WO2021157033A1 - 水管理システム、水管理サーバ及び水管理方法 - Google Patents

水管理システム、水管理サーバ及び水管理方法 Download PDF

Info

Publication number
WO2021157033A1
WO2021157033A1 PCT/JP2020/004642 JP2020004642W WO2021157033A1 WO 2021157033 A1 WO2021157033 A1 WO 2021157033A1 JP 2020004642 W JP2020004642 W JP 2020004642W WO 2021157033 A1 WO2021157033 A1 WO 2021157033A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
field
target
water management
management system
Prior art date
Application number
PCT/JP2020/004642
Other languages
English (en)
French (fr)
Inventor
千大 和氣
圭一 黒川
洋 柳下
宏記 加藤
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2021575533A priority Critical patent/JP7412021B2/ja
Priority to PCT/JP2020/004642 priority patent/WO2021157033A1/ja
Publication of WO2021157033A1 publication Critical patent/WO2021157033A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like

Definitions

  • the present invention relates to a water management system, a water management server, and a water management method.
  • JP2016-220681A provides a water level information management system capable of labor-saving management of floodgates in each field and optimal water management in each field.
  • the purpose is to do ([0007], summary).
  • JP2016-220681A summary
  • a water supply gate 1a, a drainage water gate 1b, and a water level measurement index are installed in the field, and the field or water level measurement index is installed from the unmanned flying object 27 flying on a predetermined air route.
  • JP2016-220681A the water level of the field is calculated based on the image taken by the unmanned flying object 27, and the water supply gate 1a and the drainage water gate 1b are opened and closed.
  • JP2016-220681A there is room for improvement in terms of water management based on the condition of the field.
  • the present invention has been made in consideration of the above-mentioned problems, and provides a water management system, a water management server, and a water management method capable of more preferably water management according to the state of the field.
  • the purpose is to be described in detail below.
  • the water management system manages the water in the field through the operation of the controlled object that changes the water state of the field.
  • a state input unit that accepts at least one of the weather conditions including the temperature or the amount of solar radiation in the field and the fertilization state in the field.
  • the target operation of the controlled object is determined based on at least one of the weather condition and the fertilizer application state received by the state input unit, and the user is requested to perform the operation of the controlled object based on the target operation.
  • it is characterized in that it is provided with a water management device that manages the water state of the field by operating the controlled object based on the target operation.
  • a controlled object that changes the water condition of a field is operated by a user or a water management system based on at least one of a weather condition including the temperature or the amount of solar radiation of the field and a fertilization condition of the field. Control the water condition of. This makes it possible to grow crops in water conditions that take into account at least one of the weather conditions and fertilization conditions of the field.
  • the controlled object may include a water supply device that supplies water from the water source to the field.
  • the water management device may generate at least one of the water supply timing and water supply amount by the water supply device and the water depth of the field as target values based on at least one of the weather condition and the fertilization state. Further, the water management device may request the user to operate the water supply device based on the target value or operate the water supply device based on the target value to control the water state of the field. .. This makes it possible to control the water supply in the field based on at least one of the weather conditions including the air temperature or the amount of solar radiation in the field and the fertilization state in the field.
  • the controlled object may include a drainage device that discharges water from the field.
  • the water management device may be generated based on at least one of the weather condition and the fertilization state, with at least one of the drainage timing and the drainage amount by the drainage device and the water depth of the field as target values. Further, the water management device may request the user to operate the drainage device based on the target operation or operate the drainage device based on the target operation to control the water state of the field. .. This makes it possible to control the drainage of the field based on at least one of the weather conditions including the air temperature or the amount of solar radiation of the field and the fertilization state of the field.
  • the water management system includes a growth diagnosis device that diagnoses the growth state of the crop growing in the field by using the growth diagnosis model using the weather condition and outputs a work instruction according to the growth state. You may. Further, the water management device may form a part of the growth diagnosis device.
  • the growth diagnosis model may generate a target growth state value which is a target value of the growth state value of the crop and an estimated growth state value which is an estimated value of the growth state value.
  • the water management device may determine the target operation of the controlled object so that the estimated growth state value approaches the target growth state value. This makes it possible to bring the estimated growth state value of the crop closer to the target growth state value and grow the crop in a suitable state.
  • the growth state value is at least one of the yield of the paddy rice, the red light absorption rate, the number of paddy, the effective light receiving area ratio, the amount of accumulated starch in the paddy, and the protein content in the paddy. It may be included. This makes it possible to preferably perform water management in the field (paddy field) in consideration of the growing state of paddy rice.
  • the work instruction according to the growing condition may include contents related to the type, application timing and amount of fertilizer.
  • the water management device may determine the target operation of the controlled object based on the type, application timing and amount of the fertilizer. This makes it possible to manage water in relation to the type, application timing and amount of fertilizer.
  • the type of fertilizer may include at least one of an element to be fertilized, a chemical fertilizer, rice husks and an organic fertilizer.
  • the work instruction according to the growing state may include contents related to the timing of water supply to the field or the timing of drainage from the field. This makes it possible to give a work instruction on the timing of water supply to the field or the timing of drainage from the field in consideration of at least one of the weather condition and the fertilization condition.
  • the work instruction according to the growth state may include a work instruction of water supply timing to the field or drainage timing from the field according to the magnitude relationship between the detected water temperature or the estimated water temperature of the field and the target water temperature at the present time. good. This makes it possible to indicate the water supply timing or drainage timing as a work instruction according to the magnitude relationship between the detected water temperature or the estimated water temperature of the field at the present time and the target water temperature.
  • the work instruction according to the growing state may include a work instruction of water supply timing to the field or drainage timing from the field according to the magnitude relationship between the estimated water temperature of the field and the target water temperature in the future. This makes it possible to indicate the water supply timing or drainage timing as a work instruction according to the magnitude relationship between the estimated water temperature of the field and the target water temperature in the future.
  • the work instruction according to the growing state may include the amount of water supplied to the field or the amount of drainage from the field. This makes it possible to give a work instruction on the amount of water supplied to the field or the amount of drainage from the field in consideration of at least one of the weather condition and the fertilization condition.
  • the amount of water supply or the amount of drainage so that the daytime water depth of the field before that (for example, on the day) is shallower than the target daytime water depth. May be set. This makes up for the fact that the nighttime water temperature is higher than the target nighttime water temperature by making the water depth shallower (or by reducing the amount of water) (for crops, it has the same effect as the nighttime water temperature is substantially lowered. To play) becomes possible.
  • the amount of water supplied or the amount of drainage so as to make the daytime water depth of the field before that (for example, on the day) deeper than the target daytime water depth. May be set. This makes up for the fact that the nighttime water temperature is lower than the target nighttime water temperature by increasing the water depth (or increasing the amount of water) (for crops, it has the same effect as raising the nighttime water temperature substantially. To play) becomes possible.
  • the water supply amount or the drainage amount is set so that the daytime water depth of the field before that (for example, on the day) is shallower than the target daytime water depth. May be good. As a result, it becomes possible to easily raise the daytime water temperature by making the daytime water depth shallow (or by reducing the amount of water), and to compensate for the amount of the daytime water temperature lower than the target daytime water temperature.
  • the water supply amount or the drainage amount is set so that the daytime water depth of the field before that (for example, on the day) is deeper than the target daytime water depth. May be good. As a result, it becomes difficult to raise the daytime water temperature by increasing the daytime water depth (or by increasing the amount of water), and it is possible to compensate for the amount of daytime water temperature higher than the target daytime water temperature.
  • the water management server manages the water in the field through the operation of the controlled object that changes the water state of the field.
  • a state input unit that accepts at least one of the weather conditions including the temperature or the amount of solar radiation in the field and the fertilization state in the field.
  • the target motion of the controlled object is determined based on at least one of the weather condition and the fertilization state, and the user is requested to perform the motion of the controlled object based on the target motion, or based on the target motion. It is characterized by including a water management device for operating the controlled object and managing the water condition of the field.
  • the water management method is a method of managing water in the field through the operation of a controlled object that changes the water state of the field.
  • a target motion determination step for determining a target motion of the controlled object based on at least one of a weather condition including the air temperature or the amount of solar radiation in the field and a fertilization state in the field.
  • FIG. 1 is an overall configuration diagram showing an outline of a crop growing system 10 according to a first embodiment of the present invention.
  • the crop growing system 10 (hereinafter, also referred to as “system 10”) can diagnose the growth of the crop 502 (paddy rice) growing in the field 500 and spray the chemicals on the crop 502.
  • the system 10 is also a water management system that manages water in the field 500.
  • the system 10 includes a field sensor group 20, a growth diagnosis server 22, a drone 24, a first user terminal 26, a second user terminal 28, a third user terminal 30, and an upstream side. It has a floodgate 32 and a downstream floodgate 34.
  • the field sensor group 20, the drone 24, the first user terminal 26, and the second user terminal 28 can wirelessly communicate with each other via the communication network 38 (including the radio base station 36), and also with the growth diagnosis server 22. Communication is possible. As the wireless communication, communication that does not go through the wireless base station 36 (for example, LTE (Long Term Evolution), WiFi, etc.) can be used.
  • the growth diagnosis server 22 can communicate with the information providing server 40 via the communication network 38.
  • FIG. 2 is a configuration diagram simply showing the configurations of the field sensor group 20 and the drone 24 of the first embodiment.
  • the field sensor group 20 is installed in the field 500 as a paddy field and its surroundings, detects various data in the field 500 and its surroundings, and provides the growth diagnosis server 22 and the like.
  • the field sensor group 20 includes, for example, a water source water temperature sensor 50, a field water temperature sensor 52, a temperature sensor 54, a water depth sensor 56, a soil temperature sensor 58, an upstream flow sensor 60, and a downstream flow sensor 62. And the illuminance sensor 64.
  • the water source water temperature sensor 50 detects the water temperature (hereinafter, also referred to as “water source water temperature Tsw”) of the water source 504 (FIG. 1) that supplies water to the field 500.
  • the water source 504 is assumed to be irrigation water or a pond flowing around the field 500, and its value is basically not constant due to the influence of the outside air.
  • the field water temperature sensor 52 detects the water temperature (hereinafter, also referred to as “field water temperature Tfw” or “water temperature Tfw”) of the water (hereinafter, also referred to as “stored water”) stored in the field 500, which is a paddy field.
  • the air temperature sensor 54 detects the temperature of the field 500 (hereinafter, also referred to as “field temperature Tfa” or “air temperature Tfa”).
  • the water depth sensor 56 detects the water depth (hereinafter, also referred to as “water depth H”) of the stored water in the field 500.
  • the water depth H is the depth of the stored water (distance from the bottom to the surface) in the field 500, but the water level of the stored water (the height of the surface) may be used instead. In other words, the water level can be used as having substantially the same meaning as the water depth H.
  • the soil temperature sensor 58 detects the temperature of the soil in the field 500 (hereinafter, also referred to as “soil temperature Te”), and for example, the detection element is buried in the soil to detect the value.
  • the upstream side flow rate sensor 60 is arranged in the water supply channel 506 (FIG. 1) in which the water from the water source 504 flows into the field 500, and detects the flow rate in the water supply channel 506 (hereinafter, also referred to as “flow rate Q1”).
  • the downstream flow rate sensor 62 is arranged in the drainage channel 508 (FIG. 1) for discharging water from the field 500, and detects the flow rate in the drainage channel 508 (hereinafter, also referred to as [flow rate Q2]).
  • the illuminance sensor 64 detects the amount of solar radiation in the field 500 (hereinafter, also referred to as “solar radiation amount X”).
  • the field sensor group 20 may include a precipitation sensor, an anemometer, barometer and hygrometer.
  • the precipitation sensor detects the amount of precipitation in the field 500.
  • the anemometer detects the wind speed of the field 500.
  • the barometer detects the barometric pressure in the field 500.
  • the hygrometer detects the humidity of the field 500.
  • FIG. 3 is a configuration diagram simply showing the configuration of the growth diagnosis server 22 of the first embodiment.
  • the growth diagnosis server 22 (hereinafter, also referred to as “diagnosis server 22”) is a growth diagnosis device that performs growth diagnosis using a growth diagnosis model and gives work instructions to the user based on the diagnosis result.
  • the work instructions include the timing of fertilizer application, the type / amount of fertilizer, the timing of spraying pesticides, the type / amount of pesticides, water management of the field 500, and the like.
  • the diagnostic server 22 has an input / output unit 70, a communication unit 72, a calculation unit 74, and a storage unit 76.
  • the input / output unit 70 (state input unit) inputs / outputs signals to / from the field sensor group 20, the drone 24, and the like.
  • the communication unit 72 has a modem or the like (not shown). The communication unit 72 can communicate with the field sensor group 20, the drone 24, the first user terminal 26, the second user terminal 28, the third user terminal 30, the information providing server 40, etc. via the communication network 38. be.
  • the arithmetic unit 74 includes a central processing unit (CPU) and operates by executing a program stored in the storage unit 76. Some of the functions executed by the arithmetic unit 74 can also be realized by using a logic IC (Integrated Circuit). The arithmetic unit 74 may also configure a part of the program with hardware (circuit parts). The same applies to the arithmetic unit and the like of the drone 24, which will be described later.
  • CPU central processing unit
  • the arithmetic unit 74 may also configure a part of the program with hardware (circuit parts). The same applies to the arithmetic unit and the like of the drone 24, which will be described later.
  • the storage unit 76 stores programs and data used by the arithmetic unit 74, and includes a random access memory (hereinafter referred to as “RAM”).
  • RAM random access memory
  • a volatile memory such as a register and a non-volatile memory such as a hard disk and a flash memory can be used.
  • the storage unit 76 may have a read-only memory (ROM) in addition to the RAM. The same applies to the storage unit of the drone 24, which will be described later.
  • the calculation unit 74 includes a growth diagnosis management unit 80, a drone flight management unit 82, and an image processing unit 84.
  • the growth diagnosis management unit 80 performs a growth diagnosis using the growth diagnosis model and gives work instructions based on the result of the growth diagnosis.
  • the drone flight management unit 82 manages the flight (route, etc.) of the drone 24.
  • the image processing unit 84 processes the image taken by the drone 24 to calculate the growth state value V (detection growth state value Vd) of the crop 502.
  • the growth diagnosis management unit 80 has a growth diagnosis unit 90 and a work instruction unit 92.
  • the growth diagnosis unit 90 executes a growth diagnosis using the growth diagnosis model.
  • the work instruction unit 92 generates a work instruction to the user 600 (FIG. 1) or the like based on the result of the growth diagnosis executed by the growth diagnosis unit 90, and displays it on the first user terminal 26 or the like.
  • the work instruction unit 92 has a water management unit 100 that gives work instructions regarding water management of the field 500.
  • the storage unit 76 stores programs and data used by the calculation unit 74 to realize the growth diagnosis management unit 80, the drone flight management unit 82, and the like, and also has a field database 110 (hereinafter referred to as “field DB 110”).
  • the field DB 110 accumulates data for each field 500.
  • the data for each field 500 includes, for example, the type, yield, waste rice rate, growth diagnostic model parameters and fertilization status of the crop 502 cultivated in the past.
  • the fertilizer application state includes the type, amount and application timing of the fertilizer that has already been applied.
  • the fertilizer application state may include the type, amount and application timing of the fertilizer to be applied.
  • the drone 24 functions as a means for acquiring an image of the field 500 (crop 502) and also as a means for spraying a chemical solution (including a liquid fertilizer) on the crop 502.
  • the drone 24 takes off and landing at the departure and arrival point 510 (FIG. 1).
  • the drone 24 includes a drone sensor group 120, a communication unit 122, a flight mechanism 124, an imaging mechanism 126, a spraying mechanism 128, and a drone control unit 130.
  • the drone sensor group 120 includes a global positioning system sensor (hereinafter referred to as "GPS sensor"), a speedometer, an altimeter, a gyro sensor, a liquid level sensor (none of which is shown), and the like.
  • GPS sensor global positioning system sensor
  • the speedometer detects the flight speed of the drone 24.
  • the altimeter detects the altitude above ground level as the distance to the ground below the drone 24.
  • the gyro sensor detects the angular velocity of the drone 24.
  • the liquid amount sensor detects the amount of liquid in the tank of the spraying mechanism 128.
  • the communication unit 122 is capable of radio wave communication via the communication network 38, and includes, for example, a radio wave communication module.
  • the communication unit 122 can communicate with the growth diagnosis server 22, the first user terminal 26, the second user terminal 28, and the like via the communication network 38 (including the radio base station 36).
  • the flight mechanism 124 is a mechanism for flying the drone 24, and has a plurality of propellers and a plurality of propeller actuators.
  • the propeller actuator includes, for example, an electric motor.
  • the photographing mechanism 126 is a mechanism for capturing an image of the field 500 or the crop 502, and has a camera 140.
  • the camera 140 of the first embodiment is a multispectral camera, and particularly acquires an image capable of analyzing the growth state of the crop 502.
  • the photographing mechanism 126 may further include an irradiation unit that irradiates the field 500 with light rays having a specific wavelength, and may be capable of receiving the reflected light from the field 500 with respect to the light rays.
  • the light rays having a specific wavelength may be, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the camera 140 is arranged at the lower part of the main body of the drone 24, and outputs image data related to peripheral images taken around the drone 24.
  • the camera 140 is a video camera that captures moving images.
  • the camera 140 may be capable of capturing both moving images and still images, or only still images.
  • the orientation of the camera 140 (the posture of the camera 140 with respect to the main body of the drone 24) can be adjusted by a camera actuator (not shown). Alternatively, the position of the camera 140 with respect to the main body of the drone 24 may be fixed.
  • the spraying mechanism 128 is a mechanism for spraying chemicals (including liquid fertilizer), and has, for example, a chemical tank, a pump, a flow rate adjusting valve, and a chemical nozzle.
  • the drone control unit 130 controls the entire drone 24, such as flying, photographing, and spraying chemicals on the drone 24.
  • the drone control unit 130 includes an input / output unit, a calculation unit, and a storage unit (not shown).
  • the drone control unit 130 includes a flight control unit 150, an imaging control unit 152, and a spray control unit 154.
  • the flight control unit 150 controls the flight of the drone 24 via the flight mechanism 124.
  • the shooting control unit 152 controls shooting by the drone 24 via the shooting mechanism 126.
  • the spraying control unit 154 controls the spraying of the drug by the drone 24 via the spraying mechanism 128.
  • the first user terminal 26 controls the drone 24 by the operation of the user 600 (FIG. 1) as an operator in the field 500, and also receives information (for example, position, drug amount, battery level, camera) received from the drone 24. It is a mobile information terminal that displays images, etc.).
  • the flight state (altitude, attitude, etc.) of the drone 24 is not remotely controlled by the first user terminal 26, but is autonomously controlled by the drone 24. Therefore, when a flight command is transmitted from the user 600 to the drone 24 via the first user terminal 26, the drone 24 performs autonomous flight.
  • manual operations may be possible during basic operations such as takeoff and return, and in emergencies.
  • the first user terminal 26 includes an input / output unit (including a touch panel and the like), a communication unit, a calculation unit, and a storage unit (not shown), and is composed of, for example, a general tablet terminal.
  • the first user terminal 26 of the first embodiment receives and displays a work instruction or the like from the growth diagnosis server 22.
  • the second user terminal 28 is a mobile information terminal used by a user 602 (FIG. 1) other than the operator in the field 500, and is for the flight information (current flight status, scheduled flight end time, etc.) of the drone 24 and the user 602. Work instructions, growth diagnosis information, etc. are received from the diagnosis server 22 or the drone 24 and displayed.
  • the second user terminal 28 includes an input / output unit (including a touch panel and the like), a communication unit, a calculation unit, and a storage unit (not shown), and is composed of, for example, a general smartphone.
  • the third user terminal 30 is a terminal used by the users 600, 602 and the like in order to use the growth diagnosis by the growth diagnosis server 22 in a place other than the field 500 (for example, the company to which the users 600 and 602 belong).
  • the third user terminal 30 includes an input / output unit (including a keyboard and a display unit) (not shown), a communication unit, a calculation unit, and a storage unit, and is composed of, for example, a desktop personal computer (PC) or a notebook PC. NS.
  • the upstream sluice gate 32 (hereinafter, also referred to as “sluice gate 32”) is provided in the water supply channel 506 to the field 500.
  • the downstream sluice gate 34 (hereinafter, also referred to as “sluice gate 34”) is provided in the drainage channel 508 from the field 500.
  • the water gates 32 and 34 are opened and closed by users 600, 602 and the like via first and second opening and closing mechanisms (not shown).
  • the first and second opening / closing mechanisms are composed of handles, valves, etc. manually operated by the user 600 or the like.
  • the first and second opening / closing mechanisms may have an electric actuator (electric motor or the like) that is turned on / off by an operation of the user 600 or the like to open / close the water gates 32 and 34.
  • the information providing server 40 provides the growth diagnosis server 22 with information (field information) about the field 500 obtained by a meteorological satellite or the like.
  • the field information referred to here includes, for example, the temperature Tfa of the field 500, the amount of precipitation, the weather forecast, and the like.
  • the growth diagnosis control is a control for performing a growth diagnosis of the crop 502 based on various detected values from the field sensor group 20. In the growth diagnosis control, work instructions are also given to the user 600 and the like.
  • the drone flight management control is a control for managing the flight of the drone 24 in the field 500 for growth diagnosis control and the like.
  • the growth state detection control is a control in which an image of the field 500 (or crop 502) is acquired by the camera 140 of the drone 24, and the image is processed to detect the growth state of the crop 502.
  • the chemical spraying control is a control for spraying a chemical solution (including liquid fertilizer) using the drone 24.
  • Drone flight management control, growth state detection control, and chemical spray control are all performed based on work instructions in growth diagnosis control.
  • the outline of growth diagnosis control, drone flight management control, growth state detection control, and chemical spray control will be described first, and then water management control as a part of growth diagnosis control will be described.
  • the growth diagnosis control is a control for performing a growth diagnosis of the crop 502 using the growth diagnosis model, and is mainly executed by the growth diagnosis server 22 (particularly, the growth diagnosis unit 90 of the growth diagnosis management unit 80).
  • the growth diagnosis referred to here includes, for example, an estimated value (estimated yield) of the yield for each field 500.
  • work instructions regarding water management, fertilization, chemical spraying, etc. of the field 500 as a paddy field are also given. The work instruction is displayed, for example, on the display unit of the first user terminal 26, the second user terminal 28, or the third user terminal 30.
  • the yield of crop 502 (paddy rice), red light absorption rate, number of paddy, effective light receiving area ratio, amount of accumulated starch in paddy and protein content in paddy can be calculated.
  • the growth diagnosis model for example, those described in JP-A-2015-00049 or JP-A-2018-082648 can be used.
  • the growth diagnosis control of the first embodiment includes water management control for managing water in the field 500. Water management control will be described later with reference to FIG.
  • the drone flight management control is a control for managing the flight of the drone 24 in the field 500 for growth diagnosis control and the like, and is mainly executed by the growth diagnosis server 22 (particularly the drone flight management unit 82). Specifically, in the drone flight management control, the flight path, target speed, target altitude, etc. when photographing the field 500 are commanded.
  • the growth state value detection control is a control for detecting the growth state value V of the crop 502 growing in the field 500 based on the image of the camera 140 of the drone 24.
  • an image of the field 500 (crop 502) is acquired by the camera 140 of the drone 24 and transmitted to the diagnosis server 22, and the image is processed by the diagnosis server 22 to process the growth state value V of the crop 502 (crop 502).
  • the detected growth state value Vd is calculated.
  • the difference between the amount of near-infrared light and the amount of infrared light received by the camera 140 accounts for the ratio of the total amount of light.
  • the degree of growth of paddy rice can be determined based on the red light absorption rate (that is, the ratio of red light absorbed by the crop 502).
  • the detected growth state value Vd calculated here can be selected according to the growth phase of the crop 502.
  • the growth phase includes a vegetative period, a reproductive period, and a ripening period.
  • the vegetative growth period is the period from germination to the formation of the base of the ear (primordium of the ear).
  • the reproductive period is the period from the formation of the primordium of the ear to the heading and flowering.
  • the ripening period is the period from heading / flowering to maturity.
  • the height of the crop 502 for example, the height of the crop 502, the number of leaves, the red light absorption rate, the effective light receiving area rate (the area rate of leaves capable of photosynthesis in the field area), the NDVI (Normalized Difference Vegetation Index), The number of divisions, leaf height, and density of crop 502 (area ratio of soil to crop 502) can be used.
  • the reproductive period for example, the height of crop 502, the number of leaves, the effective light receiving area ratio, and the NDVI can be used.
  • the ripening period for example, the number of paddy and NDVI can be used.
  • the chemical spraying control is a control for managing the chemical spraying (including liquid fertilizer) of the drone 24 in the field 500 based on the work instruction presented by the growth diagnosis control, and is mainly executed by the growth diagnosis server 22.
  • the water management control is a control for managing the water in the field 500 and is a part of the growth diagnosis control.
  • the diagnostic server 22 presents a work instruction regarding water management of the field 500 to the user 600 or the like.
  • work instructions regarding the floodgates 32 and 34 arranged in the field 500 are presented to the first user terminal 26 and the like.
  • the user 600 or the like manages the water in the field 500 by operating the floodgates 32 and 34 according to the work instructions.
  • FIG. 4 is a flowchart of water management control according to the first embodiment.
  • the water management control of the first embodiment is basically executed by the diagnostic server 22 (particularly the water management unit 100). It should be noted that some of the water management controls shown in FIG. 4 overlap with other controls in growth diagnostic control.
  • the diagnosis server 22 acquires the target value of the current growth state value V (hereinafter referred to as “target growth state value Vtar” or “target value Vtar”) by the growth diagnosis model.
  • the target value Vtar is calculated by a growth diagnosis model according to the type of crop 502, the elapsed period from the reference time point (for example, rice planting) (hereinafter, also referred to as “elapsed period T”), and is a reference value or an ideal value. In other words.
  • the elapsed period T may be rephrased as the current growth phase.
  • the diagnostic server 22 calculates an estimated value of the current growth state value V (hereinafter referred to as “estimated growth state value Ve” or “estimated value Ve”) by the growth diagnosis model.
  • the estimated value Ve is calculated by a growth diagnosis model based on the weather conditions up to the present time, the implementation status of fertilization, and the like.
  • the detected value from the field sensor group 20 can be used.
  • the detected value of the growth state value V based on the image acquired by the drone 24 hereinafter referred to as “detected growth state value Vd” or “detection value Vd”
  • the detected value Vd may be used with priority. good.
  • step S13 the diagnostic server 22 calculates the difference D between the target growth state value Vtar and the estimated growth state value Ve (or the detected growth state value Vd).
  • the diagnostic server 22 calculates a target value of the water temperature Tfw of the field 500 (hereinafter, also referred to as “target water temperature Tfwtar”) based on the elapsed period T (or growth phase) and the difference D. That is, the paddy rice as the crop 502 has an appropriate temperature for each day and night in each growth phase. Therefore, when the difference D is zero or a value close to it (in other words, when the difference D is within a predetermined range), the optimum temperature of day and night according to the current growth phase is set as the target water temperature Tfwtar.
  • the target daytime water temperature Tfwtar is also referred to as a target daytime water temperature Tfwdtar
  • the nighttime target water temperature Tfwtar is also referred to as a target nighttime water temperature Tfwtar.
  • the diagnostic server 22 selects the field water temperature Tfw as the target water temperature Tfwtar. Further, a field in which the estimated value Ve of the growth state value V exceeds the target value Vtar, the growth of the crop 502 is too fast, and the growth of the crop 502 is suppressed more than the target water temperature Tfwtar when the difference D is zero. If the water temperature Tfw is present, the diagnostic server 22 selects the field water temperature Tfw as the target water temperature Tfwtar. By selecting the target water temperature Tfwtar in this way, an attempt is made to reduce the difference D between the target value Vtar of the growth state value V and the estimated value Ve.
  • step S15 the diagnosis server 22 acquires the weather forecast information Ice regarding the field 500 from the information providing server 40.
  • the weather forecast information Ice includes an estimated value of the temperature Tfa of the field 500 (hereinafter, also referred to as “estimated temperature Tfae”).
  • the diagnostic server 22 calculates the target value of the water depth H of the field 500 (hereinafter, also referred to as “target water depth Htar”) based on the target water temperature Tfwtar, the current water temperature Tfw, the current air temperature Tfa, and the estimated temperature Tfae.
  • target water depth Htar the target value of the water depth H of the field 500 based on the target water temperature Tfwtar, the current water temperature Tfw, the current air temperature Tfa, and the estimated temperature Tfae.
  • the target water depth Htar is set so that the estimated water temperature Tfwe in the hottest time zone (for example, around 14:00) in the daytime approaches the target daytime water temperature Tfwdtar.
  • the target daytime water depth Hdtar is deepened and the water temperature Tfw is increased. (However, this does not apply if the current water temperature Tfw exceeds the target daytime water temperature Tfwdtar).
  • the target water depth Htar is made shallower and the water temperature Tfw. (However, this does not apply if the current water temperature Tfw exceeds the target daytime water temperature Tfwdtar).
  • the target nighttime water depth Hntar is set so that the estimated water temperature Tfwne in the coldest time zone at night (for example, around 4 o'clock the next day) approaches the target nighttime water temperature Tfwtar. ..
  • the target water depth Htar is made shallower to obtain the water temperature Tfw. Promote the decline (provided that this is not the case if the current water temperature Tfw is below the target nighttime water temperature Tfwtar).
  • the target water depth Htar is deepened and the water temperature Tfw is increased. (However, this does not apply if the current water temperature Tfw is significantly higher than the target nighttime water temperature Tfwtar).
  • the diagnostic server 22 calculates a work instruction to the user to realize the target water depth Htar. Specifically, the diagnostic server 22 specifies the operation method (opening degree, opening time, etc.) of the floodgates 32, 34 at the assumed time when the user 600 or the like operates the floodgates 32, 34. In other words, the diagnostic server 22 calculates the water supply timing and water supply amount by the upstream side floodgate 32, the drainage timing and drainage amount by the downstream side floodgate 34, and the water depth H of the field 500 as target values.
  • the diagnostic server 22 calculates the water supply timing and water supply amount by the upstream side floodgate 32, the drainage timing and drainage amount by the downstream side floodgate 34, and the water depth H of the field 500 as target values.
  • the daytime water depth Hd of the field 500 before that (for example, on the current day) is set to the target daytime.
  • the water supply amount and the drainage amount are set so that the water depth H of the field 500 in front of the target nighttime water temperature Tfwne is deeper than the target daytime water depth Hdtar.
  • the amount of water supply and the amount of drainage so that the daytime water depth Hd of the field 500 before that (for example, on the day) is shallower than the target daytime water depth Hdtar. May be set.
  • the water supply amount and the drainage amount may be set so that the daytime water depth Hd of the field 500 in front of the target daytime water temperature Tfwdtar is deeper than the target daytime water depth Hdtar.
  • step S18 the diagnostic server 22 presents the operation method of the floodgates 32 and 34 specified in step S17 to the user 600 and the like via the first user terminal 26 and the like.
  • the water gates 32 and 34 that change the water state of the field 500 are operated by the user 600 or the like based on the weather condition including the temperature Tfa of the field 500, and the water of the field 500 is operated. Control the state (Fig. 4). This makes it possible to grow the crop 502 in a water condition in consideration of the weather condition of the field 500.
  • the crop growing system 10 includes the upstream sluice gate 32 (water supply device) that supplies water from the water source 504 to the field 500 as a controlled object (FIG. 1).
  • the water management unit 100 water management device
  • the water management unit 100 generates the water supply timing and the amount of water supplied by the upstream water gate 32 and the water depth H of the field 500 as the target values of the water gate 32 based on the weather condition of the field 500 (S16 in FIG. 4). , S17).
  • the operation of the floodgate 32 based on this target value is requested from the user 600 or the like via the work instruction to control the water state of the field 500 (S18).
  • the water supply of the field 500 can be controlled based on the air temperature Tfa of the field 500.
  • the crop growing system 10 (water management system) includes the downstream sluice gate 34 (drainage device) that discharges water from the field 500 as a controlled object (FIG. 1).
  • the diagnosis server 22 (water management device) generates the drainage timing and the amount of drainage by the floodgate 34 and the water depth H of the field 500 as target values based on the weather condition of the field 500 (S16, S17 in FIG. 4). Further, the operation of the floodgate 34 based on this target value is requested from the user 600 or the like via the work instruction to control the water state of the field 500 (S18). As a result, the drainage of the field 500 can be controlled based on the temperature Tfa of the field 500.
  • the crop growing system 10 (water management system) diagnoses the growing state of the crop 502 growing in the field 500 by using a growth diagnosis model using the weather condition (temperature Tfa, etc.) of the field 500.
  • a growth diagnosis server 22 growth diagnosis device that outputs work instructions according to the growth state is provided (FIGS. 1 and 3).
  • the water management unit 100 (water management device) constitutes a part of the growth diagnosis server 22 (FIG. 3).
  • the growth diagnosis model generates a target growth state value Vtar of the crop 502 and an estimated growth state value Ve (S11 and S12 in FIG. 4).
  • the water management unit 100 determines the target operation of the floodgates 32 and 34 (controlled objects) so that the estimated growth state value Ve approaches the target growth state value Vtar (S17). This makes it possible to bring the estimated growth state value Ve of the crop 502 closer to the target growth state value Vtar and grow the crop 502 in a suitable state.
  • the growth state value V includes the yield of paddy rice, the red light absorption rate, the number of paddy, the effective light receiving area ratio, the amount of accumulated starch in the paddy, and the protein content in the paddy. This makes it possible to preferably perform water management in the field 500 (paddy field) in consideration of the growing state of paddy rice.
  • the work instruction according to the growing state includes the timing of water supply to the field 500 and the timing of drainage from the field 500 (S17, S18 in FIG. 4). This makes it possible to give work instructions for water supply timing to the field 500 and drainage timing from the field 500 in consideration of the weather condition of the field 500.
  • the work instruction according to the growth state is the work instruction of the water supply timing to the field 500 and the drainage timing from the field 500 according to the magnitude relationship between the estimated water temperature Tfwe of the field 500 and the target water temperature Tfwtar in the future. (S17, S18 in FIG. 4). This makes it possible to indicate the water supply timing and the drainage timing as work instructions according to the magnitude relationship between the estimated water temperature Tfwe of the field 500 in the future and the target water temperature Tfwtar.
  • the work instruction according to the growing state includes the amount of water supplied to the field 500 and the amount of drainage from the field 500 (S17, S18 in FIG. 4). This makes it possible to give work instructions for the amount of water supplied to the field 500 and the amount of drainage from the field 500 in consideration of the weather conditions of the field 500.
  • the daytime water depth Hd of the field 500 before that (for example, the current day) is higher than the target daytime water depth Hdtar.
  • the amount of water supply and the amount of drainage are set so as to be shallow (S17 in FIG. 4).
  • the amount that the nighttime water temperature Tfwn is higher than the target nighttime water temperature Tfwtar is compensated by making the water depth H shallower (or by reducing the amount of water) (for the crop 502, the nighttime water temperature Tfwn is substantially lowered. It is possible to achieve the same effect as.
  • the water supply amount and the drainage amount are set so that the water depth H of the field 500 in front of the target nighttime water temperature Tfwne is deeper than the target daytime water depth Hdtar (FIG. 4). S17).
  • the amount that the nighttime water temperature Tfwn is lower than the target nighttime water temperature Tfwtar is compensated by increasing the water depth H (or increasing the amount of water) (for the crop 502, the nighttime water temperature Tfwn is substantially increased. It is possible to achieve the same effect as.
  • the water supply amount and the drainage amount are set so that the daytime water depth Hd of the field 500 in front of the target daytime water temperature Tfwdtar is shallower than the target daytime water depth Hdtar. It may be good (S17 in FIG. 4).
  • the daytime water temperature Tfwd can be easily increased, and the amount of the daytime water temperature Tfwd lower than the target daytime water temperature Tfwdtar can be compensated. ..
  • the amount of water supply and the amount of drainage may be set so that the daytime water depth Hd of the field 500 in front of the target daytime water temperature Tfwdtar is deeper than the target daytime water depth Hdtar (FIG. 4). S17).
  • the basic configuration of the second embodiment is the same as that of the first embodiment (FIGS. 1 to 3).
  • the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the water management control of the first embodiment is as shown in FIG. 4, but the water management control of the second embodiment is different from that of the first embodiment in that it is as shown in FIG.
  • FIG. 5 is a flowchart of water management control according to the second embodiment.
  • the target water temperature Tfwtar is calculated based on the growth phase and the difference D (S14), and based on the current water temperature Tfw, the target water temperature Tfwtar, the current temperature Tfa, and the estimated temperature Tfae.
  • the target water depth Htar was calculated (S16).
  • the state of fertilization is taken into consideration.
  • Steps S21 to S23 in FIG. 5 are the same as steps S11 to S13 in FIG.
  • step S24 of FIG. 5 the diagnostic server 22 confirms the current fertilization state of the target field 500.
  • Current fertilizer application conditions include the type, amount, application timing and application method of fertilizer that has already been applied.
  • the current fertilization state is confirmed by reading from the field DB 110.
  • step S25 the diagnostic server 22 determines the required fertilizer type, amount, application timing and application method (future fertilizer application information) based on the current growth phase, difference D and current fertilizer application state.
  • the spraying timing is the story of this work cycle (otherwise, future fertilizer information will not be considered in this decision).
  • step S26 the diagnostic server 22 calculates the target water temperature Tfwtar of the field 500 based on the information on the growth phase (or elapsed period T), the current fertilization state, and the future fertilization. That is, the diagnostic server 22 estimates the nitrogen concentration (ammonium ion) of the soil based on the information on the current fertilization state and future fertilization. Then, the target water temperature Tfwtar according to the nitrogen concentration of the soil is calculated.
  • the target water temperature Tfwtar may be set based on the current or future fertilization state.
  • Steps S27 and S28 are the same as steps S15 and S16 in FIG. However, when setting the target water depth Htar, it is restricted that the fertilizer does not function at the water depth H.
  • the diagnostic server 22 specifies a specific operation for fertilization determined in step S25.
  • the type of fertilizer here includes at least one of the elements to be fertilized, chemical fertilizers, rice husks and organic fertilizers.
  • the diagnostic server 22 also calculates a work instruction to the user for realizing the target water depth Htar set in step S28.
  • the diagnostic server 22 specifies the operation method (opening degree, opening time, etc.) of the floodgates 32, 34 at the assumed time when the user 600 or the like operates the floodgates 32, 34.
  • the diagnostic server 22 calculates the water supply timing and water supply amount by the upstream side floodgate 32, the drainage timing and drainage amount by the downstream side floodgate 34, and the water depth H of the field 500 as target values.
  • step S30 the diagnostic server 22 displays the contents of future fertilizer application (type, amount, application method, application timing) of future fertilizer specified in step S29 and the operation method of the floodgates 32 and 34, the first user terminal 26 and the like. It is presented to the user 600 and the like via.
  • future fertilizer application type, amount, application method, application timing
  • the floodgates 32 and 34 (controlled objects) that change the water state of the field 500 are operated by the user 600 or the like based on the fertilization state of the field 500 to control the water state of the field 500. (Fig. 5). This makes it possible to grow the crop 502 in a water state in consideration of the fertilization state of the field 500.
  • the work instruction according to the growing state includes the type, application timing and amount of fertilizer (S29 and S30 in FIG. 5).
  • the water management unit 100 determines the target operation of the floodgates 32 and 34 (controlled objects) based on the type, spraying timing and amount of fertilizer (S29). This makes it possible to manage water in relation to the type, application timing and amount of fertilizer.
  • FIG. 6 is an overall configuration diagram showing an outline of the crop growing system 10A according to the third embodiment of the present invention.
  • the basic configuration of the third embodiment is basically the same as that of the first and second embodiments (FIGS. 1 to 3).
  • the same reference numerals will be given to the same components as those in the first and second embodiments, and detailed description thereof will be omitted.
  • the user 600 and the like operate the floodgates 32 and 34 based on the work instruction from the diagnostic server 22 (FIGS. 4 and 5).
  • the diagnostic server 22 controls the operations of the floodgates 32 and 34.
  • the crop growing system 10A has sluice gate actuators 200 and 202 that open and close the sluice gates 32 and 34.
  • the floodgate actuators 200 and 202 can communicate with the diagnostic server 22 via the communication network 38 (including the wireless base station 36), and control the opening degree of the floodgates 32 and 34 based on the control signal from the diagnostic server 22. do.
  • the opening degree of the floodgates 32 and 34 can be adjusted to be half-opened or the like in addition to fully closed and fully opened. Alternatively, the opening degrees of the floodgates 32 and 34 may be adjustable only when fully closed and fully opened.
  • FIG. 7 is a flowchart of water management control according to the third embodiment.
  • the user 600 or the like operates the floodgates 32 and 34 based on the work instruction from the diagnostic server 22. rice field. Therefore, in consideration of the convenience of the user 600 and the like, the work instructions are given assuming that the operation of the floodgates 32 and 34 is performed in the morning and the evening.
  • the diagnostic server 22 controls the operations of the floodgates 32 and 34.
  • the control of the floodgates 32 and 34 can be performed in real time because there are few time constraints.
  • a time zone may be provided to limit the opening and closing of the floodgates 32 and 34.
  • Steps S31, S32, S33, S34, S35, and S36 of FIG. 7 are basically the same as steps S11, S12, S13, S14, S15, and S16 of FIG.
  • the target water depth Htar calculated in step S36 is set as a target value at each time point and changes from moment to moment.
  • step S37 the diagnostic server 22 calculates the target opening degree Otar of each of the floodgate actuators 200 and 202 based on the target water depth Htar.
  • step S38 the diagnostic server 22 remotely controls the floodgate actuators 200 and 202 based on the target opening degree Otar.
  • the water gates 32 and 34 (controlled objects) that change the water state of the field 500 are operated by the crop growing system 10 (water management system) based on the temperature Tfa of the field 500 to operate the field 500.
  • Water condition is controlled (Fig. 7). This makes it possible to grow the crop 502 in a water condition in consideration of the weather condition of the field 500.
  • the control of the floodgates 32 and 34 according to the growth state is the water supply timing to the field 500 and the field according to the magnitude relationship between the detected water temperature Tfwd or the estimated water temperature Tfwe and the target water temperature Tfwtar of the field 500 at the present time.
  • the floodgates 32 and 34 can be controlled at the water supply timing or the drainage timing according to the magnitude relationship between the detected water temperature Tfwd or the estimated water temperature Tfwe and the target water temperature Tfwtar in the field 500 at the present time.
  • the water management unit 100 controls the floodgates 32 and 34 (controlled objects) at relatively short intervals (FIG. 7). This makes it possible to manage water with real-time performance as compared with the first and second embodiments.
  • the crop growing system 10 of the first embodiment had components as shown in FIG.
  • the present invention is not limited to this, for example, from the viewpoint of controlling the water condition of the field 500 based on at least one of the meteorological condition including the temperature Tfa (or the amount of solar radiation X) of the field 500 and the fertilization condition of the field 500.
  • the crop growing system 10 can omit one or more of the drone 24, the first user terminal 26, the second user terminal 28, the third user terminal 30, the floodgates 32, 34, and the information providing server 40. be. The same applies to the second and third embodiments.
  • the growth diagnosis function (growth diagnosis management unit 80) is provided on the growth diagnosis server 22 (FIG. 3).
  • the present invention is not limited to this, for example, from the viewpoint of controlling the water condition of the field 500 based on at least one of the meteorological condition including the temperature Tfa (or the amount of solar radiation X) of the field 500 and the fertilization condition of the field 500.
  • the drone 24 it is possible to give the drone 24 a function of growth diagnosis. The same applies to the second and third embodiments.
  • paddy rice was used as the crop 502.
  • the present invention is not limited to this, for example, from the viewpoint of controlling the water condition of the field 500 based on at least one of the meteorological condition including the temperature Tfa (or the amount of solar radiation X) of the field 500 and the fertilization condition of the field 500.
  • the crop 502 may be wheat, barley, soybean, or the like. The same applies to the second and third embodiments.
  • the upstream sluice gate 32 was used as a water supply device for supplying water from the water source 504 to the field 500 (FIG. 1).
  • a valve or pump may be used in addition to or in place of the lock 32.
  • the upstream water supply device can be omitted. The same applies to the second and third embodiments.
  • the downstream sluice gate 34 was used as a drainage device for discharging water from the field 500 (FIG. 1).
  • the present invention is not limited to this.
  • a valve or pump may be used in addition to or in place of the lock 34.
  • the downstream side drainage device can be omitted. The same applies to the second and third embodiments.
  • control was performed using the air temperature Tfa of the field 500 (FIGS. 4 and 7).
  • the air temperature Tfa of the field 500 (FIGS. 4 and 7).
  • the amount of solar radiation X (target value, estimated value and detected value) of the field 500 can be used.
  • the target water temperature Tfwtar was calculated using the air temperature Tfa of the field 500 (S14 in FIG. 4 and S34 in FIG. 7), whereas in the second embodiment, the current fertilization state and the like are used.
  • the target water temperature Tfwtar was calculated (S24 and S25 in FIG. 5). By combining both, the target water temperature Tfwtar may be calculated using the air temperature Tfa of the field 500, the current fertilization state, and the like.
  • water management control was premised on the use of a growth diagnosis model (FIGS. 4, 5 and 7).
  • the present invention is not limited to this, for example, from the viewpoint of controlling the water condition of the field 500 based on at least one of the weather condition and the fertilization condition of the field 500.
  • it is possible to manage water by providing a table in which the weather condition or the fertilization condition is input and the output corresponding to these conditions is stored without using the growth diagnosis model.
  • Crop growing system water management system 22 ... Growth diagnosis server (growth diagnosis device, water management server) 32 ... Upstream floodgate (controlled object, water supply device) 34 ... Downstream floodgate (controlled object, drainage device) 70 ... Input / output unit (status input unit) 100 ... Water management department (water management device) 500 ... Field 502 ... Crop 504 ... Water source H ... Field water depth Hd ... Field daytime water depth Hdtar ... Field target Daytime water depth Tfa ... Field temperature Tfwd ... Field detection water temperature Tfwd ... Field estimated daytime temperature Tfwe ... Field estimation Water temperature Tfwne ... Estimated nighttime temperature of the field Tfwtar ... Target water temperature of the field V ... Growth state value Ve ... Estimated growth state value Vtar ... Target growth state value X ... Solar radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

圃場の状態に応じてより好適に水管理することが可能な水管理システム、水管理サーバ及び水管理方法を提供する。水管理装置(100)は、圃場(500)の水状態を変化させる被制御対象(32、34)の目標動作を、圃場の気温又は日射量を含む気象状態と圃場の施肥状態の少なくともいずれかに基づいて決定する。そして、目標動作に基づく被制御対象の動作をユーザに要求して又は目標動作に基づいて被制御対象を動作させて、圃場の水状態を管理する。

Description

水管理システム、水管理サーバ及び水管理方法
 本発明は、水管理システム、水管理サーバ及び水管理方法に関する。
 特開2016-220681号(以下「JP2016-220681A」という。)では、各圃場における水門の管理を省力化すること及び各圃場に最適となる水の管理をすることができる水位情報管理システムを提供すること等を目的にしている([0007]、要約)。当該目的を達するため、JP2016-220681A(要約)では、圃場に給水用水門1a及び排水用水門1b並びに水位計測用指標を設置し、所定の空路を飛行する無人飛行体27から圃場又は水位計測指標を撮影する工程と、撮影された画像を無人飛行体から送信する工程と、送信された画像を解析して水位を算出する工程と、所定の基準水位と無人飛行体から送信され解析された水位情報とを比較し、無線モジュールを有した給水用水門又は排水用水門に対して開閉指示を送信する。
 上記のように、JP2016-220681A(要約)では、無人飛行体27が撮影した画像に基づいて、圃場の水位を算出し、給水用水門1a及び排水用水門1bを開閉する。しかしながら、JP2016-220681Aでは、圃場の状態を踏まえた水管理の点で改善の余地がある。
 本発明は上記のような課題を考慮してなされたものであり、圃場の状態に応じてより好適に水管理することが可能な水管理システム、水管理サーバ及び水管理方法を提供することを目的とする。
 本発明に係る水管理システムは、圃場の水状態を変化させる被制御対象の動作を介して前記圃場の水管理を行うものであって、
  前記圃場の気温又は日射量を含む気象状態と前記圃場の施肥状態の少なくともいずれかの入力を受け付ける状態入力部と、
  前記状態入力部で受け付けた前記気象状態と前記施肥状態の少なくともいずれかに基づいて、前記被制御対象の目標動作を決定し、前記目標動作に基づく前記被制御対象の動作をユーザに要求して又は前記目標動作に基づいて前記被制御対象を動作させて、前記圃場の水状態を管理する水管理装置と
 を備えることを特徴とする。
 本発明によれば、圃場の水状態を変化させる被制御対象を、圃場の気温又は日射量を含む気象状態と圃場の施肥状態の少なくともいずれかに基づいてユーザ又は水管理システムにより動作させて圃場の水状態を制御する。これにより、圃場に関する気象状態と施肥状態の少なくともいずれかを考慮した水状態で作物を生育することが可能となる。
 前記被制御対象は、水源から前記圃場に水を供給する給水装置を含んでもよい。前記水管理装置は、前記気象状態と前記施肥状態の少なくともいずれかに基づいて、前記給水装置による給水タイミング及び給水量並びに前記圃場の水深の少なくとも1つを目標値として生成してもよい。また、前記水管理装置は、前記目標値に基づく前記給水装置の動作を前記ユーザに要求して又は前記目標値に基づいて前記給水装置を動作させて前記圃場の水状態を制御してもよい。これにより、圃場の気温又は日射量を含む気象状態と圃場の施肥状態の少なくともいずれかに基づいて圃場の給水を制御可能となる。
 前記被制御対象は、前記圃場から水を排出する排水装置を含んでもよい。前記水管理装置は、前記気象状態と前記施肥状態の少なくともいずれかに基づいて、前記排水装置による排水タイミング及び排水量並びに前記圃場の水深の少なくとも1つを目標値として生成してもよい。また、前記水管理装置は、前記目標動作に基づく前記排水装置の動作を前記ユーザに要求して又は前記目標動作に基づいて前記排水装置を動作させて前記圃場の水状態を制御してもよい。これにより、圃場の気温又は日射量を含む気象状態と圃場の施肥状態の少なくともいずれかに基づいて圃場の排水を制御可能となる。
 前記水管理システムは、前記気象状態を用いる生育診断モデルを利用して前記圃場に生育している前記作物の生育状態を診断して前記生育状態に応じた作業指示を出力する生育診断装置を備えてもよい。また、前記水管理装置は、前記生育診断装置の一部を構成してもよい。前記生育診断モデルは、前記作物の生育状態値の目標値である目標生育状態値と、前記生育状態値の推定値である推定生育状態値とを生成するものであってもよい。前記水管理装置は、前記推定生育状態値が前記目標生育状態値に近付くように、前記被制御対象の前記目標動作を決定してもよい。これにより、作物の推定生育状態値を目標生育状態値に近付けて、作物を好適な状態で育成することが可能となる。
 前記作物が水稲である場合、前記生育状態値は、前記水稲の収量、赤色光吸収率、籾数、有効受光面積率、籾内の蓄積デンプン量及び籾内のタンパク質含有率の少なくともいずれかを含んでもよい。これにより、水稲の生育状態を考慮して、圃場(水田)の水管理を好適に行うことが可能となる。
 前記生育状態に応じた作業指示は、肥料の種類、散布タイミング及び量に関する内容を含んでもよい。前記水管理装置は、前記肥料の種類、散布タイミング及び量に基づいて、前記被制御対象の前記目標動作を決定してもよい。これにより、水管理を肥料の種類、散布タイミング及び量に関連付けて行うことが可能となる。
 前記肥料の種類は、施肥すべき元素、化学肥料、籾殻及び有機肥料の少なくとも1つを含んでもよい。
 前記生育状態に応じた作業指示は、前記圃場への給水タイミング又は前記圃場からの排水タイミングに関する内容を含んでもよい。これにより、気象状態と施肥状態の少なくともいずれかを考慮して、圃場への給水タイミング又は圃場からの排水タイミングの作業指示を行うことが可能となる。
 前記生育状態に応じた作業指示は、現時点における前記圃場の検出水温又は推定水温と目標水温との大小関係に応じた、前記圃場への給水タイミング又は前記圃場からの排水タイミングの作業指示を含んでもよい。これにより、現時点での圃場の検出水温又は推定水温と目標水温との大小関係に応じた、給水タイミング又は排水タイミングを作業指示として示すことが可能となる。
 前記生育状態に応じた作業指示は、将来における前記圃場の推定水温と目標水温との大小関係に応じた、前記圃場への給水タイミング又は前記圃場からの排水タイミングの作業指示を含んでもよい。これにより、将来における圃場の推定水温と目標水温との大小関係に応じた、給水タイミング又は排水タイミングを作業指示として示すことが可能となる。
 前記生育状態に応じた作業指示は、前記圃場への給水量又は前記圃場からの排水量を含んでもよい。これにより、気象状態と施肥状態の少なくともいずれかを考慮して、圃場への給水量又は圃場からの排水量の作業指示を行うことが可能となる。
 将来における(例えば当日から翌日にかけての)推定夜間水温が目標夜間水温よりも高い場合、その前(例えば当日)の前記圃場の昼間水深を目標昼間水深よりも浅くするように前記給水量又は前記排水量を設定してもよい。これにより、夜間水温が目標夜間水温よりも高い分を、水深を浅くすることで(又は、水量を少なくすることで)補うこと(作物にとって、実質的に夜間水温が下がることと同様の効果を奏すること)が可能となる。
 将来における(例えば当日から翌日にかけての)推定夜間水温が目標夜間水温よりも低い場合、その前(例えば当日)の前記圃場の昼間水深を目標昼間水深よりも深くするように前記給水量又は前記排水量を設定してもよい。これにより、夜間水温が目標夜間水温よりも低い分を、水深を深くすることで(又は、水量を多くすることで)補うこと(作物にとって、実質的に夜間水温が上がることと同様の効果を奏すること)が可能となる。
 将来(例えば当日)における推定昼間水温が目標昼間水温よりも低い場合、その前(例えば当日)の前記圃場の昼間水深を目標昼間水深よりも浅くするように前記給水量又は前記排水量を設定してもよい。これにより、昼間水深を浅くすることで(又は水量を少なくすることで)昼間水温を上がり易くし、昼間水温が目標昼間水温よりも低い分を補うことが可能となる。
 将来(例えば当日)における推定昼間水温が目標昼間水温よりも高い場合、その前(例えば当日)の前記圃場の昼間水深を目標昼間水深よりも深くするように前記給水量又は前記排水量を設定してもよい。これにより、昼間水深を深くすることで(又は水量を多くすることで)昼間水温を上がり難くし、昼間水温が目標昼間水温よりも高い分を補うことが可能となる。
 本発明に係る水管理サーバは、圃場の水状態を変化させる被制御対象の動作を介して前記圃場の水管理を行うものであって、
 前記圃場の気温又は日射量を含む気象状態と前記圃場の施肥状態の少なくともいずれかの入力を受け付ける状態入力部と、
 前記気象状態と前記施肥状態の少なくともいずれかに基づいて、前記被制御対象の目標動作を決定し、前記目標動作に基づく前記被制御対象の動作をユーザに要求して又は前記目標動作に基づいて前記被制御対象を動作させて、前記圃場の水状態を管理する水管理装置と
 を備えることを特徴とする。
 本発明に係る水管理方法は、圃場の水状態を変化させる被制御対象の動作を介して前記圃場の水管理を行う方法であって、
 水管理装置において、前記圃場の気温又は日射量を含む気象状態と前記圃場の施肥状態の少なくともいずれかに基づいて、前記被制御対象の目標動作を決定する目標動作決定ステップと、
 前記水管理装置において、前記目標動作に基づく前記被制御対象の動作をユーザに要求して又は前記目標動作に基づいて前記被制御対象を動作させて、前記圃場の水状態を管理する水管理ステップと
 を備えることを特徴とする。
 本発明によれば、圃場の状態に応じたより好適な水管理が可能となる。
本発明の第1実施形態に係る作物育成システムの概要を示す全体構成図である。 第1実施形態の圃場センサ群及びドローンの構成を簡略的に示す構成図である。 第1実施形態の生育診断サーバの構成を簡略的に示す構成図である。 第1実施形態の水管理制御のフローチャートである。 第2実施形態の水管理制御のフローチャートである。 本発明の第3実施形態に係る作物育成システムの概要を示す全体構成図である。 第3実施形態の水管理制御のフローチャートである。
A.第1実施形態
<A-1.構成>
[A-1-1.全体構成]
 図1は、本発明の第1実施形態に係る作物育成システム10の概要を示す全体構成図である。作物育成システム10(以下「システム10」ともいう)は、圃場500に生育する作物502(水稲)の生育診断を行うと共に、作物502に薬剤を散布することができる。また、システム10は、圃場500の水管理を行う水管理システムでもある。
 図1に示すように、システム10は、圃場センサ群20と、生育診断サーバ22と、ドローン24と、第1ユーザ端末26と、第2ユーザ端末28と、第3ユーザ端末30と、上流側水門32と、下流側水門34とを有する。圃場センサ群20、ドローン24、第1ユーザ端末26及び第2ユーザ端末28は、通信ネットワーク38(無線基地局36を含む。)を介して互いに無線通信が可能であると共に、生育診断サーバ22と通信可能である。無線通信としては、無線基地局36を介さない通信(例えば、LTE(Long Term Evolution)、WiFi等)を用いることができる。生育診断サーバ22は、通信ネットワーク38を介して情報提供サーバ40と通信可能である。
[A-1-2.圃場センサ群20]
 図2は、第1実施形態の圃場センサ群20及びドローン24の構成を簡略的に示す構成図である。圃場センサ群20は、水田としての圃場500及びその周辺に設置されて圃場500及びその周辺における各種データを検出して生育診断サーバ22等に提供する。
 図2に示すように、圃場センサ群20には、例えば、水源水温センサ50、圃場水温センサ52、気温センサ54、水深センサ56、土壌温度センサ58、上流側流量センサ60、下流側流量センサ62及び照度センサ64が含まれる。
 水源水温センサ50は、圃場500に水を供給する水源504(図1)の水温(以下「水源水温Tsw」ともいう。)を検出する。水源504は、圃場500の周りを流れる用水やため池が想定されており、基本的には外気の影響を受けて値が一定しない。圃場水温センサ52は、水田である圃場500に貯められた水(以下「貯留水」ともいう。)の水温(以下「圃場水温Tfw」又は「水温Tfw」ともいう。)を検出する。気温センサ54は、圃場500の気温(以下「圃場気温Tfa」又は「気温Tfa」ともいう。)を検出する。
 水深センサ56は、圃場500の貯留水の水深(以下「水深H」ともいう。)を検出する。水深Hは、圃場500における貯留水の深さ(底から表面までの距離)であるが、貯留水の水位(表面の高さ)を代わりに用いてもよい。換言すると、水位は、水深Hと実質的に同義のものとして用いることができる。
 土壌温度センサ58は、圃場500の土壌の温度(以下「土壌温度Te」ともいう。)を検出するものであり、例えばその検出素子を土壌中に埋没させて値を検出する。上流側流量センサ60は、水源504からの水が圃場500に流入する給水路506(図1)に配設され、給水路506における流量(以下「流量Q1」ともいう。)検出する。下流側流量センサ62は、圃場500から水を排出する排水路508(図1)に配設され、排水路508における流量(以下[流量Q2]ともいう。)を検出する。照度センサ64は、圃場500の日射量(以下「日射量X」ともいう。)を検出する。
 さらに、圃場センサ群20には、降水量センサ、風速計、気圧計及び湿度計が含まれてもよい。降水量センサは、圃場500の降水量を検出する。風速計は、圃場500の風速を検出する。気圧計は、圃場500の気圧を検出する。湿度計は、圃場500の湿度を検出する。
[A-1-3.生育診断サーバ22]
(A-1-3-1.概要)
 図3は、第1実施形態の生育診断サーバ22の構成を簡略的に示す構成図である。生育診断サーバ22(以下「診断サーバ22」ともいう。)は、生育診断モデルを用いた生育診断を行い、診断結果に基づいてユーザに作業指示を行う生育診断装置である。作業指示には、施肥のタイミング、肥料の種類・量、農薬の散布タイミング、農薬の種類・量、圃場500の水管理等が含まれる。
 図3に示すように、診断サーバ22は、入出力部70と、通信部72と、演算部74と、記憶部76とを有する。入出力部70(状態入力部)は、圃場センサ群20、ドローン24等との信号の入出力を行う。通信部72は、図示しないモデム等を有する。通信部72は、通信ネットワーク38を介することで、圃場センサ群20、ドローン24、第1ユーザ端末26、第2ユーザ端末28、第3ユーザ端末30、情報提供サーバ40等との通信が可能である。
 演算部74は、中央演算装置(CPU)を含み、記憶部76に記憶されているプログラムを実行することにより動作する。演算部74が実行する機能の一部は、ロジックIC(Integrated Circuit)を用いて実現することもできる。演算部74は、前記プログラムの一部をハードウェア(回路部品)で構成することもできる。後述するドローン24の演算部等も同様である。
 記憶部76は、演算部74が用いるプログラム及びデータを記憶するものであり、ランダム・アクセス・メモリ(以下「RAM」という。)を備える。RAMとしては、レジスタ等の揮発性メモリと、ハードディスク、フラッシュメモリ等の不揮発性メモリとを用いることができる。また、記憶部76は、RAMに加え、リード・オンリー・メモリ(ROM)を有してもよい。後述するドローン24の記憶部等も同様である。
(A-1-3-2.演算部74)
 図3に示すように、演算部74は、生育診断管理部80と、ドローン飛行管理部82と、画像処理部84とを有する。生育診断管理部80は、生育診断モデルを用いた生育診断を行うと共に、生育診断の結果に基づく作業指示を行う。ドローン飛行管理部82は、ドローン24の飛行(経路等)を管理する。画像処理部84は、ドローン24が撮影した画像を処理して作物502の生育状態値V(検出生育状態値Vd)を算出する。
 生育診断管理部80は、生育診断部90と、作業指示部92とを有する。生育診断部90は、生育診断モデルを用いた生育診断を実行する。作業指示部92は、生育診断部90が実行した生育診断の結果に基づいて、ユーザ600(図1)等への作業指示を生成し、第1ユーザ端末26等に表示させる。作業指示部92は、圃場500の水管理に関する作業指示を行う水管理部100を有する。
(A-1-3-3.記憶部76)
 記憶部76は、生育診断管理部80、ドローン飛行管理部82等を実現するために演算部74が用いるプログラム及びデータを記憶すると共に、圃場データベース110(以下「圃場DB110」という。)を有する。圃場DB110は、圃場500毎のデータを蓄積する。圃場500毎のデータには、例えば、過去に栽培された作物502の種類、収量、くず米率、生育診断モデルのパラメータ及び施肥状態が含まれる。施肥状態には、既に散布した肥料の種類、量及び散布タイミングが含まれる。施肥状態には、これから散布する肥料の種類、量及び散布タイミングが含まれてもよい。
[A-1-4.ドローン24]
 第1実施形態において、ドローン24は、圃場500(作物502)の画像を取得する手段として機能すると共に、作物502に対する薬液(液体肥料を含む。)を散布する手段としても機能する。ドローン24は、発着地点510(図1)において離着陸する。
 図2に示すように、ドローン24は、ドローンセンサ群120と、通信部122と、飛行機構124と、撮影機構126と、散布機構128と、ドローン制御部130とを有する。
 ドローンセンサ群120は、グローバル・ポジショニング・システム・センサ(以下「GPSセンサ」という。)、速度計、高度計、ジャイロセンサ、液量センサ(いずれも図示せず)等を有する。GPSセンサは、ドローン24の現在位置情報を出力する。速度計は、ドローン24の飛行速度を検出する。高度計は、ドローン24下方の地面に対する距離としての対地高度を検出する。ジャイロセンサは、ドローン24の角速度を検出する。液量センサは、散布機構128のタンク内の液量を検出する。
 通信部122は、通信ネットワーク38を介しての電波通信が可能であり、例えば、電波通信モジュールを含む。通信部122は、通信ネットワーク38(無線基地局36を含む。)を介することで、生育診断サーバ22、第1ユーザ端末26、第2ユーザ端末28等との通信が可能である。
 飛行機構124は、ドローン24を飛行させる機構であり、複数のプロペラと、複数のプロペラアクチュエータとを有する。プロペラアクチュエータは、例えば電動モータを有する。
 撮影機構126は、圃場500又は作物502の画像を撮影する機構であり、カメラ140を有する。第1実施形態のカメラ140は、マルチスペクトルカメラであり、特に作物502の生育状況を分析できる画像を取得する。撮影機構126は、圃場500に対して特定の波長の光線を照射する照射部をさらに備え、当該光線に対する圃場500からの反射光を受光可能になっていてもよい。特定の波長の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)であってもよい。当該光線の反射光を分析することで、作物502の窒素吸収量を推定し、推定した窒素吸収量に基づいて作物502の生育状況を分析することができる。
 カメラ140は、ドローン24の本体の下部に配置され、ドローン24の周辺を撮影した周辺画像に関する画像データを出力する。カメラ140は、動画を撮影するビデオカメラである。或いは、カメラ140は、動画及び静止画の両方又は静止画のみを撮影可能としてもよい。
 カメラ140は、図示しないカメラアクチュエータにより向き(ドローン24の本体に対するカメラ140の姿勢)を調整可能である。或いは、カメラ140は、ドローン24の本体に対する位置が固定されてもよい。
 散布機構128は、薬剤(液体肥料を含む。)を散布する機構であり、例えば、薬剤タンク、ポンプ、流量調整弁及び薬剤ノズルを有する。
 ドローン制御部130は、ドローン24の飛行、撮影、薬剤の散布等、ドローン24全体を制御する。ドローン制御部130は、図示しない入出力部、演算部及び記憶部を含む。ドローン制御部130は、飛行制御部150、撮影制御部152及び散布制御部154を有する。飛行制御部150は、飛行機構124を介してドローン24の飛行を制御する。撮影制御部152は、撮影機構126を介してドローン24による撮影を制御する。散布制御部154は、散布機構128を介してドローン24による薬剤散布を制御する。
[A-1-5.第1ユーザ端末26]
 第1ユーザ端末26は、圃場500において、操作者としてのユーザ600(図1)の操作によりドローン24を制御すると共に、ドローン24から受信した情報(例えば、位置、薬剤量、電池残量、カメラ映像等)を表示する携帯情報端末である。なお、第1実施形態では、ドローン24の飛行状態(高度、姿勢等)は、第1ユーザ端末26が遠隔制御するのではなく、ドローン24が自律的に制御する。従って、第1ユーザ端末26を介してユーザ600からドローン24に飛行指令が送信されると、ドローン24は自律飛行を行う。但し、離陸や帰還等の基本操作時、及び緊急時にはマニュアル操作が行なえるようになっていてもよい。第1ユーザ端末26は、図示しない入出力部(タッチパネル等を含む。)、通信部、演算部及び記憶部を備え、例えば、一般的なタブレット端末により構成される。
 また、第1実施形態の第1ユーザ端末26は、生育診断サーバ22からの作業指示等を受信して表示する。
[A-1-6.第2ユーザ端末28]
 第2ユーザ端末28は、圃場500において、操作者以外のユーザ602(図1)が用いる携帯情報端末であり、ドローン24の飛行情報(現在の飛行状況、飛行終了予定時刻等)、ユーザ602に対する作業指示、生育診断の情報等を、診断サーバ22又はドローン24から受信して表示する。第2ユーザ端末28は、図示しない入出力部(タッチパネル等を含む。)、通信部、演算部及び記憶部を備え、例えば、一般的なスマートホンにより構成される。
[A-1-7.第3ユーザ端末30]
 第3ユーザ端末30は、圃場500以外の場所(例えば、ユーザ600、602が所属する会社)において、生育診断サーバ22による生育診断を利用するためにユーザ600、602等が用いる端末である。第3ユーザ端末30は、図示しない入出力部(例えばキーボード及び表示部を含む。)、通信部、演算部及び記憶部を備え、例えば、デスクトップ型パーソナルコンピュータ(PC)又はノート型PCにより構成される。
[A-1-8.上流側水門32及び下流側水門34]
 上流側水門32(以下「水門32」ともいう。)は、圃場500への給水路506に設けられる。下流側水門34(以下「水門34」ともいう。)は、圃場500からの排水路508に設けられる。水門32、34の開閉は、図示しない第1・第2開閉機構を介してユーザ600、602等が行う。第1・第2開閉機構は、ユーザ600等が手動で操作するハンドル、バルブ等により構成される。或いは、第1・第2開閉機構は、ユーザ600等の操作によりオンオフされて水門32、34を開閉する電動アクチュエータ(電動モータ等)を有してもよい。
[A-1-9.情報提供サーバ40]
 情報提供サーバ40は、気象衛星等により得られた圃場500に関する情報(圃場情報)を生育診断サーバ22に提供する。ここにいう圃場情報には、例えば、圃場500の気温Tfa、降水量、天気予報等が含まれる。
<A-2.第1実施形態の制御>
[A-2-1.概要]
 第1実施形態の水管理システム10では、生育診断制御、ドローン飛行管理制御、生育状態検出制御及び薬液散布制御が行われる。生育診断制御は、圃場センサ群20からの各種検出値に基づいて、作物502の生育診断を行う制御である。生育診断制御では、ユーザ600等に対する作業指示も行われる。ドローン飛行管理制御は、生育診断制御等のため圃場500においてドローン24の飛行を管理する制御である。生育状態検出制御は、ドローン24のカメラ140により圃場500(又は作物502)の画像を取得し、この画像を処理して作物502の生育状態を検出する制御である。薬剤散布制御は、ドローン24を用いて薬液(液体肥料を含む。)を散布する制御である。
 ドローン飛行管理制御、生育状態検出制御及び薬液散布制御は、いずれも生育診断制御における作業指示に基づいて行われる。以下では、生育診断制御、ドローン飛行管理制御、生育状態検出制御及び薬液散布制御の概要について先に説明した後、生育診断制御の一部としての水管理制御について説明する。
[A-2-2.生育診断制御]
 上記のように、生育診断制御は、生育診断モデルを用いて、作物502の生育診断を行う制御であり、主として生育診断サーバ22(特に生育診断管理部80の生育診断部90)が実行する。ここに言う生育診断には、例えば、圃場500毎の収量の推定値(推定収量)が含まれる。また、生育診断制御では、水田としての圃場500の水管理、施肥、薬剤散布等に関する作業指示も行われる。作業指示は、例えば、第1ユーザ端末26、第2ユーザ端末28又は第3ユーザ端末30の表示部に表示される。
 生育診断モデルでは、作物502(水稲)の収量、赤色光吸収率、籾数、有効受光面積率、籾内の蓄積デンプン量及び籾内のタンパク質含有率を算出することができる。生育診断モデルとしては、例えば、特開2015-000049号又は特開2018-082648号に記載のものを用いることができる。
 第1実施形態の生育診断制御は、圃場500の水管理を行う水管理制御を含む。水管理制御については、図4を参照して後述する。
[A-2-3.ドローン飛行管理制御]
 上記のように、ドローン飛行管理制御は、生育診断制御等のため圃場500においてドローン24の飛行を管理する制御であり、主として生育診断サーバ22(特にドローン飛行管理部82)が実行する。具体的には、ドローン飛行管理制御では、圃場500を撮影する際の飛行経路、目標速度、目標高度等が指令される。
[A-2-4.生育状態値検出制御]
 生育状態値検出制御は、ドローン24のカメラ140の画像に基づいて、圃場500に生育する作物502の生育状態値Vを検出する制御である。生育状態値検出制御では、ドローン24のカメラ140により圃場500(作物502)の画像を取得して診断サーバ22に送信し、診断サーバ22において、画像を処理して作物502の生育状態値V(検出生育状態値Vd)を算出する。
 例えば、作物502としての水稲の近赤外光(NIR)及び赤外光(IR)を撮影した場合、カメラ140で受光した近赤外光と赤外光の光量の差が全体光量に占める割合である赤色光吸収率(つまり、作物502に吸収されている赤色光の割合)に基づいて、水稲の成長度合いを判定可能である。ここで算出する検出生育状態値Vdは、作物502の生育フェーズに合わせて選択することができる。
 生育フェーズは、栄養生長期と、生殖生長期と、登熟期とを含む。栄養生長期は、発芽から穂の基となるもの(穂の原基)ができるまでの期間である。生殖生長期は、穂の原基ができてから出穂・開花までの期間である。登熟期は、出穂・開花から成熟までの期間である。
 栄養生長期では、例えば、作物502の高さ、葉の数、赤色光吸収率、有効受光面積率(圃場面積において光合成を行うことができる葉の面積率)、NDVI(Normalized Difference Vegetation Index)、分けつ数、葉身長、作物502の密度(土と作物502の面積割合)を用いることができる。生殖生長期では、例えば、作物502の高さ、葉の数、有効受光面積率、NDVIを用いることができる。登熟期では、例えば、籾数、NDVIを用いることができる。
[A-2-5.薬剤散布管理制御]
 薬剤散布制御は、生育診断制御により提示された作業指示に基づいて、圃場500におけるドローン24の薬剤散布(液体肥料を含む。)を管理する制御であり、主として生育診断サーバ22が実行する。
[A-2-6.水管理制御]
(A-2-6-1.概要)
 上記のように、水管理制御は、圃場500の水管理を行う制御であり、生育診断制御の一部である。第1実施形態の水管理制御において、診断サーバ22は、圃場500の水管理に関する作業指示をユーザ600等に提示する。具体的には、圃場500に配置された水門32、34に関する作業指示を第1ユーザ端末26等に提示する。ユーザ600等は、この作業指示に従って水門32、34を操作することで、圃場500の水管理を行う。
 ユーザ600等(農家)が、1日中水門32、34を操作し続けることは現実的でない。また、稲作は比較的暑い時期に行われ、日中の暑い時間帯に水門32、34を操作することもユーザ600等にとって酷である。そこで、第1実施形態では、水門32、34を朝及び夕方に操作することを前提として作業指示を行う。
(A-2-6-2.具体的な流れ)
 図4は、第1実施形態の水管理制御のフローチャートである。第1実施形態の水管理制御は、基本的に、診断サーバ22(特に水管理部100)が実行する。図4に示す水管理制御の一部は、生育診断制御における他の制御と重複していることに留意されたい。
 ステップS11において、診断サーバ22は、生育診断モデルにより、現時点における生育状態値Vの目標値(以下「目標生育状態値Vtar」又は「目標値Vtar」という。)を取得する。目標値Vtarは、作物502の種類、基準時点(例えば田植え)からの経過期間(以下「経過期間T」ともいう。)等によって生育診断モデルにより算出されるものであり、基準値又は理想値と言い換えることもできる。経過期間Tは、現時点の生育フェーズと言い換えてもよい。
 ステップS12において、診断サーバ22は、生育診断モデルにより、現時点における生育状態値Vの推定値(以下「推定生育状態値Ve」又は「推定値Ve」という。)を算出する。推定値Veは、現時点までの気象条件、施肥の実施状況等に基づいて生育診断モデルにより算出される。圃場センサ群20からの検出値を用いることができる。ドローン24が取得した画像に基づく生育状態値Vの検出値(以下「検出生育状態値Vd」又は「検出値Vd」という。)を用いることができる場合、検出値Vdを優先して用いてもよい。
 ステップS13において、診断サーバ22は、目標生育状態値Vtarと推定生育状態値Ve(又は検出生育状態値Vd)との差分Dを算出する。
 ステップS14において、診断サーバ22は、経過期間T(又は生育フェーズ)及び差分Dに基づいて、圃場500の水温Tfwの目標値(以下「目標水温Tfwtar」ともいう。)を算出する。すなわち、作物502としての水稲には、生育フェーズ毎に昼夜それぞれの適温が存在する。そのため、差分Dがゼロ又はその近傍値である場合(換言すると、差分Dが所定範囲内である場合)、現在の生育フェーズに応じた昼夜の適温それぞれを目標水温Tfwtarとして設定する。以下では、昼間の目標水温Tfwtarを目標昼間水温Tfwdtarともいい、夜間の目標水温Tfwtarを目標夜間水温Tfwntarともいう。
 生育状態値Vの推定値Veが目標値Vtarを下回り、作物502の成長が遅れており、且つ、差分Dがゼロであるときの目標水温Tfwtarよりも作物502の成長を早める圃場水温Tfwが存在する場合、診断サーバ22は、当該圃場水温Tfwを目標水温Tfwtarとして選択する。また、生育状態値Vの推定値Veが目標値Vtarを上回り、作物502の成長が早過ぎており、且つ、差分Dがゼロであるときの目標水温Tfwtarよりも作物502の成長を抑制する圃場水温Tfwが存在する場合、診断サーバ22は、当該圃場水温Tfwを目標水温Tfwtarとして選択する。このように目標水温Tfwtarを選択することにより、生育状態値Vの目標値Vtarと推定値Veとの差分Dを小さくするように試みる。
 ステップS15において、診断サーバ22は、情報提供サーバ40から圃場500に関する気象予報情報Iceを取得する。気象予報情報Iceには、圃場500の気温Tfaの推定値(以下「推定気温Tfae」ともいう。)が含まれる。
 ステップS16において、診断サーバ22は、目標水温Tfwtar、現在水温Tfw、現在気温Tfa及び推定気温Tfaeに基づいて圃場500の水深Hの目標値(以下「目標水深Htar」ともいう。)を算出する。上記のように、第1実施形態では、ユーザ600等(農家)の利便性を考慮して、水門32、34の操作を朝と夕方に行うことを前提としている。そこで、例えば、朝に水門32、34を操作することにより、例えば日中最も暑い時間帯(例えば14時頃)の推定水温Tfweが目標昼間水温Tfwdtarに近付くように、目標水深Htarを設定する。
 例えば、昼間の推定気温Tfaeが比較的高く、現在の水深H及び現在の水温Tfwでは推定水温Tfweが目標昼間水温Tfwdtarを上回ることが想定される場合、目標昼間水深Hdtarを深くして、水温Tfwの上昇を抑制する(但し、現在の水温Tfwが目標昼間水温Tfwdtarを上回っている場合はこの限りでない。)。反対に、昼間の推定気温Tfaeが比較的低く、現在の水深H及び現在の水温Tfwでは推定水温Tfweが目標昼間水温Tfwdtarを下回ることが想定される場合、目標水深Htarを浅くして、水温Tfwの上昇を促進する(但し、現在の水温Tfwが目標昼間水温Tfwdtarを上回っている場合はこの限りでない。)。
 同様に、夕方に水門32、34を操作することにより、例えば夜間最も寒い時間帯(例えば翌日の4時頃)の推定水温Tfwneが目標夜間水温Tfwntarに近付くように、目標夜間水深Hntarを設定する。
 例えば、夜間の推定気温Tfaeが比較的高く、現在の水深H及び現在の水温Tfwでは推定水温Tfweが目標夜間水温Tfwntarを上回ることが想定される場合、目標水深Htarを浅くして、水温Tfwの下降を促進する(但し、現在の水温Tfwが目標夜間水温Tfwntarを下回っている場合はこの限りでない。)。反対に、夜間の推定気温Tfaeが比較的低く、現在の水深H及び現在の水温Tfwでは推定水温Tfweが目標夜間水温Tfwntarを下回ることが想定される場合、目標水深Htarを深くして、水温Tfwの下降を促進する(但し、現在の水温Tfwが目標夜間水温Tfwntarを大幅に上回っている場合はこの限りでない。)。
 ステップS17において、診断サーバ22は、目標水深Htarを実現するためのユーザへの作業指示を算出する。具体的には、診断サーバ22は、ユーザ600等が水門32、34を操作する想定時刻における水門32、34の操作方法(開度、開時間等)を特定する。換言すると、診断サーバ22は、上流側水門32による給水タイミング及び給水量、下流側水門34による排水タイミング及び排水量、並びに圃場500の水深Hを目標値として算出する。
 上記の処理を経ることで、例えば、将来における(例えば当日から翌日にかけての)推定夜間水温Tfwneが目標夜間水温Tfwntarよりも高い場合、その前(例えば当日)における圃場500の昼間水深Hdを目標昼間水深Hdtarよりも浅くするように給水量及び排水量を設定する。また、将来における推定夜間水温Tfwneが目標夜間水温Tfwntarよりも低い場合、その前における圃場500の水深Hを目標昼間水深Hdtarよりも深くするように給水量及び排水量を設定する。さらに、将来(例えば当日)における推定昼間水温Tfwdeが目標昼間水温Tfwdtarよりも低い場合、その前(例えば当日)における圃場500の昼間水深Hdを目標昼間水深Hdtarよりも浅くするように給水量及び排水量を設定してもよい。さらにまた、将来における推定昼間水温Tfwdeが目標昼間水温Tfwdtarよりも高い場合、その前における圃場500の昼間水深Hdを目標昼間水深Hdtarよりも深くするように給水量及び排水量を設定してもよい。
 ステップS18において、診断サーバ22は、ステップS17で特定した水門32、34の操作方法を、第1ユーザ端末26等を介してユーザ600等に提示する。
<A-3.第1実施形態の効果>
 第1実施形態によれば、圃場500の水状態を変化させる水門32、34(被制御対象)を、圃場500の気温Tfaを含む気象状態に基づいてユーザ600等により動作させて圃場500の水状態を制御する(図4)。これにより、圃場500の気象状態を考慮した水状態で作物502を生育することが可能となる。
 第1実施形態において、作物育成システム10(水管理システム)は、水源504から圃場500に水を供給する上流側水門32(給水装置)を被制御対象として含む(図1)。水管理部100(水管理装置)は、圃場500の気象状態に基づいて、上流側水門32による給水タイミング及び給水量並びに圃場500の水深Hを水門32の目標値として生成する(図4のS16、S17)。また、この目標値に基づく水門32の動作を、作業指示を介してユーザ600等に要求して圃場500の水状態を制御する(S18)。これにより、圃場500の気温Tfaに基づいて圃場500の給水を制御可能となる。
 第1実施形態において、作物育成システム10(水管理システム)は、圃場500から水を排出する下流側水門34(排水装置)を被制御対象として含む(図1)。診断サーバ22(水管理装置)は、圃場500の気象状態に基づいて、水門34による排水タイミング及び排水量並びに圃場500の水深Hを目標値として生成する(図4のS16、S17)。また、この目標値に基づく水門34の動作を、作業指示を介してユーザ600等に要求して圃場500の水状態を制御する(S18)。これにより、圃場500の気温Tfaに基づいて圃場500の排水を制御可能となる。
 第1実施形態において、作物育成システム10(水管理システム)は、圃場500の気象状態(気温Tfa等)を用いる生育診断モデルを利用して圃場500に生育している作物502の生育状態を診断して生育状態に応じた作業指示を出力する生育診断サーバ22(生育診断装置)を備える(図1、図3)。水管理部100(水管理装置)は、生育診断サーバ22の一部を構成する(図3)。生育診断モデルは、作物502の目標生育状態値Vtarと、推定生育状態値Veを生成する(図4のS11、S12)。水管理部100は、推定生育状態値Veが目標生育状態値Vtarに近付くように、水門32、34(被制御対象)の目標動作を決定する(S17)。これにより、作物502の推定生育状態値Veを目標生育状態値Vtarに近付けて、作物502を好適な状態で育成することが可能となる。
 第1実施形態において、生育状態値Vは、水稲の収量、赤色光吸収率、籾数、有効受光面積率、籾内の蓄積デンプン量及び籾内のタンパク質含有率を含む。これにより、水稲の生育状態を考慮して、圃場500(水田)の水管理を好適に行うことが可能となる。
 第1実施形態において、生育状態に応じた作業指示は、圃場500への給水タイミング及び圃場500からの排水タイミングを含む(図4のS17、S18)。これにより、圃場500の気象状態を考慮して、圃場500への給水タイミング及び圃場500からの排水タイミングの作業指示を行うことが可能となる。
 第1実施形態において、生育状態に応じた作業指示は、将来における圃場500の推定水温Tfweと目標水温Tfwtarの大小関係に応じた、圃場500への給水タイミング及び圃場500からの排水タイミングの作業指示を含む(図4のS17、S18)。これにより、将来における圃場500の推定水温Tfweと目標水温Tfwtarとの大小関係に応じた、給水タイミング及び排水タイミングを作業指示として示すことが可能となる。
 第1実施形態において、生育状態に応じた作業指示は、圃場500への給水量及び圃場500からの排水量を含む(図4のS17、S18)。これにより、圃場500の気象状態を考慮して、圃場500への給水量及び圃場500からの排水量の作業指示を行うことが可能となる。
 第1実施形態において、将来における(例えば当日から翌日にかけての)推定夜間水温Tfwneが目標夜間水温Tfwntarよりも高い場合、その前(例えば当日)における圃場500の昼間水深Hdを目標昼間水深Hdtarよりも浅くするように給水量及び排水量を設定する(図4のS17)。これにより、夜間水温Tfwnが目標夜間水温Tfwntarよりも高い分を、水深Hを浅くすることで(又は、水量を少なくすることで)補うこと(作物502にとって、実質的に夜間水温Tfwnが下がることと同様の効果を奏すること)が可能となる。
 第1実施形態において、将来における推定夜間水温Tfwneが目標夜間水温Tfwntarよりも低い場合、その前における圃場500の水深Hを目標昼間水深Hdtarよりも深くするよう給水量及び排水量を設定する(図4のS17)。これにより、夜間水温Tfwnが目標夜間水温Tfwntarよりも低い分を、水深Hを深くすることで(又は、水量を多くすることで)補うこと(作物502にとって、実質的に夜間水温Tfwnが上がることと同様の効果を奏すること)が可能となる。
 第1実施形態において、将来における推定昼間水温Tfwdeが目標昼間水温Tfwdtarよりも低い場合、その前における圃場500の昼間水深Hdを目標昼間水深Hdtarよりも浅くするように給水量及び排水量を設定してもよい(図4のS17)。これにより、昼間水深Hdを浅くすることで(又は圃場500の水量を少なくすることで)昼間水温Tfwdを上がり易くし、昼間水温Tfwdが目標昼間水温Tfwdtarよりも低い分を補うことが可能となる。
 将来における推定昼間水温Tfwdeが目標昼間水温Tfwdtarよりも高い場合、その前における圃場500の昼間水深Hdを目標昼間水深Hdtarよりも深くするように給水量及び排水量を設定してもよい(図4のS17)。これにより、昼間水深Hdを深くすることで(又は水量を多くすることで)昼間水温Tfwdを上がり難くし、昼間水温Tfwdが目標昼間水温Tfwdtarよりも高い分を補うことが可能となる。
B.第2実施形態
<B-1.構成(第1実施形態との相違)>
 第2実施形態の基本的構成は、第1実施形態(図1~図3)と同様である。以下では、第1実施形態と同様の構成要素には、同一の参照符号を付して詳細な説明を省略する。第1実施形態の水管理制御は図4に示すものであったが、第2実施形態の水管理制御は図5に示すものである点で第1実施形態と異なる。
<B-2.第2実施形態の制御>
 図5は、第2実施形態の水管理制御のフローチャートである。第1実施形態の水管理制御(図4)では、生育フェーズ及び差分Dに基づいて目標水温Tfwtarを算出し(S14)、現在水温Tfw、目標水温Tfwtar、現在気温Tfa及び推定気温Tfaeに基づいて目標水深Htarを算出した(S16)。これに対し、第2実施形態の水管理制御(図5)では、施肥の状態を考慮する。
 図5のステップS21~S23は、図4のステップS11~S13と同様である。
 図5のステップS24において、診断サーバ22は、対象となっている圃場500の現在の施肥状態を確認する。現在の施肥状態には、既に散布した肥料の種類、量、散布タイミング及び散布方法が含まれる。現在の施肥状態の確認は、圃場DB110から読み出して行う。
 ステップS25において、診断サーバ22は、現在の生育フェーズ、差分D及び現在の施肥状態に基づいて、必要な肥料の種類、量、散布タイミング及び散布方法(将来的な施肥の情報)を判定する。散布タイミングは、今回の作業周期の話である(そうでない場合、将来的な肥料の情報は今回の判定で考慮しない。)。
 ステップS26において、診断サーバ22は、生育フェーズ(又は経過期間T)、現在の施肥状態及び将来的な施肥の情報に基づいて、圃場500の目標水温Tfwtarを算出する。すなわち、診断サーバ22は、現在の施肥状態及び将来的な施肥の情報に基づいて、土壌の窒素濃度(アンモニウムイオン)を推定する。そして、土壌の窒素濃度に応じた目標水温Tfwtarを算出する。
 或いは、肥料には、効果を発揮しやすい水温が存在するものがある。そのため、現在の施肥状態及び/又は将来的な施肥状態に応じて好適な水温Tfwが存在する。そこで、第2実施形態では、現在又は将来の施肥状態に基づいて目標水温Tfwtarを設定してもよい。
 ステップS27、S28は、図4のステップS15、S16と同様である。但し、目標水深Htarを設定するに際し、肥料が機能しなくなる水深Hになることは制限される。
 ステップS29において、診断サーバ22は、ステップS25で判定した施肥のための具体的な作業を特定する。ここでの肥料の種類は、施肥すべき元素、化学肥料、籾殻及び有機肥料の少なくとも1つを含む。加えて、診断サーバ22は、ステップS28で設定した目標水深Htarを実現するためのユーザへの作業指示も算出する。具体的には、診断サーバ22は、ユーザ600等が水門32、34を操作する想定時刻における水門32、34の操作方法(開度、開時間等)を特定する。換言すると、診断サーバ22は、上流側水門32による給水タイミング及び給水量、下流側水門34による排水タイミング及び排水量、並びに圃場500の水深Hを目標値として算出する。
 ステップS30において、診断サーバ22は、ステップS29で特定した将来的な施肥の内容(肥料の種類、量、散布方法、散布タイミング)並びに水門32、34の操作方法を、第1ユーザ端末26等を介してユーザ600等に提示する。
<B-3.第2実施形態の効果>
 第2実施形態によれば、第1実施形態の効果に加えて又はこれに代えて、以下の効果を奏することができる。
 第2実施形態によれば、圃場500の水状態を変化させる水門32、34(被制御対象)を、圃場500の施肥状態に基づいてユーザ600等により動作させて圃場500の水状態を制御する(図5)。これにより、圃場500の施肥状態を考慮した水状態で作物502を生育することが可能となる。
 第2実施形態において、生育状態に応じた作業指示は、肥料の種類、散布タイミング及び量を含む(図5のS29、S30)。水管理部100(水管理装置)は、肥料の種類、散布タイミング及び量に基づいて、水門32、34(被制御対象)の目標動作を決定する(S29)。これにより、水管理を肥料の種類、散布タイミング及び量に関連付けて行うことが可能となる。
C.第3実施形態
<C-1.構成(第1・第2実施形態との相違)>
 図6は、本発明の第3実施形態に係る作物育成システム10Aの概要を示す全体構成図である。第3実施形態の基本的構成は、基本的に、第1・第2実施形態(図1~図3)と同様である。以下では、第1・第2実施形態と同様の構成要素には、同一の参照符号を付して詳細な説明を省略する。第1・第2実施形態は、診断サーバ22からの作業指示に基づいて、ユーザ600等が水門32、34を操作するものであった(図4及び図5)。これに対し、第3実施形態は、診断サーバ22が水門32、34の動作を制御する。
 図6に示すように、作物育成システム10Aは、水門32、34の開閉を行う水門アクチュエータ200、202を有する。水門アクチュエータ200、202は、通信ネットワーク38(無線基地局36を含む。)を介して診断サーバ22と通信可能であり、診断サーバ22からの制御信号に基づいて水門32、34の開度を制御する。水門32、34の開度は、全閉及び全開に加えて、半開等を調節することができる。或いは、水門32、34の開度は、全閉及び全開のみ調整可能としてもよい。
<C-2.第3実施形態の制御>
 図7は、第3実施形態の水管理制御のフローチャートである。上記のように、第1・第2実施形態の水管理制御(図4及び図5)では、診断サーバ22からの作業指示に基づいて、ユーザ600等が水門32、34を操作するものであった。そのため、ユーザ600等の利便性を考慮して、水門32、34の操作は、朝及び夕方に行うものとして作業指示が行われた。これに対し、第3実施形態の水管理制御(図7)では、診断サーバ22が水門32、34の動作を制御する。そのため、第1・第2実施形態と比較して、水門32、34の制御は、時間的制約が少ないため、リアルタイムに行うことができる。但し、騒音等を考慮して、水門32、34の開閉を制限する時間帯を設けてもよい。
 図7のステップS31、S32、S33、S34、S35、S36は、基本的に図4のステップS11、S12、S13、S14、S15、S16と同様である。但し、ステップS36で算出する目標水深Htarは、各時点での目標値として設定され、時々刻々変化する。
 ステップS37において、診断サーバ22は、目標水深Htarに基づいて水門アクチュエータ200、202それぞれの目標開度Otarを算出する。
 ステップS38において、診断サーバ22は、目標開度Otarに基づいて水門アクチュエータ200、202を遠隔制御する。
<C-3.第3実施形態の効果>
 第3実施形態によれば、第1・第2実施形態の効果に加えて又はこれに代えて、以下の効果を奏することができる。
 第3実施形態によれば、圃場500の水状態を変化させる水門32、34(被制御対象)を、圃場500の気温Tfaに基づいて作物育成システム10(水管理システム)により動作させて圃場500の水状態を制御する(図7)。これにより、圃場500の気象状態を考慮した水状態で作物502を生育することが可能となる。
 第3実施形態において、生育状態に応じた水門32、34の制御は、現時点における圃場500の検出水温Tfwd又は推定水温Tfweと目標水温Tfwtarの大小関係に応じた、圃場500への給水タイミング及び圃場500からの排水タイミングを含む(図7)。これにより、現時点での圃場500の検出水温Tfwd又は推定水温Tfweと目標水温Tfwtarとの大小関係に応じた、給水タイミング又は排水タイミングで水門32、34を制御することが可能となる。
 第3実施形態において、水管理部100(水制御装置)は、比較的短い間隔で水門32、34(被制御対象)を制御する(図7)。これにより、第1・第2実施形態と比較してリアルタイム性を持った水管理をすることが可能となる。
D.変形例
 なお、本発明は、上記実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
<D-1.構成>
 第1実施形態の作物育成システム10は、図1に示すような構成要素を有していた。しかしながら、例えば、圃場500の気温Tfa(又は日射量X)を含む気象状態と圃場500の施肥状態の少なくともいずれかに基づいて圃場500の水状態を制御する観点からすれば、これに限らない。例えば、作物育成システム10は、ドローン24、第1ユーザ端末26、第2ユーザ端末28、第3ユーザ端末30、水門32、34及び情報提供サーバ40の1つ又は複数を省略することも可能である。第2・第3実施形態も同様である。
 第1実施形態では、生育診断の機能(生育診断管理部80)を生育診断サーバ22に設けた(図3)。しかしながら、例えば、圃場500の気温Tfa(又は日射量X)を含む気象状態と圃場500の施肥状態の少なくともいずれかに基づいて圃場500の水状態を制御する観点からすれば、これに限らない。例えば、生育診断の機能をドローン24に持たせることも可能である。第2・第3実施形態も同様である。
 第1実施形態では、作物502として水稲を用いた。しかしながら、例えば、圃場500の気温Tfa(又は日射量X)を含む気象状態と圃場500の施肥状態の少なくともいずれかに基づいて圃場500の水状態を制御する観点からすれば、これに限らない。例えば、作物502は、小麦、大麦、大豆等であってもよい。第2・第3実施形態も同様である。
 第1実施形態では、水源504から圃場500に水を供給する給水装置として、上流側水門32を用いた(図1)。しかしながら、例えば、水源504から圃場500に水を供給する観点からすれば、これに限らない。例えば、水門32に加えて又はこれに替えて、バルブ又はポンプを用いてもよい。また、例えば、圃場500の水深Hを制御する観点からすれば、下流側水門34等の排水装置が存在すれば、上流側の給水装置は省略することも可能である。第2・第3実施形態も同様である。
 第1実施形態では、圃場500から水を排出する排水装置として、下流側水門34を用いた(図1)。しかしながら、例えば、圃場500から水を排出する観点からすれば、これに限らない。例えば、水門34に加えて又はこれに替えて、バルブ又はポンプを用いてもよい。また、例えば、圃場500の水深Hを制御する観点からすれば、上流側水門32等の給水装置が存在すれば、下流側の排水装置は省略することも可能である。第2・第3実施形態も同様である。
<D-2.制御>
 第1・第3実施形態では、圃場500の気温Tfaを用いた制御を行った(図4及び図7)。しかしながら、例えば、気象状態に基づいて圃場500の水状態を制御する観点からすれば、これに限らない。例えば、圃場500の気温Tfaの代わりに又はこれに加えて圃場500の日射量X(目標値、推定値及び検出値)を用いることも可能である。
 第1・第3実施形態では、圃場500の気温Tfaを用いて目標水温Tfwtarを算出したのに対し(図4のS14、図7のS34)、第2実施形態では現在の施肥状態等を用いて目標水温Tfwtarを算出した(図5のS24、S25)。両方を組み合わせて、圃場500の気温Tfa及び現在の施肥状態等を用いて目標水温Tfwtarを算出してもよい。
 第1~第3実施形態では、水管理制御は生育診断モデルの利用を前提としていた(図4、図5及び図7)。しかしながら、例えば、圃場500の気象状態と施肥状態の少なくともいずれかに基づいて圃場500の水状態を制御する観点からすれば、これに限らない。例えば、生育診断モデルを用いずに、気象状態又は施肥状態を入力として、これらの状態に対応する出力を記憶したテーブルを設けておくことで、水管理を行うことも可能である。
<D-3.その他>
 第1~第3実施形態では、図4、図5及び図7に示すフローを用いた。しかしながら、例えば、本発明の効果を得られる場合、フローの内容(各ステップの順番)は、これに限らない。例えば、図4のステップS11とS12の順番を入れ替えることが可能である。
10…作物育成システム(水管理システム)
22…生育診断サーバ(生育診断装置、水管理サーバ)
32…上流側水門(被制御対象、給水装置)
34…下流側水門(被制御対象、排水装置)
70…入出力部(状態入力部)
100…水管理部(水管理装置)
500…圃場               502…作物
504…水源               H…圃場の水深
Hd…圃場の昼間水深
Hdtar…圃場の目標昼間水深
Tfa…圃場の気温            Tfwd…圃場の検出水温
Tfwde…圃場の推定昼間気温      Tfwe…圃場の推定水温
Tfwne…圃場の推定夜間気温
Tfwtar…圃場の目標水温
V…生育状態値              Ve…推定生育状態値
Vtar…目標生育状態値         X…日射量

Claims (17)

  1.  圃場の水状態を変化させる被制御対象の動作を介して前記圃場の水管理を行う水管理システムであって、
     前記圃場の気温又は日射量を含む気象状態と前記圃場の施肥状態の少なくともいずれかの入力を受け付ける状態入力部と、
     前記状態入力部で受け付けた前記気象状態と前記施肥状態の少なくともいずれかに基づいて、前記被制御対象の目標動作を決定し、前記目標動作に基づく前記被制御対象の動作をユーザに要求して又は前記目標動作に基づいて前記被制御対象を動作させて、前記圃場の水状態を管理する水管理装置と
     を備えることを特徴とする水管理システム。
  2.  請求項1に記載の水管理システムにおいて、
     前記被制御対象は、水源から前記圃場に水を供給する給水装置を含み、
     前記水管理装置は、
      前記気象状態と前記施肥状態の少なくともいずれかに基づいて、前記給水装置による給水タイミング及び給水量並びに前記圃場の水深の少なくとも1つを目標値として生成し、
      前記目標値に基づく前記給水装置の動作を前記ユーザに要求して又は前記目標値に基づいて前記給水装置を動作させて前記圃場の水状態を制御する
     ことを特徴とする水管理システム。
  3.  請求項1又は2に記載の水管理システムにおいて、
     前記被制御対象は、前記圃場から水を排出する排水装置を含み、
     前記水管理装置は、
      前記気象状態と前記施肥状態の少なくともいずれかに基づいて、前記排水装置による排水タイミング及び排水量並びに前記圃場の水深の少なくとも1つを目標値として生成し、
      前記目標値に基づく前記排水装置の動作を前記ユーザに要求して又は前記目標値に基づいて前記排水装置を動作させて前記圃場の水状態を制御する
     ことを特徴とする水管理システム。
  4.  請求項1~3のいずれか1項に記載の水管理システムにおいて、
     前記水管理システムは、前記気象状態を用いる生育診断モデルを利用して前記圃場に生育している作物の生育状態を診断して前記生育状態に応じた作業指示を出力する生育診断装置を備え、
     前記水管理装置は、前記生育診断装置の一部を構成し、
     前記生育診断モデルは、前記作物の生育状態値の目標値である目標生育状態値と、前記生育状態値の推定値である推定生育状態値とを生成するものであり、
     前記水管理装置は、前記推定生育状態値が前記目標生育状態値に近付くように、前記被制御対象の前記目標動作を決定する
     ことを特徴とする水管理システム。
  5.  請求項4に記載の水管理システムにおいて、
     前記作物は水稲であり、
     前記生育状態値は、前記水稲の収量、籾数、赤色光吸収率、有効受光面積率、籾内の蓄積デンプン量及び籾内のタンパク質含有率の少なくともいずれかを含む
     ことを特徴とする水管理システム。
  6.  請求項4又は5に記載の水管理システムにおいて、
     前記生育状態に応じた作業指示は、肥料の種類、散布タイミング及び量に関する内容を含み、
     前記水管理装置は、前記肥料の種類、散布タイミング及び量に基づいて、前記被制御対象の前記目標動作を決定する
     ことを特徴とする水管理システム。
  7.  請求項6に記載の水管理システムにおいて、
     前記肥料の種類は、施肥すべき元素、化学肥料、籾殻及び有機肥料の少なくとも1つを含む
     ことを特徴とする水管理システム。
  8.  請求項4~7のいずれか1項に記載の水管理システムにおいて、
     前記生育状態に応じた作業指示は、前記圃場への給水タイミング又は前記圃場からの排水タイミングに関する内容を含む
     ことを特徴とする水管理システム。
  9.  請求項8に記載の水管理システムにおいて、
     前記生育状態に応じた作業指示は、現時点における前記圃場の検出水温又は推定水温と目標水温の大小関係に応じた、前記圃場への給水タイミング又は前記圃場からの排水タイミングの作業指示を含む
     ことを特徴とする水管理システム。
  10.  請求項8に記載の水管理システムにおいて、
     前記生育状態に応じた作業指示は、将来における前記圃場の推定水温と目標水温の大小関係に応じた、前記圃場への給水タイミング又は前記圃場からの排水タイミングの作業指示を含む
     ことを特徴とする水管理システム。
  11.  請求項4~10のいずれか1項に記載の水管理システムにおいて、
     前記生育状態に応じた作業指示は、前記圃場への給水量又は前記圃場からの排水量を含む
     ことを特徴とする水管理システム。
  12.  請求項11に記載の水管理システムにおいて、
     将来における推定夜間水温が目標夜間水温よりも高い場合、その前の前記圃場の昼間水深を目標昼間水深よりも浅くするように前記給水量又は前記排水量を設定する
     ことを特徴とする水管理システム。
  13.  請求項11に記載の水管理システムにおいて、
     将来における推定夜間水温が目標夜間水温よりも低い場合、その前の前記圃場の昼間水深を目標昼間水深よりも深くするように前記給水量又は前記排水量を設定する
     ことを特徴とする水管理システム。
  14.  請求項11に記載の水管理システムにおいて、
     将来における推定昼間水温が目標昼間水温よりも低い場合、その前の前記圃場の昼間水深を目標昼間水深よりも浅くするように前記給水量又は前記排水量を設定する
     ことを特徴とする水管理システム。
  15.  請求項11に記載の水管理システムにおいて、
     将来における推定昼間水温が目標昼間水温よりも高い場合、その前の前記圃場の昼間水深を目標昼間水深よりも深くするように前記給水量又は前記排水量を設定する
     ことを特徴とする水管理システム。
  16.  圃場の水状態を変化させる被制御対象の動作を介して前記圃場の水管理を行う水管理サーバであって、
     前記圃場の気温又は日射量を含む気象状態と前記圃場の施肥状態の少なくともいずれかの入力を受け付ける状態入力部と、
     前記気象状態と前記施肥状態の少なくともいずれかに基づいて、前記被制御対象の目標動作を決定し、前記目標動作に基づく前記被制御対象の動作をユーザに要求して又は前記目標動作に基づいて前記被制御対象を動作させて、前記圃場の水状態を管理する水管理装置と
     を備えることを特徴とする水管理サーバ。
  17.  圃場の水状態を変化させる被制御対象の動作を介して前記圃場の水管理を行う水管理方法であって、
     水管理装置において、前記圃場の気温又は日射量を含む気象状態と前記圃場の施肥状態の少なくともいずれかに基づいて、前記被制御対象の目標動作を決定する目標動作決定ステップと、
     前記水管理装置において、前記目標動作に基づく前記被制御対象の動作をユーザに要求して又は前記目標動作に基づいて前記被制御対象を動作させて、前記圃場の水状態を管理する水管理ステップと
     を備えることを特徴とする水管理方法。
PCT/JP2020/004642 2020-02-06 2020-02-06 水管理システム、水管理サーバ及び水管理方法 WO2021157033A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021575533A JP7412021B2 (ja) 2020-02-06 2020-02-06 水管理システム、水管理サーバ及び水管理方法
PCT/JP2020/004642 WO2021157033A1 (ja) 2020-02-06 2020-02-06 水管理システム、水管理サーバ及び水管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/004642 WO2021157033A1 (ja) 2020-02-06 2020-02-06 水管理システム、水管理サーバ及び水管理方法

Publications (1)

Publication Number Publication Date
WO2021157033A1 true WO2021157033A1 (ja) 2021-08-12

Family

ID=77200559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004642 WO2021157033A1 (ja) 2020-02-06 2020-02-06 水管理システム、水管理サーバ及び水管理方法

Country Status (2)

Country Link
JP (1) JP7412021B2 (ja)
WO (1) WO2021157033A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006098B2 (ja) * 1998-06-03 2007-11-14 株式会社日立製作所 水田群の水管理システム,水田群の水管理方法,および,水田群の水管理を行うためのプログラムを記録したコンピュータ読み取り可能な媒体
CN105359939A (zh) * 2015-12-09 2016-03-02 江苏强农农业技术服务有限公司 一种稻田水量自动检测灌溉记录系统
JP2017131130A (ja) * 2016-01-26 2017-08-03 井関農機株式会社 農作業支援システム
JP2018161087A (ja) * 2017-03-24 2018-10-18 独立行政法人国立高等専門学校機構 プログラム及び潅漑制御装置
JP6555781B2 (ja) * 2015-05-29 2019-08-07 株式会社笑農和 水位管理システム
JP2019140954A (ja) * 2018-02-19 2019-08-29 国立研究開発法人農業・食品産業技術総合研究機構 配水制御システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006098B2 (ja) * 1998-06-03 2007-11-14 株式会社日立製作所 水田群の水管理システム,水田群の水管理方法,および,水田群の水管理を行うためのプログラムを記録したコンピュータ読み取り可能な媒体
JP6555781B2 (ja) * 2015-05-29 2019-08-07 株式会社笑農和 水位管理システム
CN105359939A (zh) * 2015-12-09 2016-03-02 江苏强农农业技术服务有限公司 一种稻田水量自动检测灌溉记录系统
JP2017131130A (ja) * 2016-01-26 2017-08-03 井関農機株式会社 農作業支援システム
JP2018161087A (ja) * 2017-03-24 2018-10-18 独立行政法人国立高等専門学校機構 プログラム及び潅漑制御装置
JP2019140954A (ja) * 2018-02-19 2019-08-29 国立研究開発法人農業・食品産業技術総合研究機構 配水制御システム

Also Published As

Publication number Publication date
JPWO2021157033A1 (ja) 2021-08-12
JP7412021B2 (ja) 2024-01-12

Similar Documents

Publication Publication Date Title
JP6431395B2 (ja) 空中散布装置
US20220132723A1 (en) Agricultural characteristic confidence and control
EP3888458A1 (en) Targeted spray application to protect crop
RU2644068C2 (ru) Система управления дождеванием
US20220125032A1 (en) System confidence display and control for mobile machines
EP4186344A1 (en) Dynamic tank management based on previous environment and machine measurements
US20240122103A1 (en) Predictive speed map generation and control system
JP2020146030A (ja) 農業システム
JP2021114271A (ja) スマート農業支援システム及びスマート農業支援方法
US11845449B2 (en) Map generation and control system
US11849671B2 (en) Crop state map generation and control system
WO2021157033A1 (ja) 水管理システム、水管理サーバ及び水管理方法
US11727680B2 (en) Predictive map generation based on seeding characteristics and control
WO2021176738A1 (ja) 営農システム、営農サーバ及び営農方法
Phillips Precision agriculture: supporting global food security.
JP7175537B2 (ja) 生育診断システム、生育診断サーバ及び生育診断方法
US20220136849A1 (en) Farming vehicle field boundary identification
US20230292737A1 (en) A method of selectively treating vegetation in a field
US20220132722A1 (en) Topographic confidence and control
US11672203B2 (en) Predictive map generation and control
WO2021166008A1 (ja) ドローン及びドローンの制御方法
WO2021245890A1 (ja) 土壌状態推定装置、圃場管理装置、土壌状態推定方法及び土壌状態推定プログラム
Jalajamony et al. Low-cost thermal infrared aided drone for dry patch detection in an intelligent irrigation system
EP4238416A1 (en) Dynamically adjusting treatment buffers for plant treatments
EP4206848A1 (en) Virtual safety bubbles for safe navigation of farming machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20917762

Country of ref document: EP

Kind code of ref document: A1