WO2021157377A1 - Light- and heat-curable resin composition, liquid crystal sealing agent containing same, liquid crystal display panel, and manufacturing method therefor - Google Patents

Light- and heat-curable resin composition, liquid crystal sealing agent containing same, liquid crystal display panel, and manufacturing method therefor Download PDF

Info

Publication number
WO2021157377A1
WO2021157377A1 PCT/JP2021/002135 JP2021002135W WO2021157377A1 WO 2021157377 A1 WO2021157377 A1 WO 2021157377A1 JP 2021002135 W JP2021002135 W JP 2021002135W WO 2021157377 A1 WO2021157377 A1 WO 2021157377A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
resin composition
seal pattern
mass
compound
Prior art date
Application number
PCT/JP2021/002135
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 河野
靖之 香川
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020227026217A priority Critical patent/KR20220123426A/en
Priority to CN202180011019.4A priority patent/CN115004093A/en
Priority to JP2021575714A priority patent/JP7411693B2/en
Publication of WO2021157377A1 publication Critical patent/WO2021157377A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a photothermosetting resin composition, a liquid crystal sealant containing the same, a liquid crystal display panel, and a method for manufacturing the same.
  • Display panels such as liquid crystals and organic EL are widely used as image display panels for various electronic devices such as mobile phones and personal computers.
  • a liquid crystal display panel is formed by two transparent substrates having electrodes on their surfaces, a frame-shaped sealing member sandwiched between them, and a liquid crystal material enclosed in a region surrounded by the sealing members. And have.
  • the seal member is required to have high adhesion to the substrate. If the sealing member is peeled off from the substrate, liquid crystal leakage or the like occurs, resulting in poor image display. Therefore, conventionally, a compound having a hydrophilic group (for example, a silane coupling agent) is included in the liquid crystal sealant for forming the seal member, and the hydrophilic group in the seal member and the hydrophilic group existing on the surface of the substrate are combined. By chemically bonding, these adhesions were enhanced.
  • a hydrophilic group for example, a silane coupling agent
  • Patent Document 1 proposes to include core-shell type particles in the liquid crystal sealant for forming the seal member.
  • core-shell structural fine particles F-351 manufactured by Aica Kogyo Co., Ltd.
  • F-351 manufactured by Aica Kogyo Co., Ltd.
  • a liquid crystal display panel it is common to arrange alignment films on the surfaces of a pair of substrates to orient the liquid crystal in a desired direction. Then, in the conventional liquid crystal display panel, it is common to apply a liquid crystal sealant to the outside of the alignment film arranged on the substrate to form a seal member. Therefore, it is sufficient to improve the adhesion between the substrate and the sealing member, and it is possible to improve the adhesion of the sealing member to the substrate by adding a silane coupling agent or the like as described above.
  • the present invention has been made in view of the above problems.
  • the present invention provides the following photothermosetting resin composition and a liquid crystal sealant containing the same.
  • Photothermosetting containing a curable compound (A) having an ethylenically unsaturated double bond in the molecule, a photopolymerization initiator (B), a latent thermosetting agent (C), and organic fine particles (D). It is a sex resin composition, and the organic fine particles (D) have an outer shell portion and a core portion, and the core portion is at least among a conjugated diene-based rubber and a silicone rubber containing a structural unit derived from a conjugated diene.
  • a photothermosetting resin composition comprising one.
  • the organic fine particles (D) are composed of the outer shell portion and the core portion, and the core portion contains a conjugated diene-based rubber containing a structural unit derived from a conjugated diene and an aromatic vinyl compound.
  • the latent thermosetting agent (C) is one or more selected from the group consisting of an organic acid dihydrazide-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, and a polyamine-based thermal latent curing agent.
  • the present invention provides the following method for manufacturing a liquid crystal display panel and a liquid crystal display panel obtained from the manufacturing method.
  • a method for manufacturing a liquid crystal display panel which comprises a step of curing the seal pattern.
  • the photothermosetting resin composition of the present invention when used as a liquid crystal sealant, a seal member capable of firmly adhering between a pair of substrates can be obtained.
  • the photothermosetting resin composition of the present invention contains a curable compound (A) having an ethylenically unsaturated double bond in the molecule, a photopolymerization initiator (B), and a latent thermosetting agent (). It contains C) and specific organic fine particles (D).
  • the photothermally curable resin composition of the present invention contains organic fine particles (D) having an outer shell portion and a core portion, and the core portion of the organic fine particles (D) is a structural unit derived from a conjugated diene. Includes either conjugated diene-based rubbers or silicone rubbers.
  • the photothermosetting resin composition contains such organic fine particles (D)
  • the residual stress generated when the photothermosetting resin composition is applied and cured is relaxed by the core portion of the organic fine particles (D).
  • NS Therefore, stress is unlikely to be applied between the substrate and the cured product. That is, even if the alignment film or the like is arranged on the substrate, peeling between the substrate and the photothermosetting resin composition (seal member) is unlikely to occur.
  • the organic fine particles (D) can disperse the load. Therefore, stress is less likely to act on the interface between the sealing member and the substrate, and their peeling is suppressed.
  • the curable compound (A) may be a compound having an ethylenically unsaturated double bond in the molecule.
  • the curable compound (A) may be any of a monomer, an oligomer or a polymer.
  • Examples of the curable compound (A) include a compound having a (meth) acryloyl group in the molecule.
  • the number of (meth) acryloyl groups per molecule of the compound having the (meth) acryloyl group may be one or two or more.
  • the term (meth) acryloyl group means an acryloyl group, a methacryloyl group, or both.
  • the description of (meth) acrylate means acrylate, methacrylate, or both.
  • the description of (meth) acrylic means acrylic, methacryl, or both.
  • curable compound (A) containing one (meth) acryloyl group in one molecule examples include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl ester of (meth) acrylate and the like. Includes (meth) acrylic acid alkyl esters.
  • Examples of the curable compound (A) having two or more (meth) acryloyl groups in one molecule include di (meth) acrylates derived from polyethylene glycol, propylene glycol, polypropylene glycol and the like; tris (2-hydroxyethyl) isocia. Nurate-derived di (meth) acrylate; diol-derived di (meth) acrylate obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol; 2 mol of ethylene oxide or propylene to 1 mol of bisphenol A.
  • the curable compound (A) may further have an epoxy group in the molecule.
  • the number of epoxy groups per molecule may be one or two or more.
  • the photothermosetting resin composition can be cured by heat. That is, it is possible to use both photocuring and thermosetting together.
  • the photothermosetting resin composition has photocurability and thermosetting property, it is possible to efficiently cure the photothermosetting resin composition in a short time.
  • An example of a compound having a (meth) acryloyl group and an epoxy group in the molecule is a (meth) acrylic acid glycidyl ester obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst. included.
  • the epoxy compound to be reacted with (meth) acrylic acid may be a polyfunctional epoxy compound having two or more epoxy groups in the molecule, and the crosslink density becomes too high to adhere to the cured product of the photothermosetting resin composition.
  • a bifunctional epoxy compound is preferable from the viewpoint of suppressing the decrease in the epoxy compound. Examples of bifunctional epoxy compounds include bisphenol type epoxy compounds (bisphenol A type, bisphenol F type, 2,2'-diallyl bisphenol A type, bisphenol AD type, hydrogenated bisphenol type, etc.), biphenyl type epoxy compounds, and the like. And naphthalene type epoxy compounds are included.
  • bisphenol A type and bisphenol F type bisphenol type epoxy compounds are preferable from the viewpoint that the coatability of the photothermally curable resin composition is likely to be improved.
  • the curable compound (A) derived from the bisphenol type epoxy compound has advantages such as excellent coatability as compared with the curable compound (A) derived from the biphenyl ether type epoxy compound.
  • the curable compound (A) may contain only one of the above compounds, but may contain two or more of the above compounds.
  • the curable compound (A) has a compound (A1) having a (meth) acryloyl group in the molecule and no epoxy group, and a compound (A2) having a (meth) acryloyl group and an epoxy group in the molecule. ) And is preferably included.
  • the photothermosetting resin composition further contains another curable compound (for example, an epoxy compound) described later, the compatibility between the compound (A1) and the epoxy compound may be low.
  • the compound (A2) having an epoxy group is combined, the compatibility of each component in the photothermosetting resin composition is enhanced.
  • a hydrophobic compound for example, an epoxy compound
  • the content of the compound (A2) having a (meth) acryloyl group and an epoxy group in the molecule is not particularly limited, but is preferably 30% by mass or more with respect to the total amount of the curable compound (A), for example.
  • the weight average molecular weight is preferably about 310 to 1000.
  • the weight average molecular weight of the curable compound (A) can be measured in terms of polystyrene by, for example, gel permeation chromatography (GPC).
  • the content of the curable compound (A) is preferably 40 to 80% by mass, more preferably 50 to 75% by mass, based on the total amount of the photothermosetting resin composition.
  • the amount of the curable compound (A) is within the above range, the strength of the obtained cured product (for example, a sealing member) can be increased, and the adhesion between the substrate and the cured product (sealing member) can be enhanced.
  • the photopolymerization initiator is not particularly limited as long as it is a compound capable of radically polymerizing the curable compound (A) by irradiation with light.
  • it may be a self-cleaving type photopolymerization initiator or a hydrogenated inorganic type photopolymerization initiator.
  • self-cleaving self-cleaving photopolymerization initiators include benzyl dimethyls such as alkylphenone compounds (eg 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF IRGACURE 651)).
  • hydrogen abstraction initiators examples include benzophenone compounds (eg, benzophenone, o-benzoylmethylbenzoate methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-.
  • benzophenone compounds eg, benzophenone, o-benzoylmethylbenzoate methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-.
  • Methyl-diphenylsulfide acrylicized benzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, etc.
  • thioxanthone compounds eg, thioxanthone, 2-Chlorothioxanthone (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1-chloro-4-propoxythioxanthone, 1-chloro-4-ethoxythioxanthone (Speedcure CPTX manufactured by Lambson Limited), 2-isopropylxantone (Speedcure ITX manufactured by Lambson Limited) , 4-Isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone (Speedcure DETX manufactured by Lambson Limited), 2,4-dichlorothioxanthone, etc
  • the absorption wavelength of the photopolymerization initiator (B) is not particularly limited, and for example, the photopolymerization initiator (B) that absorbs light having a wavelength of 360 nm or more is preferable. Among them, the photopolymerization initiator (B) that absorbs light in the visible light region is more preferable, and the photopolymerization initiator (B) that absorbs light having a wavelength of 360 to 780 nm is more preferable, and the photopolymerization initiator (B) that absorbs light having a wavelength of 360 to 430 nm is more preferable. ) Is particularly preferable.
  • Examples of the photopolymerization initiator (B) that absorbs light having a wavelength of 360 nm or more include alkylphenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, thioxanthone compounds, and anthraquinone compounds. , Preferably an oxime ester compound.
  • the structure of the photopolymerization initiator (B) can be specified by combining high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC / MS) with NMR measurement or IR measurement.
  • HPLC high performance liquid chromatography
  • LC / MS liquid chromatography mass spectrometry
  • the molecular weight of the photopolymerization initiator (B) is preferably 200 or more and 5000 or less, for example. When the molecular weight is 200 or more, the photopolymerization initiator (B) is unlikely to elute into the liquid crystal when the photothermosetting resin composition is used as the liquid crystal sealant. On the other hand, when the molecular weight is 5000 or less, the compatibility with the curable compound (A) is enhanced, and the curability of the photothermosetting resin composition tends to be improved.
  • the molecular weight of the photopolymerization initiator (B) is more preferably 230 or more and 3000 or less, and further preferably 230 or more and 1500 or less.
  • the molecular weight of the photopolymerization initiator (B) can be determined as the "relative molecular weight" of the molecular structure of the main peak detected when analyzed by high performance liquid chromatography (HPLC).
  • the main peak refers to the peak with the highest intensity (the peak with the highest peak height) among all the peaks detected at the detection wavelength characteristic of each compound (for example, 400 nm in the case of a thioxanthone compound).
  • the relative molecular weight corresponding to the peak peak of the detected main peak can be measured by liquid chromatography-mass spectrometry (LC / MS: Liquid Chromatography Mass Spectrometry).
  • the amount of the photopolymerization initiator (B) is preferably 0.01 to 10% by mass with respect to the above-mentioned curable compound (A).
  • the amount of the photopolymerization initiator (B) is 0.01% by mass or more with respect to the curable compound (A)
  • the curability of the photothermosetting resin composition tends to be good.
  • the content of the photopolymerization initiator (B) is 10% by mass or less, the photopolymerization initiator (B) is less likely to be eluted into the liquid crystal when the photothermosetting resin composition is used as the liquid crystal sealant.
  • the content of the photopolymerization initiator (B) is more preferably 0.1 to 5% by mass, further preferably 0.1 to 3% by mass, and 0.1 to 2.5 with respect to the curable compound (A). Mass% is particularly preferred.
  • Latent thermosetting agent (C) The latent thermosetting agent (C) does not cure the thermosetting compound (A) or other curable compounds described below under normal storage conditions (room temperature, visible light, etc.), but when heat is applied, It is a compound that cures these compounds.
  • the photothermosetting resin composition contains the latent thermosetting agent (C)
  • the photothermosetting resin composition becomes thermosetting.
  • a curing agent capable of curing an epoxy compound hereinafter, also referred to as "epoxy curing agent” is preferable.
  • the epoxy curing agent preferably has a melting point of 50 ° C. or higher and 250 ° C. or lower, and has a melting point of 100 ° C. or higher and 200 ° C., from the viewpoint of enhancing the viscosity stability of the photothermosetting resin composition and not impairing the moisture resistance of the cured product.
  • the temperature is more preferably 150 ° C. or higher, and further preferably 150 ° C. or higher and 200 ° C. or lower.
  • epoxy hardeners are organic acid dihydrazide-based thermal latent curing agents, imidazole-based thermal latent curing agents, dicyandiamide-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents. Contains agents.
  • organic acid dihydrazide-based thermal latent curing agents include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydranthin (melting point 120 ° C.), 7,11-octa. Includes decadien-1,18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like.
  • imidazole-based thermal latent curing agents examples include 2,4-diamino-6- [2'-ethylimidazolyl- (1')]-ethyltriazine (melting point 215-225 ° C.) and 2-phenylimidazole (melting point). 137 to 147 ° C.) and the like.
  • dicyandiamide-based thermal latent curing agents examples include dicyandiamide (melting point 209 ° C.) and the like.
  • the amine adduct-based thermal latent curing agent is a thermal latent curing agent composed of an additional compound obtained by reacting an amine-based compound having catalytic activity with an arbitrary compound.
  • amine adduct-based thermal latent curing agents are Ajinomoto Fine-Techno's Amicure PN-40 (melting point 110 ° C), Ajinomoto Fine-Techno's Amicure PN-23 (melting point 100 ° C), and Ajinomoto Fine-Techno's Amicure PN.
  • the polyamine-based thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting amine and epoxy, and an example thereof is ADEKA Hardener EH4339S (softening point 120 to 130 ° C.) manufactured by ADEKA Corporation. , And ADEKA Hardener EH4357S (softening point 73 to 83 ° C.) and the like.
  • the latent thermosetting agent (C) may contain only one type of epoxy curing agent, or may contain two or more types of epoxy curing agent.
  • the content of the latent thermosetting agent (C) is preferably 3 to 30% by mass, more preferably 3 to 20% by mass, still more preferably 5 to 20% by mass, based on the total amount of the photothermosetting resin composition.
  • the photothermosetting resin composition of the present invention may be a one-component curable resin composition.
  • the one-component curable resin composition is excellent in workability because it is not necessary to mix the main agent and the curing agent at the time of use.
  • the content of the latent thermosetting agent (C) is preferably 3.8 to 75% by mass, more preferably 3.8 to 50% by mass, and 5 to 40% by mass with respect to the above-mentioned curable compound (A). Is even more preferable.
  • the content of the latent thermosetting agent (C) with respect to the curable compound (A) is 3.8% by mass or more, the curability of the curable compound (A) at the time of heating is likely to be enhanced.
  • it is 75% by mass or less when the photothermosetting resin composition is used as a liquid crystal sealant, the liquid crystal is less likely to be contaminated by the latent thermosetting agent (C).
  • Organic fine particles (D) may be particles having an outer shell portion and a core portion and containing a conjugated diene rubber or a silicone rubber in the core portion.
  • the core portion is a region located near the center of the organic fine particles (D) and imparting desired elasticity to the organic fine particles (D).
  • the outer shell portion is a layered region arranged on the outermost surface side of the organic fine particles (D) from the core portion, and is a phase of the organic fine particles (D) and other components in the photothermosetting resin composition. It is a layer for increasing solubility.
  • the outer shell portion may completely cover the core portion or only a part of the core portion, but it is better that the outer shell portion completely covers the core portion as organic fine particles (D).
  • the affinity with other components can be enhanced, and the dispersibility of the organic fine particles (D) is enhanced.
  • the organic fine particles (D) another layer may be contained between the outer shell portion and the core portion, but from the viewpoint of easy preparation of the organic fine particles (D), the outer shell portion and the core portion are used. It is preferably composed of. Whether or not the organic fine particles (D) have an outer shell portion and a core portion is specified by, for example, a transmission electron microscope (TEM) or the like after curing the photothermally curable resin composition with light and heat. can.
  • TEM transmission electron microscope
  • the core may contain at least one of a conjugated diene rubber or a silicone rubber, but may contain both. Further, the core portion may contain components other than these rubbers as long as the object of the present invention and curing are not impaired.
  • the conjugated diene-based rubber may contain a structural unit derived from the conjugated diene, may have only a structural unit derived from the conjugated diene, and has the same weight of the conjugated diene and a vinyl monomer copolymerizable with the conjugated diene. It may be a coalescence or the like.
  • conjugated diene examples include isoprene, 1,3-butadiene, 2-chloro-1,3-butadiene, 2-methyl-1,3-butadiene, chloroprene and the like.
  • the conjugated diene-based rubber may contain only one type of structural unit derived from the conjugated diene, or may contain two or more types.
  • the amount of the conjugated diene-derived structural unit in the conjugated diene rubber is preferably 50 to 100% by mass with respect to the total amount of all structural units.
  • vinyl monomers copolymerizable with conjugated diene include aromatic vinyl-based monomers such as styrene, ⁇ -methylstyrene, monochlorostyrene and dichlorostyrene; vinylcarboxylic acid-based monomers such as acrylic acid and methacrylic acid; and acrylonitrile.
  • Vinyl cyanized monomers such as methacrylonitrile; vinyl halide monomers such as vinyl chloride and vinyl bromide; vinyl acetate; alken monomers such as ethylene, propylene, butylene and isobutylene; diallylphthalate, triallyl cyanurate, triallyl Contains polyfunctional monomers such as isocyanurate and divinylbenzene.
  • the conjugated diene-based rubber may contain only one type of structural unit derived from these vinyl monomers, or may contain two or more types of structural units.
  • the amount of the structural unit derived from the vinyl monomer in the conjugated diene rubber is preferably 0 to 50% by mass with respect to the total amount of all the structural units.
  • conjugated diene rubber examples include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), and ethylene propylene diene rubber (EPDM).
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • SIBR styrene isoprene butadiene rubber
  • EPDM ethylene propylene diene rubber
  • Chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR) and other diene rubbers are included.
  • silicone rubber examples include rubber obtained by polymerizing a siloxane-based monomer, a siloxane-based monomer, and a copolymer of a siloxane-based monomer and a copolymerizable vinyl monomer.
  • siloxane-based monomers examples include siloxane monomers having two alkyl and / or aryl groups such as dimethylsiloxane, diethylsiloxane, methylphenylsiloxane, diphenylsiloxane, and dimethylsiloxane-diphenylsiloxane; siloxane having one alkyl or aryl. Contains monomers and the like.
  • the vinyl monomer copolymerizable with the siloxane-based monomer is the same as the vinyl monomer copolymerizable with the conjugated diene described above.
  • the core of the organic fine particles (D) preferably contains a conjugated diene-based rubber among the above, and further preferably contains a structural unit derived from the conjugated diene and an aromatic vinyl compound (the above-mentioned aromatic vinyl monomer).
  • an aromatic vinyl compound the above-mentioned aromatic vinyl monomer.
  • SBR styrene-butadiene rubber
  • the amount of the core portion in the entire organic fine particles (D) is preferably 60 to 90% by mass, more preferably 80 to 90% by mass.
  • the ratio of the core portion in the organic fine particles (D) is in the above range, sufficient elasticity can be obtained in the cured product of the photothermosetting resin composition.
  • the adhesive strength between the seal member obtained from the curable resin composition and the substrate of the liquid crystal display panel is sufficiently increased.
  • the content of the nucleus in the organic fine particles (D) can be measured from the absorbance ratio of the spectrum of infrared spectroscopic analysis and the like.
  • the shape of the core portion is not particularly limited, but a spherical shape is preferable from the viewpoint of making the particle size uniform.
  • the outer shell portion of the organic fine particles (D) is a layer having an affinity with the above-mentioned core portion and capable of enhancing the dispersibility of the organic fine particles (D) in the photothermosetting resin composition. If there is, there is no particular limitation.
  • the outer shell portion can be a polymer of a (meth) acrylate monomer or a vinyl monomer. Such an outer shell portion can be formed, for example, by forming the above-mentioned core portion and then polymerizing a (meth) acrylate monomer or a vinyl monomer around the core portion.
  • Examples of (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, and stearyl (.
  • Alkyl (meth) acrylates such as meta) acrylates and behenyl (meth) acrylates; aromatic ring-containing (meth) acrylates such as phenoxyethyl (meth) acrylates and benzyl (meth) acrylates; 2-hydroxyethyl (meth) acrylates, 4- Hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate; glycidyl (meth) acrylates such as glycidyl (meth) acrylate and glycidylalkyl (meth) acrylate; alkoxyalkyl (meth) acrylates; allyl (meth) acrylate , Allylalkyl (meth) acrylates such as allylalkyl (meth) acrylates; polyfunctional (meth) such as monoethylene glycol di (meth) acrylates, triethylene glycol di (meth) acrylates, tetraethylene glyco
  • examples of vinyl monomers include the same monomers as vinyl monomers copolymerizable with the above-mentioned conjugated diene.
  • the outer shell portion preferably contains a polymer having one or more structures selected from the group consisting of a methyl methacrylate structure, a styrene structure, an acrylonitrile structure, and a glycidyl structure.
  • a polymer having one or more structures selected from the group consisting of a methyl methacrylate structure, a styrene structure, an acrylonitrile structure, and a glycidyl structure.
  • the amount of the outer shell portion in the entire organic fine particles (D) is preferably 10 to 40% by mass, more preferably 10 to 20% by mass.
  • the ratio of the outer shell portion in the organic fine particles (D) is in the above range, the dispersibility of the organic fine particles (D) becomes good.
  • the content of the outer shell portion in the organic fine particles (D) can be measured from the absorbance ratio of the spectrum of infrared spectroscopic analysis and the like.
  • the shape of the organic fine particles (D) is not particularly limited, but is preferably substantially spherical.
  • the average particle size is preferably 0.1 to 0.8 ⁇ m, more preferably 0.1 to 0.6 ⁇ m.
  • the average particle size can be measured by a microscope method, specifically, an image analysis of an electron microscope. More specifically, the liquid crystal sealant is image-analyzed, 50 organic fillers having a particle size of 1 ⁇ m or less are selected, and the average value when the particle size is measured is taken as the average particle size.
  • the content of the organic fine particles (D) is preferably 5 to 17% by mass, more preferably 7 to 16% by mass, still more preferably 9 to 15% by mass, based on the total amount of the photothermosetting resin composition.
  • the amount of the organic fine particles is 5% by mass or more, when the photothermosetting resin composition is used as a liquid crystal sealant, the adhesive strength between the cured product (seal member) and the substrate becomes high.
  • the content of the organic fine particles (D) is 17% by mass or less, the amount of other components (for example, the curable compound (A)) becomes sufficient, and the strength of the cured product (sealing member) increases.
  • the photothermosetting resin composition of the present invention may further contain an inorganic filler (E), if necessary.
  • the photothermosetting resin composition contains the inorganic filler (E)
  • the viscosity of the photothermosetting resin composition, the strength of the cured product, the linear expansion property, and the like tend to be improved.
  • Examples of the inorganic filler (E) include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, titanium nitride, aluminum oxide (alumina), zinc oxide, and silicon dioxide.
  • the shape of the inorganic filler (E) may be a fixed shape such as a spherical shape, a plate shape, a needle shape, or a non-fixed shape.
  • the average primary particle size of the inorganic filler (E) is preferably 1.5 ⁇ m or less, and the specific surface area is more preferably 0.5 to 20 m 2 / g.
  • the average primary particle size of the inorganic filler (E) can be measured by the laser diffraction method described in JIS Z8825-1.
  • the specific surface area of the filler can be measured by the BET method described in JIS Z8830.
  • the content of the inorganic filler (E) is preferably 1 to 45% by mass with respect to the total amount of the photothermosetting resin composition.
  • the content of the inorganic filler (E) is more preferably 3 to 30% by mass with respect to the photothermosetting resin composition.
  • thermosetting resin composition may further contain a thermosetting compound.
  • thermosetting compound is a compound different from the above-mentioned curable compound (A).
  • thermosetting compounds include epoxy compounds having an epoxy group in the molecule.
  • the epoxy compound may be any of a monomer, an oligomer or a polymer.
  • the photothermosetting resin composition contains an epoxy compound, the display characteristics of the obtained liquid crystal panel are improved, and the moisture resistance of the cured product (seal member) is further enhanced.
  • the epoxy compound has an aromatic ring.
  • the weight average molecular weight of the epoxy compound is preferably 500 to 10000, more preferably 1000 to 5000.
  • the weight average molecular weight of the epoxy compound is measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • aromatic epoxy compounds include aromatic diols typified by bisphenol A, bisphenol S, bisphenol F, bisphenol AD and the like, and diols obtained by modifying these aromatic diols with ethylene glycol, propylene glycol, alkylene glycol and the like.
  • Aromatic polyhydric glycidyl ether compound obtained by reaction with epichlorohydrin polyphenols represented by phenol or novolak resin derived from cresol and formaldehyde, polyalkenylphenol and copolymers thereof, and epichlorohydrin.
  • the novolak type polyvalent glycidyl ether compound obtained by the reaction; glycidyl ether compounds of xylylene phenol resin and the like are included.
  • cresol novolac type epoxy compound cresol novolac type epoxy compound, phenol novolac type epoxy compound, bisphenol A type epoxy compound, bisphenol F type epoxy compound, triphenol methane type epoxy compound, triphenol ethane type epoxy compound, trisphenol type epoxy compound, dicyclopentadiene type.
  • Epoxy compounds, diphenyl ether type epoxy compounds or biphenyl type epoxy compounds are preferable.
  • the photothermosetting resin composition may contain only one type of epoxy compound, or may contain two or more types of epoxy compounds.
  • the epoxy compound may be liquid or solid.
  • a solid epoxy compound is preferable from the viewpoint of easily increasing the moisture resistance of the cured product.
  • the softening point of the solid epoxy compound is preferably 40 ° C. or higher and 150 ° C. or lower. The softening point can be measured by the ring-and-ball method specified in JIS K7234.
  • the content of the thermosetting compound is preferably 3 to 20% by mass with respect to the thermosetting resin composition.
  • the amount of the thermosetting compound is 3% by mass or more, it is easy to satisfactorily increase the moisture resistance of the cured product (seal member) of the thermosetting resin composition.
  • the content of the thermosetting compound is 20% by mass or less, the photothermosetting resin composition is unlikely to have an excessive increase in viscosity.
  • the amount of the thermosetting compound is more preferably 3 to 15% by mass, still more preferably 4 to 15% by mass, based on the thermosetting resin composition.
  • the content of the thermosetting compound is preferably 3.8 to 50% by mass, more preferably 5 to 30% by mass, based on the curable compound (A).
  • the content of the thermosetting compound with respect to the curable compound (A) is 3.8% by mass or more, the moisture resistance of the cured product and the adhesive strength to the glass substrate are further enhanced.
  • it is 50% by mass or less, the compatibility with the curable compound (A) tends to be good at the time of production.
  • thermosetting resin composition of the present invention contains, if necessary, a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, and an increase. Additives such as sensitizers, plasticizers and antifoaming agents may be further included.
  • silane coupling agents examples include vinyltrimethoxysilane, ⁇ - (meth) acryloxipropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and the like.
  • the content of the silane coupling agent is preferably 0.01 to 5% by mass with respect to the curable compound (A). When the content of the silane coupling agent is 0.01% by mass or more, the cured product of the photothermosetting resin composition tends to have sufficient adhesiveness.
  • the photothermosetting resin composition of the present invention may further include a spacer or the like for adjusting the gap of the liquid crystal display panel.
  • the total amount of other components is preferably 1 to 50% by mass with respect to the total amount of the photothermosetting resin composition.
  • the total amount of the other components is 50% by mass or less, the viscosity of the photothermosetting resin composition is unlikely to increase excessively, and the coating stability of the photothermosetting resin composition is less likely to be impaired.
  • the viscosity of the photothermosetting resin composition of the present invention at 25 ° C. and 2.5 rpm of the E-type viscometer is preferably 200 to 450 Pa ⁇ s, more preferably 300 to 400 Pa ⁇ s. .. When the viscosity is in the above range, the applicability of the photothermosetting resin composition by the dispenser becomes good.
  • the photothermosetting resin composition of the present invention can be used, for example, as a sealing agent.
  • the photothermally curable resin composition is particularly suitable as a display element sealant used for sealing display elements such as liquid crystal display elements, organic EL elements, and LED elements.
  • the photothermosetting resin composition of the present invention is very suitable as a liquid crystal sealant for the liquid crystal dropping method because it does not easily contaminate the liquid crystal.
  • the liquid crystal display panel of the present invention has a frame-shaped seal arranged between a pair of substrates (display substrate and facing substrate) each having an alignment film and the alignment films of the pair of substrates. It includes a member and a liquid crystal layer filled in a space surrounded by the sealing member between a pair of substrates.
  • the sealing member is a cured product of the above-mentioned photothermosetting resin composition (liquid crystal sealing agent).
  • Both the display board and the facing board are transparent boards.
  • the material of the transparent substrate may be an inorganic material such as glass, or may be a plastic such as polycarbonate, polyethylene terephthalate, polyether sulfone, and PMMA.
  • a matrix-like TFT, a color filter, a black matrix, or the like may be arranged on the surface of the display substrate or the facing substrate.
  • An alignment film is further arranged on the surface of the display substrate or the facing substrate.
  • the alignment film includes a known organic alignment agent or inorganic alignment agent.
  • the sealing member obtained from a general liquid crystal sealing agent may have low adhesion to these alignment films.
  • the above-mentioned photothermosetting resin composition liquid crystal sealant
  • the above-mentioned photothermosetting resin composition can relax the residual stress generated in the seal member during curing and can absorb the stress applied to the liquid crystal display panel from the outside. Therefore, even if the sealing member is arranged in the region where the alignment film is formed, peeling is unlikely to occur at these interfaces. Therefore, the liquid crystal display panel of the present invention can realize a narrow frame.
  • the liquid crystal display panel is manufactured by using the liquid crystal sealant of the present invention.
  • the method for manufacturing a liquid crystal display panel generally includes a liquid crystal dropping method and a liquid crystal injection method, but the liquid crystal display panel of the present invention is preferably manufactured by the liquid crystal dropping method.
  • the manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is 1) A step of applying the above-mentioned liquid crystal sealant on the alignment film of one of the pair of substrates each having an alignment film to form a seal pattern. 2) A step of dropping the liquid crystal on one substrate, in the region surrounded by the seal pattern, or on the other substrate in a state where the seal pattern is uncured. 3) A process of superimposing one substrate and the other substrate via a seal pattern, 4) Includes a step of curing the seal pattern.
  • the state in which the seal pattern is uncured means a state in which the curing reaction of the liquid crystal sealant has not progressed to the gel point. Therefore, in the step 2), the seal pattern may be semi-cured by irradiating or heating the seal pattern in order to suppress the dissolution of the liquid crystal sealant in the liquid crystal.
  • One substrate and the other substrate are a display board or a facing board, respectively.
  • step 4 only curing by light irradiation may be performed, but curing by heating may be performed after curing by light irradiation.
  • the liquid crystal sealant can be cured in a short time, so that dissolution in the liquid crystal can be suppressed.
  • damage to the liquid crystal layer due to light can be reduced as compared with the case where only curing by light irradiation is performed.
  • the light to be irradiated is appropriately selected according to the type of the photopolymerization initiator (B) in the above-mentioned liquid crystal sealant (photothermosetting resin composition), but light in the visible light region is preferable, for example, wavelengths 370 to 370 to. Light of 450 nm is preferable. This is because light having the above wavelength causes relatively little damage to the liquid crystal material and the driving electrode.
  • a known light source that emits ultraviolet rays or visible light can be used.
  • a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, a fluorescent lamp, or the like can be used.
  • the light irradiation energy may be any energy as long as the curable compound (A) can be cured.
  • the photocuring time depends on the composition of the liquid crystal sealant, but is, for example, about 10 minutes.
  • thermosetting temperature depends on the composition of the liquid crystal sealant, but is, for example, 120 ° C., and the thermosetting time is about 2 hours.
  • Curable compound (A-1) > 160 g of liquid bisphenol F-type epoxy resin (Epototo YDF-8170C, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 160 g / eq), 0.1 g of polymerization inhibitor (p-methoxyphenol), 0.2 g of catalyst (triethanolamine) , And 43.0 g of methacrylic acid were charged into the flask. Then, dry air was sent in, and the reaction was carried out for 5 hours while refluxing and stirring at 90 ° C. The obtained compound was washed with ultrapure water 20 times to obtain a partially modified methacrylic acid bisphenol F type epoxy resin (curable compound (A-1)).
  • curable compound (A-4) As the curable compound (A-4), an acrylic resin (polyethylene glycol diacrylate, light acrylate 14EG-A, manufactured by Kyoeisha Chemical Co., Ltd.) was used.
  • a monomer mixed solution in which 23 parts by mass of styrene, 19 parts by mass of methyl methacrylate, 12 parts by mass of acrylonitrile and 15 parts by mass of glycidyl methacrylate were mixed in advance was continuously added dropwise into the reaction solution over 3 hours. After completion of the dropping, aging was carried out for 3 hours. After completion of aging, the obtained aqueous emulsion was cooled to room temperature, and then an organic fine particle (D-1) having an average particle size of 0.2 ⁇ m was obtained using a spray dryer.
  • a monomer mixed solution prepared by mixing 23 parts by mass of styrene, 23.3 parts by mass of methyl methacrylate, 12 parts by mass of acrylonitrile, and 10.8 parts by mass of n-butyl methacrylate in advance is continuously added dropwise into the reaction solution over 3 hours. did. After completion of the dropping, aging was carried out for 3 hours. After completion of aging, the obtained aqueous emulsion was cooled to room temperature, and then an organic fine particle (D-2) having an average particle size of 0.2 ⁇ m was obtained using a spray dryer.
  • Examples 2 to 6 and Comparative Examples 1 to 6> A photothermosetting resin composition was prepared in the same manner as in Example 1 except that the composition was changed to that shown in Table 1.
  • the two laminated glass substrates are held in a light-shielding box for 1 minute , then irradiated with light containing visible light of 3000 mJ / cm 2 (light having a wavelength of 370 to 450 nm), and further heated at 120 ° C. for 1 hour. Then, a test piece was obtained.
  • a portion 4.5 mm from the corner (outside of the line) of the seal pattern of the obtained test piece is vertically pressed at a speed of 5 mm / min using an indentation tester (Model210, manufactured by Intesco) to form a photothermosetting resin composition.
  • the stress when the cured product of the object was peeled off was measured.
  • the adhesive strength was determined by dividing the stress by the line width of the cured product. The results are shown in Table 1.
  • Examples 1 to 6 of Table 1 one or more selected from the group consisting of a rubber having an outer shell portion and a core portion and having a structural unit derived from a conjugated diene in the core portion and a silicone rubber.
  • the results of the adhesive strength test were all good. It is considered that the residual stress generated when the photothermosetting resin composition is cured is relaxed by the organic fine particles (D), and the organic fine particles (D) disperse the stress when the stress is applied from the outside. Therefore, in Examples 1 to 6, it is presumed that peeling at the interface between the cured product and the substrate was unlikely to occur.
  • the photothermosetting resin composition of the present invention a cured product having high adhesiveness to various substrates can be obtained. Therefore, the photothermosetting resin composition is very useful as a sealant or the like for various liquid crystal display devices.

Abstract

The present invention addresses the problem of providing a light- and heat-curable resin composition from which a sealing member having high adhesiveness to various substrates can be formed when the composition is used as a liquid crystal sealing agent. This light- and heat-curable resin composition for solving the problem comprises: a curable compound (A) having an ethylenically unsaturated double bond in a molecule; a photopolymerization initiator (B); a latent heat-curing agent (C); and organic fine particles (D). The organic fine particles (D) each have an outer shell part and a core part, wherein the core part contains at least one among a silicone rubber and a conjugated diene-based rubber containing a structural unit derived from a conjugated diene.

Description

光熱硬化性樹脂組成物およびこれを含む液晶シール剤、ならびに液晶表示パネルおよびその製造方法A photothermosetting resin composition, a liquid crystal sealant containing the same, a liquid crystal display panel, and a method for manufacturing the same.
 本発明は、光熱硬化性樹脂組成物およびこれを含む液晶シール剤、ならびに液晶表示パネルおよびその製造方法に関する。 The present invention relates to a photothermosetting resin composition, a liquid crystal sealant containing the same, a liquid crystal display panel, and a method for manufacturing the same.
 携帯電話やパーソナルコンピュータをはじめとする各種電子機器の画像表示パネルとして、液晶や有機EL等の表示パネルが広く使用されている。例えば、液晶表示パネルは、表面に電極が設けられた2枚の透明基板と、それらの間に挟持された枠状のシール部材と、該シール部材で囲まれた領域内に封入された液晶材料とを有する。 Display panels such as liquid crystals and organic EL are widely used as image display panels for various electronic devices such as mobile phones and personal computers. For example, a liquid crystal display panel is formed by two transparent substrates having electrodes on their surfaces, a frame-shaped sealing member sandwiched between them, and a liquid crystal material enclosed in a region surrounded by the sealing members. And have.
 ここで、上記シール部材には、基板との高い密着性が要求される。当該シール部材が基板から剥離してしまうと、液晶漏れ等が生じ、画像の表示不良が生じる。そこで従来、シール部材を形成するための液晶シール剤中に親水性基を有する化合物(例えばシランカップリング剤等)を含め、シール部材中の親水性基と基板表面に存在する親水性基とを化学的に結合させることで、これらの密着性を高めていた。 Here, the seal member is required to have high adhesion to the substrate. If the sealing member is peeled off from the substrate, liquid crystal leakage or the like occurs, resulting in poor image display. Therefore, conventionally, a compound having a hydrophilic group (for example, a silane coupling agent) is included in the liquid crystal sealant for forming the seal member, and the hydrophilic group in the seal member and the hydrophilic group existing on the surface of the substrate are combined. By chemically bonding, these adhesions were enhanced.
 また、特許文献1には、シール部材を形成するための液晶シール剤に、コアシェル型の粒子を含めることが提案されている。具体的には、コアシェル構造微粒子(アイカ工業社製 F-351)、即ち、コアがポリブチルアクリレートであり、シェルがポリメチルメタクリレートである粒子が記載されている。 Further, Patent Document 1 proposes to include core-shell type particles in the liquid crystal sealant for forming the seal member. Specifically, core-shell structural fine particles (F-351 manufactured by Aica Kogyo Co., Ltd.), that is, particles in which the core is polybutyl acrylate and the shell is polymethyl methacrylate are described.
特開2005-15757号公報Japanese Unexamined Patent Publication No. 2005-15757
 ここで、液晶表示パネルでは、一対の基板の表面にそれぞれ配向膜を配置し、液晶を所望の方向に配向させることが一般的である。そして、従来の液晶表示パネルでは、基板上に配置された配向膜の外側に、液晶シール剤を塗布し、シール部材を形成することが一般的であった。そのため、基板とシール部材との密着性を高めればよく、上述のようにシランカップリング剤の添加等によってシール部材の基板に対する密着性を高めることが可能であった。 Here, in a liquid crystal display panel, it is common to arrange alignment films on the surfaces of a pair of substrates to orient the liquid crystal in a desired direction. Then, in the conventional liquid crystal display panel, it is common to apply a liquid crystal sealant to the outside of the alignment film arranged on the substrate to form a seal member. Therefore, it is sufficient to improve the adhesion between the substrate and the sealing member, and it is possible to improve the adhesion of the sealing member to the substrate by adding a silane coupling agent or the like as described above.
 しかしながら近年、液晶表示パネルの狭額縁化が求められている。そのため、配向膜が配置されている領域にも液晶シール剤を塗布し、シール部材を形成すること等が求められている。ただし、近年の配向膜は疎水性が高く、親水性基の数が少ない。つまり、液晶シール剤中の親水性基と共有結合可能な基の量が少ない。したがって、従来の液晶シール剤では、これを塗布して得られるシール部材と、配向膜が配置された基板との接着強度を十分に高めることが難しかった。例えば、液晶表示パネルに外部から荷重がかかると、シール部材と基板との界面で、これらが剥離してしまう等の課題があった。また、特許文献1に記載されているような粒子を含む液晶シール剤によっても、基板とシール部材との密着性を高めることは困難であった。 However, in recent years, there has been a demand for narrower frames for liquid crystal display panels. Therefore, it is required to apply a liquid crystal sealant to the region where the alignment film is arranged to form a seal member. However, recent alignment films are highly hydrophobic and have a small number of hydrophilic groups. That is, the amount of groups that can be covalently bonded to the hydrophilic group in the liquid crystal sealant is small. Therefore, with the conventional liquid crystal sealant, it is difficult to sufficiently increase the adhesive strength between the seal member obtained by applying the liquid crystal sealant and the substrate on which the alignment film is arranged. For example, when a load is applied to the liquid crystal display panel from the outside, there is a problem that these are peeled off at the interface between the sealing member and the substrate. Further, it is difficult to improve the adhesion between the substrate and the sealing member even with a liquid crystal sealing agent containing particles as described in Patent Document 1.
 本発明は、上記課題に鑑みてなされたものである。例えば液晶シール剤として用いた際に、各種基板との密着性が高いシール部材を形成可能な光熱硬化性樹脂組成物等の提供を目的とする。 The present invention has been made in view of the above problems. For example, it is an object of the present invention to provide a photothermosetting resin composition or the like capable of forming a sealing member having high adhesion to various substrates when used as a liquid crystal sealing agent.
 本発明は、以下の光熱硬化性樹脂組成物およびこれを含む液晶シール剤を提供する。
 [1]分子内にエチレン性不飽和二重結合を有する硬化性化合物(A)、光重合開始剤(B)、潜在性熱硬化剤(C)、および有機微粒子(D)を含有する光熱硬化性樹脂組成物であり、前記有機微粒子(D)は外殻部と核部とを有し、前記核部が、共役ジエンに由来する構造単位を含む共役ジエン系ゴムおよびシリコーンゴムのうち、少なくとも一方を含む、光熱硬化性樹脂組成物。
The present invention provides the following photothermosetting resin composition and a liquid crystal sealant containing the same.
[1] Photothermosetting containing a curable compound (A) having an ethylenically unsaturated double bond in the molecule, a photopolymerization initiator (B), a latent thermosetting agent (C), and organic fine particles (D). It is a sex resin composition, and the organic fine particles (D) have an outer shell portion and a core portion, and the core portion is at least among a conjugated diene-based rubber and a silicone rubber containing a structural unit derived from a conjugated diene. A photothermosetting resin composition comprising one.
 [2]前記有機微粒子(D)が、前記外殻部および前記核部から構成され、前記核部が、共役ジエンおよび芳香族ビニル化合物に由来する構造単位を含む共役ジエン系ゴムを含み、前記外殻部が、メチルメタクリレート構造、スチレン構造、アクリロニトリル構造、およびグリシジル構造からなる群より選ばれる1以上の構造を有する重合体を含む、[1]に記載の光熱硬化性樹脂組成物。 [2] The organic fine particles (D) are composed of the outer shell portion and the core portion, and the core portion contains a conjugated diene-based rubber containing a structural unit derived from a conjugated diene and an aromatic vinyl compound. The photothermally curable resin composition according to [1], wherein the outer shell portion contains a polymer having one or more structures selected from the group consisting of a methyl methacrylate structure, a styrene structure, an acrylonitrile structure, and a glycidyl structure.
 [3]無機充填剤(E)をさらに含有する、[1]または[2]に記載の光熱硬化性樹脂組成物。
 [4]前記有機微粒子(D)の含有量が5~17質量%である、[1]~[3]のいずれかに記載の光熱硬化性樹脂組成物。
 [5]前記潜在性熱硬化剤(C)が、有機酸ジヒドラジド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1以上の硬化剤である、[1]~[4]のいずれかに記載の光熱硬化性樹脂組成物。
 [6]前記[1]~[5]のいずれかに記載の光熱硬化性樹脂組成物を含む、液晶シール剤。
[3] The photothermosetting resin composition according to [1] or [2], which further contains an inorganic filler (E).
[4] The photothermosetting resin composition according to any one of [1] to [3], wherein the content of the organic fine particles (D) is 5 to 17% by mass.
[5] The latent thermosetting agent (C) is one or more selected from the group consisting of an organic acid dihydrazide-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, and a polyamine-based thermal latent curing agent. The photothermosetting resin composition according to any one of [1] to [4], which is a curing agent.
[6] A liquid crystal sealant containing the photothermosetting resin composition according to any one of the above [1] to [5].
 本発明は、以下の液晶表示パネルの製造方法や、当該製造方法から得られる液晶表示パネルを提供する。
 [7]配向膜をそれぞれ有する一対の基板の、一方の基板の前記配向膜上に、上記[6]に記載の液晶シール剤を塗布し、シールパターンを形成する工程と、前記シールパターンが未硬化の状態において、前記一方の基板上かつ前記シールパターンの領域内、または他方の基板に液晶を滴下する工程と、前記一方の基板および前記他方の基板を、前記シールパターンを介して重ね合わせる工程と、前記シールパターンを硬化させる工程と、を含む、液晶表示パネルの製造方法。
The present invention provides the following method for manufacturing a liquid crystal display panel and a liquid crystal display panel obtained from the manufacturing method.
[7] A step of applying the liquid crystal sealant according to the above [6] onto the alignment film of one of the pair of substrates each having an alignment film to form a seal pattern, and the seal pattern is not yet provided. In the cured state, a step of dropping a liquid crystal on the one substrate and in the region of the seal pattern or onto the other substrate, and a step of superimposing the one substrate and the other substrate via the seal pattern. A method for manufacturing a liquid crystal display panel, which comprises a step of curing the seal pattern.
 [8]前記シールパターンを硬化させる工程において、前記シールパターンに光を照射して前記シールパターンを硬化させる、[7]に記載の液晶表示パネルの製造方法。
 [9]前記シールパターンに照射する光が、可視光領域の光を含む、[8]に記載の液晶表示パネルの製造方法。
 [10]前記シールパターンを硬化させる工程において、光が照射された後の前記シールパターンをさらに加熱する、[8]または[9]に記載の液晶表示パネルの製造方法。
 [11]配向膜をそれぞれ有する一対の基板と、前記一対の基板の前記配向膜の間に配置された枠状のシール部材と、前記一対の基板の間の前記シール部材で囲まれた空間に充填された液晶層と、を含み、前記シール部材が、[6]に記載の液晶シール剤の硬化物である、液晶表示パネル。
[8] The method for manufacturing a liquid crystal display panel according to [7], wherein in the step of curing the seal pattern, the seal pattern is irradiated with light to cure the seal pattern.
[9] The method for manufacturing a liquid crystal display panel according to [8], wherein the light irradiating the seal pattern includes light in the visible light region.
[10] The method for manufacturing a liquid crystal display panel according to [8] or [9], wherein in the step of curing the seal pattern, the seal pattern is further heated after being irradiated with light.
[11] In a space surrounded by a pair of substrates each having an alignment film, a frame-shaped sealing member arranged between the alignment films of the pair of substrates, and the sealing member between the pair of substrates. A liquid crystal display panel including a filled liquid crystal layer, wherein the sealing member is a cured product of the liquid crystal sealing agent according to [6].
 本発明の光熱硬化性樹脂組成物によれば、液晶シール剤として用いた際、一対の基板間を強固に接着可能なシール部材が得られる。 According to the photothermosetting resin composition of the present invention, when used as a liquid crystal sealant, a seal member capable of firmly adhering between a pair of substrates can be obtained.
 1.光熱硬化性樹脂組成物
 本発明の光熱硬化性樹脂組成物は、分子内にエチレン性不飽和二重結合を有する硬化性化合物(A)、光重合開始剤(B)、潜在性熱硬化剤(C)、および特定の有機微粒子(D)を含有する。
1. 1. Photothermosetting resin composition The photothermosetting resin composition of the present invention contains a curable compound (A) having an ethylenically unsaturated double bond in the molecule, a photopolymerization initiator (B), and a latent thermosetting agent (). It contains C) and specific organic fine particles (D).
 前述のように、従来の光熱硬化性樹脂組成物(液晶シール剤)では、その硬化物(シール部材)と基板との密着性を化学的な結合によって高めることが一般的であった。しかしながら、当該方法では、基板上に配向膜が配置されている場合等に十分に対応できず、基板の種類によっては、基板との密着性が十分に得られなかった。 As described above, in the conventional photothermosetting resin composition (liquid crystal sealant), it is common to enhance the adhesion between the cured product (seal member) and the substrate by chemical bonding. However, this method cannot sufficiently cope with the case where the alignment film is arranged on the substrate, and depending on the type of the substrate, sufficient adhesion to the substrate cannot be obtained.
 これに対し、本発明の光熱硬化性樹脂組成物は、外殻部と核部とを有する有機微粒子(D)を含み、当該有機微粒子(D)の核部は、共役ジエンに由来する構造単位を含む共役ジエン系ゴム、またはシリコーンゴムのいずれか一方を含む。光熱硬化性樹脂組成物が、このような有機微粒子(D)を含むと、光熱硬化性樹脂組成物を塗布し、硬化させる際に生じる残留応力が、有機微粒子(D)の核部によって緩和される。したがって、基板と硬化物との間に応力がかかり難い。つまり、基板上に配向膜等が配置されていたとしても、基板と光熱硬化性樹脂組成物(シール部材)との間での剥離が生じ難い。さらに、当該光熱硬化性樹脂組成物の硬化物(シール部材)を含む液晶表示パネル等に荷重がかかった場合であっても、その荷重を上記有機微粒子(D)が分散させることができる。したがって、シール部材と基板との界面に応力が働きにくく、これらの剥離が抑制される。 On the other hand, the photothermally curable resin composition of the present invention contains organic fine particles (D) having an outer shell portion and a core portion, and the core portion of the organic fine particles (D) is a structural unit derived from a conjugated diene. Includes either conjugated diene-based rubbers or silicone rubbers. When the photothermosetting resin composition contains such organic fine particles (D), the residual stress generated when the photothermosetting resin composition is applied and cured is relaxed by the core portion of the organic fine particles (D). NS. Therefore, stress is unlikely to be applied between the substrate and the cured product. That is, even if the alignment film or the like is arranged on the substrate, peeling between the substrate and the photothermosetting resin composition (seal member) is unlikely to occur. Further, even when a load is applied to a liquid crystal display panel or the like containing a cured product (seal member) of the photothermosetting resin composition, the organic fine particles (D) can disperse the load. Therefore, stress is less likely to act on the interface between the sealing member and the substrate, and their peeling is suppressed.
 以下、本発明の光熱硬化性樹脂組成物中の各成分について、詳しく説明する。 Hereinafter, each component in the photothermosetting resin composition of the present invention will be described in detail.
 1-1.硬化性化合物(A)
 硬化性化合物(A)は、分子内にエチレン性不飽和二重結合を有する化合物であればよい。硬化性化合物(A)は、モノマー、オリゴマーまたはポリマーのいずれであってもよい。当該硬化性化合物(A)の例には、分子内に(メタ)アクリロイル基を有する化合物が含まれる。当該(メタ)アクリロイル基を有する化合物1分子あたりの(メタ)アクリロイル基の数は、1つであってもよく、2以上であってもよい。本明細書において、(メタ)アクリロイル基との記載は、アクリロイル基またはメタクリロイル基、もしくはこれら両方を意味する。また、(メタ)アクリレートとの記載は、アクリレートまたはメタクリレート、もしくはこれら両方を意味する。さらに(メタ)アクリルとの記載は、アクリルまたはメタクリル、もしくはこれら両方を意味する。
1-1. Curable compound (A)
The curable compound (A) may be a compound having an ethylenically unsaturated double bond in the molecule. The curable compound (A) may be any of a monomer, an oligomer or a polymer. Examples of the curable compound (A) include a compound having a (meth) acryloyl group in the molecule. The number of (meth) acryloyl groups per molecule of the compound having the (meth) acryloyl group may be one or two or more. As used herein, the term (meth) acryloyl group means an acryloyl group, a methacryloyl group, or both. Further, the description of (meth) acrylate means acrylate, methacrylate, or both. Further, the description of (meth) acrylic means acrylic, methacryl, or both.
 1分子内に(メタ)アクリロイル基を1つ含む硬化性化合物(A)の例には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸2-ヒドロキシエチルエステル等の(メタ)アクリル酸アルキルエステルが含まれる。 Examples of the curable compound (A) containing one (meth) acryloyl group in one molecule include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl ester of (meth) acrylate and the like. Includes (meth) acrylic acid alkyl esters.
 1分子内に2以上の(メタ)アクリロイル基を有する硬化性化合物(A)の例には、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等由来のジ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレート由来のジ(メタ)アクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオール由来のジ(メタ)アクリレート;ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオール由来のジ(メタ)アクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオール由来のジもしくはトリ(メタ)アクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオール由来のジ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、またはそのオリゴマー;ペンタエリスリトールトリ(メタ)アクリレートまたはそのオリゴマー;ジペンタエリスリトールのポリ(メタ)アクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリ(メタ)アクリレート;カプロラクトン変性ジペンタエリスリトールのポリ(メタ)アクリレート;ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート;エチレンオキサイド変性リン酸(メタ)アクリレート;エチレンオキサイド変性アルキル化リン酸(メタ)アクリレート;ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールのオリゴ(メタ)アクリレート等が含まれる。 Examples of the curable compound (A) having two or more (meth) acryloyl groups in one molecule include di (meth) acrylates derived from polyethylene glycol, propylene glycol, polypropylene glycol and the like; tris (2-hydroxyethyl) isocia. Nurate-derived di (meth) acrylate; diol-derived di (meth) acrylate obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol; 2 mol of ethylene oxide or propylene to 1 mol of bisphenol A. Diol-derived di (meth) acrylate obtained by adding oxide; triol-derived di or tri (meth) acrylate obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane; bisphenol A1 Di (meth) acrylates derived from diols obtained by adding 4 or more moles of ethylene oxide or propylene oxide to moles; tris (2-hydroxyethyl) isocyanurate tri (meth) acrylates; trimethyl propantri (meth) acrylates, Or an oligomer thereof; pentaerythritol tri (meth) acrylate or an oligomer thereof; poly (meth) acrylate of dipentaerythritol; tris (acryloxyethyl) isocyanurate; caprolactone-modified tris (acryroxyethyl) isocyanurate; caprolactone-modified tris (methacry) Loxyethyl) isocyanurate; poly (meth) acrylate of alkyl-modified dipentaerythritol; poly (meth) acrylate of caprolactone-modified dipentaerythritol; neopentyl glycol di (meth) acrylate of hydroxypivalate; neopentyl glycol of caprolactone-modified hydroxypivalate Di (meth) acrylate; ethylene oxide-modified phosphoric acid (meth) acrylate; ethylene oxide-modified alkylated phosphoric acid (meth) acrylate; neopentyl glycol, trimethylol propane, oligo (meth) acrylate of pentaerythritol and the like are included.
 硬化性化合物(A)は、分子内にエポキシ基をさらに有してもよい。1分子あたりのエポキシ基の数は1つであってもよく、2以上であってもよい。硬化性化合物(A)が分子内に(メタ)アクリロイル基だけでなくエポキシ基をさらに有すると、光熱硬化性樹脂組成物を熱によっても硬化可能となる。つまり、光硬化と熱硬化とを併用することが可能となる。光熱硬化性樹脂組成物が、光硬化性および熱硬化性を有すると、短時間で効率よく光熱硬化性樹脂組成物を硬化させることが可能となる。 The curable compound (A) may further have an epoxy group in the molecule. The number of epoxy groups per molecule may be one or two or more. When the curable compound (A) has not only a (meth) acryloyl group but also an epoxy group in the molecule, the photothermosetting resin composition can be cured by heat. That is, it is possible to use both photocuring and thermosetting together. When the photothermosetting resin composition has photocurability and thermosetting property, it is possible to efficiently cure the photothermosetting resin composition in a short time.
 分子内に(メタ)アクリロイル基とエポキシ基とを有する化合物の例には、エポキシ化合物と(メタ)アクリル酸とを塩基性触媒の存在下で反応させて得られる(メタ)アクリル酸グリシジルエステルが含まれる。 An example of a compound having a (meth) acryloyl group and an epoxy group in the molecule is a (meth) acrylic acid glycidyl ester obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst. included.
 (メタ)アクリル酸と反応させるエポキシ化合物は、分子内に2以上のエポキシ基を有する多官能のエポキシ化合物であればよく、架橋密度が高まりすぎて光熱硬化性樹脂組成物の硬化物の接着性が低下するのを抑制する観点では、2官能のエポキシ化合物が好ましい。2官能のエポキシ化合物の例には、ビスフェノール型エポキシ化合物(ビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、及び水添ビスフェノール型等)、ビフェニル型エポキシ化合物、およびナフタレン型エポキシ化合物が含まれる。中でも、光熱硬化性樹脂組成物の塗布性が良好になりやすいとの観点から、ビスフェノールA型及びビスフェノールF型のビスフェノール型エポキシ化合物が好ましい。ビスフェノール型エポキシ化合物由来の硬化性化合物(A)は、ビフェニルエーテル型エポキシ化合物由来の硬化性化合物(A)と比べて塗布性に優れる等の利点がある。 The epoxy compound to be reacted with (meth) acrylic acid may be a polyfunctional epoxy compound having two or more epoxy groups in the molecule, and the crosslink density becomes too high to adhere to the cured product of the photothermosetting resin composition. A bifunctional epoxy compound is preferable from the viewpoint of suppressing the decrease in the epoxy compound. Examples of bifunctional epoxy compounds include bisphenol type epoxy compounds (bisphenol A type, bisphenol F type, 2,2'-diallyl bisphenol A type, bisphenol AD type, hydrogenated bisphenol type, etc.), biphenyl type epoxy compounds, and the like. And naphthalene type epoxy compounds are included. Among them, bisphenol A type and bisphenol F type bisphenol type epoxy compounds are preferable from the viewpoint that the coatability of the photothermally curable resin composition is likely to be improved. The curable compound (A) derived from the bisphenol type epoxy compound has advantages such as excellent coatability as compared with the curable compound (A) derived from the biphenyl ether type epoxy compound.
 なお、硬化性化合物(A)は、上記化合物を一種のみ含んでいてもよいが、二種以上を含んでいてもよい。特に、硬化性化合物(A)が、分子内に(メタ)アクリロイル基を有し、エポキシ基を有しない化合物(A1)と、分子内に(メタ)アクリロイル基とエポキシ基とを有する化合物(A2)とを含むことが好ましい。例えば光熱硬化性樹脂組成物に後述のその他の硬化性化合物(例えば、エポキシ化合物)をさらに含む場合、化合物(A1)とエポキシ化合物とでは、相溶性が低いことがある。これに対し、エポキシ基を有する化合物(A2)を組み合わせると、光熱硬化性樹脂組成物中の各成分の相溶性が高まる。また一般的に、光熱硬化性樹脂組成物を液晶シール剤に用いたとき、疎水性の化合物(例えばエポキシ化合物等)のほうが親水性の化合物より液晶に溶出しやすいが、化合物(A1)および化合物(A2)を組み合わせることで、エポキシ化合物の液晶への溶出が抑制されやすくなる。化合物(A2)と化合物(A1)との含有質量比は、A2/A1=1/0.4~1/0.6が好ましい。 The curable compound (A) may contain only one of the above compounds, but may contain two or more of the above compounds. In particular, the curable compound (A) has a compound (A1) having a (meth) acryloyl group in the molecule and no epoxy group, and a compound (A2) having a (meth) acryloyl group and an epoxy group in the molecule. ) And is preferably included. For example, when the photothermosetting resin composition further contains another curable compound (for example, an epoxy compound) described later, the compatibility between the compound (A1) and the epoxy compound may be low. On the other hand, when the compound (A2) having an epoxy group is combined, the compatibility of each component in the photothermosetting resin composition is enhanced. In general, when a photothermosetting resin composition is used as a liquid crystal sealant, a hydrophobic compound (for example, an epoxy compound) is more likely to elute into a liquid crystal than a hydrophilic compound, but the compound (A1) and the compound By combining (A2), the elution of the epoxy compound into the liquid crystal can be easily suppressed. The content mass ratio of the compound (A2) to the compound (A1) is preferably A2 / A1 = 1 / 0.4 to 1 / 0.6.
 なお、分子内に(メタ)アクリロイル基とエポキシ基とを有する化合物(A2)の含有量は、特に制限されないが、例えば硬化性化合物(A)の総量に対して30質量%以上が好ましい。 The content of the compound (A2) having a (meth) acryloyl group and an epoxy group in the molecule is not particularly limited, but is preferably 30% by mass or more with respect to the total amount of the curable compound (A), for example.
 また、上述のいずれの硬化性化合物(A)においても、重量平均分子量は、310~1000程度が好ましい。硬化性化合物(A)の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定できる。 Further, in any of the above-mentioned curable compounds (A), the weight average molecular weight is preferably about 310 to 1000. The weight average molecular weight of the curable compound (A) can be measured in terms of polystyrene by, for example, gel permeation chromatography (GPC).
 硬化性化合物(A)の含有量は、光熱硬化性樹脂組成物の総量に対して40~80質量%が好ましく、50~75質量%がより好ましい。硬化性化合物(A)の量が当該範囲であると、得られる硬化物(例えばシール部材)の強度が高まり、さらには基板と硬化物(シール部材)との密着性を高めることができる。 The content of the curable compound (A) is preferably 40 to 80% by mass, more preferably 50 to 75% by mass, based on the total amount of the photothermosetting resin composition. When the amount of the curable compound (A) is within the above range, the strength of the obtained cured product (for example, a sealing member) can be increased, and the adhesion between the substrate and the cured product (sealing member) can be enhanced.
 1-2.光重合開始剤(B)
 光重合開始剤は、光の照射によって、上記硬化性化合物(A)をラジカル重合等させることが可能な化合物であれば特に制限されない。例えば、自己開裂型の光重合開始剤であってもよく、水素引き無機型の光重合開始剤であってもよい。
1-2. Photopolymerization Initiator (B)
The photopolymerization initiator is not particularly limited as long as it is a compound capable of radically polymerizing the curable compound (A) by irradiation with light. For example, it may be a self-cleaving type photopolymerization initiator or a hydrogenated inorganic type photopolymerization initiator.
 自己開裂型の自己開裂型の光重合開始剤の例には、アルキルフェノン系化合物(例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製 IRGACURE 651)等のベンジルジメチルケタール;2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン(BASF社製 IRGACURE 907)等のα-アミノアルキルフェノン;1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製 IRGACURE 184)等のα-ヒドロキシアルキルフェノン等)、アシルホスフィンオキサイド系化合物(例えば2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等)、チタノセン系化合物(例えばビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等)、アセトフェノン系化合物(例えばジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等)、フェニルグリオキシレート系化合物(例えばメチルフェニルグリオキシエステル等)、ベンゾインエーテル系化合物(例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等)、およびオキシムエステル系化合物(例えば1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASF社製 IRGACURE OXE01)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(0-アセチルオキシム)(BASF社製 IRGACURE OXE02)等)が含まれる。 Examples of self-cleaving self-cleaving photopolymerization initiators include benzyl dimethyls such as alkylphenone compounds (eg 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF IRGACURE 651)). Ketal; α-aminoalkylphenone such as 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one (IRGACURE 907 manufactured by BASF); 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE manufactured by BASF) 184) and the like α-hydroxyalkylphenone), acylphosphine oxide compounds (eg 2,4,6-trimethylbenzoindiphenylphosphinoxide, etc.), titanosen compounds (eg bis (η5-2,4-cyclopentadiene-1) -Il) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium, etc.), acetphenone compounds (eg diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenyl) Propane-1-one, benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ) Ketone, 1-Hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone Etc.), Phenylglycilate-based compounds (eg, methylphenylglioxyester, etc.), benzoin ether-based compounds (eg, benzoin, benzoin methyl ether, benzoin isopropyl ether, etc.), and oxime ester-based compounds (eg, 1,2-octanedione). -1- [4- (Phenylthio) -2- (O-benzoyloxime)] (IRGACURE OXE01 manufactured by BASF), Etanone-1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3 -Il] -1- (0-acetyloxime) (IRGACURE OXE02 manufactured by BASF), etc.) is included.
 水素引き抜き型の光重合開始剤の例には、ベンゾフェノン系化合物(例えばベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等)、チオキサントン系化合物(例えばチオキサントン、2-クロロチオキサントン(東京化成工業社製)、1-クロロ-4-プロポキシチオキサントン、1-クロロ-4-エトキシチオキサントン(Lambson Limited社製 Speedcure CPTX)、2-イソプロピルキサントン(Lambson Limited社製 Speedcure ITX)、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン(Lambson Limited社製 Speedcure DETX)、2,4-ジクロロチオキサントン等)、アントラキノン系化合物(例えば2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン、2-ヒドロキシアントラキノン(東京化成工業社製 2-Hydroxyanthraquinone)、2,6-ジヒドロキシアントラキノン(東京化成工業社製 Anthraflavic Acid)、2-ヒドロキシメチルアントラキノン(純正化学社製 2-(Hydroxymethyl)anthraquinone)等)およびベンジル系化合物が含まれる。光熱硬化性樹脂組成物は、光重合開始剤(B)を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Examples of hydrogen abstraction initiators include benzophenone compounds (eg, benzophenone, o-benzoylmethylbenzoate methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-. Methyl-diphenylsulfide, acrylicized benzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, etc.), thioxanthone compounds (eg, thioxanthone, 2-Chlorothioxanthone (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1-chloro-4-propoxythioxanthone, 1-chloro-4-ethoxythioxanthone (Speedcure CPTX manufactured by Lambson Limited), 2-isopropylxantone (Speedcure ITX manufactured by Lambson Limited) , 4-Isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone (Speedcure DETX manufactured by Lambson Limited), 2,4-dichlorothioxanthone, etc.), anthraquinone compounds (eg 2-methylanthraquinone, 2-ethyl) Anthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone, 2-hydroxyanthraquinone (2-Hydroxyanthraquinone manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2,6-dihydroxyanthraquinone (Anthraflavic Acid manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2-hydroxymethylanthraquinone (2- (Hydroxymethyl) anthraquinone manufactured by Genuine Chemical Co., Ltd.) and benzyl compounds are included. The photothermosetting resin composition may contain only one type of photopolymerization initiator (B), or may contain two or more types.
 光重合開始剤(B)の吸収波長は特に限定されず、例えば波長360nm以上の光を吸収する光重合開始剤(B)が好ましい。中でも、可視光領域の光を吸収することがより好ましく、波長360~780nmの光を吸収する光重合開始剤(B)がさらに好ましく、波長360~430nmの光を吸収する光重合開始剤(B)が特に好ましい。 The absorption wavelength of the photopolymerization initiator (B) is not particularly limited, and for example, the photopolymerization initiator (B) that absorbs light having a wavelength of 360 nm or more is preferable. Among them, the photopolymerization initiator (B) that absorbs light in the visible light region is more preferable, and the photopolymerization initiator (B) that absorbs light having a wavelength of 360 to 780 nm is more preferable, and the photopolymerization initiator (B) that absorbs light having a wavelength of 360 to 430 nm is more preferable. ) Is particularly preferable.
 波長360nm以上の光を吸収する光重合開始剤(B)の例には、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、チオキサントン系化合物、アントラキノン系化合物が含まれ、好ましくはオキシムエステル系化合物である。 Examples of the photopolymerization initiator (B) that absorbs light having a wavelength of 360 nm or more include alkylphenone compounds, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, thioxanthone compounds, and anthraquinone compounds. , Preferably an oxime ester compound.
 なお、光重合開始剤(B)の構造は、高速液体クロマトグラフィー(HPLC)および液体クロマトグラフィー質量分析(LC/MS)と、NMR測定またはIR測定とを組み合わせることで特定できる。 The structure of the photopolymerization initiator (B) can be specified by combining high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC / MS) with NMR measurement or IR measurement.
 光重合開始剤(B)の分子量は、例えば200以上5000以下が好ましい。分子量が200以上であると、光熱硬化性樹脂組成物を液晶シール剤としたときに、光重合開始剤(B)が液晶に溶出し難い。一方、分子量が5000以下であると、硬化性化合物(A)との相溶性が高まり、光熱硬化性樹脂組成物の硬化性が良好になりやすい。光重合開始剤(B)の分子量は、230以上3000以下がより好ましく、230以上1500以下がさらに好ましい。 The molecular weight of the photopolymerization initiator (B) is preferably 200 or more and 5000 or less, for example. When the molecular weight is 200 or more, the photopolymerization initiator (B) is unlikely to elute into the liquid crystal when the photothermosetting resin composition is used as the liquid crystal sealant. On the other hand, when the molecular weight is 5000 or less, the compatibility with the curable compound (A) is enhanced, and the curability of the photothermosetting resin composition tends to be improved. The molecular weight of the photopolymerization initiator (B) is more preferably 230 or more and 3000 or less, and further preferably 230 or more and 1500 or less.
 光重合開始剤(B)の分子量は、高速液体クロマトグラフィー(HPLC:High Performance Liquid Chromatography)で分析したときに検出されるメインピークの、分子構造の「相対分子質量」として求めることができる。 The molecular weight of the photopolymerization initiator (B) can be determined as the "relative molecular weight" of the molecular structure of the main peak detected when analyzed by high performance liquid chromatography (HPLC).
 具体的には、光重合開始剤(B)をTHF(テトラヒドロフラン)に溶解させた試料液を調製し、高速液体クロマトグラフィー(HPLC)測定を行う。そして、検出されたピークの面積百分率(各ピークの面積の、全ピークの面積の合計に対する比率)を求め、メインピークの有無を確認する。メインピークとは、各化合物に特徴的な検出波長(例えばチオキサントン系化合物であれば400nm)で検出された全ピークのうち、最も強度が大きいピーク(ピークの高さが最も高いピーク)をいう。検出されたメインピークのピーク頂点に対応する相対分子質量は、液体クロマトグラフィー質量分析(LC/MS:Liquid Chromatography Mass Spectrometry)により測定できる。 Specifically, a sample solution in which the photopolymerization initiator (B) is dissolved in THF (tetrahydrofuran) is prepared, and high performance liquid chromatography (HPLC) measurement is performed. Then, the area percentage of the detected peak (the ratio of the area of each peak to the total area of all peaks) is obtained, and the presence or absence of the main peak is confirmed. The main peak refers to the peak with the highest intensity (the peak with the highest peak height) among all the peaks detected at the detection wavelength characteristic of each compound (for example, 400 nm in the case of a thioxanthone compound). The relative molecular weight corresponding to the peak peak of the detected main peak can be measured by liquid chromatography-mass spectrometry (LC / MS: Liquid Chromatography Mass Spectrometry).
 光重合開始剤(B)の量は、上述の硬化性化合物(A)に対して0.01~10質量%が好ましい。光重合開始剤(B)の量が、硬化性化合物(A)に対して0.01質量%以上であると、光熱硬化性樹脂組成物の硬化性が良好になりやすい。光重合開始剤(B)の含有量が10質量%以下であると、光熱硬化性樹脂組成物を液晶シール剤に用いたとき、光重合開始剤(B)が液晶に溶出し難くなる。光重合開始剤(B)の含有量は、硬化性化合物(A)に対して0.1~5質量%がより好ましく、0.1~3質量%がさらに好ましく、0.1~2.5質量%が特に好ましい。 The amount of the photopolymerization initiator (B) is preferably 0.01 to 10% by mass with respect to the above-mentioned curable compound (A). When the amount of the photopolymerization initiator (B) is 0.01% by mass or more with respect to the curable compound (A), the curability of the photothermosetting resin composition tends to be good. When the content of the photopolymerization initiator (B) is 10% by mass or less, the photopolymerization initiator (B) is less likely to be eluted into the liquid crystal when the photothermosetting resin composition is used as the liquid crystal sealant. The content of the photopolymerization initiator (B) is more preferably 0.1 to 5% by mass, further preferably 0.1 to 3% by mass, and 0.1 to 2.5 with respect to the curable compound (A). Mass% is particularly preferred.
 1-3.潜在性熱硬化剤(C)
 潜在性熱硬化剤(C)は、通常の保存条件下(室温、可視光線下等)では熱硬化性化合物(A)や後述のその他の硬化性化合物を硬化させないが、熱を与えられると、これらの化合物を硬化させる化合物である。光熱硬化性樹脂組成物が潜在性熱硬化剤(C)を含むと、光熱硬化性樹脂組成物が熱硬化可能になる。潜在性熱硬化剤(C)は、エポキシ化合物の硬化が可能な硬化剤(以下、「エポキシ硬化剤」とも称する)が好ましい。
1-3. Latent thermosetting agent (C)
The latent thermosetting agent (C) does not cure the thermosetting compound (A) or other curable compounds described below under normal storage conditions (room temperature, visible light, etc.), but when heat is applied, It is a compound that cures these compounds. When the photothermosetting resin composition contains the latent thermosetting agent (C), the photothermosetting resin composition becomes thermosetting. As the latent thermosetting agent (C), a curing agent capable of curing an epoxy compound (hereinafter, also referred to as "epoxy curing agent") is preferable.
 エポキシ硬化剤は、光熱硬化性樹脂組成物の粘度安定性を高め、かつ硬化物の耐湿性を損なわない観点から、融点が50℃以上250℃以下であることが好ましく、融点は100℃以上200℃以下がより好ましく、150℃以上200℃以下がさらに好ましい。 The epoxy curing agent preferably has a melting point of 50 ° C. or higher and 250 ° C. or lower, and has a melting point of 100 ° C. or higher and 200 ° C., from the viewpoint of enhancing the viscosity stability of the photothermosetting resin composition and not impairing the moisture resistance of the cured product. The temperature is more preferably 150 ° C. or higher, and further preferably 150 ° C. or higher and 200 ° C. or lower.
 エポキシ硬化剤の例には、有機酸ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、ジシアンジアミド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤が含まれる。 Examples of epoxy hardeners are organic acid dihydrazide-based thermal latent curing agents, imidazole-based thermal latent curing agents, dicyandiamide-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents. Contains agents.
 有機酸ジヒドラジド系熱潜在性硬化剤の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド(融点189℃)等が含まれる。 Examples of organic acid dihydrazide-based thermal latent curing agents include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydranthin (melting point 120 ° C.), 7,11-octa. Includes decadien-1,18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like.
 イミダゾール系熱潜在性硬化剤の例には、2,4-ジアミノ-6-[2’-エチルイミダゾリル-(1’)]-エチルトリアジン(融点215~225℃)、および2-フェニルイミダゾール(融点137~147℃)等が含まれる。 Examples of imidazole-based thermal latent curing agents include 2,4-diamino-6- [2'-ethylimidazolyl- (1')]-ethyltriazine (melting point 215-225 ° C.) and 2-phenylimidazole (melting point). 137 to 147 ° C.) and the like.
 ジシアンジアミド系熱潜在性硬化剤の例には、ジシアンジアミド(融点209℃)等が含まれる。 Examples of dicyandiamide-based thermal latent curing agents include dicyandiamide (melting point 209 ° C.) and the like.
 アミンアダクト系熱潜在性硬化剤は、触媒活性を有するアミン系化合物と任意の化合物とを反応させて得られる付加化合物からなる熱潜在性硬化剤である。アミンアダクト系熱潜在性硬化剤の例には、味の素ファインテクノ社製 アミキュアPN-40(融点110℃)、味の素ファインテクノ社製 アミキュアPN-23(融点100℃)、味の素ファインテクノ社製 アミキュアPN-31(融点115℃)、味の素ファインテクノ社製 アミキュアPN-H(融点115℃)、味の素ファインテクノ社製 アミキュアMY-24(融点120℃)、および味の素ファインテクノ社製 アミキュアMY-H(融点131℃)等が含まれる。 The amine adduct-based thermal latent curing agent is a thermal latent curing agent composed of an additional compound obtained by reacting an amine-based compound having catalytic activity with an arbitrary compound. Examples of amine adduct-based thermal latent curing agents are Ajinomoto Fine-Techno's Amicure PN-40 (melting point 110 ° C), Ajinomoto Fine-Techno's Amicure PN-23 (melting point 100 ° C), and Ajinomoto Fine-Techno's Amicure PN. -31 (melting point 115 ° C), Ajinomoto Fine-Techno Amicure PN-H (melting point 115 ° C), Ajinomoto Fine-Techno Amicure MY-24 (melting point 120 ° C), and Ajinomoto Fine-Techno Amicure MY-H (melting point) 131 ° C) and the like are included.
 ポリアミン系熱潜在性硬化剤は、アミンとエポキシとを反応させて得られるポリマー構造を有する熱潜在性硬化剤であり、その例には、ADEKA社製 アデカハードナーEH4339S(軟化点120~130℃)、およびADEKA社製 アデカハードナーEH4357S(軟化点73~83℃)等が含まれる。 The polyamine-based thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting amine and epoxy, and an example thereof is ADEKA Hardener EH4339S (softening point 120 to 130 ° C.) manufactured by ADEKA Corporation. , And ADEKA Hardener EH4357S (softening point 73 to 83 ° C.) and the like.
 上記の中でも、入手しやすさ、他の成分との相溶性等の観点で、有機酸ジヒドラジド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、またはポリアミン系熱潜在性硬化剤が好ましい。潜在性熱硬化剤(C)は、エポキシ硬化剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Among the above, organic acid dihydrazide-based thermal latent curing agents, amine adduct-based thermal latent curing agents, or polyamine-based thermal latent curing agents are preferable from the viewpoint of availability, compatibility with other components, and the like. .. The latent thermosetting agent (C) may contain only one type of epoxy curing agent, or may contain two or more types of epoxy curing agent.
 潜在性熱硬化剤(C)の含有量は、光熱硬化性樹脂組成物の総量に対して3~30質量%が好ましく、3~20質量%がより好ましく、5~20質量%がさらに好ましい。本発明の光熱硬化性樹脂組成物は、一液硬化性樹脂組成物としてもよい。一液硬化性樹脂組成物は、使用に際して主剤と硬化剤を混合する必要がないことから、作業性が優れる。 The content of the latent thermosetting agent (C) is preferably 3 to 30% by mass, more preferably 3 to 20% by mass, still more preferably 5 to 20% by mass, based on the total amount of the photothermosetting resin composition. The photothermosetting resin composition of the present invention may be a one-component curable resin composition. The one-component curable resin composition is excellent in workability because it is not necessary to mix the main agent and the curing agent at the time of use.
 潜在性熱硬化剤(C)の含有量は、上述の硬化性化合物(A)に対して3.8~75質量%が好ましく、3.8~50質量%がより好ましく、5~40質量%がさらに好ましい。潜在性熱硬化剤(C)の硬化性化合物(A)に対する含有量が3.8質量%以上であると、加熱時の硬化性化合物(A)の硬化性を高めやすい。一方、75質量%以下であると、光熱硬化性樹脂組成物を液晶シール剤に用いたとき、潜在性熱硬化剤(C)によって液晶が汚染され難い。 The content of the latent thermosetting agent (C) is preferably 3.8 to 75% by mass, more preferably 3.8 to 50% by mass, and 5 to 40% by mass with respect to the above-mentioned curable compound (A). Is even more preferable. When the content of the latent thermosetting agent (C) with respect to the curable compound (A) is 3.8% by mass or more, the curability of the curable compound (A) at the time of heating is likely to be enhanced. On the other hand, when it is 75% by mass or less, when the photothermosetting resin composition is used as a liquid crystal sealant, the liquid crystal is less likely to be contaminated by the latent thermosetting agent (C).
 1-4.有機微粒子(D)
 有機微粒子(D)は、外殻部と核部とを有し、かつ核部に、共役ジエン系ゴムまたはシリコーンゴムを含む粒子であればよい。ここで、核部とは、有機微粒子(D)の中心近傍に位置し、当該有機微粒子(D)に所望の弾性を付与する領域である。一方、外殻部とは、核部より有機微粒子(D)の最表面側に配置される層状の領域であり、有機微粒子(D)と光熱硬化性樹脂組成物中の他の成分との相溶性を高めるための層である。外殻部は、核部を完全に覆っていてもよく、核部の一部のみを覆っていてもよいが、外殻部が核部を完全に覆っているほうが、有機微粒子(D)と他の成分との親和性を高めることができ、有機微粒子(D)の分散性が高まる。
1-4. Organic fine particles (D)
The organic fine particles (D) may be particles having an outer shell portion and a core portion and containing a conjugated diene rubber or a silicone rubber in the core portion. Here, the core portion is a region located near the center of the organic fine particles (D) and imparting desired elasticity to the organic fine particles (D). On the other hand, the outer shell portion is a layered region arranged on the outermost surface side of the organic fine particles (D) from the core portion, and is a phase of the organic fine particles (D) and other components in the photothermosetting resin composition. It is a layer for increasing solubility. The outer shell portion may completely cover the core portion or only a part of the core portion, but it is better that the outer shell portion completely covers the core portion as organic fine particles (D). The affinity with other components can be enhanced, and the dispersibility of the organic fine particles (D) is enhanced.
 有機微粒子(D)において、外殻部と核部との間に、他の層を含んでいてもよいが、有機微粒子(D)を調製しやすい等の観点で、外殻部と核部とから構成されることが好ましい。有機微粒子(D)が、外殻部と核部とを有するか否かは、光熱硬化性樹脂組成物を光および熱によって硬化させた後、例えば断面を透過型電子顕微鏡(TEM)等により特定できる。 In the organic fine particles (D), another layer may be contained between the outer shell portion and the core portion, but from the viewpoint of easy preparation of the organic fine particles (D), the outer shell portion and the core portion are used. It is preferably composed of. Whether or not the organic fine particles (D) have an outer shell portion and a core portion is specified by, for example, a transmission electron microscope (TEM) or the like after curing the photothermally curable resin composition with light and heat. can.
 核部は、共役ジエン系ゴムまたはシリコーンゴムの少なくとも一方を含んでいればよいが、両方を含んでいてもよい。また、本発明の目的および硬化を損なわない範囲で、核部は、これらのゴム以外の成分を含んでいてもよい。 The core may contain at least one of a conjugated diene rubber or a silicone rubber, but may contain both. Further, the core portion may contain components other than these rubbers as long as the object of the present invention and curing are not impaired.
 共役ジエン系ゴムは、共役ジエンに由来する構造単位を含んでいればよく、共役ジエン由来の構造単位のみを有していてもよく、共役ジエンおよび共役ジエンと共重合可能なビニルモノマーの共重合体等であってもよい。 The conjugated diene-based rubber may contain a structural unit derived from the conjugated diene, may have only a structural unit derived from the conjugated diene, and has the same weight of the conjugated diene and a vinyl monomer copolymerizable with the conjugated diene. It may be a coalescence or the like.
 共役ジエンの例には、イソプレン、1,3-ブタジエン、2-クロロ-1,3-ブタジエン、2-メチル-1,3-ブタジエン、クロロプレン等が含まれる。共役ジエン系ゴムは、共役ジエン由来の構造単位を一種のみ含んでいてもよく、二種以上含んでいてもよい。また、共役ジエン系ゴム中の共役ジエン由来の構造単位量は、全構造単位の総量に対して50~100質量%が好ましい。 Examples of conjugated diene include isoprene, 1,3-butadiene, 2-chloro-1,3-butadiene, 2-methyl-1,3-butadiene, chloroprene and the like. The conjugated diene-based rubber may contain only one type of structural unit derived from the conjugated diene, or may contain two or more types. The amount of the conjugated diene-derived structural unit in the conjugated diene rubber is preferably 50 to 100% by mass with respect to the total amount of all structural units.
 一方、共役ジエンと共重合可能なビニルモノマーの例には、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等の芳香族ビニル系モノマー;アクリル酸、メタクリル酸等のビニルカルボン酸系モノマー;アクリロニトリル、メタクリロニトリル等のビニルシアン系モノマー;塩化ビニル、臭化ビニル等のハロゲン化ビニル系モノマー;酢酸ビニル;エチレン、プロピレン、ブチレン、イソブチレン等のアルケンモノマー;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン等の多官能性モノマーが含まれる。共役ジエン系ゴムには、これらのビニルモノマー由来の構造単位が一種のみ含んでいてもよく、二種以上含んでいてもよい。共役ジエン系ゴム中のビニルモノマー由来の構造単位量は、全構造単位の総量に対して0~50質量%が好ましい。 On the other hand, examples of vinyl monomers copolymerizable with conjugated diene include aromatic vinyl-based monomers such as styrene, α-methylstyrene, monochlorostyrene and dichlorostyrene; vinylcarboxylic acid-based monomers such as acrylic acid and methacrylic acid; and acrylonitrile. Vinyl cyanized monomers such as methacrylonitrile; vinyl halide monomers such as vinyl chloride and vinyl bromide; vinyl acetate; alken monomers such as ethylene, propylene, butylene and isobutylene; diallylphthalate, triallyl cyanurate, triallyl Contains polyfunctional monomers such as isocyanurate and divinylbenzene. The conjugated diene-based rubber may contain only one type of structural unit derived from these vinyl monomers, or may contain two or more types of structural units. The amount of the structural unit derived from the vinyl monomer in the conjugated diene rubber is preferably 0 to 50% by mass with respect to the total amount of all the structural units.
 共役ジエン系ゴムの具体例には、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等のジエン系ゴムが含まれる。 Specific examples of the conjugated diene rubber include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), and ethylene propylene diene rubber (EPDM). , Chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR) and other diene rubbers are included.
 一方、シリコーンゴムの例には、シロキサン系モノマーを重合して得られるゴム、またはシロキサン系モノマーおよびシロキサン系モノマーと共重合可能なビニルモノマーとの共重合体等が含まれる。 On the other hand, examples of silicone rubber include rubber obtained by polymerizing a siloxane-based monomer, a siloxane-based monomer, and a copolymer of a siloxane-based monomer and a copolymerizable vinyl monomer.
 シロキサン系モノマーの例には、ジメチルシロキサン、ジエチルシロキサン、メチルフェニルシロキサン、ジフェニルシロキサン、ジメチルシロキサン-ジフェニルシロキサン等の、2つのアルキルおよび/またはアリール基を有するシロキサンモノマー;アルキルまたはアリールを1つ有するシロキサンモノマー等が含まれる。一方、シロキサン系モノマーと共重合可能なビニルモノマーは、上述の共役ジエンと共重合可能なビニルモノマーと同様である。 Examples of siloxane-based monomers include siloxane monomers having two alkyl and / or aryl groups such as dimethylsiloxane, diethylsiloxane, methylphenylsiloxane, diphenylsiloxane, and dimethylsiloxane-diphenylsiloxane; siloxane having one alkyl or aryl. Contains monomers and the like. On the other hand, the vinyl monomer copolymerizable with the siloxane-based monomer is the same as the vinyl monomer copolymerizable with the conjugated diene described above.
 有機微粒子(D)の核部は、上記の中でも共役ジエン系ゴムを含むことが好ましく、さらに共役ジエンおよび芳香族ビニル化合物(上述の芳香族ビニルモノマー)に由来する構造単位を含むことが好ましく、特にスチレンブタジエンゴム(SBR)が好ましい。 The core of the organic fine particles (D) preferably contains a conjugated diene-based rubber among the above, and further preferably contains a structural unit derived from the conjugated diene and an aromatic vinyl compound (the above-mentioned aromatic vinyl monomer). In particular, styrene-butadiene rubber (SBR) is preferable.
 当該有機微粒子(D)全体に占める核部の量は、60~90質量%が好ましく、80~90質量%がより好ましい。有機微粒子(D)における核部の比率が上記範囲であると、光熱硬化性樹脂組成物の硬化物において十分な弾性が得られる。例えば、硬化性樹脂組成物から得られるシール部材と液晶表示パネルの基板との接着強度等が十分に高まる。なお、当該有機微粒子(D)における核部の含有量は、赤外分光分析のスペクトルの吸光度比などから測定できる。 The amount of the core portion in the entire organic fine particles (D) is preferably 60 to 90% by mass, more preferably 80 to 90% by mass. When the ratio of the core portion in the organic fine particles (D) is in the above range, sufficient elasticity can be obtained in the cured product of the photothermosetting resin composition. For example, the adhesive strength between the seal member obtained from the curable resin composition and the substrate of the liquid crystal display panel is sufficiently increased. The content of the nucleus in the organic fine particles (D) can be measured from the absorbance ratio of the spectrum of infrared spectroscopic analysis and the like.
 さらに、上記核部の形状は特に制限されないが、粒径を揃える等の観点で、球状が好ましい。 Further, the shape of the core portion is not particularly limited, but a spherical shape is preferable from the viewpoint of making the particle size uniform.
 一方、有機微粒子(D)の外殻部は、上述の核部と親和性を有し、かつ光熱硬化性樹脂組成物中での有機微粒子(D)の分散性を高めることが可能な層であれば特に制限されない。外殻部は、(メタ)アクリレートモノマーやビニルモノマーの重合体とすることができる。このような外殻部は、例えば、上述の核部を形成した後、核部の周囲に(メタ)アクリレートモノマーやビニルモノマーを重合させること等によって形成できる。 On the other hand, the outer shell portion of the organic fine particles (D) is a layer having an affinity with the above-mentioned core portion and capable of enhancing the dispersibility of the organic fine particles (D) in the photothermosetting resin composition. If there is, there is no particular limitation. The outer shell portion can be a polymer of a (meth) acrylate monomer or a vinyl monomer. Such an outer shell portion can be formed, for example, by forming the above-mentioned core portion and then polymerizing a (meth) acrylate monomer or a vinyl monomer around the core portion.
 (メタ)アクリレートモノマーの例には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等のアルキル(メタ)アクリレート;フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート等の芳香環含有(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレート等のグリシジル(メタ)アクリレート類;アルコキシアルキル(メタ)アクリレート類;アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレート等のアリルアルキル(メタ)アクリレート;モノエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等の多官能性(メタ)アクリレート;等が含まれる。 Examples of (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, and stearyl (. Alkyl (meth) acrylates such as meta) acrylates and behenyl (meth) acrylates; aromatic ring-containing (meth) acrylates such as phenoxyethyl (meth) acrylates and benzyl (meth) acrylates; 2-hydroxyethyl (meth) acrylates, 4- Hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate; glycidyl (meth) acrylates such as glycidyl (meth) acrylate and glycidylalkyl (meth) acrylate; alkoxyalkyl (meth) acrylates; allyl (meth) acrylate , Allylalkyl (meth) acrylates such as allylalkyl (meth) acrylates; polyfunctional (meth) such as monoethylene glycol di (meth) acrylates, triethylene glycol di (meth) acrylates, tetraethylene glycol di (meth) acrylates, etc. Acrylate; etc. are included.
 一方、ビニルモノマーの例には、上述の共役ジエンと共重合可能なビニルモノマーと同様のモノマーが含まれる。 On the other hand, examples of vinyl monomers include the same monomers as vinyl monomers copolymerizable with the above-mentioned conjugated diene.
 中でも、外殻部は、メチルメタクリレート構造、スチレン構造、アクリロニトリル構造、およびグリシジル構造からなる群より選ばれる1以上の構造を有する重合体を含むことが好ましい。外殻部が、このような構造を有する重合体を含むと、上述の硬化性化合物(A)等と有機微粒子(D)との相溶性が良好になる。 Among them, the outer shell portion preferably contains a polymer having one or more structures selected from the group consisting of a methyl methacrylate structure, a styrene structure, an acrylonitrile structure, and a glycidyl structure. When the outer shell portion contains a polymer having such a structure, the compatibility between the above-mentioned curable compound (A) and the like and the organic fine particles (D) becomes good.
 当該有機微粒子(D)全体に占める外殻部の量は、10~40質量%が好ましく、10~20質量%がより好ましい。有機微粒子(D)における外殻部の比率が上記範囲であると、有機微粒子(D)の分散性が良好になる。当該有機微粒子(D)における外殻部の含有量は、赤外分光分析のスペクトルの吸光度比などから測定できる。 The amount of the outer shell portion in the entire organic fine particles (D) is preferably 10 to 40% by mass, more preferably 10 to 20% by mass. When the ratio of the outer shell portion in the organic fine particles (D) is in the above range, the dispersibility of the organic fine particles (D) becomes good. The content of the outer shell portion in the organic fine particles (D) can be measured from the absorbance ratio of the spectrum of infrared spectroscopic analysis and the like.
 さらに、当該有機微粒子(D)の形状は、特に制限されないが、略球状であることが好ましい。有機微粒子(D)が略球状である場合の平均粒子径は、0.1~0.8μmが好ましく、0.1~0.6μmがより好ましい。平均粒子径が当該範囲であると、光熱硬化性樹脂組成物を用いて細いシール部材を形成したりすることが可能となる。上記平均粒子径は、顕微鏡法、具体的には電子顕微鏡の画像解析により測定することができる。より具体的には、液晶シール剤について画像解析し、粒子径が1μm以下の有機フィラーを50個選別して、粒子径を測定した場合の平均値を平均粒子径とする。 Further, the shape of the organic fine particles (D) is not particularly limited, but is preferably substantially spherical. When the organic fine particles (D) are substantially spherical, the average particle size is preferably 0.1 to 0.8 μm, more preferably 0.1 to 0.6 μm. When the average particle size is in the range, it is possible to form a thin sealing member by using the photothermosetting resin composition. The average particle size can be measured by a microscope method, specifically, an image analysis of an electron microscope. More specifically, the liquid crystal sealant is image-analyzed, 50 organic fillers having a particle size of 1 μm or less are selected, and the average value when the particle size is measured is taken as the average particle size.
 有機微粒子(D)の含有量は、光熱硬化性樹脂組成物の総量に対して5~17質量%が好ましく、7~16質量%がより好ましく、9~15質量%がさらに好ましい。有機微粒子の量が5質量%以上であると、光熱硬化性樹脂組成物を液晶シール剤に用いた場合に、その硬化物(シール部材)と基板との接着強度が高くなる。一方、有機微粒子(D)の含有量が17質量%以下であると、他の成分(例えば硬化性化合物(A))の量が十分になり、硬化物(シール部材)の強度が高まる。 The content of the organic fine particles (D) is preferably 5 to 17% by mass, more preferably 7 to 16% by mass, still more preferably 9 to 15% by mass, based on the total amount of the photothermosetting resin composition. When the amount of the organic fine particles is 5% by mass or more, when the photothermosetting resin composition is used as a liquid crystal sealant, the adhesive strength between the cured product (seal member) and the substrate becomes high. On the other hand, when the content of the organic fine particles (D) is 17% by mass or less, the amount of other components (for example, the curable compound (A)) becomes sufficient, and the strength of the cured product (sealing member) increases.
 1-5.無機充填剤(E)
 本発明の光熱硬化性樹脂組成物は、必要に応じて無機充填剤(E)をさらに含んでいてもよい。光熱硬化性樹脂組成物が無機充填剤(E)を含むと、光熱硬化性樹脂組成物の粘度や硬化物の強度、および線膨張性等が良好になりやすい。
1-5. Inorganic filler (E)
The photothermosetting resin composition of the present invention may further contain an inorganic filler (E), if necessary. When the photothermosetting resin composition contains the inorganic filler (E), the viscosity of the photothermosetting resin composition, the strength of the cured product, the linear expansion property, and the like tend to be improved.
 無機充填剤(E)の例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、窒化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等が含まれる。中でも、二酸化ケイ素及びタルクが好ましい。 Examples of the inorganic filler (E) include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, titanium nitride, aluminum oxide (alumina), zinc oxide, and silicon dioxide. Includes potassium titanate, kaolin, talc, glass beads, sericite active white clay, bentonite, aluminum oxide, silicon nitride and the like. Of these, silicon dioxide and talc are preferred.
 無機充填剤(E)の形状は、球状、板状、針状等、定形状であってもよく、非定形状であってもよい。無機充填剤(E)が球状である場合、無機充填剤(E)の平均一次粒子径は、1.5μm以下が好ましく、かつ比表面積が0.5~20m/gがより好ましい。無機充填剤(E)の平均一次粒子径は、JIS Z8825-1に記載のレーザー回折法により測定することができる。充填剤の比表面積は、JIS Z8830に記載のBET法により測定することができる。 The shape of the inorganic filler (E) may be a fixed shape such as a spherical shape, a plate shape, a needle shape, or a non-fixed shape. When the inorganic filler (E) is spherical, the average primary particle size of the inorganic filler (E) is preferably 1.5 μm or less, and the specific surface area is more preferably 0.5 to 20 m 2 / g. The average primary particle size of the inorganic filler (E) can be measured by the laser diffraction method described in JIS Z8825-1. The specific surface area of the filler can be measured by the BET method described in JIS Z8830.
 無機充填剤(E)の含有量は、光熱硬化性樹脂組成物の総量に対して1~45質量%が好ましい。無機充填剤(E)の含有量が1質量%以上であると、光熱硬化性樹脂組成物の硬化物の耐湿性が高まりやすく、45質量%以下であると、光熱硬化性樹脂組成物の塗工安定性が損なわれにくい。無機充填剤(E)の含有量は、光熱硬化性樹脂組成物に対して3~30質量%がより好ましい。 The content of the inorganic filler (E) is preferably 1 to 45% by mass with respect to the total amount of the photothermosetting resin composition. When the content of the inorganic filler (E) is 1% by mass or more, the moisture resistance of the cured product of the photothermosetting resin composition tends to increase, and when it is 45% by mass or less, the coating of the photothermosetting resin composition is applied. Construction stability is not easily impaired. The content of the inorganic filler (E) is more preferably 3 to 30% by mass with respect to the photothermosetting resin composition.
 1-6.その他の硬化性化合物
 光熱硬化性樹脂組成物は、熱硬化性化合物をさらに含んでいてもよい。ただし、当該熱硬化性化合物は、上述の硬化性化合物(A)とは異なる化合物である。
1-6. Other Curable Compounds The thermosetting resin composition may further contain a thermosetting compound. However, the thermosetting compound is a compound different from the above-mentioned curable compound (A).
 熱硬化性化合物の例には、分子内にエポキシ基を有するエポキシ化合物が含まれる。エポキシ化合物は、モノマー、オリゴマーまたはポリマーのいずれであってもよい。光熱硬化性樹脂組成物がエポキシ化合物を含むと、得られる液晶パネルの表示特性が良好になり、さらには硬化物(シール部材)の耐湿性が高まる。 Examples of thermosetting compounds include epoxy compounds having an epoxy group in the molecule. The epoxy compound may be any of a monomer, an oligomer or a polymer. When the photothermosetting resin composition contains an epoxy compound, the display characteristics of the obtained liquid crystal panel are improved, and the moisture resistance of the cured product (seal member) is further enhanced.
 エポキシ化合物は特に芳香環を有することが好ましい。また、エポキシ化合物の重量平均分子量は500~10000が好ましく、1000~5000がより好ましい。エポキシ化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定される。 It is particularly preferable that the epoxy compound has an aromatic ring. The weight average molecular weight of the epoxy compound is preferably 500 to 10000, more preferably 1000 to 5000. The weight average molecular weight of the epoxy compound is measured by gel permeation chromatography (GPC) in terms of polystyrene.
 芳香族エポキシ化合物の例には、ビスフェノールA、ビスフェノールS、ビスフェノールF、ビスフェノールAD等で代表される芳香族ジオール類や、これらの芳香族ジオールをエチレングリコール、プロピレングリコール、アルキレングリコール等で変性したジオール類と、エピクロルヒドリンとの反応で得られた芳香族多価グリシジルエーテル化合物;フェノールまたはクレゾールとホルムアルデヒドとから誘導されたノボラック樹脂、ポリアルケニルフェノールやそのコポリマー等で代表されるポリフェノール類と、エピクロルヒドリンとの反応で得られたノボラック型多価グリシジルエーテル化合物;キシリレンフェノール樹脂のグリシジルエーテル化合物類等が含まれる。中でも、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、トリフェノールメタン型エポキシ化合物、トリフェノールエタン型エポキシ化合物、トリスフェノール型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ジフェニルエーテル型エポキシ化合物またはビフェニル型エポキシ化合物が好ましい。光熱硬化性樹脂組成物は、エポキシ化合物を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Examples of aromatic epoxy compounds include aromatic diols typified by bisphenol A, bisphenol S, bisphenol F, bisphenol AD and the like, and diols obtained by modifying these aromatic diols with ethylene glycol, propylene glycol, alkylene glycol and the like. Aromatic polyhydric glycidyl ether compound obtained by reaction with epichlorohydrin; polyphenols represented by phenol or novolak resin derived from cresol and formaldehyde, polyalkenylphenol and copolymers thereof, and epichlorohydrin. The novolak type polyvalent glycidyl ether compound obtained by the reaction; glycidyl ether compounds of xylylene phenol resin and the like are included. Among them, cresol novolac type epoxy compound, phenol novolac type epoxy compound, bisphenol A type epoxy compound, bisphenol F type epoxy compound, triphenol methane type epoxy compound, triphenol ethane type epoxy compound, trisphenol type epoxy compound, dicyclopentadiene type. Epoxy compounds, diphenyl ether type epoxy compounds or biphenyl type epoxy compounds are preferable. The photothermosetting resin composition may contain only one type of epoxy compound, or may contain two or more types of epoxy compounds.
 エポキシ化合物は、液状であってもよく、固形であってもよい。硬化物の耐湿性を高めやすい観点では、固形のエポキシ化合物が好ましい。固形のエポキシ化合物の軟化点は、40℃以上150℃以下が好ましい。軟化点は、JIS K7234に規定する環球法によって測定することができる。 The epoxy compound may be liquid or solid. A solid epoxy compound is preferable from the viewpoint of easily increasing the moisture resistance of the cured product. The softening point of the solid epoxy compound is preferably 40 ° C. or higher and 150 ° C. or lower. The softening point can be measured by the ring-and-ball method specified in JIS K7234.
 熱硬化性化合物の含有量は、光熱硬化性樹脂組成物に対して3~20質量%が好ましい。熱硬化性化合物の量が3質量%以上であると、光熱硬化性樹脂組成物の硬化物(シール部材)の耐湿性を良好に高めやすい。熱硬化性化合物の含有量が20質量%以下であると、光熱硬化性樹脂組成物に、過剰な粘度上昇が生じ難い。熱硬化性化合物の量は、光熱硬化性樹脂組成物に対して3~15質量%がより好ましく、4~15質量%がさらに好ましい。 The content of the thermosetting compound is preferably 3 to 20% by mass with respect to the thermosetting resin composition. When the amount of the thermosetting compound is 3% by mass or more, it is easy to satisfactorily increase the moisture resistance of the cured product (seal member) of the thermosetting resin composition. When the content of the thermosetting compound is 20% by mass or less, the photothermosetting resin composition is unlikely to have an excessive increase in viscosity. The amount of the thermosetting compound is more preferably 3 to 15% by mass, still more preferably 4 to 15% by mass, based on the thermosetting resin composition.
 熱硬化性化合物の含有量は、硬化性化合物(A)に対して3.8~50質量%が好ましく、5~30質量%がより好ましい。熱硬化性化合物の硬化性化合物(A)に対する含有量が3.8質量%以上であると、硬化物の耐湿性やガラス基板への接着強度がさらに高まる。一方、50質量%以下であると、製造時に硬化性化合物(A)との相溶性が良好になりやすい。 The content of the thermosetting compound is preferably 3.8 to 50% by mass, more preferably 5 to 30% by mass, based on the curable compound (A). When the content of the thermosetting compound with respect to the curable compound (A) is 3.8% by mass or more, the moisture resistance of the cured product and the adhesive strength to the glass substrate are further enhanced. On the other hand, when it is 50% by mass or less, the compatibility with the curable compound (A) tends to be good at the time of production.
 1-7.その他の化合物
 本発明の光熱硬化性樹脂組成物は、必要に応じて熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、増感剤、可塑剤及び消泡剤等の添加剤をさらに含んでいてもよい。
1-7. Other Compounds The thermosetting resin composition of the present invention contains, if necessary, a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, and an increase. Additives such as sensitizers, plasticizers and antifoaming agents may be further included.
 シランカップリング剤の例には、ビニルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等が含まれる。シランカップリング剤の含有量は、硬化性化合物(A)に対して0.01~5質量%が好ましい。シランカップリング剤の含有量が0.01質量%以上であると、光熱硬化性樹脂組成物の硬化物が十分な接着性を有しやすい。 Examples of silane coupling agents include vinyltrimethoxysilane, γ- (meth) acryloxipropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and the like. The content of the silane coupling agent is preferably 0.01 to 5% by mass with respect to the curable compound (A). When the content of the silane coupling agent is 0.01% by mass or more, the cured product of the photothermosetting resin composition tends to have sufficient adhesiveness.
 本発明の光熱硬化性樹脂組成物は、液晶表示パネルのギャップを調整するためのスペーサー等をさらに含んでいてもよい。 The photothermosetting resin composition of the present invention may further include a spacer or the like for adjusting the gap of the liquid crystal display panel.
 その他の成分の合計量は、光熱硬化性樹脂組成物の総量に対して1~50質量%が好ましい。その他の成分の合計量が50質量%以下であると、光熱硬化性樹脂組成物の粘度が過度に上昇し難く、光熱硬化性樹脂組成物の塗工安定性が損なわれにくい。 The total amount of other components is preferably 1 to 50% by mass with respect to the total amount of the photothermosetting resin composition. When the total amount of the other components is 50% by mass or less, the viscosity of the photothermosetting resin composition is unlikely to increase excessively, and the coating stability of the photothermosetting resin composition is less likely to be impaired.
 1-8.光熱硬化性樹脂組成物の物性
 本発明の光熱硬化性樹脂組成物の、E型粘度計の25℃、2.5rpmにおける粘度は、200~450Pa・sが好ましく、300~400Pa・sがより好ましい。粘度が上記範囲にあると、光熱硬化性樹脂組成物のディスペンサーによる塗布性が良好となる。
1-8. Physical Properties of Photothermosetting Resin Composition The viscosity of the photothermosetting resin composition of the present invention at 25 ° C. and 2.5 rpm of the E-type viscometer is preferably 200 to 450 Pa · s, more preferably 300 to 400 Pa · s. .. When the viscosity is in the above range, the applicability of the photothermosetting resin composition by the dispenser becomes good.
 本発明の光熱硬化性樹脂組成物は、例えばシール剤として用いることができる。光熱硬化性樹脂組成物は特に、液晶表示素子、有機EL素子、LED素子等の表示素子の封止に用いられる表示素子シール剤に好適である。また、本発明の光熱硬化性樹脂組成物は、液晶を汚染し難いため、液晶滴下工法用の液晶シール剤に非常に好適である。 The photothermosetting resin composition of the present invention can be used, for example, as a sealing agent. The photothermally curable resin composition is particularly suitable as a display element sealant used for sealing display elements such as liquid crystal display elements, organic EL elements, and LED elements. Further, the photothermosetting resin composition of the present invention is very suitable as a liquid crystal sealant for the liquid crystal dropping method because it does not easily contaminate the liquid crystal.
 2.液晶表示パネルおよびその製造方法
 本発明の液晶表示パネルは、それぞれ配向膜を有する一対の基板(表示基板および対向基板)と、当該一対の基板の配向膜どうしの間に配置された枠状のシール部材と、一対の基板の間の前記シール部材で囲まれた空間に充填された液晶層と、を含む。当該シール部材が、上述の光熱硬化性樹脂組成物(液晶シール剤)の硬化物である。
2. Liquid crystal display panel and its manufacturing method The liquid crystal display panel of the present invention has a frame-shaped seal arranged between a pair of substrates (display substrate and facing substrate) each having an alignment film and the alignment films of the pair of substrates. It includes a member and a liquid crystal layer filled in a space surrounded by the sealing member between a pair of substrates. The sealing member is a cured product of the above-mentioned photothermosetting resin composition (liquid crystal sealing agent).
 表示基板および対向基板は、いずれも透明基板である。透明基板の材質は、ガラス等の無機材料であってもよく、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォンおよびPMMA等のプラスチックであってもよい。 Both the display board and the facing board are transparent boards. The material of the transparent substrate may be an inorganic material such as glass, or may be a plastic such as polycarbonate, polyethylene terephthalate, polyether sulfone, and PMMA.
 表示基板または対向基板の表面には、マトリックス状のTFT、カラーフィルタ、ブラックマトリクス等が配置されていてもよい。表示基板または対向基板の表面には、さらに配向膜が配置されている。配向膜には、公知の有機配向剤や無機配向剤が含まれる。 A matrix-like TFT, a color filter, a black matrix, or the like may be arranged on the surface of the display substrate or the facing substrate. An alignment film is further arranged on the surface of the display substrate or the facing substrate. The alignment film includes a known organic alignment agent or inorganic alignment agent.
 上述のように、一般的な液晶シール剤から得られるシール部材は、これらの配向膜との密着性が低いことがある。これに対し、上述の光熱硬化性樹脂組成物(液晶シール剤)は、硬化時にシール部材に生じる残留応力を緩和したり、液晶表示パネルに外部からかかる応力を吸収したりできる。したがって、シール部材を、配向膜が形成されている領域に配置しても、これらの界面で剥離が生じ難い。よって、本発明の液晶表示パネルでは、狭額縁化を実現可能である。 As described above, the sealing member obtained from a general liquid crystal sealing agent may have low adhesion to these alignment films. On the other hand, the above-mentioned photothermosetting resin composition (liquid crystal sealant) can relax the residual stress generated in the seal member during curing and can absorb the stress applied to the liquid crystal display panel from the outside. Therefore, even if the sealing member is arranged in the region where the alignment film is formed, peeling is unlikely to occur at these interfaces. Therefore, the liquid crystal display panel of the present invention can realize a narrow frame.
 液晶表示パネルは、本発明の液晶シール剤を用いて製造される。液晶表示パネルの製造方法には、一般に、液晶滴下工法と、液晶注入工法とがあるが、本発明の液晶表示パネルは、液晶滴下工法で製造されることが好ましい。 The liquid crystal display panel is manufactured by using the liquid crystal sealant of the present invention. The method for manufacturing a liquid crystal display panel generally includes a liquid crystal dropping method and a liquid crystal injection method, but the liquid crystal display panel of the present invention is preferably manufactured by the liquid crystal dropping method.
 液晶滴下工法による液晶表示パネルの製造方法は、
 1)それぞれ配向膜を有する一対の基板の、一方の基板の配向膜上に、上述の液晶シール剤を塗布し、シールパターンを形成する工程と、
 2)シールパターンが未硬化の状態において、一方の基板上、かつシールパターンで囲まれた領域内、または他方の基板上に、液晶を滴下する工程と、
 3)一方の基板および他方の基板を、シールパターンを介して重ね合わせる工程と、
 4)シールパターンを硬化させる工程とを含む。
The manufacturing method of the liquid crystal display panel by the liquid crystal dropping method is
1) A step of applying the above-mentioned liquid crystal sealant on the alignment film of one of the pair of substrates each having an alignment film to form a seal pattern.
2) A step of dropping the liquid crystal on one substrate, in the region surrounded by the seal pattern, or on the other substrate in a state where the seal pattern is uncured.
3) A process of superimposing one substrate and the other substrate via a seal pattern,
4) Includes a step of curing the seal pattern.
 2)の工程において、シールパターンが未硬化の状態とは、液晶シール剤の硬化反応がゲル化点までは進行していない状態を意味する。このため、2)の工程では、液晶シール剤の液晶への溶解を抑制するために、シールパターンを光照射または加熱して半硬化させてもよい。一方の基板及び他方の基板は、それぞれ表示基板または対向基板である。 In the step 2), the state in which the seal pattern is uncured means a state in which the curing reaction of the liquid crystal sealant has not progressed to the gel point. Therefore, in the step 2), the seal pattern may be semi-cured by irradiating or heating the seal pattern in order to suppress the dissolution of the liquid crystal sealant in the liquid crystal. One substrate and the other substrate are a display board or a facing board, respectively.
 4)の工程では、光照射による硬化のみを行ってもよいが、光照射による硬化を行った後、加熱による硬化を行ってもよい。光照射による硬化を行うことで、液晶シール剤を短時間で硬化させることができるので、液晶への溶解を抑制できる。光照射による硬化と加熱による硬化とを組み合わせることで、光照射による硬化のみの場合と比べて光による液晶層へのダメージを少なくすることができる。 In the step 4), only curing by light irradiation may be performed, but curing by heating may be performed after curing by light irradiation. By curing by light irradiation, the liquid crystal sealant can be cured in a short time, so that dissolution in the liquid crystal can be suppressed. By combining curing by light irradiation and curing by heating, damage to the liquid crystal layer due to light can be reduced as compared with the case where only curing by light irradiation is performed.
 照射する光は、上述の液晶シール剤(光熱硬化性樹脂組成物)中の光重合開始剤(B)の種類に応じて適宜選択されるが、可視光領域の光が好ましく、例えば波長370~450nmの光であることが好ましい。上記波長の光は、液晶材料や駆動電極に与えるダメージが比較的少ないからである。光の照射は、紫外線や可視光を発する公知の光源を使用できる。可視光を照射する場合、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、キセノンランプ、蛍光灯等を使用できる。 The light to be irradiated is appropriately selected according to the type of the photopolymerization initiator (B) in the above-mentioned liquid crystal sealant (photothermosetting resin composition), but light in the visible light region is preferable, for example, wavelengths 370 to 370 to. Light of 450 nm is preferable. This is because light having the above wavelength causes relatively little damage to the liquid crystal material and the driving electrode. For the irradiation of light, a known light source that emits ultraviolet rays or visible light can be used. When irradiating visible light, a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, a fluorescent lamp, or the like can be used.
 光照射エネルギーは、硬化性化合物(A)が硬化可能なエネルギーであればよい。光硬化時間は、液晶シール剤の組成にもよるが、例えば10分程度である。 The light irradiation energy may be any energy as long as the curable compound (A) can be cured. The photocuring time depends on the composition of the liquid crystal sealant, but is, for example, about 10 minutes.
 熱硬化温度は、液晶シール剤の組成にもよるが、例えば120℃であり、熱硬化時間は2時間程度である。 The thermosetting temperature depends on the composition of the liquid crystal sealant, but is, for example, 120 ° C., and the thermosetting time is about 2 hours.
 本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 1.硬化性化合物(A)の準備
 <合成例1:硬化性化合物(A-1)>
 160gの液状ビスフェノールF型エポキシ樹脂(エポトートYDF-8170C、東都化成社製、エポキシ当量160g/eq)、0.1gの重合禁止剤(p-メトキシフェノール)、0.2gの触媒(トリエタノールアミン)、および43.0gのメタクリル酸をフラスコ内に仕込んだ。そして、乾燥空気を送り込み、90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、メタクリル酸部分変性ビスフェノールF型エポキシ樹脂(硬化性化合物(A-1))を得た。
1. 1. Preparation of curable compound (A) <Synthesis Example 1: Curable compound (A-1)>
160 g of liquid bisphenol F-type epoxy resin (Epototo YDF-8170C, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 160 g / eq), 0.1 g of polymerization inhibitor (p-methoxyphenol), 0.2 g of catalyst (triethanolamine) , And 43.0 g of methacrylic acid were charged into the flask. Then, dry air was sent in, and the reaction was carried out for 5 hours while refluxing and stirring at 90 ° C. The obtained compound was washed with ultrapure water 20 times to obtain a partially modified methacrylic acid bisphenol F type epoxy resin (curable compound (A-1)).
 <合成例2:硬化性化合物(A-2)>
 116gの2-ヒドロキシエチルアクリレート、0.1gの重合禁止剤(p-メトキシフェノール)、および100gの無水コハク酸をフラスコ内に仕込んだ。そして、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。続いて、ビスフェノールAジグリシジルエーテル170gを加え、同様に90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、硬化性化合物(A-2)を得た。
<Synthesis Example 2: Curable Compound (A-2)>
116 g of 2-hydroxyethyl acrylate, 0.1 g of a polymerization inhibitor (p-methoxyphenol), and 100 g of succinic anhydride were placed in a flask. Then, dry air was sent in and the reaction was carried out for 5 hours while refluxing and stirring at 90 ° C. Subsequently, 170 g of bisphenol A diglycidyl ether was added, and the mixture was similarly reacted at 90 ° C. with reflux stirring for 5 hours. The obtained compound was washed with ultrapure water 20 times to obtain a curable compound (A-2).
 <合成例3:硬化性化合物(A-3)>
 160gの液状ビスフェノールF型エポキシ樹脂(エポトートYDF-8170C、東都化成社製、エポキシ当量160g/eq)、0.1gの重合禁止剤(p-メトキシフェノール)、0.2gの触媒(トリエタノールアミン)、および81.7gのメタクリル酸をフラスコ内に仕込み、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。得られた化合物を、超純水にて20回洗浄し、メタクリル酸95%部分変性ビスフェノールF型エポキシ樹脂(硬化性化合物(A-3))を得た。
<Synthesis Example 3: Curable Compound (A-3)>
160 g of liquid bisphenol F type epoxy resin (Epototo YDF-8170C, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 160 g / eq), 0.1 g of polymerization inhibitor (p-methoxyphenol), 0.2 g of catalyst (triethanolamine) , And 81.7 g of methacrylic acid were charged into the flask, and dry air was blown in and reacted at 90 ° C. with reflux stirring for 5 hours. The obtained compound was washed 20 times with ultrapure water to obtain a 95% methacrylic acid partially modified bisphenol F type epoxy resin (curable compound (A-3)).
 <硬化性化合物(A-4)の準備>
 硬化性化合物(A-4)として、アクリル樹脂(ポリエチレングリコールジアクリレート、ライトアクリレート14EG-A、共栄社化学製)を用いた。
<Preparation of curable compound (A-4)>
As the curable compound (A-4), an acrylic resin (polyethylene glycol diacrylate, light acrylate 14EG-A, manufactured by Kyoeisha Chemical Co., Ltd.) was used.
 2.有機微粒子(D)の準備
 <合成例4:有機微粒子(D-1)>
 ・核部を含むエマルションD’の調製
 窒素置換した撹拌機付きオートクレーブ中に、脱イオン水500質量部、ラウリル硫酸ソーダ3質量部、過硫酸カリウム0.6質量部、ブタジエン187.5質量部、およびスチレン62.5質量部を仕込み、70℃で10時間反応させた。得られたエマルションを常温まで冷却した後、イオン交換水を添加し、固形分30質量%に調整した。
2. Preparation of Organic Fine Particles (D) <Synthesis Example 4: Organic Fine Particles (D-1)>
-Preparation of emulsion D'containing the nucleus In an autoclave with a stirrer substituted with nitrogen, 500 parts by mass of deionized water, 3 parts by mass of sodium lauryl sulfate, 0.6 parts by mass of potassium persulfate, 187.5 parts by mass of butadiene, And 62.5 parts by mass of styrene were charged and reacted at 70 ° C. for 10 hours. After cooling the obtained emulsion to room temperature, ion-exchanged water was added to adjust the solid content to 30% by mass.
 ・外殻部の形成
 撹拌機、還流コンデンサー、滴下装置、及び温度計を備えた反応容器に、上述の核部を含むエマルションD’500質量部、イオン交換水169質量部、ラウリル硫酸ナトリウム0.4質量部を仕込み、攪拌下、窒素置換しながら70℃まで昇温させた。内温を70℃に保ち、重合開始剤として過硫酸カリウムを0.5質量部添加した。さらに、予めスチレン23質量部、メチルメタクリレート質量19部、アクリロニトリル質量12部、グリシジルメタクリレート15質量部を混合したモノマー混合液を、反応溶液内に連続的に3時間かけて滴下した。滴下終了後、3時間の熟成を行った。熟成終了後、得られた水性エマルジョンを常温まで冷却したのち、スプレードライヤーを用い、平均粒子径0.2μmである有機微粒子(D-1)を得た。
-Formation of outer shell part In a reaction vessel equipped with a stirrer, a reflux condenser, a dropping device, and a thermometer, 500 parts by mass of emulsion D'500 parts by mass containing the above-mentioned core part, 169 parts by mass of ion-exchanged water, sodium lauryl sulfate 0. 4 parts by mass was charged, and the temperature was raised to 70 ° C. under stirring while substituting with nitrogen. The internal temperature was kept at 70 ° C., and 0.5 parts by mass of potassium persulfate was added as a polymerization initiator. Further, a monomer mixed solution in which 23 parts by mass of styrene, 19 parts by mass of methyl methacrylate, 12 parts by mass of acrylonitrile and 15 parts by mass of glycidyl methacrylate were mixed in advance was continuously added dropwise into the reaction solution over 3 hours. After completion of the dropping, aging was carried out for 3 hours. After completion of aging, the obtained aqueous emulsion was cooled to room temperature, and then an organic fine particle (D-1) having an average particle size of 0.2 μm was obtained using a spray dryer.
 <合成例5:有機微粒子(D-2)の合成>
 撹拌機、還流コンデンサー、滴下装置、及び温度計を備えた反応容器に、合成例4で得られた核部を含むエマルションD’500質量部、イオン交換水169質量部、ラウリル硫酸ナトリウム0.4質量部を仕込み、攪拌下、窒素置換しながら70℃まで昇温させた。内温を70℃に保ち、重合開始剤として過硫酸カリウム0.5質量部添加した。さらに、予めスチレン23質量部、メチルメタクリレート23.3質量部、アクリロニトリル12質量部、n-ブチルメタクリレート10.8質量部を混合したモノマー混合液を、反応溶液内に連続的に3時間かけて滴下した。滴下終了後、3時間の熟成を行った。熟成終了後、得られた水性エマルジョンを常温まで冷却したのち、スプレードライヤーを用い、平均粒子径0.2μmである有機微粒子(D-2)を得た。
<Synthesis Example 5: Synthesis of Organic Fine Particles (D-2)>
In a reaction vessel equipped with a stirrer, a reflux condenser, a dropping device, and a thermometer, 500 parts by mass of emulsion D'500 parts by mass containing the core part obtained in Synthesis Example 4, 169 parts by mass of ion-exchanged water, 0.4 parts by sodium lauryl sulfate. A mass portion was charged, and the temperature was raised to 70 ° C. while stirring and replacing with nitrogen. The internal temperature was kept at 70 ° C., and 0.5 parts by mass of potassium persulfate was added as a polymerization initiator. Further, a monomer mixed solution prepared by mixing 23 parts by mass of styrene, 23.3 parts by mass of methyl methacrylate, 12 parts by mass of acrylonitrile, and 10.8 parts by mass of n-butyl methacrylate in advance is continuously added dropwise into the reaction solution over 3 hours. did. After completion of the dropping, aging was carried out for 3 hours. After completion of aging, the obtained aqueous emulsion was cooled to room temperature, and then an organic fine particle (D-2) having an average particle size of 0.2 μm was obtained using a spray dryer.
 3.他の材料の準備
 その他の材料として、以下の材料を用いた。
 ・エポキシ化合物:エピコート1004、JER社製、軟化点97℃
 ・光重合開始剤(B):IRGACURE OXE01、BASF社製
 ・潜在性熱硬化剤(C):アジピン酸ジヒドラジド(ADH、日本化成社製、融点177~184℃)
 ・無機充填剤(E):シリカ粒子(S-100、日本触媒化学社製)
 ・その他粒子:
  微粒子ポリマー(F351、アイカ工業社製、(コアが、n-ブチルアクリレートの重合体であり、シェルがポリメチルメタクリレートであるコアシェル粒子))
  ポリメチルシルセスキオキサン粒子(MSP-N080、日興リカ社製)
  ポリメチルシルセスキオキサン粒子(MSP-N050、日興リカ社製)
  ポリメチルシルセスキオキサン粒子(X-52-854、信越化学社製)
  メラミン/ホルムアルデヒド縮合物(エポスターS、日本触媒社製)
  単層ポリメチルメタクリレート(アートパールJ-3PY、根上工業社製)
 ・シランカップリング剤:KBM-403
3. 3. Preparation of other materials The following materials were used as other materials.
-Epoxy compound: Epicoat 1004, manufactured by JER, softening point 97 ° C.
-Photopolymerization initiator (B): IRGACURE OXE01, manufactured by BASF-Latent thermosetting agent (C): adipic acid dihydrazide (ADH, manufactured by Nippon Kasei Chemical Co., Ltd., melting point 177 to 184 ° C.)
-Inorganic filler (E): silica particles (S-100, manufactured by Nippon Shokubai Kagaku Co., Ltd.)
・ Other particles:
Fine particle polymer (F351, manufactured by Aica Kogyo Co., Ltd. (core-shell particles whose core is a polymer of n-butyl acrylate and whose shell is polymethylmethacrylate))
Polymethylsilsesquioxane particles (MSP-N080, manufactured by Nikko Rika)
Polymethylsilsesquioxane particles (MSP-N050, manufactured by Nikko Rika)
Polymethylsilsesquioxane particles (X-52-854, manufactured by Shin-Etsu Chemical Co., Ltd.)
Melamine / formaldehyde condensate (Epostal S, manufactured by Nippon Shokubai Co., Ltd.)
Single-layer polymethylmethacrylate (Art Pearl J-3PY, manufactured by Negami Kogyo Co., Ltd.)
-Silane coupling agent: KBM-403
 4.光熱硬化性樹脂組成物の調製
 <実施例1>
 エポキシ化合物40質量部、合成例1で得られた硬化性化合物(A-1)230質量部、合成例2で得られた硬化性化合物(A-2)50質量部、合成例3で得られた硬化性化合物(A-3)250質量部、硬化性化合物(A-4)150質量部、潜在性熱硬化剤(C)50質量部、無機充填剤(E)60質量部、合成例4で得られた硬化性樹脂(D-1)150質量部、シランカップリング剤(KBM-403、信越化学工業社製)10質量部、光重合開始剤(B)10質量部を、三本ロールを用いて均一な液となるように十分に混合して、光熱硬化性樹脂組成物を得た。
4. Preparation of Photothermosetting Resin Composition <Example 1>
40 parts by mass of the epoxy compound, 230 parts by mass of the curable compound (A-1) obtained in Synthesis Example 1, 50 parts by mass of the curable compound (A-2) obtained in Synthesis Example 2, and obtained in Synthesis Example 3. 250 parts by mass of curable compound (A-3), 150 parts by mass of curable compound (A-4), 50 parts by mass of latent thermosetting agent (C), 60 parts by mass of inorganic filler (E), Synthesis Example 4 150 parts by mass of the curable resin (D-1), 10 parts by mass of the silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.), and 10 parts by mass of the photopolymerization initiator (B) obtained in the above three rolls. Was sufficiently mixed to obtain a uniform liquid using the above to obtain a photothermosetting resin composition.
 <実施例2~6、および比較例1~6>
 表1に示す組成に変更した以外は、実施例1と同様に光熱硬化性樹脂組成物を作製した。
<Examples 2 to 6 and Comparative Examples 1 to 6>
A photothermosetting resin composition was prepared in the same manner as in Example 1 except that the composition was changed to that shown in Table 1.
 5.評価
 実施例1~6および比較例1~6で得られた光熱硬化性樹脂組成物について、接着強度を以下の方法で評価した。
5. Evaluation The adhesive strength of the photothermally curable resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 was evaluated by the following methods.
 <接着強度テスト>
 得られた光熱硬化性樹脂組成物を、ディスペンサー(ショットマスター、武蔵エンジニアリング社製)を用いて、透明電極と全面に配向膜が予め形成された40mm×45mmガラス基板(RT-DM88-PIN、EHC社製)の配向膜上に、38mm×38mmの四角形のライン状のシールパターン(断面積2500μm)を形成した。次いで、シールパターンを形成したガラス基板に対して垂直になるように、対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を1分間遮光ボックス内で保持した後、3000mJ/cmの可視光を含む光(波長370~450nmの光)を照射し、さらに120℃で1時間加熱して、試験片を得た。
<Adhesive strength test>
Using a dispenser (Shotmaster, manufactured by Musashi Engineering Co., Ltd.), the obtained photothermosetting resin composition was subjected to a 40 mm × 45 mm glass substrate (RT-DM88-PIN, EHC) in which a transparent electrode and an alignment film were previously formed on the entire surface. A quadrangular line-shaped seal pattern (cross-sectional area 2500 μm 2 ) of 38 mm × 38 mm was formed on the alignment film (manufactured by the same company). Next, the paired glass substrates were bonded under reduced pressure so as to be perpendicular to the glass substrate on which the seal pattern was formed, and then the glass substrates were opened to the atmosphere and bonded. Then, the two laminated glass substrates are held in a light-shielding box for 1 minute , then irradiated with light containing visible light of 3000 mJ / cm 2 (light having a wavelength of 370 to 450 nm), and further heated at 120 ° C. for 1 hour. Then, a test piece was obtained.
 得られた試験片のシールパターンの隅(ラインの外側)から4.5mmの部分を、押込み試験機(Model210、インテスコ社製)を用い5mm/分の速度で垂直に押込み、光熱硬化性樹脂組成物の硬化物が剥がれた時の応力を測定した。接着強度はその応力を硬化物の線幅で割ることにより求めた。結果を表1に示す。 A portion 4.5 mm from the corner (outside of the line) of the seal pattern of the obtained test piece is vertically pressed at a speed of 5 mm / min using an indentation tester (Model210, manufactured by Intesco) to form a photothermosetting resin composition. The stress when the cured product of the object was peeled off was measured. The adhesive strength was determined by dividing the stress by the line width of the cured product. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~6に示されるように、外殻部と核部とを有し、かつ核部が共役ジエンに由来する構造単位を有するゴムおよびシリコーンゴムからなる群より選ばれる1以上のゴムを含む光熱硬化性樹脂組成物では、接着強度テストの結果がいずれも良好であった。光熱硬化性樹脂組成物が硬化する際に生じる残留応力が、有機微粒子(D)によって緩和されるとともに、外部からの応力を受けた際、有機微粒子(D)が応力を分散したと考えられる。そのため、実施例1~6では、硬化物と基板との界面での剥離が生じ難かったと推察される。 As shown in Examples 1 to 6 of Table 1, one or more selected from the group consisting of a rubber having an outer shell portion and a core portion and having a structural unit derived from a conjugated diene in the core portion and a silicone rubber. In the photothermosetting resin composition containing the rubber of the above, the results of the adhesive strength test were all good. It is considered that the residual stress generated when the photothermosetting resin composition is cured is relaxed by the organic fine particles (D), and the organic fine particles (D) disperse the stress when the stress is applied from the outside. Therefore, in Examples 1 to 6, it is presumed that peeling at the interface between the cured product and the substrate was unlikely to occur.
 これに対し、コアシェル構造を有する微粒子であっても、核部に上記ゴムを含まない場合には、十分に残留応力や外部からの応力が分散されず、接着強度テストの結果が低かった(比較例1)。さらに、核部および外殻部を有さないポリメチルシルセスキオキサン粒子や、メラミン/ホルムアルデヒド縮合物や、ポリメチルメタクリレート等からなる粒子では、接着強度の向上効果が得られなかった(比較例2~6)。 On the other hand, even if the fine particles have a core-shell structure, when the core does not contain the above rubber, the residual stress and the stress from the outside are not sufficiently dispersed, and the result of the adhesive strength test is low (comparison). Example 1). Further, the polymethylsilsesquioxane particles having no core and outer shell, the particles composed of melamine / formaldehyde condensate, polymethylmethacrylate, and the like did not have the effect of improving the adhesive strength (Comparative Example). 2-6).
 本出願は、2020年2月6日出願の特願2020-018755号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2020-018755 filed on February 6, 2020. All the contents described in the application specification are incorporated in the application specification.
 本発明の光熱硬化性樹脂組成物によれば、各種基板との接着性が高い硬化物が得られる。したがって、当該光熱硬化性樹脂組成物は、各種液晶表示装置のシール剤等として非常に有用である。 According to the photothermosetting resin composition of the present invention, a cured product having high adhesiveness to various substrates can be obtained. Therefore, the photothermosetting resin composition is very useful as a sealant or the like for various liquid crystal display devices.

Claims (11)

  1.  分子内にエチレン性不飽和二重結合を有する硬化性化合物(A)、光重合開始剤(B)、潜在性熱硬化剤(C)、および有機微粒子(D)を含有する光熱硬化性樹脂組成物であり、
     前記有機微粒子(D)は外殻部と核部とを有し、
     前記核部が、共役ジエンに由来する構造単位を含む共役ジエン系ゴムおよびシリコーンゴムのうち、少なくとも一方を含む、
     光熱硬化性樹脂組成物。
    A thermosetting resin composition containing a curable compound (A) having an ethylenically unsaturated double bond in the molecule, a photopolymerization initiator (B), a latent thermosetting agent (C), and organic fine particles (D). It is a thing
    The organic fine particles (D) have an outer shell portion and a core portion, and have an outer shell portion and a core portion.
    The core contains at least one of a conjugated diene rubber and a silicone rubber containing a structural unit derived from a conjugated diene.
    Photothermosetting resin composition.
  2.  前記有機微粒子(D)が、前記外殻部および前記核部から構成され、
     前記核部が、共役ジエンおよび芳香族ビニル化合物に由来する構造単位を含む共役ジエン系ゴムを含み、
     前記外殻部が、メチルメタクリレート構造、スチレン構造、アクリロニトリル構造、およびグリシジル構造からなる群より選ばれる1以上の構造を有する重合体を含む、
     請求項1に記載の光熱硬化性樹脂組成物。
    The organic fine particles (D) are composed of the outer shell portion and the core portion.
    The core contains a conjugated diene-based rubber containing a conjugated diene and a structural unit derived from an aromatic vinyl compound.
    The outer shell contains a polymer having one or more structures selected from the group consisting of a methyl methacrylate structure, a styrene structure, an acrylonitrile structure, and a glycidyl structure.
    The photothermosetting resin composition according to claim 1.
  3.  無機充填剤(E)をさらに含有する、
     請求項1または2に記載の光熱硬化性樹脂組成物。
    Further containing the inorganic filler (E),
    The photothermosetting resin composition according to claim 1 or 2.
  4.  前記有機微粒子(D)の含有量が5~17質量%である、
     請求項1~3のいずれか一項に記載の光熱硬化性樹脂組成物。
    The content of the organic fine particles (D) is 5 to 17% by mass.
    The photothermosetting resin composition according to any one of claims 1 to 3.
  5.  前記潜在性熱硬化剤(C)が、有機酸ジヒドラジド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1以上の硬化剤である、
     請求項1~4のいずれか一項に記載の光熱硬化性樹脂組成物。
    The latent thermosetting agent (C) is one or more curing agents selected from the group consisting of organic acid dihydrazide-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents. be,
    The photothermosetting resin composition according to any one of claims 1 to 4.
  6.  請求項1~5のいずれか一項に記載の光熱硬化性樹脂組成物を含む、
     液晶シール剤。
    The photothermosetting resin composition according to any one of claims 1 to 5 is included.
    Liquid crystal sealant.
  7.  配向膜をそれぞれ有する一対の基板の、一方の基板の前記配向膜上に、請求項6に記載の液晶シール剤を塗布し、シールパターンを形成する工程と、
     前記シールパターンが未硬化の状態において、前記一方の基板上かつ前記シールパターンの領域内、または他方の基板に液晶を滴下する工程と、
     前記一方の基板および前記他方の基板を、前記シールパターンを介して重ね合わせる工程と、
     前記シールパターンを硬化させる工程と、
     を含む、
     液晶表示パネルの製造方法。
    A step of applying the liquid crystal sealant according to claim 6 onto the alignment film of one of the pair of substrates having the alignment film to form a seal pattern.
    A step of dropping a liquid crystal on the one substrate, in the region of the seal pattern, or on the other substrate in a state where the seal pattern is uncured.
    A step of superimposing the one substrate and the other substrate via the seal pattern, and
    The process of curing the seal pattern and
    including,
    Manufacturing method of liquid crystal display panel.
  8.  前記シールパターンを硬化させる工程において、前記シールパターンに光を照射して前記シールパターンを硬化させる、
     請求項7に記載の液晶表示パネルの製造方法。
    In the step of curing the seal pattern, the seal pattern is irradiated with light to cure the seal pattern.
    The method for manufacturing a liquid crystal display panel according to claim 7.
  9.  前記シールパターンに照射する光が、可視光領域の光を含む、
     請求項8に記載の液晶表示パネルの製造方法。
    The light irradiating the seal pattern includes light in the visible light region.
    The method for manufacturing a liquid crystal display panel according to claim 8.
  10.  前記シールパターンを硬化させる工程において、光が照射された後の前記シールパターンをさらに加熱する、
     請求項8または9に記載の液晶表示パネルの製造方法。
    In the step of curing the seal pattern, the seal pattern after being irradiated with light is further heated.
    The method for manufacturing a liquid crystal display panel according to claim 8 or 9.
  11.  配向膜をそれぞれ有する一対の基板と、
     前記一対の基板の前記配向膜の間に配置された枠状のシール部材と、
     前記一対の基板の間の前記シール部材で囲まれた空間に充填された液晶層と、を含み、
     前記シール部材が、請求項6に記載の液晶シール剤の硬化物である、
     液晶表示パネル。
    A pair of substrates each with an alignment film and
    A frame-shaped sealing member arranged between the alignment films of the pair of substrates, and
    A liquid crystal layer filled in a space surrounded by the sealing member between the pair of substrates is included.
    The sealing member is a cured product of the liquid crystal sealing agent according to claim 6.
    Liquid crystal display panel.
PCT/JP2021/002135 2020-02-06 2021-01-22 Light- and heat-curable resin composition, liquid crystal sealing agent containing same, liquid crystal display panel, and manufacturing method therefor WO2021157377A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227026217A KR20220123426A (en) 2020-02-06 2021-01-22 Photothermosetting resin composition and liquid crystal sealing agent comprising same, and liquid crystal display panel and manufacturing method thereof
CN202180011019.4A CN115004093A (en) 2020-02-06 2021-01-22 Photothermally curable resin composition, liquid crystal sealing agent comprising same, liquid crystal display panel, and method for producing same
JP2021575714A JP7411693B2 (en) 2020-02-06 2021-01-22 Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-018755 2020-02-06
JP2020018755 2020-02-06

Publications (1)

Publication Number Publication Date
WO2021157377A1 true WO2021157377A1 (en) 2021-08-12

Family

ID=77199271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002135 WO2021157377A1 (en) 2020-02-06 2021-01-22 Light- and heat-curable resin composition, liquid crystal sealing agent containing same, liquid crystal display panel, and manufacturing method therefor

Country Status (5)

Country Link
JP (1) JP7411693B2 (en)
KR (1) KR20220123426A (en)
CN (1) CN115004093A (en)
TW (1) TW202132394A (en)
WO (1) WO2021157377A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347203A (en) * 1999-04-01 2000-12-15 Mitsui Chemicals Inc Liquid crystal sealing material composition
JP2001100224A (en) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc Sealing material composition for liquid crystal display cell
JP2005015757A (en) * 2003-06-04 2005-01-20 Sekisui Chem Co Ltd Light curable resin composition, sealing agent for liquid crystal display element, encapsulating agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device
WO2017145959A1 (en) * 2016-02-22 2017-08-31 三井化学株式会社 Display element sealing agent, liquid crystal sealing agent and cured product thereof, and liquid crystal display panel and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3366203B2 (en) * 1995-12-27 2003-01-14 三井化学株式会社 Liquid crystal sealing resin composition
KR100414698B1 (en) * 1999-04-01 2004-01-13 미쯔이카가쿠 가부시기가이샤 Sealing material composition for liquid crystal
CN101369098B (en) * 2003-06-04 2012-01-04 积水化学工业株式会社 Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
US20080063816A1 (en) * 2004-03-22 2008-03-13 Masahiro Imalzumi Sealing Material for Liquid Crystal and Method for Producing Same
JP2009013282A (en) * 2007-07-04 2009-01-22 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same
KR20100118518A (en) * 2009-04-28 2010-11-05 닛뽄 가야쿠 가부시키가이샤 Sealant for liquid crystal, and liquid crystal displaycell made with the same
TW201420736A (en) * 2012-07-17 2014-06-01 Nippon Kayaku Kk Liquid-crystal sealant and LCD cell using same
JP2015200729A (en) * 2014-04-07 2015-11-12 日本化薬株式会社 Radiation curable resin composition, cured product, and application thereof
JP2017219604A (en) * 2016-06-06 2017-12-14 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
KR102642077B1 (en) * 2018-04-11 2024-02-28 세키스이가가쿠 고교가부시키가이샤 Photopolymerization initiator, sealant for display elements, upper and lower conductive materials, display elements, and compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347203A (en) * 1999-04-01 2000-12-15 Mitsui Chemicals Inc Liquid crystal sealing material composition
JP2001100224A (en) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc Sealing material composition for liquid crystal display cell
JP2005015757A (en) * 2003-06-04 2005-01-20 Sekisui Chem Co Ltd Light curable resin composition, sealing agent for liquid crystal display element, encapsulating agent for liquid crystal display element, vertical conduction material for liquid crystal display element, and liquid crystal display device
WO2017145959A1 (en) * 2016-02-22 2017-08-31 三井化学株式会社 Display element sealing agent, liquid crystal sealing agent and cured product thereof, and liquid crystal display panel and method for producing same

Also Published As

Publication number Publication date
JP7411693B2 (en) 2024-01-11
CN115004093A (en) 2022-09-02
TW202132394A (en) 2021-09-01
JPWO2021157377A1 (en) 2021-08-12
KR20220123426A (en) 2022-09-06

Similar Documents

Publication Publication Date Title
US10108029B2 (en) Sealant composition
JP3909072B2 (en) Liquid crystal sealant composition and method for producing liquid crystal display panel using the same
JP6566994B2 (en) Liquid crystal sealant and cured product thereof, and liquid crystal display panel and method for producing the same
KR102588723B1 (en) Sealing agent for liquid crystal display elements, top and bottom conductive materials, and liquid crystal display elements
WO2017104391A1 (en) Photocurable resin composition, display element sealing agent, liquid crystal sealing agent, and liquid crystal display panel and method for producing same
JP6793471B2 (en) Sealing material for liquid crystal dropping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
JP6893486B2 (en) Display adhesive
JP6793470B2 (en) Sealing material for liquid crystal dripping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
JP7411693B2 (en) Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof
WO2016013214A1 (en) Liquid crystal sealing agent and production method for liquid crystal display panel
JP6805372B2 (en) Sealing agent for liquid crystal display element, cured product, vertical conductive material, and liquid crystal display element
WO2017130594A1 (en) Photocurable resin composition, display element sealant, liquid crystal display element sealant, and liquid crystal display panel and production method therefor
JP6783972B1 (en) Sealing agent for display elements, vertical conductive materials, and display elements
JP6835980B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2022181498A1 (en) Photocurable resin composition, liquid crystal sealing agent, liquid crystal display panel using same, and production method therefor
WO2021177111A1 (en) Sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel
WO2020230678A1 (en) Liquid crystal sealant, liquid crystal display panel using same, and production method therefor
WO2021200220A1 (en) Sealing agent for one-drop fill method, manufacturing method for liquid crystal display panel, and liquid crystal display panel
WO2022196764A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display panel, and liquid crystal display panel
WO2023182361A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display panel, and liquid crystal display panel
WO2019013154A1 (en) Sealing agent for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575714

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227026217

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21751019

Country of ref document: EP

Kind code of ref document: A1