WO2021153617A1 - 種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法 - Google Patents

種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法 Download PDF

Info

Publication number
WO2021153617A1
WO2021153617A1 PCT/JP2021/002848 JP2021002848W WO2021153617A1 WO 2021153617 A1 WO2021153617 A1 WO 2021153617A1 JP 2021002848 W JP2021002848 W JP 2021002848W WO 2021153617 A1 WO2021153617 A1 WO 2021153617A1
Authority
WO
WIPO (PCT)
Prior art keywords
seed sludge
methane
container
seed
sludge product
Prior art date
Application number
PCT/JP2021/002848
Other languages
English (en)
French (fr)
Inventor
中嶋 祐二
小川 尚樹
鵜飼 展行
友樹 田中
野間 彰
進 沖野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN202180010907.4A priority Critical patent/CN115038670A/zh
Publication of WO2021153617A1 publication Critical patent/WO2021153617A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • This disclosure relates to a seed sludge product, a seed sludge input device, and a seed sludge input method.
  • a system for producing methane by decomposing organic waste, wastewater, etc. with methane bacteria is known (for example, Patent Documents 1 and 2).
  • methane is produced by putting a solution treated with organic waste, wastewater, or the like into a methane fermenter configured to retain methane bacteria.
  • the present disclosure discloses seed sludge products, seed sludge input devices and seeds capable of shortening the start-up period of the methane fermenter or reducing the risk of system failure of the methane fermenter.
  • the purpose is to provide a method of sludge injection.
  • the seed sludge products related to this disclosure are A culture solution containing a COD component and A porous body in which methane bacteria were supported while being immersed in the culture solution, and A container for anaerobically storing the culture solution and the porous body, and To be equipped.
  • the seed sludge input device is A monitoring device that monitors the condition of a fermenter configured for methane fermentation, and a monitoring device that monitors the condition of the fermenter.
  • a charging device for charging the seed sludge enclosed in the seed sludge product when the methane fermentation has stopped or is likely to stop. To be equipped.
  • the method of inputting seed sludge according to the present disclosure is as follows. Monitoring steps to monitor the condition of fermenters configured to ferment methane, and In the fermenter, when the methane fermentation is stopped or may be stopped, the seed sludge enclosed in the seed sludge product is charged. including.
  • a seed sludge product, a seed sludge input device, and a seed sludge input method capable of shortening the start-up period of the methane fermenter or reducing the risk of the system of the methane fermenter breaking down are described. Can be provided.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • FIG. 1 is a diagram schematically showing the configuration of the seed sludge product 100 according to one embodiment.
  • the seed sludge product 100 includes a culture solution 110 containing a COD (Chemical Oxygen Demand) component, a porous body 120 immersed in the culture solution 110 and carrying methane bacteria, and the like.
  • a container 130 for anaerobically storing the culture solution 110 and the porous body 120 is provided.
  • the porous body 120 is activated carbon.
  • the porous body 120 may be, for example, charcoal, pearlite, zeolite, light stone, or the like.
  • the culture solution 110 contains sludge particles (not shown).
  • the container 130 may be a closed container or an airtight container.
  • the COD component of the culture solution 110 may contain sugars (glucose, sucrose, oligosaccharides) and organic acids (acetic acid, butyric acid, propionic acid, etc.).
  • the porous body 120 preferably contains one or more pores 121 (see FIG. 3 described later) having a diameter equal to or larger than the size of methane bacteria (for example, 0.5 ⁇ m or larger).
  • the particle size of the porous body 120 used as the carrier is preferably in the range of 1 to 10 mm in consideration of handleability and agitation.
  • the culture solution 110 may contain a persistent COD component.
  • the persistent COD component is gradually decomposed by methanogens. In this case, since the components necessary for maintaining the activity of the methane bacteria are not easily depleted, the seed sludge product 100 is suitable for long-term storage.
  • Persistent COD components are surfactants, air fresheners, cellulose and the like.
  • the persistent COD component may be a hydrocarbon having a linear structure and having 3 or more carbon atoms C.
  • the persistent COD component referred to here does not include plastics (polymers) that cannot be decomposed by methane bacteria and bactericidal hypochlorous acid.
  • Acetic acid and glucose are not included in the persistent COD component. However, these may be included as a part of sludge. Since these are immediately decomposed by methanogens, they may be used as starters for shortening the waiting period from encapsulation to availability.
  • the seed sludge product 100 may include a vent pipe 140 for maintaining the pressure in the container 130 below a threshold.
  • the vent pipe 140 is provided, for example, on the upper part of the container 130.
  • the vent pipe 140 may be a release valve that discharges gas so that the pressure does not exceed the threshold value, or may be a solenoid valve that is controlled to discharge gas when the pressure exceeds the threshold value. .. According to such a configuration, it is possible to suppress an excessive increase in the pressure in the container 130, so that safety can be improved.
  • the seed sludge product 100 comprises a flow meter 150 provided in a vent pipe 140 and configured to measure the amount of vented gas. May be good. According to such a configuration, the amount of methane gas generated, that is, the active state of methane bacteria can be monitored from the amount of vented gas (integrated value). Therefore, it is possible to easily confirm whether or not the sludge can be used as seed sludge.
  • the seed sludge product 100 may include a pressure gauge 160 for measuring the pressure in the container 130.
  • a pressure gauge 160 for measuring the pressure in the container 130.
  • the seed sludge product 100 may include a pH meter 170 for measuring the pH of the culture solution 110 in the container 130. In this case, it can be confirmed whether or not the pH of the culture solution 110 is within a range suitable for maintaining the activity of the methane bacteria.
  • the seed sludge product 100 may include a thermometer 180 for measuring the temperature inside the container 130.
  • a thermometer 180 for measuring the temperature inside the container 130.
  • the temperature inside the container 130 can be adjusted by cooling or heating from the outside.
  • the container 130 may be cooled by blowing air or cooling water. This improves storage stability.
  • the thermometer 180 may be provided so as to measure the ambient temperature around the container 130 instead of the temperature inside the container 130. Even in this case, it is possible to indirectly confirm whether or not the temperature is within an appropriate temperature range for the storage environment of methane bacteria.
  • the seed sludge product 100 may include a feed tube 190 for injecting at least one of a COD component and a pH adjuster into a container 130. ..
  • the feed pipe 190 may be provided with an on-off valve 191.
  • pH adjusting material is, for example, an alkali component such as NH 3, NaOH.
  • NH 3 is particularly suitable as a pH adjuster.
  • the environment of methane bacteria in the container 130 can be appropriately adjusted by injecting at least one of the COD component and the pH adjusting material. Therefore, the storage stability is improved.
  • the pH adjusting material may be put into the container 130.
  • the COD component may be additionally charged into the container 130.
  • the feed tube 190 may have a configuration that allows a part of the culture solution 110 to be taken out from the container 130. That is, the feed tube 190 may be used for component analysis of the culture solution 110, not for injection.
  • the configuration of the vent pipe 140, the flow meter 150, the pressure meter 160, the pH meter 170, the thermometer 180, the feed pipe 190 and the like shown in FIG. 1 may be omitted.
  • the porous body 120 is shown in a circular shape, but the porous body 120 is not limited to such a shape.
  • FIG. 2 is a diagram schematically showing the configuration of the seed sludge product 200 according to the comparative example.
  • the porous body 120 is not used in the seed sludge product 200 according to the comparative example.
  • the methane fermentation sludge 111 containing methane bacteria and particles settles and separates from the culture solution 110 containing the COD component.
  • the supply of the COD component to the methane bacterium becomes poor.
  • FIG. 3 is a schematic diagram for explaining the supply state of the COD component to the methane bacteria supported on the porous body 120 shown in FIG.
  • the black plot B schematically shows the methanogens supported on the porous body 120. As shown by the broken line, methane bacteria are supported in the pores 121 of the porous body 120.
  • Sludge particles (not shown) are easily adsorbed on the surface of the porous body 120. Therefore, according to the seed sludge product 100 according to one embodiment, particle sedimentation of the methane-fermented sludge 111 is unlikely to occur. As a result, the problem of poor supply of the COD component to the methane bacteria due to particle sedimentation is avoided, and a good supply state of the COD component to the methane bacteria carried on the porous body 120 immersed in the culture solution 110 is maintained. can.
  • the COD component is supplied to the pores 121 on the surface of the porous body 120 from all directions.
  • the COD component in the culture solution 110 diffuses into the pores 121 of the porous body 120. .. Therefore, the depletion of the COD component in the vicinity of the methane bacterium is prevented.
  • the seed sludge can be stored in a state where the activity of the methane bacteria is maintained for a long period of time. Therefore, for example, when a sign of system failure is observed in the methane fermentation tank, the risk of system failure in the methane fermentation tank can be reduced by using the seed sludge product 100 having the above configuration.
  • the start-up period can be shortened by using the seed sludge product 100 having the above configuration. For example, the start-up or restart, which requires a period of about one month, can be shortened to about one week by using the seed sludge product 100.
  • the culture solution 110 10 m 3 of water containing 50 to 100 ppm (50 to 100 g) of COD is used.
  • the porous body 120 10 kg of activated carbon is used.
  • the COD component is a persistent COD component, an organic acid (salt), and a saccharide. 1 g or more (preferably 10 g or more, more preferably 100 g or more) of methane fermentation sludge is added to the culture solution 110. These are stored in the container 130.
  • washing wastewater containing a surfactant may be used as the culture solution 110 containing methane fermentation sludge.
  • the oxygen concentration in the container 130 is almost zero. Even if air is mixed in during storage, aerobic bacteria are present in the container 130, so that the oxygen component is reduced by the aerobic bacteria. Further, since the inside of the container 130 becomes a positive pressure due to the generation of methane gas, the oxygen component is discharged from the vent pipe 140.
  • the seed sludge product 100 containing such a charged amount can be stored for a long period of time under a predetermined temperature condition (for example, 37 ° C. or higher).
  • a predetermined temperature condition for example, 37 ° C. or higher.
  • the inventor of the present application confirmed the storage stability of the seed sludge product 100 by an experiment.
  • the experimental results in which the methane fermented sludge is stored in the container 130 and stored will be described.
  • Table 1 shows the volume increase measured by the Archimedes method in Comparative Example 1 and Examples 2-1 and 2-2.
  • the measurement error of the volume increase is considered to be about 10 ml.
  • Table 2 shows the volume increase measured by the volume increase measurement method using a syringe and the analysis result of analyzing the gas component in the container 130 in Comparative Example 1 and Examples 2-1 and 2-2. ing.
  • " ⁇ 1" in Examples 2-1 and 2-2 means less than 1%.
  • Comparative Example 1 is an example in which a sample in which activated carbon (without sludge) is added to water is used.
  • Examples 2-1 and 2-2 are examples in the case where activated carbon is used as the porous body 120 and the culture solution 110 containing a surfactant is used.
  • Examples 2-1 and 2-2 are examples in which a sample in which methane fermentation sludge, activated carbon (particle size is extremely small), and culture solution 110 are mixed in a slurry form is used.
  • Example 1 it can be seen that in Comparative Example 1, there was almost no volume increase 4 days, 7 days, and 11 days after the start of the test. On the other hand, in Examples 2-1 and 2-2, it can be seen that the volume is gradually increasing. Looking at Table 2, it can be seen that the volume increase was reconfirmed as a result of measuring the volume increase 15 days after the start of the test for Examples 2-1 and 2-2 by a method different from that in Table 1. .. The increase in volume is thought to be due to methane fermentation.
  • FIG. 4 is a graph showing an example of the amount of methane bacteria contained in the seed sludge product 100 according to one embodiment.
  • the vertical axis shows the amount (relative value) of methane bacteria when the initial value is 1, and the horizontal axis shows the elapsed period since the seed sludge product 100 was manufactured.
  • FIG. 5 is a graph showing an example of the amount of methane gas generated in the seed sludge product 100 according to the embodiment.
  • the vertical axis shows the amount of methane gas generated (relative value) when the initial value is 1, and the horizontal axis shows the elapsed period since the seed sludge product 100 was manufactured. ..
  • FIG. 6 is a conceptual diagram for explaining the effect of adding sludge from the seed sludge product 100 according to the embodiment.
  • This graph shows an example of the amount of methane gas recovered in the methane fermenter in comparison with the case where the sludge of the seed sludge product 100 is added and the case where the sludge is not added.
  • the vertical axis shows the amount of methane gas recovered from 1 kg of sludge in the methane fermenter per day m 3
  • the horizontal axis shows the elapsed period (the number of days elapsed from the start of operation).
  • Plot P1 shows the transition of the amount of methane gas recovered when the sludge of the seed sludge product 100 is not added.
  • Plot P2 shows the transition of the methane gas recovery amount when the sludge of the seed sludge product 100 is added at the timing when it falls below the threshold value shown by the broken line (for example, 70% of the target value of the methane gas recovery amount).
  • FIG. 7 is a block diagram schematically showing the configuration of the seed sludge charging device 1 according to the embodiment.
  • the seed sludge input device 1 has a monitoring device 2 for monitoring the state of a fermenter configured for methane fermentation and a state in which methane fermentation is stopped or stopped in the fermenter. It is provided with a charging device 3 for charging the seed sludge enclosed in the seed sludge product 100 when there is a risk.
  • the monitoring device 2 is composed of a sensor, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the charging device 3 is controlled by the monitoring device 2 and is configured to open the seed sludge product 100 and load the seed sludge in response to the control signal.
  • a state in which methane fermentation may be stopped for example, a state in which a substance that inhibits methane fermentation has flowed into the fermenter or has been found to have a possibility of flowing into the fermenter can be considered. According to such a configuration, when the methane fermentation system fails, it is possible to easily restart the methane fermentation system in a short period of time by adding seed sludge.
  • the seed sludge product 100 is opened and the seed sludge is charged regardless of the seed sludge charging device 1. good.
  • the amount of methane gas recovered may be measured by a periodic inspection about once a year, and based on the measurement result, it may be determined whether or not to add seed sludge and the amount of methane gas to be added.
  • the seed sludge product 100 may be stored in a facility of a methane fermenter and deployed so that it can be charged at all times.
  • the present disclosure is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.
  • the seed sludge product (100) is A culture solution (110) containing a COD component and A porous body (120) in which methane bacteria were supported while being immersed in the culture solution (110), and A container (130) for anaerobically storing the culture solution (110) and the porous body (120), and To be equipped.
  • the porous body (120) carrying methane bacteria since the porous body (120) carrying methane bacteria is used, there is a problem of poor supply of COD components to methane bacteria due to particle sedimentation of methane fermentation sludge. This can be avoided and a good supply of the COD component to the methanogen carried on the porous body (120) immersed in the culture solution (110) can be maintained. That is, when the COD component is consumed by the decomposition by the methane bacteria carried on the porous body (120), the COD component in the culture solution (110) moves into the pores (121) of the porous body (120). It diffuses and prevents the depletion of COD components in the vicinity of methane bacteria.
  • seed sludge can be stored while maintaining the activity of methane bacteria for a long period of time. Therefore, for example, when a sign of system failure is observed in the methane fermenter, the risk of system failure in the methane fermenter can be reduced by using the seed sludge product (100) having the above configuration. can. Alternatively, when starting up the methane fermenter, the start-up period can be shortened by using the seed sludge product (100) having the above configuration.
  • the culture solution (110) contains a persistent COD component.
  • the persistent COD component is gradually decomposed by methane bacteria, so that it is not easily depleted. Therefore, it is suitable for long-term storage of seed sludge products.
  • the seed sludge product (100) is A vent pipe (140) for maintaining the pressure in the container (130) below the threshold value is provided.
  • the seed sludge product (100) is A flow meter (150) provided in the vent pipe (140) and configured to measure the amount of vented gas is provided.
  • the amount of methane gas generated that is, the active state of methane bacteria can be monitored from the amount of vented gas. Therefore, it is possible to easily confirm whether or not the sludge can be used as seed sludge.
  • the seed sludge product (100) is A pressure gauge (160) for measuring the pressure in the container (130) is provided.
  • the pressure inside the container (130) can be monitored. Therefore, the pressure abnormality in the container (130) can be easily detected.
  • the seed sludge product (100) is A pH meter (170) for measuring the pH of the culture solution (110) in the container (130) is provided.
  • the pH of the culture solution (110) is within a range suitable for maintaining the activity of methane bacteria.
  • the seed sludge product (100) is A thermometer (180) for measuring the temperature inside the container (130) is provided.
  • the temperature range is appropriate for the storage environment of methane bacteria. For example, when the temperature deviates from an appropriate temperature range, the temperature inside the container (130) can be adjusted by cooling or heating from the outside. Therefore, the storage stability is improved.
  • the seed sludge product (100) is A feed tube (190) for injecting at least one of the COD component and the pH adjusting material into the container (130) is provided.
  • the environment of methane bacteria in the container (130) can be appropriately adjusted by injecting at least one of the COD component and the pH adjusting material. Therefore, the storage stability is improved.
  • the seed sludge input device (1) is A monitoring device (2) that monitors the condition of a fermenter configured for methane fermentation, and a monitoring device (2).
  • a monitoring device (2) that monitors the condition of a fermenter configured for methane fermentation
  • a monitoring device (2) In the fermenter, when the methane fermentation is stopped or may be stopped, it is sealed in the seed sludge product (100) according to any one of (1) to (8) above.
  • the method of adding seed sludge according to the embodiment of the present disclosure is as follows. Monitoring steps to monitor the condition of fermenters configured to ferment methane, and In the fermenter, when the methane fermentation is stopped or may be stopped, it is sealed in the seed sludge product (100) according to any one of (1) to (8) above. Steps to add seed sludge and including.
  • Type sludge input device 2 Monitoring device 3 Input device 100, 200 type sludge product 110 Culture solution 111 methane fermentation sludge 120 Porous body 121 Pore 130 Container 140 Vent pipe 150 Flow meter 160 Pressure meter 170 pH meter 180 Thermometer 190 Feed tube 191 On-off valve

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

種汚泥製品は、COD成分を含む培養液と、培養液に浸漬されるとともに、メタン菌が担持された多孔質体と、培養液及び多孔質体を嫌気状態で収納するための容器と、を備える。培養液は、難分解性COD成分を含むことが好ましい。種汚泥製品は、メタン発酵槽の立ち上げ時又はメタン発酵槽の系が破綻するリスクがある時に使用され、種汚泥製品に封入されている種汚泥がメタン発酵槽に投入される。

Description

種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法
 本開示は、種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法に関する。
 メタン菌に有機性廃棄物や廃水等を分解させてメタンを生成するシステムが知られている(例えば、特許文献1、2)。このようなシステムでは、メタン菌を保持するように構成されたメタン発酵槽に有機性廃棄物や廃水等を処理した溶液を投入することにより、メタンを生成する。
特開2016-203153号公報 特開2005-218897号公報
 メタン発酵槽におけるメタン発酵系の立ち上げには1ヶ月以上の期間を要する。これはメタン菌の増殖に時間がかかるためである。また、メタン発酵を阻害する物質の混入やアンモニア濃度の過度な上昇、有機酸濃度の過度な上昇等により、メタン発酵系が破綻する場合がある。この場合においても、メタン発酵系の再立ち上げに、1ヶ月以上の期間を要する。
 ここで、メタン発酵系を早く立ち上げる方法として、他のメタン発酵槽から取得した種汚泥をメタン発酵槽に投入する方法がある。しかし、この方法では、種汚泥に含まれるメタン菌の活性が低下しないように、取得してから投入するまでの期間において種汚泥の嫌気状態を保つことが必要である。実際には、このような期間において嫌気状態を維持することは難しいため、メタン菌の活性が低下した状態の種汚泥を投入することとなる。この場合、メタン菌の増殖に時間がかかってしまう。
 したがって、メタン発酵系の早い立ち上げを実現するためには、メタン菌の活性が維持された新鮮な種汚泥を投入可能な手法を確立することが必要である。なお、このような手法が確立できれば、例えばメタン発酵槽において系の破綻の兆候が見られた場合等においても、種汚泥を投入することにより、破綻リスクを軽減する効果も期待できる。
 上述の事情に鑑みて、本開示は、メタン発酵槽の立ち上げ期間を短縮すること又はメタン発酵槽の系が破綻するリスクを軽減することが可能な種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法を提供することを目的とする。
 本開示に係る種汚泥製品は、
 COD成分を含む培養液と、
 前記培養液に浸漬されるとともに、メタン菌が担持された多孔質体と、
 前記培養液及び前記多孔質体を嫌気状態で収納するための容器と、
を備える。
 本開示に係る種汚泥の投入装置は、
 メタン発酵するように構成された発酵槽の状態を監視する監視する監視装置と、
 前記発酵槽において、メタン発酵が停止した状態又は停止する虞がある状態になった場合に上記の種汚泥製品に封入されている種汚泥を投入する投入装置と、
を備える。
 本開示に係る種汚泥の投入方法は、
 メタン発酵するように構成された発酵槽の状態を監視する監視するステップと、
 前記発酵槽において、メタン発酵が停止した状態又は停止する虞がある状態になった場合に上記の種汚泥製品に封入されている種汚泥を投入するステップと、
を含む。
 本開示によれば、メタン発酵槽の立ち上げ期間を短縮すること又はメタン発酵槽の系が破綻するリスクを軽減することが可能な種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法を提供することができる。
一実施形態に係る種汚泥製品の構成を概略的に示す図である。 比較例に係る種汚泥製品の構成を概略的に示す図である。 図1に示す多孔質体に担持されるメタン菌に対するCOD成分の供給状態を説明するための模式図である。 一実施形態に係る種汚泥製品に含まれるメタン菌の量の一例を示すグラフである。 一実施形態に係る種汚泥製品におけるメタンガス発生量の一例を示すグラフである。 一実施形態に係る種汚泥製品の汚泥を投入することによる効果を説明するための概念図である。 一実施形態に係る種汚泥の投入装置の構成を概略的に示すブロック図である。
 以下、添付図面を参照して幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
(種汚泥製品の構成)
 以下、一実施形態に係る種汚泥製品100について説明する。図1は、一実施形態に係る種汚泥製品100の構成を概略的に示す図である。
 図1に示すように、種汚泥製品100は、COD(化学的酸素要求量)成分を含む培養液110と、培養液110に浸漬されるとともに、メタン菌が担持された多孔質体120と、培養液110及び多孔質体120を嫌気状態で収納するための容器130と、を備える。一実施形態では、多孔質体120は、活性炭である。なお、多孔質体120は、例えば、木炭、パーライト、ゼオライト、軽石材等であってもよい。培養液110には、汚泥の粒子(不図示)が含まれる。容器130は、密閉容器や気密容器であってもよい。
 糖(グルコース、シュクロース、オリゴ糖)や有機酸(酢酸、酪酸、プロピオン酸など)は、メタン発酵の原料になる。そのため、培養液110のCOD成分は、糖(グルコース、シュクロース、オリゴ糖)や有機酸(酢酸、酪酸、プロピオン酸など)を含んでいてもよい。多孔質体120は、メタン菌の大きさ以上(例えば、0.5μm以上)の径を有する一以上の細孔121(後述する図3参照)を含むことが好ましい。また、担体として用いる多孔質体120の粒径は、ハンドリング性や撹拌性を考慮して、1~10mmの範囲内であることが好ましい。
 幾つかの実施形態において、培養液110は、難分解性COD成分を含んでいてもよい。難分解性COD成分は、メタン菌によって少しずつ分解される。この場合、メタン菌の活性を維持するために必要な成分が枯渇しにくいため、種汚泥製品100の長期間の保存に適している。難分解性COD成分は、界面活性剤、芳香剤、セルロース等である。難分解性COD成分は、直鎖構造で炭素原子Cの数が3以上の炭化水素であってもよい。なお、ここで言う難分解性COD成分には、メタン菌が分解できないプラスチック(ポリマー)や殺菌性の次亜塩素酸は含まれない。
 酢酸やグルコースは、難分解性COD成分には含まれない。ただし、汚泥の一部としては、これらが含まれてもよい。これらは、すぐにメタン菌によって分解されるため、封入してから使用可能となるまでの待機期間を短縮するためのスターターとして使用されてもよい。
 幾つかの実施形態において、例えば、図1に示すように、種汚泥製品100は、容器130内の圧力を閾値以下に維持するためのベント管140を備えていてもよい。ベント管140は、例えば、容器130の上部に設けられる。ベント管140は、圧力が閾値を超えないようにガスを排出するリリース弁であってもよいし、圧力が閾値を超えた場合にガスを排出するように制御される電磁弁であってもよい。このような構成によれば、容器130内の圧力が過度に上昇することを抑えることができるため、安全性を向上させることができる。
 幾つかの実施形態において、例えば、図1に示すように、種汚泥製品100は、ベント管140に設けられ、ベントされたガスの量を計測するように構成された流量計150を備えていてもよい。このような構成によれば、ベントされたガスの量(積算値)からメタンガス発生量すなわちメタン菌の活性状態をモニタリングすることができる。そのため、種汚泥として使用可能な状態か否かを容易に確認することができる。
 幾つかの実施形態において、例えば、図1に示すように、種汚泥製品100は、容器130内の圧力を計測するための圧力計160を備えていてもよい。この場合、容器130内の圧力を監視することができるため、容器130内の圧力異常を容易に検出することができる。
 幾つかの実施形態において、例えば、図1に示すように、種汚泥製品100は、容器130内の培養液110のpHを計測するためのpH計170を備えていてもよい。この場合、培養液110のpHがメタン菌の活性維持に適した範囲内の値であるか否かを確認することができる。
 幾つかの実施形態において、例えば、図1に示すように、種汚泥製品100は、容器130内の温度を計測するための温度計180を備えていてもよい。かかる構成によれば、メタン菌の保存環境として適切な温度範囲内(例えば、37~55℃)であるか否かを確認することができる。例えば、適切な温度範囲から逸脱している場合には、外部から冷却又は加熱を行うことにより、容器130内の温度を調整することが可能となる。例えば、温度計180の計測値が所定温度を超えている場合に、送風や冷却水で容器130を冷却してもよい。これにより、保存性が向上する。
 なお、温度計180は、容器130内の温度ではなく、容器130の周囲の雰囲気温度を計測するように設けられてもよい。この場合においても、間接的に、メタン菌の保存環境として適切な温度範囲内であるか否かを確認することができる。
 幾つかの実施形態において、例えば、図1に示すように、種汚泥製品100は、容器130内にCOD成分とpH調整材との少なくとも一方を注入するためのフィード管190を備えていてもよい。フィード管190には、開閉弁191が設けられてもよい。
 pH調整材は、例えば、NH、NaOH等のアルカリ成分である。NHは、pH調整材として特に適している。このような構成によれば、COD成分とpH調整材との少なくとも一方を注入することにより、容器130内におけるメタン菌の環境を適切に調整することができる。そのため、保存性が向上する。例えば、pH計170の計測値がpH7.0以下となった場合にpH調整材を容器130内に投入してもよい。圧力計160の計測値が陰圧又は常圧を示す場合にCOD成分を容器130内に追加投入してもよい。
 なお、フィード管190は、培養液110の一部を容器130内から抜き出すことを可能とする構成であってもよい。すなわち、フィード管190は、注入用ではなく、培養液110の成分分析用であってもよい。
 なお、図1に示す、ベント管140、流量計150、圧力計160、pH計170、温度計180、フィード管190等の構成は、省略されてもよい。また、図1では、多孔質体120が円形で示されているが、多孔質体120は、このような形状に限られない。
 ここで、多孔質体120を用いた場合の利点について説明する。図2は、比較例に係る種汚泥製品200の構成を概略的に示す図である。
 図2に示すように、比較例に係る種汚泥製品200には、多孔質体120が使用されていない。この場合、長時間が経過すると、メタン菌と粒子を含むメタン発酵汚泥111が沈降し、COD成分を含む培養液110と分離してしまう。この場合、メタン菌へのCOD成分の供給不良が生じてしまう。
 図3は、図1に示す多孔質体120に担持されるメタン菌に対するCOD成分の供給状態を説明するための模式図である。黒色のプロットBは、多孔質体120に担持されるメタン菌を模式的に示している。破線で示すように、多孔質体120の細孔121にメタン菌が担持される。
 多孔質体120の表面には、汚泥の粒子(不図示)が吸着しやすい。そのため、一実施形態に係る種汚泥製品100によれば、メタン発酵汚泥111の粒子沈降が生じにくい。その結果、粒子沈降に起因したメタン菌へのCOD成分の供給不良の問題を回避し、培養液110に浸漬された多孔質体120に担持されるメタン菌に対するCOD成分の良好な供給状態を維持できる。
 例えば、図3において矢印で示すように、多孔質体120の表面上の細孔121に対して、あらゆる方向からCOD成分が供給される。この場合、多孔質体120に担持されたメタン菌による分解により、メタン菌近傍でCOD成分が消費されても、培養液110中のCOD成分が多孔質体120の細孔121内へと拡散する。そのため、メタン菌近傍でのCOD成分の枯渇が防止される。
 したがって、種汚泥製品100によれば、長期間にわたってメタン菌の活性を維持したままの状態で種汚泥を保存することができる。このため、例えばメタン発酵槽において系の破綻の兆候が見られた場合等に、上記構成の種汚泥製品100を使用することにより、メタン発酵槽の系が破綻するリスクを軽減することができる。あるいは、メタン発酵槽の立ち上げ時に、上記構成の種汚泥製品100を使用することで立ち上げ期間を短縮することができる。例えば、1ヶ月程度の期間が必要な立ち上げ又は再立ち上げを種汚泥製品100の使用により1週間程度に短縮化することが可能となる。
 以下、具体的な実施例を挙げて、上記実施形態をさらに具体的に説明する。まず、種汚泥製品100の仕込み量の一例を説明する。
 培養液110として、50~100ppm(50~100g)のCODを含む水10mを使用する。多孔質体120として、活性炭10kgを使用する。COD成分は、難分解性COD成分、有機酸(塩)、糖類である。培養液110には、1g以上(好ましくは10g以上、より好ましくは100g以上)のメタン発酵汚泥を投入する。これらを容器130内に収納する。なお、メタン発酵汚泥を含む培養液110として、界面活性剤を含む洗濯排水が使用されてもよい。
 嫌気状態で保管するため、容器130内の酸素濃度はほとんどゼロであることが好ましい。なお、収納時に空気が混入したとしても、容器130内には好気性の菌も少なからず存在するため、酸素成分は好気性の菌によって減少する。また、メタンガスの発生により、容器130内が陽圧となるため、酸素成分はベント管140から排出される。
 このような仕込み量を収納した種汚泥製品100は、所定の温度条件(例えば、37℃以上)で長期保管することができる。なお、本願発明者は、実験により種汚泥製品100の保存性を確認した。以下、メタン発酵汚泥を容器130に収納して保存した実験結果を説明する。
 表1は、比較例1及び実施例2-1、2-2において、アルキメデス法によって計測した体積増加量を示している。なお、体積増加量の計測誤差は10ml程度と考えられる。
Figure JPOXMLDOC01-appb-T000001
 
 表2は、比較例1及び実施例2-1、2-2において、シリンジを用いた体積増加量の計測法によって計測した体積増加量と容器130内のガス成分を分析した分析結果とを示している。なお、実施例2-1、2-2における「<1」は1%未満を意味する。
Figure JPOXMLDOC01-appb-T000002
 
 比較例1は、水に活性炭(汚泥なし)を投入したサンプルを使用した例である。実施例2-1、2-2は、活性炭を多孔質体120として使用し、界面活性剤を含む培養液110を使用した場合の実施例である。実施例2-1、2-2は、メタン発酵汚泥と活性炭(粒径が極小)と培養液110がスラリー状で混合したサンプルを使用した例である。
 表1を見ると、比較例1では、試験開始から4日後、7日後、11日後の体積増加量はほとんどないことがわかる。一方、実施例2-1、2-2では、徐々に体積が増加していることがわかる。表2を見ると、実施例2-1、2-2について試験開始から15日後の体積増加量を表1の場合とは異なる手法で計測した結果、体積増加量を再確認できたことがわかる。体積の増加は、メタン発酵によるものと考えられる。
 表2を見ると、実施例2-1、2-2において15日後の容器130内のガス成分としてメタンガスが検出されていることがわかる。このように、実施例2-1、2-2では、メタン菌の活性が維持されていることを推測可能な実験結果が得られた。一方、比較例1の実験結果では、そのような実験結果が得られなかった。このような実験結果からメタンガスの生成速度と温度の関係性を導き出して、長期保存に最適な条件を得ることも可能である。
 以下、メタン菌を含む洗濯排水を培養液110として使用し、活性炭を多孔質体120として使用し、ドラム缶を容器130として使用した場合の種汚泥製品100の実施例について説明する。この実施例では、16SrDNAと“メチルコエンザイムM 還元酵素”DNAとをPCR(Polymerase Chain Reaction)で計測した。具体的には、THUNDERBIRD(登録商標) SYBR qPCR Mix(東洋紡)をPCR用酵素として用い、ロシュ製のlightcycler(制御用PC 付き)を用いて遺伝子増幅試験を実施した。増幅作業フローは以下の通りである。手順2~4は65回繰り返した。
手順1:プレヒート(95℃),60sec
手順2:融解反応:(95℃),10sec
手順3:アニーリング反応:(55℃),10sec
手順4:伸長反応(60℃):50sec
 図4は、一実施形態に係る種汚泥製品100に含まれるメタン菌の量の一例を示すグラフである。図4において、縦軸は、初期値を1とした場合のメタン菌の量(相対値)を対数形式で示し、横軸は、種汚泥製品100が製造されてから経過した経過期間を示している。図5は、一実施形態に係る種汚泥製品100におけるメタンガス発生量の一例を示すグラフである。図5において、縦軸は、初期値を1とした場合のメタンガス発生量(相対値)を対数形式で示し、横軸は、種汚泥製品100が製造されてから経過した経過期間を示している。
 図4及び図5に示すように、1年後でもメタン菌の活性状態が維持されていることがわかる。また、7年後では1年後の場合よりも活性が高く、メタン菌が増加していることがわかる。14年後では、7年後と同等の活性が維持されていることがわかる。
 図6は、一実施形態に係る種汚泥製品100の汚泥を投入することによる効果を説明するための概念図である。このグラフは、種汚泥製品100の汚泥を投入した場合と投入しない場合とを比較したメタン発酵槽におけるメタンガス回収量の一例を示している。縦軸は、1日当たりのメタン発酵槽の1kgの汚泥から回収されるメタンガス回収量mを示し、横軸は経過期間(運用開始から経過した日数)を示している。
 プロットP1は、種汚泥製品100の汚泥を投入しない場合のメタンガス回収量の推移を示している。プロットP2は、破線で示す閾値(例えば、メタンガス回収量の目標値の70%)を下回ったタイミングで種汚泥製品100の汚泥を投入した場合のメタンガス回収量の推移を示している。
 プロットP1で示すように、何らかの理由により、メタン発酵系が阻害された場合に、種汚泥製品100の汚泥を投入しない場合、メタンガス回収量は徐々に低下していき、メタン発酵系が破綻してしまう。これに対し、プロットP2で示すように、メタン発酵系が阻害されても、その兆候が表れてきたタイミング(閾値を下回ったタイミング)で種汚泥製品100の汚泥を投入した場合、メタンガス回収量が増加して、メタン発酵系の破綻を回避することができる。
(種汚泥の投入装置の構成)
 以下、メタン発酵するように構成された発酵槽(メタン発酵槽)に自動的に種汚泥製品100に封入されている種汚泥を投入する種汚泥の投入装置1について説明する。図7は、一実施形態に係る種汚泥の投入装置1の構成を概略的に示すブロック図である。
 図7に示すように、種汚泥の投入装置1は、メタン発酵するように構成された発酵槽の状態を監視する監視する監視装置2と、発酵槽において、メタン発酵が停止した状態又は停止する虞がある状態になった場合に種汚泥製品100に封入されている種汚泥を投入する投入装置3と、を備える。監視装置2は、センサ、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等から構成される。投入装置3は、監視装置2によって制御され、制御信号に応じて種汚泥製品100の開封及び種汚泥の投入を実行するように構成される。
 メタン発酵が停止する虞がある状態としては、例えば、メタン発酵を阻害する物質が発酵槽内に流入したこと又は流入する可能性があることが判明した状態が考えられる。このような構成によれば、メタン発酵系が破綻した場合の再立ち上げを種汚泥の投入によって短期間かつ容易に行うことが可能となる。
 なお、種汚泥の投入装置1によらず、ユーザが発酵槽の状態(例えばガス発生量)を監視して、必要と判断した場合に種汚泥製品100を開封し、種汚泥を投入してもよい。毎年1回程度の定期点検で、メタンガスの回収量を計測し、その計測結果に基づいて、種汚泥を投入するか否かの判断とその投入量の決定が行われてもよい。種汚泥製品100は、メタン発酵槽の施設に保管され、常時投入可能に配備されてもよい。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
(まとめ)
 上記各実施形態に記載の内容は、例えば以下のように把握される。
 (1)本開示の一実施形態に係る種汚泥製品(100)は、
 COD成分を含む培養液(110)と、
 前記培養液(110)に浸漬されるとともに、メタン菌が担持された多孔質体(120)と、
 前記培養液(110)及び前記多孔質体(120)を嫌気状態で収納するための容器(130)と、
を備える。
 上記(1)に記載の構成によれば、メタン菌を担持する多孔質体(120)を用いているため、メタン発酵汚泥の粒子沈降に起因したメタン菌へのCOD成分の供給不良の問題を回避し、培養液(110)に浸漬された多孔質体(120)に担持されるメタン菌に対するCOD成分の良好な供給状態を維持できる。即ち、多孔質体(120)に担持されたメタン菌による分解でCOD成分が消費されると、培養液(110)中のCOD成分が多孔質体(120)の細孔(121)内へと拡散してメタン菌近傍でのCOD成分の枯渇が防止される。
 その結果、長期間にわたってメタン菌の活性を維持したままの状態で種汚泥を保存することができる。このため、例えばメタン発酵槽において系の破綻の兆候が見られた場合等に、上記構成の種汚泥製品(100)を使用することにより、メタン発酵槽の系が破綻するリスクを軽減することができる。あるいは、メタン発酵槽の立ち上げ時に、上記構成の種汚泥製品(100)を使用することで立ち上げ期間を短縮することができる。
 (2)幾つかの実施形態では、上記(1)に記載の構成において、
 前記培養液(110)は、難分解性COD成分を含む。
 上記(2)に記載の構成によれば、難分解性COD成分は、メタン菌によって少しずつ分解されるため、枯渇しにくい。そのため、種汚泥製品の長期間の保存に適している。
 (3)幾つかの実施形態では、上記(1)又は(2)に記載の構成において、前記種汚泥製品(100)は、
 前記容器(130)内の圧力を閾値以下に維持するためのベント管(140)を備える。
 上記(3)に記載の構成によれば、容器(130)内の圧力が過度に上昇することを抑えることができるため、安全性を向上させることができる。
 (4)幾つかの実施形態では、上記(3)に記載の構成において、前記種汚泥製品(100)は、
 前記ベント管(140)に設けられ、ベントされたガスの量を計測するように構成された流量計(150)を備える。
 上記(4)に記載の構成によれば、ベントされたガスの量からメタンガス発生量すなわちメタン菌の活性状態をモニタリングすることができる。そのため、種汚泥として使用可能な状態か否かを容易に確認することができる。
 (5)幾つかの実施形態では、上記(1)乃至(4)の何れか一つに記載の構成において、前記種汚泥製品(100)は、
 前記容器(130)内の圧力を計測するための圧力計(160)を備える。
 上記(5)に記載の構成によれば、容器(130)内の圧力を監視することができる。そのため、容器(130)内の圧力異常を容易に検出することができる。
 (6)幾つかの実施形態では、上記(1)乃至(5)の何れか一つに記載の構成において、前記種汚泥製品(100)は、
 前記容器(130)内の前記培養液(110)のpHを計測するためのpH計(170)を備える。
 上記(6)に記載の構成によれば、培養液(110)のpHがメタン菌の活性維持に適した範囲内の値であるか否かを確認することができる。
 (7)幾つかの実施形態では、上記(1)乃至(6)の何れか一つに記載の構成において、前記種汚泥製品(100)は、
 前記容器(130)内の温度を計測するための温度計(180)を備える。
 上記(7)に記載の構成によれば、メタン菌の保存環境として適切な温度範囲内であるか否かを確認することができる。例えば、適切な温度範囲から逸脱している場合には、外部から冷却又は加熱を行うことにより、容器(130)内の温度を調整することが可能となる。そのため、保存性が向上する。
 (8)幾つかの実施形態では、上記(1)乃至(7)の何れか一つに記載の構成において、前記種汚泥製品(100)は、
 前記容器(130)内に前記COD成分とpH調整材との少なくとも一方を注入するためのフィード管(190)を備える。
 上記(8)に記載の構成によれば、COD成分とpH調整材との少なくとも一方を注入することにより容器(130)内におけるメタン菌の環境を適切に調整することができる。そのため、保存性が向上する。
 (9)本開示の一実施形態に係る種汚泥の投入装置(1)は、
 メタン発酵するように構成された発酵槽の状態を監視する監視する監視装置(2)と、
 前記発酵槽において、メタン発酵が停止した状態又は停止する虞がある状態になった場合に上記(1)乃至(8)の何れか一つに記載の種汚泥製品(100)に封入されている種汚泥を投入する投入装置(3)と、
を備える。
 上記(9)に記載の構成によれば、メタン発酵系が破綻した場合の再立ち上げを種汚泥の投入によって短期間かつ容易に行うことが可能となる。
 (10)本開示の一実施形態に係る種汚泥の投入方法は、
 メタン発酵するように構成された発酵槽の状態を監視する監視するステップと、
 前記発酵槽において、メタン発酵が停止した状態又は停止する虞がある状態になった場合に上記(1)乃至(8)の何れか一つに記載の種汚泥製品(100)に封入されている種汚泥を投入するステップと、
を含む。
 上記(10)に記載の方法によれば、メタン発酵系が破綻した場合の再立ち上げを種汚泥の投入によって短期間かつ容易に行うことが可能となる。
1 種汚泥の投入装置
2 監視装置
3 投入装置
100,200 種汚泥製品
110 培養液
111 メタン発酵汚泥
120 多孔質体
121 細孔
130 容器
140 ベント管
150 流量計
160 圧力計
170 pH計
180 温度計
190 フィード管
191 開閉弁

Claims (10)

  1.  COD成分を含む培養液と、
     前記培養液に浸漬されるとともに、メタン菌が担持された多孔質体と、
     前記培養液及び前記多孔質体を嫌気状態で収納するための容器と、
    を備える種汚泥製品。
  2.  前記培養液は、難分解性COD成分を含む
    請求項1に記載の種汚泥製品。
  3.  前記容器内の圧力を閾値以下に維持するためのベント管を備える
    請求項1又は2に記載の種汚泥製品。
  4.  前記ベント管に設けられ、ベントされたガスの量を計測するように構成された流量計を備える
    請求項3に記載の種汚泥製品。
  5.  前記容器内の圧力を計測するための圧力計を備える
    請求項1乃至4の何れか一項に記載の種汚泥製品。
  6.  前記容器内の前記培養液のpHを計測するためのpH計を備える
    請求項1乃至5の何れか一項に記載の種汚泥製品。
  7.  前記容器内の温度を計測するための温度計を備える
    請求項1乃至6の何れか一項に記載の種汚泥製品。
  8.  前記容器内に前記COD成分とpH調整材との少なくとも一方を注入するためのフィード管を備える
    請求項1乃至7の何れか一項に記載の種汚泥製品。
  9.  メタン発酵するように構成された発酵槽の状態を監視する監視する監視装置と、
     前記発酵槽において、メタン発酵が停止した状態又は停止する虞がある状態になった場合に請求項1乃至8の何れか一項に記載の種汚泥製品に封入されている種汚泥を投入する投入装置と、
    を備える種汚泥の投入装置。
  10.  メタン発酵するように構成された発酵槽の状態を監視する監視するステップと、
     前記発酵槽において、メタン発酵が停止した状態又は停止する虞がある状態になった場合に請求項1乃至8の何れか一項に記載の種汚泥製品に封入されている種汚泥を投入するステップと、
    を含む種汚泥の投入方法。
PCT/JP2021/002848 2020-01-31 2021-01-27 種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法 WO2021153617A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180010907.4A CN115038670A (zh) 2020-01-31 2021-01-27 接种污泥产品、接种污泥的投入装置以及接种污泥的投入方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020014449A JP7390911B2 (ja) 2020-01-31 2020-01-31 種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法
JP2020-014449 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153617A1 true WO2021153617A1 (ja) 2021-08-05

Family

ID=77078452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002848 WO2021153617A1 (ja) 2020-01-31 2021-01-27 種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法

Country Status (3)

Country Link
JP (1) JP7390911B2 (ja)
CN (1) CN115038670A (ja)
WO (1) WO2021153617A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279894A (ja) * 1986-05-30 1987-12-04 Kobe Steel Ltd 嫌気性処理法における粒子状汚泥形成方法
JPH01218690A (ja) * 1988-02-29 1989-08-31 Meidensha Corp 嫌気処理用の包括固定化菌
JPH03101897A (ja) * 1989-09-16 1991-04-26 Toshiba Corp メタン菌造粒物の形成方法
JPH10327850A (ja) * 1997-05-29 1998-12-15 Res Dev Corp Of Japan 微量要素・無機栄養塩類拡散型菌体培養用担体
JP2003259867A (ja) * 2002-03-11 2003-09-16 Ishikawajima Harima Heavy Ind Co Ltd メタン発酵用微生物担体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154291A (ja) * 1984-08-24 1986-03-18 Hitachi Zosen Corp 固定化微生物によるメタン生成法
JPH01203098A (ja) * 1988-02-09 1989-08-15 Akua Runesansu Gijutsu Kenkyu Kumiai 嫌気性廃水処理方法
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP4025733B2 (ja) 2004-02-03 2007-12-26 バブコック日立株式会社 メタン発酵装置
CN203602403U (zh) * 2013-12-12 2014-05-21 无锡通田博适环境科技有限公司 厌氧膨胀床生物膜反应器
JP2016203153A (ja) 2015-04-17 2016-12-08 株式会社関根産業 有機性廃棄物からのメタン製造方法
JP6644586B2 (ja) * 2016-03-04 2020-02-12 株式会社クラレ 担体を用いた嫌気性排水処理方法
CN105858914A (zh) * 2016-05-23 2016-08-17 浙江大学 紫外光解耦合微生物法处理餐厨油脂废水的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279894A (ja) * 1986-05-30 1987-12-04 Kobe Steel Ltd 嫌気性処理法における粒子状汚泥形成方法
JPH01218690A (ja) * 1988-02-29 1989-08-31 Meidensha Corp 嫌気処理用の包括固定化菌
JPH03101897A (ja) * 1989-09-16 1991-04-26 Toshiba Corp メタン菌造粒物の形成方法
JPH10327850A (ja) * 1997-05-29 1998-12-15 Res Dev Corp Of Japan 微量要素・無機栄養塩類拡散型菌体培養用担体
JP2003259867A (ja) * 2002-03-11 2003-09-16 Ishikawajima Harima Heavy Ind Co Ltd メタン発酵用微生物担体

Also Published As

Publication number Publication date
JP2021120153A (ja) 2021-08-19
JP7390911B2 (ja) 2023-12-04
CN115038670A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
EP3712247A1 (en) Method, system and apparatus for treating oil- and fat-containing wastewater
JP6491406B2 (ja) 嫌気性生物処理方法および嫌気性生物処理装置
CN106434350B (zh) 厌氧氨氧化菌种的保藏方法
Pijuan et al. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules
JP2015077534A (ja) 嫌気性処理方法及び嫌気性処理装置
Epsztein et al. High-rate hydrogenotrophic denitrification in a pressurized reactor
Ince et al. Effect of a chemical synthesis‐based pharmaceutical wastewater on performance, acetoclastic methanogenic activity and microbial population in an upflow anaerobic filter
EP2917324A1 (en) A method for organic waste hydrolysis and acidification and an apparatus thereof
Zhang et al. Vacuum lyophilization preservation and rejuvenation performance of anammox bacteria
Chen et al. Underlying function regulators of anaerobic granular sludge: Starvation and dormancy
WO2021153617A1 (ja) 種汚泥製品、種汚泥の投入装置及び種汚泥の投入方法
Chen et al. Effects of HRT and Loading Rate on Performance of Carriers‐Amended Anammox UASB Reactors
WO2022163871A1 (en) Wastewater treatment apparatus and wastewater treatment method
Lu et al. Characteristics of hydrogenotrophic denitrification in a combined system of gas-permeable membrane and a biofilm reactor
Ganesan et al. Study on the effect of external hydrazine addition on Anammox bacteria during the starvation period
Bae et al. Re-activation characteristics of preserved anaerobic granular sludges
CN109906207A (zh) 通过厌氧生物反应器处理高浓度废水的方法
Alonso et al. Performance of up-flow anaerobic fixed bed reactor of the treatment of sugar beet pulp lixiviation in a thermophilic range
US10239773B2 (en) Systems for microorganism sustenance in an activated sludge unit
JP2021037514A (ja) 水処理方法
JP2007021365A (ja) 嫌気性アンモニア酸化反応装置及び運転方法
Koutinas et al. The use of an oil absorber as a strategy to overcome starvation periods in degrading 1, 2‐dichloroethane in waste gas
Bhatta et al. Minimization of sludge production and stable operational condition of a submerged membrane activated sludge process
Mohammed et al. Biotreatment of AL-KARAMA Teaching Hospital Wastewater Using Aerobic Packed Bed
Kareem Biotreatment of Al-Yarmouk hospital wastewater using packed bed bioreactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747117

Country of ref document: EP

Kind code of ref document: A1