WO2021177111A1 - Sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel - Google Patents

Sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel Download PDF

Info

Publication number
WO2021177111A1
WO2021177111A1 PCT/JP2021/006896 JP2021006896W WO2021177111A1 WO 2021177111 A1 WO2021177111 A1 WO 2021177111A1 JP 2021006896 W JP2021006896 W JP 2021006896W WO 2021177111 A1 WO2021177111 A1 WO 2021177111A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sealant
residual
mass
value
Prior art date
Application number
PCT/JP2021/006896
Other languages
French (fr)
Japanese (ja)
Inventor
宙 宮尾
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2022505143A priority Critical patent/JPWO2021177111A1/ja
Priority to CN202180011036.8A priority patent/CN115004094A/en
Priority to KR1020227026572A priority patent/KR20220123442A/en
Publication of WO2021177111A1 publication Critical patent/WO2021177111A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/04Non-macromolecular organic compounds
    • C09K2200/0429Alcohols, phenols, ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/04Non-macromolecular organic compounds
    • C09K2200/0441Carboxylic acids, salts, anhydrides or esters thereof

Definitions

  • the present invention relates to a sealant for a liquid crystal dropping method and a method for manufacturing a liquid crystal display panel.
  • a liquid crystal sealant is applied to form a seal pattern. Then, the liquid crystal is dropped onto the substrate on which the seal pattern is formed or the substrate that is paired with the seal pattern, and the liquid crystals are bonded together in a vacuum. After that, the seal pattern is cured by UV irradiation or heating to form a seal member.
  • the liquid crystal sealant since the liquid crystal sealant is dropped in the uncured state, impurities and small molecule components in the liquid crystal sealant may be eluted into the liquid crystal sealant. Then, when the small molecule component or the like elutes into the liquid crystal display, a display defect called an afterimage is likely to occur on the liquid crystal display panel.
  • the conventional liquid crystal sealant often contains a UV-curable (meth) acrylic compound and a thermosetting epoxy compound.
  • the epoxy compound is usually not cured by UV curing. Therefore, the seal pattern after UV curing still contains a large amount of low molecular weight epoxy compounds. Then, when the seal pattern was heated for thermosetting, the liquid crystal phase transitioned due to the heat, and the epoxy compound in the seal pattern was easily eluted into the liquid crystal.
  • Patent Document 1 a compound having a (meth) acrylic group and an epoxy group in one molecule to suppress elution of the epoxy compound into a liquid crystal while ensuring UV curability and thermosetting property.
  • Patent Document 2 It has also been proposed to suppress the elution of the epoxy compound into the liquid crystal display by using a crystalline epoxy compound having a melting point of 50 ° C. or higher (Patent Document 2).
  • the epoxy group contained in the epoxy compound or the like greatly contributes to the adhesive strength between the sealing member and the substrate.
  • a compound having an epoxy group is polymerized by UV curing. Therefore, the epoxy group is difficult to move freely during thermosetting, and the epoxy group cannot sufficiently contribute to the bond with the substrate.
  • Patent Document 2 it is difficult to include a large amount of epoxy compound having a high melting point in the liquid crystal sealant because the viscosity of the liquid crystal sealant increases. Therefore, it has been difficult to obtain sufficient adhesive strength even with this technique.
  • the present invention has been made in view of the above problems. Specifically, the sealant for the liquid crystal dripping method and the liquid crystal display panel, which can form a sealing member having high adhesive strength to the substrate and which can cope with the narrowing of the frame of the liquid crystal display panel and which is difficult to dissolve in the liquid crystal.
  • the purpose is to provide a manufacturing method.
  • the present invention provides the following sealant for the liquid crystal dropping method.
  • An epoxy compound having no polymerizable functional group other than an epoxy group, a (meth) acrylic / epoxy-containing compound having both a (meth) acrylic group and an epoxy group in one molecule, and no epoxy group ( Meta)
  • a sealant for the liquid crystal dropping method which contains an acrylic compound, a heat curing agent, and a photopolymerization initiator, and has a content of the epoxy compound of 22 to 38% by mass.
  • the residual DC value measured 30 seconds after heating the mixture of 1:10 by mass ratio at 120 ° C. for 1 hour, applying a voltage at 5 V for 1 second, short-circuiting for 0.1 seconds, is the above-mentioned.
  • a liquid crystal dropping method in which only the liquid crystal is heated at 120 ° C. for 1 hour, a voltage is applied at 5 V for 1 second, short-circuited for 0.1 seconds, and then 200% or less of the residual DC value measured 30 seconds later. Sealant for.
  • each component contained in the sealant for the liquid crystal dropping method each of the components and the liquid crystal is mixed at a mass ratio of 1:10, heated at 120 ° C. for 1 hour, and a voltage is applied at 5 V for 1 second.
  • the residual DC value was measured 30 seconds after the short circuit was performed for 0.1 seconds
  • the residual DC value of 98% by mass or more of the sealant for the liquid crystal dropping method was 1 at 120 ° C. for the liquid crystal display only.
  • the liquid crystal dropping method according to [1] which is 300% or less of the residual DC value measured 30 seconds after heating for hours, applying a voltage at 5 V for 1 second, short-circuiting for 0.1 seconds.
  • Sealant [3] The sealant for a liquid crystal dropping method according to [1] or [2], wherein the proportion of the component having a molecular weight of 500 or more in the epoxy compound is 25% by mass or more.
  • the thermal curing agent is selected from the group consisting of an organic acid dihydrazide-based thermal latent curing agent, an imidazole-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, and a polyamine-based thermal latent curing agent.
  • the sealant for the liquid crystal dropping method according to any one of [1] to [3], which is one or more.
  • the step of dropping the liquid crystal in the region of the seal pattern of the one substrate or on the other substrate, and the one substrate and the other substrate are overlapped with each other via the seal pattern.
  • a method for manufacturing a liquid crystal display panel which comprises a step of matching and a step of curing the seal pattern.
  • the sealant for the liquid crystal dropping method of the present invention is difficult to dissolve in the liquid crystal. Further, the adhesive strength between the sealing member obtained from the sealing agent for the liquid crystal dropping method and the substrate is high. Therefore, in the obtained liquid crystal display panel, liquid crystal leakage and afterimages are unlikely to occur, and a narrower frame can be realized.
  • sealing agent for liquid crystal dripping method is a member for producing a sealing member for a liquid crystal display panel, and is a member for manufacturing a sealing member for a liquid crystal display panel. Is preferably used when producing. However, it can also be used to manufacture a liquid crystal display panel by a liquid crystal injection method or the like.
  • the conventional sealant has a problem that the liquid crystal display panel is easily contaminated when a large amount of epoxy compound that can contribute to the improvement of the adhesive strength is contained.
  • the amount of the epoxy compound is reduced, for example, when the liquid crystal display panel is narrowed, sufficient adhesive strength cannot be obtained, and peeling occurs between the substrate and the cured product (seal member) of the sealant. There was something.
  • the amount of the epoxy compound is 22 to 38% by mass with respect to the total amount of the sealant, and the residual DC of the mixture obtained by mixing the sealant and the liquid crystal in a predetermined ratio.
  • the residual DC value of the mixture containing the sealant and the liquid crystal display can be measured as follows. First, the sealant and a liquid crystal display (for example, MLC-7026, manufactured by Merck & Co., Inc.) are put into a vial at a mass ratio of 1:10 and mixed. Then, it is heated at 120 ° C. for 1 hour. Then, the mixture is taken out and injected into a glass cell (for example, KSSZ-10 / B111M1NSS05, manufactured by EHC) in which an alignment film and a transparent electrode are formed in advance. Then, a voltage of 5 V is applied to the obtained cell for 1 second and short-circuited for 0.1 second. Then, the remaining voltage (residual DC value) after 30 seconds is measured with a 6254 type measuring device (manufactured by Toyo Corporation).
  • a 6254 type measuring device manufactured by Toyo Corporation.
  • the liquid crystal when measuring the residual DC value of only the liquid crystal, put only the liquid crystal into a vial and mix. Then, it is heated at 120 ° C. for 1 hour. Next, the liquid crystal is taken out and injected into a glass cell (for example, KSSZ-10 / B111M1NSS05, manufactured by EHC) in which an alignment film and a transparent electrode are formed in advance. A voltage of 5 V is applied to the obtained cell for 1 second and short-circuited for 0.1 second. Then, the voltage (residual DC value) remaining after 30 seconds is measured by, for example, a 6254 type measuring device (manufactured by Toyo Corporation).
  • a 6254 type measuring device manufactured by Toyo Corporation.
  • the residual DC value of the mixture containing the sealant and the liquid crystal varies slightly depending on the type of the liquid crystal, but it may be 200% or less with respect to the residual DC value of the liquid crystal only, and more preferably 180% or less.
  • the residual DC value of the mixture can be adjusted by the type of components constituting the sealant. For example, for many components contained in the sealant, the residual DC value of the mixture can be satisfied by adjusting the individual residual DC value to be 300% or less of the residual DC value of the liquid crystal display alone. .. More specifically, the ratio of the component having an individual residual DC value of 300% or less with respect to the residual DC value of the liquid crystal display alone is preferably 98% by mass or more with respect to the total amount of the sealant.
  • each component and a liquid crystal display for example, MLC-7026, manufactured by Merck & Co., Inc.
  • a liquid crystal display for example, MLC-7026, manufactured by Merck & Co., Inc.
  • the mixture is heated at 120 ° C. for 1 hour.
  • this mixture is injected into a glass cell (for example, KSSZ-10 / B111M1NSS05, manufactured by EHC) in which an alignment film and a transparent electrode are formed in advance.
  • a voltage of 5 V is applied to the obtained cell for 1 second and short-circuited for 0.1 second.
  • the voltage (residual DC value) remaining after 30 seconds is measured by, for example, a 6254 type measuring device (manufactured by Toyo Corporation). It is more preferable that the residual DC value of each component is 280% or less with respect to the residual DC value of the blank liquid crystal display.
  • the sealant of the present invention includes an epoxy compound, a (meth) acrylic / epoxy-containing compound, a (meth) acrylic compound, a thermosetting agent, and a photopolymerization initiator.
  • an epoxy compound a (meth) acrylic / epoxy-containing compound
  • a (meth) acrylic compound a thermosetting agent
  • a photopolymerization initiator a photopolymerization initiator
  • inorganic particles, organic particles, a silane coupling agent, and the like may be contained, if necessary.
  • the description of (meth) acrylic in the present specification includes acrylic, methacryl, or both.
  • Epoxide compound is a compound containing at least an epoxy group in one molecule and having no polymerizable functional group other than the epoxy group.
  • the polymerizable functional group in the present specification refers to a functional group that is activated by light irradiation or heating, a thermosetting agent, a photopolymerization initiator, a catalyst, or the like to carry out a polymerization reaction.
  • the polymerizable functional group includes a photopolymerizable functional group, a thermopolymerizable functional group, a polyadded functional group and the like, and specific examples thereof include a (meth) acrylic group, a vinyl group, an acrylamide group, an epoxy group and an isosia. Nart group, silanol group and the like are included.
  • the number of epoxy groups contained in one molecule of the epoxy compound is preferably 2 or more.
  • the number of epoxy groups in the epoxy compound is 2 or more, the adhesiveness between the obtained sealing member and the substrate of the liquid crystal display panel becomes good. Further, the moisture resistance of the obtained sealing member is likely to increase.
  • the epoxy compound may be liquid at room temperature or solid.
  • the softening point of the epoxy compound is preferably 40 to 110 ° C. from the viewpoint of the viscosity of the obtained sealant.
  • the epoxy compound may be a monomer, an oligomer, or a polymer.
  • the molecular weight (or weight average molecular weight) of the epoxy compound is usually preferably 220 to 3000, more preferably 250 to 2500, and even more preferably 300 to 2000.
  • the ratio of the component having a molecular weight of 500 or more to the total amount of the epoxy compound is preferably 25% by mass or more.
  • Epoxy compounds with a molecular weight of 500 or more are difficult to dissolve in liquid crystals. Therefore, in such an epoxy compound, the above-mentioned individual residual DC value tends to be 300% or less as compared with the residual DC value of the liquid crystal display alone.
  • the weight average molecular weight of the epoxy compound can be specified (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • the epoxy compound may partially contain an individual residual DC value of more than 300% of the residual DC value of the liquid crystal display alone.
  • the structure of the epoxy compound is not particularly limited, and an example thereof includes an aromatic epoxy compound having an aromatic ring in the main chain.
  • aromatic epoxy compounds include aromatic diols typified by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, diols obtained by modifying these with ethylene glycol, propylene glycol, and alkylene glycol AD, and epichlorohydrin.
  • Aromatic polyvalent glycidyl ether compound obtained by reaction; obtained by reaction of epichlorohydrin with novolak resin derived from phenol, cresol, etc. and formaldehyde, polyphenols represented by polyalkenylphenol, copolymers thereof, etc.
  • novolak-type polyvalent glycidyl ether compounds include novolak-type polyvalent glycidyl ether compounds; glycidyl ether compounds of xylylenephenol resin; naphthalene-type epoxy compounds; diphenyl ether-type epoxy compounds; biphenyl-type epoxy compounds; and the like.
  • the aromatic epoxy compound is a cresol novolac type epoxy compound, a phenol novolac type epoxy compound, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a triphenol methane type epoxy compound, or a triphenol ethane type epoxy compound.
  • Trisphenol type epoxy compound, diphenyl ether type epoxy compound, biphenyl type epoxy compound are preferable.
  • the sealant may contain only one type of epoxy compound, or may contain two or more types of sealant.
  • the value is preferably 150 mV or less.
  • the content of the epoxy compound is preferably 22 to 38% by mass, more preferably 22 to 36% by mass, and even more preferably 23 to 35% by mass with respect to the total amount of the sealant.
  • the amount of the epoxy compound is 25% by mass or more, the adhesive strength between the sealing member obtained from the sealing agent and the substrate of the liquid crystal display panel is increased, and the frame of the liquid crystal display panel can be narrowed.
  • the amount of the epoxy compound is 38% by mass or less, the residual DC value of the mixture of the sealant and the liquid crystal measured as described above tends to be 200% or less with respect to the residual DC value of the liquid crystal only. , The obtained liquid crystal display panel is unlikely to remain.
  • the (meth) acrylic-epoxy-containing compound may be a compound having an epoxy group and a (meth) acrylic group in one molecule.
  • the sealing agent only contains the above-mentioned epoxy compound and the later-described (meth) acrylic compound, the compatibility between them may be low.
  • the sealing agent further contains a (meth) acrylic / epoxy-containing compound, the compatibility between the epoxy compound and the (meth) acrylic compound is enhanced, and the epoxy compound is less likely to be eluted into the liquid crystal.
  • the number of epoxy groups and (meth) acrylic groups contained in one molecule of the (meth) acrylic / epoxy-containing compound is not particularly limited, but may be one, for example. Further, the number of epoxy groups and the number of (meth) acrylic groups may be the same or different.
  • the (meth) acrylic-epoxy-containing compound include a (meth) acrylic-modified epoxy compound obtained by reacting an epoxy compound with (meth) acrylic acid in the presence of a basic catalyst.
  • the epoxy compound used for preparing the (meth) acrylic-modified epoxy compound may be a bifunctional or higher-functional epoxy compound having two or more epoxy groups in the molecule, and may be bisphenol A type, bisphenol F type, or 2,2'-diallyl.
  • Bisphenol type epoxy compounds such as bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; novolak type epoxy compounds such as phenol novolac type, cresol novolac type, biphenyl novolac type, and trisphenol novolac type; biphenyl type epoxy compounds; naphthalene Type epoxy compounds and the like are included.
  • the (meth) acrylic-modified epoxy compound obtained by (meth) acrylic-modifying a polyfunctional epoxy compound such as trifunctional or tetrafunctional has a high crosslink density. Therefore, if the sealing agent contains such a (meth) acrylic-modified epoxy compound, the adhesive strength between the sealing member and the substrate tends to decrease when the liquid crystal display panel is manufactured. Therefore, a (meth) acrylic-modified epoxy compound obtained by modifying a bifunctional epoxy compound with (meth) acrylic is preferable.
  • the epoxy compound for preparing the (meth) acrylic-modified epoxy compound is more preferably a biphenyl type epoxy compound, a naphthalene type epoxy compound, and a bisphenol type epoxy compound, and a bisphenol type epoxy compound such as bisphenol A type and bisphenol F type is a sealant. It is more preferable from the viewpoint of coating efficiency.
  • the epoxy compound for preparing the (meth) acrylic-modified epoxy compound may be one kind or two or more kinds. Further, the epoxy compound for preparing the (meth) acrylic-modified epoxy compound is preferably highly purified by a molecular distillation method, a washing method or the like.
  • reaction between the above epoxy compound and (meth) acrylic acid can be carried out according to a conventional method.
  • (meth) acrylic acid reacts with some of the epoxy groups in the epoxy compound to obtain a (meth) acrylic-modified epoxy compound having a (meth) acrylic group and an epoxy group.
  • the reaction product not only the (meth) acrylic-modified epoxy compound, but also an unreacted epoxy compound and a (meth) acrylic compound in which (meth) acrylic acid reacts with all the epoxy groups of the epoxy compound. May be included.
  • the unreacted epoxy compound is an epoxy compound having no polymerizable functional group other than the above-mentioned epoxy group.
  • the (meth) acrylic compound in which (meth) acrylic acid reacts with all the epoxy groups of the epoxy compound corresponds to the (meth) acrylic compound described later. Therefore, the reaction product may be used as it is as a sealant.
  • the molecular weight (weight average molecular weight) of the (meth) acrylic / epoxy-containing compound is preferably, for example, 310 to 1000, and more preferably 350 to 900.
  • the weight average molecular weight Mw of the (meth) acrylic / epoxy-containing compound can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the amount of the (meth) acrylic / epoxy-containing compound contained in the sealant is preferably 15 to 50% by mass, more preferably 18 to 40% by mass, still more preferably 20 to 35% by mass, based on the total amount of the sealant.
  • the amount of the (meth) acrylic / epoxy-containing compound is 15% by mass or more, the adhesive strength between the sealing member obtained from the sealing agent and the substrate of the liquid crystal display panel is increased, and the frame of the liquid crystal display panel can be narrowed. ..
  • the amount of the epoxy compound is 50% by mass or less, the residual DC value of the mixture of the sealant and the liquid crystal is likely to be 200% or less with respect to the residual DC value of the liquid crystal alone, and the obtained liquid crystal display panel can be obtained. Afterimages are unlikely to occur.
  • the (meth) acrylic compound is a compound containing one or more (meth) acrylic groups in one molecule and does not have an epoxy group.
  • the (meth) acrylic compound may be a monomer, an oligomer, or a polymer.
  • the number of (meth) acrylic groups contained in one molecule of the (meth) acrylic compound is preferably 2 or more.
  • the photocurability of the sealant becomes good.
  • examples of the (meth) acrylic compound include di (meth) acrylates such as polyethylene glycol, propylene glycol, and polypropylene glycol; di (meth) acrylates of tris (2-hydroxyethyl) isocyanurate; and 1 mol of neopentyl glycol.
  • the glass transition temperature of the (meth) acrylic compound is preferably 25 ° C. or higher and lower than 200 ° C. from the viewpoint that the elastic modulus of the film after photo-curing of the sealant easily falls within a desired range.
  • the glass transition temperature is more preferably 40 ° C. to 200 ° C., further preferably 50 to 150 ° C.
  • the glass transition temperature is measured by a viscoelasticity measuring device (DMS).
  • the molecular weight (or weight average molecular weight) of the (meth) acrylic compound is preferably 310 to 1000, more preferably 400 to 900.
  • the weight average molecular weight Mw of the (meth) acrylic compound can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the amount of the (meth) acrylic compound contained in the sealant is preferably 15 to 40% by mass, more preferably 18 to 35% by mass, based on the total amount of the sealant, although it depends on the curability of the desired sealant. 20 to 32% by mass is more preferable.
  • the amount of the (meth) acrylic compound is in the above range, the elastic modulus of the sealant after photocuring tends to be good.
  • thermosetting agent may be any component capable of curing the epoxy compound by heating.
  • thermosetting agents do not cure the above-mentioned epoxy compounds and (meth) acrylic / epoxy-containing compounds under normal storage conditions (room temperature, visible light, etc.), but compounds that cure these compounds by heating. Is preferable.
  • the sealing agent containing such a thermosetting agent both storage stability and thermosetting property can be achieved at the same time.
  • a compound capable of curing an epoxy compound hereinafter, also referred to as "epoxy curing agent” is preferable.
  • the melting point of the epoxy curing agent is preferably 50 ° C. or higher and 250 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower, and 150 ° C. or higher, from the viewpoint of increasing the viscosity stability of the sealing agent and not impairing the moisture resistance of the obtained sealing member. It is more preferably ° C. or higher and 200 ° C. or lower.
  • the sealing agent can be made one-component curable.
  • workability is excellent because it is not necessary to mix the main agent and the curing agent at the time of use.
  • epoxy curing agents examples include organic acid dihydrazide-based thermal latent curing agents, imidazole-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents.
  • epoxy curing agents include organic acid dihydrazide-based thermal latent curing agents, imidazole-based thermal latent curing agents, dicyandiamide-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents. Contains agents.
  • organic acid dihydrazide-based thermal latent curing agents include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydranthin (melting point 120 ° C.), 7,11-octa. Includes decadien-1,18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like.
  • imidazole-based thermal latent curing agents examples include 2,4-diamino-6- [2'-ethylimidazolyl- (1')]-ethyltriazine (melting point 215-225 ° C.) and 2-phenylimidazole (melting point). 137 to 147 ° C.) and the like.
  • dicyandiamide-based thermal latent curing agents examples include dicyandiamide (melting point 209 ° C.) and the like.
  • the amine adduct-based thermal latent curing agent is a thermal latent curing agent composed of an additional compound obtained by reacting an amine-based compound having catalytic activity with an arbitrary compound.
  • amine adduct-based thermal latent curing agents are Ajinomoto Fine-Techno's Amicure PN-40 (melting point 110 ° C), Ajinomoto Fine-Techno's Amicure PN-23 (melting point 100 ° C), and Ajinomoto Fine-Techno's Amicure PN.
  • the polyamine-based thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting amine and epoxy, and an example thereof is ADEKA Hardener EH4339S (softening point 120 to 130 ° C.) manufactured by ADEKA Corporation. , And ADEKA Hardener EH4357S (softening point 73 to 83 ° C.) and the like.
  • organic acid dihydrazide-based thermal latent curing agent organic acid dihydrazide-based thermal latent curing agent, imidazole-based thermal latent curing agent, amine adduct-based thermal latent curing agent, or polyamine A thermal latent curing agent is preferred.
  • the sealant may contain only one type of epoxy curing agent, or may contain two or more types of sealant.
  • the content of the thermosetting agent is preferably 1 to 20% by mass, more preferably 2 to 18% by mass, still more preferably 3 to 15% by mass, based on the total amount of the sealing agent.
  • the amount of the thermosetting agent is within the above range, the thermosetting property of the sealant becomes good.
  • the photopolymerization initiator may be a compound capable of generating an active species by irradiation with light, may be a self-cleaving type photopolymerization initiator, or may be a hydrogen abstraction type photopolymerization. It may be an initiator.
  • the sealing agent may contain only one kind of photopolymerization initiator, or may contain two or more kinds of photopolymerization initiators.
  • self-cleaving photopolymerization initiators include benzyl dimethyl ketals such as alkylphenone compounds (eg, 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF IRGACURE 651)), 2-. ⁇ -Aminoalkylphenone such as methyl-2-morpholino (4-thiomethylphenyl) propan-1-one (IRGACURE 907 manufactured by BASF), 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184 manufactured by BASF), etc.
  • acylphosphine oxide compounds eg 2,4,6-trimethylbenzoindiphenylphosphine oxide, etc.
  • titanosen compounds eg, bis ( ⁇ 5-2,4-cyclopentadiene-1-yl))- Bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium, etc.
  • acetophenone compounds eg diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1- On, benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1, -Hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2
  • hydrogen abstraction-type photopolymerization initiators examples include benzophenone compounds (eg, benzophenone, o-benzoylmethylbenzoate methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-.
  • benzophenone compounds eg, benzophenone, o-benzoylmethylbenzoate methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-.
  • Methyl-diphenylsulfide acrylicized benzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, etc.
  • thioxanthone compounds eg, thioxanthone, 2-Chlorothioxanthone (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1-chloro-4-propoxythioxanthone, 1-chloro-4-ethoxythioxanthone (Spedcure CPTX manufactured by Lambson Limited), 2-isopropylxantone (Speedcure ITX manufactured by Lambson Limited) , 4-Isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone (Speedcure DETX manufactured by Lambson Limited), 2,4-dichlorothioxanthone,
  • the absorption wavelength of the photopolymerization initiator is not particularly limited, and for example, a photopolymerization initiator that absorbs light having a wavelength of 360 nm or more is preferable. Among them, it is more preferable to absorb light in the visible light region, a photopolymerization initiator that absorbs light having a wavelength of 360 to 780 nm is more preferable, and a photopolymerization initiator that absorbs light having a wavelength of 360 to 430 nm is particularly preferable.
  • Examples of the photopolymerization initiator that absorbs light having a wavelength of 360 nm or more include an alkylphenone-based compound, an acylphosphine oxide-based compound, a titanosen-based compound, an oxime ester-based compound, a thioxanthone-based compound, and an anthraquinone-based compound, and are preferable. It is an oxime ester compound.
  • the structure of the photopolymerization initiator can be specified by combining high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC / MS) with NMR measurement or IR measurement.
  • HPLC high performance liquid chromatography
  • LC / MS liquid chromatography mass spectrometry
  • the molecular weight of the photopolymerization initiator is preferably 200 or more and 5000 or less, for example.
  • the molecular weight of the photopolymerization initiator is more preferably 230 or more and 3000 or less, and further preferably 230 or more and 1500 or less.
  • the molecular weight of the photopolymerization initiator can be determined as the "relative molecular weight" of the molecular structure of the main peak detected when analyzed by high performance liquid chromatography (HPLC: High Performance Liquid Chromatography).
  • the main peak refers to the peak with the highest intensity (the peak with the highest peak height) among all the peaks detected at the detection wavelength characteristic of each compound (for example, 400 nm in the case of a thioxanthone compound).
  • the relative molecular weight corresponding to the peak peak of the detected main peak can be measured by liquid chromatography-mass spectrometry (LC / MS: Liquid Chromatography Mass Spectrometry).
  • the amount of the photopolymerization initiator is preferably 0.1 to 8% by mass, more preferably 0.5 to 5% by mass, still more preferably 1 to 3% by mass, based on the total amount of the sealant.
  • the amount of the photopolymerization initiator is 0.1% by mass or more, the photocurability of the sealant tends to be good.
  • the amount of the photopolymerization initiator is 8% by mass or less, it becomes difficult for the photopolymerization initiator to elute into the liquid crystal display.
  • the sealant may further contain inorganic particles, if necessary.
  • the sealing agent contains inorganic particles, the viscosity of the sealing agent, the strength of the obtained sealing member, the linear expansion property, and the like tend to be improved.
  • inorganic particle materials include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, titanium nitride, aluminum oxide (alumina), zinc oxide, silicon dioxide, and titanic acid. Includes potassium, kaolin, talc, glass beads, sericite-activated clay, bentonite, aluminum oxide, silicon nitride and the like.
  • the sealing agent may contain only one kind of inorganic particles, or may contain two or more kinds of sealing agents. Among the above, silicon dioxide or talc is preferable as the inorganic particles.
  • the shape of the inorganic particles may be a fixed shape such as a spherical shape, a plate shape, a needle shape, or a non-fixed shape.
  • the average primary particle size of the inorganic particles is preferably 1.5 ⁇ m or less, and the specific surface area is more preferably 0.5 to 20 m 2 / g.
  • the average primary particle size of the inorganic particles can be measured by the laser diffraction method described in JIS Z8825-1.
  • the specific surface area of the inorganic particles can be measured by the BET method described in JIS Z8830.
  • the content of the inorganic particles is preferably 0.1 to 25% by mass, more preferably 3 to 20% by mass, still more preferably 5 to 18% by mass, based on the total amount of the sealant.
  • the content of the inorganic particles is 0.1% by mass or more, the moisture resistance of the obtained sealing member tends to increase, and when it is 25% by mass or less, the coating stability of the sealing agent is not easily impaired.
  • the organic particle sealant may further contain organic particles, if necessary. When the sealant contains organic particles, it becomes easy to adjust the elastic modulus of the sealant after photocuring.
  • organic particles examples include silicone particles, acrylic particles, styrene particles such as a styrene / divinylbenzene copolymer, and polyolefin particles.
  • the sealing agent may contain only one kind of organic particles, or may contain two or more kinds of organic particles.
  • the average primary particle size of the organic particles is preferably 0.05 to 13 ⁇ m, more preferably 0.1 to 10 ⁇ m, and even more preferably 0.1 to 8 ⁇ m.
  • the shape of the organic particles is not particularly limited, but is preferably spherical, and more preferably true spherical.
  • the average primary particle size of organic particles can be measured by microscopy, specifically image analysis with an electron microscope.
  • it is preferable that the surface of the organic particles is smooth. A smooth surface reduces the specific surface area and increases the amount of organic particles that can be added to the sealant.
  • the content of the organic particles is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, still more preferably 3 to 12% by mass, based on the total amount of the sealant.
  • the amount of organic particles is in the above range, the elastic modulus of the sealant after photocuring tends to be within a desired range.
  • the sealant of the present invention includes, if necessary, a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, a sensitizer, and the like. It may further contain additives such as plasticizers and antifoaming agents.
  • a thermal radical polymerization initiator such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, a sensitizer, and the like. It may further contain additives such as plasticizers and antifoaming agents.
  • silane coupling agents examples include vinyltrimethoxysilane, ⁇ - (meth) acryloxipropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and the like.
  • the amount of the silane coupling agent is preferably 0.01 to 6% by mass, more preferably 0.1 to 5% by mass, still more preferably 0.5 to 3% by mass, based on the total amount of the sealing agent.
  • the content of the silane coupling agent is 0.01% by mass or more, the obtained sealing member tends to have sufficient adhesiveness.
  • many silane coupling agents have a high residual DC value. Therefore, the amount of the silane coupling agent is preferably 6% by mass or less.
  • the sealant may further contain a spacer or the like for adjusting the gap of the liquid crystal display panel.
  • the total amount of other components is preferably 1 to 50% by mass with respect to the total amount of the sealant.
  • the viscosity of the sealant is unlikely to increase excessively, and the coating stability of the sealant is unlikely to be impaired.
  • the viscosity of the E-type viscometer of the sealing agent at 25 ° C. and 2.5 rpm is preferably 200 to 450 Pa ⁇ s, more preferably 300 to 400 Pa ⁇ s.
  • the viscosity is in the above range, when a pair of substrates are superposed on each other via a sealant (seal pattern), the sealant is likely to be deformed so as to fill these gaps. Therefore, the gap between the pair of substrates of the liquid crystal display panel can be appropriately controlled.
  • the thixotropy index (TI value) of the sealant is preferably 1.0 to 1.5, more preferably 1.1 to 1.3, from the viewpoint of the coatability of the sealant.
  • the TI value is determined by using an E-type viscometer, the viscosity of the sealant at room temperature (25 ° C.) and 0.5 rpm is ⁇ 1, and the viscosity of the sealant at 5 rpm is ⁇ 2. It is a value obtained by applying to.
  • TI value (viscosity ⁇ 1 (25 ° C) at 0.5 rpm) / (viscosity ⁇ 2 (25 ° C) at 5 rpm) ... (1)
  • the residual DC value measured by mixing the sealant and the liquid crystal as described above is preferably 100 mV or less.
  • the liquid crystal it is preferable to measure using MLC-7026 manufactured by Merck & Co., Ltd.
  • the liquid crystal display panel of the present invention includes a pair of substrates, a frame-shaped seal member arranged between the substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped seal member.
  • the sealing member is a cured product of the above-mentioned sealing agent.
  • the sealing member obtained from the above-mentioned sealing agent has high adhesive strength with the substrate, and even if the sealing member is thinned, liquid crystal leakage or the like is unlikely to occur. Further, the sealing agent is less likely to contaminate the liquid crystal display. Therefore, afterimages and the like are unlikely to occur when the liquid crystal display panel is used.
  • the pair of substrates are both transparent substrates.
  • Examples of materials for the transparent substrate include glass or polycarbonate, polyethylene terephthalate, polyether sulfone, PMMA and the like.
  • a matrix-shaped TFT, a color filter, a black matrix, etc. are arranged on the surface of the display board or the facing board.
  • An alignment film is further formed on the surface of the display substrate or the facing substrate.
  • the alignment film includes known organic alignment agents, inorganic alignment agents, and the like. Further, a known liquid crystal can be used as the liquid crystal.
  • the liquid crystal display panel manufacturing method generally includes a liquid crystal dropping method and a liquid crystal injection method, but the liquid crystal display panel manufacturing method of the present invention is preferably the liquid crystal dropping method.
  • the method for manufacturing a liquid crystal display panel by the liquid crystal dropping method is as follows: 1) a seal pattern forming step of applying the above-mentioned sealant to one substrate to form a frame-shaped seal pattern, and 2) a state in which the seal pattern is uncured. Then, the liquid crystal is dropped on one substrate and in the region surrounded by the seal pattern, or on the other substrate and in the region surrounded by the seal pattern when the other substrate and one substrate are opposed to each other. It includes a step, 3) a superposition step of superimposing one substrate and the other substrate via a seal pattern, and 4) a curing step of curing the seal pattern.
  • the above-mentioned sealant is applied to one of the substrates.
  • the method of applying the sealant is not particularly limited, and is not particularly limited as long as it is a method capable of forming a seal pattern with a desired thickness and width, such as screen printing or application with a dispenser, and a known method of applying the sealant. Is similar to.
  • the shape of the seal pattern to be formed may be appropriately selected according to the application of the liquid crystal display panel, etc., and may be a shape in which the liquid crystal does not leak. For example, it may have a rectangular frame shape, but is not limited to the shape.
  • the line width of the seal pattern is preferably 0.2 to 1.0 mm, more preferably 0.2 to 0.5 mm.
  • the pair of substrates are opposed to each other with the seal pattern uncured.
  • the state in which the seal pattern is uncured means a state in which the curing reaction of the sealant has not progressed to the gel point.
  • the seal pattern may be semi-cured by irradiating or heating the seal pattern in order to suppress the dissolution of the sealant in the liquid crystal.
  • the method of dropping the liquid crystal is the same as the known method of dropping the liquid crystal, and the liquid crystal may be dropped on the substrate on which the seal pattern is formed, and the liquid crystal may be dropped on the substrate on which the seal pattern is not formed (the other substrate). May be dropped.
  • the seal pattern is cured.
  • the method for curing the seal pattern is not particularly limited, but it is preferable that the seal pattern is temporarily cured by irradiation with light having a predetermined wavelength and then finally cured by heating. By light irradiation, the seal pattern can be instantly cured, and the components in the sealant can be suppressed from being dissolved in the liquid crystal display.
  • the wavelength of the light to be irradiated is appropriately selected according to the type of the photopolymerization initiator, and ultraviolet light is preferable.
  • the light irradiation time is, for example, about 10 minutes, although it depends on the composition of the sealant.
  • the amount of energy to be irradiated at this time may be an amount of energy sufficient to cure the (meth) acrylic compound or the (meth) acrylic / epoxy-containing compound.
  • the epoxy compound and (meth) acrylic / epoxy-containing compound are cured by heating.
  • the heating temperature depends on the composition of the sealant, but is, for example, 100 to 150 ° C., and the heating time is preferably about 2 hours.
  • the obtained composition was washed with ultrapure water 20 times to obtain a methacrylic acid-modified epoxy compound-containing composition (photocurable compound-containing composition 1).
  • a methacrylic acid-modified epoxy compound-containing composition photocurable compound-containing composition 1
  • the proportion of (meth) acrylic compounds modified to methacrylic groups was 25 mol%.
  • the obtained composition was separated by a column, and the value of each residual DC was measured by the method described later. The results are shown in Table 1.
  • Example 2 A sealant was prepared in the same manner as in Example 1 except that the photocurable composition 1 was changed to the photocurable composition 2.
  • thermosetting agent azipin
  • Acid dihydrazide manufactured by Otsuka Chemical Co., Ltd.
  • photopolymerization initiator OXE-01, manufactured by BASF Co., Ltd.
  • inorganic particles siliconca particles: S-100, manufactured by Nippon Catalytic Chemical Co., Ltd.
  • organic particles fine particle polymer F351, manufactured by Aika Kogyo Co., Ltd.
  • epoxy compound 850-S, manufactured by DIC, bisphenol
  • thermal curing agent adipate dihydrazide, manufactured by Otsuka Chemical Co., Ltd.
  • fine particle polymer F351 manufactured by Aika Kogyo Co., Ltd.
  • 90 parts by mass of organic particles fine particle polymer F351, manufactured by Aika Kogyo Co., Ltd.
  • the sealant was applied to a 40 mm ⁇ 45 mm glass substrate (RT-DM88-PIN, manufactured by EHC) in which a transparent electrode and an alignment film were previously formed using a dispenser (shot master: manufactured by Musashi Engineering Co., Ltd.). Specifically, a 35 mm ⁇ 40 mm quadrangular seal pattern (cross-sectional area 3500 ⁇ m 2 ) (main seal) and a similar seal pattern (38 mm ⁇ 43 mm quadrangular seal pattern) were formed on the outer circumference thereof.
  • a liquid crystal display (MLC-7026-000, manufactured by Merck & Co., Inc.) corresponding to the capacity of the panel after bonding was precisely dropped into the frame of the main seal using a dispenser.
  • the paired glass substrates were bonded under reduced pressure, and then opened to the atmosphere for bonding.
  • the two laminated glass substrates were held in a light-shielding box for 3 minutes , then irradiated with light having a wavelength of 370 to 450 nm at 100 mJ / cm 2 and further heated at 120 ° C. for 1 hour.
  • Polarizing plates were attached to both sides of the obtained substrate to prepare an evaluation substrate.
  • Electrodes were connected so as to drive only one side of the portion of the evaluation substrate filled with the liquid crystal display, and the mixture was energized at 65 ° C. for 24 hours while applying a voltage of 10 V. After that, the entire surface was driven by 4 V, and the boundary line between the half-side drive and the full-surface drive was observed with a microscope.
  • the afterimage was evaluated as follows from the state on the boundary line of the substrate. When narrowing the frame, only ⁇ can be said to be a range where there is no practical problem.
  • No difference is seen on the boundary line of the substrate and no afterimage is seen
  • An image is seen on the boundary line of the substrate within a range of less than 1 mm from the end of the sealing material
  • A part of 1 mm or more from the end of the sealing material Afterimage is seen on the board boundary line
  • ⁇ Adhesive strength evaluation> Using a screen plate, the sealant was printed on 25 mm ⁇ 45 mm ⁇ 1 mm thick non-alkali glass. The seal pattern was a circle with a diameter of 1 mm. Then, a pair of non-alkali glass was placed on the seal pattern and fixed with a jig. The test piece was irradiated with ultraviolet light of 500 mW / cm 2 with an ultraviolet light irradiation device (manufactured by Ushio, Inc.) to cure the sealant. At this time, the illuminance energy of the ultraviolet light was set to 3.0 J / cm 2 . The test piece obtained by curing the sealant with light was heat-treated at 120 ° C. for 60 minutes using an oven to prepare a sample for measuring adhesive strength.
  • the tensile strength of the flat surface of the sample was measured by using a tensile tester (manufactured by Intesco) at a tensile speed of 2 mm / min and peeling the cured sealant in a direction parallel to the bottom surface of the glass. ..
  • the adhesive strength was evaluated as follows according to the magnitude of the planar tensile strength. When narrowing the frame, ⁇ or more is preferable. ⁇ : Tensile strength is 15 MPa or more ⁇ : Tensile strength is 10 MPa or more and less than 15 MPa ⁇ : Tensile strength is less than 10 MPa
  • the epoxy compound contains an epoxy compound, a (meth) acrylic / epoxy-containing compound, a (meth) acrylic compound, a heat curing agent, and a photopolymerization initiator, and the content of the epoxy compound is 22 to 38% by mass.
  • the afterimage evaluation is good and the adhesive strength evaluation is also good. (Examples 1 to 7). It is considered that sufficient adhesiveness was obtained by the predetermined amount of the epoxy compound. Further, it can be said that the components in the sealant are difficult to elute into the liquid crystal display in the sealant having a low residual DC value when mixed with the liquid crystal display.
  • the sealant of the present invention a seal member having high adhesiveness to the substrate can be obtained.
  • the sealant does not easily contaminate the liquid crystal display. Therefore, the sealant is very useful as a sealant or the like for producing a seal member for various liquid crystal display panels.

Abstract

The present invention addresses the problem of providing: a sealing agent for liquid crystal dropping methods, said sealing agent being able to be suited to frame narrowing of a liquid crystal display panel and being capable of forming a sealing member that exhibits high bonding strength to a substrate, while being not likely to be dissolved in liquid crystals; and a method for producing a liquid crystal display panel. A sealing agent for liquid crystal dropping methods, by which the above-described problem is solved, contains an epoxy compound that does not have a polymerizable functional group other than an epoxy group, a (meth)acryl/epoxy-containing compound that has both a (meth)acryl group and an epoxy group in each molecule, a (meth)acrylic compound that does not have an epoxy group, a thermal curing agent and a photopolymerization initiator; and the content of the epoxy compound is from 22 to 38% by mass. The residual DC value as measured in 30 seconds after heating a mixture, in which the sealing agent for liquid crystal dropping methods and liquid crystals are mixed at a mass ratio of 1:10, at 120°C for one hour, applying a voltage thereto at 5V for one second, and short-circuiting for 0.1 second is 200% or less of the residual DC value as measured using only the liquid crystals.

Description

液晶滴下工法用シール剤および液晶表示パネルの製造方法Manufacturing method of sealant for liquid crystal dropping method and liquid crystal display panel
 本発明は、液晶滴下工法用シール剤および液晶表示パネルの製造方法に関する。 The present invention relates to a sealant for a liquid crystal dropping method and a method for manufacturing a liquid crystal display panel.
 液晶滴下工法によって液晶表示パネルを製造する場合、液晶シール剤を塗布してシールパターンを形成する。そして、シールパターンを形成した基板、もしくはこれと対になる基板上に液晶を滴下し、真空で貼り合わせる。その後、UV照射したり、加熱したりすることでシールパターンを硬化させ、シール部材を形成する。しかしながら、当該方法では、液晶シール剤が未硬化の状態で、液晶を滴下するため、液晶シール剤中の不純物や低分子成分が液晶に溶出することがあった。そして、低分子成分等液晶に溶出すると、液晶表示パネルに、残像と称される表示不良が生じやすかった。 When manufacturing a liquid crystal display panel by the liquid crystal dropping method, a liquid crystal sealant is applied to form a seal pattern. Then, the liquid crystal is dropped onto the substrate on which the seal pattern is formed or the substrate that is paired with the seal pattern, and the liquid crystals are bonded together in a vacuum. After that, the seal pattern is cured by UV irradiation or heating to form a seal member. However, in this method, since the liquid crystal sealant is dropped in the uncured state, impurities and small molecule components in the liquid crystal sealant may be eluted into the liquid crystal sealant. Then, when the small molecule component or the like elutes into the liquid crystal display, a display defect called an afterimage is likely to occur on the liquid crystal display panel.
 ここで、従来の液晶シール剤は、UV硬化性である(メタ)アクリル化合物と、熱硬化性であるエポキシ化合物とを含むことが多かった。そして、エポキシ化合物は、UV硬化によって通常硬化しない。そのため、UV硬化後のシールパターン内には、未だに低分子量のエポキシ化合物が多く含まれる。そして、当該シールパターンを熱硬化のために加熱すると、熱によって液晶が相転移し、シールパターン中のエポキシ化合物が液晶に溶出しやすかった。 Here, the conventional liquid crystal sealant often contains a UV-curable (meth) acrylic compound and a thermosetting epoxy compound. And the epoxy compound is usually not cured by UV curing. Therefore, the seal pattern after UV curing still contains a large amount of low molecular weight epoxy compounds. Then, when the seal pattern was heated for thermosetting, the liquid crystal phase transitioned due to the heat, and the epoxy compound in the seal pattern was easily eluted into the liquid crystal.
 そこで、一分子中に(メタ)アクリル基とエポキシ基とを有する化合物を使用することで、UV硬化性および熱硬化性を確保しつつ、エポキシ化合物の液晶への溶出を抑制することが提案されている(例えば、特許文献1)。また、融点が50℃以上である結晶性エポキシ化合物を用いることで、エポキシ化合物の液晶への溶出を抑制することも提案されている(特許文献2)。 Therefore, it has been proposed to use a compound having a (meth) acrylic group and an epoxy group in one molecule to suppress elution of the epoxy compound into a liquid crystal while ensuring UV curability and thermosetting property. (For example, Patent Document 1). It has also been proposed to suppress the elution of the epoxy compound into the liquid crystal display by using a crystalline epoxy compound having a melting point of 50 ° C. or higher (Patent Document 2).
特開2015-28184号公報Japanese Unexamined Patent Publication No. 2015-28184 特開2006-23583号公報Japanese Unexamined Patent Publication No. 2006-23583
 ここで近年、液晶表示パネルの液晶表示領域を大きくし、これを囲む領域の幅を狭くすること(以下、「狭額縁化」とも称する)ことが求められている。狭額縁化の実現には、シール部材の幅を細くすることも不可欠である。ただし、従来のシール部材では、その幅を細くすると、接着強度が不十分になりやすく、基板とシール部材との界面で剥離が生じ、液晶の染み出し等が生じやすかった。 Here, in recent years, it has been required to increase the liquid crystal display area of the liquid crystal display panel and narrow the width of the area surrounding the liquid crystal display area (hereinafter, also referred to as "narrowing the frame"). In order to realize a narrow frame, it is also indispensable to narrow the width of the seal member. However, with the conventional seal member, if the width is narrowed, the adhesive strength tends to be insufficient, peeling occurs at the interface between the substrate and the seal member, and the liquid crystal display tends to exude.
 また、シール部材と基板との接着強度には、エポキシ化合物等が含むエポキシ基が大きく寄与する。上述の特許文献1に記載の技術では、UV硬化によって、エポキシ基を有する化合物が重合する。そのため、熱硬化の際にエポキシ基が自由に動き難く、エポキシ基が、基板との結合に十分に寄与できなかった。一方、特許文献2に記載の技術では、液晶シール剤の粘度が上昇してしまうことから、液晶シール剤に、融点の高いエポキシ化合物を多く含めることが難しい。そのため、当該技術によっても、十分な接着強度が得られ難かった。 In addition, the epoxy group contained in the epoxy compound or the like greatly contributes to the adhesive strength between the sealing member and the substrate. In the technique described in Patent Document 1 described above, a compound having an epoxy group is polymerized by UV curing. Therefore, the epoxy group is difficult to move freely during thermosetting, and the epoxy group cannot sufficiently contribute to the bond with the substrate. On the other hand, in the technique described in Patent Document 2, it is difficult to include a large amount of epoxy compound having a high melting point in the liquid crystal sealant because the viscosity of the liquid crystal sealant increases. Therefore, it has been difficult to obtain sufficient adhesive strength even with this technique.
 本発明は、上記課題を鑑みてなされたものである。具体的には、液晶表示パネルの狭額縁化にも対応可能な、基板との接着強度が高いシール部材を形成可能であり、かつ液晶に溶解し難い液晶滴下工法用シール剤および液晶表示パネルの製造方法の提供を目的とする。 The present invention has been made in view of the above problems. Specifically, the sealant for the liquid crystal dripping method and the liquid crystal display panel, which can form a sealing member having high adhesive strength to the substrate and which can cope with the narrowing of the frame of the liquid crystal display panel and which is difficult to dissolve in the liquid crystal. The purpose is to provide a manufacturing method.
 本発明は、以下の液晶滴下工法用シール剤を提供する。
 [1]エポキシ基以外の重合性官能基を有さないエポキシ化合物、1分子中に(メタ)アクリル基およびエポキシ基の両方を有する(メタ)アクリル・エポキシ含有化合物、エポキシ基を有さない(メタ)アクリル化合物、熱硬化剤、および光重合開始剤を含み、かつ前記エポキシ化合物の含有量が22~38質量%である液晶滴下工法用シール剤であり、前記液晶滴下工法用シール剤および液晶を質量比1:10で混合した混合物を、120℃で1時間加熱し、5Vで1秒間電圧を印加し、0.1秒間短絡させてから、30秒後に測定される残留DC値が、前記液晶のみを120℃で1時間加熱し、5Vで1秒間電圧を印加し、0.1秒間短絡させてから、30秒後に測定される残留DC値に対して200%以下である、液晶滴下工法用シール剤。
The present invention provides the following sealant for the liquid crystal dropping method.
[1] An epoxy compound having no polymerizable functional group other than an epoxy group, a (meth) acrylic / epoxy-containing compound having both a (meth) acrylic group and an epoxy group in one molecule, and no epoxy group ( Meta) A sealant for the liquid crystal dropping method, which contains an acrylic compound, a heat curing agent, and a photopolymerization initiator, and has a content of the epoxy compound of 22 to 38% by mass. The residual DC value measured 30 seconds after heating the mixture of 1:10 by mass ratio at 120 ° C. for 1 hour, applying a voltage at 5 V for 1 second, short-circuiting for 0.1 seconds, is the above-mentioned. A liquid crystal dropping method in which only the liquid crystal is heated at 120 ° C. for 1 hour, a voltage is applied at 5 V for 1 second, short-circuited for 0.1 seconds, and then 200% or less of the residual DC value measured 30 seconds later. Sealant for.
 [2]前記液晶滴下工法用シール剤が含む各成分について、前記各成分と液晶とをそれぞれを質量比1:10で混合し、120℃で1時間加熱し、5Vで1秒間電圧を印加し、0.1秒間短絡させてから、30秒後に残留DC値を測定したとき、前記液晶滴下工法用シール剤の98質量%以上の成分の前記残留DC値が、前記液晶のみを120℃で1時間加熱し、5Vで1秒間電圧を印加し、0.1秒間短絡させてから、30秒後に測定される残留DC値に対して300%以下である、[1]に記載の液晶滴下工法用シール剤。
 [3]前記エポキシ化合物のうち、分子量が500以上である成分の割合が、25質量%以上である、[1]または[2]に記載の液晶滴下工法用シール剤。
[2] For each component contained in the sealant for the liquid crystal dropping method, each of the components and the liquid crystal is mixed at a mass ratio of 1:10, heated at 120 ° C. for 1 hour, and a voltage is applied at 5 V for 1 second. When the residual DC value was measured 30 seconds after the short circuit was performed for 0.1 seconds, the residual DC value of 98% by mass or more of the sealant for the liquid crystal dropping method was 1 at 120 ° C. for the liquid crystal display only. For the liquid crystal dropping method according to [1], which is 300% or less of the residual DC value measured 30 seconds after heating for hours, applying a voltage at 5 V for 1 second, short-circuiting for 0.1 seconds. Sealant.
[3] The sealant for a liquid crystal dropping method according to [1] or [2], wherein the proportion of the component having a molecular weight of 500 or more in the epoxy compound is 25% by mass or more.
 [4]前記熱硬化剤が、有機酸ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1種以上である、[1]~[3]のいずれかに記載の液晶滴下工法用シール剤。
 [5]無機粒子をさらに含む、[1]~[4]のいずれかに記載の液晶滴下工法用シール剤。
 [6]有機粒子をさらに含む、[1]~[5]のいずれかに記載の液晶滴下工法用シール剤。
 [7]シランカップリング剤をさらに含む、[1]~[6]のいずれかに記載の液晶滴下工法用シール剤。
[4] The thermal curing agent is selected from the group consisting of an organic acid dihydrazide-based thermal latent curing agent, an imidazole-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, and a polyamine-based thermal latent curing agent. The sealant for the liquid crystal dropping method according to any one of [1] to [3], which is one or more.
[5] The sealant for a liquid crystal dropping method according to any one of [1] to [4], which further contains inorganic particles.
[6] The sealant for a liquid crystal dropping method according to any one of [1] to [5], which further contains organic particles.
[7] The sealant for the liquid crystal dropping method according to any one of [1] to [6], which further contains a silane coupling agent.
 [8]一対の基板の一方の基板上に、[1]~[7]のいずれか一項に記載の液晶滴下工法用シール剤を塗布し、シールパターンを形成する工程と、前記シールパターンが未硬化の状態において、前記一方の基板の前記シールパターンの領域内、または他方の基板上に液晶を滴下する工程と、前記一方の基板と前記他方の基板とを、前記シールパターンを介して重ね合わせる工程と、前記シールパターンを硬化させる工程と、を含む、液晶表示パネルの製造方法。 [8] A step of applying the sealant for the liquid crystal drop method according to any one of [1] to [7] on one of the pair of substrates to form a seal pattern, and the seal pattern. In the uncured state, the step of dropping the liquid crystal in the region of the seal pattern of the one substrate or on the other substrate, and the one substrate and the other substrate are overlapped with each other via the seal pattern. A method for manufacturing a liquid crystal display panel, which comprises a step of matching and a step of curing the seal pattern.
 [9]前記シールパターンを硬化させる工程において、前記シールパターンに光を照射する、[8]に記載の液晶表示パネルの製造方法。
 [10]前記シールパターンを硬化させる工程において、光を照射後、加熱する、[9]に記載の液晶表示パネルの製造方法。
[9] The method for manufacturing a liquid crystal display panel according to [8], wherein the seal pattern is irradiated with light in a step of curing the seal pattern.
[10] The method for manufacturing a liquid crystal display panel according to [9], wherein in the step of curing the seal pattern, the seal pattern is irradiated with light and then heated.
 本発明の液晶滴下工法用シール剤は液晶に溶解し難い。さらに当該液晶滴下工法用シール剤から得られるシール部材と、基板との接着強度が高い。したがって、得られる液晶表示パネルにおいて、液晶漏れや残像が生じ難く、さらには狭額縁化も実現できる。 The sealant for the liquid crystal dropping method of the present invention is difficult to dissolve in the liquid crystal. Further, the adhesive strength between the sealing member obtained from the sealing agent for the liquid crystal dropping method and the substrate is high. Therefore, in the obtained liquid crystal display panel, liquid crystal leakage and afterimages are unlikely to occur, and a narrower frame can be realized.
 1.液晶滴下工法用シール剤
 本発明の液晶滴下工法用シール剤(以下、単に「シール剤」とも称する)は、液晶表示パネルのシール部材を作製するための部材であり、液晶滴下工法で液晶表示パネルを作製する場合に好適に用いられる。ただし、液晶注入工法等で液晶表示パネルを作製するためにも用いることができる。
1. 1. Sealing agent for liquid crystal dripping method The sealing agent for liquid crystal dripping method of the present invention (hereinafter, also simply referred to as "seal agent") is a member for producing a sealing member for a liquid crystal display panel, and is a member for manufacturing a sealing member for a liquid crystal display panel. Is preferably used when producing. However, it can also be used to manufacture a liquid crystal display panel by a liquid crystal injection method or the like.
 上述のように、従来のシール剤では、接着強度の向上に寄与可能なエポキシ化合物を多く含めると、液晶表示パネルを製造する際に、液晶が汚染されやすい、という課題があった。一方で、エポキシ化合物の量を少なくすると、例えば液晶表示パネルを狭額縁化したときに、十分な接着強度が得られず、基板とシール剤の硬化物(シール部材)との間で剥離が生じることがあった。 As described above, the conventional sealant has a problem that the liquid crystal display panel is easily contaminated when a large amount of epoxy compound that can contribute to the improvement of the adhesive strength is contained. On the other hand, if the amount of the epoxy compound is reduced, for example, when the liquid crystal display panel is narrowed, sufficient adhesive strength cannot be obtained, and peeling occurs between the substrate and the cured product (seal member) of the sealant. There was something.
 これに対し、本発明者らの鋭意検討により、シール剤の総量に対して、エポキシ化合物の量を22~38質量%とし、かつシール剤と液晶とを所定の比で混合した混合物の残留DC値が、液晶のみの残留DC値に対して200%以下となるように、シール剤の組成を調整することで、得られるシール部材と基板との接着強度が非常に高まり、その一方で、シール剤中の成分の溶出等によって生じる残像が生じ難くなることが見出された。 On the other hand, as a result of diligent studies by the present inventors, the amount of the epoxy compound is 22 to 38% by mass with respect to the total amount of the sealant, and the residual DC of the mixture obtained by mixing the sealant and the liquid crystal in a predetermined ratio. By adjusting the composition of the sealant so that the value is 200% or less of the residual DC value of the liquid crystal only, the adhesive strength between the obtained seal member and the substrate is greatly increased, while the seal is sealed. It has been found that afterimages caused by elution of components in the agent are less likely to occur.
 ここで、シール剤と液晶とを含む混合物の残留DC値は、以下のように測定できる。まず、シール剤と、液晶(例えば、MLC-7026、メルク社製)とを質量比1:10でバイアル瓶に投入し、混合する。そして、120℃で1時間加熱する。次いで、当該混合物を取り出し、配向膜と透明電極が予め形成されたガラスセル(例えば、KSSZ-10/B111M1NSS05、EHC社製)に注入する。そして、得られたセルに電圧5Vを1秒間印加し、0.1秒間短絡させる。その後、30秒後に残存している電圧(残留DC値)を、6254型測定装置(東陽テクニカ社製)にて測定する。 Here, the residual DC value of the mixture containing the sealant and the liquid crystal display can be measured as follows. First, the sealant and a liquid crystal display (for example, MLC-7026, manufactured by Merck & Co., Inc.) are put into a vial at a mass ratio of 1:10 and mixed. Then, it is heated at 120 ° C. for 1 hour. Then, the mixture is taken out and injected into a glass cell (for example, KSSZ-10 / B111M1NSS05, manufactured by EHC) in which an alignment film and a transparent electrode are formed in advance. Then, a voltage of 5 V is applied to the obtained cell for 1 second and short-circuited for 0.1 second. Then, the remaining voltage (residual DC value) after 30 seconds is measured with a 6254 type measuring device (manufactured by Toyo Corporation).
 一方、液晶のみの残留DC値を測定する場合には、液晶のみをバイアル瓶に投入し、混合する。そして、120℃で1時間加熱する。次いで、当該液晶を取り出し、配向膜と透明電極が予め形成されたガラスセル(例えば、KSSZ-10/B111M1NSS05、EHC社製)に注入する。得られたセルに電圧5Vを1秒間印加し、0.1秒間短絡させる。そして、30秒後に残存している電圧(残留DC値)を、例えば6254型測定装置(東陽テクニカ社製)にて測定する。 On the other hand, when measuring the residual DC value of only the liquid crystal, put only the liquid crystal into a vial and mix. Then, it is heated at 120 ° C. for 1 hour. Next, the liquid crystal is taken out and injected into a glass cell (for example, KSSZ-10 / B111M1NSS05, manufactured by EHC) in which an alignment film and a transparent electrode are formed in advance. A voltage of 5 V is applied to the obtained cell for 1 second and short-circuited for 0.1 second. Then, the voltage (residual DC value) remaining after 30 seconds is measured by, for example, a 6254 type measuring device (manufactured by Toyo Corporation).
 ここで、シール剤と液晶とを含む混合物の残留DC値は、液晶の種類によって多少変化するが、液晶のみの残留DC値に対して200%以下であればよく、180%以下がさらに好ましい。上記混合物の残留DC値は、シール剤を構成する成分の種類によって調整できる。例えば、シール剤が含む多くの成分について、個別の残留DC値が、液晶のみの残留DC値に対して300%以下となるように調整することで、上記混合物の残留DC値を満たすことができる。より具体的には、液晶のみの残留DC値に対して、個別の残留DC値が300%以下である成分の割合を、シール剤の総量に対して98質量%以上であることが好ましい。 Here, the residual DC value of the mixture containing the sealant and the liquid crystal varies slightly depending on the type of the liquid crystal, but it may be 200% or less with respect to the residual DC value of the liquid crystal only, and more preferably 180% or less. The residual DC value of the mixture can be adjusted by the type of components constituting the sealant. For example, for many components contained in the sealant, the residual DC value of the mixture can be satisfied by adjusting the individual residual DC value to be 300% or less of the residual DC value of the liquid crystal display alone. .. More specifically, the ratio of the component having an individual residual DC value of 300% or less with respect to the residual DC value of the liquid crystal display alone is preferably 98% by mass or more with respect to the total amount of the sealant.
 シール剤中の各成分の個別の残留DC値は、以下のように測定できる。まず、各成分と、液晶(例えば、MLC-7026、メルク社製)とを質量比1:10でバイアル瓶に投入し、混合する。当該混合物を120℃で1時間加熱する。そして、この混合物を配向膜と透明電極が予め形成されたガラスセル(例えば、KSSZ-10/B111M1NSS05、EHC社製)に注入する。得られたセルに、電圧5Vを1秒間印加し、0.1秒間短絡させる。そして、30秒後に残存している電圧(残留DC値)を、例えば6254型測定装置(東陽テクニカ社製)にて測定する。なお、各成分の残留DC値が、ブランクの液晶の残留DC値に対して280%以下であると、より好ましい。 The individual residual DC value of each component in the sealant can be measured as follows. First, each component and a liquid crystal display (for example, MLC-7026, manufactured by Merck & Co., Inc.) are put into a vial at a mass ratio of 1:10 and mixed. The mixture is heated at 120 ° C. for 1 hour. Then, this mixture is injected into a glass cell (for example, KSSZ-10 / B111M1NSS05, manufactured by EHC) in which an alignment film and a transparent electrode are formed in advance. A voltage of 5 V is applied to the obtained cell for 1 second and short-circuited for 0.1 second. Then, the voltage (residual DC value) remaining after 30 seconds is measured by, for example, a 6254 type measuring device (manufactured by Toyo Corporation). It is more preferable that the residual DC value of each component is 280% or less with respect to the residual DC value of the blank liquid crystal display.
 ここで、本発明のシール剤は、エポキシ化合物、(メタ)アクリル・エポキシ含有化合物、(メタ)アクリル化合物、熱硬化剤、および光重合開始剤を含む。ただし、これらの成分の他に、必要に応じて無機粒子や有機粒子、シランカップリング剤等を含んでいてもよい。なお、本明細書における(メタ)アクリルとの記載は、アクリルまたはメタクリル、もしくはこれらの両方を含む。
 以下、本発明のシール剤の各成分および物性について詳しく説明する。
Here, the sealant of the present invention includes an epoxy compound, a (meth) acrylic / epoxy-containing compound, a (meth) acrylic compound, a thermosetting agent, and a photopolymerization initiator. However, in addition to these components, inorganic particles, organic particles, a silane coupling agent, and the like may be contained, if necessary. The description of (meth) acrylic in the present specification includes acrylic, methacryl, or both.
Hereinafter, each component and physical properties of the sealant of the present invention will be described in detail.
 (1)エポキシ化合物
 エポキシ化合物は、一分子中にエポキシ基を少なくとも含み、かつエポキシ基以外の重合性官能基を有さない化合物である。本明細書における重合性官能基とは、光照射または加熱、熱硬化剤や光重合開始剤、触媒等によって活性化されて、重合反応をする官能基をいう。当該重合性官能基には、光重合性官能基や熱重合性官能基、重付加官能基等が含まれ、具体例には、(メタ)アクリル基、ビニル基、アクリルアミド基、エポキシ基、イソシアナート基、シラノール基等が含まれる。
(1) Epoxide compound An epoxy compound is a compound containing at least an epoxy group in one molecule and having no polymerizable functional group other than the epoxy group. The polymerizable functional group in the present specification refers to a functional group that is activated by light irradiation or heating, a thermosetting agent, a photopolymerization initiator, a catalyst, or the like to carry out a polymerization reaction. The polymerizable functional group includes a photopolymerizable functional group, a thermopolymerizable functional group, a polyadded functional group and the like, and specific examples thereof include a (meth) acrylic group, a vinyl group, an acrylamide group, an epoxy group and an isosia. Nart group, silanol group and the like are included.
 エポキシ化合物が一分子中に含むエポキシ基の数は2以上が好ましい。エポキシ化合物中のエポキシ基の数が2以上であると、得られるシール部材と液晶表示パネルの基板との接着性が良好になる。さらに、得られるシール部材の耐湿性も高まりやすい。 The number of epoxy groups contained in one molecule of the epoxy compound is preferably 2 or more. When the number of epoxy groups in the epoxy compound is 2 or more, the adhesiveness between the obtained sealing member and the substrate of the liquid crystal display panel becomes good. Further, the moisture resistance of the obtained sealing member is likely to increase.
 エポキシ化合物は、常温で液状であってもよく、固体状であってもよい。エポキシ化合物の軟化点は、得られるシール剤の粘度の観点で、40~110℃が好ましい。 The epoxy compound may be liquid at room temperature or solid. The softening point of the epoxy compound is preferably 40 to 110 ° C. from the viewpoint of the viscosity of the obtained sealant.
 ここで、エポキシ化合物は、モノマーであってもよく、オリゴマーであってもよく、ポリマーであってもよい。エポキシ化合物の分子量(もしくは重量平均分子量)は、通常220~3000が好ましく、250~2500がより好ましく、300~2000がさらに好ましい。ただし、エポキシ化合物の総量に対して、分子量が500以上である成分の割合は、25質量%以上が好ましい。分子量が500以上のエポキシ化合物は液晶に溶解し難い。したがって、このようなエポキシ化合物は、上述の個別の残留DC値が、液晶のみの残留DC値と比較して300%以下になりやすい。エポキシ化合物の重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(GPC)により特定(ポリスチレン換算)できる。ただし、エポキシ化合物は、個別の残留DC値が、液晶のみの残留DC値に対して300%超となるものを一部に含んでいてもよい。 Here, the epoxy compound may be a monomer, an oligomer, or a polymer. The molecular weight (or weight average molecular weight) of the epoxy compound is usually preferably 220 to 3000, more preferably 250 to 2500, and even more preferably 300 to 2000. However, the ratio of the component having a molecular weight of 500 or more to the total amount of the epoxy compound is preferably 25% by mass or more. Epoxy compounds with a molecular weight of 500 or more are difficult to dissolve in liquid crystals. Therefore, in such an epoxy compound, the above-mentioned individual residual DC value tends to be 300% or less as compared with the residual DC value of the liquid crystal display alone. The weight average molecular weight of the epoxy compound can be specified (in terms of polystyrene) by, for example, gel permeation chromatography (GPC). However, the epoxy compound may partially contain an individual residual DC value of more than 300% of the residual DC value of the liquid crystal display alone.
 ここで、エポキシ化合物の構造は特に制限されないが、その例には、芳香環を主鎖に含む芳香族エポキシ化合物が含まれる。芳香族エポキシ化合物の例には、ビスフェノールA、ビスフェノールS、ビスフェノールF、ビスフェノールAD等で代表される芳香族ジオール類や、これらをエチレングリコール、プロピレングリコール、アルキレングリコール変性したジオール類と、エピクロルヒドリンとの反応で得られた芳香族多価グリシジルエーテル化合物;フェノールやクレゾール等とホルムアルデヒドとから誘導されたノボラック樹脂や、ポリアルケニルフェノールやそのコポリマー等で代表されるポリフェノール類と、エピクロルヒドリンとの反応で得られたノボラック型多価グリシジルエーテル化合物;キシリレンフェノール樹脂のグリシジルエーテル化合物類;ナフタレン型エポキシ化合物;ジフェニルエーテル型エポキシ化合物;ビフェニル型エポキシ化合物;等が含まれる。 Here, the structure of the epoxy compound is not particularly limited, and an example thereof includes an aromatic epoxy compound having an aromatic ring in the main chain. Examples of aromatic epoxy compounds include aromatic diols typified by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, diols obtained by modifying these with ethylene glycol, propylene glycol, and alkylene glycol AD, and epichlorohydrin. Aromatic polyvalent glycidyl ether compound obtained by reaction; obtained by reaction of epichlorohydrin with novolak resin derived from phenol, cresol, etc. and formaldehyde, polyphenols represented by polyalkenylphenol, copolymers thereof, etc. Also included are novolak-type polyvalent glycidyl ether compounds; glycidyl ether compounds of xylylenephenol resin; naphthalene-type epoxy compounds; diphenyl ether-type epoxy compounds; biphenyl-type epoxy compounds; and the like.
 上記芳香族エポキシ化合物は、より具体的には、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、トリフェノールメタン型エポキシ化合物、トリフェノールエタン型エポキシ化合物、トリスフェノール型エポキシ化合物、ジフェニルエーテル型エポキシ化合物、ビフェニル型エポキシ化合物が好ましい。 More specifically, the aromatic epoxy compound is a cresol novolac type epoxy compound, a phenol novolac type epoxy compound, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a triphenol methane type epoxy compound, or a triphenol ethane type epoxy compound. , Trisphenol type epoxy compound, diphenyl ether type epoxy compound, biphenyl type epoxy compound are preferable.
 シール剤は、エポキシ化合物を一種のみ含んでいてもよく、二種以上を含んでいてもよい。各エポキシ化合物について、上述のように個別の残留DC値を測定したとき、その値は、150mV以下が好ましい。 The sealant may contain only one type of epoxy compound, or may contain two or more types of sealant. When the individual residual DC value is measured for each epoxy compound as described above, the value is preferably 150 mV or less.
 また、エポキシ化合物の含有量はシール剤の総量に対して、22~38質量%が好ましく、22~36質量%がより好ましく、23~35質量%がさらに好ましい。エポキシ化合物の量が25質量%以上であると、シール剤から得られるシール部材と液晶表示パネルの基板との接着強度が高まり、液晶表示パネルの狭額縁化にも対応できる。一方、エポキシ化合物の量が38質量%以下であると、上述のように測定されるシール剤と液晶との混合物の残留DC値が、液晶のみの残留DC値に対して200%以下になりやすく、得られる液晶表示パネルに残存等が生じ難い。 The content of the epoxy compound is preferably 22 to 38% by mass, more preferably 22 to 36% by mass, and even more preferably 23 to 35% by mass with respect to the total amount of the sealant. When the amount of the epoxy compound is 25% by mass or more, the adhesive strength between the sealing member obtained from the sealing agent and the substrate of the liquid crystal display panel is increased, and the frame of the liquid crystal display panel can be narrowed. On the other hand, when the amount of the epoxy compound is 38% by mass or less, the residual DC value of the mixture of the sealant and the liquid crystal measured as described above tends to be 200% or less with respect to the residual DC value of the liquid crystal only. , The obtained liquid crystal display panel is unlikely to remain.
 (2)(メタ)アクリル・エポキシ含有化合物
 (メタ)アクリル・エポキシ含有化合物は、1分子中にエポキシ基および(メタ)アクリル基を有する化合物であればよい。
(2) (Meta) Acrylo-Epoxy-Containing Compound The (meth) acrylic-epoxy-containing compound may be a compound having an epoxy group and a (meth) acrylic group in one molecule.
 シール剤が、上述のエポキシ化合物と、後述の(メタ)アクリル化合物とを含むだけでは、これらの相溶性が低いことがある。これに対し、シール剤が(メタ)アクリル・エポキシ含有化合物をさらに含むと、エポキシ化合物と(メタ)アクリル化合物との相溶性が高まり、さらにはエポキシ化合物が液晶に溶出し難くなる。 If the sealing agent only contains the above-mentioned epoxy compound and the later-described (meth) acrylic compound, the compatibility between them may be low. On the other hand, when the sealing agent further contains a (meth) acrylic / epoxy-containing compound, the compatibility between the epoxy compound and the (meth) acrylic compound is enhanced, and the epoxy compound is less likely to be eluted into the liquid crystal.
 ここで、(メタ)アクリル・エポキシ含有化合物一分子が有するエポキシ基および(メタ)アクリル基の数は特に制限されないが、例えば1つずつであってもよい。またエポキシ基の数および(メタ)アクリル基の数は同一であってもよく、異なっていてもよい。(メタ)アクリル・エポキシ含有化合物の例には、エポキシ化合物と(メタ)アクリル酸とを、塩基性触媒の存在下で反応させて得られる(メタ)アクリル変性エポキシ化合物が含まれる。 Here, the number of epoxy groups and (meth) acrylic groups contained in one molecule of the (meth) acrylic / epoxy-containing compound is not particularly limited, but may be one, for example. Further, the number of epoxy groups and the number of (meth) acrylic groups may be the same or different. Examples of the (meth) acrylic-epoxy-containing compound include a (meth) acrylic-modified epoxy compound obtained by reacting an epoxy compound with (meth) acrylic acid in the presence of a basic catalyst.
 (メタ)アクリル変性エポキシ化合物の調製に用いるエポキシ化合物は、分子内にエポキシ基を2つ以上有する2官能以上のエポキシ化合物であればよく、ビスフェノールA型、ビスフェノールF型、2,2’-ジアリルビスフェノールA型、ビスフェノールAD型、および水添ビスフェノール型等のビスフェノール型エポキシ化合物;フェノールノボラック型、クレゾールノボラック型、ビフェニルノボラック型、およびトリスフェノールノボラック型等のノボラック型エポキシ化合物;ビフェニル型エポキシ化合物;ナフタレン型エポキシ化合物等が含まれる。 The epoxy compound used for preparing the (meth) acrylic-modified epoxy compound may be a bifunctional or higher-functional epoxy compound having two or more epoxy groups in the molecule, and may be bisphenol A type, bisphenol F type, or 2,2'-diallyl. Bisphenol type epoxy compounds such as bisphenol A type, bisphenol AD type, and hydrogenated bisphenol type; novolak type epoxy compounds such as phenol novolac type, cresol novolac type, biphenyl novolac type, and trisphenol novolac type; biphenyl type epoxy compounds; naphthalene Type epoxy compounds and the like are included.
 ただし、3官能や4官能等の多官能エポキシ化合物を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ化合物は、架橋密度が高い。そのため、シール剤がこのような(メタ)アクリル変性エポキシ化合物を含むと、液晶表示パネルを製造したときに、シール部材と基板との接着強度が低下し易い。したがって、2官能エポキシ化合物を(メタ)アクリル変性して得られる(メタ)アクリル変性エポキシ化合物が好ましい。 However, the (meth) acrylic-modified epoxy compound obtained by (meth) acrylic-modifying a polyfunctional epoxy compound such as trifunctional or tetrafunctional has a high crosslink density. Therefore, if the sealing agent contains such a (meth) acrylic-modified epoxy compound, the adhesive strength between the sealing member and the substrate tends to decrease when the liquid crystal display panel is manufactured. Therefore, a (meth) acrylic-modified epoxy compound obtained by modifying a bifunctional epoxy compound with (meth) acrylic is preferable.
 (メタ)アクリル変性エポキシ化合物調製用のエポキシ化合物は、ビフェニル型エポキシ化合物、ナフタレン型エポキシ化合物、およびビスフェノール型エポキシ化合物がより好ましく、ビスフェノールA型およびビスフェノールF型等のビスフェノール型エポキシ化合物が、シール剤の塗布効率の観点からさらに好ましい。なお、(メタ)アクリル変性エポキシ化合物調製用のエポキシ化合物は、一種であってもよく、二種以上であってもよい。また、(メタ)アクリル変性エポキシ化合物調製用のエポキシ化合物は、分子蒸留法、洗浄法等により高純度化されていることが好ましい。 The epoxy compound for preparing the (meth) acrylic-modified epoxy compound is more preferably a biphenyl type epoxy compound, a naphthalene type epoxy compound, and a bisphenol type epoxy compound, and a bisphenol type epoxy compound such as bisphenol A type and bisphenol F type is a sealant. It is more preferable from the viewpoint of coating efficiency. The epoxy compound for preparing the (meth) acrylic-modified epoxy compound may be one kind or two or more kinds. Further, the epoxy compound for preparing the (meth) acrylic-modified epoxy compound is preferably highly purified by a molecular distillation method, a washing method or the like.
 また、上記エポキシ化合物と(メタ)アクリル酸との反応は、常法に従って行うことができる。当該反応を行うと、エポキシ化合物中の一部のエポキシ基に(メタ)アクリル酸が反応し、(メタ)アクリル基とエポキシ基とを有する(メタ)アクリル変性エポキシ化合物が得られる。ただし、反応生成物中には、当該(メタ)アクリル変性エポキシ化合物だけでなく、未反応のエポキシ化合物や、エポキシ化合物の全てのエポキシ基に(メタ)アクリル酸が反応した(メタ)アクリル化合物も含まれることがある。当該生成物から、(メタ)アクリル変性エポキシ化合物のみを単離してシール剤に使用してもよいが、未反応のエポキシ化合物は、上述のエポキシ基以外の重合性官能基を有さないエポキシ化合物に相当する。また、エポキシ化合物の全てのエポキシ基に(メタ)アクリル酸が反応した(メタ)アクリル化合物は、後述の(メタ)アクリル化合物に相当する。したがって、当該反応生成物をそのままシール剤に使用してもよい。 Further, the reaction between the above epoxy compound and (meth) acrylic acid can be carried out according to a conventional method. When this reaction is carried out, (meth) acrylic acid reacts with some of the epoxy groups in the epoxy compound to obtain a (meth) acrylic-modified epoxy compound having a (meth) acrylic group and an epoxy group. However, in the reaction product, not only the (meth) acrylic-modified epoxy compound, but also an unreacted epoxy compound and a (meth) acrylic compound in which (meth) acrylic acid reacts with all the epoxy groups of the epoxy compound. May be included. Only the (meth) acrylic-modified epoxy compound may be isolated from the product and used as a sealant, but the unreacted epoxy compound is an epoxy compound having no polymerizable functional group other than the above-mentioned epoxy group. Corresponds to. Further, the (meth) acrylic compound in which (meth) acrylic acid reacts with all the epoxy groups of the epoxy compound corresponds to the (meth) acrylic compound described later. Therefore, the reaction product may be used as it is as a sealant.
 ここで、(メタ)アクリル・エポキシ含有化合物の分子量(重量平均分子量)は、例えば310~1000が好ましく、350~900がより好ましい。(メタ)アクリル・エポキシ含有化合物の重量平均分子量Mwは、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン換算)できる。(メタ)アクリル・エポキシ化合物含有化合物の分子量が当該範囲であると、シール剤の粘度が所望の範囲になりやすい。 Here, the molecular weight (weight average molecular weight) of the (meth) acrylic / epoxy-containing compound is preferably, for example, 310 to 1000, and more preferably 350 to 900. The weight average molecular weight Mw of the (meth) acrylic / epoxy-containing compound can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC). When the molecular weight of the (meth) acrylic / epoxy compound-containing compound is in the above range, the viscosity of the sealant tends to be in the desired range.
 シール剤が含む(メタ)アクリル・エポキシ含有化合物の量は、シール剤の総量に対して、15~50質量%が好ましく、18~40質量%がより好ましく、20~35質量%がさらに好ましい。(メタ)アクリル・エポキシ含有化合物の量が15質量%以上であると、シール剤から得られるシール部材と液晶表示パネルの基板との接着強度が高まり、液晶表示パネルの狭額縁化にも対応できる。一方、エポキシ化合物の量が50質量%以下であると、シール剤と液晶との混合物の残留DC値が、液晶のみの残留DC値に対して200%以下になりやすく、得られる液晶表示パネルに残像等が生じ難い。 The amount of the (meth) acrylic / epoxy-containing compound contained in the sealant is preferably 15 to 50% by mass, more preferably 18 to 40% by mass, still more preferably 20 to 35% by mass, based on the total amount of the sealant. When the amount of the (meth) acrylic / epoxy-containing compound is 15% by mass or more, the adhesive strength between the sealing member obtained from the sealing agent and the substrate of the liquid crystal display panel is increased, and the frame of the liquid crystal display panel can be narrowed. .. On the other hand, when the amount of the epoxy compound is 50% by mass or less, the residual DC value of the mixture of the sealant and the liquid crystal is likely to be 200% or less with respect to the residual DC value of the liquid crystal alone, and the obtained liquid crystal display panel can be obtained. Afterimages are unlikely to occur.
 (3)(メタ)アクリル化合物
 (メタ)アクリル化合物は、一分子中に1つ以上の(メタ)アクリル基を含む化合物であって、エポキシ基を有さない化合物である。(メタ)アクリル化合物は、モノマーであってもよく、オリゴマーであってもよく、ポリマーであってもよい。
(3) (Meta) Acryloyl Compound The (meth) acrylic compound is a compound containing one or more (meth) acrylic groups in one molecule and does not have an epoxy group. The (meth) acrylic compound may be a monomer, an oligomer, or a polymer.
 (メタ)アクリル化合物が一分子中に含む(メタ)アクリル基の数は、2以上が好ましい。(メタ)アクリル化合物中の(メタ)アクリル基の数が2以上であると、シール剤の光硬化性が良好になる。 The number of (meth) acrylic groups contained in one molecule of the (meth) acrylic compound is preferably 2 or more. When the number of (meth) acrylic groups in the (meth) acrylic compound is 2 or more, the photocurability of the sealant becomes good.
 ここで、(メタ)アクリル化合物の例には、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール等のジ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート;ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート;ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート;トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオールのジまたはトリ(メタ)アクリレート;ビスフェノールA1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートのトリ(メタ)アクリレート;トリメチロールプロパンのトリ(メタ)アクリレート、またはそのオリゴマー;ペンタエリスリトールのトリ(メタ)アクリレート、またはそのオリゴマー;ジペンタエリスリトールのポリ(メタ)アクリレート;トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート;カプロラクトン変性トリス(メタクリロキシエチル)イソシアヌレート;アルキル変性ジペンタエリスリトールのポリ(メタ)アクリレート;カプロラクトン変性ジペンタエリスリトールのポリ(メタ)アクリレート;ヒドロキシピバリン酸ネオペンチルグリコールのジ(メタ)アクリレート;カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールのジ(メタ)アクリレート;エチレンオキサイド変性リン酸(メタ)アクリレート;エチレンオキサイド変性アルキル化リン酸の(メタ)アクリレート;ネオペンチルグルコール、トリメチロールプロパン、ペンタエリスリトールのオリゴ(メタ)アクリレート;等が含まれる。また、上述の2官能以上のエポキシ基を含むエポキシ化合物の全てを(メタ)アクリル酸と反応させた化合物も含まれる。 Here, examples of the (meth) acrylic compound include di (meth) acrylates such as polyethylene glycol, propylene glycol, and polypropylene glycol; di (meth) acrylates of tris (2-hydroxyethyl) isocyanurate; and 1 mol of neopentyl glycol. Di (meth) acrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to bisphenol A; Di (meth) acrylate of diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A; Di or tri (meth) acrylate of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane; obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A. Di (meth) acrylate of diol; tri (meth) acrylate of tris (2-hydroxyethyl) isocyanurate; tri (meth) acrylate of trimethylolpropane or an oligomer thereof; tri (meth) acrylate of pentaerythritol, or an oligomer thereof Poly (meth) acrylate of dipentaerythritol; Tris (acryloxyethyl) isocyanurate; Caprolactone-modified tris (acryloxyethyl) isocyanurate; Caprolactone-modified tris (methacryloxyethyl) isocyanurate; Poly of alkyl-modified dipentaerythritol ( Meta) acrylate; Poly (meth) acrylate of caprolactone-modified dipentaerythritol; Di (meth) acrylate of neopentyl glycol hydroxypivalate; Di (meth) acrylate of caprolactone-modified neopentyl glycol of hydroxypivalate; Ethyleneoxide-modified phosphoric acid ( Meta) acrylates; (meth) acrylates of ethylene oxide-modified alkylated phosphates; oligo (meth) acrylates of neopentylglucol, trimethylolpropane, pentaerythritol; and the like. In addition, a compound obtained by reacting all of the above-mentioned epoxy compounds containing a bifunctional or higher functional epoxy group with (meth) acrylic acid is also included.
 これらの中でも、シール剤の光硬化後の膜の弾性率が所望の範囲に収まりやすいとの観点で、(メタ)アクリル化合物のガラス転移温度は25℃以上200℃未満が好ましい。ガラス転移温度は、40℃~200℃がより好ましく、50~150℃がさらに好ましい。ガラス転移温度は、粘弾性測定装置(DMS)により測定される。 Among these, the glass transition temperature of the (meth) acrylic compound is preferably 25 ° C. or higher and lower than 200 ° C. from the viewpoint that the elastic modulus of the film after photo-curing of the sealant easily falls within a desired range. The glass transition temperature is more preferably 40 ° C. to 200 ° C., further preferably 50 to 150 ° C. The glass transition temperature is measured by a viscoelasticity measuring device (DMS).
 また、(メタ)アクリル化合物の分子量(または重量平均分子量)は、310~1000が好ましく、400~900がより好ましい。(メタ)アクリル化合物の重量平均分子量Mwは、例えばゲルパーミエーションクロマトグラフィー(GPC)により測定(ポリスチレン換算)できる。(メタ)アクリル化合物の分子量が当該範囲であると、シール剤の粘度が所望の範囲になりやすい。 The molecular weight (or weight average molecular weight) of the (meth) acrylic compound is preferably 310 to 1000, more preferably 400 to 900. The weight average molecular weight Mw of the (meth) acrylic compound can be measured (in terms of polystyrene) by, for example, gel permeation chromatography (GPC). When the molecular weight of the (meth) acrylic compound is in the above range, the viscosity of the sealant tends to be in the desired range.
 シール剤が含む(メタ)アクリル化合物の量は、所望のシール剤の硬化性にもよるが、シール剤の総量に対して、15~40質量%が好ましく、18~35質量%がより好ましく、20~32質量%がさらに好ましい。(メタ)アクリル化合物の量が上記範囲であると、シール剤の光硬化後の弾性率が良好になりやすい。 The amount of the (meth) acrylic compound contained in the sealant is preferably 15 to 40% by mass, more preferably 18 to 35% by mass, based on the total amount of the sealant, although it depends on the curability of the desired sealant. 20 to 32% by mass is more preferable. When the amount of the (meth) acrylic compound is in the above range, the elastic modulus of the sealant after photocuring tends to be good.
 (4)熱硬化剤
 熱硬化剤は、加熱により上記エポキシ化合物を硬化させることが可能な成分であればよい。ただし、熱硬化剤は、通常の保存条件下(室温、可視光線下等)では、上述のエポキシ化合物や、(メタ)アクリル・エポキシ含有化合物を硬化させないが、加熱によってこれらの化合物を硬化させる化合物であることが好ましい。このような熱硬化剤を含有するシール剤によれば、保存安定性と熱硬化性とを両立できる。また、熱硬化剤としては、エポキシ化合物を硬化させることが可能な化合物(以下、「エポキシ硬化剤」とも称する)が好ましい。
(4) Thermosetting agent The thermosetting agent may be any component capable of curing the epoxy compound by heating. However, thermosetting agents do not cure the above-mentioned epoxy compounds and (meth) acrylic / epoxy-containing compounds under normal storage conditions (room temperature, visible light, etc.), but compounds that cure these compounds by heating. Is preferable. According to the sealing agent containing such a thermosetting agent, both storage stability and thermosetting property can be achieved at the same time. Further, as the thermosetting agent, a compound capable of curing an epoxy compound (hereinafter, also referred to as "epoxy curing agent") is preferable.
 エポキシ硬化剤の融点は、シール剤の粘度安定性を高め、かつ得られるシール部材の耐湿性を損なわない観点から、50℃以上250℃以下が好ましく、100℃以上200℃以下がより好ましく、150℃以上200℃以下がさらに好ましい。エポキシ硬化剤の融点が当該範囲であると、シール剤を一液硬化性とすることができる。シール剤が一液硬化性であると、使用に際して主剤と硬化剤を混合する必要がないことから、作業性が優れる。 The melting point of the epoxy curing agent is preferably 50 ° C. or higher and 250 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower, and 150 ° C. or higher, from the viewpoint of increasing the viscosity stability of the sealing agent and not impairing the moisture resistance of the obtained sealing member. It is more preferably ° C. or higher and 200 ° C. or lower. When the melting point of the epoxy curing agent is in the above range, the sealing agent can be made one-component curable. When the sealing agent is one-component curable, workability is excellent because it is not necessary to mix the main agent and the curing agent at the time of use.
 エポキシ硬化剤の例には、有機酸ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、及びポリアミン系熱潜在性硬化剤が含まれる。 Examples of epoxy curing agents include organic acid dihydrazide-based thermal latent curing agents, imidazole-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents.
 エポキシ硬化剤の例には、有機酸ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、ジシアンジアミド系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤が含まれる。 Examples of epoxy curing agents include organic acid dihydrazide-based thermal latent curing agents, imidazole-based thermal latent curing agents, dicyandiamide-based thermal latent curing agents, amine adduct-based thermal latent curing agents, and polyamine-based thermal latent curing agents. Contains agents.
 有機酸ジヒドラジド系熱潜在性硬化剤の例には、アジピン酸ジヒドラジド(融点181℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、7,11-オクタデカジエン-1,18-ジカルボヒドラジド(融点160℃)、ドデカン二酸ジヒドラジド(融点190℃)、およびセバシン酸ジヒドラジド(融点189℃)等が含まれる。 Examples of organic acid dihydrazide-based thermal latent curing agents include adipic acid dihydrazide (melting point 181 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydranthin (melting point 120 ° C.), 7,11-octa. Includes decadien-1,18-dicarbohydrazide (melting point 160 ° C.), dodecanedioic acid dihydrazide (melting point 190 ° C.), sebacic acid dihydrazide (melting point 189 ° C.) and the like.
 イミダゾール系熱潜在性硬化剤の例には、2,4-ジアミノ-6-[2’-エチルイミダゾリル-(1’)]-エチルトリアジン(融点215~225℃)、および2-フェニルイミダゾール(融点137~147℃)等が含まれる。 Examples of imidazole-based thermal latent curing agents include 2,4-diamino-6- [2'-ethylimidazolyl- (1')]-ethyltriazine (melting point 215-225 ° C.) and 2-phenylimidazole (melting point). 137 to 147 ° C.) and the like.
 ジシアンジアミド系熱潜在性硬化剤の例には、ジシアンジアミド(融点209℃)等が含まれる。 Examples of dicyandiamide-based thermal latent curing agents include dicyandiamide (melting point 209 ° C.) and the like.
 アミンアダクト系熱潜在性硬化剤は、触媒活性を有するアミン系化合物と任意の化合物とを反応させて得られる付加化合物からなる熱潜在性硬化剤である。アミンアダクト系熱潜在性硬化剤の例には、味の素ファインテクノ社製 アミキュアPN-40(融点110℃)、味の素ファインテクノ社製 アミキュアPN-23(融点100℃)、味の素ファインテクノ社製 アミキュアPN-31(融点115℃)、味の素ファインテクノ社製 アミキュアPN-H(融点115℃)、味の素ファインテクノ社製 アミキュアMY-24(融点120℃)、および味の素ファインテクノ社製 アミキュアMY-H(融点131℃)等が含まれる。 The amine adduct-based thermal latent curing agent is a thermal latent curing agent composed of an additional compound obtained by reacting an amine-based compound having catalytic activity with an arbitrary compound. Examples of amine adduct-based thermal latent curing agents are Ajinomoto Fine-Techno's Amicure PN-40 (melting point 110 ° C), Ajinomoto Fine-Techno's Amicure PN-23 (melting point 100 ° C), and Ajinomoto Fine-Techno's Amicure PN. -31 (melting point 115 ° C), Ajinomoto Fine-Techno Amicure PN-H (melting point 115 ° C), Ajinomoto Fine-Techno Amicure MY-24 (melting point 120 ° C), and Ajinomoto Fine-Techno Amicure MY-H (melting point) 131 ° C) and the like are included.
 ポリアミン系熱潜在性硬化剤は、アミンとエポキシとを反応させて得られるポリマー構造を有する熱潜在性硬化剤であり、その例には、ADEKA社製 アデカハードナーEH4339S(軟化点120~130℃)、およびADEKA社製 アデカハードナーEH4357S(軟化点73~83℃)等が含まれる。 The polyamine-based thermal latent curing agent is a thermal latent curing agent having a polymer structure obtained by reacting amine and epoxy, and an example thereof is ADEKA Hardener EH4339S (softening point 120 to 130 ° C.) manufactured by ADEKA Corporation. , And ADEKA Hardener EH4357S (softening point 73 to 83 ° C.) and the like.
 上記の中でも、入手しやすさ、他の成分との相溶性等の観点で、有機酸ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、またはポリアミン系熱潜在性硬化剤が好ましい。シール剤は、エポキシ硬化剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Among the above, from the viewpoint of availability, compatibility with other components, etc., organic acid dihydrazide-based thermal latent curing agent, imidazole-based thermal latent curing agent, amine adduct-based thermal latent curing agent, or polyamine A thermal latent curing agent is preferred. The sealant may contain only one type of epoxy curing agent, or may contain two or more types of sealant.
 熱硬化剤の含有量は、シール剤の総量に対して1~20質量%が好ましく、2~18質量%がより好ましく、3~15質量%がさらに好ましい。熱硬化剤の量が当該範囲であると、シール剤の熱硬化性が良好になる。 The content of the thermosetting agent is preferably 1 to 20% by mass, more preferably 2 to 18% by mass, still more preferably 3 to 15% by mass, based on the total amount of the sealing agent. When the amount of the thermosetting agent is within the above range, the thermosetting property of the sealant becomes good.
 (5)光重合開始剤
 光重合開始剤は、光の照射によって、活性種を発生可能な化合物であればよく、自己開裂型の光重合開始剤であってもよく、水素引き抜き型の光重合開始剤であってもよい。シール剤は、光重合開始剤を一種のみ含んでいてもよく、二種以上含んでいてもよい。
(5) Photopolymerization Initiator The photopolymerization initiator may be a compound capable of generating an active species by irradiation with light, may be a self-cleaving type photopolymerization initiator, or may be a hydrogen abstraction type photopolymerization. It may be an initiator. The sealing agent may contain only one kind of photopolymerization initiator, or may contain two or more kinds of photopolymerization initiators.
 自己開裂型の光重合開始剤の例には、アルキルフェノン系化合物(例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製 IRGACURE 651)等のベンジルジメチルケタール、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン(BASF社製 IRGACURE 907)等のα-アミノアルキルフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製 IRGACURE 184)等のα-ヒドロキシアルキルフェノン等)、アシルホスフィンオキサイド系化合物(例えば2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等)、チタノセン系化合物(例えばビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等)、アセトフェノン系化合物(例えばジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等)、フェニルグリオキシレート系化合物(例えばメチルフェニルグリオキシエステル等)、ベンゾインエーテル系化合物(例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等)、およびオキシムエステル系化合物(例えば1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASF社製 IRGACURE OXE01)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(0-アセチルオキシム)(BASF社製 IRGACURE OXE02)等)が含まれる。 Examples of self-cleaving photopolymerization initiators include benzyl dimethyl ketals such as alkylphenone compounds (eg, 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF IRGACURE 651)), 2-. Α-Aminoalkylphenone such as methyl-2-morpholino (4-thiomethylphenyl) propan-1-one (IRGACURE 907 manufactured by BASF), 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE 184 manufactured by BASF), etc. α-Hydroxyalkylphenone, etc.), acylphosphine oxide compounds (eg 2,4,6-trimethylbenzoindiphenylphosphine oxide, etc.), titanosen compounds (eg, bis (η5-2,4-cyclopentadiene-1-yl))- Bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium, etc.), acetophenone compounds (eg diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1- On, benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1, -Hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, etc.), phenyl Glyoxylate compounds (eg, methylphenylgrioxy ester, etc.), benzoin ether compounds (eg, benzoin, benzoin methyl ether, benzoin isopropyl ether, etc.), and oxime ester compounds (eg 1,2-octanedione-1- [ 4- (Phenylthio) -2- (O-benzoyloxime)] (IRGACURE OXE01 manufactured by BASF), Etanone-1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]- 1- (0-acetyloxime) (IRGACURE OXE02 manufactured by BASF), etc.) is included.
 水素引き抜き型の光重合開始剤の例には、ベンゾフェノン系化合物(例えばベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等)、チオキサントン系化合物(例えばチオキサントン、2-クロロチオキサントン(東京化成工業社製)、1-クロロ-4-プロポキシチオキサントン、1-クロロ-4-エトキシチオキサントン(Lambson Limited社製 Speedcure CPTX)、2-イソプロピルキサントン(Lambson Limited社製 Speedcure ITX)、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン(Lambson Limited社製 Speedcure DETX)、2,4-ジクロロチオキサントン、アントラキノン系化合物(例えば2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等、2-ヒドロキシアントラキノン(東京化成工業社製 2-Hydroxyanthraquinone)、2,6-ジヒドロキシアントラキノン(東京化成工業社製 Anthraflavic Acid)、2-ヒドロキシメチルアントラキノン(純正化学社製 2-(Hydroxymethyl)anthraquinone)等)、およびベンジル系化合物が含まれる。 Examples of hydrogen abstraction-type photopolymerization initiators include benzophenone compounds (eg, benzophenone, o-benzoylmethylbenzoate methyl-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-. Methyl-diphenylsulfide, acrylicized benzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, etc.), thioxanthone compounds (eg, thioxanthone, 2-Chlorothioxanthone (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1-chloro-4-propoxythioxanthone, 1-chloro-4-ethoxythioxanthone (Spedcure CPTX manufactured by Lambson Limited), 2-isopropylxantone (Speedcure ITX manufactured by Lambson Limited) , 4-Isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone (Speedcure DETX manufactured by Lambson Limited), 2,4-dichlorothioxanthone, anthraquinone compounds (for example, 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butyl anthraquinone, 1-chloroanthraquinone, etc., 2-hydroxyanthraquinone (2-Hydroxyanthraquinone manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2,6-dihydroxyanthraquinone (Anthraquinone manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2-hydroxymethyl anthraquinone (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 2- (Hydroxymethyl) anthraquinone) manufactured by Genuine Chemical Co., Ltd.) and benzyl compounds are included.
 光重合開始剤の吸収波長は特に限定されず、例えば波長360nm以上の光を吸収する光重合開始剤が好ましい。中でも、可視光域の光を吸収することがより好ましく、波長360~780nmの光を吸収する光重合開始剤がさらに好ましく、波長360~430nmの光を吸収する光重合開始剤が特に好ましい。 The absorption wavelength of the photopolymerization initiator is not particularly limited, and for example, a photopolymerization initiator that absorbs light having a wavelength of 360 nm or more is preferable. Among them, it is more preferable to absorb light in the visible light region, a photopolymerization initiator that absorbs light having a wavelength of 360 to 780 nm is more preferable, and a photopolymerization initiator that absorbs light having a wavelength of 360 to 430 nm is particularly preferable.
 波長360nm以上の光を吸収する光重合開始剤の例には、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、チオキサントン系化合物、アントラキノン系化合物が含まれ、好ましくはオキシムエステル系化合物である。 Examples of the photopolymerization initiator that absorbs light having a wavelength of 360 nm or more include an alkylphenone-based compound, an acylphosphine oxide-based compound, a titanosen-based compound, an oxime ester-based compound, a thioxanthone-based compound, and an anthraquinone-based compound, and are preferable. It is an oxime ester compound.
 なお、光重合開始剤の構造は、高速液体クロマトグラフィー(HPLC)および液体クロマトグラフィー質量分析(LC/MS)と、NMR測定またはIR測定とを組み合わせることで特定できる。 The structure of the photopolymerization initiator can be specified by combining high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC / MS) with NMR measurement or IR measurement.
 光重合開始剤の分子量は、例えば200以上5000以下が好ましい。分子量が200以上であると、シール剤と液晶とが接触したときに、光重合開始剤が液晶に溶出し難い。一方、分子量が5000以下であると、上述の(メタ)アクリル化合物等との相溶性が高まり、シール剤の硬化性が良好になりやすい。光重合開始剤の分子量は、230以上3000以下がより好ましく、230以上1500以下がさらに好ましい。 The molecular weight of the photopolymerization initiator is preferably 200 or more and 5000 or less, for example. When the molecular weight is 200 or more, it is difficult for the photopolymerization initiator to elute into the liquid crystal when the sealant and the liquid crystal come into contact with each other. On the other hand, when the molecular weight is 5000 or less, the compatibility with the above-mentioned (meth) acrylic compound and the like is enhanced, and the curability of the sealant tends to be improved. The molecular weight of the photopolymerization initiator is more preferably 230 or more and 3000 or less, and further preferably 230 or more and 1500 or less.
 光重合開始剤の分子量は、高速液体クロマトグラフィー(HPLC:High Performance Liquid Chromatography)で分析したときに検出されるメインピークの、分子構造の「相対分子質量」として求めることができる。 The molecular weight of the photopolymerization initiator can be determined as the "relative molecular weight" of the molecular structure of the main peak detected when analyzed by high performance liquid chromatography (HPLC: High Performance Liquid Chromatography).
 具体的には、光重合開始剤をTHF(テトラヒドロフラン)に溶解させた試料液を調製し、高速液体クロマトグラフィー(HPLC)測定を行う。そして、検出されたピークの面積百分率(各ピークの面積の、全ピークの面積の合計に対する比率)を求め、メインピークの有無を確認する。メインピークとは、各化合物に特徴的な検出波長(例えばチオキサントン系化合物であれば400nm)で検出された全ピークのうち、最も強度が大きいピーク(ピークの高さが最も高いピーク)をいう。検出されたメインピークのピーク頂点に対応する相対分子質量は、液体クロマトグラフィー質量分析(LC/MS:Liquid Chromatography Mass Spectrometry)により測定できる。 Specifically, a sample solution in which a photopolymerization initiator is dissolved in THF (tetrahydrofuran) is prepared, and high performance liquid chromatography (HPLC) measurement is performed. Then, the area percentage of the detected peak (the ratio of the area of each peak to the total area of all peaks) is obtained, and the presence or absence of the main peak is confirmed. The main peak refers to the peak with the highest intensity (the peak with the highest peak height) among all the peaks detected at the detection wavelength characteristic of each compound (for example, 400 nm in the case of a thioxanthone compound). The relative molecular weight corresponding to the peak peak of the detected main peak can be measured by liquid chromatography-mass spectrometry (LC / MS: Liquid Chromatography Mass Spectrometry).
 光重合開始剤の量は、シール剤の総量に対して0.1~8質量%が好ましく、0.5~5質量%がより好ましく、1~3質量%がさらに好ましい。光重合開始剤の量が、0.1質量%以上であると、シール剤の光硬化性が良好になりやすい。光重合開始剤の量が8質量%以下であると、光重合開始剤が液晶に溶出し難くなる。 The amount of the photopolymerization initiator is preferably 0.1 to 8% by mass, more preferably 0.5 to 5% by mass, still more preferably 1 to 3% by mass, based on the total amount of the sealant. When the amount of the photopolymerization initiator is 0.1% by mass or more, the photocurability of the sealant tends to be good. When the amount of the photopolymerization initiator is 8% by mass or less, it becomes difficult for the photopolymerization initiator to elute into the liquid crystal display.
 (6)無機粒子
 シール剤は、必要に応じて無機粒子をさらに含んでいてもよい。シール剤が無機粒子を含むと、シール剤の粘度や得られるシール部材の強度、および線膨張性等が良好になりやすい。
(6) Inorganic Particles The sealant may further contain inorganic particles, if necessary. When the sealing agent contains inorganic particles, the viscosity of the sealing agent, the strength of the obtained sealing member, the linear expansion property, and the like tend to be improved.
 無機粒子の材料の例には、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、窒化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等が含まれる。シール剤は、無機粒子を一種のみ含んでいてもよく、二種以上含んでいてもよい。無機粒子は、上記の中でも二酸化ケイ素またはタルクが好ましい。 Examples of inorganic particle materials include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, titanium nitride, aluminum oxide (alumina), zinc oxide, silicon dioxide, and titanic acid. Includes potassium, kaolin, talc, glass beads, sericite-activated clay, bentonite, aluminum oxide, silicon nitride and the like. The sealing agent may contain only one kind of inorganic particles, or may contain two or more kinds of sealing agents. Among the above, silicon dioxide or talc is preferable as the inorganic particles.
 無機粒子の形状は、球状、板状、針状等、定形状であってもよく、非定形状であってもよい。無機粒子が球状である場合、無機粒子の平均一次粒子径は、1.5μm以下が好ましく、かつ比表面積が0.5~20m/gがより好ましい。無機粒子の平均一次粒子径は、JIS Z8825-1に記載のレーザー回折法により測定することができる。無機粒子の比表面積は、JIS Z8830に記載のBET法により測定できる。 The shape of the inorganic particles may be a fixed shape such as a spherical shape, a plate shape, a needle shape, or a non-fixed shape. When the inorganic particles are spherical, the average primary particle size of the inorganic particles is preferably 1.5 μm or less, and the specific surface area is more preferably 0.5 to 20 m 2 / g. The average primary particle size of the inorganic particles can be measured by the laser diffraction method described in JIS Z8825-1. The specific surface area of the inorganic particles can be measured by the BET method described in JIS Z8830.
 無機粒子の含有量は、シール剤の総量に対して0.1~25質量%が好ましく、3~20質量%がより好ましく、5~18質量%がさらに好ましい。無機粒子の含有量が0.1質量%以上であると、得られるシール部材の耐湿性が高まりやすく、25質量%以下であると、シール剤の塗工安定性が損なわれにくい。 The content of the inorganic particles is preferably 0.1 to 25% by mass, more preferably 3 to 20% by mass, still more preferably 5 to 18% by mass, based on the total amount of the sealant. When the content of the inorganic particles is 0.1% by mass or more, the moisture resistance of the obtained sealing member tends to increase, and when it is 25% by mass or less, the coating stability of the sealing agent is not easily impaired.
 (7)有機粒子
 シール剤は、必要に応じて有機粒子をさらに含んでいてもよい。シール剤が有機粒子を含むと、シール剤の光硬化後の弾性率等を調整しやすくなる。
(7) The organic particle sealant may further contain organic particles, if necessary. When the sealant contains organic particles, it becomes easy to adjust the elastic modulus of the sealant after photocuring.
 有機粒子の例には、シリコーン粒子、アクリル粒子、スチレン・ジビニルベンゼン共重合体等のスチレン粒子、およびポリオレフィン粒子等が含まれる。シール剤は、有機粒子を一種のみ含んでもよく、二種以上含んでもよい。有機粒子の平均一次粒子径は、0.05~13μmが好ましく、0.1~10μmがより好ましく、0.1~8μmがさらに好ましい。 Examples of organic particles include silicone particles, acrylic particles, styrene particles such as a styrene / divinylbenzene copolymer, and polyolefin particles. The sealing agent may contain only one kind of organic particles, or may contain two or more kinds of organic particles. The average primary particle size of the organic particles is preferably 0.05 to 13 μm, more preferably 0.1 to 10 μm, and even more preferably 0.1 to 8 μm.
 また、有機粒子の形状は特に制限されないが、好ましくは球状であり、さらに好ましくは真球状である。球状であるとは、各粒子の直径の最大値(a)に対する最小値(b)の比b/a=0.9~1.0であることをいう。有機粒子の平均一次粒子径は、顕微鏡法、具体的には電子顕微鏡の画像解析により測定することができる。また、有機粒子の表面は平滑であることが好ましい。表面が平滑であると比表面積が低下して、シール剤に添加可能な有機粒子の量が増加する。 The shape of the organic particles is not particularly limited, but is preferably spherical, and more preferably true spherical. The spherical shape means that the ratio of the minimum value (b) to the maximum value (a) of the diameter of each particle is b / a = 0.9 to 1.0. The average primary particle size of organic particles can be measured by microscopy, specifically image analysis with an electron microscope. Moreover, it is preferable that the surface of the organic particles is smooth. A smooth surface reduces the specific surface area and increases the amount of organic particles that can be added to the sealant.
 有機粒子の含有量は、シール剤の総量に対して、0.1~20質量%が好ましく、1~15質量%がより好ましく、3~12質量%がさらに好ましい。有機粒子の量が当該範囲であると、シール剤の光硬化後の弾性率が所望の範囲に収まりやすい。 The content of the organic particles is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, still more preferably 3 to 12% by mass, based on the total amount of the sealant. When the amount of organic particles is in the above range, the elastic modulus of the sealant after photocuring tends to be within a desired range.
 (8)その他
 本発明のシール剤は、必要に応じて熱ラジカル重合開始剤、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、増感剤、可塑剤及び消泡剤等の添加剤をさらに含んでいてもよい。
(8) Others The sealant of the present invention includes, if necessary, a thermal radical polymerization initiator, a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchanger, a leveling agent, a pigment, a dye, a sensitizer, and the like. It may further contain additives such as plasticizers and antifoaming agents.
 シランカップリング剤の例には、ビニルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等が含まれる。シランカップリング剤の量は、シール剤の総量に対して0.01~6質量%が好ましく、0.1~5質量%がより好ましく、0.5~3質量%がさらに好ましい。シランカップリング剤の含有量が0.01質量%以上であると、得られるシール部材が十分な接着性を有しやすい。ただし、シランカップリング剤は、残留DC値が高いものが多い。そこで、シランカップリング剤の量は、6質量%以下が好ましい。 Examples of silane coupling agents include vinyltrimethoxysilane, γ- (meth) acryloxipropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and the like. The amount of the silane coupling agent is preferably 0.01 to 6% by mass, more preferably 0.1 to 5% by mass, still more preferably 0.5 to 3% by mass, based on the total amount of the sealing agent. When the content of the silane coupling agent is 0.01% by mass or more, the obtained sealing member tends to have sufficient adhesiveness. However, many silane coupling agents have a high residual DC value. Therefore, the amount of the silane coupling agent is preferably 6% by mass or less.
 シール剤は、液晶表示パネルのギャップを調整するためのスペーサー等をさらに含んでいてもよい。 The sealant may further contain a spacer or the like for adjusting the gap of the liquid crystal display panel.
 その他の成分の合計量は、シール剤の総量に対して1~50質量%が好ましい。その他の成分の合計量が50質量%以下であると、シール剤の粘度が過度に上昇し難く、シール剤の塗工安定性が損なわれにくい。 The total amount of other components is preferably 1 to 50% by mass with respect to the total amount of the sealant. When the total amount of the other components is 50% by mass or less, the viscosity of the sealant is unlikely to increase excessively, and the coating stability of the sealant is unlikely to be impaired.
 (9)シール剤の物性
 シール剤のE型粘度計の25℃、2.5rpmにおける粘度は、200~450Pa・sが好ましく、300~400Pa・sがより好ましい。粘度が上記範囲にあると、シール剤(シールパターン)を介して、一対の基板を重ね合わせたときに、シール剤がこれらの隙間を埋めるように変形しやすい。そのため、液晶表示パネルの一対の基板間のギャップを適正に制御できる。
(9) Physical Characteristics of Sealing Agent The viscosity of the E-type viscometer of the sealing agent at 25 ° C. and 2.5 rpm is preferably 200 to 450 Pa · s, more preferably 300 to 400 Pa · s. When the viscosity is in the above range, when a pair of substrates are superposed on each other via a sealant (seal pattern), the sealant is likely to be deformed so as to fill these gaps. Therefore, the gap between the pair of substrates of the liquid crystal display panel can be appropriately controlled.
 また、シール剤のチクソトロピーインデックス(TI値)は、シール剤の塗布性の観点から、1.0~1.5が好ましく、1.1~1.3がより好ましい。TI値は、E型粘度計を用い、室温(25℃)、0.5rpmにおけるシール剤の粘度をη1とし、5rpmにおけるシール剤の粘度をη2とし、これらの測定値を、下記式(1)に当てはめて得られる値である。
 TI値=(0.5rpmにおける粘度η1(25℃))/(5rpmにおける粘度η2(25℃))・・・(1)
The thixotropy index (TI value) of the sealant is preferably 1.0 to 1.5, more preferably 1.1 to 1.3, from the viewpoint of the coatability of the sealant. The TI value is determined by using an E-type viscometer, the viscosity of the sealant at room temperature (25 ° C.) and 0.5 rpm is η1, and the viscosity of the sealant at 5 rpm is η2. It is a value obtained by applying to.
TI value = (viscosity η1 (25 ° C) at 0.5 rpm) / (viscosity η2 (25 ° C) at 5 rpm) ... (1)
 シール剤と液晶とを上述のように混合して測定される残留DC値は、100mV以下であることが好ましい。この場合、液晶としては、メルク社製のMLC-7026を使用して測定することが好ましい。 The residual DC value measured by mixing the sealant and the liquid crystal as described above is preferably 100 mV or less. In this case, as the liquid crystal, it is preferable to measure using MLC-7026 manufactured by Merck & Co., Ltd.
 2.液晶表示パネル
 本発明の液晶表示パネルは、一対の基板と、当該基板の間に配置された枠状のシール部材と、一対の基板間かつ枠状のシール部材の内部に充填された液晶と、を有する。当該液晶表示パネルでは、シール部材が、前述のシール剤の硬化物である。前述のシール剤から得られるシール部材は、基板との接着強度が高く、シール部材を細線化しても液晶漏れ等が生じ難い。さらに、当該シール剤は、液晶を汚染し難い。したがって、液晶表示パネルの使用時に残像等が生じ難い。
2. Liquid crystal display panel The liquid crystal display panel of the present invention includes a pair of substrates, a frame-shaped seal member arranged between the substrates, and a liquid crystal filled between the pair of substrates and inside the frame-shaped seal member. Has. In the liquid crystal display panel, the sealing member is a cured product of the above-mentioned sealing agent. The sealing member obtained from the above-mentioned sealing agent has high adhesive strength with the substrate, and even if the sealing member is thinned, liquid crystal leakage or the like is unlikely to occur. Further, the sealing agent is less likely to contaminate the liquid crystal display. Therefore, afterimages and the like are unlikely to occur when the liquid crystal display panel is used.
 一対の基板(「表示基板および対向基板」とも称する)は、いずれも透明基板である。透明基板の材質の例には、ガラス、または、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルサルフォンおよびPMMA等が含まれる。 The pair of substrates (also referred to as "display substrate and opposed substrate") are both transparent substrates. Examples of materials for the transparent substrate include glass or polycarbonate, polyethylene terephthalate, polyether sulfone, PMMA and the like.
 表示基板または対向基板の表面には、マトリクス状のTFT、カラーフィルタ、ブラックマトリクス等が配置される。表示基板または対向基板の表面には、さらに配向膜が形成される。配向膜には、公知の有機配向剤や無機配向剤等が含まれる。また、液晶は公知の液晶を用いることが可能である。 A matrix-shaped TFT, a color filter, a black matrix, etc. are arranged on the surface of the display board or the facing board. An alignment film is further formed on the surface of the display substrate or the facing substrate. The alignment film includes known organic alignment agents, inorganic alignment agents, and the like. Further, a known liquid crystal can be used as the liquid crystal.
 液晶表示パネルの製造方法には、一般に、液晶滴下工法と、液晶注入工法とがあるが、本発明の液晶表示パネルの製造方法は、液晶滴下工法であることが好ましい。 The liquid crystal display panel manufacturing method generally includes a liquid crystal dropping method and a liquid crystal injection method, but the liquid crystal display panel manufacturing method of the present invention is preferably the liquid crystal dropping method.
 液晶滴下工法による液晶表示パネルの製造方法は、1)一方の基板に、前述のシール剤を塗布し、枠状のシールパターンを形成するシールパターン形成工程と、2)シールパターンが未硬化の状態で、一方の基板上かつシールパターンで囲まれた領域内、もしくは他方の基板上かつ他方の基板と一方の基板とを対向させたときにシールパターンに囲まれる領域に、液晶を滴下する液晶滴下工程と、3)一方の基板および他方の基板を、シールパターンを介して重ね合わせる重ね合わせ工程と、4)シールパターンを硬化させる硬化工程と、を含む。  The method for manufacturing a liquid crystal display panel by the liquid crystal dropping method is as follows: 1) a seal pattern forming step of applying the above-mentioned sealant to one substrate to form a frame-shaped seal pattern, and 2) a state in which the seal pattern is uncured. Then, the liquid crystal is dropped on one substrate and in the region surrounded by the seal pattern, or on the other substrate and in the region surrounded by the seal pattern when the other substrate and one substrate are opposed to each other. It includes a step, 3) a superposition step of superimposing one substrate and the other substrate via a seal pattern, and 4) a curing step of curing the seal pattern.
 1)シールパターン形成工程では、一方の基板に、前述のシール剤を塗布する。シール剤を塗布する方法は特に制限されず、例えばスクリーン印刷や、ディスペンサによる塗布等、所望の厚みや幅でシールパターンを形成可能な方法であれば特に制限されず、公知のシール剤の塗布方法と同様である。 1) In the seal pattern forming step, the above-mentioned sealant is applied to one of the substrates. The method of applying the sealant is not particularly limited, and is not particularly limited as long as it is a method capable of forming a seal pattern with a desired thickness and width, such as screen printing or application with a dispenser, and a known method of applying the sealant. Is similar to.
 また、形成するシールパターンの形状は、液晶表示パネルの用途等に合わせて適宜選択され、液晶が漏出しない形状であればよい。例えば矩形状の枠状とすることができるが、当該形状に制限されない。シールパターンの線幅は、0.2~1.0mmが好ましく、0.2~0.5mmがより好ましい。 Further, the shape of the seal pattern to be formed may be appropriately selected according to the application of the liquid crystal display panel, etc., and may be a shape in which the liquid crystal does not leak. For example, it may have a rectangular frame shape, but is not limited to the shape. The line width of the seal pattern is preferably 0.2 to 1.0 mm, more preferably 0.2 to 0.5 mm.
 2)液晶滴下工程では、シールパターンが未硬化の状態で、一対の基板を対向させる。ここで、シールパターンが未硬化の状態とは、シール剤の硬化反応がゲル化点までは進行していない状態を意味する。なお、液晶滴下工程前に、シール剤の液晶への溶解を抑制するために、シールパターンを光照射または加熱して半硬化させてもよい。また、液晶の滴下方法は、公知の液晶の滴下方法と同様であり、シールパターンが形成された基板に液晶を滴下してもよく、シールパターンが形成されていない基板(他方の基板)に液晶を滴下してもよい。 2) In the liquid crystal dropping step, the pair of substrates are opposed to each other with the seal pattern uncured. Here, the state in which the seal pattern is uncured means a state in which the curing reaction of the sealant has not progressed to the gel point. Before the liquid crystal dropping step, the seal pattern may be semi-cured by irradiating or heating the seal pattern in order to suppress the dissolution of the sealant in the liquid crystal. The method of dropping the liquid crystal is the same as the known method of dropping the liquid crystal, and the liquid crystal may be dropped on the substrate on which the seal pattern is formed, and the liquid crystal may be dropped on the substrate on which the seal pattern is not formed (the other substrate). May be dropped.
 3)重ね合わせ工程では、シールパターンを介して一方の基板と他方の基板とが対向するように重ね合わせる。このとき、基板間のギャップが所望の範囲となるように制御する。 3) In the superposition process, one substrate and the other substrate are superposed so as to face each other via a seal pattern. At this time, the gap between the substrates is controlled to be within a desired range.
 4)硬化工程では、シールパターンを硬化させる。シールパターンの硬化方法は特に制限されないが、所定の波長の光の照射によって仮硬化させた後、加熱により本硬化させることが好ましい。光照射によれば、シールパターンを瞬時に硬化させることができ、シール剤中の成分が液晶に溶解することを抑制できる。 4) In the curing process, the seal pattern is cured. The method for curing the seal pattern is not particularly limited, but it is preferable that the seal pattern is temporarily cured by irradiation with light having a predetermined wavelength and then finally cured by heating. By light irradiation, the seal pattern can be instantly cured, and the components in the sealant can be suppressed from being dissolved in the liquid crystal display.
 照射する光の波長は、光重合開始剤の種類に応じて適宜選択され、紫外光が好ましい。また、光照射時間は、シール剤の組成にもよるが、例えば10分程度である。このとき照射するエネルギー量は、(メタ)アクリル化合物や、(メタ)アクリル・エポキシ含有化合物を硬化させることができる程度のエネルギー量であればよい。 The wavelength of the light to be irradiated is appropriately selected according to the type of the photopolymerization initiator, and ultraviolet light is preferable. The light irradiation time is, for example, about 10 minutes, although it depends on the composition of the sealant. The amount of energy to be irradiated at this time may be an amount of energy sufficient to cure the (meth) acrylic compound or the (meth) acrylic / epoxy-containing compound.
 光の照射後、加熱によりエポキシ化合物や(メタ)アクリル・エポキシ含有化合物を硬化させる。加熱温度は、シール剤の組成にもよるが、例えば100~150℃であり、加熱時間は2時間程度が好ましい。 After irradiation with light, the epoxy compound and (meth) acrylic / epoxy-containing compound are cured by heating. The heating temperature depends on the composition of the sealant, but is, for example, 100 to 150 ° C., and the heating time is preferably about 2 hours.
 本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 <合成例1>光硬化性組成物1の調製(メタクリル酸変性エポキシ化合物含有組成物の調製)
 液状ビスフェノールF型エポキシ化合物(EPICLON830-S、DIC社製、エポキシ当量160g/eq)160g、重合禁止剤(p-メトキシフェノール)0.1g、触媒(トリエタノールアミン)0.2g、およびメタクリル酸43.0gをフラスコ内に仕込み、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。得られた組成物を、超純水にて20回洗浄し、メタクリル酸変性エポキシ化合物含有組成物(光硬化性化合物含有組成物1)を得た。得られた組成物の組成をNMRで同定したところ、両末端がエポキシ基であるエポキシ化合物が25モル%、末端にエポキシ基およびメタクリル基をそれぞれ有するメタクリル変性エポキシ化合物が50モル%、両末端がメタクリル基に変性された(メタ)アクリル化合物が、25モル%の割合であった。得られた組成物をカラムで分離し、それぞれの残留DCの値を後述の方法で測定した。結果を表1に示す。
<Synthesis Example 1> Preparation of Photocurable Composition 1 (Preparation of Composition Containing Methacrylic Acid Modified Epoxy Compound)
Liquid bisphenol F type epoxy compound (EPICLON830-S, manufactured by DIC, epoxy equivalent 160 g / eq) 160 g, polymerization inhibitor (p-methoxyphenol) 0.1 g, catalyst (triethanolamine) 0.2 g, and methacrylic acid 43 0.0 g was charged in a flask, dry air was sent in, and the reaction was carried out at 90 ° C. with reflux stirring for 5 hours. The obtained composition was washed with ultrapure water 20 times to obtain a methacrylic acid-modified epoxy compound-containing composition (photocurable compound-containing composition 1). When the composition of the obtained composition was identified by NMR, 25 mol% of epoxy compounds had epoxy groups at both ends, 50 mol% of methacrylic-modified epoxy compounds had epoxy groups and methacryl groups at the ends, and both ends had epoxy groups. The proportion of (meth) acrylic compounds modified to methacrylic groups was 25 mol%. The obtained composition was separated by a column, and the value of each residual DC was measured by the method described later. The results are shown in Table 1.
 <合成例2>光硬化性組成物2の調製(アクリル酸変性エポキシ化合物含有組成物の調製)
 液状ビスフェノールA型エポキシ化合物(EPICLON850-S、DIC社製エポキシ当量190g/eq)190g、重合禁止剤(p-メトキシフェノール)0.1g、触媒(トリエタノールアミン)0.2g、およびアクリル酸36.0gをフラスコ内に仕込み、乾燥空気を送り込んで90℃で還流攪拌しながら5時間反応させた。得られた組成物を、超純水にて20回洗浄し、アクリル酸変性エポキシ組成物(光硬化性組成物2)を得た。得られた組成物の組成をNMRで同定したところ、両末端がエポキシ基である、エポキシ化合物が25モル%、末端にエポキシ基およびアクリル基をそれぞれ有する(メタ)アクリル化合物が50モル%、両末端がアクリル基に変性された(メタ)アクリル化合物が25モル%の割合であった。得られた組成物をカラムで分離し、それぞれの残留DCの値を後述の方法で測定した。結果を表1に示す。
<Synthesis Example 2> Preparation of Photocurable Composition 2 (Preparation of Acrylic Acid-Modified Epoxy Compound-Containing Composition)
Liquid bisphenol A type epoxy compound (EPICLON850-S, DIC epoxy equivalent 190 g / eq) 190 g, polymerization inhibitor (p-methoxyphenol) 0.1 g, catalyst (triethanolamine) 0.2 g, and acrylic acid 36. 0 g was charged in a flask, dry air was sent in, and the reaction was carried out at 90 ° C. with reflux stirring for 5 hours. The obtained composition was washed with ultrapure water 20 times to obtain an acrylic acid-modified epoxy composition (photocurable composition 2). When the composition of the obtained composition was identified by NMR, 25 mol% of the epoxy compound had an epoxy group at both ends, and 50 mol% of the (meth) acrylic compound having an epoxy group and an acrylic group at the ends, respectively. The proportion of (meth) acrylic compounds whose terminals were modified to acrylic groups was 25 mol%. The obtained composition was separated by a column, and the value of each residual DC was measured by the method described later. The results are shown in Table 1.
 [実施例1]
 光硬化性組成物1を400質量部、エポキシ化合物(EP-4010S、ADEKA社製(ビスフェノールA型、残留DC値=64mV))を100質量部、エポキシ化合物(850-S、DIC社製(ビスフェノールA型、残留DC値=133mV)を50質量部、(メタ)アクリル化合物(Ebecryl3700、ダイセル・サイテック社製(残留DC値=52mV))を50質量部、(メタ)アクリル化合物(2CL、新中村化学工業社製(残留DC値=73mV))を80質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASFジャパン社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を150質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を90質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を10質量部、混合した。そして、これらを三本ロールにて、均一な液となるように十分に混合して、シール剤を得た。
[Example 1]
400 parts by mass of photocurable composition 1, 100 parts by mass of epoxy compound (EP-4010S, manufactured by ADEKA (bisphenol A type, residual DC value = 64 mV)), epoxy compound (850-S, manufactured by DIC (bisphenol)) Type A, residual DC value = 133 mV) 50 parts by mass, (meth) acrylic compound (Ebeclyl3700, manufactured by Daicel Cytec (residual DC value = 52 mV)) 50 parts by mass, (meth) acrylic compound (2CL, Shin-Nakamura) 80 parts by mass of chemical industry (residual DC value = 73 mV)), 50 parts by mass of thermal curing agent (adipate dihydrazide, Otsuka Chemical (residual DC value = 53 mV)), photopolymerization initiator (OXE-01) , BASF Japan (residual DC value = 68 mV)) 20 parts by mass, inorganic particles (silica particles: S-100, Nippon Catachemical Chemicals (residual DC value = 51 mV)) 150 parts by mass, organic particles (fine particles) 90 parts by mass of polymer F351, manufactured by Aika Kogyo Co., Ltd. (residual DC value = 55 mV)) and 10 parts by mass of a silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd. (residual DC value = 431 mV)) were mixed. Then, these were sufficiently mixed with three rolls so as to be a uniform liquid to obtain a sealant.
 [実施例2]
 光硬化性組成物1を光硬化性組成物2に変更した以外は、実施例1と同様にシール剤を調製した。
[Example 2]
A sealant was prepared in the same manner as in Example 1 except that the photocurable composition 1 was changed to the photocurable composition 2.
 [実施例3]
 光硬化性組成物2を400質量部、エポキシ化合物(EP-4010S、ADEKA社製、ビスフェノールA型(残留DC値=64mV))を50質量部、エポキシ化合物(エピコート1004AF、三菱ケミカル社製、ビスフェノールA型(残留DC値=57mV))を50質量部、エポキシ化合物(850-S、DIC社製、ビスフェノールA型(残留DC値=133mV))を50質量部、(メタ)アクリル化合物(Ebecryl3700、ダイセル・サイテック社製(残留DC値=52mV))を50質量部、(メタ)アクリル化合物(2CL、新中村化学工業社製(残留DC値=73mV))を80質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASF社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を150質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を90質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を10質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Example 3]
400 parts by mass of the photocurable composition 2, 50 parts by mass of the epoxy compound (EP-4010S, manufactured by ADEKA, bisphenol A type (residual DC value = 64 mV)), the epoxy compound (Epicoat 1004AF, manufactured by Mitsubishi Chemical Co., Ltd., bisphenol) 50 parts by mass of A type (residual DC value = 57 mV), 50 parts by mass of epoxy compound (850-S, manufactured by DIC, bisphenol A type (residual DC value = 133 mV)), (meth) acrylic compound (Ebeclyl3700, 50 parts by mass of Daicel Cytec (residual DC value = 52 mV)), 80 parts by mass of (meth) acrylic compound (2CL, manufactured by Shin-Nakamura Chemical Industry Co., Ltd. (residual DC value = 73 mV)), thermosetting agent (azipin) Acid dihydrazide, manufactured by Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)) by 50 parts by mass, photopolymerization initiator (OXE-01, manufactured by BASF Co., Ltd. (residual DC value = 68 mV)) by 20 parts by mass, inorganic particles (silica particles) : S-100, manufactured by Nippon Catalytic Chemical Co., Ltd. (residual DC value = 51 mV)) by 150 parts by mass, organic particles (fine particle polymer F351, manufactured by Aika Kogyo Co., Ltd. (residual DC value = 55 mV)) by 90 parts by mass, and silane cup. A ring agent (KBM-403, manufactured by Shin-Etsu Chemical Industry Co., Ltd. (residual DC value = 431 mV)) was mixed in an amount of 10 parts by mass. Then, these were sufficiently mixed with three rolls so as to be a uniform liquid to obtain a sealant.
 [実施例4]
 光硬化性組成物1を500質量部、エポキシ化合物(EP-4010S、ADEKA社製、ビスフェノールA型(残留DC値=64mV))を80質量部、エポキシ化合物(エピコート1004AF、三菱ケミカル社製、ビスフェノールA型(残留DC値=57mV))を50質量部、エポキシ化合物(850-S、DIC社製、ビスフェノールA型(残留DC値=133mV))を50質量部、(メタ)アクリル化合物(2CL、新中村化学工業社製(残留DC値=73mV))を40質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASF社製(残留DC値=68mV))を20質量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を130質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を70質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を10質量部、混合した。
[Example 4]
500 parts by mass of photocurable composition 1, 80 parts by mass of epoxy compound (EP-4010S, manufactured by ADEKA, bisphenol A type (residual DC value = 64 mV)), epoxy compound (Epicoat 1004AF, manufactured by Mitsubishi Chemical Co., Ltd., bisphenol) 50 parts by mass of A type (residual DC value = 57 mV), 50 parts by mass of epoxy compound (850-S, manufactured by DIC, bisphenol A type (residual DC value = 133 mV)), (meth) acrylic compound (2CL, 40 parts by mass of Shin-Nakamura Chemical Industry Co., Ltd. (residual DC value = 73 mV), 50 parts by mass of thermal curing agent (adipate dihydrazide, Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)), photopolymerization initiator (OXE) -01, 20 parts by mass of BASF (residual DC value = 68 mV)), 130 parts by mass of inorganic particles (silica particles: S-100, manufactured by Nippon Catalytic Chemicals (residual DC value = 51 mV)), organic particles (remaining DC value = 51 mV) 70 parts by mass of fine particle polymer F351, manufactured by Aika Kogyo Co., Ltd. (residual DC value = 55 mV), and 10 parts by mass of silane coupling agent (KBM-403, manufactured by Shinetsu Chemical Industry Co., Ltd. (residual DC value = 431 mV)) are mixed. bottom.
 [実施例5]
 光硬化性組成物2を430質量部、エポキシ化合物(EP-4010S、ADEKA社製、ビスフェノールA型(残留DC値=64mV)150質量部、(メタ)アクリル化合物(Ebecryl3700、ダイセル・サイテック社製、ビスフェノールA型(残留DC値=52mV))を100質量部、(メタ)アクリル化合物(2CL、新中村化学工業社製(残留DC値=73mV))を40質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASF社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を130質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を70質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を10質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Example 5]
430 parts by mass of photocurable composition 2, epoxy compound (EP-4010S, manufactured by ADEKA, bisphenol A type (residual DC value = 64 mV), 150 parts by mass, (meth) acrylic compound (Ebecryl3700, manufactured by Daicel Cytec), 100 parts by mass of bisphenol A type (residual DC value = 52 mV), 40 parts by mass of (meth) acrylic compound (2CL, manufactured by Shin-Nakamura Chemical Industry Co., Ltd. (residual DC value = 73 mV)), thermosetting agent (dihydrazide adipate) , Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)) by 50 parts by mass, photopolymerization initiator (OXE-01, manufactured by BASF (residual DC value = 68 mV)) by 20 parts by mass, inorganic particles (silica particles: S) -100, 130 parts by mass of Nippon Catalytic Chemical Co., Ltd. (residual DC value = 51 mV)), 70 parts by mass of organic particles (fine particle polymer F351, manufactured by Aika Kogyo Co., Ltd. (residual DC value = 55 mV)), and a silane coupling agent. (KBM-403, manufactured by Shin-Etsu Chemical Industry Co., Ltd. (residual DC value = 431 mV)) was mixed in an amount of 10 parts by mass. Got
 [実施例6]
 光硬化性組成物1を600質量部、エポキシ化合物(エピコート1004AF、三菱ケミカル社製、ビスフェノールA型(残留DC値=57mV))を80質量部、エポキシ化合物(850-S、DIC社製、ビスフェノールA型(残留DC値=133mV)を30質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASF社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を130質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を70質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を20質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Example 6]
600 parts by mass of photocurable composition 1, 80 parts by mass of epoxy compound (Epicoat 1004AF, manufactured by Mitsubishi Chemical Co., Ltd., bisphenol A type (residual DC value = 57 mV)), epoxy compound (850-S, manufactured by DIC, bisphenol) 30 parts by mass of type A (residual DC value = 133 mV), 50 parts by mass of thermal curing agent (adipate dihydrazide, manufactured by Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)), photopolymerization initiator (OXE-01, BASF) 20 parts by mass (residual DC value = 68 mV)), 130 parts by mass of inorganic particles (silica particles: S-100, manufactured by Nippon Catalytic Chemical Co., Ltd. (residual DC value = 51 mV)), organic particles (fine particle polymer F351, Aika) 70 parts by mass of an industrial product (residual DC value = 55 mV) and 20 parts by mass of a silane coupling agent (KBM-403, manufactured by Shinetsu Chemical Industry Co., Ltd. (residual DC value = 431 mV)) were mixed. Was sufficiently mixed with three rolls so as to be a uniform liquid to obtain a sealant.
 [実施例7]
 光硬化性組成物1を500質量部、エポキシ化合物(EP-4010S、ADEKA社製、ビスフェノールA型(残留DC値=64mV))200質量部、エポキシ化合物(850-S、DIC社製、ビスフェノールA型(残留DC値=133mV))を40質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASF社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を130質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を50質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を10質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Example 7]
500 parts by mass of photocurable composition 1, epoxy compound (EP-4010S, manufactured by ADEKA, bisphenol A type (residual DC value = 64 mV)), 200 parts by mass, epoxy compound (850-S, manufactured by DIC, bisphenol A) 40 parts by mass of mold (residual DC value = 133 mV), 50 parts by mass of thermal curing agent (adipate dihydrazide, manufactured by Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)), photopolymerization initiator (OXE-01, BASF) 20 parts by mass of manufactured (residual DC value = 68 mV)), 130 parts by mass of inorganic particles (silica particles: S-100, manufactured by Nippon Catalytic Chemical Co., Ltd. (residual DC value = 51 mV)), organic particles (fine particle polymer F351, Aika) 50 parts by mass of an industrial product (residual DC value = 55 mV) and 10 parts by mass of a silane coupling agent (KBM-403, manufactured by Shinetsu Chemical Industry Co., Ltd. (residual DC value = 431 mV)) were mixed. Then, these were sufficiently mixed with three rolls so as to be a uniform liquid to obtain a sealant.
 [比較例1]
 光硬化性化合物2を400質量部、エポキシ化合物(850-S、DIC社製、ビスフェノールA型(残留DC値=133mV))を50質量部、エポキシ化合物(エポゴーセーNPG、四日市合成社製、1,4-ブタンジオールジグリシジルエーテル(残留DC値=300mV))を100質量部、(メタ)アクリル化合物(Ebecryl3700、ダイセル・サイテック社製(残留DC値=52mV))を50質量部、(メタ)アクリル化合物(2CL、新中村化学工業社製(残留DC値=73mV))を80質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASFジャパン社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を150質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を90質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を10質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Comparative Example 1]
400 parts by mass of photocurable compound 2, epoxy compound (850-S, manufactured by DIC, bisphenol A type (residual DC value = 133 mV)) by 50 parts, epoxy compound (Epogosei NPG, manufactured by Yokkaichi Synthetic Co., Ltd., 1, 100 parts by mass of 4-butanediol diglycidyl ether (residual DC value = 300 mV), 50 parts by mass of (meth) acrylic compound (Ebecryl3700, manufactured by Daicel Cytec (residual DC value = 52 mV)), (meth) acrylic. 80 parts by mass of compound (2CL, manufactured by Shin-Nakamura Chemical Industry Co., Ltd. (residual DC value = 73 mV)), 50 parts by mass of thermosetting agent (adipate dihydrazide, manufactured by Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)), photopolymerization 20 parts by weight of initiator (OXE-01, manufactured by BASF Japan (residual DC value = 68 mV)), 150 mass of inorganic particles (silica particles: S-100, manufactured by Nippon Catalytic Chemical Co., Ltd. (residual DC value = 51 mV)) 90 parts by mass of organic particles (fine particle polymer F351, manufactured by Aika Kogyo Co., Ltd. (residual DC value = 55 mV)), and silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd. (residual DC value = 431 mV)). 10 parts by mass were mixed. Then, these were sufficiently mixed with three rolls so as to be a uniform liquid to obtain a sealant.
 [比較例2]
 光硬化性化合物1を600質量部、(メタ)アクリル化合物(2CL、新中村化学工業社製(残留DC値=73mV))を80質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASFジャパン社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を150質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を90質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を10質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Comparative Example 2]
600 parts by mass of photocurable compound 1, 80 parts by mass of (meth) acrylic compound (2CL, manufactured by Shin-Nakamura Chemical Industry Co., Ltd. (residual DC value = 73 mV)), thermosetting agent (dihydrazide adipate, manufactured by Otsuka Chemical Co., Ltd.) Residual DC value = 53 mV)) by 50 parts by mass, photopolymerization initiator (OXE-01, manufactured by BASF Japan, Inc. (residual DC value = 68 mV)) by 20 parts by mass, inorganic particles (silica particles: S-100, Japanese catalyst) 150 parts by mass of chemicals (residual DC value = 51 mV)), 90 parts by mass of organic particles (fine particle polymer F351, Aika Kogyo (residual DC value = 55 mV)), and silane coupling agent (KBM-403, 10 parts by mass of Shinetsu Chemical Industry Co., Ltd. (residual DC value = 431 mV) was mixed. Then, these were sufficiently mixed with three rolls so as to be a uniform liquid to obtain a sealant.
 [比較例3]
 光硬化性化合物2を400質量部、エポキシ化合物(EP-4010S、ADEKA社製、ビスフェノールA型(残留DC値=64mV))100質量部、エポキシ化合物(エポゴーセーNPG、四日市合成社製、1,4-ブタンジオールジグリシジルエーテル(残留DC値=300mV))を50質量部、(メタ)アクリル化合物(Ebecryl3700、ダイセル・サイテック社製(残留DC値=52mV))を50質量部、(メタ)アクリル化合物(2CL、新中村化学工業社製(残留DC値=73mV))を80質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASF社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を150質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を90質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を10質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Comparative Example 3]
400 parts by mass of photocurable compound 2, epoxy compound (EP-4010S, manufactured by ADEKA, bisphenol A type (residual DC value = 64 mV)) 100 parts by mass, epoxy compound (Epogosei NPG, manufactured by Yokkaichi Synthetic Co., Ltd., 1,4 -50 parts by mass of butanediol diglycidyl ether (residual DC value = 300 mV), 50 parts by mass of (meth) acrylic compound (Ebecryl3700, manufactured by Daicel Cytec (residual DC value = 52 mV)), (meth) acrylic compound (2CL, manufactured by Shin-Nakamura Chemical Industry Co., Ltd. (residual DC value = 73 mV)) by 80 parts by mass, thermosetting agent (adipate dihydrazide, manufactured by Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)) by 50 parts by mass, photopolymerization started 20 parts by mass of the agent (OXE-01, manufactured by BASF (residual DC value = 68 mV)), 150 parts by mass of inorganic particles (silica particles: S-100, manufactured by Nippon Catalytic Chemical Co., Ltd. (residual DC value = 51 mV)), 90 parts by mass of organic particles (fine particle polymer F351, manufactured by Aika Kogyo Co., Ltd. (residual DC value = 55 mV)) and 10 parts by mass of silane coupling agent (KBM-403, manufactured by Shinetsu Chemical Industry Co., Ltd. (residual DC value = 431 mV)). Part, mixed. Then, these were sufficiently mixed with three rolls so as to be a uniform liquid to obtain a sealant.
 [比較例4]
 光硬化性化合物1を200質量部、エポキシ化合物(EP-4010S、ADEKA社製、ビスフェノールA型(残留DC値=64mV)40質量部、エポキシ化合物(850-S、DIC社製、ビスフェノールA型(残留DC値=133mV)を200質量部、(メタ)アクリル化合物(Ebecryl3700、ダイセル・サイテック社製(残留DC値=52mV))を130質量部、(メタ)アクリル化合物(2CL、新中村化学工業社製(残留DC値=73mV))を100質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASF社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を150質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を90質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を20質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Comparative Example 4]
200 parts by mass of photocurable compound 1, epoxy compound (EP-4010S, manufactured by ADEKA, bisphenol A type (residual DC value = 64 mV), 40 parts by mass, epoxy compound (850-S, manufactured by DIC, bisphenol A type) 200 parts by mass of (residual DC value = 133 mV), 130 parts by mass of (meth) acrylic compound (Ebeclyl3700, manufactured by Daicel Cytec (residual DC value = 52 mV)), (meth) acrylic compound (2CL, Shin-Nakamura Chemical Industry Co., Ltd.) (Residual DC value = 73 mV)) 100 parts by mass, thermosetting agent (adipic acid dihydrazide, manufactured by Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)) 50 parts by mass, photopolymerization initiator (OXE-01, BASF) 20 parts by mass of manufactured (residual DC value = 68 mV)), 150 parts by mass of inorganic particles (silica particles: S-100, manufactured by Nippon Catalytic Chemical Co., Ltd. (residual DC value = 51 mV)), organic particles (fine particle polymer F351, Aika) 90 parts by mass of an industrial product (residual DC value = 55 mV) and 20 parts by mass of a silane coupling agent (KBM-403, manufactured by Shinetsu Chemical Industry Co., Ltd. (residual DC value = 431 mV)) were mixed. Was sufficiently mixed with three rolls so as to be a uniform liquid to obtain a sealant.
 [比較例5]
 光硬化性化合物1を340質量部、エポキシ化合物(EP-4010S、ADEKA社製、ビスフェノールA型(残留DC値=64mV)130質量部、エポキシ化合物(850-S、DIC社製、ビスフェノールA型(残留DC値=133mV)を200質量部、熱硬化剤(アジピン酸ジヒドラジド、大塚化学社製(残留DC値=53mV))を50質量部、光重合開始剤(OXE-01、BASF社製(残留DC値=68mV))を20重量部、無機粒子(シリカ粒子:S-100、日本触媒化学社製(残留DC値=51mV))を150質量部、有機粒子(微粒子ポリマーF351、アイカ工業社製(残留DC値=55mV))を90質量部、およびシランカップリング剤(KBM-403、信越化学工業社製(残留DC値=431mV))を20質量部、混合した。そして、これらを三本ロールにて均一な液となるように十分に混合して、シール剤を得た。
[Comparative Example 5]
340 parts by mass of photocurable compound 1, epoxy compound (EP-4010S, manufactured by ADEKA, bisphenol A type (residual DC value = 64 mV), 130 parts by mass, epoxy compound (850-S, manufactured by DIC, bisphenol A type) Residual DC value = 133 mV) by 200 parts by mass, thermosetting agent (adipate dihydrazide, manufactured by Otsuka Chemical Co., Ltd. (residual DC value = 53 mV)) by 50 parts by mass, photopolymerization initiator (OXE-01, manufactured by BASF) (residual) 20 parts by mass of inorganic particles (silica particles: S-100, manufactured by Nippon Catalytic Chemical Co., Ltd. (residual DC value = 51 mV)), 150 parts by mass of organic particles (fine particle polymer F351, manufactured by Aika Kogyo Co., Ltd.) (Residual DC value = 55 mV)) was mixed in an amount of 90 parts by mass, and a silane coupling agent (KBM-403, manufactured by Shinetsu Chemical Industry Co., Ltd. (residual DC value = 431 mV)) was mixed in an amount of 20 parts by mass. The mixture was sufficiently mixed with a roll so as to have a uniform liquid to obtain a sealant.
 [評価]
 実施例および比較例で得られたシール剤について、以下の評価を行った。
[evaluation]
The sealants obtained in Examples and Comparative Examples were evaluated as follows.
 <シール剤と液晶との残留DC値測定>
 上述のシール剤を液晶と混合し、残留DC値を測定した。0.1gの液晶シール剤と、1gの液晶(MLC-7026、メルク社製)とをバイアル瓶に投入し、120℃で1時間加熱して液晶混合物を得た。次いで、この液晶混合物を取り出して、配向膜と透明電極が予め形成されたガラスセル(KSSZ-10/B111M1NSS05、EHC社製)に注入した。得られたセルに電圧5Vを1秒間印加し、0.1秒間短絡させた後、30秒後に残存している電圧(残留DC値)を、6254型測定装置(東陽テクニカ社製)にて測定した。なお、液晶のみについても、同様に残留DC値を測定したところ、液晶のみの残留DC値は50mVであった。
<Measurement of residual DC value between sealant and liquid crystal display>
The above-mentioned sealing agent was mixed with the liquid crystal display, and the residual DC value was measured. 0.1 g of the liquid crystal sealant and 1 g of the liquid crystal (MLC-7026, manufactured by Merck & Co., Inc.) were put into a vial and heated at 120 ° C. for 1 hour to obtain a liquid crystal mixture. Next, this liquid crystal mixture was taken out and injected into a glass cell (KSSZ-10 / B111M1NSS05, manufactured by EHC) in which an alignment film and a transparent electrode were formed in advance. A voltage of 5 V was applied to the obtained cell for 1 second, short-circuited for 0.1 seconds, and then the remaining voltage (residual DC value) after 30 seconds was measured with a 6254 type measuring device (manufactured by Toyo Corporation). bottom. When the residual DC value of the liquid crystal display alone was measured in the same manner, the residual DC value of the liquid crystal display alone was 50 mV.
 <原料の残留DC値測定>
 上述の各原料と液晶とを混合し、残留DC値を測定した。0.1gの化合物と、1gの液晶(MLC-7026、メルク社製)とをバイアル瓶に投入し、120℃で1時間加熱して液晶混合物を得た。次いで、この液晶混合物を取り出して、配向膜と透明電極が予め形成されたガラスセル(KSSZ-10/B111M1NSS05、EHC社製)に注入した。得られたセルに電圧5Vを1秒間印加し、0.1秒間短絡させた後、30秒後に残存している電圧(残留DC値)を、6254型測定装置にて測定した。
<Measurement of residual DC value of raw materials>
Each of the above-mentioned raw materials and a liquid crystal display were mixed, and the residual DC value was measured. 0.1 g of the compound and 1 g of liquid crystal (MLC-7026, manufactured by Merck & Co., Inc.) were put into a vial and heated at 120 ° C. for 1 hour to obtain a liquid crystal mixture. Next, this liquid crystal mixture was taken out and injected into a glass cell (KSSZ-10 / B111M1NSS05, manufactured by EHC) in which an alignment film and a transparent electrode were formed in advance. A voltage of 5 V was applied to the obtained cell for 1 second, short-circuited for 0.1 seconds, and then the residual voltage (residual DC value) after 30 seconds was measured with a 6254 type measuring device.
 <残像評価>
 シール剤を、ディスペンサ(ショットマスター:武蔵エンジニアリング社製)を用いて、透明電極と配向膜が予め形成された40mm×45mmガラス基板(RT-DM88-PIN、EHC社製)上に塗布した。具体的には、35mm×40mmの四角形のシールパターン(断面積3500μm)(メインシール)と、その外周に同様のシールパターン(38mm×43mmの四角形のシールパターン)とを形成した。
<Afterimage evaluation>
The sealant was applied to a 40 mm × 45 mm glass substrate (RT-DM88-PIN, manufactured by EHC) in which a transparent electrode and an alignment film were previously formed using a dispenser (shot master: manufactured by Musashi Engineering Co., Ltd.). Specifically, a 35 mm × 40 mm quadrangular seal pattern (cross-sectional area 3500 μm 2 ) (main seal) and a similar seal pattern (38 mm × 43 mm quadrangular seal pattern) were formed on the outer circumference thereof.
 次いで、貼り合せ後のパネル内容量に相当する液晶(MLC-7026-000、メルク社製)を、メインシールの枠内にディスペンサを用いて精密に滴下した。次いで、対になるガラス基板を減圧下で貼り合せた後、大気開放して貼り合わせた。そして、貼り合わせた2枚のガラス基板を3分間遮光ボックス内で保持した後、波長370~450nmの光を100mJ/cm照射し、さらに120℃で1時間加熱した。得られた基板の両面に偏光板を貼付け、評価基板とした。 Next, a liquid crystal display (MLC-7026-000, manufactured by Merck & Co., Inc.) corresponding to the capacity of the panel after bonding was precisely dropped into the frame of the main seal using a dispenser. Next, the paired glass substrates were bonded under reduced pressure, and then opened to the atmosphere for bonding. Then, the two laminated glass substrates were held in a light-shielding box for 3 minutes , then irradiated with light having a wavelength of 370 to 450 nm at 100 mJ / cm 2 and further heated at 120 ° C. for 1 hour. Polarizing plates were attached to both sides of the obtained substrate to prepare an evaluation substrate.
 評価基板の液晶が充填されている部分の半面だけ駆動させるように電極をつなぎ10Vの電圧を印加しながら65℃で24時間通電させた。その後全面を4Vで駆動させ、半面駆動と全面駆動させたときの境界線を、顕微鏡にて観察した。残像の評価は基板の境界線上の状態から以下のように評価した。狭額縁化する場合、○のみが実用上問題ない範囲といえる。
 ○:基板の境界線上に差が見られず残像が見られない
 △:シール材端部から1mm未満の部分の範囲で基板境界線上に像がみられる
 ×:シール材端部から1mm以上の部分で基板境界線上に残像がみられる
Electrodes were connected so as to drive only one side of the portion of the evaluation substrate filled with the liquid crystal display, and the mixture was energized at 65 ° C. for 24 hours while applying a voltage of 10 V. After that, the entire surface was driven by 4 V, and the boundary line between the half-side drive and the full-surface drive was observed with a microscope. The afterimage was evaluated as follows from the state on the boundary line of the substrate. When narrowing the frame, only ○ can be said to be a range where there is no practical problem.
◯: No difference is seen on the boundary line of the substrate and no afterimage is seen Δ: An image is seen on the boundary line of the substrate within a range of less than 1 mm from the end of the sealing material ×: A part of 1 mm or more from the end of the sealing material Afterimage is seen on the board boundary line
 <接着強度評価>
 スクリーン版を使用し、シール剤を25mm×45mm×厚さ1mmの無アルカリガラス上に印刷した。シールパターンは、直径1mmの円状とした。そして、対となる無アルカリガラスをシールパターン上に載置し、治具で固定した。当該試験片に対して、紫外光照射装置(ウシオ電機社製)で、500mW/cmの紫外光を照射し、シール剤を硬化させた。このとき、紫外光の照度エネルギーは3.0J/cmとした。光によってシール剤を硬化させた試験片を、オーブンを用いて120℃、60分加熱処理し、接着強度測定用のサンプルとした。
<Adhesive strength evaluation>
Using a screen plate, the sealant was printed on 25 mm × 45 mm × 1 mm thick non-alkali glass. The seal pattern was a circle with a diameter of 1 mm. Then, a pair of non-alkali glass was placed on the seal pattern and fixed with a jig. The test piece was irradiated with ultraviolet light of 500 mW / cm 2 with an ultraviolet light irradiation device (manufactured by Ushio, Inc.) to cure the sealant. At this time, the illuminance energy of the ultraviolet light was set to 3.0 J / cm 2 . The test piece obtained by curing the sealant with light was heat-treated at 120 ° C. for 60 minutes using an oven to prepare a sample for measuring adhesive strength.
 当該サンプルを、引張試験機(インテスコ社製)を用いて、引張速度を2mm/分とし、硬化したシール剤をガラス底面に対して平行な方向に引き剥がすことにより、平面の引張強度を測定した。ここで、接着強度は、平面引張強度の大きさに応じて以下のように評価した。狭額縁化する場合、△以上が好ましい。
 〇:引張強度が15MPa以上である
 △:引張強度が10MPa以上15MPa未満である
 ×:引張強度が10MPa未満である
The tensile strength of the flat surface of the sample was measured by using a tensile tester (manufactured by Intesco) at a tensile speed of 2 mm / min and peeling the cured sealant in a direction parallel to the bottom surface of the glass. .. Here, the adhesive strength was evaluated as follows according to the magnitude of the planar tensile strength. When narrowing the frame, Δ or more is preferable.
〇: Tensile strength is 15 MPa or more Δ: Tensile strength is 10 MPa or more and less than 15 MPa ×: Tensile strength is less than 10 MPa
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、エポキシ化合物、(メタ)アクリル・エポキシ含有化合物、(メタ)アクリル化合物、熱硬化剤、および光重合開始剤を含み、かつエポキシ化合物の含有量が22~38質量%であり、かつシール剤と液晶との混合物の残留DC値が、液晶のみの残留DC値に対して200%以下であるシール剤では、残像評価が良好であり、かつ接着強度評価も良好であった(実施例1~7)。所定の量のエポキシ化合物によって、十分な接着性が得られたと考えられる。また、液晶と混合したときの残留DC値が低いシール剤では、シール剤中の成分が液晶に溶出し難いといえる。 As shown in Table 1, the epoxy compound contains an epoxy compound, a (meth) acrylic / epoxy-containing compound, a (meth) acrylic compound, a heat curing agent, and a photopolymerization initiator, and the content of the epoxy compound is 22 to 38% by mass. In addition, with a sealant in which the residual DC value of the mixture of the sealant and the liquid crystal is 200% or less with respect to the residual DC value of the liquid crystal alone, the afterimage evaluation is good and the adhesive strength evaluation is also good. (Examples 1 to 7). It is considered that sufficient adhesiveness was obtained by the predetermined amount of the epoxy compound. Further, it can be said that the components in the sealant are difficult to elute into the liquid crystal display in the sealant having a low residual DC value when mixed with the liquid crystal display.
 一方、エポキシ化合物の量が22質量%を下回る場合には、残像評価の結果は良好であったものの、接着性テストの結果が低かった(比較例2)。一方、エポキシ化合物の量が38質量%を超える場合、接着性は良好であったものの、残像性残留DCの値が高まりやすく、残像評価が悪かった(比較例5)。 On the other hand, when the amount of the epoxy compound was less than 22% by mass, the result of the afterimage evaluation was good, but the result of the adhesiveness test was low (Comparative Example 2). On the other hand, when the amount of the epoxy compound exceeded 38% by mass, the adhesiveness was good, but the value of the afterimage residual DC was likely to increase, and the afterimage evaluation was poor (Comparative Example 5).
 また、エポキシ化合物の含有量が22~38質量%であったとしても、シール剤と液晶とを混合したときの残留DC値が高い場合には、いずれも残像評価が悪かった(比較例1、3、および4)。 Further, even if the content of the epoxy compound was 22 to 38% by mass, the afterimage evaluation was poor in all cases when the residual DC value when the sealant and the liquid crystal were mixed was high (Comparative Example 1, 3 and 4).
 本出願は、2020年3月2日出願の特願2020-034974号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2020-034974 filed on March 2, 2020. All the contents described in the application specification are incorporated in the application specification.
 本発明のシール剤によれば、基板との接着性が高いシール部材が得られる。また、当該シール剤は、液晶を汚染し難い。したがって、当該シール剤は、各種液晶表示パネルのシール部材を作製するためのシール剤等として非常に有用である。 According to the sealant of the present invention, a seal member having high adhesiveness to the substrate can be obtained. In addition, the sealant does not easily contaminate the liquid crystal display. Therefore, the sealant is very useful as a sealant or the like for producing a seal member for various liquid crystal display panels.

Claims (10)

  1.  エポキシ基以外の重合性官能基を有さないエポキシ化合物、
     1分子中に(メタ)アクリル基およびエポキシ基の両方を有する(メタ)アクリル・エポキシ含有化合物、
     エポキシ基を有さない(メタ)アクリル化合物、
     熱硬化剤、および
     光重合開始剤
     を含み、かつ前記エポキシ化合物の含有量が22~38質量%である液晶滴下工法用シール剤であり、
     前記液晶滴下工法用シール剤および液晶を質量比1:10で混合した混合物を、120℃で1時間加熱し、5Vで1秒間電圧を印加し、0.1秒間短絡させてから、30秒後に測定される残留DC値が、前記液晶のみを120℃で1時間加熱し、5Vで1秒間電圧を印加し、0.1秒間短絡させてから、30秒後に測定される残留DC値に対して200%以下である、
     液晶滴下工法用シール剤。
    Epoxy compounds that do not have polymerizable functional groups other than epoxy groups,
    A (meth) acrylic-epoxy-containing compound having both a (meth) acrylic group and an epoxy group in one molecule,
    (Meta) acrylic compounds without epoxy groups,
    A sealant for a liquid crystal dropping method, which contains a thermosetting agent and a photopolymerization initiator and has a content of the epoxy compound of 22 to 38% by mass.
    A mixture of the sealant for the liquid crystal dropping method and liquid crystal at a mass ratio of 1:10 was heated at 120 ° C. for 1 hour, a voltage was applied at 5 V for 1 second, short-circuited for 0.1 seconds, and then 30 seconds later. The measured residual DC value is based on the residual DC value measured 30 seconds after heating only the liquid crystal at 120 ° C. for 1 hour, applying a voltage at 5 V for 1 second, short-circuiting for 0.1 seconds. 200% or less,
    Sealing agent for liquid crystal dripping method.
  2.  前記液晶滴下工法用シール剤が含む各成分について、前記各成分と液晶とをそれぞれを質量比1:10で混合し、120℃で1時間加熱し、5Vで1秒間電圧を印加し、0.1秒間短絡させてから、30秒後に残留DC値を測定したとき、
     前記液晶滴下工法用シール剤の98質量%以上の成分の前記残留DC値が、前記液晶のみを120℃で1時間加熱し、5Vで1秒間電圧を印加し、0.1秒間短絡させてから、30秒後に測定される残留DC値に対して300%以下である、
     請求項1に記載の液晶滴下工法用シール剤。
    For each component contained in the sealant for the liquid crystal dropping method, each of the components and the liquid crystal was mixed at a mass ratio of 1:10, heated at 120 ° C. for 1 hour, and a voltage was applied at 5 V for 1 second. When the residual DC value is measured 30 seconds after short-circuiting for 1 second,
    After the residual DC value of 98% by mass or more of the sealant for the liquid crystal dropping method is such that only the liquid crystal is heated at 120 ° C. for 1 hour, a voltage is applied at 5 V for 1 second, and the liquid crystal display is short-circuited for 0.1 second. , 300% or less of the residual DC value measured after 30 seconds.
    The sealant for the liquid crystal dropping method according to claim 1.
  3.  前記エポキシ化合物のうち、分子量が500以上である成分の割合が、25質量%以上である、
     請求項1または2に記載の液晶滴下工法用シール剤。
    The proportion of the component having a molecular weight of 500 or more in the epoxy compound is 25% by mass or more.
    The sealant for the liquid crystal dropping method according to claim 1 or 2.
  4.  前記熱硬化剤が、有機酸ジヒドラジド系熱潜在性硬化剤、イミダゾール系熱潜在性硬化剤、アミンアダクト系熱潜在性硬化剤、およびポリアミン系熱潜在性硬化剤からなる群より選ばれる1種以上である、
     請求項1~3のいずれか一項に記載の液晶滴下工法用シール剤。
    One or more selected from the group consisting of an organic acid dihydrazide-based thermal latent curing agent, an imidazole-based thermal latent curing agent, an amine adduct-based thermal latent curing agent, and a polyamine-based thermal latent curing agent. Is,
    The sealant for the liquid crystal dropping method according to any one of claims 1 to 3.
  5.  無機粒子をさらに含む、
     請求項1~4のいずれか一項に記載の液晶滴下工法用シール剤。
    Including more inorganic particles,
    The sealant for the liquid crystal dropping method according to any one of claims 1 to 4.
  6.  有機粒子をさらに含む、
     請求項1~5のいずれか一項に記載の液晶滴下工法用シール剤。
    Including additional organic particles,
    The sealant for the liquid crystal dropping method according to any one of claims 1 to 5.
  7.  シランカップリング剤をさらに含む、
     請求項1~6のいずれか一項に記載の液晶滴下工法用シール剤。
    Further containing a silane coupling agent,
    The sealant for the liquid crystal dropping method according to any one of claims 1 to 6.
  8.  一対の基板の一方の基板上に、請求項1~7のいずれか一項に記載の液晶滴下工法用シール剤を塗布し、シールパターンを形成する工程と、
     前記シールパターンが未硬化の状態において、前記一方の基板の前記シールパターンの領域内、または他方の基板上に液晶を滴下する工程と、
     前記一方の基板と前記他方の基板とを、前記シールパターンを介して重ね合わせる工程と、
     前記シールパターンを硬化させる工程と、
     を含む、液晶表示パネルの製造方法。
    A step of applying the sealant for the liquid crystal dropping method according to any one of claims 1 to 7 onto one of the pair of substrates to form a seal pattern.
    A step of dropping a liquid crystal display in the region of the seal pattern on one of the substrates or on the other substrate in a state where the seal pattern is uncured.
    A step of superimposing the one substrate and the other substrate via the seal pattern, and
    The process of curing the seal pattern and
    A method for manufacturing a liquid crystal display panel, including.
  9.  前記シールパターンを硬化させる工程において、前記シールパターンに光を照射する、
     請求項8に記載の液晶表示パネルの製造方法。
    In the step of curing the seal pattern, the seal pattern is irradiated with light.
    The method for manufacturing a liquid crystal display panel according to claim 8.
  10.  前記シールパターンを硬化させる工程において、光を照射後、加熱する、
     請求項9に記載の液晶表示パネルの製造方法。
    In the step of curing the seal pattern, it is heated after being irradiated with light.
    The method for manufacturing a liquid crystal display panel according to claim 9.
PCT/JP2021/006896 2020-03-02 2021-02-24 Sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel WO2021177111A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022505143A JPWO2021177111A1 (en) 2020-03-02 2021-02-24
CN202180011036.8A CN115004094A (en) 2020-03-02 2021-02-24 Sealant for liquid crystal dropping process and manufacturing method of liquid crystal display panel
KR1020227026572A KR20220123442A (en) 2020-03-02 2021-02-24 Sealing agent for liquid crystal dropping method and manufacturing method of liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020034974 2020-03-02
JP2020-034974 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021177111A1 true WO2021177111A1 (en) 2021-09-10

Family

ID=77612955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006896 WO2021177111A1 (en) 2020-03-02 2021-02-24 Sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel

Country Status (5)

Country Link
JP (1) JPWO2021177111A1 (en)
KR (1) KR20220123442A (en)
CN (1) CN115004094A (en)
TW (1) TW202134388A (en)
WO (1) WO2021177111A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106385A (en) * 2004-10-06 2006-04-20 Three Bond Co Ltd Curable composition for liquid crystal display device
WO2016080278A1 (en) * 2014-11-17 2016-05-26 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
WO2017199905A1 (en) * 2016-05-17 2017-11-23 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP2017223828A (en) * 2016-06-15 2017-12-21 三井化学株式会社 Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784394B2 (en) 2004-07-08 2006-06-07 積水化学工業株式会社 Curable resin composition for liquid crystal display element, sealing agent for liquid crystal dropping method, material for vertical conduction and liquid crystal display element
JP5897679B2 (en) 2014-10-02 2016-03-30 協立化学産業株式会社 Low-eluting epoxy resin, partially esterified epoxy resin, production method thereof, and curable resin composition containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106385A (en) * 2004-10-06 2006-04-20 Three Bond Co Ltd Curable composition for liquid crystal display device
WO2016080278A1 (en) * 2014-11-17 2016-05-26 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material and liquid crystal display element
WO2017199905A1 (en) * 2016-05-17 2017-11-23 積水化学工業株式会社 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP2017223828A (en) * 2016-06-15 2017-12-21 三井化学株式会社 Sealant for liquid crystal dropping method, liquid crystal display panel, and method for manufacturing liquid crystal display panel

Also Published As

Publication number Publication date
CN115004094A (en) 2022-09-02
KR20220123442A (en) 2022-09-06
JPWO2021177111A1 (en) 2021-09-10
TW202134388A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6373828B2 (en) Composition, cured product, display device and method for producing the same
JP5008682B2 (en) Sealant for liquid crystal dropping method containing photo-curing resin and thermosetting resin
TWI717470B (en) Liquid crystal sealant and its hardened product, liquid crystal display panel and manufacturing method thereof
WO2011118191A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display panel using same, and liquid crystal display panel
JP6793471B2 (en) Sealing material for liquid crystal dropping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
WO2020235357A1 (en) Sealing agent for liquid crystal dropping methods, liquid crystal display panel using same, and method for producing same
TWI723102B (en) Display element sealant, liquid crystal display panel and manufacturing method thereof
JP6793470B2 (en) Sealing material for liquid crystal dripping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
WO2021177111A1 (en) Sealing agent for liquid crystal dropping methods and method for producing liquid crystal display panel
JP7411693B2 (en) Photothermosetting resin composition, liquid crystal sealant containing the same, liquid crystal display panel, and manufacturing method thereof
JP7413511B2 (en) Sealant for liquid crystal dripping method, manufacturing method of liquid crystal display panel, and liquid crystal display panel
WO2020230678A1 (en) Liquid crystal sealant, liquid crystal display panel using same, and production method therefor
WO2022181498A1 (en) Photocurable resin composition, liquid crystal sealing agent, liquid crystal display panel using same, and production method therefor
WO2023182361A1 (en) Liquid crystal sealing agent, method for producing liquid crystal display panel, and liquid crystal display panel
CN115380246A (en) Liquid crystal sealing agent, method for manufacturing liquid crystal display panel, and liquid crystal display panel
JP6452194B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2020187302A (en) Method of manufacturing liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505143

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227026572

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764539

Country of ref document: EP

Kind code of ref document: A1