WO2021157183A1 - 単結晶製造方法及び単結晶引き上げ装置 - Google Patents

単結晶製造方法及び単結晶引き上げ装置 Download PDF

Info

Publication number
WO2021157183A1
WO2021157183A1 PCT/JP2020/045621 JP2020045621W WO2021157183A1 WO 2021157183 A1 WO2021157183 A1 WO 2021157183A1 JP 2020045621 W JP2020045621 W JP 2020045621W WO 2021157183 A1 WO2021157183 A1 WO 2021157183A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
single crystal
temperature
thermometers
pulling
Prior art date
Application number
PCT/JP2020/045621
Other languages
English (en)
French (fr)
Inventor
宮原 祐一
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2021157183A1 publication Critical patent/WO2021157183A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a single crystal manufacturing method and a single crystal pulling device.
  • CZ method Czochralski method
  • the single crystal pulling device by the CZ method for example, a device equipped with a heater divided into upper and lower parts is used.
  • the pulling device provided with the heaters divided into upper and lower parts has an advantage that smooth melting can be realized by changing the output ratio of the upper and lower heaters when the silicon raw material is melted.
  • Patent Document 1 when a single crystal is pulled up by a pulling device provided with a vertically split heater, the temperature gradient Ge in the pulling axial direction of the outer peripheral portion of the single crystal and the temperature gradient Gc in the pulling axial direction of the center of the single crystal are Gc.
  • Patent Document 2 a cylindrical cooler is arranged around the silicon single crystal, and when the silicon single crystal is pulled up by a pulling device equipped with an upper and lower multi-heater, the rutsubo, the rotation speed of the silicon single crystal, and the multi-heater are used.
  • a single crystal growth method for producing a defect-free silicon single crystal by controlling the temperature gradient on the side surface of the silicon single crystal, the height of the solid-liquid interface, and the oxygen concentration by adjusting the output ratio of silicon in the longitudinal direction is proposed. Has been done.
  • Patent Document 3 a water-cooled body and a heat shield surrounding the outer peripheral surface and the lower end surface of the water-cooled body are arranged around the single crystal, and the output of each heater is output in a pulling device provided with an upper and lower split heater.
  • the temperature gradient Gc in the axial direction of raising the center of the single crystal, the outer circumference While the axial temperature gradient Ge is set, a single crystal growth method is proposed in which the single crystal is pulled up under the condition that Gc / Ge> 1 is satisfied, and the single crystal that becomes a defect-free region is grown over the entire radial direction. Has been done.
  • a defect-free silicon single crystal can be produced by adjusting the temperature gradient in the pulling axial direction by changing the output ratio of the upper and lower heaters when pulling the single crystal.
  • the present invention has been made to solve the above problems, a single crystal manufacturing method capable of preventing a decrease in the pulling speed of a defect-free silicon single crystal, and a reduction in the pulling speed of a defect-free silicon single crystal. It is an object of the present invention to provide a single crystal pulling device which can be prevented.
  • the heater is arranged around the main chamber and the rutsubo for accommodating the raw material melt, which is arranged in the main chamber, and is divided into at least two in the vertical direction.
  • the heater including the upper heater whose output can be adjusted independently and the lower heater arranged below the upper heater, and at least the temperature of the upper part of the heat generating portion and the temperature of the lower part of the heat generating portion of the upper heater are measured. 2
  • the temperature of the upper part of the heating part and the temperature of the lower part of the heating part of the upper heater are monitored by using one or more thermometers, and the temperature is measured by the two or more thermometers as the usage time of the heater elapses.
  • a single crystal manufacturing method characterized in that the output of the lower heater is adjusted to pull up the single crystal so that the temperature is the same as the temperature when the heater is new.
  • the heat generation distribution for the raw material melt (silicon melt), which may change with the lapse of the heater usage time, is adjusted by adjusting the output of the lower heater to generate heat for the silicon melt when the heater is new. It can be corrected to be equivalent to the distribution.
  • the heat generation distribution with respect to the silicon melt from shifting upward as the heater usage time elapses.
  • the temperature distribution can be adjusted before the single crystal is pulled up, so that a defect-free silicon single crystal can be produced more reliably and efficiently.
  • thermometers are radiation thermometers.
  • the temperature of the upper part of the heat generating part of the upper heater and the temperature of the lower part of the heat generating part can be measured from outside the main chamber (furnace).
  • thermometers Also, it can be equipped with three or more thermometers.
  • thermometers By using three or more thermometers, the temperature distribution in the furnace can be measured more finely. As a result, it is possible to further suppress a decrease in the intra-crystal temperature gradient in the pull-up axial direction in the vicinity of the crystal growth interface with the lapse of the heater usage time.
  • the output of the lower heater is adjusted so that the temperature measured by the two or more thermometers becomes the same as the temperature when the upper heater is new. It is preferable to pull up the single crystal.
  • the main chamber and the heaters arranged around the rutsubo for accommodating the raw material melt and divided into at least two in the vertical direction, which are arranged in the main chamber, are independent of each other.
  • a heater including an upper heater whose output can be adjusted and a lower heater arranged below the upper heater, and at least two or more for measuring the temperature of the upper part of the heating part and the temperature of the lower part of the heating part of the upper heater. From the thermometer, the wire for pulling the silicon single crystal from the raw material melt in the rutsubo, the monitor for monitoring the temperature of the upper heater measured by the two or more thermometers, and the monitor.
  • the lower heater receives information on the measured temperature, and based on the information, the temperature measured by the two or more thermometers is the same as the temperature when the heater is new.
  • a single crystal pulling device characterized by being provided with a controller for adjusting the output of the above.
  • the heat generation distribution for the raw material melt (silicon melt), which may change with the passage of the heater usage time, is adjusted by adjusting the output of the lower heater, so that the heat generation distribution for the silicon melt when the heater is new Can be corrected to be equivalent to.
  • the heat generation distribution with respect to the silicon melt from shifting upward as the heater usage time elapses.
  • thermometers are radiation thermometers.
  • the temperature of the upper heater can be measured from outside the main chamber (furnace).
  • thermometers Also, it can be equipped with three or more thermometers.
  • the temperature distribution inside the furnace can be measured more finely. As a result, it is possible to further suppress a decrease in the temperature gradient in the crystal in the pulling axial direction in the vicinity of the crystal growth interface with the lapse of the usage time of the heater.
  • the controller receives information on the measured temperature from the monitor, and based on the information, the temperature measured by the two or more thermometers is the temperature when the upper heater is new. It is preferable that the controller is for adjusting the output of the lower heater so as to be the same.
  • the heat generation distribution for the raw material melt (silicon melt), which may change with the passage of the heater usage time, is applied to the silicon melt when the heater is new. It can be corrected so as to be equivalent to the heat generation distribution. As a result, it is possible to prevent the heat generation distribution with respect to the silicon melt from shifting upward as the heater usage time elapses. As a result, it is possible to prevent a decrease in the temperature gradient in the crystal in the pulling axial direction in the vicinity of the crystal growth interface with the lapse of the usage time of the heater, and it is possible to prevent a decrease in the pulling speed of the defect-free silicon single crystal. As a result, the productivity of the defect-free silicon single crystal can be improved, the risk of becoming a non-defect-free silicon single crystal is reduced, and the quality can be improved.
  • FIG. 1 It is schematic cross-sectional view of an example single crystal pulling apparatus which can be used in the single crystal manufacturing method of this invention.
  • It is a block diagram which shows the structure of an example for adjusting the output of the lower heater in the single crystal manufacturing method of this invention. It is a graph which shows the relationship between the heater use time and the temperature of the upper thermometer in an Example. It is a graph which shows the relationship between the heater use time and the temperature of a lower thermometer in an Example. It is a graph which shows the relationship between the heater use time and the output of a lower heater in an Example. It is a graph which shows the relationship between the heater use time and the defect-free crystal pulling rate change amount in an Example.
  • the formation of the Green-in defect formed during the growth of a single crystal of a silicon single crystal can be suppressed by controlling the ratio of the temperature gradient G in the crystal to the growth rate V of the crystal to be constant. ..
  • the heat generating parts of the upper and lower heaters are depleted as the usage time elapses, and the heat generation distribution changes with time.
  • the wear between the upper end of the heat generating portion and the center of the heating portion of the upper heater is rapid, and the heat generation distribution changes upward with the lapse of the usage time of the upper and lower two-stage heaters. Therefore, as the heater usage time elapses, the heat generation distribution with respect to the silicon melt shifts upward, the temperature gradient in the crystal in the pull-up axial direction near the crystal growth interface becomes small, and the pull-up speed at which a defect-free silicon single crystal can be obtained becomes high. It will decrease.
  • the output of the upper and lower two-stage heaters is adjusted to pull up the defect-free silicon single crystal.
  • the output of the upper and lower heaters is not adjusted for the purpose of correction.
  • the present inventor has made the heat generation distribution for the raw material melt, which changes with the passage of time of the heater, equal to the heat generation distribution when the heater is new.
  • the output of the heater it is possible to prevent the temperature gradient in the crystal in the pulling axis direction from decreasing near the crystal growth interface with the lapse of the heater usage time, and the pulling speed of the defect-free silicon single crystal can be increased. It was found that the decrease can be prevented.
  • the present invention is a main chamber and a heater arranged around the rutsubo for accommodating the raw material melt, which is arranged in the main chamber, and is divided into at least two in the vertical direction, and each of them is independent.
  • a heater including an upper heater whose output can be adjusted and a lower heater arranged below the upper heater, and at least two or more for measuring the temperature of the upper part of the heating part and the temperature of the lower part of the heating part of the upper heater.
  • thermometers It is used to monitor the temperature of the upper part of the heating part and the temperature of the lower part of the heating part of the upper heater, and as the usage time of the heater elapses, the temperature measured by the two or more thermometers is the heater. It is a single crystal manufacturing method characterized by adjusting the output of the lower heater to pull up the single crystal so that the temperature becomes the same as when the temperature is new.
  • the present invention is a heater arranged around a main chamber and a rut for accommodating a raw material melt, which is arranged in the main chamber, and is divided into at least two in the vertical direction, and each of them is independent.
  • a heater including an upper heater whose output can be adjusted and a lower heater arranged below the upper heater, and at least two or more for measuring the temperature of the upper part of the heating part and the temperature of the lower part of the heating part of the upper heater. From the thermometer, the wire for pulling the silicon single crystal from the raw material melt in the rutsubo, the monitor for monitoring the temperature of the upper heater measured by the two or more thermometers, and the monitor.
  • the lower heater receives information on the measured temperature, and based on the information, the temperature measured by the two or more thermometers is the same as the temperature when the heater is new. It is a single crystal pulling device characterized by being provided with a controller for adjusting the output of the above.
  • the single crystal manufacturing method of the present invention uses a single crystal pulling device equipped with a main chamber, a heater, and two or more thermometers, and pulls a silicon single crystal from the raw material melt by the Czochralski method. It is a manufacturing method.
  • the heater is arranged around the crucible for accommodating the raw material melt arranged in the main chamber.
  • This heater is a heater divided into at least two in the vertical direction, and includes an upper heater and a lower heater arranged below the upper heater.
  • the upper heater may be spatially separated from the lower heater through a gap, for example, or may be separated from the lower heater via a heat insulating member. That is, the upper heater and the lower heater may be thermally separated from each other. Further, the output of the upper heater and the lower heater can be adjusted independently. Two or more thermometers are used to measure at least the temperature of the upper part of the heating part and the temperature of the lower part of the heating part of the upper heater.
  • the temperature of the upper part of the heat generating part of the upper heater and the temperature of the lower part of the heat generating part are monitored by using two or more thermometers. Then, as the usage time of the heater, particularly the usage time of the upper heater elapses, the temperature measured by these two or more thermometers is when the heater, particularly the upper heater, is new (in other words, the heater, especially the upper heater). Adjust the output of the lower heater so that the temperature is the same as the temperature at the start of use of the upper heater) and pull up the single crystal.
  • a pulling machine single crystal
  • two or more upper and lower heaters capable of independently controlling power and two or more thermometers for measuring the temperature of the upper part of the upper heater and the lower part of the heat generating part of the upper heater.
  • the temperature of the upper heater is monitored, and the power of the lower heater is adjusted so that the temperature distribution of the heater, especially the upper heater, in the vertical direction is constant regardless of the usage time of the heater, especially the upper heater. Pull up the crystal.
  • the present invention since it is possible to prevent the temperature gradient G in the crystal from decreasing regardless of the usage time of the heater, particularly the upper heater, it is possible to prevent the growth rate V of the crystal from decreasing, and as a result, there is nothing. It is possible to suppress a decrease in the pulling speed at which defective crystals are obtained. Therefore, the productivity of defect-free crystals can be improved.
  • the temperature distribution can be adjusted before the start of pulling up the crystal, so that a defect-free silicon single crystal can be reliably produced efficiently.
  • thermometers for measuring the temperature of the upper heater are not particularly limited as long as they have a measurement range that includes the heat generation temperature range of the upper heater.
  • thermometers for measuring the temperature of the upper heater can be radiation thermometers.
  • a radiation thermometer the temperature of the upper part of the heat generating part of the upper heater and the temperature of the lower part of the heat generating part can be measured from outside the main chamber (furnace). Further, with such a thermometer, the position with respect to the upper heater can be easily adjusted outside the furnace, and it can be easily replaced when a problem occurs.
  • the two or more thermometers for measuring the temperature of the upper heater may be a thermometer arranged in the main chamber.
  • the two or more thermometers may be thermometers that come into contact with the upper heater and measure the temperature.
  • thermometer for measuring the temperature of the upper heater, more than two, for example, three or more thermometers can be provided.
  • thermometers By monitoring the temperature of the upper heater using three or more thermometers, the temperature distribution inside the furnace can be measured more finely. As a result, it is possible to further suppress a decrease in the intra-crystal temperature gradient in the pull-up axial direction in the vicinity of the crystal growth interface with the lapse of the heater usage time. That is, two or more thermometers may be used to measure, for example, a portion of the upper heater between the upper part of the heat generating part and the lower part of the heat generating part in addition to the upper part of the heat generating part and the lower part of the heat generating part of the upper heater.
  • thermometers for measuring the temperature of the upper heater is not particularly limited, but considering the ease of assembling the pulling device and cost effectiveness, for example, six or less thermometers can be used.
  • the temperature of the upper part of the heat generating part of the upper heater and the temperature of the lower part of the heat generating part of the upper heater can be monitored by using, for example, a monitor connected to the two thermometers.
  • the monitor can, for example, convey information about the temperature of the upper heater to, for example, a controller that controls the output of the lower heater.
  • the controller receives, for example, information about the temperature of the upper heater from the monitor, and based on this information, the temperature of the upper heater measured by two or more thermometers is when the heater, especially the upper heater, is new.
  • the output of the lower heater may be adjusted to be the same as the temperature.
  • the output of the lower heater may be adjusted based on the temperature measured by the two or more thermometers, but other factors such as the temperature of the lower heater, the temperature of the raw material melt, and other factors in the main chamber. You may also refer to the temperature of the part. These temperatures may be measured using a thermometer different from the thermometer for measuring the temperature of the upper heater.
  • the single crystal pulling device of the present invention is an example of a single crystal pulling device that can be used in the above-mentioned single crystal manufacturing method of the present invention. It is characterized by including two or more thermometers, a monitor, and a controller.
  • FIG. 1 is a schematic cross-sectional view of an example single crystal pulling device that can be used in the single crystal manufacturing method of the present invention.
  • the single crystal pulling device that can be used in the single crystal manufacturing method of the present invention is not limited to that shown in FIG.
  • the single crystal pulling device 100 shown in FIG. 1 includes a main chamber (furnace) 10a, a heater 2 including an upper heater 2a and a lower heater 2b, an upper thermometer 13a, and a lower thermometer 13b.
  • the crucible 1, the heater 2, the heat insulating cylinder 9a, and the heat insulating plate 9b are housed in the main chamber 10a.
  • the crucible 1 has a double structure of a quartz crucible 1a and a graphite crucible 1b for supporting the quartz crucible 1a.
  • the quartz crucible 1a can accommodate a raw material, and FIG. 1 shows a state in which the raw material melt 3 produced by melting the raw material is contained.
  • the crucible 1 is supported by a support shaft 8 capable of raising and lowering and rotating the crucible 1.
  • a heater 2 is arranged around the crucible 1.
  • the heater 2 is spatially divided into two upper and lower heaters via a space 2c, and includes an upper heater 2a and a lower heater 2b.
  • the upper heater 2a is located above the space 2c in the pull-up axial direction AA'.
  • the upper heater 2a can also be called an upper heater.
  • the lower heater 2b is located below the space 2c in the pull-up axial direction AA'.
  • the lower heater 2b can also be called a lower heater.
  • the upper heater 2a and the lower heater 2b are configured so that the outputs can be adjusted independently. That is, the upper heater 2a and the lower heater 2b can independently heat the raw material and the raw material melt 3 in the crucible 1.
  • the lower heater 2b can be mainly used to melt the raw material contained in the crucible 1.
  • the upper heater 2a can be mainly used for temperature control at the time of pulling up a single crystal.
  • the upper heater 2a and the lower heater 2b are arranged around the crucible 1 substantially concentrically.
  • the upper heater 2a shown in FIG. 1 has a heat generating slit center position 22 at a middle position in the pull-up axial direction AA'.
  • the upper heater 2a includes an upper part 21 of the heat generating portion above the heat generating slit center position 22 in the axial direction AA', and a lower portion 23 of the heat generating portion below.
  • the crucible 1 and the heater 2 are surrounded by a heat insulating cylinder 9a.
  • the heat insulating cylinder 9a is arranged substantially concentrically with the upper heater 2a and the lower heater 2b.
  • holes 9c are provided in portions corresponding to a part of the upper part 21 of the heat generating portion and a part of the lower part 23 of the heat generating portion of the upper heater 2a.
  • a heat insulating plate 9b is arranged at the bottom of the main chamber 10a.
  • the main chamber 10a having such a configuration inside contains a hot zone 10c for melting a raw material and growing a silicon single crystal.
  • the single crystal pulling device 100 further includes a pull chamber 10b extending upward from a part of the ceiling portion of the main chamber 10a in the pulling axial direction AA'.
  • the pull chamber 10b constitutes a space (pulling space) 10d communicating with the hot zone 10c.
  • the single crystal pulling device 100 further includes a wire (pulling shaft) 4.
  • the wire 4 is arranged so as to extend along the pull-up axial direction AA'in the space 10d composed of the hot zone 10c and the pull chamber 10b.
  • a seed holder 6 capable of detachably holding the seed crystal 5 for pulling the silicon single crystal is installed.
  • the upper end of the wire 4 in the pulling shaft direction AA' is connected to the pulling shaft lifting device 4a provided at the upper end of the pull chamber 10b.
  • the pull-up shaft elevating device 4a is configured to be able to elevate and rotate the wire 4. By pulling up the wire 4 by the pull-up shaft elevating device 4a, the silicon single crystal can be pulled up from the raw material melt in the crucible.
  • a cylindrical purge tube 11 is arranged above the surface of the raw material melt 3 so as to surround the silicon single crystal being pulled up. Further, the purge tube 11 is provided so as to extend from the ceiling portion of the main chamber 10a toward the raw material melt 3. Further, a ring-shaped collar 12 is provided on the raw material melt 3 side of the purge tube 11.
  • the portion 10e corresponding to the hole 9c of the heat insulating cylinder 9a is a temperature measuring window having heat insulating properties and made of a transparent material.
  • the upper thermometer 13a and the lower thermometer 13b are installed at positions corresponding to the upper part 21 of the heat generating portion and the lower part 23 of the heat generating portion of the upper heater 2a through the holes 9c of the temperature measuring window 10e and the heat insulating cylinder 9a.
  • the upper thermometer 13a and the lower thermometer 13b are radiation thermometers. With this configuration, the upper thermometer 13a and the lower thermometer 13b can measure the temperatures of the upper part 21 of the heat generating portion and the lower part 23 of the heat generating portion of the upper heater 2a from outside the main chamber 10a, respectively.
  • the single crystal pulling device 100 of FIG. 1 is further provided with a molten metal surface thermometer 7 above the pull chamber 10b.
  • the molten metal surface thermometer 7 can measure the temperature of the raw material melt 3.
  • the silicon single crystal is pulled from the raw material melt 3 in the crucible 1 by the Czochralski method.
  • the single crystal can be pulled up by pulling the wire 4 upward in the pulling shaft AA'direction by the pulling shaft lifting device 4a. Further, the single crystal can be pulled up while rotating the wire 4 and / or the crucible 1 in an arbitrary direction. At this time, the crucible 1 is raised so as to compensate for the decrease in the liquid level of the raw material melt 3 that crystallizes and decreases during crystal pulling.
  • thermometers 13a and 13b are used to monitor the temperature of the upper part 21 of the heat generating portion and the temperature of the lower part 23 of the heat generating portion of the upper heater 2a, and the heater 2 As the usage time of the single crystal elapses, the output of the lower heater 2b is adjusted so that the temperature measured by the two thermometers 13a and 13b becomes the same as the temperature when the heater 2 is new. Pull up.
  • the temperature gradient G in the crystal in the pulling axial direction AA'in the vicinity of the crystal growth interface can be made constant regardless of the lapse of the usage time of the heater 2. ..
  • the growth rate V of the defect-free crystal is possible to suppress the decrease in the pulling rate at which the defect-free crystal is obtained.
  • FIG. 2 is a block diagram showing a configuration of an example for adjusting the output of the lower heater in the single crystal manufacturing method of the present invention.
  • the block diagram shown in FIG. 2 includes a main chamber 10a, an upper heater 2a, a lower heater 2b, an upper thermometer 13a, a lower thermometer 13b, a monitor 14, and a controller 15.
  • the main chamber 10a houses the upper heater 2a and the lower heater 2b inside.
  • the main chamber 10a, the upper heater 2a, and the lower heater 2b are the same as those described with reference to FIG. Note that, in FIG. 2, among the configurations housed in the main chamber 10a, the configurations other than the upper heater 2a and the lower heater 2b are not shown.
  • the upper thermometer 13a and the lower thermometer 13b are the same as those described with reference to FIG. 1, and among the upper heaters 2a, the temperature of the upper part 21 of the heat generating portion and the temperature of the lower part 23 of the heat generating portion shown in FIG. It is located outside the main chamber 10a for measurement.
  • the upper thermometer 13a is connected to the monitor 14 by the wiring 130a.
  • the upper thermometer 13a measures the temperature of the upper portion 21 of the heat generating portion of the upper heater 2a, and outputs the information to the monitor 14 via the wiring 130a.
  • the lower thermometer 13b is connected to the monitor 14 by the wiring 130b.
  • the lower thermometer 13b measures the temperature of the lower part 23 of the heat generating portion of the upper heater 2a, and outputs the information to the monitor 14 via the wiring 130b.
  • the monitor 14 can monitor the temperature of the upper portion 21 of the heat generating portion and the temperature of the lower portion 23 of the heat generating portion of the upper heater 2a based on the received information.
  • the monitor 14 is connected to the controller 15 via the wiring 16.
  • the monitor 14 outputs temperature information (for example, the amount of temperature change) measured by the upper thermometer 13a and the lower thermometer 13b to the controller 15 via the wiring 16.
  • the controller 15 is connected to the lower heater 2b via the wiring 17.
  • the controller 15 can adjust the output of the lower heater 2b based on the temperature information received from the monitor 14 via the wiring 16. Specifically, the controller 15 lowers the temperature measured by the two thermometers 13a and 13b so that the temperature measured by the two thermometers 13a and 13b becomes the same as the temperature when the heater 2 is new as the usage time of the heater 2 elapses. The output of the heater 2b is adjusted (controlled).
  • the controller 15 receives the temperature information measured by the molten metal thermometer 7 shown in FIG. 1, and in addition to the temperature information measured by the two thermometers 13a and 13b, measures by the molten metal thermometer 7.
  • the output of the lower heater 2b may be adjusted based on the information on the temperature. Further, the controller 15 may be connected to the upper heater 2a. In this case, the controller 15 separately adjusts (controls) the output of the upper heater 2a and the output of the lower heater 2b.
  • the components of the single crystal pulling device that can be used in the single crystal manufacturing method of the present invention described above and the parts used with this device can take various forms.
  • the crucible 1 can be used without particular limitation as long as it can accommodate the raw material melt.
  • the upper heater 2a and the lower heater 2b are not limited to those including a heat generating slit as shown in FIG. 1, and any heater used in the art can be used without particular limitation.
  • a resistance heating type heater can be used as the upper heater 2a and the lower heater 2b.
  • the heater 2 may be divided into at least two in the vertical direction, and may be divided into three or more.
  • the upper limit of the number of divisions is not particularly limited, but considering the ease of assembling the pulling device and cost effectiveness, for example, it can be divided into four at most.
  • a magnetic field application device (electromagnet or the like) can be arranged outside the main chamber, for example, and a device by the MCZ method for growing a silicon single crystal while applying a magnetic field to the raw material melt can be used.
  • Example 2 A defect-free silicon single crystal was produced under the following conditions.
  • ⁇ Pulling machine The single crystal manufacturing apparatus shown in FIG. 1 was used.
  • ⁇ Crystal diameter Approximately 300 mm in diameter
  • Manufacturing method MCZ method with a central magnetic field of 4000 G (that is, a magnetic field application device was further used)
  • ⁇ HZ Crucible diameter 32 inches (800 mm)
  • ⁇ Evaluation content A sample was cut out from a single crystal, and it was confirmed by selective etching whether or not it became a defect-free crystal.
  • the sample was immersed in a selective etching solution consisting of hydrofluoric acid, nitric acid, acetic acid, and water, and left without shaking until the removal allowance was 25 ⁇ 3 ⁇ m on both sides.
  • FIG. 9 shows the temperature change of the upper thermometer 13a with the passage of the heater usage time in the comparative example
  • FIG. 8 shows the temperature change of the lower thermometer 13b with the passage of the heater usage time in the comparative example.
  • the defect-free crystal pulling speed at the end of the heater usage time was about 0.009 mm / min slower than that in the example.
  • the heat generating portion of the heater wears and the heat generation distribution changes, and the heat generation distribution with respect to the raw material melt shifts upward in the pulling axial direction. Therefore, in the comparative example, it is considered that the temperature gradient in the crystal in the pulling axis direction near the crystal growth interface becomes smaller and the defect-free crystal pulling speed is lowered as the heater usage time elapses.
  • the defect-free crystal pulling speed at the end of the heater usage time (heater usage time index 1.0) is compared with the conventional comparative example in which the single crystal is pulled up under the condition that the output of the lower heater is not adjusted.
  • the conventional comparative example in which the single crystal is pulled up under the condition that the output of the lower heater is not adjusted.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、メインチャンバと、メインチャンバ内に配置した、原料融液を収容するルツボの周囲に配設され、且つ上下方向に少なくとも2分割されたヒーターであって、それぞれ独立に出力を調整できる上ヒーター及び下ヒーターを含むヒーターと、少なくとも上ヒーターの上部及び下部の温度を測定する2つ以上の温度計とを具備した、単結晶引き上げ装置を用い、チョクラルスキー法により、ルツボ内の原料融液からシリコン単結晶を引き上げる単結晶製造方法であって、温度計を用いて上ヒーターの上部及び下部の温度をモニターし、ヒーターの使用時間の経過に伴い、温度計で測定される温度が、ヒーターが新品であるときの温度と同じになるように、下ヒーターの出力を調整して単結晶を引き上げる単結晶製造方法である。これにより、無欠陥シリコン単結晶の引き上げ速度の低下を防止することができる。

Description

単結晶製造方法及び単結晶引き上げ装置
 本発明は、単結晶製造方法及び単結晶引き上げ装置に関する。
 半導体基板に用いられるシリコン単結晶を製造する方法には種々の方法があるが、その中でも回転引き上げ法として広く採用されているチョクラルスキー法(略して「CZ法」ということもできる)がある。
 CZ法による単結晶引き上げ装置としては、例えば、上下に分割されたヒーターを備えた装置が用いられる。上下に分割されたヒーターを備えた引き上げ装置は、シリコン原料の溶融時に上下ヒーターの出力比を変えることで、スムースな溶融を実現できるという利点を有している。
 例えば、特許文献1では、上下分割ヒーターを具備した引き上げ装置において単結晶を引き上げる際に、単結晶外周部の引き上げ軸方向の温度勾配Geと単結晶中心部の引き上げ軸方向の温度勾配GcがGc-Ge=±0.4℃/mm以下となるように上下分割ヒーターの出力調整で制御する単結晶育成方法が提案されている。
 また、特許文献2では、シリコン単結晶の周囲に円筒状のクーラーが配設され、上下マルチヒーターを具備した引き上げ装置においてシリコン単結晶を引き上げる際に、ルツボ、シリコン単結晶の回転速度、マルチヒーターの出力の比を長手方向に調整することにより、シリコン単結晶の側面の温度勾配、固液界面の高さ、酸素濃度を制御して無欠陥のシリコン単結晶を製造する単結晶育成方法が提案されている。
 また、特許文献3では、単結晶の周囲に水冷体と、この水冷体の外周面および下端面を包囲する熱遮蔽体が配設され、上下分割ヒーターを具備した引き上げ装置において、各ヒータの出力を調整してルツボ底の中心部での原料融液の温度を1490℃以下に制御しつつ、原料融液に横磁場を印加しながら、単結晶の中心部の引き上げ軸方向温度勾配Gc、外周部の引き上げ軸方向温度勾配Geとするとき、Gc/Ge>1を満足する条件で単結晶の引き上げを行い、径方向の全域にわたり無欠陥領域となる単結晶を育成する単結晶育成方法が提案されている。
 特許文献1~3で提案されているように、単結晶引き上げ時に上下ヒーターの出力比を変えて引き上げ軸方向の温度勾配を調整することで、無欠陥シリコン単結晶を製造することができる。
特許第3719088号明細書 特開2007-261846号公報 特許第5489064号明細書
 しかしながら、上下に分割されたヒーターのHZ(ホットゾーン)構成では、上下のヒーターを独立して上下に移動させることが困難である為、ヒーターの経時劣化によりヒーターの発熱部が減耗して発熱分布が変化すると、これに応じて、ヒーターを動かして温度分布の変更をすることができず、その結果、結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配が低下し、無欠陥シリコン単結晶を製造する為の引き上げ速度が低下してしまうという問題がある。
 本発明は、上記問題を解決するためになされたものであり、無欠陥シリコン単結晶の引き上げ速度の低下を防止することができる単結晶製造方法、及び無欠陥シリコン単結晶の引き上げ速度の低下を防止することができる単結晶引き上げ装置を提供することを目的とする。
 上記課題を達成するために、本発明では、メインチャンバと、該メインチャンバ内に配置した、原料融液を収容する為のルツボの周囲に配設され、且つ上下方向に少なくとも2分割されたヒーターであって、それぞれ独立に出力を調整できる上ヒーター及び該上ヒーターの下方に配設した下ヒーターを含むヒーターと、少なくとも前記上ヒーターの発熱部上部の温度と発熱部下部の温度とを測定する為の2つ以上の温度計とを具備した、単結晶引き上げ装置を用い、チョクラルスキー法により、前記ルツボ内の前記原料融液からシリコン単結晶を引き上げる単結晶製造方法であって、前記2つ以上の温度計を用いて、前記上ヒーターの前記発熱部上部の温度及び前記発熱部下部の温度をモニターし、前記ヒーターの使用時間の経過に伴い、前記2つ以上の温度計で測定される温度が、前記ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整して単結晶を引き上げることを特徴とする単結晶製造方法を提供する。
 本発明の単結晶製造方法によると、ヒーター使用時間の経過により変化し得る原料融液(シリコンメルト)に対する発熱分布を、下ヒーターの出力を調整することにより、ヒーターが新しい時のシリコンメルトに対する発熱分布と同等になるように補正することができる。それにより、ヒーターの使用時間の経過に伴いシリコンメルトに対する発熱分布が上側にシフトするのを防ぐことができる。その結果、ヒーターの使用時間の経過に伴う結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配の低下を防ぐことができ、無欠陥シリコン単結晶の引き上げ速度の低下の防止を図ることができる。
 前記温度の測定と前記下ヒーターの出力の調整を種絞り開始前に行うことが好ましい。
 このようにすることで、単結晶の引き上げ前に温度分布を調整できるので、より確実に無欠陥シリコン単結晶を効率的に製造することができる。
 例えば、前記2つ以上の温度計は、放射温度計である。
 放射温度計を用いることにより、メインチャンバ(炉)外から、上ヒーターの発熱部上部の温度及び発熱部下部の温度を測定することができる。
 また、3つ以上の温度計を具備することができる。
 3つ以上の温度計を用いることにより、炉内の温度分布をより細かく測定することができる。それにより、ヒーターの使用時間の経過に伴う結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配の低下をさらに抑制することができる。
 前記上ヒーターの使用時間の経過に伴い、前記2つ以上の温度計で測定される温度が、前記上ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整して単結晶を引き上げることが好ましい。
 このようにすることで、上ヒーターの使用時間の経過に伴う結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配の低下を防ぐことができ、無欠陥シリコン単結晶の引き上げ速度の低下の防止をより確実に図ることができる。
 また、本発明では、メインチャンバと、該メインチャンバ内に配置した、原料融液を収容する為のルツボの周囲に配設され、且つ上下方向に少なくとも2分割されたヒーターであって、それぞれ独立に出力を調整できる上ヒーター及び該上ヒーターの下方に配設した下ヒーターを含むヒーターと、少なくとも前記上ヒーターの発熱部上部の温度と発熱部下部の温度とを測定する為の2つ以上の温度計と、前記ルツボ内の前記原料融液からシリコン単結晶を引き上げる為のワイヤーと、前記2つ以上の温度計で測定された前記上ヒーターの温度をモニターする為のモニターと、前記モニターから前記測定された温度の情報を受け取り、該情報に基づいて、前記2つ以上の温度計で測定される前記温度が、前記ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整する為のコントローラとを具備したことを特徴とする単結晶引き上げ装置を提供する。
 このような単結晶引き上げ装置では、ヒーター使用時間の経過により変化し得る原料融液(シリコンメルト)に対する発熱分布を、下ヒーターの出力を調整することにより、ヒーターが新しい時のシリコンメルトに対する発熱分布と同等になるように補正することができる。それにより、ヒーターの使用時間の経過に伴いシリコンメルトに対する発熱分布が上側にシフトするのを防ぐことができる。その結果、ヒーターの使用時間の経過に伴う結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配の低下を防ぐことができ、無欠陥シリコン単結晶の引き上げ速度の低下の防止を図ることができる装置となる。
 例えば、前記2つ以上の温度計は、放射温度計である。
 放射温度計を具備することにより、メインチャンバ(炉)外から、上ヒーターの温度を測定することができる。
 また、3つ以上の温度計を具備することができる。
 3つ以上の温度計を用いて上ヒーターの温度をモニターすることにより、炉内の温度分布をより細かく測定することができる。それにより、ヒーターの使用時間の経過に伴う結晶成長界面近傍の引き上げ軸方向の結晶内温度勾配の低下をさらに抑制することができるものとなる。
 前記コントローラ―が、前記モニターから前記測定された温度の情報を受け取り、該情報に基づいて、前記2つ以上の温度計で測定される前記温度が、前記上ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整する為のコントローラであることが好ましい。
 このようなコントローラを用いることにより、上ヒーターの使用時間の経過に伴う結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配の低下を防ぐことができ、無欠陥シリコン単結晶の引き上げ速度の低下の防止をより確実に図ることができる装置となる。
 以上のように、本発明の単結晶製造方法及び単結晶引き上げ装置によれば、ヒーター使用時間の経過により変化し得る原料融液(シリコンメルト)に対する発熱分布を、ヒーターが新しい時のシリコンメルトに対する発熱分布と同等になるように補正することができる。それにより、ヒーターの使用時間の経過に伴いシリコンメルトに対する発熱分布が上側にシフトするのを防ぐことができる。その結果、ヒーターの使用時間の経過に伴う結晶成長界面近傍の引き上げ軸方向の結晶内温度勾配の低下を防ぐことができ、無欠陥シリコン単結晶の引き上げ速度の低下防止を達成することができる。その結果、無欠陥シリコン単結晶の生産性の向上を図ることができるとともに、無欠陥でないシリコン単結晶となる恐れも低下し、品質の向上も図ることができる。
本発明の単結晶製造方法で用いることができる一例の単結晶引き上げ装置の概略断面図である。 本発明の単結晶製造方法において下ヒーターの出力を調整する為の一例の構成を示すブロック図である。 実施例における、ヒーター使用時間と上部温度計の温度との関係を示すグラフである。 実施例における、ヒーター使用時間と下部温度計の温度との関係を示すグラフである。 実施例における、ヒーター使用時間と下ヒーターの出力との関係を示すグラフである。 実施例における、ヒーター使用時間と無欠陥結晶引き上げ速度変化量との関係を示すグラフである。 比較例における、ヒーター使用時間と上部温度計の温度との関係を示すグラフである。 比較例における、ヒーター使用時間と下部温度計の温度との関係を示すグラフである。 比較例における、ヒーター使用時間と下ヒーターの出力との関係を示すグラフである。 比較例における、ヒーター使用時間と無欠陥結晶引き上げ速度変化量との関係を示すグラフである。
 シリコン単結晶の単結晶育成中に形成されるGrown-in欠陥は、結晶内温度勾配Gと結晶の成長速度Vとの比が一定になるよう制御することによって、その形成を抑制することができる。
 上述のように、上下2段のヒーターは、使用時間の経過により上下ヒーターのそれぞれの発熱部の減耗が進行し、発熱分布が経時変化する。特に上ヒーターの発熱部上端と発熱部中心との間の減耗が速く、上下2段ヒーターの使用時間の経過と共に発熱分布が上側に変化していく。その為、ヒーターの使用時間の経過と共に、シリコンメルトに対する発熱分布が上側にシフトし、結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配が小さくなり、無欠陥シリコン単結晶が得られる引き上げ速度が低下していく。
 特許文献1~3に記載された発明では、上下2段のヒーターの出力を調整し、無欠陥シリコン単結晶の引き上げを行っているが、ヒーターの経時劣化による引き上げ軸方向の温度勾配の低下を補正する目的では上下ヒーターの出力の調整は行われていない。
 その為、特許文献1~3に記載された発明では、ヒーターの経時劣化により無欠陥シリコン単結晶の引き上げ速度が低下してしまい、生産性が低下してしまう。
 本発明者は、上記問題を解決すべく鋭意検討を重ねた結果、ヒーター使用時間の経過により変化する原料融液に対する発熱分布を、ヒーターが新しい時の発熱分布と同等になるように、下ヒーターの出力を調整することにより補正することによって、ヒーターの使用時間の経過に伴う結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配の低下を防ぐことができ、無欠陥シリコン単結晶の引き上げ速度の低下の防止を図ることができることを見出した。
 即ち、本発明は、メインチャンバと、該メインチャンバ内に配置した、原料融液を収容する為のルツボの周囲に配設され、且つ上下方向に少なくとも2分割されたヒーターであって、それぞれ独立に出力を調整できる上ヒーター及び該上ヒーターの下方に配設した下ヒーターを含むヒーターと、少なくとも前記上ヒーターの発熱部上部の温度と発熱部下部の温度とを測定する為の2つ以上の温度計とを具備した、単結晶引き上げ装置を用い、チョクラルスキー法により、前記ルツボ内の前記原料融液からシリコン単結晶を引き上げる単結晶製造方法であって、前記2つ以上の温度計を用いて、前記上ヒーターの前記発熱部上部の温度及び前記発熱部下部の温度をモニターし、前記ヒーターの使用時間の経過に伴い、前記2つ以上の温度計で測定される温度が、前記ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整して単結晶を引き上げることを特徴とする単結晶製造方法である。
 また、本発明は、メインチャンバと、該メインチャンバ内に配置した、原料融液を収容する為のルツボの周囲に配設され、且つ上下方向に少なくとも2分割されたヒーターであって、それぞれ独立に出力を調整できる上ヒーター及び該上ヒーターの下方に配設した下ヒーターを含むヒーターと、少なくとも前記上ヒーターの発熱部上部の温度と発熱部下部の温度とを測定する為の2つ以上の温度計と、前記ルツボ内の前記原料融液からシリコン単結晶を引き上げる為のワイヤーと、前記2つ以上の温度計で測定された前記上ヒーターの温度をモニターする為のモニターと、前記モニターから前記測定された温度の情報を受け取り、該情報に基づいて、前記2つ以上の温度計で測定される前記温度が、前記ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整する為のコントローラとを具備したことを特徴とする単結晶引き上げ装置である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 [単結晶製造方法]
 本発明の単結晶製造方法は、メインチャンバと、ヒーターと、2つ以上の温度計とを具備した単結晶引き上げ装置を用い、チョクラルスキー法により、原料融液からシリコン単結晶を引き上げる単結晶製造方法である。
 ヒーターは、メインチャンバ内に配置した原料融液を収容する為のルツボの周囲に配設される。このヒーターは、上下方向に少なくとも2分割されたヒーターであり、上ヒーターと、該上ヒーターの下方に配設された下ヒーターとを含む。上ヒーターは、例えば、間隙を介して下ヒーターから空間的に隔てられていても良いし、又は断熱部材を介して下ヒーターから隔てられていても良い。すなわち、上ヒーター及び下ヒーターは、互いに熱的に隔てられてもよい。また、上ヒーター及び下ヒーターは、それぞれ独立に出力を調整できる。2つ以上の温度計は、少なくとも前記上ヒーターの発熱部上部の温度と発熱部下部の温度とを測定する為に用いる。
 本発明の単結晶製造方法では、このような単結晶引き上げ装置において、2つ以上の温度計を用いて、上ヒーターの発熱部上部の温度及び発熱部下部の温度をモニターする。そして、ヒーターの使用時間、特に上ヒーターの使用時間の経過に伴い、これら2つ以上の温度計で測定される温度が、前記ヒーター、特に上ヒーターが新品であるとき(言い換えると、ヒーター、特に上ヒーターの使用開始時)の温度と同じになるように、下ヒーターの出力を調整して単結晶を引き上げる。
 すなわち、本発明では、それぞれ独立にパワーを制御できる上下2つ以上のヒーターと、上ヒーターの発熱部上部及び発熱部下部の温度を測定する温度計を2つ以上備えた引上機(単結晶引き上げ装置)において、上ヒーターの温度をモニターし、ヒーター、特に上ヒーターの使用時間に拘わらずヒーター、特に上ヒーターの上下方向の温度分布が一定になるように下ヒーターのパワーで調整して単結晶を引き上げる。
 本手法では、このようにすることで、ヒーター、特に上ヒーターの使用時間経過に伴うヒーター、特に発熱部の減耗を原因とした炉内の引き上げ軸方向に沿った上下方向の温度分布の変化を、下ヒーターのパワーを調整することにより補正でき、ヒーター、特に上ヒーターの使用時間に関わらず結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配Gを一定にする(Gの低下を抑制する)ことができる。先に説明したように、結晶内温度勾配Gと結晶の成長速度Vとの比が一定になるよう制御することによって、Grown-in欠陥が生じるのを防ぐことができる。本発明では、ヒーター、特に上ヒーターの使用時間にかかわらず結晶内温度勾配Gが低下するのを防ぐことができるため、結晶の成長速度Vが低下するのを防ぐことができ、結果として、無欠陥結晶が得られる引き上げ速度の低下を抑制することができる。よって、無欠陥結晶の生産性の向上を図ることができる。
 前記温度の測定と前記下ヒーターの出力の調整を種絞り開始前に行うことが好ましい。
 このようにすることで、結晶の引き上げ開始前に温度分布を調整できるので、確実に無欠陥シリコン単結晶を効率的に製造することができる。
 上ヒーターの温度を測定する為の2つ以上の温度計は、上ヒーターの発熱温度範囲を包含する測定レンジを有するものであれば、特に限定されない。
 例えば、上ヒーターの温度を測定する為の2つ以上の温度計は、放射温度計とすることができる。放射温度計を用いることにより、メインチャンバ(炉)外から、上ヒーターの発熱部上部の温度及び発熱部下部の温度を測定することができる。また、このような温度計であれば、上ヒーターに対する位置を炉外で容易に調整することが可能であるとともに、不具合が生じた際の交換等も容易に行うことができる。
 或いは、上ヒーターの温度を測定する為の2つ以上の温度計は、メインチャンバ内に配設する温度計でもよい。例えば、前記2つ以上の温度計は、上ヒーターに接してその温度を測定する温度計でもよい。
 上ヒーターの温度を測定するための温度計としては、2つを超える、例えば3つ以上の温度計を具備することができる。
 3つ以上の温度計を用いて上ヒーターの温度をモニターすることにより、炉内の温度分布をより細かく測定することができる。それにより、ヒーターの使用時間の経過に伴う結晶成長界面近傍における引き上げ軸方向の結晶内温度勾配の低下をさらに抑制することができる。すなわち、2つ以上の温度計を用いて、上ヒーターの発熱部上部及び発熱部下部に加えて、例えば上ヒーターのうち発熱部上部と発熱部下部との間の部分を測定しても良い。
 上ヒーターの温度を測定するための温度計の数の上限は特に限定されないが、引き上げ装置の組み立て容易性及び費用対効果を考慮すると、例えば6つ以下の温度計を用いることができる。
 上ヒーターの発熱部上部の温度及び上ヒーターの発熱部下部の温度は、例えば、前記2つの温度計に接続されたモニターを用いてモニターすることができる。このモニターは、例えば、上ヒーターの温度に関する情報を、下ヒーターの出力を制御する例えばコントローラに伝えることができる。
 コントローラは、例えば、モニターから上ヒーターの温度に関する情報を受け取り、この情報に基づいて、2つ以上の温度計で測定される上ヒーターの温度が、ヒーター、特には上ヒーターが新品であるときの温度と同じになるように、下ヒーターの出力を調整するものであり得る。
 下ヒーターの出力の調整は、前記2つ以上の温度計で測定される温度に基づいて行えばよいが、他のファクター、例えば下ヒーターの温度、原料融液の温度、メインチャンバ内の他の部分の温度も参照して行っても良い。これらの温度は、上ヒーターの温度を測定する為の温度計とは別の温度計を用いて測定してもよい。
 [単結晶引き上げ装置]
 本発明の単結晶引き上げ装置は、上記本発明の単結晶製造方法で用いることができる一例の単結晶引き上げ装置であり、具体的には、それぞれ先に詳細に説明した、メインチャンバと、ヒーターと、2つ以上の温度計と、モニターと、コントローラとを具備したことを特徴とするものである。
 次に、本発明の単結晶製造方法で用いることができる単結晶引き上げ装置について、具体例を挙げて説明する。
 図1は、本発明の単結晶製造方法で用いることができる一例の単結晶引き上げ装置の概略断面図である。ただし、本発明の単結晶製造方法で用いることができる単結晶引き上げ装置は、図1に示すものに限定されない。
 図1に示す単結晶引き上げ装置100は、メインチャンバ(炉)10aと、上ヒーター2a及び下ヒーター2bを含むヒーター2と、上部温度計13aと、下部温度計13bとを具備する。
 メインチャンバ10a内には、ルツボ1、ヒーター2、保温筒9a及び保温板9bが収容されている。
 ルツボ1は、石英ルツボ1aと、石英ルツボ1aを支持する為の黒鉛ルツボ1bとの2重構造を有している。石英ルツボ1aは、原料を収容でき、図1では、原料の溶融によって生じた原料融液3を収容した状態を示している。ルツボ1は、ルツボ1の昇降及び回転が可能な支持軸8に支持されている。
 ルツボ1の周囲には、ヒーター2が配設されている。ヒーター2は、スペース2cを介して空間的に上下2つに分割されており、上ヒーター2aと下ヒーター2bとを含む。図1に示すように、上ヒーター2aは、スペース2cよりも、引き上げ軸方向A-A’における上方に位置している。上ヒーター2aは、上部ヒーターと呼ぶこともできる。一方、下ヒーター2bは、スペース2cよりも、引き上げ軸方向A-A’における下方に位置している。下ヒーター2bは、下部ヒーターと呼ぶこともできる。
 上ヒーター2a及び下ヒーター2bは、それぞれ独立に出力を調整できるように構成されている。すなわち、上ヒーター2a及び下ヒーター2bは、それぞれ独立して、ルツボ1内の原料及び原料融液3を加熱することができる。例えば、下ヒーター2bは、ルツボ1に収容される原料を溶融するために主に用いることができる。また、例えば、上ヒーター2aは、単結晶引き上げ時の温度制御のために主に用いることができる。上ヒーター2a及び下ヒーター2bは、略同心円状に、ルツボ1の周囲に配設されている。
 図1に示した上ヒーター2aは、引き上げ軸方向A-A’における中程の位置に、発熱スリット中心位置22を有している。上ヒーター2aは、この発熱スリット中心位置22よりも引き上げ軸方向A-A’における上方の発熱部上部21と、下方の発熱部下部23とを含んでいる。
 メインチャンバ10a内において、ルツボ1及びヒーター2は、保温筒9aで囲まれている。保温筒9aは、上ヒーター2a及び下ヒーター2bと略同心円状に配設されている。保温筒9aでは、上ヒーター2aの発熱部上部21の一部、及び発熱部下部23の一部にそれぞれ対応する部分に孔9cが設けられている。メインチャンバ10a内の底部には、保温板9bが配設されている。
 内部にこのような構成を有するメインチャンバ10aは、原料を溶融しシリコン単結晶を育成するホットゾーン10cを内包している。
 単結晶引き上げ装置100は、メインチャンバ10aの天井部の一部から引き上げ軸方向A-A’の上向きに延出したプルチャンバ10bを更に具備している。プルチャンバ10bは、ホットゾーン10cに連通している空間(引き上げ空間)10dを構成している。
 単結晶引き上げ装置100は、ワイヤー(引き上げ軸)4を更に具備している。ワイヤー4は、ホットゾーン10cとプルチャンバ10bで構成された空間10dにおいて、引き上げ軸方向A-A’に沿って延びるように配置されている。
 ワイヤー4の引き上げ軸方向A-A’における下端には、シリコン単結晶を引き上げる為の種結晶5を脱着可能に保持できる種ホルダー6が据えられている。ワイヤー4の引き上げ軸方向A-A’における上端は、プルチャンバ10bの上端に設けられた引き上げ軸昇降装置4aに接続されている。引き上げ軸昇降装置4aは、ワイヤー4を昇降及び回転できるように構成されている。ワイヤー4を引き上げ軸昇降装置4aにより引き上げることにより、ルツボ内の原料融液からシリコン単結晶を引き上げることができる。
 また、メインチャンバ10a内には、円筒形状のパージチューブ11が引上げ中のシリコン単結晶を囲繞するように原料融液3の表面の上方に配設されている。またパージチューブ11は、メインチャンバ10aの天井部から原料融液3に向かって延伸するように設けられている。さらに、パージチューブ11の原料融液3側にはリング状のカラー12が設けられている。
 メインチャンバ10aの側面のうち、保温筒9aの孔9cに対応する部分10eは、断熱性を有し且つ透明な材料で構成された温度測定窓となっている。図1に示すように、上部温度計13a及び下部温度計13bは、温度測定窓10e及び保温筒9aの孔9cを通して、上ヒーター2aの発熱部上部21及び発熱部下部23に対応する位置に据えられている。上部温度計13a及び下部温度計13bは、放射温度計である。この構成により、上部温度計13a及び下部温度計13bは、メインチャンバ10a外から、上ヒーター2aの発熱部上部21及び発熱部下部23の温度をそれぞれ測定することができる。
 図1の単結晶引き上げ装置100は、プルチャンバ10bの上方に、湯面温度計7を更に具備している。湯面温度計7は、原料融液3の温度を測定することができる。
 本発明の単結晶製造方法では、例えば図1に示す単結晶引き上げ装置100を用いて、チョクラルスキー法により、ルツボ1内の原料融液3からシリコン単結晶を引き上げる。単結晶の引き上げは、引き上げ軸昇降装置4aによりワイヤー4を引き上げ軸A-A’方向の上向きに引き上げることによって行うことができる。また、単結晶の引き上げは、ワイヤー4及び/又はルツボ1を任意の方向に回転させながら行うことができる。このとき、結晶引き上げ中に結晶化して減少した原料融液3の液面下降分を補うようにルツボ1を上昇させる。
 また、図1の装置100を用いた単結晶製造方法では、2つの温度計13a及び13bを用いて、上ヒーター2aの発熱部上部21の温度及び発熱部下部23の温度をモニターし、ヒーター2の使用時間の経過に伴い、2つの温度計13a及び13bで測定される温度が、ヒーター2が新品であるときの温度と同じになるように、下ヒーター2bの出力を調整して単結晶を引き上げる。
 このような単結晶製造方法では、先に説明した理由により、ヒーター2の使用時間経過に拘わらず結晶成長界面近傍における引き上げ軸方向A-A’の結晶内温度勾配Gを一定にすることができる。それにより、無欠陥結晶の成長速度Vが低下するのを防ぐことができ、結果として、無欠陥結晶が得られる引き上げ速度の低下を抑制することができる。
 [下ヒーターの出力の調整]
 次に、下ヒーターの出力を調整する為の構成の例を、図面を参照しながら詳細に説明する。
 図2は、本発明の単結晶製造方法において下ヒーターの出力を調整する為の一例の構成を示すブロック図である。
 図2に示すブロック図は、メインチャンバ10aと、上ヒーター2aと、下ヒーター2bと、上部温度計13aと、下部温度計13bと、モニター14と、コントローラ15とを含んでいる。
 メインチャンバ10aは、内部に上ヒーター2a及び下ヒーター2bを収容している。メインチャンバ10a、上ヒーター2a及び下ヒーター2bは、図1を参照しながら説明したものと同様である。なお、図2では、メインチャンバ10aに収容された構成のうち、上ヒーター2a及び下ヒーター2b以外の構成の図示を省略している。
 上部温度計13a及び下部温度計13bは、図1を参照しながら説明したものと同様であり、上ヒーター2aのうち、図1に示す発熱部上部21の温度及び発熱部下部23の温度をそれぞれ測定するように、メインチャンバ10aの外に配置されている。
 上部温度計13aは、配線130aにより、モニター14に接続されている。上部温度計13aは、上ヒーター2aの発熱部上部21の温度を測定し、その情報を配線130aを介してモニター14に出力する。同様に、下部温度計13bは、配線130bにより、モニター14に接続されている。下部温度計13bは、上ヒーター2aの発熱部下部23の温度を測定し、その情報を配線130bを介してモニター14に出力する。モニター14は、受け取った情報に基づいて、上ヒーター2aの発熱部上部21の温度及び発熱部下部23の温度をモニターすることができる。
 モニター14は、配線16を介してコントローラ15に接続されている。モニター14は、上部温度計13a及び下部温度計13bで測定された温度の情報(例えば温度変化量など)を、配線16を介してコントローラ15に出力する。
 コントローラ15は、配線17を介して下ヒーター2bに接続されている。コントローラ15は、配線16を介してモニター14から受け取った温度の情報に基づいて、下ヒーター2bの出力を調整することができる。具体的には、コントローラ15は、ヒーター2の使用時間の経過に伴い、2つの温度計13a及び13bで測定される温度が、ヒーター2が新品であるときの温度と同じになるように、下ヒーター2bの出力を調整(制御)する。
 なお、コントローラ15は、図1に示す湯面温度計7で測定した温度の情報を受け取って、2つ温度計13a及び13bで測定される温度の情報に加えて、湯面温度計7で測定した温度の情報に更に基づいて、下ヒーター2bの出力を調整するものであってもよい。また、コントローラ15は、上ヒーター2aに接続されていてもよく、この場合、コントローラ15は、上ヒーター2aの出力と、下ヒーター2bの出力とを別個に調整(制御)する。
 以上に説明した本発明の単結晶製造方法で用いることができる単結晶引き上げ装置の構成部材、及びこの装置と共に用いる部品は、様々な態様をとることができる。
 例えば、ルツボ1は、原料融液を収容することができるものであれば特に限定されずに使用することができる。また、上ヒーター2a及び下ヒーター2bとしては、図1に示すように発熱スリットを含むものに限られず、当技術分野で用いられるヒーターであれば特に限定されずに使用することができる。上ヒーター2a及び下ヒーター2bとしては、例えば、抵抗加熱式のヒーターを用いることができる。なお、ヒーター2は、上下方向に少なくとも2分割されたものであればよく、3分割以上されていてもよい。分割数の上限は特に限定されないが、引き上げ装置の組み立て容易性及び費用対効果を考慮すると、例えば多くとも4分割されたものとすることができる。
 また、必要に応じて磁場印加装置(電磁石等)を例えばメインチャンバ外に配設し、原料融液に磁場を印加しつつシリコン単結晶を育成するMCZ法による装置とすることもできる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 (実施例)
 以下の条件で、無欠陥シリコン単結晶を製造した。
 〇引上げ機:図1に示す単結晶製造装置を用いた。
 〇結晶径:直径約300mm
 〇製法:中心磁場4000GのMCZ法(すなわち、磁場印加装置を更に用いた)
 〇HZ:ルツボ径32インチ(800mm)
 〇実験内容:種絞り開始前に、湯面温度計7で測定した溶融液(原料融液)3の湯面温度が種絞りに適した温度になるよう調整する工程において、下部温度計13bにより測定した上ヒーター2aの発熱スリット中心位置22より下部23の温度が、図4に示すようにヒーター2が新品の時と同じ温度になり、かつ湯面温度が種絞りに適した温度になるよう、下ヒーター2bのパワー(出力)を図5に示すようにヒーターの使用時間により調整した。この時、上部温度計13aにより測定した上ヒーター2aの発熱スリット中心位置22より上部21の温度は、図3に示すように一定であった。
 以上の条件で、シリコン単結晶の引き上げを行った。
 〇評価内容:単結晶からサンプルを切り出し、無欠陥結晶になったかどうかを、選択エッチングにより確認した。選択エッチングはフッ酸、硝酸、酢酸、水からなる選択性のあるエッチング液にサンプルを浸し、取り代が両側で25±3μmになるまで揺動せず放置した。
 ○評価結果:図6に示すように、実施例では、ヒーター2の使用時間によらず、同様の引き上げ速度で無欠陥結晶が得られた。
 (比較例)
 ○実験条件:図9に示すように、ヒーター2の使用時間によらず下ヒーター2bのパワー(出力)を固定にしたこと以外は、実施例と同じ条件で単結晶を製造し、実施例と同様の評価を行った。図7に、比較例におけるヒーター使用時間の経過に伴う上部温度計13aの温度変化を、図8に、比較例におけるヒーター使用時間の経過に伴う下部温度計13bの温度変化を示す。
 ○評価結果:図10に示すように、比較例では、実施例に比べ、ヒーター使用時間末期(ヒーター使用時間指数1.0)の無欠陥結晶引き上げ速度が約0.009mm/min遅かった。比較例では、ヒーター使用時間の経過に伴い、ヒーターの発熱部が減耗して発熱分布が変化し、原料融液に対する発熱分布が引き上げ軸方向における上側にシフトしたと考えられる。そのため、比較例では、ヒーター使用時間の経過に伴い、結晶成長界面近傍における引き上げ軸方向における結晶内温度勾配が小さくなり、無欠陥結晶引き上げ速度が低下したと考えられる。
 言い換えると、実施例では、従来の、すなわち下ヒーターの出力を調整しない条件で単結晶引き上げを行った比較例に比べ、ヒーター使用時間末期(ヒーター使用時間指数1.0)の無欠陥結晶引き上げ速度を約0.009mm/min高速化できた。このことから、本発明によると、ヒーターの使用時間による結晶成長界面近傍における結晶内温度勾配Gの低下を抑制でき、無欠陥結晶の引き上げ速度の低下抑制を図れることがわかる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (9)

  1.  メインチャンバと、該メインチャンバ内に配置した、原料融液を収容する為のルツボの周囲に配設され、且つ上下方向に少なくとも2分割されたヒーターであって、それぞれ独立に出力を調整できる上ヒーター及び該上ヒーターの下方に配設した下ヒーターを含むヒーターと、少なくとも前記上ヒーターの発熱部上部の温度と発熱部下部の温度とを測定する為の2つ以上の温度計とを具備した、単結晶引き上げ装置を用い、
     チョクラルスキー法により、前記ルツボ内の前記原料融液からシリコン単結晶を引き上げる単結晶製造方法であって、
     前記2つ以上の温度計を用いて、前記上ヒーターの前記発熱部上部の温度及び前記発熱部下部の温度をモニターし、
     前記ヒーターの使用時間の経過に伴い、前記2つ以上の温度計で測定される温度が、前記ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整して単結晶を引き上げることを特徴とする単結晶製造方法。
  2.  前記温度の測定と前記下ヒーターの出力の調整を種絞り開始前に行うことを特徴とする請求項1に記載の単結晶製造方法。
  3.  前記2つ以上の温度計が放射温度計であることを特徴とする請求項1又は2に記載の単結晶製造方法。
  4.  3つ以上の温度計を具備することを特徴とする請求項1~3の何れか1項に記載の単結晶製造方法。
  5.  前記上ヒーターの使用時間の経過に伴い、前記2つ以上の温度計で測定される温度が、前記上ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整して単結晶を引き上げることを特徴とする請求項1~4の何れか1項に記載の単結晶製造方法。
  6.  メインチャンバと、
     該メインチャンバ内に配置した、原料融液を収容する為のルツボの周囲に配設され、且つ上下方向に少なくとも2分割されたヒーターであって、それぞれ独立に出力を調整できる上ヒーター及び該上ヒーターの下方に配設した下ヒーターを含むヒーターと、
     少なくとも前記上ヒーターの発熱部上部の温度と発熱部下部の温度とを測定する為の2つ以上の温度計と、
     前記ルツボ内の前記原料融液からシリコン単結晶を引き上げる為のワイヤーと、
     前記2つ以上の温度計で測定された前記上ヒーターの温度をモニターする為のモニターと、
     前記モニターから前記測定された温度の情報を受け取り、該情報に基づいて、前記2つ以上の温度計で測定される前記温度が、前記ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整する為のコントローラと
    を具備したことを特徴とする単結晶引き上げ装置。
  7.  前記2つ以上の温度計が放射温度計であることを特徴とする請求項6に記載の単結晶引き上げ装置。
  8.  3つ以上の温度計を具備することを特徴とする請求項6又は7に記載の単結晶引き上げ装置。
  9.  前記コントローラ―が、前記モニターから前記測定された温度の情報を受け取り、該情報に基づいて、前記2つ以上の温度計で測定される前記温度が、前記上ヒーターが新品であるときの温度と同じになるように、前記下ヒーターの出力を調整する為のコントローラであることを特徴とする請求項6~8の何れか1項に記載の単結晶引き上げ装置。
PCT/JP2020/045621 2020-02-06 2020-12-08 単結晶製造方法及び単結晶引き上げ装置 WO2021157183A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020018892 2020-02-06
JP2020-018892 2020-02-06

Publications (1)

Publication Number Publication Date
WO2021157183A1 true WO2021157183A1 (ja) 2021-08-12

Family

ID=77199863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045621 WO2021157183A1 (ja) 2020-02-06 2020-12-08 単結晶製造方法及び単結晶引き上げ装置

Country Status (1)

Country Link
WO (1) WO2021157183A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133186A (ja) * 1993-11-01 1995-05-23 Komatsu Electron Metals Co Ltd シリコン単結晶の製造装置および製造方法
JPH08295592A (ja) * 1995-04-25 1996-11-12 Sumitomo Electric Ind Ltd 加熱炉のヒータ温度制御装置
JPH11228286A (ja) * 1998-02-13 1999-08-24 Shin Etsu Handotai Co Ltd 単結晶製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133186A (ja) * 1993-11-01 1995-05-23 Komatsu Electron Metals Co Ltd シリコン単結晶の製造装置および製造方法
JPH08295592A (ja) * 1995-04-25 1996-11-12 Sumitomo Electric Ind Ltd 加熱炉のヒータ温度制御装置
JPH11228286A (ja) * 1998-02-13 1999-08-24 Shin Etsu Handotai Co Ltd 単結晶製造方法

Similar Documents

Publication Publication Date Title
US9217208B2 (en) Apparatus for producing single crystal
KR100415860B1 (ko) 단결정제조장치및제조방법
JP2008007353A (ja) サファイア単結晶育成装置およびそれを用いた育成方法
KR101105950B1 (ko) 단결정 잉곳 제조장치
KR20160075498A (ko) 실리콘 단결정 인상장치
JP4810346B2 (ja) サファイア単結晶の製造方法
JP6302192B2 (ja) 単結晶の育成装置及び育成方法
JP2008007354A (ja) サファイア単結晶の育成方法
KR101385997B1 (ko) 단결정 제조장치 및 단결정 제조방법
KR101574749B1 (ko) 단결정 제조용 상부히터, 단결정 제조장치 및 단결정 제조방법
KR20180101586A (ko) 실리콘 단결정의 제조 방법
US6086671A (en) Method for growing a silicon single crystal
JP2007284260A (ja) シリコン単結晶の製造方法
TWI410536B (zh) Single crystal growth method and single crystal pulling device
KR101105475B1 (ko) 공정 변동이 최소화된 단결정 제조방법
WO2021157183A1 (ja) 単結晶製造方法及び単結晶引き上げ装置
JP4844127B2 (ja) 単結晶製造装置および製造方法
KR20090034534A (ko) 극저결함 반도체 단결정의 제조방법 및 그 제조 장치
JP5051044B2 (ja) シリコン単結晶の育成方法
JP6597857B1 (ja) 熱遮蔽部材、単結晶引き上げ装置及び単結晶の製造方法
KR101727722B1 (ko) 단결정 제조 장치 및 단결정의 제조 방법
JP2009292684A (ja) シリコン単結晶の製造方法およびこれに用いる製造装置
JP2606046B2 (ja) 単結晶引き上げ時における単結晶酸素濃度の制御方法
JP7264043B2 (ja) 単結晶育成方法および単結晶育成装置
JP6777739B2 (ja) 単結晶インゴット成長装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP