WO2021156990A1 - 指向方向制御装置、光通信ターミナル、光通信システム、及び指向方向制御方法 - Google Patents
指向方向制御装置、光通信ターミナル、光通信システム、及び指向方向制御方法 Download PDFInfo
- Publication number
- WO2021156990A1 WO2021156990A1 PCT/JP2020/004460 JP2020004460W WO2021156990A1 WO 2021156990 A1 WO2021156990 A1 WO 2021156990A1 JP 2020004460 W JP2020004460 W JP 2020004460W WO 2021156990 A1 WO2021156990 A1 WO 2021156990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical communication
- communication terminal
- directional
- unit
- error
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 611
- 238000004891 communication Methods 0.000 title claims abstract description 428
- 238000000034 method Methods 0.000 title claims description 42
- 230000005540 biological transmission Effects 0.000 claims description 156
- 238000001514 detection method Methods 0.000 claims description 83
- 230000007246 mechanism Effects 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 230000006870 function Effects 0.000 description 37
- 238000012545 processing Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 19
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000012546 transfer Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 102100029860 Suppressor of tumorigenicity 20 protein Human genes 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/118—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18515—Transmission equipment in satellites or space-based relays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18521—Systems of inter linked satellites, i.e. inter satellite service
Definitions
- the present disclosure relates to a directional control device that controls a directional direction for transmitting and receiving light or radio waves.
- the disturbance of the satellite itself becomes a problem due to the high directivity of the light or radio waves transmitted and received by the transmitting and receiving device installed on the satellite.
- the direction in which the transmitter / receiver transmits / receives light or radio waves shifts.
- the direction of direction may shift due to other causes. Then, if the direction of the transmitting / receiving device is deviated, the communication quality may deteriorate.
- the transmitter / receiver installed on the satellite corrects the deviation of the directional direction based on the light such as the beacon light received from the transmitter / receiver installed on the satellite other than the satellite to improve the accuracy of the directional direction. It has the ability to maintain (see, for example, Non-Patent Document 1).
- the satellite when a satellite relays a signal, the satellite is equipped with a plurality of transmitters / receivers in order to communicate with a plurality of other satellites or to observe the earth while communicating with another satellite.
- NS a plurality of transmitters / receivers
- it is necessary to improve the performance of maintaining the accuracy of the above-mentioned direction direction for any of the transmitting / receiving devices. Therefore, there is a problem that it is necessary to provide equipment such as a high-performance sensor for any of the transmission / reception devices.
- the present disclosure has been made in order to solve the above-mentioned problems, and for at least one or more transmission / reception devices among a plurality of transmission / reception devices installed on a satellite, a high-performance sensor or the like is used.
- the purpose is to provide a technique for maintaining accuracy in the directional direction without installing equipment.
- the directional control device is a satellite in which a first transmitting / receiving device for transmitting / receiving light and a second transmitting / receiving device for transmitting / receiving light or radio waves are installed, and the second transmitting / receiving device is optical.
- it is a directional control device that controls the directional direction that transmits and receives radio waves, and is a directional control information acquisition unit that acquires directional control information for controlling the directional direction in which the first transmitting and receiving device transmits and receives light.
- a directional control unit that controls the directional direction in which the second transmitting / receiving device transmits / receives light or radio waves is provided based on the directional control information acquired by the directional control information acquisition unit.
- FIG. 5A is a block diagram showing a hardware configuration that realizes the function of the directional control device.
- FIG. 5B is a block diagram showing a hardware configuration for executing software that realizes the functions of the directional control device.
- FIG. It is a schematic diagram for demonstrating a specific example of the error value estimation method by the directional direction control apparatus which concerns on Embodiment 1.
- FIG. It is a block diagram which shows the specific example of the directing direction control method which concerns on Embodiment 1.
- FIG. It is a schematic diagram which shows the state that the optical communication system which concerns on 1st modification of Embodiment 1 performs optical communication and observation.
- FIG. It is a block diagram which shows the structure of the optical communication system which concerns on Embodiment 2.
- FIG. It is a block diagram which shows the structure of the optical communication system which concerns on Embodiment 2.
- FIG. 1 is a schematic view showing how the optical communication system 100 according to the first embodiment performs optical communication.
- the optical communication system 100 includes a first transmission / reception device for transmitting / receiving light and a second transmission / reception device for transmitting / receiving light or radio waves.
- the optical communication system 100 includes a first optical communication terminal 101 and a second optical communication terminal 102.
- the optical communication system 100 includes two transmission / reception devices, a first optical communication terminal 101 as a first transmission / reception device and a second optical communication terminal 102 as a second transmission / reception device.
- the configuration will be described, the number of transmission / reception devices included in the optical communication system 100 is not particularly limited.
- the first optical communication terminal 101 and the second optical communication terminal 102 are installed on the LEO satellite A, respectively.
- the first optical communication terminal 101 performs optical communication with the third optical communication terminal D installed on the GEO satellite C via the first optical link B.
- the second optical communication terminal 102 performs optical communication with the fourth optical communication terminal G installed on the LEO satellite F via the second optical link E.
- a satellite means an artificial satellite.
- optical communication means communicating by transmitting and receiving an optical signal to which data is added.
- the LEO satellite LEO Low Earth Orbit
- the GEO satellite GEO Global Stationary Earth Orbit
- the GEO satellite C is a satellite with low disturbance and stability as compared with the LEO satellite A and the LEO satellite F, and the LEO satellite A and the LEO satellite F are disturbed as compared with the GEO satellite C. It shall be a large satellite.
- the role of the GEO satellite C is to provide a line that is not easily affected by disturbance. Therefore, instead of the GEO satellite C, the above-mentioned third optical communication terminal D may be provided in a low-disturbed LEO, MEO (medium earth orbit) or a ground station. In that case, the first optical communication terminal 101 performs optical communication with the third optical communication terminal D installed in the LEO, MEO, or the ground station via the first optical link B.
- the configuration of the first optical communication terminal 101 is in a stable place (for example, a planet) with less disturbance than the LEO satellite A, instead of the configuration of performing optical communication with the third optical communication terminal D.
- the configuration may be such that light is transmitted to an installed prism or mirror and the reflected light is received. In that case, the term "optical communication" also used in the following description is replaced with optical transmission / reception.
- FIG. 2 is a block diagram showing the configuration of the optical communication system 100 according to the first embodiment. As shown in FIG. 2, the optical communication system 100 includes a first optical communication terminal 101 and a second optical communication terminal 102.
- the first optical communication terminal 101 includes a transmission / reception unit 1, a directional direction control device 2, and a capture / tracking mechanism unit 3.
- the directional direction control device 2 includes a reception direction information acquisition unit 4, an error detection unit 5, and a capture / tracking control unit 6.
- the transmission / reception unit 1 detects the reception direction information regarding the direction in which the light is received via the first optical link B by receiving the light via the first optical link B.
- the transmission / reception unit 1 outputs the detected reception direction information to the direction direction control device 2. More specifically, the reception direction information detected by the transmission / reception unit 1 is, for example, the direction in which the light transmitted by the third optical communication terminal D of the GEO satellite C described above is incident on the transmission / reception unit 1.
- the reception direction information may include information regarding a position where the transmission / reception unit 1 receives light via the first optical link B. In that case, the reception direction information is, for example, the position where the light transmitted by the third optical communication terminal D of the GEO satellite C described above is incident on the transmission / reception unit 1.
- the reception direction information acquisition unit 4 acquires the reception direction information detected by the transmission / reception unit 1.
- the reception direction information acquisition unit 4 outputs the acquired reception direction information to the error detection unit 5.
- the error detection unit 5 refers to the reception direction information acquired by the reception direction information acquisition unit 4, and has a directional angle at which the first optical communication terminal 101 is performing optical communication via the first optical link B. Detect an error of 1. More specifically, the error detection unit 5 refers to the reception direction information acquired by the reception direction information acquisition unit 4, and the transmission / reception unit 1 of the first optical communication terminal 101 receives light via the first optical link B. The first error of the directivity angle during communication is detected.
- the error detection unit 5 outputs the detected first error to the capture / tracking control unit 6 and the directional direction control device 11 of the second optical communication terminal 102, which will be described later.
- the error detected by the error detection unit 5 is, for example, the directional angle at which the transmission / reception unit 1 is performing optical communication via the first optical link B and the target used for control by the capture / tracking control unit 6 described later. It is the difference from the directivity angle of.
- the reception direction information includes information regarding the position where the transmission / reception unit 1 receives light via the first optical link B
- the error detection unit 5 receives the reception direction acquired by the reception direction information acquisition unit 4. With reference to the information, an error in the position where the transmission / reception unit 1 is performing optical communication via the first optical link B may be further detected. In that case, the error of the position detected by the error detection unit 5 is controlled by, for example, the position where the transmission / reception unit 1 is performing optical communication via the first optical link B and the capture tracking control unit 6 described later. It is the difference from the target position.
- the capture tracking control unit 6 controls the direction in which the first optical communication terminal 101 performs optical communication via the first optical link B based on the first error detected by the error detection unit 5. , Control the capture tracking to maintain the first optical link B. More specifically, in the first embodiment, in the capture tracking control unit 6, the transmission / reception unit 1 of the first optical communication terminal 101 has a first optical link based on the first error detected by the error detection unit 5. By controlling the direction in which optical communication is performed via B, the capture tracking for maintaining the first optical link B is controlled. For example, the capture / tracking control unit 6 adjusts the control amount by the amount of the first error when controlling the directional angle of the transmission / reception unit 1 to the target directional angle.
- the capture tracking control unit 6 causes the transmission / reception unit 1 to perform the first optical link B based on the position error detected by the error detection unit 5.
- the capture tracking for maintaining the first optical link B may be controlled.
- the capture tracking mechanism unit 3 performs capture tracking for maintaining the first optical link B by changing the direction direction of the transmission / reception unit 1 based on the control by the capture tracking control unit 6.
- the capture / tracking control unit 6 controls the position of the transmission / reception unit 1 based on the position error as described above
- the capture / tracking mechanism unit 3 controls the transmission / reception unit 1 based on the control by the capture / tracking control unit 6.
- capture tracking for maintaining the first optical link B may be performed.
- An example of the capture / tracking mechanism unit 3 is a piezo actuator or the like.
- the second optical communication terminal 102 includes a transmission / reception unit 10, a directional control device 11, and a capture / tracking mechanism unit 12.
- the directional control device 11 includes a directional control information acquisition unit 13, an error value estimation calculation unit 14, a reception direction information acquisition unit 15, an error detection unit 16, and a capture / tracking control unit 17.
- Rough capture means that the second optical communication terminal 102 is capable of tracking with the above-mentioned fourth optical communication terminal G using beacon light or the like, or the second optical communication terminal 102 is the transmission / reception unit 10. It refers to a state in which the tracking sensor can capture the light, but the communication sensor of the transmission / reception unit 10 does not always capture the light.
- the reason why the second optical communication terminal 102 cannot capture precisely is that, for example, due to the satellite disturbance of the LEO satellite A, the resolution of the tracking sensor of the transmission / reception unit 10 is insufficient, or the feedback is received due to the control delay. It is conceivable that the capture / tracking mechanism unit 12 has oscillated.
- the transmission / reception unit 10 detects the reception direction information regarding the direction in which the light is received via the second optical link E by receiving the light via the second optical link E.
- the transmission / reception unit 10 outputs the received reception direction information to the reception direction information acquisition unit 15. More specifically, the reception direction information is, for example, the direction in which the light transmitted by the fourth optical communication terminal G of the above-mentioned LEO satellite F is incident on the transmission / reception unit 10.
- the reception direction information may include information regarding a position where the transmission / reception unit 10 receives light via the second optical link E. In that case, the reception direction information is, for example, the position where the light transmitted by the fourth optical communication terminal G of the above-mentioned LEO satellite F is incident on the transmission / reception unit 10.
- the directional direction control information acquisition unit 13 acquires directional direction control information for controlling the directional direction in which the first optical communication terminal 101 transmits and receives light. More specifically, in the first embodiment, the directional control information acquisition unit 13 has a directional angle at which the transmission / reception unit 1 of the first optical communication terminal 101 is performing optical communication via the first optical link B.
- the directional direction control information including the first error is acquired from the error detection unit 5 of the directional direction control device 2 of the first optical communication terminal 101.
- the directional direction control information acquisition unit 13 outputs the acquired directional direction control information to the error value estimation calculation unit 14.
- the directional control information acquired by the directional control information acquisition unit 13 further includes an error in the position where the transmission / reception unit 1 of the first optical communication terminal 101 is performing optical communication via the first optical link B. It may be included. Further, the directional control information acquisition unit 13 is at least one or more optical communication terminals installed on the LEO satellite A, which are different from the first optical communication terminal 101 and the second optical communication terminal 102 (not shown). ) May further acquire at least one or more direction control information.
- the error value estimation calculation unit 14 directs the second optical communication terminal 102 to perform optical communication via the second optical link E based on the first error acquired by the direction direction control information acquisition unit 13. Estimate the second error of the angle. More specifically, in the error value estimation calculation unit 14, the transmission / reception unit 10 of the second optical communication terminal 102 sets the second optical link E based on the first error acquired by the direction control information acquisition unit 13. The second error of the directivity angle during optical communication is estimated. At that time, the error value estimation calculation unit 14 converts the error value estimation calculation unit 14 into a disturbance value indicating the degree of disturbance of the LEO satellite A based on the first error acquired by the direction direction control information acquisition unit 13, and based on the converted disturbance value. Therefore, the second error of the directivity angle at which the transmission / reception unit 10 of the second optical communication terminal 102 is performing optical communication via the second optical link E may be estimated.
- the error value estimation calculation unit 14 determines the position acquired by the directional control information acquisition unit 13. Based on the error, the error of the position where the transmission / reception unit 10 of the second optical communication terminal 102 is performing optical communication via the second optical link E may be estimated. Further, when the directional control information acquisition unit 13 acquires at least one directional control information from another at least one optical communication terminal, the error value estimation calculation unit 14 receives the directional control information acquisition unit 13. The second optical communication terminal 102 via the second optical link E is based on the error of the direction angle of the other at least one optical communication terminal included in the at least one direction control information acquired by the second optical communication terminal 102. The second error of the directivity angle during optical communication may be further estimated.
- the reception direction information acquisition unit 15 acquires reception direction information regarding the direction in which the second optical communication terminal 102 receives light via the second optical link E. More specifically, in the first embodiment, the reception direction information acquisition unit 15 obtains reception direction information regarding the direction in which the transmission / reception unit 10 of the second optical communication terminal 102 receives light via the second optical link E. get. The reception direction information acquisition unit 15 outputs the acquired reception direction information to the error detection unit 16.
- the error detection unit 16 refers to the reception direction information acquired by the reception direction information acquisition unit 15, and refers to the directional angle at which the second optical communication terminal 102 performs optical communication via the second optical link E. Detect an error of 3. More specifically, in the first embodiment, the error detection unit 16 refers to the reception direction information acquired by the reception direction information acquisition unit 15, and the transmission / reception unit 10 of the second optical communication terminal 102 receives the second light. A third error in the directional angle during optical communication via the link E is detected. The error detection unit 16 outputs the detected third error to the error value estimation calculation unit 14. The error value estimation calculation unit 14 may output the estimated second error and the acquired third error to the capture / tracking control unit 17 as they are, or based on the second error and the third error. , An error having a higher accuracy than these errors may be calculated, and the error may be output to the capture / tracking control unit 17.
- the error detected by the error detection unit 16 is, for example, the directional angle at which the transmission / reception unit 10 is performing optical communication via the second optical link E and the target used for control by the capture / tracking control unit 17, which will be described later. It is the difference from the directivity angle of.
- the reception direction information includes information regarding the position where the transmission / reception unit 10 receives light via the second optical link E
- the error detection unit 16 receives the reception direction acquired by the reception direction information acquisition unit 15. With reference to the information, an error in the position where the transmission / reception unit 10 is performing optical communication via the second optical link E may be further detected. In that case, the error of the position detected by the error detection unit 16 is controlled by, for example, the position where the transmission / reception unit 10 is performing optical communication via the second optical link E and the capture tracking control unit 17 described later. It is the difference from the target position.
- the capture and tracking control unit 17 determines the direction in which the second optical communication terminal 102 as the second transmission / reception device transmits / receives light or radio waves based on the direction control information acquired by the direction control information acquisition unit 13. It is a directional control unit that controls. More specifically, in the first embodiment, in the capture tracking control unit 17, the transmission / reception unit 10 of the second optical communication terminal 102 is second based on the first error acquired by the directional control information acquisition unit 13. By controlling the direction in which optical communication is performed via the optical link E of the above, the capture tracking for maintaining the second optical link E is controlled.
- the transmission / reception unit 10 of the second optical communication terminal 102 is second based on the second error estimated by the error value estimation calculation unit 14 based on the first error.
- the capture tracking for maintaining the second optical link E is controlled.
- the capture / tracking control unit 17 adjusts the control amount by the amount of the second error when controlling the directional angle of the transmission / reception unit 10 to the target directional angle.
- the transmission / reception unit 10 of the second optical communication terminal 102 uses light via the second optical link E based on the third error detected by the error detection unit 16.
- the capture tracking for maintaining the second optical link E is controlled.
- the capture / tracking control unit 17 uses, for example, the second error as the feedforward amount and the third error as the feedback amount, so that the transmission / reception unit 10 uses the second optical link E for optical communication. You may control the direction of direction to perform. As a result, the capture and tracking ability for maintaining the second optical link E by the second optical communication terminal 102 is improved.
- the capture tracking control unit 17 causes the transmission / reception unit 10 to perform the second optical link E based on the position error detected by the error detection unit 16.
- the capture tracking for maintaining the second optical link E may be controlled.
- the error value estimation calculation unit 14 further estimates the second error based on the error of the directivity angle of at least one other optical communication terminal
- the capture tracking control unit 17 may perform the second error.
- the transmission / reception unit 10 of the second optical communication terminal 102 controls the direction in which optical communication is performed via the second optical link E, thereby maintaining the second optical link E. Capture tracking may be controlled.
- the capture / tracking mechanism unit 12 performs capture / tracking for maintaining the second optical link E by changing the direction of the transmission / reception unit 10 based on the control by the capture / tracking control unit 17.
- the capture / tracking control unit 17 controls the position of the transmission / reception unit 10 based on the position error as described above
- the capture / tracking mechanism unit 12 controls the transmission / reception unit 10 based on the control by the capture / tracking control unit 17.
- capture tracking for maintaining the second optical link E may be performed.
- An example of the capture / tracking mechanism unit 12 is a piezo actuator or the like.
- FIG. 3 is a flowchart showing a directional direction control method by the directional direction control device 2.
- the transmission / reception unit 1 receives the light via the first optical link B, thereby receiving the light via the first optical link B. It is assumed that the reception direction information regarding is detected.
- the reception direction information acquisition unit 4 acquires the reception direction information detected by the transmission / reception unit 1 (step ST1).
- the reception direction information acquisition unit 4 outputs the acquired reception direction information to the error detection unit 5.
- the error detection unit 5 refers to the reception direction information acquired by the reception direction information acquisition unit 4, and refers to the first direction angle at which the transmission / reception unit 1 performs optical communication via the first optical link B. Error is detected (step ST2).
- the error detection unit 5 outputs the detected first error to the capture and tracking control unit 6 and the directional control information acquisition unit 13 of the directional control device 11 of the second optical communication terminal 102.
- the capture / tracking control unit 6 controls the direction in which the transmission / reception unit 1 performs optical communication via the first optical link B based on the first error detected by the error detection unit 5.
- the capture tracking for maintaining the first optical link B is controlled (step ST3).
- the capture tracking mechanism unit 3 performs capture tracking for maintaining the first optical link B by changing the direction direction of the transmission / reception unit 1 based on the control by the capture tracking control unit 6 in step ST3.
- the transmission / reception unit 1 whose direction has been changed by the capture / tracking mechanism unit 3 again receives the light via the first optical link B, thereby receiving the light in the direction of receiving the light via the first optical link B.
- Detect directional information The directional control device 2 re-executes steps ST1 to ST3 based on the reception direction information detected again by the transmission / reception unit 1.
- the first optical communication terminal 101 performs capture tracking for maintaining the first optical link B.
- FIG. 4 is a flowchart showing a directional direction control method by the directional direction control device 11.
- the transmission / reception unit 10 receives the light via the second optical link E, thereby receiving the light via the second optical link E. It is assumed that the reception direction information regarding is detected.
- the directivity direction control information acquisition unit 13 has a first error in the direction angle at which the transmission / reception unit 1 of the first optical communication terminal 101 performs optical communication via the first optical link B.
- the directional control information including the above is acquired from the error detection unit 5 of the directional control device 2 of the first optical communication terminal 101 (step ST10).
- the directional direction control information acquisition unit 13 outputs the acquired directional direction control information to the error value estimation calculation unit 14.
- the error value estimation calculation unit 14 has a directivity angle at which the transmission / reception unit 10 performs optical communication via the second optical link E based on the first error acquired by the direction control information acquisition unit 13.
- the second error of is estimated (step ST11).
- the reception direction information acquisition unit 15 acquires reception direction information regarding the direction in which the transmission / reception unit 10 receives light via the second optical link E (step ST12).
- the reception direction information acquisition unit 15 outputs the acquired reception direction information to the error detection unit 16.
- the error detection unit 16 refers to the reception direction information acquired by the reception direction information acquisition unit 15, and the error detection unit 16 refers to the third direction angle at which the transmission / reception unit 10 is performing optical communication via the second optical link E. Error is detected (step ST13).
- the error detection unit 16 outputs the detected third error to the error value estimation calculation unit 14.
- the error value estimation calculation unit 14 outputs the second error estimated in step ST11 and the acquired third error to the capture / tracking control unit 17.
- the capture tracking control unit 17 is based on the second error estimated by the error value estimation calculation unit 14 based on the first error in step ST11 and the third error detected by the error detection unit 16 in step ST13. By controlling the direction in which the transmission / reception unit 10 performs optical communication via the second optical link E, the capture tracking for maintaining the second optical link E is controlled (step ST14).
- the capture / tracking mechanism unit 12 changes the direction of the transmission / reception unit 10 based on the control by the capture / tracking control unit 17 in step ST14 to perform capture / tracking for maintaining the second optical link E.
- the transmission / reception unit 10 whose direction has been changed by the capture / tracking mechanism unit 12 again receives the light via the second optical link E, thereby receiving the light in the direction of receiving the light via the second optical link E. Detect direction information.
- the directional control device 11 executes step ST14 again from step ST10 described above.
- the second optical communication terminal 102 repeats the above operations to perform capture tracking for maintaining the second optical link E.
- the directional direction control device 2 includes a processing circuit for executing the processing from step ST1 to step ST3 shown in FIG.
- This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
- CPU Central Processing Unit
- the functions of the directional control information acquisition unit 13, the error value estimation calculation unit 14, the reception direction information acquisition unit 15, the error detection unit 16, and the capture tracking control unit 17 are performed by a processing circuit. It will be realized. That is, the directional direction control device 11 includes a processing circuit for executing the processing from step ST10 to step ST14 shown in FIG. This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
- CPU Central Processing Unit
- FIG. 5A is a block diagram showing a hardware configuration that realizes the functions of the directional control device 2 or the directional control device 11.
- FIG. 5B is a block diagram showing a hardware configuration for executing software that realizes the functions of the directional control device 2 or the directional control device 11.
- the transmission / reception device 21 shown in FIGS. 5A and 5B executes the function of the transmission / reception unit 1 described above or the function of the transmission / reception unit 10 described above.
- the capture and tracking mechanism 22 shown in FIGS. 5A and 5B respectively executes the function of the above-mentioned capture and tracking mechanism unit 3 or the function of the above-mentioned capture and tracking mechanism unit 12.
- the processing circuit 20 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated). Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
- ASIC Application Specific Integrated
- FPGA Field-Programmable Gate Array
- the functions of the reception direction information acquisition unit 4, the error detection unit 5, and the capture and tracking control unit 6 in the directional control device 2 may be realized by separate processing circuits, or these functions may be combined into one process. It may be realized by a circuit. Further, in the directional control device 11, the functions of the directional control information acquisition unit 13, the error value estimation calculation unit 14, the reception direction information acquisition unit 15, the error detection unit 16, and the capture tracking control unit 17 are processed separately. Or these functions may be collectively realized by one processing circuit.
- the functions of the reception direction information acquisition unit 4, the error detection unit 5, and the capture and tracking control unit 6 in the direction control device 2 are software, firmware, or software. It is realized by combining with firmware.
- the processing circuit is the processor 23 shown in FIG. 5B, the directional control information acquisition unit 13, the error value estimation calculation unit 14, the reception direction information acquisition unit 15, the error detection unit 16 and the directional control device 11
- Each function of the capture / tracking control unit 17 is realized by software, firmware, or a combination of software and firmware.
- the software or firmware is described as a program and stored in the memory 24.
- the processor 23 realizes the respective functions of the reception direction information acquisition unit 4, the error detection unit 5, and the capture and tracking control unit 6 in the direction control device 2 by reading and executing the program stored in the memory 24. .. That is, the directional control device 2 includes a memory 24 for storing a program in which the processes from step ST1 to step ST3 shown in FIG. 3 are executed as a result when executed by the processor 23. Alternatively, the processor 23 reads and executes the program stored in the memory 24, thereby causing the directional control information acquisition unit 13, the error value estimation calculation unit 14, the reception direction information acquisition unit 15, and the directional control device 11. The functions of the error detection unit 16 and the capture / tracking control unit 17 are realized. That is, the directional control device 11 includes a memory 24 for storing a program in which the processes from step ST10 to step ST14 shown in FIG. 4 are executed as a result when executed by the processor 23.
- These programs cause the computer to execute the procedure or method of the reception direction information acquisition unit 4, the error detection unit 5, and the capture / tracking control unit 6 in the direction control device 2.
- the memory 24 may be a computer-readable storage medium in which a program for causing the computer to function as a reception direction information acquisition unit 4, an error detection unit 5, and a capture / tracking control unit 6 in the direction control device 2 is stored. ..
- these programs are the procedures or methods of the directional control information acquisition unit 13, the error value estimation calculation unit 14, the reception direction information acquisition unit 15, the error detection unit 16, and the capture tracking control unit 17 in the directional control device 11. Let the computer run.
- the memory 24 causes the computer to function as a directional control information acquisition unit 13, an error value estimation calculation unit 14, a reception direction information acquisition unit 15, an error detection unit 16, and a capture tracking control unit 17 in the directional control device 11.
- the program may be stored in a computer-readable storage medium.
- the memory 24 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-volatile) semiconductor, or an EPROM (Electrically-EROM).
- a RAM Random Access Memory
- ROM Read Only Memory
- flash memory an EPROM (Erasable Programmable Read Only Memory)
- EEPROM Electrically-volatile semiconductor
- EPROM Electrically-EROM
- a part of each function of the reception direction information acquisition unit 4, the error detection unit 5, and the capture and tracking control unit 6 in the directional control device 2 is realized by dedicated hardware, and a part is realized by software or firmware. It is also good.
- reception direction information acquisition unit 4 and the error detection unit 5 realize the functions by a processing circuit as dedicated hardware.
- the function of the capture / tracking control unit 6 may be realized by the processor 23 reading and executing the program stored in the memory 24.
- a part of each function of the directional control information acquisition unit 13, the error value estimation calculation unit 14, the reception direction information acquisition unit 15, the error detection unit 16, and the capture tracking control unit 17 in the directional control device 11 is dedicated. It may be realized by the hardware of the above, and a part may be realized by the software or the firmware.
- the directional control information acquisition unit 13 and the error value estimation calculation unit 14 realize their functions with a processing circuit as dedicated hardware.
- the functions of the reception direction information acquisition unit 15, the error detection unit 16, and the capture / tracking control unit 17 may be realized by the processor 23 reading and executing the program stored in the memory 24.
- the processing circuit can realize each of the above functions by hardware, software, firmware, or a combination thereof.
- FIG. 6 is a schematic view for explaining a specific example of the error value estimation method by the directional direction control device 11.
- FIG. 6 shows the two-dimensional positional relationship of each of the above-mentioned satellites.
- the angle formed by the line connecting LEO satellite A and GEO satellite C (first optical link B) and the line connecting LEO satellite A and LEO satellite F (second optical link E) is defined as ⁇ . It is assumed that precise capture is established between the LEO satellite A and the GEO satellite C.
- step ST2 in the error detection unit 5 of the directional control device 2 of the first optical communication terminal 101, the transmission / reception unit 1 receives light through the first optical link B during a certain time interval ⁇ t. The first error ⁇ of the directing angle during communication is detected.
- the directional direction control information acquisition unit 13 acquires the first error ⁇ in the above-mentioned step ST10.
- the error value estimation calculation unit 14 of the second optical communication terminal 102 has a directivity angle at which the transmission / reception unit 10 performs optical communication via the second optical link E. It is estimated that the second error of is the same value as the first error ⁇ of the directivity angle at which the transmission / reception unit 1 of the first optical communication terminal 101 is performing optical communication via the first optical link B.
- the second error ⁇ estimated by the error value estimation calculation unit 14 is used for the control of the direction direction by the capture tracking control unit 17 in the above-mentioned step ST14, so that the second error ⁇ between the LEO satellite A and the LEO satellite F is used. Optical link E is stabilized.
- FIG. 7 is a block diagram showing a specific example of the directional direction control method according to the first embodiment.
- the capture tracking control unit 6 obtains the target directing angle (input in FIG. 7) and the first error acquired in advance from the error detection unit 5.
- the control amount for the capture / tracking mechanism unit 3 is calculated using G11 as a transfer function, and the transmission / reception unit 1 controls the direction in which optical communication is performed via the first optical link B.
- the capture / tracking mechanism unit 3 performs capture / tracking for maintaining the first optical link B by changing the direction of the transmission / reception unit 1 based on the control by the capture / tracking control unit 6 in step ST3. ..
- the transmission / reception unit 1 whose direction has been changed by the capture / tracking mechanism unit 3 receives light via the first optical link B, thereby receiving direction information regarding the direction in which the light is received via the first optical link B. Is detected.
- the directional direction control method by the directional direction control device 2 is executed again, and in the above-mentioned step ST1, the receiving direction information acquisition unit 4 acquires the receiving direction information detected by the transmitting / receiving unit 1.
- the error detection unit 5 receives the reception direction information acquired by the reception direction information acquisition unit 4 as an input, uses G12 as a transfer function, and the transmission / reception unit 1 passes through the first optical link B. The first error of the directional angle during optical communication is calculated.
- step ST3 the capture / tracking control unit 6 inputs the target directing angle and the first error calculated by the error detection unit 5, and controls the capture / tracking mechanism 3 with G11 as a transfer function.
- the amount is calculated again to control the direction in which the transmission / reception unit 1 performs optical communication via the first optical link B. That is, in the specific example, the control by the capture / tracking control unit 6 is a feedback control using the first error as the feedback amount.
- the capture tracking control unit 17 has the target directing angle, the second error acquired in advance from the error value estimation calculation unit 14, and the error detection unit 16.
- the direction in which the transmission / reception unit 10 performs optical communication via the second optical link E by inputting the third error obtained in advance from it is assumed that the capture tracking for maintaining the second optical link E is controlled.
- the capture / tracking mechanism unit 12 changes the direction of the transmission / reception unit 10 based on the control by the capture / tracking control unit 17 in step ST14 to perform capture / tracking for maintaining the second optical link E. ..
- the transmission / reception unit 10 whose direction has been changed by the capture / tracking mechanism unit 12 receives light via the second optical link E, thereby receiving direction information regarding the direction in which the light is received via the second optical link E. Is detected.
- the directional direction control method by the directional direction control device 11 is executed again, and in the above-mentioned step ST10, the directional direction control information acquisition unit 13 obtains the first error calculated by the error detection unit 5 in the above-mentioned step ST2. Acquires the directional control information including.
- the error value estimation calculation unit 14 inputs the first error acquired by the direction control information acquisition unit 13, the transfer function is G13, and the transmission / reception unit 10 is the second optical link. The second error of the directivity angle at which optical communication is performed via E is calculated.
- the reception direction information acquisition unit 15 acquires reception direction information regarding the direction in which the transmission / reception unit 10 receives light via the second optical link E.
- the error detection unit 16 receives the reception direction information acquired by the reception direction information acquisition unit 15 as an input, uses G22 as a transfer function, and the transmission / reception unit 10 passes through the second optical link E. The third error of the directional angle during optical communication is calculated.
- step ST14 the capture tracking control unit 17 calculated the target directing angle, the second error calculated by the error value estimation calculation unit 14 in step ST11, and the error detection unit 16 in step ST13.
- G21 is used as a transfer function to calculate the control amount for the capture and tracking mechanism unit 12, and the transmission / reception unit 10 controls the direction in which optical communication is performed via the second optical link E. Controls the capture and tracking to maintain the second optical link E. That is, in the specific example, the control by the capture / tracking control unit 6 is a control in which a feedback control using the third error as the feedback amount and a feedforward control using the second error as the feedforward amount are used in combination. be.
- FIG. 8 is a schematic view showing how the optical communication system 103 according to the first modification of the first embodiment performs optical communication and observation.
- the optical communication system 103 includes a first optical communication terminal 101 and an observation terminal 104.
- the configuration of the first optical communication terminal 101 according to the first modification is the same as the configuration of the first optical communication terminal 101 shown in FIG.
- the configuration of the observation terminal 104 according to the first modification is partially different from the configuration of the second optical communication terminal 102 shown in FIG.
- the observation terminal 104 observes the earth by transmitting and receiving light or radio waves.
- Examples of the observation terminal 104 include an observation terminal having an optical element for ground imaging, an observation terminal having a radio wave processing device for ground imaging, an observation terminal having a measuring device for measuring atmospheric conditions, and the like. ..
- the transmission / reception unit corresponding to the transmission / reception unit 10 of the second optical communication terminal 102 in the observation terminal 104 is an optical element for ground imaging and a radio wave for ground imaging. Includes processing equipment or measuring equipment for measuring atmospheric conditions.
- the transmitting / receiving unit may detect the receiving direction information regarding the direction in which the light or the radio wave is received by the same method as the above-mentioned method in which the transmitting / receiving unit 10 of the second optical communication terminal 102 detects the receiving direction information.
- the transmitting / receiving unit may detect reception direction information regarding the direction in which the light or radio wave is received by transmitting light or radio wave toward the earth and receiving the reflected light or radio wave.
- the directional control unit corresponding to the capture and tracking control unit 17 of the second optical communication terminal 102 is based on the first error acquired by the directional control information acquisition unit 13, and the observation terminal 104
- the above-mentioned transmission / reception unit controls the direction in which light or radio waves are transmitted / received. More specifically, in the directional direction control unit, the transmission / reception unit of the observation terminal 104 is of light or radio waves based on the second error estimated by the error value estimation calculation unit 14 based on the first error. Controls the direction of transmission and reception. More specifically, the directional direction control unit further controls the directional direction in which the transmission / reception unit of the observation terminal 104 transmits / receives light or radio waves based on the third error detected by the error detection unit 16. ..
- the mechanism unit corresponding to the capture and tracking mechanism unit 12 of the second optical communication terminal 102 changes the direction direction of the transmission / reception unit 10 based on the control by the direction direction control unit. Adjusts the observation direction.
- the directional control device 11 according to the first embodiment can be applied to the observation terminal 104 by partially changing the configuration.
- the directional control device 11 of the second optical communication terminal 102 controls the directional direction based on the first error acquired from the directional control device 2 of the first optical communication terminal 101.
- the second modification an example in which the directional control device 2 of the first optical communication terminal 101 has a configuration similar to the configuration will be further described.
- FIG. 9 is a block diagram showing a configuration of the optical communication system 105 according to the second modification of the first embodiment.
- the directional control device 30 of the first optical communication terminal 106 according to the second modification has the directional control information acquisition unit 31 and the directional control information acquisition unit 31 as compared with the directional control device 2 described above.
- An error value estimation calculation unit 32 is further provided.
- the directional direction control information acquisition unit 31 acquires the third error detected by the error detection unit 16 of the second optical communication terminal 102.
- the error value estimation calculation unit 32 has a fourth direction angle at which the transmission / reception unit 1 performs optical communication via the first optical link B based on the third error acquired by the direction control information acquisition unit 31. Estimate the error of.
- the transmission / reception unit 1 sets the first optical link B based on the fourth error estimated by the error value estimation calculation unit 32 based on the third error.
- the acquisition and tracking for maintaining the first optical link B is controlled. According to the configuration of the second modification, the capture and tracking ability for maintaining the first optical link B by the first optical communication terminal 101 is improved.
- the directional control device 11 has a first optical communication terminal 101 as a first transmission / reception device for transmitting / receiving light, and a second optical communication terminal 101 for transmitting / receiving light or radio waves.
- the second transmission / reception device is a directional control device 11 that controls the direction in which light or radio waves are transmitted / received, and is the first transmission / reception.
- a second directional control information acquisition unit 13 that acquires directional control information for controlling the directional direction in which the device transmits and receives light, and a second directional control information acquired by the directional control information acquisition unit 13.
- the transmission / reception device is provided with a capture / tracking control unit 17 as a direction control unit that controls a direction in which light or radio waves are transmitted / received.
- the second transmitting / receiving device controls the directional direction in which the second transmitting / receiving device transmits / receives light or radio waves based on the directional control information of the first transmitting / receiving device.
- the accuracy of the direction of direction can be maintained.
- the other transmission / reception device transmits / receives light or radio waves based on the direction control information of the first transmission / reception device.
- the direction of direction to be performed may be controlled.
- the accuracy in the directional direction can be maintained without providing equipment such as a high-performance sensor for at least one or more transmission / reception devices among the plurality of transmission / reception devices installed on the satellite. Further, this can reduce the cost of the equipment of the transmission / reception device.
- the directional control device 11 is a first optical communication terminal 101 in which the first transmission / reception device performs optical communication via the first optical link B, and is a second transmission / reception device. Is a second optical communication terminal 102 that performs optical communication via the second optical link E, and the directional control information acquired by the directional control information acquisition unit 13 is obtained by the first optical communication terminal 101.
- the directional control unit includes a first error of the directional angle performing optical communication via the optical link B of 1, and the directional control unit has a second error based on the first error acquired by the directional control information acquisition unit 13.
- the capture and tracking control unit 17 controls the capture and tracking for maintaining the second optical link E by controlling the direction in which the optical communication terminal 102 of the above performs optical communication via the second optical link E. ..
- the LEO satellite A is disturbed or the like.
- the deviation of the directing direction of the optical communication terminal 102 of 2 can be corrected, and the accuracy of the directing direction of the second optical communication terminal 102 can be maintained. That is, it is possible to maintain the accuracy in the pointing direction for at least one or more optical communication terminals among the plurality of optical communication terminals installed on the satellite without providing equipment such as a high-performance sensor.
- the second optical communication terminal 102 passes through the second optical link E based on the first error acquired by the directional control information acquisition unit 13.
- the error value estimation calculation unit 14 for estimating the second error of the directivity angle performing optical communication is further provided, and the capture tracking control unit 17 is the first estimated by the error value estimation calculation unit 14 based on the first error.
- the second optical communication terminal 102 controls the direction in which the second optical communication terminal 102 performs optical communication via the second optical link E, thereby performing capture tracking for maintaining the second optical link E. Control.
- the second error of the directivity angle of the second optical communication terminal 102 is estimated based on the first error of the directivity angle of the first optical communication terminal 101, and the second error is estimated.
- the direction of the second optical communication terminal 102 is controlled based on the above. Thereby, the directing direction of the second optical communication terminal 102 can be suitably controlled.
- the directional control device 11 is a reception direction information acquisition unit 15 that acquires reception direction information regarding the direction in which the second optical communication terminal 102 receives light via the second optical link E. With reference to the reception direction information acquired by the reception direction information acquisition unit 15, the third error of the directivity angle at which the second optical communication terminal 102 is performing optical communication via the second optical link E is obtained.
- the capture and tracking control unit 17 further includes an error detection unit 16 for detecting, and the second optical communication terminal 102 sets the second optical link E based on the third error detected by the error detection unit 16. By controlling the directional direction in which optical communication is performed via the light, the capture tracking for maintaining the second optical link E is controlled.
- the pointing direction of the second optical communication terminal 102 is controlled based on the third error of the pointing direction of the second optical communication terminal 102.
- the accuracy of the second optical communication terminal 102 in the directing direction can be suitably maintained.
- the directional control device 11 is a first optical communication terminal 101 in which the first transmission / reception device performs optical communication via the first optical link B, and is a second transmission / reception device.
- It is an error of the directional angle during optical communication via the link B, and the capture tracking control unit 17 as the directional control unit is based on the error acquired by the directional control information acquisition unit 13, and is based on the error acquired by the directional control information acquisition unit 13. Controls the direction in which light or radio waves are transmitted and received.
- the pointing direction of the observation terminal 104 by controlling the pointing direction of the observation terminal 104 based on the first error of the pointing angle of the first optical communication terminal 101, equipment such as a high-performance sensor is not provided. , The accuracy of the direction of the observation terminal 104 can be maintained.
- the second optical communication terminal 102 receives light via the above-mentioned directional control device 11 and the second optical link E, so that the second optical communication terminal 102 of the second optical communication terminal 102
- the second optical link E by changing the direction of the transmission / reception unit 10 based on the control by the transmission / reception unit 10 (second optical communication terminal transmission / reception unit) that detects the reception direction information and the capture / tracking control unit 17. It is provided with a capture and tracking mechanism unit 12 (second optical communication terminal capture and tracking mechanism unit) that performs capture and tracking for maintaining the above.
- the second optical communication terminal 102 has a third direction angle at which optical communication is performed via the second optical link E.
- the error can be detected.
- the capture / tracking mechanism unit 12 changes the direction of the transmission / reception unit 10 by the control based on the third error by the capture / tracking control unit 17, so that the accuracy of the direction of the second optical communication terminal 102 is preferably improved. Can be maintained.
- the optical communication system 100 includes the above-mentioned second optical communication terminal 102 and the first optical communication terminal 101, and the first optical communication terminal 101 is a first optical link.
- a transmission / reception unit 1 (first optical communication terminal transmission / reception unit) that detects reception direction information regarding the direction in which light is received via the first optical link B by receiving light via B, and a transmission / reception unit 1
- the reception direction information acquisition unit 4 (first optical communication terminal reception direction information acquisition unit) that acquires the reception direction information detected by the receiver and the reception direction information acquired by the reception direction information acquisition unit 4
- the first An error detection unit 5 (first optical communication terminal error detection unit) for detecting the first error of the directivity angle at which the optical communication terminal 101 is performing optical communication via the first optical link B, and an error detection unit.
- the first optical link B is maintained by controlling the direction in which the first optical communication terminal 101 performs optical communication via the first optical link B based on the first error detected by 5.
- the capture / tracking control unit 6 first optical communication terminal capture / tracking control unit
- It is provided with a capture and tracking mechanism unit 3 (first optical communication terminal capture and tracking mechanism unit) that performs capture and tracking for maintaining the optical link B of 1.
- the second light is obtained by controlling the directing direction of the second optical communication terminal 102 based on the first error detected by the error detection unit 5 of the first optical communication terminal 101.
- the accuracy of the direction of the communication terminal 102 can be suitably maintained.
- the first optical communication terminal 101 has an accuracy of the directivity direction. Can be suitably maintained.
- the first optical communication terminal 106 in the optical communication system 105 is a directional control information acquisition unit that acquires a third error detected by the error detection unit 16 of the second optical communication terminal 102. Based on the third error acquired by 31 (the first optical communication terminal directional control information acquisition unit) and the directional control information acquisition unit 31, the transmission / reception unit 1 performs optical communication via the first optical link B.
- the error value estimation calculation unit 32 (first optical communication terminal error value estimation calculation unit) for estimating the fourth error of the directivity angle is further provided, and the capture tracking control unit 6 performs the error value estimation calculation.
- the first light is further controlled by controlling the direction in which the transmitting / receiving unit 1 performs optical communication via the first optical link B based on the fourth error estimated by the unit 32 based on the third error. Controls capture tracking to maintain link B.
- a high-performance sensor is obtained by controlling the pointing direction of the transmission / reception unit 1 of the first optical communication terminal 101 based on the third error of the pointing angle of the second optical communication terminal 102. It is possible to maintain the accuracy in the direction of the first optical communication terminal 101 without providing such equipment.
- the directional control method according to the first embodiment includes a first optical communication terminal 101 as a first transmitting / receiving device for transmitting / receiving light, and a second transmitting / receiving device for transmitting / receiving light or radio waves.
- the second transmitting / receiving device is a directional control method for controlling a directional direction in which light or radio waves are transmitted / received, and the first transmitting / receiving device transmits / receives light.
- the second transmitter / receiver uses light or radio waves. Includes a directional control step that controls the directional direction for transmitting and receiving. According to the above configuration, the same effect as that of the directional control device 11 according to the first embodiment is obtained.
- Embodiment 2 As typified by the LEO constellation, there are applications in which an optical communication terminal of a single satellite communicates with each optical communication terminal of a plurality of satellites and switches the communication target (SPACE). Company X starlink plan, etc.). In such an application, the time required for acquisition when the optical communication terminal switches the communication target is a factor that lowers the operating rate of the optical communication terminal because the communication between the optical communication terminals is interrupted. Therefore, being able to shorten the switching time of the communication target means that the amount of communication between satellites can be increased.
- the optical communication terminal changes the scanning range depending on how far the direction in which the satellite to be communicated exists can be specified. Narrowing the scan range leads to a reduction in the acquisition time.
- one directional control device controls the directional direction based on the control directional angle used by the other directional control device in addition to the configuration of the first embodiment. Reduce the time required for capture.
- FIG. 10 is a block diagram showing a configuration of the optical communication system 107 according to the second embodiment. As shown in FIG. 10, FIG. 10 is a schematic view showing how the optical communication system 107 according to the second embodiment performs optical communication. As shown in FIG. 10, the optical communication system 107 includes a first optical communication terminal 101 and a second optical communication terminal 108.
- the first optical communication terminal 101 and the second optical communication terminal 108 are installed on the LEO satellite A, respectively.
- the first optical communication terminal 101 performs optical communication with the third optical communication terminal D installed on the GEO satellite C via the first optical link B.
- the second optical communication terminal 108 performs optical communication with the fourth optical communication terminal G installed on the LEO satellite F via the second optical link E.
- the GEO satellite C is a low earth orbit and stable satellite as compared with the LEO satellite A and the LEO satellite F.
- a fifth optical communication terminal H is installed on the GEO satellite C
- a sixth optical communication terminal I is installed on the LEO satellite F.
- the fifth optical communication terminal H and the sixth optical communication terminal I communicate with each other via the third optical link J.
- FIG. 11 is a block diagram showing the configuration of the optical communication system 107 according to the second embodiment.
- the optical communication system 107 includes a second optical communication terminal 108 instead of the second optical communication terminal 102.
- the directional control device 40 further includes a directional angle conversion unit 41.
- the directional direction control information acquisition unit 13 is a first control for controlling the directional direction in which the first optical communication terminal 101 performs optical communication via the first optical link B.
- the directional angle is further acquired as directional direction control information. More specifically, the directional control information acquisition unit 13 uses the first directional control for controlling the directional direction in which the first optical communication terminal 101 performs optical communication via the first optical link B.
- the angle is further acquired as the directional direction control information from the capture and tracking control unit 6 of the directional direction control device 2 of the first optical communication terminal 101.
- the directional direction control information acquisition unit 13 outputs the acquired first directional angle to the directional angle conversion unit 41.
- the directional angle conversion unit 41 controls the directional direction in which the second optical communication terminal 108 performs optical communication via the second optical link E with respect to the first directional angle acquired by the directional direction control information acquisition unit 13. Convert to a second control angle used for. More specifically, in the second embodiment, the directional angle conversion unit 41 sets the first directional angle acquired by the directional control information acquisition unit 13, and the second optical communication terminal 108 sets the second optical link E. It is converted into a second directivity angle for control used for controlling the directivity direction in which optical communication is performed via the device. The directional angle conversion unit 41 outputs the converted second directional angle to the capture / tracking control unit 17.
- the second optical communication terminal 108 passes through the second optical link E based on the first direction angle acquired by the direction direction control information acquisition unit 13.
- the transmission / reception unit 10 is second based on the second direction angle converted by the direction angle conversion unit 41 based on the first direction angle.
- the capture tracking control unit 17 has a second direction angle converted by the direction angle conversion unit 41 based on the first direction angle, and the orbit information regarding the orbit of the LEO satellite A.
- the position of the optical communication terminal 108 of 2 may be estimated.
- the capture / tracking control unit 17 maintains the second optical link E by controlling the position where the transmission / reception unit 10 performs optical communication via the second optical link E based on the estimated position. You may control the capture and tracking for the purpose.
- the capture and tracking control unit 6 communicates with the first optical communication terminal 101 via the first optical link B.
- the first directional angle for control used for controlling the directional direction is output to the directional control information acquisition unit 13 of the directional control device 40 of the second optical communication terminal 108. This is the same as the operation of the directional control device 2 described in the first embodiment. Therefore, the description of the operation of the directional control device 2 of the first optical communication terminal 101 according to the second embodiment will be omitted.
- FIG. 12 is a flowchart showing a directional direction control method by the directional direction control device 40.
- the transmission / reception unit 10 receives the light via the second optical link E, thereby receiving the light via the second optical link E. It is assumed that the reception direction information regarding is detected.
- the directivity direction control information acquisition unit 13 has a first error in the direction angle at which the transmission / reception unit 1 of the first optical communication terminal 101 performs optical communication via the first optical link B.
- the directional control information including the above is acquired from the error detection unit 5 of the directional control device 2 of the first optical communication terminal 101 (step ST20).
- the directional direction control information acquisition unit 13 outputs the acquired directional direction control information to the error value estimation calculation unit 14.
- the error value estimation calculation unit 14 has a directivity angle at which the transmission / reception unit 10 performs optical communication via the second optical link E based on the first error acquired by the direction control information acquisition unit 13.
- the second error of is estimated (step ST21).
- the directional direction control information acquisition unit 13 sets the first directional angle for control used by the first optical communication terminal 101 to control the directional direction in which optical communication is performed via the first optical link.
- the directional direction control information is further acquired from the capture and tracking control unit 6 of the directional direction control device 2 of the first optical communication terminal 101 (step ST22).
- the directional direction control information acquisition unit 13 outputs the acquired first directional angle to the directional angle conversion unit 41.
- the directional angle conversion unit 41 performs optical communication of the first directional angle acquired by the directional direction control information acquisition unit 13 via the second optical link E by the second optical communication terminal 108. Is converted into a second control angle for control used to control (step ST23). The directional angle conversion unit 41 outputs the converted second directional angle to the capture / tracking control unit 17.
- the reception direction information acquisition unit 15 acquires reception direction information regarding the direction in which the transmission / reception unit 10 receives light via the second optical link E (step ST24).
- the reception direction information acquisition unit 15 outputs the acquired reception direction information to the error detection unit 16.
- the error detection unit 16 refers to the reception direction information acquired by the reception direction information acquisition unit 15, and the error detection unit 16 refers to the third direction angle at which the transmission / reception unit 10 is performing optical communication via the second optical link E. Error is detected (step ST25).
- the error detection unit 16 outputs the detected third error to the error value estimation calculation unit 14.
- the error value estimation calculation unit 14 outputs the second error estimated in step ST21 and the third error acquired from the error detection unit 16 to the capture / tracking control unit 17.
- the capture tracking control unit 17 has a second error estimated by the error value estimation calculation unit 14 based on the first error in step ST21, and a second direction angle converted by the direction angle conversion unit 41 in step ST23.
- the second optical link E is controlled by controlling the direction in which the transmission / reception unit 10 performs optical communication via the second optical link E based on the third error detected by the error detection unit 16 in step ST25. Control the capture and tracking to maintain (step ST26).
- the capture / tracking mechanism unit 12 changes the direction of the transmission / reception unit 10 based on the control by the capture / tracking control unit 17 in step ST26 to perform capture / tracking for maintaining the second optical link E.
- the transmission / reception unit 10 whose direction has been changed by the capture / tracking mechanism unit 12 again receives the light via the second optical link E, thereby receiving the light in the direction of receiving the light via the second optical link E. Detect direction information. Then, the directional control device 40 executes step ST26 from step ST20 again.
- the second optical communication terminal 108 repeats the above operations to perform capture tracking for maintaining the second optical link E.
- the directional control device 40 includes a processing circuit for executing the processing from step ST20 to step ST26 shown in FIG.
- This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
- the hardware configuration that realizes the function of the directional control device 40 according to the second embodiment is the same as the hardware configuration shown in FIG. 5A. Further, the hardware configuration for executing the software that realizes the function of the directional control device 40 according to the second embodiment is the same as the hardware configuration shown in FIG. 5B.
- FIG. 13 is a diagram for explaining the effect of the directional direction control method by the directional direction control device 40.
- the transmission / reception unit 10 uses the second light based on the second error estimated by the error value estimation calculation unit 14 based on the first error in step ST21.
- the capture tracking for maintaining the second optical link E is controlled.
- the influence of the disturbance of the LEO satellite A is suppressed, and the error range of the directivity angle is narrowed (one-dot chain line in FIG. 12), so that the scan range when the second optical communication terminal 108 performs a spiral scan or the like is narrowed. ..
- step ST26 in the capture tracking control unit 17, the transmission / reception unit 10 performs optical communication via the second optical link E based on the second direction angle converted by the direction angle conversion unit 41 in step ST23.
- the capture tracking for maintaining the second optical link E is controlled.
- the deviation in the direction of the second optical communication terminal 102 due to the attitude error of the LEO satellite A can be corrected, so that the scanning range can be narrowed as shown by the solid line in FIG.
- the above configuration is also applicable to the LEO satellite F. It is also effective when the LEO satellite A has three or more optical communication terminals.
- the LEO satellite A has a link established with a plurality of low earth orbit satellites
- the directional control device 40 has an optical communication terminal (not shown) having a link with the plurality of low earth orbit satellites.
- the directional control information acquired by the directional control information acquisition unit 13 is transmitted by the first optical communication terminal 101 via the first optical link B. It further includes a first control angle for control used to control the direction of optical communication, and the capture and tracking control unit 17 is further based on the first direction angle acquired by the direction control information acquisition unit 13. Therefore, the second optical communication terminal 108 controls the capture and tracking for maintaining the second optical link E by controlling the direction in which the second optical communication terminal 108 performs optical communication via the second optical link E.
- the second optical communication terminal 108 is oriented to perform optical communication via the second optical link E based on the first directivity angle for control in the first optical communication terminal 101.
- the direction it is possible to correct the deviation of the direction direction of the second optical communication terminal 108 due to the attitude error of the LEO satellite A, and it is possible to maintain the accuracy of the direction direction of the second optical communication terminal 108. can.
- the scanning range when the second optical communication terminal 108 performs a spiral scan or the like is narrowed.
- the second optical communication terminal 108 uses the second optical link E to illuminate the first directional angle acquired by the directional control information acquisition unit 13.
- a directional angle conversion unit 41 for converting to a second directional angle for control used for controlling the directional direction for communication is further provided, and the capture tracking control unit 17 has the directional angle conversion unit 41 for the first directional angle.
- the second optical link E is set by controlling the direction in which the second optical communication terminal 108 performs optical communication via the second optical link E based on the second directing angle converted based on the above. Control capture and tracking to maintain.
- the LEO satellite controls the direction in which the second optical communication terminal 108 performs optical communication via the second optical link E based on the converted second directivity angle.
- the deviation of the directing direction of the second optical communication terminal 108 due to the attitude error of A can be corrected, and the accuracy of the directing direction of the second optical communication terminal 108 can be suitably maintained. It is possible to freely combine the embodiments, modify any component of each embodiment, or omit any component in each embodiment.
- the directional control device provides accuracy in the directional direction to at least one or more of the plurality of transmitters / receivers installed on the satellite without providing equipment such as a high-performance sensor. Since it can be maintained, it can be used for optical communication systems.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Aviation & Aerospace Engineering (AREA)
- Optical Communication System (AREA)
Abstract
指向方向制御装置(11)は、第1の送受信装置としての第1の光通信ターミナル(101)が光の送受信を行う指向方向を制御するための指向方向制御情報を取得する指向方向制御情報取得部(13)と、指向方向制御情報取得部(13)が取得した指向方向制御情報に基づいて、第2の送受信装置としての第2の光通信ターミナル(102)が光又は電波の送受信を行う指向方向を制御する指向方向制御部としての捕捉追尾制御部(17)と、を備えている。
Description
本開示は、光又は電波の送受信を行う指向方向を制御する指向方向制御装置に関する。
衛星において光又は電波の送受信を行う技術では、衛星に設置された送受信装置が送受信する光又は電波の指向性の高さから衛星自体の擾乱が問題となる。例えば、衛星が抑えることができないマイクロラジアン級の擾乱が生じた場合、送受信装置が光又は電波の送受信を行う指向方向は、ずれてしまう。また、他の原因によっても、指向方向がずれてしまう可能性がある。そして、送受信装置の指向方向がずれた場合、通信品質が低下してしまう虞がある。そのため、衛星に設置された送受信装置は、当該衛星とは別の衛星に設置された送受信装置から受信したビーコン光等の光に基づいて、指向方向のずれを補正することにより指向方向の精度を維持する性能を有する(例えば、非特許文献1参照)。
光衛星間通信技術~将来の宇宙通信インフラストラクチャの構築~(レーザー研究 2011年1月 山川史郎、城野隆 宇宙航空研究開発機構)
例えば、衛星が信号を中継する場合、当該衛星は、他の複数の衛星と通信を行うため、又は、他の衛星と通信を行う一方で地球を観測するために、複数の送受信装置が設置される。そのような衛星において、通信品質を高めるためには、何れの送受信装置に対しても、上述の指向方向の精度を維持する性能を向上させる必要がある。そのため、何れの送受信装置に対しても、高性能のセンサ等の設備を設ける必要があるという問題がある。
本開示は、上記のような問題点を解決するためになされたものであり、衛星に設置された複数の送受信装置のうちの少なくとも1つ以上の送受信装置に対して、高性能のセンサ等の設備を設けることなく、指向方向の精度を維持する技術を提供することを目的とする。
本開示に係る指向方向制御装置は、光の送受信を行う第1の送受信装置、及び、光又は電波の送受信を行う第2の送受信装置が設置された衛星において、当該第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御装置であって、第1の送受信装置が光の送受信を行う指向方向を制御するための指向方向制御情報を取得する指向方向制御情報取得部と、指向方向制御情報取得部が取得した指向方向制御情報に基づいて、第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御部と、を備えている。
本開示によれば、衛星に設置された複数の送受信装置のうちの少なくとも1つ以上の送受信装置に対して、高性能のセンサ等の設備を設けることなく、指向方向の精度を維持することができる。
以下、本開示をより詳細に説明するため、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係る光通信システム100が光通信を行う様子を示す概略図である。光通信システム100は、光の送受信を行う第1の送受信装置、及び、光又は電波の送受信を行う第2の送受信装置を含む。実施の形態1では、図1が示すように、光通信システム100は、第1の光通信ターミナル101、及び第2の光通信ターミナル102を含む。なお、実施の形態1では、光通信システム100が第1の送受信装置としての第1の光通信ターミナル101と第2の送受信装置としての第2の光通信ターミナル102との2つの送受信装置を含む構成について説明するが、光通信システム100が含む送受信装置の数は、特に限定されない。
実施の形態1.
図1は、実施の形態1に係る光通信システム100が光通信を行う様子を示す概略図である。光通信システム100は、光の送受信を行う第1の送受信装置、及び、光又は電波の送受信を行う第2の送受信装置を含む。実施の形態1では、図1が示すように、光通信システム100は、第1の光通信ターミナル101、及び第2の光通信ターミナル102を含む。なお、実施の形態1では、光通信システム100が第1の送受信装置としての第1の光通信ターミナル101と第2の送受信装置としての第2の光通信ターミナル102との2つの送受信装置を含む構成について説明するが、光通信システム100が含む送受信装置の数は、特に限定されない。
第1の光通信ターミナル101、及び第2の光通信ターミナル102は、それぞれ、LEO衛星Aに設置されている。第1の光通信ターミナル101は、第1の光リンクBを介して、GEO衛星Cに設置された第3の光通信ターミナルDと光通信を行う。また、第2の光通信ターミナル102は、第2の光リンクEを介して、LEO衛星Fに設置された第4の光通信ターミナルGと光通信を行う。
本明細書において、衛星とは、人工衛星を意味する。また、光通信とは、データが付与された光信号を送受信することにより通信を行うことを意味する。また、LEO衛星のLEO(Low Earth Orbit)は、地球低軌道を意味し、GEO衛星のGEO(Geostationary Earth Orbit)は、静止軌道を意味する。実施の形態1では、GEO衛星Cは、LEO衛星A及びLEO衛星Fと比較して低擾乱で安定した衛星であり、LEO衛星A及びLEO衛星Fは、GEO衛星Cと比較して、擾乱が大きい衛星であるものとする。
なお、実施の形態1において、GEO衛星Cの役割は、擾乱の影響を受けづらい回線を提供することである。そのため、GEO衛星Cの代わりに、低擾乱のLEO、MEO(medium earth orbit)又は地上局に、上述の第3の光通信ターミナルDが設けられてもよい。その場合、第1の光通信ターミナル101は、第1の光リンクBを介して、LEO、MEO又は地上局に設置された第3の光通信ターミナルDと光通信を行う。または、第1の光通信ターミナル101の構成は、第3の光通信ターミナルDとの光通信を行う構成の代わりに、LEO衛星Aよりも擾乱が少なくて安定した場所(例えば、惑星等)に設置されたプリズム又はミラーに光を送信し、反射された光を受信する構成であってもよい。その場合、以下の説明でも用いられる用語「光通信」は、光送受信に置き換えられる。
図2は、実施の形態1に係る光通信システム100の構成を示すブロック図である。図2が示すように、光通信システム100は、第1の光通信ターミナル101、及び第2の光通信ターミナル102を含む。
第1の光通信ターミナル101は、送受信部1、指向方向制御装置2、及び捕捉追尾機構部3を備えている。指向方向制御装置2は、受信方向情報取得部4、誤差検出部5、及び捕捉追尾制御部6を備えている。
送受信部1は、第1の光リンクBを介して光を受信することにより、第1の光リンクBを介して光を受信した方向に関する受信方向情報を検出する。送受信部1は、検出した受信方向情報を指向方向制御装置2に出力する。より具体的には、送受信部1が検出する受信方向情報は、例えば、上述のGEO衛星Cの第3の光通信ターミナルDが送信した光が送受信部1に入射した方向である。なお、受信方向情報は、送受信部1が第1の光リンクBを介して光を受信した位置に関する情報を含んでもよい。その場合、受信方向情報は、例えば、上述のGEO衛星Cの第3の光通信ターミナルDが送信した光が送受信部1に入射した位置である。
受信方向情報取得部4は、送受信部1が検出した受信方向情報を取得する。受信方向情報取得部4は、取得した受信方向情報を誤差検出部5に出力する。
誤差検出部5は、受信方向情報取得部4が取得した受信方向情報を参照して、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を検出する。より詳細には、誤差検出部5は、受信方向情報取得部4が取得した受信方向情報を参照して、第1の光通信ターミナル101の送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を検出する。誤差検出部5は、検出した第1の誤差を、捕捉追尾制御部6と、後述する第2の光通信ターミナル102の指向方向制御装置11とにそれぞれ出力する。
誤差検出部5は、受信方向情報取得部4が取得した受信方向情報を参照して、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を検出する。より詳細には、誤差検出部5は、受信方向情報取得部4が取得した受信方向情報を参照して、第1の光通信ターミナル101の送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を検出する。誤差検出部5は、検出した第1の誤差を、捕捉追尾制御部6と、後述する第2の光通信ターミナル102の指向方向制御装置11とにそれぞれ出力する。
なお、誤差検出部5が検出する誤差は、例えば、送受信部1が第1の光リンクBを介して光通信を行っている指向角度と、後述する捕捉追尾制御部6が制御に用いた目標の指向角度との差である。また、受信方向情報が、送受信部1が第1の光リンクBを介して光を受信した位置に関する情報を含んでいる場合、誤差検出部5は、受信方向情報取得部4が取得した受信方向情報を参照して、送受信部1が第1の光リンクBを介して光通信を行っている位置の誤差をさらに検出してもよい。その場合、誤差検出部5が検出する位置の誤差は、例えば、送受信部1が第1の光リンクBを介して光通信を行っている位置と、後述する捕捉追尾制御部6が制御に用いた目標の位置との差である。
捕捉追尾制御部6は、誤差検出部5が検出した第1の誤差に基づいて、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行う指向方向を制御することにより、第1の光リンクBを維持するための捕捉追尾を制御する。より詳細には、実施の形態1では、捕捉追尾制御部6は、誤差検出部5が検出した第1の誤差に基づいて、第1の光通信ターミナル101の送受信部1が第1の光リンクBを介して光通信を行う指向方向を制御することにより、第1の光リンクBを維持するための捕捉追尾を制御する。例えば、捕捉追尾制御部6は、送受信部1の指向角度を目標の指向角度に制御する際に、第1の誤差の分、制御量を調整する。なお、誤差検出部5が上述のように位置の誤差を検出した場合、捕捉追尾制御部6は、誤差検出部5が検出した位置の誤差に基づいて、送受信部1が第1の光リンクBを介して光通信を行う位置を制御することにより、第1の光リンクBを維持するための捕捉追尾を制御してもよい。
捕捉追尾機構部3は、捕捉追尾制御部6による制御に基づいて、送受信部1の指向方向を変化させることにより、第1の光リンクBを維持するための捕捉追尾を行う。なお、捕捉追尾制御部6が上述のように位置の誤差に基づいて送受信部1の位置を制御する場合、捕捉追尾機構部3は、捕捉追尾制御部6による制御に基づいて、送受信部1の位置をさらに変化させることにより、第1の光リンクBを維持するための捕捉追尾を行ってもよい。捕捉追尾機構部3の例として、ピエゾアクチュエータ等が挙げられる。
第2の光通信ターミナル102は、送受信部10、指向方向制御装置11、及び捕捉追尾機構部12を備えている。指向方向制御装置11は、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16、及び捕捉追尾制御部17を備えている。
なお、第2の光通信ターミナル102による、第2の光リンクEを維持するための捕捉追尾に関しては、粗捕捉のみ確立していることを想定する。粗捕捉とは、第2の光通信ターミナル102がビーコン光等を用いて上述の第4の光通信ターミナルGとのトラッキングができている状態、又は第2の光通信ターミナル102が送受信部10のトラッキング用のセンサにより捕捉することはできているが、送受信部10の通信用センサでは常時捕捉できているわけではない状態を指す。第2の光通信ターミナル102が精捕捉をできない原因としては、例えば、LEO衛星Aの衛星擾乱に起因して、送受信部10のトラッキング用のセンサの分解能不足、又は制御遅延によって、フィードバックを受けた捕捉追尾機構部12が発振してしまっていることなどが考えられる。
送受信部10は、第2の光リンクEを介して光を受信することにより、第2の光リンクEを介して光を受信した方向に関する受信方向情報を検出する。送受信部10は受信した受信方向情報を受信方向情報取得部15に出力する。より具体的には、受信方向情報は、例えば、上述のLEO衛星Fの第4の光通信ターミナルGが送信した光が送受信部10に入射した方向である。なお、受信方向情報は、送受信部10が第2の光リンクEを介して光を受信した位置に関する情報を含んでもよい。その場合、受信方向情報は、例えば、上述のLEO衛星Fの第4の光通信ターミナルGが送信した光が送受信部10に入射した位置である。
指向方向制御情報取得部13は、第1の光通信ターミナル101が光の送受信を行う指向方向を制御するための指向方向制御情報を取得する。より詳細には、実施の形態1では、指向方向制御情報取得部13は、第1の光通信ターミナル101の送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を含む指向方向制御情報を、第1の光通信ターミナル101の指向方向制御装置2の誤差検出部5から取得する。指向方向制御情報取得部13は、取得した指向方向制御情報を誤差値推定演算部14に出力する。
なお、指向方向制御情報取得部13が取得した指向方向制御情報は、第1の光通信ターミナル101の送受信部1が第1の光リンクBを介して光通信を行っている位置の誤差をさらに含んでいてもよい。また、指向方向制御情報取得部13は、第1の光通信ターミナル101及び第2の光通信ターミナル102とは別の、LEO衛星Aに設置された少なくとも1つ以上の光通信ターミナル(図示せず)から少なくとも1つ以上の指向方向制御情報をさらに取得してもよい。
誤差値推定演算部14は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差を推定する。より詳細には、誤差値推定演算部14は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差を推定する。その際、誤差値推定演算部14は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、LEO衛星Aの擾乱の程度を示す擾乱値に変換し、変換した擾乱値に基づいて、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差を推定してもよい。
なお、指向方向制御情報取得部13が取得した指向方向制御情報が上述のように位置の誤差を含んでいる場合、誤差値推定演算部14は、指向方向制御情報取得部13が取得した位置の誤差に基づいて、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光通信を行っている位置の誤差を推定してもよい。また、指向方向制御情報取得部13が別の少なくとも1つ以上の光通信ターミナルから少なくとも1つ以上の指向方向制御情報を取得した場合、誤差値推定演算部14は、指向方向制御情報取得部13が取得した少なくとも1つ以上の指向方向制御情報が含む、別の少なくとも1つ以上の光通信ターミナルの指向角度の誤差に基づいて、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差をさらに推定してもよい。
受信方向情報取得部15は、第2の光通信ターミナル102が第2の光リンクEを介して光を受信した方向に関する受信方向情報を取得する。より詳細には、実施の形態1では、受信方向情報取得部15は、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光を受信した方向に関する受信方向情報を取得する。受信方向情報取得部15は、取得した受信方向情報を誤差検出部16に出力する。
誤差検出部16は、受信方向情報取得部15が取得した受信方向情報を参照して、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行っている指向角度の第3の誤差を検出する。より詳細には、実施の形態1では、誤差検出部16は、受信方向情報取得部15が取得した受信方向情報を参照して、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第3の誤差を検出する。誤差検出部16は、検出した第3の誤差を誤差値推定演算部14に出力する。誤差値推定演算部14は、推定した第2の誤差と、取得した第3の誤差とをそのまま捕捉追尾制御部17に出力してもよいし、第2の誤差及び第3の誤差に基づいて、これらの誤差よりも精度の高い誤差を算出し、当該誤差を捕捉追尾制御部17に出力してもよい。
なお、誤差検出部16が検出する誤差は、例えば、送受信部10が第2の光リンクEを介して光通信を行っている指向角度と、後述する捕捉追尾制御部17が制御に用いた目標の指向角度との差である。また、受信方向情報が、送受信部10が第2の光リンクEを介して光を受信した位置に関する情報を含んでいる場合、誤差検出部16は、受信方向情報取得部15が取得した受信方向情報を参照して、送受信部10が第2の光リンクEを介して光通信を行っている位置の誤差をさらに検出してもよい。その場合、誤差検出部16が検出する位置の誤差は、例えば、送受信部10が第2の光リンクEを介して光通信を行っている位置と、後述する捕捉追尾制御部17が制御に用いた目標の位置との差である。
捕捉追尾制御部17は、指向方向制御情報取得部13が取得した指向方向制御情報に基づいて、第2の送受信装置としての第2の光通信ターミナル102が光又は電波の送受信を行う指向方向を制御する指向方向制御部である。より詳細には、実施の形態1では、捕捉追尾制御部17は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。さらに詳細には、捕捉追尾制御部17は、誤差値推定演算部14が第1の誤差に基づいて推定した第2の誤差に基づいて、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。例えば、捕捉追尾制御部17は、送受信部10の指向角度を目標の指向角度に制御する際に、第2の誤差の分、制御量を調整する。
さらに詳細には、捕捉追尾制御部17は、誤差検出部16が検出した第3の誤差にさらに基づいて、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。その場合、捕捉追尾制御部17は、例えば、第2の誤差をフィードフォワード量として用い、第3の誤差をフィードバック量として用いることにより、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御してもよい。これにより、第2の光通信ターミナル102による第2の光リンクEを維持するための捕捉追尾能力が改善される。これは、第2の光通信ターミナル102が精捕捉を行う場合においても、精捕捉精度を向上させることができるものであり、第2の光通信ターミナル102が精捕捉を行えずに粗捕捉を行う場合に限定するものではない。精捕捉精度の向上による効果としては、受信光パワーの向上が期待できる。
なお、誤差検出部16が上述のように位置の誤差を検出した場合、捕捉追尾制御部17は、誤差検出部16が検出した位置の誤差に基づいて、送受信部10が第2の光リンクEを介して光通信を行う位置を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御してもよい。また、誤差値推定演算部14が、別の少なくとも1つ以上の光通信ターミナルの指向角度の誤差に基づいて、第2の誤差をさらに推定した場合、捕捉追尾制御部17は、当該第2の誤差にさらに基づいて、第2の光通信ターミナル102の送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御してもよい。
捕捉追尾機構部12は、捕捉追尾制御部17による制御に基づいて、送受信部10の指向方向を変化させることにより、第2の光リンクEを維持するための捕捉追尾を行う。なお、捕捉追尾制御部17が上述のように位置の誤差に基づいて送受信部10の位置を制御する場合、捕捉追尾機構部12は、捕捉追尾制御部17による制御に基づいて、送受信部10の位置をさらに変化させることにより、第2の光リンクEを維持するための捕捉追尾を行ってもよい。捕捉追尾機構部12の例として、ピエゾアクチュエータ等が挙げられる。
次に、実施の形態1に係る第1の光通信ターミナル101の指向方向制御装置2の動作について図面を参照して説明する。図3は、指向方向制御装置2による指向方向制御方法を示すフローチャートである。なお、以下の指向方向制御方法が実施される前に、送受信部1は、第1の光リンクBを介して光を受信することにより、第1の光リンクBを介して光を受信した方向に関する受信方向情報を検出したものとする。
図3が示すように、受信方向情報取得部4は、送受信部1が検出した受信方向情報を取得する(ステップST1)。受信方向情報取得部4は、取得した受信方向情報を誤差検出部5に出力する。
次に、誤差検出部5は、受信方向情報取得部4が取得した受信方向情報を参照して、送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を検出する(ステップST2)。誤差検出部5は、検出した第1の誤差を捕捉追尾制御部6と第2の光通信ターミナル102の指向方向制御装置11の指向方向制御情報取得部13に出力する。
次に、捕捉追尾制御部6は、誤差検出部5が検出した第1の誤差に基づいて、送受信部1が第1の光リンクBを介して光通信を行う指向方向を制御することにより、第1の光リンクBを維持するための捕捉追尾を制御する(ステップST3)。
捕捉追尾機構部3は、ステップST3における捕捉追尾制御部6による制御に基づいて、送受信部1の指向方向を変化させることにより、第1の光リンクBを維持するための捕捉追尾を行う。捕捉追尾機構部3によって指向方向が変化した送受信部1は、再度、第1の光リンクBを介して光を受信することにより、第1の光リンクBを介して光を受信した方向に関する受信方向情報を検出する。指向方向制御装置2は、送受信部1が再度検出した受信方向情報に基づいて、上記のステップST1からステップST3を再度実行する。第1の光通信ターミナル101は、以上の動作が繰り返すことにより、第1の光リンクBを維持するための捕捉追尾を行う。
次に、実施の形態1に係る第2の光通信ターミナル102の指向方向制御装置11の動作について図面を参照して説明する。図4は、指向方向制御装置11による指向方向制御方法を示すフローチャートである。なお、以下の指向方向制御方法が実施される前に、送受信部10は、第2の光リンクEを介して光を受信することにより、第2の光リンクEを介して光を受信した方向に関する受信方向情報を検出したものとする。
図4が示すように、指向方向制御情報取得部13は、第1の光通信ターミナル101の送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を含む指向方向制御情報を、第1の光通信ターミナル101の指向方向制御装置2の誤差検出部5から取得する(ステップST10)。指向方向制御情報取得部13は、取得した指向方向制御情報を誤差値推定演算部14に出力する。
次に、誤差値推定演算部14は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差を推定する(ステップST11)。
次に、受信方向情報取得部15は、送受信部10が第2の光リンクEを介して光を受信した方向に関する受信方向情報を取得する(ステップST12)。受信方向情報取得部15は、取得した受信方向情報を誤差検出部16に出力する。
次に、誤差検出部16は、受信方向情報取得部15が取得した受信方向情報を参照して、送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第3の誤差を検出する(ステップST13)。誤差検出部16は、検出した第3の誤差を誤差値推定演算部14に出力する。誤差値推定演算部14は、ステップST11で推定した第2の誤差と、取得した第3の誤差とを捕捉追尾制御部17に出力する。
捕捉追尾制御部17は、誤差値推定演算部14がステップST11で第1の誤差に基づいて推定した第2の誤差と、誤差検出部16がステップST13で検出した第3の誤差とに基づいて、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する(ステップST14)。
捕捉追尾機構部12は、ステップST14における捕捉追尾制御部17による制御に基づいて、送受信部10の指向方向を変化させることにより、第2の光リンクEを維持するための捕捉追尾を行う。捕捉追尾機構部12によって指向方向が変化した送受信部10は、再度、第2の光リンクEを介して光を受信することにより、第2の光リンクEを介して光を受信した方向に関する受信方向情報を検出する。そして、指向方向制御装置11は、上記のステップST10からステップST14を再度実行する。第2の光通信ターミナル102は、以上の動作が繰り返すことにより、第2の光リンクEを維持するための捕捉追尾を行う。
指向方向制御装置2における、受信方向情報取得部4、誤差検出部5及び捕捉追尾制御部6のそれぞれの機能は、処理回路により実現される。すなわち、指向方向制御装置2は、図3に示したステップST1からステップST3までの処理を実行するための処理回路を備える。この処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
また、指向方向制御装置11における、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16及び捕捉追尾制御部17のそれぞれの機能は、処理回路により実現される。すなわち、指向方向制御装置11は、図4に示したステップST10からステップST14までの処理を実行するための処理回路を備える。この処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
図5Aは、指向方向制御装置2又は指向方向制御装置11の機能を実現するハードウェア構成を示すブロック図である。図5Bは、指向方向制御装置2又は指向方向制御装置11の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図5A及び図5Bがそれぞれ示す送受信装置21は、上述の送受信部1の機能、又は上述の送受信部10の機能を実行する。図5A及び図5Bがそれぞれ示す捕捉追尾機構22は、上述の捕捉追尾機構部3の機能、又は上述の捕捉追尾機構部12の機能を実行する。
上記処理回路が図5Aに示す専用のハードウェアの処理回路20である場合、処理回路20は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)又はこれらを組み合わせたものが該当する。
指向方向制御装置2における、受信方向情報取得部4、誤差検出部5及び捕捉追尾制御部6のそれぞれの機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。また、指向方向制御装置11における、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16及び捕捉追尾制御部17のそれぞれの機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。
上記処理回路が図5Bに示すプロセッサ23である場合、指向方向制御装置2における、受信方向情報取得部4、誤差検出部5及び捕捉追尾制御部6のそれぞれの機能は、ソフトウェア、ファームウェア又はソフトウェアとファームウェアとの組み合わせによって実現される。または、上記処理回路が図5Bに示すプロセッサ23である場合、指向方向制御装置11における、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16及び捕捉追尾制御部17のそれぞれの機能は、ソフトウェア、ファームウェア又はソフトウェアとファームウェアとの組み合わせによって実現される。
なお、ソフトウェア又はファームウェアは、プログラムとして記述されてメモリ24に記憶される。
なお、ソフトウェア又はファームウェアは、プログラムとして記述されてメモリ24に記憶される。
プロセッサ23は、メモリ24に記憶されたプログラムを読み出して実行することにより、指向方向制御装置2における、受信方向情報取得部4、誤差検出部5及び捕捉追尾制御部6のそれぞれの機能を実現する。すなわち、指向方向制御装置2は、プロセッサ23によって実行されるときに、図3に示したステップST1からステップST3までの処理が結果的に実行されるプログラムを記憶するためのメモリ24を備える。または、プロセッサ23は、メモリ24に記憶されたプログラムを読み出して実行することにより、指向方向制御装置11における、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16及び捕捉追尾制御部17のそれぞれの機能を実現する。すなわち、指向方向制御装置11は、プロセッサ23によって実行されるときに、図4に示したステップST10からステップST14までの処理が結果的に実行されるプログラムを記憶するためのメモリ24を備える。
これらのプログラムは、指向方向制御装置2における、受信方向情報取得部4、誤差検出部5及び捕捉追尾制御部6の手順又は方法をコンピュータに実行させる。メモリ24は、コンピュータを、指向方向制御装置2における、受信方向情報取得部4、誤差検出部5及び捕捉追尾制御部6として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。または、これらのプログラムは、指向方向制御装置11における、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16及び捕捉追尾制御部17の手順又は方法をコンピュータに実行させる。メモリ24は、コンピュータを、指向方向制御装置11における、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16及び捕捉追尾制御部17として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。
メモリ24には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。
指向方向制御装置2における、受信方向情報取得部4、誤差検出部5及び捕捉追尾制御部6のそれぞれの機能について一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現してもよい。
例えば、受信方向情報取得部4及び誤差検出部5は、専用のハードウェアとしての処理回路で機能を実現する。捕捉追尾制御部6については、プロセッサ23がメモリ24に記憶されたプログラムを読み出して実行することにより機能を実現してもよい。
または、指向方向制御装置11における、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16及び捕捉追尾制御部17のそれぞれの機能について一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現してもよい。
例えば、指向方向制御情報取得部13及び誤差値推定演算部14は、専用のハードウェアとしての処理回路で機能を実現する。受信方向情報取得部15、誤差検出部16及び捕捉追尾制御部17については、プロセッサ23がメモリ24に記憶されたプログラムを読み出して実行することにより機能を実現してもよい。
このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組み合わせにより上記機能のそれぞれを実現することができる。
このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組み合わせにより上記機能のそれぞれを実現することができる。
次に、実施の形態1に係る第2の光通信ターミナル102の指向方向制御装置11による指向方向制御方法における上述のステップST11の誤差値推定方法の具体例について図面を参照して説明する。図6は、指向方向制御装置11による誤差値推定方法の具体例を説明するための概略図である。なお、説明を簡単にするために、図6では、上述の各衛星の2次元の位置関係を示す。
図6において、LEO衛星A及びGEO衛星Cを結ぶ線(第1の光リンクB)とLEO衛星A及びLEO衛星Fを結ぶ線(第2の光リンクE)とが成す角をθとする。なお、LEO衛星AとGEO衛星Cとの間には精捕捉が成立しているものとする。
まず、上述のステップST2において、第1の光通信ターミナル101の指向方向制御装置2の誤差検出部5は、ある時間間隔Δtの間に、送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差Δθを検出する。次に、指向方向制御情報取得部13は、上述のステップST10において、当該第1の誤差Δθを取得する。
なお、GEO衛星Cの擾乱は、LEO衛星Aに比べて小さいために、第1の誤差Δθの元となったLEO衛星Aの擾乱による角度変動量は、第1の誤差Δθの元となったGEO衛星Cの擾乱による角度変動量よりも圧倒的に大きい。そのため、当該具体例では、上述のステップST11において、第2の光通信ターミナル102の誤差値推定演算部14は、送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差が、第1の光通信ターミナル101の送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差Δθと同じ値であると推定する。誤差値推定演算部14が推定した第2の誤差Δθは、上述のステップST14で捕捉追尾制御部17による指向方向の制御に用いられることにより、LEO衛星AとLEO衛星Fとの間の第2の光リンクEは安定化される。
次に、実施の形態1に係る第1の光通信ターミナル101の指向方向制御装置2による指向方向制御方法及び第2の光通信ターミナル102の指向方向制御装置11による指向方向制御方法の具体例についてブロック線図を参照して説明する。図7は、実施の形態1に係る指向方向制御方法の具体例を示すブロック線図である。
まず、第1の光通信ターミナル101において、上述のステップST3で、捕捉追尾制御部6は、目標の指向角度(図7の入力)と、誤差検出部5から予め取得した第1の誤差とを入力とし、G11を伝達関数として捕捉追尾機構部3に対する制御量を算出して、送受信部1が第1の光リンクBを介して光通信を行う指向方向を制御したものとする。そして、捕捉追尾機構部3は、ステップST3における捕捉追尾制御部6による制御に基づいて、送受信部1の指向方向を変化させることにより、第1の光リンクBを維持するための捕捉追尾を行う。捕捉追尾機構部3によって指向方向が変化した送受信部1は、第1の光リンクBを介して光を受信することにより、第1の光リンクBを介して光を受信した方向に関する受信方向情報を検出する。
そして、再度、指向方向制御装置2による指向方向制御方法が実行され、上述のステップST1において、受信方向情報取得部4は、送受信部1が検出した受信方向情報を取得する。次に、上述のステップST2において、誤差検出部5は、受信方向情報取得部4が取得した受信方向情報を入力とし、G12を伝達関数として、送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を算出する。
次に、上述のステップST3において、捕捉追尾制御部6は、目標の指向角度と、誤差検出部5が算出した第1の誤差とを入力とし、G11を伝達関数として捕捉追尾機構部3に対する制御量を再度算出して、送受信部1が第1の光リンクBを介して光通信を行う指向方向を制御する。つまり、当該具体例では、捕捉追尾制御部6による制御は、第1の誤差をフィードバック量として用いたフィードバック制御である。
一方、第2の光通信ターミナル102において、上述のステップST14で、捕捉追尾制御部17は、目標の指向角度と、誤差値推定演算部14から予め取得した第2の誤差と、誤差検出部16から予め取得した第3の誤差とを入力とし、G21を伝達関数として捕捉追尾機構部12に対する制御量を算出して、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御したものとする。そして、捕捉追尾機構部12は、ステップST14における捕捉追尾制御部17による制御に基づいて、送受信部10の指向方向を変化させることにより、第2の光リンクEを維持するための捕捉追尾を行う。捕捉追尾機構部12によって指向方向が変化した送受信部10は、第2の光リンクEを介して光を受信することにより、第2の光リンクEを介して光を受信した方向に関する受信方向情報を検出する。
そして、再度、指向方向制御装置11による指向方向制御方法が実行され、上述のステップST10で、指向方向制御情報取得部13は、上述のステップST2において誤差検出部5が算出した第1の誤差を含む指向方向制御情報を取得する。次に、上述のステップST11において、誤差値推定演算部14は、指向方向制御情報取得部13が取得した第1の誤差を入力とし、伝達関数をG13として、送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差を算出する。
次に、上述のステップST12において、受信方向情報取得部15は、送受信部10が第2の光リンクEを介して光を受信した方向に関する受信方向情報を取得する。次に、上述のステップST13において、誤差検出部16は、受信方向情報取得部15が取得した受信方向情報を入力とし、G22を伝達関数として、送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第3の誤差を算出する。
次に、上述のステップST14において、捕捉追尾制御部17は、目標の指向角度と、誤差値推定演算部14がステップST11で算出した第2の誤差と、誤差検出部16がステップST13で算出した第3の誤差とを入力とし、G21を伝達関数として捕捉追尾機構部12に対する制御量を算出して、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。つまり、当該具体例では、捕捉追尾制御部6による制御は、第3の誤差をフィードバック量として用いたフィードバック制御と、第2の誤差をフィードフォワード量として用いたフィードフォワード制御とを併用した制御である。
次に、実施の形態1の第1の変形例について図面を参照して説明する。上記の説明では、第1の光通信ターミナル101及び第2の光通信ターミナル102がLEO衛星Aに設置されている構成について説明した。実施の形態1の第1の変形例では、第2の光通信ターミナル102の代わりに、観測用ターミナルがLEO衛星Aに設置されている構成について説明する。
図8は、実施の形態1の第1の変形例に係る光通信システム103が光通信及び観測を行う様子を示す概略図である。図8が示すように、光通信システム103は、第1の光通信ターミナル101、及び観測用ターミナル104を含む。なお、第1の変形例に係る第1の光通信ターミナル101の構成は、図2に示した第1の光通信ターミナル101の構成と同様である。一方、第1の変形例に係る観測用ターミナル104の構成は、図2に示した第2の光通信ターミナル102の構成と一部異なる。
観測用ターミナル104は、光又は電波の送受信を行うことにより地球を観測する。観測用ターミナル104の例として、地上撮像用の光学素子を有する観測用ターミナル、地上撮像用の電波処理装置を有する観測用ターミナル、又は大気状態を測定する測定装置を有する観測用ターミナル等が挙げられる。観測用ターミナル104がこれらの観測用ターミナルである場合、観測用ターミナル104における、第2の光通信ターミナル102の送受信部10に相当する送受信部は、地上撮像用の光学素子、地上撮像用の電波処理装置、又は大気状態を測定する測定装置を含む。当該送受信部は、第2の光通信ターミナル102の送受信部10が受信方向情報を検出する上述の方法と同様の方法によって、光又は電波を受信した方向に関する受信方向情報を検出してもよい。または、当該送受信部は、地球に向けて光又は電波を送信し、反射された光又は電波を受信することにより、光又は電波を受信した方向に関する受信方向情報を検出してもよい。
観測用ターミナル104における、第2の光通信ターミナル102の捕捉追尾制御部17に相当する指向方向制御部は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、観測用ターミナル104の上記の送受信部が光又は電波の送受信を行う指向方向を制御する。より詳細には、当該指向方向制御部は、誤差値推定演算部14が第1の誤差に基づいて推定した第2の誤差に基づいて、観測用ターミナル104の上記の送受信部が光又は電波の送受信を行う指向方向を制御する。さらに詳細には、当該指向方向制御部は、誤差検出部16が検出した第3の誤差にさらに基づいて、観測用ターミナル104の上記の送受信部が光又は電波の送受信を行う指向方向を制御する。
また、観測用ターミナル104における、第2の光通信ターミナル102の捕捉追尾機構部12に相当する機構部は、上記の指向方向制御部による制御に基づいて、送受信部10の指向方向を変化させることにより、観測方向を調整する。
以上のように、実施の形態1に係る指向方向制御装置11は、一部構成を変更することにより、観測用ターミナル104にも適用され得る。
以上のように、実施の形態1に係る指向方向制御装置11は、一部構成を変更することにより、観測用ターミナル104にも適用され得る。
次に、実施の形態1の第2の変形例について図面を参照して説明する。実施の形態1では、第2の光通信ターミナル102の指向方向制御装置11が、第1の光通信ターミナル101の指向方向制御装置2から取得した第1の誤差に基づいて指向方向を制御する構成について説明した。第2の変形例では、さらに、第1の光通信ターミナル101の指向方向制御装置2が、当該構成と同様の構成を有する例について説明する。
図9は、実施の形態1の第2の変形例に係る光通信システム105の構成を示すブロック図である。図9が示すように、第2の変形例に係る第1の光通信ターミナル106の指向方向制御装置30は、上述の指向方向制御装置2と比較して、指向方向制御情報取得部31、及び誤差値推定演算部32をさらに備えている。
指向方向制御情報取得部31は、第2の光通信ターミナル102の誤差検出部16が検出した第3の誤差を取得する。誤差値推定演算部32は、指向方向制御情報取得部31が取得した第3の誤差に基づいて、送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第4の誤差を推定する。
第2の変形例に係る捕捉追尾制御部6は、誤差値推定演算部32が第3の誤差に基づいて推定した第4の誤差にさらに基づいて、送受信部1が第1の光リンクBを介して光通信を行う指向方向を制御することにより、第1の光リンクBを維持するための捕捉追尾を制御する。
第2の変形例の構成によれば、第1の光通信ターミナル101による第1の光リンクBを維持するための捕捉追尾能力が改善される。
第2の変形例の構成によれば、第1の光通信ターミナル101による第1の光リンクBを維持するための捕捉追尾能力が改善される。
以上のように、実施の形態1に係る指向方向制御装置11は、光の送受信を行う第1の送受信装置としての第1の光通信ターミナル101、及び、光又は電波の送受信を行う第2の送受信装置としての第2の光通信ターミナル102が設置された衛星において、当該第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御装置11であって、第1の送受信装置が光の送受信を行う指向方向を制御するための指向方向制御情報を取得する指向方向制御情報取得部13と、指向方向制御情報取得部13が取得した指向方向制御情報に基づいて、第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御部としての捕捉追尾制御部17と、を備えている。
第1の送受信装置及び第2の送受信装置は、同じ衛星に設置されているため、第1の送受信装置の指向方向と、第2の送受信装置の指向方向とは相関がある。従って、上記の構成によれば、第1の送受信装置の指向方向制御情報に基づいて、第2の送受信装置が光又は電波の送受信を行う指向方向を制御することにより、第2の送受信装置の指向方向の精度を維持することができる。また、例えば、第1の送受信装置及び第2の送受信装置以外の別の送受信装置においても、第1の送受信装置の指向方向制御情報に基づいて、当該別の送受信装置が光又は電波の送受信を行う指向方向を制御してもよい。つまり、衛星に設置された複数の送受信装置のうちの少なくとも1つ以上の送受信装置に対して、高性能のセンサ等の設備を設けることなく、指向方向の精度を維持することができる。また、これによって、送受信装置の設備にかかるコストを低減することができる。
また、実施の形態1に係る指向方向制御装置11は、第1の送受信装置が、第1の光リンクBを介して光通信を行う第1の光通信ターミナル101であり、第2の送受信装置は、第2の光リンクEを介して光通信を行う第2の光通信ターミナル102であり、指向方向制御情報取得部13が取得する指向方向制御情報は、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を含み、指向方向制御部は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する捕捉追尾制御部17である。
上記の構成によれば、第1の光通信ターミナル101の指向角度の第1の誤差に基づいて、第2の光通信ターミナル102の指向方向を制御することにより、LEO衛星Aの擾乱等による第2の光通信ターミナル102の指向方向のずれを補正することができ、第2の光通信ターミナル102の指向方向の精度を維持することができる。つまり、衛星に設置された複数の光通信ターミナルのうちの少なくとも1つ以上の光通信ターミナルに対して、高性能のセンサ等の設備を設けることなく、指向方向の精度を維持することができる。
また、実施の形態1に係る指向方向制御装置11は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差を推定する誤差値推定演算部14をさらに備え、捕捉追尾制御部17は、誤差値推定演算部14が第1の誤差に基づいて推定した第2の誤差に基づいて、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。
上記の構成によれば、第1の光通信ターミナル101の指向角度の第1の誤差に基づいて、第2の光通信ターミナル102の指向角度の第2の誤差を推定し、当該第2の誤差に基づいて、第2の光通信ターミナル102の指向方向を制御する。これにより、第2の光通信ターミナル102の指向方向を好適に制御することができる。
また、実施の形態1に係る指向方向制御装置11は、第2の光通信ターミナル102が第2の光リンクEを介して光を受信した方向に関する受信方向情報を取得する受信方向情報取得部15と、受信方向情報取得部15が取得した受信方向情報を参照して、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行っている指向角度の第3の誤差を検出する誤差検出部16と、をさらに備え、捕捉追尾制御部17は、誤差検出部16が検出した第3の誤差にさらに基づいて、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。
上記の構成によれば、第2の光通信ターミナル102の指向方向の第3の誤差にさらに基づいて、第2の光通信ターミナル102の指向方向を制御する。これにより、第2の光通信ターミナル102の指向方向の精度を好適に維持することができる。
また、実施の形態1に係る指向方向制御装置11は、第1の送受信装置が、第1の光リンクBを介して光通信を行う第1の光通信ターミナル101であり、第2の送受信装置は、光又は電波の送受信を行うことにより地球を観測する観測用ターミナル104であり、指向方向制御情報取得部13が取得する指向方向制御情報は、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行っている指向角度の誤差であり、指向方向制御部としての捕捉追尾制御部17は、指向方向制御情報取得部13が取得した誤差に基づいて、観測用ターミナル104が光又は電波の送受信を行う指向方向を制御する。
上記の構成によれば、第1の光通信ターミナル101の指向角度の第1の誤差に基づいて、観測用ターミナル104の指向方向を制御することにより、高性能のセンサ等の設備を設けることなく、観測用ターミナル104の指向方向の精度を維持することができる。
また、実施の形態1に係る第2の光通信ターミナル102は、上記の指向方向制御装置11と、第2の光リンクEを介して光を受信することにより、第2の光通信ターミナル102の受信方向情報を検出する送受信部10(第2の光通信ターミナル送受信部)と、捕捉追尾制御部17による制御に基づいて、送受信部10の指向方向を変化させることにより、第2の光リンクEを維持するための捕捉追尾を行う捕捉追尾機構部12(第2の光通信ターミナル捕捉追尾機構部)と、を備えている。
上記の構成によれば、送受信部10が検出した受信方向情報を参照して、第2の光通信ターミナル102が第2の光リンクEを介して光通信を行っている指向角度の第3の誤差を検出することができる。そして、捕捉追尾制御部17による第3の誤差に基づいた制御によって捕捉追尾機構部12が送受信部10の指向方向を変化させることにより、第2の光通信ターミナル102の指向方向の精度を好適に維持することができる。
また、実施の形態1に係る光通信システム100は、上記の第2の光通信ターミナル102、及び、第1の光通信ターミナル101を含み、第1の光通信ターミナル101は、第1の光リンクBを介して光を受信することにより、第1の光リンクBを介して光を受信した方向に関する受信方向情報を検出する送受信部1(第1の光通信ターミナル送受信部)と、送受信部1が検出した受信方向情報を取得する受信方向情報取得部4(第1の光通信ターミナル受信方向情報取得部)と、受信方向情報取得部4が取得した受信方向情報を参照して、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を検出する誤差検出部5(第1の光通信ターミナル誤差検出部)と、誤差検出部5が検出した第1の誤差に基づいて、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行う指向方向を制御することにより、第1の光リンクBを維持するための捕捉追尾を制御する捕捉追尾制御部6(第1の光通信ターミナル捕捉追尾制御部)と、捕捉追尾制御部6による制御に基づいて、送受信部1の指向方向を変化させることにより、第1の光リンクBを維持するための捕捉追尾を行う捕捉追尾機構部3(第1の光通信ターミナル捕捉追尾機構部)と、を備えている。
上記の構成によれば、第1の光通信ターミナル101の誤差検出部5が検出した第1の誤差に基づいて、第2の光通信ターミナル102の指向方向を制御することにより、第2の光通信ターミナル102の指向方向の精度を好適に維持することができる。また、誤差検出部5が検出した第1の誤差に基づいて、第1の光通信ターミナル101の送受信部1の指向方向を制御することにより、第1の光通信ターミナル101は、指向方向の精度を好適に維持することができる。
また、実施の形態1に係る光通信システム105における第1の光通信ターミナル106は、第2の光通信ターミナル102の誤差検出部16が検出した第3の誤差を取得する指向方向制御情報取得部31(第1の光通信ターミナル指向方向制御情報取得部)と、指向方向制御情報取得部31が取得した第3の誤差に基づいて、送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第4の誤差を推定する誤差値推定演算部32(第1の光通信ターミナル誤差値推定演算部)と、をさらに備え、捕捉追尾制御部6は、誤差値推定演算部32が第3の誤差に基づいて推定した第4の誤差にさらに基づいて、送受信部1が第1の光リンクBを介して光通信を行う指向方向を制御することにより、第1の光リンクBを維持するための捕捉追尾を制御する。
上記の構成によれば、第2の光通信ターミナル102の指向角度の第3の誤差に基づいて、第1の光通信ターミナル101の送受信部1の指向方向を制御することにより、高性能のセンサ等の設備を設けることなく、第1の光通信ターミナル101の指向方向の精度を維持することができる。
また、実施の形態1に係る指向方向制御方法は、光の送受信を行う第1の送受信装置としての第1の光通信ターミナル101、及び、光又は電波の送受信を行う第2の送受信装置としての第2の光通信ターミナル102が設置された衛星において、当該第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御方法であって、第1の送受信装置が光の送受信を行う指向方向を制御するための指向方向制御情報を取得する指向方向制御情報取得ステップと、指向方向制御情報取得ステップで取得した指向方向制御情報に基づいて、第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御ステップと、を含む。
上記の構成によれば、実施の形態1に係る指向方向制御装置11が奏する効果と同様の効果を奏する。
上記の構成によれば、実施の形態1に係る指向方向制御装置11が奏する効果と同様の効果を奏する。
実施の形態2.
LEOコンステレーションに代表されるように、単一の衛星の光通信ターミナルが複数の衛星の各光通信ターミナルと相互に通信を行い、且つ通信対象を切り替えていくような使用用途が存在する(SPACE X社 starlink計画など)。このような用途において、光通信ターミナルが通信対象を切り替える際の捕捉にかかる時間においては、光通信ターミナル間の通信が断絶されるために、光通信ターミナルの稼働率を下げる要因となる。そのため、通信対象の切替時間を短縮できることは、衛星間の通信量を増加させられることを意味している。
LEOコンステレーションに代表されるように、単一の衛星の光通信ターミナルが複数の衛星の各光通信ターミナルと相互に通信を行い、且つ通信対象を切り替えていくような使用用途が存在する(SPACE X社 starlink計画など)。このような用途において、光通信ターミナルが通信対象を切り替える際の捕捉にかかる時間においては、光通信ターミナル間の通信が断絶されるために、光通信ターミナルの稼働率を下げる要因となる。そのため、通信対象の切替時間を短縮できることは、衛星間の通信量を増加させられることを意味している。
衛星間の光通信において、光通信ターミナルが信号を捕捉する方法としてスパイラルスキャン方式がある(例えば、宇宙光通信技術 有本好徳著 光学35巻9号(2006) URL:https://annex.jsap.or.jp/photonics/kogaku/public/35-09-kaisetsu3.pdf参照)。この方式は、一方の衛星に設置された光通信ターミナルが指向方向を固定し、他方の衛星に設置された光通信ターミナルが指向方向をスパイラル型にスキャンすることにより、それぞれが通信視野に捕捉した瞬間の指向方向に基づいて互いの指向方向を徐々に合わせる手法である。このような方式では、光通信ターミナルは、通信対象の衛星が存在する方向をどこまで特定できるかによってスキャン範囲が変化する。スキャン範囲を狭めることは、捕捉に要する時間の短縮につながる。実施の形態2では、一方の指向方向制御装置が、実施の形態1の構成に加えて、他方の指向方向制御装置が用いる制御用の指向角度にさらに基づいて、指向方向を制御することにより、捕捉に要する時間を短縮する。
以下で、実施の形態2について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
図10は、実施の形態2に係る光通信システム107の構成を示すブロック図である。図10が示すように、図10は、実施の形態2に係る光通信システム107が光通信を行う様子を示す概略図である。図10が示すように、光通信システム107は、第1の光通信ターミナル101、及び第2の光通信ターミナル108を含む。
図10は、実施の形態2に係る光通信システム107の構成を示すブロック図である。図10が示すように、図10は、実施の形態2に係る光通信システム107が光通信を行う様子を示す概略図である。図10が示すように、光通信システム107は、第1の光通信ターミナル101、及び第2の光通信ターミナル108を含む。
第1の光通信ターミナル101、及び第2の光通信ターミナル108は、それぞれ、LEO衛星Aに設置されている。上述の通り、第1の光通信ターミナル101は、第1の光リンクBを介して、GEO衛星Cに設置された第3の光通信ターミナルDと光通信を行う。また、第2の光通信ターミナル108は、第2の光リンクEを介して、LEO衛星Fに設置された第4の光通信ターミナルGと光通信を行う。なお、上述の通り、GEO衛星Cは、LEO衛星A及びLEO衛星Fと比較して低擾乱で安定した衛星である。また、GEO衛星Cには、第5の光通信ターミナルHが設置され、LEO衛星Fには、第6の光通信ターミナルIが設置されている。第5の光通信ターミナルHと第6の光通信ターミナルIとは、互いに、第3の光リンクJを介して光通信を行う。
図11は、実施の形態2に係る光通信システム107の構成を示すブロック図である。実施の形態1に係る光通信システム100と比較して、光通信システム107は、第2の光通信ターミナル102の代わりに、第2の光通信ターミナル108を含む。実施の形態1に係る第2の光通信ターミナル102と比較して、第2の光通信ターミナル108は、指向方向制御装置40が指向角度変換部41をさらに備えている。
実施の形態2に係る指向方向制御情報取得部13は、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行う指向方向を制御するために用いる制御用の第1の指向角度を、指向方向制御情報として、さらに取得する。より詳細には、指向方向制御情報取得部13は、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行う指向方向を制御するために用いる制御用の第1の指向角度を、指向方向制御情報として、第1の光通信ターミナル101の指向方向制御装置2の捕捉追尾制御部6からさらに取得する。指向方向制御情報取得部13は、取得した第1の指向角度を指向角度変換部41に出力する。
指向角度変換部41は、指向方向制御情報取得部13が取得した第1の指向角度を、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御するために用いる制御用の第2の指向角度に変換する。より詳細には、実施の形態2では、指向角度変換部41は、指向方向制御情報取得部13が取得した第1の指向角度を、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御するために用いる制御用の第2の指向角度に変換する。指向角度変換部41は、変換した第2の指向角度を捕捉追尾制御部17に出力する。
実施の形態2に係る捕捉追尾制御部17は、指向方向制御情報取得部13が取得した第1の指向角度にさらに基づいて、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。より詳細には、実施の形態2では、捕捉追尾制御部17は、指向角度変換部41が第1の指向角度に基づいて変換した第2の指向角度にさらに基づいて、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。
実施の形態2に係る捕捉追尾制御部17は、指向角度変換部41が第1の指向角度に基づいて変換した第2の指向角度と、LEO衛星Aの軌道に関する軌道情報とに基づいて、第2の光通信ターミナル108の位置を推定してもよい。その場合、捕捉追尾制御部17は、推定した位置に基づいて、送受信部10が第2の光リンクEを介して光通信を行う位置を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御してもよい。
次に、実施の形態2に係る第2の光通信ターミナル108の指向方向制御装置40の動作について図面を参照して説明する。なお、実施の形態2に係る第1の光通信ターミナル101の指向方向制御装置2の動作は、捕捉追尾制御部6が第1の光通信ターミナル101が第1の光リンクBを介して光通信を行う指向方向を制御するために用いる制御用の第1の指向角度を、第2の光通信ターミナル108の指向方向制御装置40の指向方向制御情報取得部13に出力すること以外は、実施の形態1で説明した指向方向制御装置2の動作と同様である。そのため、実施の形態2に係る第1の光通信ターミナル101の指向方向制御装置2の動作についての説明は省略する。
図12は、指向方向制御装置40による指向方向制御方法を示すフローチャートである。なお、以下の指向方向制御方法が実施される前に、送受信部10は、第2の光リンクEを介して光を受信することにより、第2の光リンクEを介して光を受信した方向に関する受信方向情報を検出したものとする。
図12が示すように、指向方向制御情報取得部13は、第1の光通信ターミナル101の送受信部1が第1の光リンクBを介して光通信を行っている指向角度の第1の誤差を含む指向方向制御情報を、第1の光通信ターミナル101の指向方向制御装置2の誤差検出部5から取得する(ステップST20)。指向方向制御情報取得部13は、取得した指向方向制御情報を誤差値推定演算部14に出力する。
次に、誤差値推定演算部14は、指向方向制御情報取得部13が取得した第1の誤差に基づいて、送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第2の誤差を推定する(ステップST21)。
次に、指向方向制御情報取得部13は、第1の光通信ターミナル101が第1の光リンクを介して光通信を行う指向方向を制御するために用いる制御用の第1の指向角度を、指向方向制御情報として、第1の光通信ターミナル101の指向方向制御装置2の捕捉追尾制御部6からさらに取得する(ステップST22)。指向方向制御情報取得部13は、取得した第1の指向角度を指向角度変換部41に出力する。
次に、指向角度変換部41は、指向方向制御情報取得部13が取得した第1の指向角度を、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御するために用いる制御用の第2の指向角度に変換する(ステップST23)。指向角度変換部41は、変換した第2の指向角度を捕捉追尾制御部17に出力する。
次に、受信方向情報取得部15は、送受信部10が第2の光リンクEを介して光を受信した方向に関する受信方向情報を取得する(ステップST24)。受信方向情報取得部15は、取得した受信方向情報を誤差検出部16に出力する。
次に、誤差検出部16は、受信方向情報取得部15が取得した受信方向情報を参照して、送受信部10が第2の光リンクEを介して光通信を行っている指向角度の第3の誤差を検出する(ステップST25)。誤差検出部16は、検出した第3の誤差を誤差値推定演算部14に出力する。誤差値推定演算部14は、ステップST21で推定した第2の誤差と、誤差検出部16から取得した第3の誤差とを捕捉追尾制御部17に出力する。
捕捉追尾制御部17は、誤差値推定演算部14がステップST21で第1の誤差に基づいて推定した第2の誤差と、指向角度変換部41がステップST23で変換した第2の指向角度と、誤差検出部16がステップST25で検出した第3の誤差とに基づいて、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する(ステップST26)。
捕捉追尾機構部12は、ステップST26における捕捉追尾制御部17による制御に基づいて、送受信部10の指向方向を変化させることにより、第2の光リンクEを維持するための捕捉追尾を行う。捕捉追尾機構部12によって指向方向が変化した送受信部10は、再度、第2の光リンクEを介して光を受信することにより、第2の光リンクEを介して光を受信した方向に関する受信方向情報を検出する。そして、指向方向制御装置40は、上記のステップST20からステップST26を再度実行する。第2の光通信ターミナル108は、以上の動作が繰り返すことにより、第2の光リンクEを維持するための捕捉追尾を行う。
なお、実施の形態2に係る指向方向制御装置40における、指向方向制御情報取得部13、誤差値推定演算部14、受信方向情報取得部15、誤差検出部16、捕捉追尾制御部17及び指向角度変換部41のそれぞれの機能は、処理回路により実現される。すなわち、実施の形態2に係る指向方向制御装置40は、図12に示したステップST20からステップST26までの処理を実行するための処理回路を備える。この処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。実施の形態2に係る指向方向制御装置40の機能を実現するハードウェア構成は、図5Aが示すハードウェア構成と同様である。また、実施の形態2に係る指向方向制御装置40の機能を実現するソフトウェアを実行するハードウェア構成は、図5Bが示すハードウェア構成と同様である。
次に、実施の形態2に係る指向方向制御装置40による指向方向制御方法が奏する効果について図面を参照して説明する。図13は、指向方向制御装置40による指向方向制御方法が奏する効果を説明するための図である。
上述のステップST26において、まず、捕捉追尾制御部17は、誤差値推定演算部14がステップST21で第1の誤差に基づいて推定した第2の誤差に基づいて、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。これにより、LEO衛星Aの擾乱による影響が抑えられ、指向角度の誤差範囲が狭まるため(図12の1点鎖線)、第2の光通信ターミナル108がスパイラルスキャンなどを行う際のスキャン範囲が狭まる。
上述のステップST26において、まず、捕捉追尾制御部17は、誤差値推定演算部14がステップST21で第1の誤差に基づいて推定した第2の誤差に基づいて、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。これにより、LEO衛星Aの擾乱による影響が抑えられ、指向角度の誤差範囲が狭まるため(図12の1点鎖線)、第2の光通信ターミナル108がスパイラルスキャンなどを行う際のスキャン範囲が狭まる。
一方で、第2の光通信ターミナル108の指向方向は、LEO衛星Aの擾乱のみならず、LEO衛星Aの姿勢誤差によっても、ずれてしまうという問題がある。そこで、上述のステップST26において、捕捉追尾制御部17は、指向角度変換部41がステップST23で変換した第2の指向角度に基づいて、送受信部10が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。これにより、LEO衛星Aの姿勢誤差による第2の光通信ターミナル102の指向方向のずれを補正することができるため、図12の実線のようにスキャン範囲を狭めることができる。
以上の構成は、LEO衛星Fに対しても適用可能である。また、LEO衛星Aが3つ以上の光通信ターミナルを有する場合においても有効である。例えば、LEO衛星Aが複数の低擾乱衛星とリンクが確立しており、指向方向制御装置40が、当該複数の低擾乱衛星とリンクが確立している各光通信ターミナル(図示せず)が光通信を行う指向方向を制御するために用いる制御用の指向角度にさらに基づいて指向方向を制御することにより、姿勢誤差補正後の推定範囲をさらに狭めることができる。よって、捕捉に要する時間の短縮に有効である。
以上のように、実施の形態2に係る指向方向制御装置40は、指向方向制御情報取得部13が取得する指向方向制御情報は、第1の光通信ターミナル101が第1の光リンクBを介して光通信を行う指向方向を制御するために用いる制御用の第1の指向角度をさらに含み、捕捉追尾制御部17は、指向方向制御情報取得部13が取得した第1の指向角度にさらに基づいて、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。
上記の構成によれば、第1の光通信ターミナル101における制御用の第1の指向角度にさらに基づいて、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御することにより、LEO衛星Aの姿勢誤差による第2の光通信ターミナル108の指向方向のずれを補正することができ、第2の光通信ターミナル108の指向方向の精度を維持することができる。また、第2の光通信ターミナル108がスパイラルスキャンなどを行う際のスキャン範囲が狭まる。
また、実施の形態2に係る指向方向制御装置40は、指向方向制御情報取得部13が取得した第1の指向角度を、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御するために用いる制御用の第2の指向角度に変換する指向角度変換部41をさらに備え、捕捉追尾制御部17は、指向角度変換部41が第1の指向角度に基づいて変換した第2の指向角度にさらに基づいて、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御することにより、第2の光リンクEを維持するための捕捉追尾を制御する。
上記の構成によれば、変換した第2の指向角度にさらに基づいて、第2の光通信ターミナル108が第2の光リンクEを介して光通信を行う指向方向を制御することにより、LEO衛星Aの姿勢誤差による第2の光通信ターミナル108の指向方向のずれを補正することができ、第2の光通信ターミナル108の指向方向の精度を好適に維持することができる。
なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
本開示に係る指向方向制御装置は、衛星に設置された複数の送受信装置のうちの少なくとも1つ以上の送受信装置に対して、高性能のセンサ等の設備を設けることなく、指向方向の精度を維持することができるため、光通信システムに利用可能である。
1 送受信部、2 指向方向制御装置、3 捕捉追尾機構部、4 受信方向情報取得部、5 誤差検出部、6 捕捉追尾制御部、10 送受信部、11 指向方向制御装置、12 捕捉追尾機構部、13 指向方向制御情報取得部、14 誤差値推定演算部、15 受信方向情報取得部、16 誤差検出部、17 捕捉追尾制御部、20 処理回路、21 送受信装置、22 捕捉追尾機構、23 プロセッサ、24 メモリ、30 指向方向制御装置、31 指向方向制御情報取得部、32 誤差値推定演算部、40 指向方向制御装置、41 指向角度変換部、100 光通信システム、101 第1の光通信ターミナル、102 第2の光通信ターミナル、103 光通信システム、104 観測用ターミナル、105 光通信システム、106 第1の光通信ターミナル、107 光通信システム、108 第2の光通信ターミナル。
Claims (11)
- 光の送受信を行う第1の送受信装置、及び、光又は電波の送受信を行う第2の送受信装置が設置された衛星において、当該第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御装置であって、
前記第1の送受信装置が光の送受信を行う指向方向を制御するための指向方向制御情報を取得する指向方向制御情報取得部と、
前記指向方向制御情報取得部が取得した指向方向制御情報に基づいて、前記第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御部と、を備えていることを特徴とする、指向方向制御装置。 - 前記第1の送受信装置は、第1の光リンクを介して光通信を行う第1の光通信ターミナルであり、
前記第2の送受信装置は、第2の光リンクを介して光通信を行う第2の光通信ターミナルであり、
前記指向方向制御情報取得部が取得する指向方向制御情報は、前記第1の光通信ターミナルが前記第1の光リンクを介して光通信を行っている指向角度の第1の誤差を含み、
前記指向方向制御部は、前記指向方向制御情報取得部が取得した第1の誤差に基づいて、前記第2の光通信ターミナルが前記第2の光リンクを介して光通信を行う指向方向を制御することにより、前記第2の光リンクを維持するための捕捉追尾を制御する捕捉追尾制御部であることを特徴とする、請求項1に記載の指向方向制御装置。 - 前記指向方向制御情報取得部が取得した第1の誤差に基づいて、前記第2の光通信ターミナルが前記第2の光リンクを介して光通信を行っている指向角度の第2の誤差を推定する誤差値推定演算部をさらに備え、
前記捕捉追尾制御部は、前記誤差値推定演算部が前記第1の誤差に基づいて推定した第2の誤差に基づいて、前記第2の光通信ターミナルが前記第2の光リンクを介して光通信を行う指向方向を制御することにより、前記第2の光リンクを維持するための捕捉追尾を制御することを特徴とする、請求項2に記載の指向方向制御装置。 - 前記第2の光通信ターミナルが前記第2の光リンクを介して光を受信した方向に関する受信方向情報を取得する受信方向情報取得部と、
前記受信方向情報取得部が取得した受信方向情報を参照して、前記第2の光通信ターミナルが前記第2の光リンクを介して光通信を行っている指向角度の第3の誤差を検出する誤差検出部と、をさらに備え、
前記捕捉追尾制御部は、前記誤差検出部が検出した第3の誤差にさらに基づいて、前記第2の光通信ターミナルが前記第2の光リンクを介して光通信を行う指向方向を制御することにより、前記第2の光リンクを維持するための捕捉追尾を制御することを特徴とする、請求項3に記載の指向方向制御装置。 - 前記第1の送受信装置は、光リンクを介して光通信を行う光通信ターミナルであり、
前記第2の送受信装置は、光又は電波の送受信を行うことにより地球を観測する観測用ターミナルであり、
前記指向方向制御情報取得部が取得する指向方向制御情報は、前記光通信ターミナルが前記光リンクを介して光通信を行っている指向角度の誤差であり、
前記指向方向制御部は、前記指向方向制御情報取得部が取得した誤差に基づいて、前記観測用ターミナルが光又は電波の送受信を行う指向方向を制御することを特徴とする、請求項1に記載の指向方向制御装置。 - 前記指向方向制御情報取得部が取得する指向方向制御情報は、前記第1の光通信ターミナルが前記第1の光リンクを介して光通信を行う指向方向を制御するために用いる制御用の第1の指向角度をさらに含み、
前記捕捉追尾制御部は、前記指向方向制御情報取得部が取得した第1の指向角度にさらに基づいて、前記第2の光通信ターミナルが前記第2の光リンクを介して光通信を行う指向方向を制御することにより、前記第2の光リンクを維持するための捕捉追尾を制御することを特徴とする、請求項2に記載の指向方向制御装置。 - 前記指向方向制御情報取得部が取得した第1の指向角度を、前記第2の光通信ターミナルが前記第2の光リンクを介して光通信を行う指向方向を制御するために用いる制御用の第2の指向角度に変換する指向角度変換部をさらに備え、
前記捕捉追尾制御部は、前記指向角度変換部が前記第1の指向角度に基づいて変換した第2の指向角度にさらに基づいて、前記第2の光通信ターミナルが前記第2の光リンクを介して光通信を行う指向方向を制御することにより、前記第2の光リンクを維持するための捕捉追尾を制御することを特徴とする、請求項6に記載の指向方向制御装置。 - 前記第2の光通信ターミナルとしての光通信ターミナルであって、
請求項4に記載の指向方向制御装置と、
前記第2の光リンクを介して光を受信することにより、前記第2の光通信ターミナルの前記受信方向情報を検出する第2の光通信ターミナル送受信部と、
前記捕捉追尾制御部による制御に基づいて、前記第2の光通信ターミナル送受信部の指向方向を変化させることにより、前記第2の光リンクを維持するための捕捉追尾を行う第2の光通信ターミナル捕捉追尾機構部と、を備えていることを特徴とする、光通信ターミナル。 - 請求項8に記載の第2の光通信ターミナルとしての光通信ターミナル、及び、前記第1の光通信ターミナルを含み、
前記第1の光通信ターミナルは、
前記第1の光リンクを介して光を受信することにより、前記第1の光リンクを介して光を受信した方向に関する受信方向情報を検出する第1の光通信ターミナル送受信部と、
前記第1の光通信ターミナル送受信部が検出した受信方向情報を取得する第1の光通信ターミナル受信方向情報取得部と、
前記第1の光通信ターミナル受信方向情報取得部が取得した受信方向情報を参照して、前記第1の光通信ターミナルが前記第1の光リンクを介して光通信を行っている指向角度の前記第1の誤差を検出する第1の光通信ターミナル誤差検出部と、
前記第1の光通信ターミナル誤差検出部が検出した第1の誤差に基づいて、前記第1の光通信ターミナルが前記第1の光リンクを介して光通信を行う指向方向を制御することにより、前記第1の光リンクを維持するための捕捉追尾を制御する第1の光通信ターミナル捕捉追尾制御部と、
前記第1の光通信ターミナル捕捉追尾制御部による制御に基づいて、前記第1の光通信ターミナル送受信部の指向方向を変化させることにより、前記第1の光リンクを維持するための捕捉追尾を行う第1の光通信ターミナル捕捉追尾機構部と、を備えていることを特徴とする、光通信システム。 - 前記第1の光通信ターミナルは、
前記第2の光通信ターミナルの前記誤差検出部が検出した第3の誤差を取得する第1の光通信ターミナル指向方向制御情報取得部と、
前記第1の光通信ターミナル指向方向制御情報取得部が取得した第3の誤差に基づいて、前記第1の光通信ターミナル送受信部が前記第1の光リンクを介して光通信を行っている指向角度の第4の誤差を推定する第1の光通信ターミナル誤差値推定演算部と、をさらに備え、
前記第1の光通信ターミナル捕捉追尾制御部は、前記第1の光通信ターミナル誤差値推定演算部が前記第3の誤差に基づいて推定した第4の誤差にさらに基づいて、前記第1の光通信ターミナル送受信部が前記第1の光リンクを介して光通信を行う指向方向を制御することにより、前記第1の光リンクを維持するための捕捉追尾を制御することを特徴とする、請求項9に記載の光通信システム。 - 光の送受信を行う第1の送受信装置、及び、光又は電波の送受信を行う第2の送受信装置が設置された衛星において、当該第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御方法であって、
前記第1の送受信装置が光の送受信を行う指向方向を制御するための指向方向制御情報を取得する指向方向制御情報取得ステップと、
前記指向方向制御情報取得ステップで取得した指向方向制御情報に基づいて、前記第2の送受信装置が光又は電波の送受信を行う指向方向を制御する指向方向制御ステップと、を含むことを特徴とする、指向方向制御方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021568001A JP7080415B2 (ja) | 2020-02-06 | 2020-02-06 | 指向方向制御装置、光通信ターミナル、光通信システム、及び指向方向制御方法 |
PCT/JP2020/004460 WO2021156990A1 (ja) | 2020-02-06 | 2020-02-06 | 指向方向制御装置、光通信ターミナル、光通信システム、及び指向方向制御方法 |
CN202080095134.XA CN115039353A (zh) | 2020-02-06 | 2020-02-06 | 指向方向控制装置、光通信终端、光通信系统以及指向方向控制方法 |
EP20917928.2A EP4096115A4 (en) | 2020-02-06 | 2020-02-06 | STEERING STEERING CONTROL DEVICE, OPTICAL COMMUNICATION TERMINAL, OPTICAL COMMUNICATION SYSTEM, AND STEERING STEERING CONTROL METHOD |
US17/836,350 US11817902B2 (en) | 2020-02-06 | 2022-06-09 | Orientation direction control device, optical communication terminal, optical communication system, and orientation direction control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/004460 WO2021156990A1 (ja) | 2020-02-06 | 2020-02-06 | 指向方向制御装置、光通信ターミナル、光通信システム、及び指向方向制御方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/836,350 Continuation US11817902B2 (en) | 2020-02-06 | 2022-06-09 | Orientation direction control device, optical communication terminal, optical communication system, and orientation direction control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021156990A1 true WO2021156990A1 (ja) | 2021-08-12 |
Family
ID=77200817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/004460 WO2021156990A1 (ja) | 2020-02-06 | 2020-02-06 | 指向方向制御装置、光通信ターミナル、光通信システム、及び指向方向制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11817902B2 (ja) |
EP (1) | EP4096115A4 (ja) |
JP (1) | JP7080415B2 (ja) |
CN (1) | CN115039353A (ja) |
WO (1) | WO2021156990A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3125140A1 (en) * | 2021-07-19 | 2023-01-19 | Alan Scott | Optical data communication system |
US11888519B1 (en) * | 2022-04-01 | 2024-01-30 | Lockheed Martin Corporation | Optical communication satellite cross-connect |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012129610A (ja) * | 2010-12-13 | 2012-07-05 | Mitsubishi Electric Corp | 光空間通信装置 |
JP2012532547A (ja) * | 2009-07-06 | 2012-12-13 | アストリウム・エス・エー・エス | アンテナを地球の極地の上方に指向させている静止衛星に基づく低軌道の地球観測衛星のための極地における仮想的な人工衛星地上局 |
US10483629B1 (en) * | 2017-03-20 | 2019-11-19 | Octavio Cesar Silva | Antenna beam pointing system |
WO2019239524A1 (ja) * | 2018-06-13 | 2019-12-19 | 三菱電機株式会社 | 航跡推定装置及び携帯情報端末 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001203641A (ja) * | 2000-01-20 | 2001-07-27 | Nec Corp | 空間光伝送装置 |
US6417803B1 (en) * | 2001-04-03 | 2002-07-09 | The Boeing Company | Beam alignment system and method for an antenna |
WO2010084937A1 (ja) * | 2009-01-22 | 2010-07-29 | 京セラ株式会社 | 無線基地局、無線端末および無線通信方法 |
JP5720270B2 (ja) * | 2011-01-25 | 2015-05-20 | 日本電気株式会社 | 光空間通信における捕捉追尾方法、捕捉追尾機構および捕捉追尾システム |
US9042734B2 (en) * | 2013-04-02 | 2015-05-26 | Raytheon Company | Laser relay for free space optical communications |
US9270372B2 (en) * | 2013-06-25 | 2016-02-23 | Raytheon Company | Free-space optical mesh network |
US10812195B2 (en) | 2017-01-05 | 2020-10-20 | Sony Corporation | Optical communication device |
US10707961B2 (en) * | 2017-01-30 | 2020-07-07 | Space Systems/Loral, Llc | Adaptive communication system |
CN107707297A (zh) * | 2017-11-03 | 2018-02-16 | 潘运滨 | 一种航空激光通信系统及其通信方法 |
CN109450521B (zh) * | 2018-12-10 | 2020-06-12 | 北京邮电大学 | 星间接入方法及装置 |
CN110233665B (zh) * | 2019-05-28 | 2022-04-12 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 射频/激光协同快速捕获跟踪对准方法 |
-
2020
- 2020-02-06 CN CN202080095134.XA patent/CN115039353A/zh active Pending
- 2020-02-06 JP JP2021568001A patent/JP7080415B2/ja active Active
- 2020-02-06 WO PCT/JP2020/004460 patent/WO2021156990A1/ja unknown
- 2020-02-06 EP EP20917928.2A patent/EP4096115A4/en active Pending
-
2022
- 2022-06-09 US US17/836,350 patent/US11817902B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012532547A (ja) * | 2009-07-06 | 2012-12-13 | アストリウム・エス・エー・エス | アンテナを地球の極地の上方に指向させている静止衛星に基づく低軌道の地球観測衛星のための極地における仮想的な人工衛星地上局 |
JP2012129610A (ja) * | 2010-12-13 | 2012-07-05 | Mitsubishi Electric Corp | 光空間通信装置 |
US10483629B1 (en) * | 2017-03-20 | 2019-11-19 | Octavio Cesar Silva | Antenna beam pointing system |
WO2019239524A1 (ja) * | 2018-06-13 | 2019-12-19 | 三菱電機株式会社 | 航跡推定装置及び携帯情報端末 |
Non-Patent Citations (2)
Title |
---|
SHIRO YAMAKAWATAKASHI JONO: "Optical Inter-Orbit Communication Technology: Future Space Communication Infrastructure (The Review of Laser Engineering", January 2011, JAPAN AEROSPACE EXPLORATION AGENCY |
YOSHINORI ARIMOTO: "Recent Technological Trend in Optical Space Communications", KOGAKU, vol. 35, no. 9, 2006, Retrieved from the Internet <URL:https://annex.jsap.or.jp/photonics/kogaku/public/35-09-kaisetsu3.pdf> |
Also Published As
Publication number | Publication date |
---|---|
EP4096115A4 (en) | 2023-01-18 |
JPWO2021156990A1 (ja) | 2021-08-12 |
EP4096115A1 (en) | 2022-11-30 |
US11817902B2 (en) | 2023-11-14 |
JP7080415B2 (ja) | 2022-06-03 |
US20220303008A1 (en) | 2022-09-22 |
CN115039353A (zh) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11817902B2 (en) | Orientation direction control device, optical communication terminal, optical communication system, and orientation direction control method | |
US10788574B2 (en) | LIDAR device and LIDAR system including the same | |
CN111051911B (zh) | 控制装置 | |
KR100433796B1 (ko) | 전자적 능동 위상제어 배열 안테나 및 그 안테나에서의지향 방향 차이 보상 방법과, 그 안테나를 사용한 위성추적 시스템 및 그 방법 | |
CN113960620B (zh) | 高精度波束跟踪系统 | |
KR102001394B1 (ko) | 로그-영역 안테나 어레이 보간에 기반한 수신신호의 도래각 추정 방법과 이를 위한 장치 | |
KR101402489B1 (ko) | 안테나 빔 지향 디바이스 및 안테나 빔의 지향 방법 | |
CN115296704B (zh) | 分布式毫米波有源相控阵天线控制系统及控制方法 | |
KR102354896B1 (ko) | 보정경로를 가지는 인공위성의 합성 개구 레이다 장치 및 레이다 성능 확인 방법 | |
JP2016180729A (ja) | 衛星追尾アンテナ装置及び衛星追尾方法 | |
JP4019149B2 (ja) | 電波到来方向特定システム | |
JP2006267036A (ja) | 妨害波抑圧装置 | |
JP2000001200A (ja) | 宇宙機の姿勢を決定する改良された方法および装置 | |
JP4088109B2 (ja) | 反射器アレイアンテナの指向を修正する方法 | |
CN112394328B (zh) | 一种波束控制方法和sar系统 | |
KR102075468B1 (ko) | 비정렬된 배열 안테나를 위한 항재밍 장치 및 방법 | |
JPH06260823A (ja) | フェーズド・アレイ・アンテナ | |
CN113759376A (zh) | 一种自主探测成像一体化雷达装置 | |
KR102039047B1 (ko) | 이동형 위성통신 단말의 위성추적 성능개선을 위한 스텝 추적과 모노펄스 추적의 혼합추적방법 및 장치 | |
JP2002168941A (ja) | レーダ装置およびそのビーム補正方法 | |
US20210066798A1 (en) | RF Lens Device for Improving Directivity of Antenna Array, and Transmitting and Receiving Antenna System Comprising Same | |
KR102512907B1 (ko) | Sar 영상을 생성하는 sar 시스템 및 방법 | |
US12113608B2 (en) | Transmission of atmospheric ducted communication signals | |
US20240204403A1 (en) | Method for Controlling the Pointing of an Antenna | |
Kumar | Beamforming and Target Tracking Methods for Active RF Phased Array Seekers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20917928 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021568001 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020917928 Country of ref document: EP Effective date: 20220826 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |