor deposition), CVD (chemical vapor deposition), lift-off, electroplating, electroless plating, etching, printing, and a combination of these can be considered.
  • a patterning method combining sputtering, photolithography and etching, and a patterning method combining photolithography and electrolytic plating can be mentioned.
  • Preferred embodiments of plating include electrolytic plating using a copper sulfate or copper cyanide plating solution.
  • the thickness of the metal layer is preferably 0.01 to 50 ⁇ m, more preferably 1 to 10 ⁇ m in the thickest portion.
  • Examples of the method for producing a cured product of the present invention or the applicable field of the cured product of the present invention include an insulating film for an electronic device, an interlayer insulating film for a rewiring layer, a stress buffer film, and the like.
  • Other examples include forming a pattern by etching on a sealing film, a substrate material (base film or coverlay of a flexible printed circuit board, an interlayer insulating film), or an insulating film for mounting purposes as described above. For these applications, for example, Science & Technology Co., Ltd.
  • the method for producing a cured product of the present invention, or the cured product of the present invention is used for manufacturing a plate surface such as an offset plate surface or a screen plate surface, using it for etching molded parts, protective lacquer and dielectric in electronics, especially microelectronics. It can also be used for layer production and the like.
  • the laminated body of the present invention refers to a structure having a plurality of layers made of the cured product of the present invention.
  • the laminated body of the present invention is a laminated body including two or more layers made of a cured product, and may be a laminated body in which three or more layers are laminated.
  • the two or more layers made of the cured product contained in the laminated body at least one is a layer made of the cured product of the present invention, which causes shrinkage of the cured product or deformation of the cured product due to the shrinkage. From the viewpoint of suppressing, it is also preferable that the layer made of all the cured products contained in the laminated body is the layer made of the cured product of the present invention.
  • the method for producing a laminated body of the present invention preferably includes the method for producing a cured product of the present invention, and more preferably includes repeating the method for producing a cured product of the present invention a plurality of times.
  • the laminated body of the present invention contains two or more layers made of a cured product and contains a metal layer between any of the layers made of the cured product.
  • the metal layer is preferably formed by the metal layer forming step. That is, it is preferable that the method for producing a laminated body of the present invention further includes a metal layer forming step of forming a metal layer on a layer made of the cured product between the methods for producing a cured product which is performed a plurality of times.
  • the preferred embodiment of the metal layer forming step is as described above.
  • a laminate including at least a layer structure in which three layers of a layer made of a first cured product, a metal layer, and a layer made of a second cured product are laminated in this order is preferable. Be done. It is preferable that the layer made of the first cured product and the layer made of the second cured product are both layers made of the cured product of the present invention.
  • the resin composition of the present invention used for forming the layer made of the first cured product and the resin composition of the present invention used for forming the layer made of the second cured product have the same composition. It may be a product or a composition having a different composition.
  • the metal layer in the laminate of the present invention is preferably used as metal wiring such as a rewiring layer.
  • the method for producing a laminated body of the present invention preferably includes a laminating step.
  • the laminating step means that (a) a film forming step (layer forming step), (b) an exposure step, (c) a developing step, (d) a heating step and development are performed again on the surface of a pattern (resin layer) or a metal layer. It is a series of steps including performing at least one of the post-exposure steps in this order. However, at least one of the film forming step (a), the heating step, and the post-development exposure step may be repeated. Further, (e) a metal layer forming step may be included after at least one of the (d) heating step and the post-development exposure step. Needless to say, the laminating step may further include the above-mentioned drying step and the like as appropriate.
  • the surface activation treatment step may be further performed after the exposure step, the heating step, or the metal layer forming step.
  • Plasma treatment is exemplified as the surface activation treatment. Details of the surface activation treatment will be described later.
  • the laminating step is preferably performed 2 to 20 times, more preferably 2 to 9 times.
  • a structure having two or more and 20 or less resin layers such as a resin layer / metal layer / resin layer / metal layer / resin layer / metal layer, is preferable, and a structure having two or more and 9 or less layers is more preferable. ..
  • the composition, shape, film thickness, etc. of each of the above layers may be the same or different.
  • a cured product (resin layer) of the resin composition of the present invention so as to further cover the metal layer after the metal layer is provided.
  • a film forming step an exposure step, (c) a developing step, (d) at least one of a heating step and a post-development exposure step (e) a metal layer forming step is repeated in this order.
  • a film forming step an exposure step
  • a developing step a developing step
  • a metal layer forming step is repeated in this order.
  • a film forming step, (d) at least one of a heating step and a post-development exposure step, and (e) a metal layer forming step is repeated in this order.
  • the method for producing a laminate of the present invention preferably includes a surface activation treatment step of surface activating at least a part of the metal layer and the resin composition layer.
  • the surface activation treatment step is usually performed after the metal layer forming step, but after the development step, the surface activation treatment step may be performed on the resin composition layer, and then the metal layer forming step may be performed.
  • the surface activation treatment may be performed on at least a part of the metal layer, on at least a part of the exposed resin composition layer, or on the metal layer and the exposed resin composition layer. For both, you may go to at least part of each.
  • the surface activation treatment is preferably performed on at least a part of the metal layer, and it is preferable to perform the surface activation treatment on a part or all of the region forming the resin composition layer on the surface of the metal layer.
  • the surface activation treatment is performed on a part or all of the resin composition layer (resin layer) after exposure. As described above, by performing the surface activation treatment on the surface of the resin composition layer, it is possible to improve the adhesion to the metal layer or the resin layer provided on the surface of the surface activation treatment.
  • the resin composition layer when the resin composition layer is cured, such as when negative type development is performed, it is less likely to be damaged by the surface treatment and the adhesion is likely to be improved.
  • Specific examples of the surface activation treatment include plasma treatment of various raw material gases (oxygen, hydrogen, argon, nitrogen, nitrogen / hydrogen mixed gas, argon / oxygen mixed gas, etc.), corona discharge treatment, and CF 4 / O 2 .
  • the energy is preferably 500 to 200,000 J / m 2 , more preferably 1000 to 100,000 J / m 2 , and most preferably 10,000 to 50,000 J / m 2 .
  • the present invention also discloses a semiconductor device containing the cured product of the present invention or the laminate of the present invention.
  • the present invention also discloses a method for producing a cured product of the present invention, or a method for producing a semiconductor device including a method for producing a laminate of the present invention.
  • the semiconductor device in which the resin composition of the present invention is used to form the interlayer insulating film for the rewiring layer the description in paragraphs 0213 to 0218 and FIG. 1 of JP-A-2016-0273557 can be referred to. These contents are incorporated in the present specification.
  • the weight average molecular weight of the obtained A-1 (gel permeation chromatography (eluent: polystyrene-equivalent value of NMP (N-methyl-2-pyrrolidone)) was 31000.
  • the measurement conditions are as follows. Column: TSKguardcumn SuperAW-H (4.6 mm ID. ⁇ 35 mm) 1 bottle TSK SuperAWM-H (6.0 mm ID.
  • the polyimide precursor resin was then precipitated in 4 liters of water and the water-polyimide precursor resin mixture was stirred at a rate of 5000 rpm for 15 minutes.
  • the polyimide precursor resin was filtered off, stirred again in 4 liters of water for 30 minutes and filtered again. Then, the obtained polyimide precursor resin was dried under reduced pressure at 45 ° C. for 3 days to obtain a polyimide precursor A-4.
  • Mw was 30,000.
  • the mixture was then heated to room temperature and stirred for 2 hours, then 2 mL of ethanol was added and the mixture was stirred for 1 hour, and 50 mL of ⁇ -butyrolactone was added.
  • the precipitate formed in the reaction mixture was then removed by filtration to form a precipitate in 500 mL of ethanol, the resulting precipitate was filtered off and then dissolved in 250 mL of tetrahydrofuran.
  • the obtained solution was added dropwise to 4 liters of water to precipitate the polyimide precursor resin, the water-polyimide precursor resin mixture was stirred at a rate of 5000 rpm for 15 minutes, and the polyimide precursor was filtered. Then, the obtained polyimide precursor resin was dried under reduced pressure at 45 ° C. for 3 days to obtain a polyimide precursor A-5.
  • Mw was 30,000.
  • the polybenzoxazole precursor resin was filtered off, stirred again in 6 liters of water for 30 minutes and filtered again. Then, the obtained polybenzoxazole precursor resin was dried under reduced pressure at 45 ° C. for 3 days to obtain a polybenzoxazole precursor A-7. Mw was 28,000.
  • the insoluble material was filtered off, 1000 mL of ethyl acetate was added to the filtrate, the organic phase was washed with 1N (1 mol / L) hydrochloric acid, and then washed with water three times. After adding magnesium sulfate to the organic phase and drying, the insoluble material is filtered off, 4-hydroxy-TEMPO (0.05 g) is added to the filtrate, and the solvent is evaporated under reduced pressure to distill off compound B-1. Was obtained in an amount of 33.6 g (yield 89%). It was confirmed by 1 H-NMR that the structure of the obtained B-1 was a structure represented by the following chemical formula.
  • the insoluble material was filtered off, 1000 mL of ethyl acetate was added to the filtrate, the organic phase was washed with 1N (1 mol / L) hydrochloric acid, and then washed with water three times. After adding magnesium sulfate to the organic phase and drying, the insoluble material is filtered off, 4-hydroxy-TEMPO (0.05 g) is added to the filtrate, and the solvent is evaporated under reduced pressure to distill off compound B-3. Was obtained in an amount of 30.9 g (yield 90%). It was confirmed by 1 H-NMR that the structure of the obtained B-3 was a structure represented by the following chemical formula.
  • the insoluble material was filtered off, 1000 mL of ethyl acetate was added to the filtrate, the organic phase was washed with 1N (1 mol / L) hydrochloric acid, and then washed with water three times. After adding magnesium sulfate to the organic phase and drying, the insoluble material is filtered off, 4-hydroxy-TEMPO (0.05 g) is added to the filtrate, and the solvent is evaporated under reduced pressure to distill off compound B-5. 38.2 g (yield 93%) was obtained. It was confirmed by 1 H-NMR that the structure of the obtained B-5 was a structure represented by the following chemical formula.
  • the insoluble material was filtered off, 1000 mL of ethyl acetate was added to the filtrate, the organic phase was washed with 1N hydrochloric acid (1 mol / L), and then washed with water three times. After adding magnesium sulfate to the organic phase and drying, the insoluble material is filtered off, 4-hydroxy-TEMPO (0.05 g) is added to the filtrate, and the solvent is distilled off under reduced pressure to compound B-8. 28.4 g (yield 81%) was obtained. It was confirmed by 1 H-NMR that the structure of the obtained B-8 was a structure represented by the following chemical formula.
  • Examples and comparative examples> In each example, the components listed in the table below were mixed to obtain each curable resin composition. Further, in each comparative example, the components shown in the following table were mixed to obtain each comparative composition. Specifically, the content of the components other than the solvent described in the table is the amount (parts by mass) described in each "addition amount" column of the table. Regarding A-6, the amount of solid content in the solution was added so as to be the amount (part by mass) described in "Addition amount” in the table. The obtained curable resin composition and comparative composition were pressure-filtered through a filter made of polytetrafluoroethylene having a pore width of 0.8 ⁇ m.
  • the description of "-" indicates that the composition does not contain the corresponding component.
  • A-2 / A-3 50/50
  • A-2 and A-3 are A-2: 50 parts by mass and A-3: 50 parts by mass. It is shown that it was contained in.
  • the description of "addition amount” of "solvent” indicates the total content (parts by mass) of the mixed solvent having the above content ratio.
  • the prepared curable resin composition or comparative composition was applied onto a silicon wafer by a spin coating method, respectively, to form a resin composition layer.
  • the silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to obtain a uniform resin composition layer having a thickness of about 15 ⁇ m on the silicon wafer.
  • the resin composition layer was fully exposed with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C). In the example in which the photopolymerization initiator was not contained in the composition, no exposure was performed.
  • the obtained resin composition layer (resin layer) was heated in a nitrogen atmosphere at a heating rate of 10 ° C./min using a box oven, and the temperature described in "Curing temperature (° C.)" in the table. After reaching, the above temperature was maintained for 3 hours.
  • the cured resin layer (cured product) was immersed in a 4.9 mass% hydrofluoric acid solution, and the cured product was peeled off from the silicon wafer.
  • a test piece having a width of 3 mm and a sample length of 30 mm was prepared from the peeled cured product using a punching machine.
  • the obtained test piece was subjected to JIS-K6251: using a tensile tester (Tencilon) at a crosshead speed of 300 mm / min and in an environment of 25 ° C. and 65% RH (relative humidity) in the longitudinal direction of the film. Measured according to 2017. The evaluation was carried out 5 times each, and the arithmetic mean value of the above 5 measurement results was used as an index value for the elongation rate (breaking elongation rate) when the film was broken. The evaluation was performed according to the following criteria, and the evaluation results are described in the "Membrane strength" column in the table. It can be said that the larger the elongation at break (the above index value), the higher the film strength.
  • the prepared curable resin composition or comparative composition was applied onto a silicon wafer by a spin coating method, respectively, to form a resin composition layer.
  • the silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to obtain a uniform resin composition layer having a thickness of about 15 ⁇ m on the silicon wafer.
  • the resin composition layer was fully exposed with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C). In the example in which the photopolymerization initiator was not contained in the composition, no exposure was performed.
  • the obtained resin composition layer (resin layer) was heated in a nitrogen atmosphere at a heating rate of 10 ° C./min using a box oven, and the temperature described in "curing temperature (° C.)" in the table. After reaching the above temperature, the cured product was formed on the silicon wafer by maintaining the temperature for 3 hours. The cured product was not peeled from the silicon wafer, and the cured product and the silicon wafer were immersed in the following chemical solution under the following conditions, and the dissolution rate was calculated.
  • the dissolution rate was 200 nm / min or more and less than 300 nm / min.
  • C The dissolution rate was 300 nm / min or more and less than 400 nm / min.
  • the dissolution rate was 400 nm / min or more and less than 500 nm / min.
  • E The dissolution rate was 500 nm / min or more.
  • the prepared curable resin composition or comparative composition was applied onto a silicon wafer by a spin coating method, respectively, to form a resin composition layer.
  • the silicon wafer to which the obtained resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to obtain a uniform resin composition layer having a thickness of about 15 ⁇ m on the silicon wafer.
  • the resin composition layer on the silicon wafer was exposed to i-rays with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C).
  • the exposure was performed via a mask (a binary mask in which the pattern was 1: 1 line and space and the line width was 5 to 20 ⁇ m and the line width was formed in 1 ⁇ m increments).
  • a mask a binary mask in which the pattern was 1: 1 line and space and the line width was 5 to 20 ⁇ m and the line width was formed in 1 ⁇ m increments.
  • cyclopentanone for 60 seconds and rinsed with propylene glycol monomethyl ether acetate (PGMEA) for 20 seconds to obtain a line-and-space pattern of the resin composition layer.
  • PMEA propylene glycol monomethyl ether acetate
  • the obtained resin composition layer was heated in a nitrogen atmosphere at a heating rate of 10 ° C./min using a box oven to reach the temperature described in "Curing temperature (° C.)" in the table.
  • Example 51 In Example 1, except that the heating means for heating at the "curing temperature (° C.)" in the table was changed from the box oven to the "infrared lamp heating device (manufactured by Advance Riko Co., Ltd., RTP-6)".
  • the above-mentioned film strength, chemical resistance and resolution were evaluated by the same method as in Example 1.
  • the specific heating conditions are such that the temperature is raised at a heating rate of 10 ° C./min under a nitrogen atmosphere, and the temperature is maintained for 3 hours after reaching the temperature described in "Curing temperature (° C.)" in the table. The condition was to do.
  • the evaluation results of film strength, chemical resistance and resolution in Example 51 were the same as those evaluation results in Example 1, respectively.
  • Example 53 In Example 18, the above-mentioned film strength, chemical resistance and resolution were evaluated by the same method as in Example 18 except that the exposure with i-line was changed to the exposure with light having a wavelength of 405 nm. .. The evaluation results of film strength, chemical resistance and resolution in Example 53 were the same as those in Example 18, respectively.
  • the cured product obtained from the curable resin composition according to the present invention has excellent chemical resistance.
  • the comparative compositions according to Comparative Examples 1 to 3 do not contain compound B. It can be seen that the cured product obtained from such a comparative composition is inferior in chemical resistance.
  • Example 101 The curable resin composition used in Example 1 was applied in layers on the surface of a resin substrate having a thin copper layer formed on the surface by a spin coating method, dried at 100 ° C. for 4 minutes, and had a film thickness of 20 ⁇ m. After forming the resin composition layer, the resin composition layer was exposed to light using a stepper (NSR1505 i6, manufactured by Nikon Corporation). Exposure was performed via a mask (a binary mask with a pattern of 1: 1 line and space and a line width of 10 ⁇ m) at a wavelength of 365 nm. After the exposure, it was heated at 100 ° C. for 4 minutes.
  • a mask a binary mask with a pattern of 1: 1 line and space and a line width of 10 ⁇ m
  • the temperature was raised at a heating rate of 10 ° C./min under a nitrogen atmosphere, and after reaching 230 ° C., the temperature was maintained at 230 ° C. for 3 hours to form an interlayer insulating film for the rewiring layer.
  • the interlayer insulating film for the rewiring layer was excellent in insulating property. Moreover, when a semiconductor device was manufactured using these interlayer insulating films for the rewiring layer, it was confirmed that the semiconductor device operated without any problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

L'invention concerne une résine durcissable contenant: au moins une sorte de résine choisie dans le groupe contenant des précurseurs polyimide et des précurseurs polybenzoxazole; ainsi qu'un composé B possédant un groupe polymérisable et au moins une structure choisie dans le groupe contenant des structures monoesters d'acide oxalique, des structures diesters d'acide oxalique, des structures monoamides d'acide oxalique, des structures diamides d'acide oxalique, et des structures esters amides d'acide oxalique. L'invention concerne également un produit durci obtenu par durcissement de ladite composition de résine thermodurcissable, un stratifié contenant ledit produit durci, un procédé de production dudit produit durci, ainsi qu'un dispositif à semi-conducteurs contenant ledit produit durci ou ledit stratifié.
PCT/JP2021/030784 2020-08-26 2021-08-23 Composition de résine durcissable, produit durci, stratifié, procédé de production de produit durci, ainsi que dispositif à semi-conducteurs WO2022045060A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022544581A JP7498281B2 (ja) 2020-08-26 2021-08-23 硬化性樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
KR1020237006261A KR20230043166A (ko) 2020-08-26 2021-08-23 경화성 수지 조성물, 경화물, 적층체, 경화물의 제조 방법, 및, 반도체 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-142848 2020-08-26
JP2020142848 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022045060A1 true WO2022045060A1 (fr) 2022-03-03

Family

ID=80353251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030784 WO2022045060A1 (fr) 2020-08-26 2021-08-23 Composition de résine durcissable, produit durci, stratifié, procédé de production de produit durci, ainsi que dispositif à semi-conducteurs

Country Status (3)

Country Link
KR (1) KR20230043166A (fr)
TW (1) TW202219636A (fr)
WO (1) WO2022045060A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190061A1 (fr) * 2022-03-29 2023-10-05 富士フイルム株式会社 Composition de résine, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de production de dispositif à semi-conducteur et dispositif à semi-conducteur

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478268B (zh) * 2022-08-04 2024-01-05 江阴市华昌不锈钢管有限公司 一种大口径不锈钢无缝钢管生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153307A (en) * 1991-07-31 1992-10-06 International Business Machines Corporation Stabilization of polyamide alkyl ester solutions
WO2018021262A1 (fr) * 2016-07-27 2018-02-01 日立化成デュポンマイクロシステムズ株式会社 Composition de résine photosensible, produit durci correspondant, film isolant intercouche, film protecteur de surface et composant électronique
WO2018043467A1 (fr) * 2016-08-31 2018-03-08 富士フイルム株式会社 Composition de résine et son application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104806B1 (ko) 2016-01-29 2020-04-27 후지필름 가부시키가이샤 감광성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 적층체의 제조 방법, 및 반도체 디바이스

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153307A (en) * 1991-07-31 1992-10-06 International Business Machines Corporation Stabilization of polyamide alkyl ester solutions
WO2018021262A1 (fr) * 2016-07-27 2018-02-01 日立化成デュポンマイクロシステムズ株式会社 Composition de résine photosensible, produit durci correspondant, film isolant intercouche, film protecteur de surface et composant électronique
WO2018043467A1 (fr) * 2016-08-31 2018-03-08 富士フイルム株式会社 Composition de résine et son application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190061A1 (fr) * 2022-03-29 2023-10-05 富士フイルム株式会社 Composition de résine, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de production de dispositif à semi-conducteur et dispositif à semi-conducteur

Also Published As

Publication number Publication date
KR20230043166A (ko) 2023-03-30
JPWO2022045060A1 (fr) 2022-03-03
TW202219636A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2022070730A1 (fr) Procédé de production de produit durci, procédé de production de corps multicouche, et procédé de production de dispositif à semiconducteur
WO2022138606A1 (fr) Composition de résine, produit durci, stratifié, méthode de production d'un produit durci, et dispositif semi-conducteur
WO2023032545A1 (fr) Procédé de production de produit durci, procédé de production de stratifié, procédé de fabrication de dispositif à semi-conducteur et liquide de traitement
WO2021172420A1 (fr) Composition de résine durcissable, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2021172421A1 (fr) Composition de résine durcissable, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
JP7483908B2 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2022045060A1 (fr) Composition de résine durcissable, produit durci, stratifié, procédé de production de produit durci, ainsi que dispositif à semi-conducteurs
WO2022045124A1 (fr) Composition de résine durcissable, produit durci, stratifié, procédé de fabrication d'un produit durci, et dispositif à semi-conducteur
WO2022045120A1 (fr) Composition de résine photosensible, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
JP7300511B2 (ja) 硬化膜の製造方法、光硬化性樹脂組成物、積層体の製造方法、及び、半導体デバイスの製造方法
WO2021246457A1 (fr) Composition de résine durcissable, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2021132578A1 (fr) Composition de résine durcissable, film durci, produit en couches, procédé de production d'un film durci, et dispositif à semi-conducteur
WO2022071226A1 (fr) Composition de résine, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2022050278A1 (fr) Composition de résine durcissable, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, dispositif à semi-conducteurs, et générateur de photobase
WO2022045123A1 (fr) Procédé de fabrication de précurseur de polyimide, et procédé de fabrication de composition de résine durcissable
WO2022064917A1 (fr) Procédé de production de produit durci, procédé de production de stratifié et procédé de production de dispositif semi-conducteur
WO2022050135A1 (fr) Procédé de fabrication d'objet durci, procédé de fabrication de stratifié, et procédé de fabrication de dispositif à semi-conducteurs
WO2022210226A1 (fr) Composition de résine, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, dispositif à semi-conducteurs, et composé
WO2022145136A1 (fr) Composition de résine, produit durci, stratifié, procédé de production de produit durci, dispositif semi-conducteur, et composé
WO2022145355A1 (fr) Composition de résine, objet durci, objet stratifié, procédé de production d'un objet durci et dispositif à semi-conducteur
WO2022050041A1 (fr) Procédé de fabrication d'objet durci, procédé de fabrication de stratifié, et procédé de fabrication de dispositif électronique
WO2021157571A1 (fr) Composition de résine durcissable, film de résine, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2021157306A1 (fr) Composition de résine, film durci, stratifié, procédé de fabrication de film durci et dispositif à semi-conducteur
WO2021085072A1 (fr) Procédé de formation de motif, composition de résine photosensible, procédé de fabrication de corps stratifié et procédé de fabrication de dispositif semi-conducteur
WO2022176869A1 (fr) Procédé de production de film permanent, procédé de production de corps multicouche, et procédé de production de dispositif à semi-conducteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544581

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237006261

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861486

Country of ref document: EP

Kind code of ref document: A1