WO2021153549A1 - マルテンサイト系ステンレス鋼帯の製造方法およびマルテンサイト系ステンレス鋼帯 - Google Patents

マルテンサイト系ステンレス鋼帯の製造方法およびマルテンサイト系ステンレス鋼帯 Download PDF

Info

Publication number
WO2021153549A1
WO2021153549A1 PCT/JP2021/002614 JP2021002614W WO2021153549A1 WO 2021153549 A1 WO2021153549 A1 WO 2021153549A1 JP 2021002614 W JP2021002614 W JP 2021002614W WO 2021153549 A1 WO2021153549 A1 WO 2021153549A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel strip
temperature
stainless steel
martensitic stainless
quenching
Prior art date
Application number
PCT/JP2021/002614
Other languages
English (en)
French (fr)
Inventor
弘好 藤原
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN202180011100.2A priority Critical patent/CN115023510A/zh
Priority to EP21747498.0A priority patent/EP4098757A4/en
Priority to US17/795,224 priority patent/US20230075843A1/en
Publication of WO2021153549A1 publication Critical patent/WO2021153549A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for manufacturing a martensitic stainless steel strip and a martensitic stainless steel strip.
  • Martensitic stainless steel strips have excellent corrosion resistance, hardness, and fatigue characteristics, and are used in a wide range of applications such as cutting tools, spring materials on which repeated stress acts, valve materials, and cover materials.
  • martensitic stainless steel strips having sufficiently high fatigue strength are required in order to suppress fatigue fracture due to repeated stress.
  • Cited Document 1 in order to obtain a steel strip for a spring having an improved fatigue limit as compared with the conventional case, C: 0.35 to 0.45%, Si: 0.10 to 0.50%, by weight%. Mn: 0.10 to 0.50%, Cr: 10 to 15%, Mo: 1.0 to 1.5%, P: 0.05% or less, S: 0.005% or less, O: 0.002 % Or less, N: 0.02% or less, Al: 0.005% or less, Ti: 0.01% or less, and the balance is substantially Fe. Has been done.
  • Patent Document 2 in order to improve the corrosion resistance and fatigue characteristics of the flapper valve body, martensitic stainless steel having a compressive residual stress on the plate surface and a solid solution nitrogen concentrated layer on the plate surface layer is used.
  • the flapper valve body is described.
  • Patent Document 2 after heating to a temperature higher than the temperature at which the austenite is transformed into a single phase in an atmosphere containing 20% or more nitrogen and 10% or less (including the case of 0%) oxygen (percentage is% by volume). It is also described that the residual stress on the surface of martensitic stainless steel can be adjusted to compressive stress by quenching.
  • Patent Document 3 the applicant of the present application describes a winding process of unwinding a steel strip of martensitic stainless steel having a thickness of 1 mm or less and a steel strip for the purpose of suppressing shape defects without lowering productivity.
  • a quenching process in which the steel strip is passed through a quenching furnace in a non-oxidizing gas atmosphere to heat and then cooled, and a quenching process in which the steel strip after quenching is passed through a quenching furnace in a non-oxidizing gas atmosphere and then tempered.
  • the subsequent winding step of winding the steel strip is continuously performed, and the quenching furnace at the time of the quenching step proposes a method for manufacturing a martensitic stainless steel strip having at least a temperature raising part and a holding part. ing.
  • Patent Document 1 is an invention capable of improving the fatigue limit of a steel strip, but the fatigue limit may be insufficient depending on the usage environment, and there is room for further improvement.
  • Patent Document 2 is an invention in which the compressive residual stress due to the nitrogen-enriched layer formed on the plate surface is defined, but the nitrogen-enriched layer is uniformly formed on the edge portion and the outer peripheral portion of the valve shape. It is difficult to obtain the desired residual stress.
  • Patent Document 3 is an excellent invention capable of obtaining a martensitic stainless steel strip having excellent flatness without lowering productivity, but does not describe improvement of fatigue characteristics and mechanical characteristics. There is room for consideration. Therefore, an object of the present invention is to provide a martensitic stainless steel strip having better fatigue characteristics and mechanical strength than conventional products, and a manufacturing method capable of easily manufacturing the martensitic stainless steel strip. ..
  • a steel strip containing C: 0.3 to 1.2% and Cr: 10.0 to 18.0% in mass% and having a thickness of 1 mm or less is provided in a non-oxidizing gas atmosphere.
  • the temperature of the steel strip cooled to the temperature below the Ms point in the quenching step and the quenching step in which the steel strip is passed through a quenching furnace and heated to the quenching temperature and then cooled to the temperature below the Ms point is lowered to less than 80 ° C.
  • Another aspect of the present invention is a martensitic stainless steel having a martensitic structure containing C: 0.3 to 1.2% and Cr: 10.0 to 18.0% in mass% and having a thickness of 1 mm or less.
  • it is a martensitic stainless steel strip of 75% or less.
  • the ratio of the compressive residual stress in the width direction to the compressive residual stress in the rolling direction of the martensitic stainless steel strip is 75% or more.
  • the present invention is not limited to the embodiments taken up here, and can be appropriately combined and improved without departing from the technical idea of the invention.
  • the present invention can be applied to those having a composition of martensitic stainless steel.
  • the composition range is not limited, for example, the component composition of the steel strip of the present invention shall include C: 0.3 to 1.2% and Cr: 10.0 to 18.0% in mass%. Is preferable.
  • the composition of the steel strip of the present invention is C: 0.3 to 1.2% (more preferably 0.3 to 1.0%, further preferably 0.3 to 0.8%), Si: 1.
  • Mn 2% or less
  • Mo 3.0% or less (more preferably 2.5% or less, further preferably 2.0% or less)
  • Ni 1.0% or less (including 0%)
  • Cr 10.0 to 18.0% (more preferably 11.0% to 16.0%, further preferably 12.0% to 15.0%)
  • balance Fe and martensite-based steel which is an unavoidable impurity. It is preferably steel.
  • a tempering step in which a steel strip having a thickness of 1 mm or less is passed through a tempering furnace in a non-oxidizing gas atmosphere to heat and then cool the steel strip, and the temperature of the steel strip after the tempering step is less than 80 ° C.
  • the heat-retaining transfer process and the heat-retaining transfer process which are transferred to the tempering furnace while keeping the heat so that it does not drop to the temperature (in other words, at 80 ° C. or higher and below the Ms point or in the temperature range below the tempering temperature).
  • the quenching step, the heat-retaining transfer step, and the tempering step described above may be continuously performed, and other steps such as a preheating step may be added as long as the effects of the present invention are not impaired.
  • the production method of the embodiment of the present invention will be described.
  • the prepared steel strip is passed through a quenching furnace in a non-oxidizing gas atmosphere to heat it, and then a quenching step of cooling the steel strip is performed.
  • a quenching step of cooling the steel strip is performed before the steel strip is transported to the quenching furnace.
  • the rolled steel strip wound in a coil shape may be attached to the unwinding machine, and the unwinding step of transporting the steel strip to the quenching furnace may be performed.
  • the set heating temperature in this quenching furnace is preferably 850 to 1200 ° C. If the temperature is lower than 850 ° C, the solid solution of the carbide tends to be insufficient.
  • the temperature of the quenching furnace may be set to a constant temperature from the inlet to the outlet of the furnace, and at least one of a temperature raising unit and a temperature decreasing unit may be provided before and after the holding portion for quenching at a constant temperature.
  • a preheating step may be provided between the unwinding step and the quenching step.
  • an existing heating device can be applied in the preheating step, it is preferable to use an induction heating device that enables rapid temperature rise of the steel strip.
  • the preheating temperature during the preheating step is preferably set to 600 ° C. or higher in order to make the preheating effective.
  • the steel strip heated in the quenching furnace is rapidly cooled and quenched.
  • salt bath, molten metal, oil, water, aqueous polymer solution, saline solution, and gas can be used.
  • a spray cooling method for injecting water or a gas cooling method using a non-oxidizing gas is used.
  • gas cooling it is preferable to use hydrogen, helium, nitrogen, argon, or a hydrogen mixed gas as the non-oxidizing gas.
  • This quenching step cools the temperature of the steel strip to below the Ms point, but in order to obtain the effect of the heat-retaining transport step described later, the temperature of the steel strip is adjusted and cooled so as not to drop below 80 ° C. Further, in the quenching step, in order to avoid the pearlite nose, quenching and slow cooling may be combined and two-step quenching may be carried out. It is preferable to perform a secondary cooling step of restraining the steel strip with a water-cooled platen so as to sandwich the steel strip and cooling the steel strip below the Ms point while correcting the shape.
  • a heat-retaining transfer step of transporting the steel strip to the tempering furnace while keeping the temperature of the steel strip after the quenching step below 80 ° C. is carried out.
  • the amount of retained austenite in the steel strip and the compressive residual stress of the surface layer of the steel strip can be increased, and the effect of improving fatigue strength can be obtained.
  • the temperature during the heat-retaining transfer step is less than 80 ° C., it is difficult to obtain a desired residual austenite amount.
  • the steel strip in the heat-retaining transfer step is cooled to a temperature of Ms point or less by the above quenching step, it is conceivable that the temperature rises to more than Ms point by subsequent heat recovery or the like. However, it should be avoided that the temperature exceeds the tempering temperature set in the next tempering step. And, including such a case, when the temperature at the time of heat retention becomes too high (example: more than 300 ° C.), the quenching hardness tends to decrease.
  • a metal cover in which a heat insulating material is arranged as a heat-retaining facility, a tunnel furnace, or the like is installed between the quenching furnace and the tempering furnace, and the steel strip covers the above-mentioned cover. It may be transported so as to pass through the inside or the inside of the furnace.
  • a heat insulating material an existing inorganic fiber-based or plastic-based heat insulating material may be used.
  • existing equipment can be used for the tunnel furnace, it is preferable to use a gas atmosphere furnace in order to obtain a higher surface oxidation prevention effect and an effect of more stabilizing the steel strip temperature during transportation.
  • the above-mentioned heat insulation equipment is most preferably directly connected to the outlet of the quenching equipment after quenching and the inlet of the tempering furnace, but the temperature of the steel strip becomes less than 80 ° C. by the time the plate is passed through the tempering furnace. If this is not the case, a gap may be provided between the quenching equipment and the tempering furnace and the heat insulating equipment.
  • the continuous furnace is applied to the quenching furnace and the tempering furnace described later, but the present invention can be carried out even when the quenching furnace and the tempering furnace are batch furnaces.
  • the present embodiment has a tempering step in which the steel strip after the heat-retaining transfer step is tempered in a tempering furnace having a non-oxidizing gas atmosphere, and the steel strip is adjusted to a desired hardness.
  • the temperature of this tempering furnace can be set to a desired temperature depending on the application. For example, if higher hardness properties are required, it can be set to 200 to 300 ° C. Further, in order to improve the shape processability such as press working, the temperature can be set to 300 ° C. to 400 ° C. If the plate passing speed in the tempering process is too high, the temperature range described above may not be reached.
  • the time required for the steel strip to pass through the tempering furnace is set to M [min], and the plate thickness of the steel strip is set.
  • M / t it is preferable to set M / t to be 5 to 9. It is preferable that the quenching step, the heat-retaining transfer step, and the tempering step described above are continuously performed because a steel strip having excellent mechanical properties and fatigue strength can be obtained without lowering the productivity.
  • the steel strip after the tempering step may be subjected to a polishing step in order to remove the surface scale of the steel strip.
  • polishing method polishing by machining such as grindstone polishing, belt polishing, brush polishing, and buff polishing may be selected. Above all, if buffing is applied, the scale of the surface layer can be removed without significantly damaging the surface of the steel strip, which is preferable.
  • the martensitic stainless steel strip of the present embodiment will be described.
  • One of the features of the martensitic stainless steel strip of the present embodiment is that the amount of retained austenite is 10 to 25% by volume.
  • the amount of retained austenite in the hardened steel strip was generally reduced in order to improve the mechanical properties.
  • the crack progress of the steel strip is suppressed without significantly reducing the mechanical properties of the steel strip, and the fatigue strength characteristics are greatly enhanced. Can be increased to.
  • the amount of retained austenite is too large, the mechanical properties tend to be significantly deteriorated.
  • the upper limit of the amount of retained austenite is set to 25% by volume.
  • the lower limit of the preferred amount of retained austenite is 12% by volume, and the upper limit of the preferred amount of retained austenite is 20% by volume.
  • the method for measuring the amount of retained austenite in the present embodiment uses an X-ray diffractometer to derive the amount of retained austenite (% by volume) from the obtained diffracted X-ray intensity distribution.
  • the steel strip of the present embodiment has a tensile strength of 1600 MPa or more and 2300 MPa or less in order to further enhance the durability of the product.
  • the lower limit of the more preferable tensile strength is 1700 MPa
  • the upper limit of the more preferable tensile strength is 2200 MPa.
  • a more preferable upper limit of tensile strength is 2000 MPa.
  • the steel strip of the present embodiment has a proof stress ratio of 75% or less, which is a ratio of 0.2% proof stress to tensile strength, while satisfying the above tensile strength range. By setting this proof stress ratio, it is possible to impart appropriate toughness to the steel strip and further improve the fatigue strength.
  • the lower limit of the proof stress ratio is not particularly limited, but an proof stress ratio that is too low tends to cause deterioration of mechanical properties such as hardness, and thus can be set to, for example, 50% or more.
  • the ratio of the compressive residual stress in the width direction to the compressive residual stress in the rolling direction of the martensitic stainless steel strip is preferably 75% or more.
  • the steel strip of the present invention has a small anisotropy of compressive residual stress, it is possible to suppress variations in characteristics depending on the cutting direction. This effect is particularly effective for flapper valves that have a plurality of leads arranged radially and have a rotationally symmetric shape.
  • the ratio of the compressive residual stress in the width direction to the compressive residual stress in the rolling direction is 77% or more.
  • the value of the compressive residual stress is not particularly limited, but it is preferable to set the lower limit of the compressive residual stress to 300 MPa in order to obtain the fatigue strength improving effect more reliably.
  • the lower limit of the more preferable compressive residual stress is 330 MPa, and the lower limit of the more preferable compressive residual stress is 360 MPa.
  • the residual stress on the surface of the steel strip in this embodiment can be measured by an X-ray residual stress measuring device. In this embodiment, the residual stress is measured by using the 2 ⁇ -sin 2 ⁇ method.
  • the direction perpendicular to rolling is a direction perpendicular to the rolling direction, and corresponds to the width direction when the length direction is the rolling direction in a long steel strip.
  • the steel strip of the present embodiment can be applied to a martensitic stainless steel strip having a plate thickness of 1 mm or less.
  • the lower limit of the plate thickness does not need to be set in particular, but it can be set to about 0.01 mm, for example, because it is difficult to manufacture a steel plate manufactured by rolling if the plate thickness is too thin.
  • the lower limit of the more preferable plate thickness is 0.05 mm, and the lower limit of the more preferable plate thickness is 0.1 mm.
  • a martensitic stainless steel strip with a width of about 300 mm and a thickness of 0.15 mm.
  • the composition is shown in Table 1.
  • the prepared steel strip is wound in a coil shape, set in the unwinder 1, unwinds the steel strip from the unwinder, and the unwound steel strip has an argon gas atmosphere and the temperature is 850 ° C.
  • the plate was passed through a quenching furnace adjusted to ⁇ 1200 ° C.
  • pure water is sprayed onto the steel strip from a coolant spraying device installed on the outlet side of the quenching furnace to perform primary cooling, and then the steel strip is cooled to 290 ° C. to 350 ° C. and water-cooled.
  • a quenching step of cooling to the Ms point (about 270 ° C.) or less by secondary cooling pressed by a platen was carried out.
  • An example of the present invention was a steel strip after the quenching step in which a plate was passed through a rock wool cylinder, and a comparative example was a steel strip not subjected to the heat-retaining transport step.
  • Table 2 shows the temperatures of the steel strips of the examples of the present invention and the comparative examples immediately before being transferred to the tempering furnace.
  • the steel strip of the example of the present invention after the heat-retaining transfer step and the steel strip of the comparative example after the quenching step were passed through a tempering furnace having an argon gas atmosphere, and the temperature was adjusted to about 350 ° C. to perform tempering.
  • the tempered steel strip was mechanically polished by buffing, and the steel strip was wound by a winder to prepare a martensitic stainless steel strip of the example of the present invention.
  • the amount of residual austenite, residual stress, tensile strength and 0.2% proof stress were measured from the prepared samples of the present invention example and the comparative example.
  • the amount of retained austenite was measured using a rotary anti-cathode type automatic X-ray diffractometer.
  • the residual stress was measured using a residual stress measuring device AUTOMATE-II manufactured by Rigaku Corporation.
  • Tensile strength and 0.2% proof stress were performed according to the method specified in JIS-Z2241, and JIS No. 13B test piece was used as the test piece.
  • Table 2 shows the results of the residual austenite and tensile tests
  • Table 3 shows the measurement results of the compressive residual stress.
  • No. 1 in which the heat insulation transfer step was carried out. 1 No.
  • the sample of No. 2 is No. 2 which is a comparative example. It was confirmed that the retained austenite was increased as compared with the 11 samples. It was also confirmed that the tensile strength was at the same level as that of the comparative example, and the proof stress ratio was lower than that of the comparative example. From this result, it can be seen that the example of the present invention is advantageous in improving the fatigue resistance while maintaining the same mechanical strength as the conventional product.
  • the compressive residual stress also shows a larger value than the comparative example, and the compressive residual stress ratio is also high. Therefore, there is little variation in the compressive residual stress in the rolling direction and the width direction. When applied, improvement in productivity can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

従来品よりも疲労特性や機械強度に優れるマルテンサイト系ステンレス鋼帯、およびそのマルテンサイト系ステンレス鋼帯を容易に製造することが可能な製造方法を提供する。 質量%でC:0.3~1.2%、Cr:10.0~18.0%を含有し、厚さ1mm以下の鋼帯を焼入れ炉に通板して焼入れ温度に加熱し、次いでMs点以下の温度に冷却する焼入れ工程と、前記焼入れ工程でMs点以下の温度に冷却した鋼帯の温度が、80℃未満の温度にまで下がらないように保温しながら焼戻し炉に搬送する保温搬送工程と、前記保温搬送工程で80℃未満の温度に下がらないように保温しながら搬送した鋼帯を、非酸化性ガス雰囲気の焼戻し炉に通板して焼戻し温度に加熱する焼戻し工程とを行う、マルテンサイト系ステンレス鋼帯の製造方法。また、残留オーステナイト量が10~25体積%のマルテンサイト系ステンレス鋼帯。

Description

マルテンサイト系ステンレス鋼帯の製造方法およびマルテンサイト系ステンレス鋼帯
 本発明は、マルテンサイト系ステンレス鋼帯の製造方法、およびマルテンサイト系ステンレス鋼帯に関するものである。
 マルテンサイト系ステンレス鋼帯は耐食性や硬度、疲労特性に優れており、例えば刃物や、繰り返し応力の作用するばね材、バルブ材、カバー材等の幅広い用途に使用されている。特にばね材やバルブ材用途には、繰り返し応力による疲労破壊を抑制するために、十分に高い疲労強度を備えるマルテンサイト系ステンレス鋼帯が要求されている。
 上述したようなマルテンサイト系ステンレス鋼帯の疲労強度を向上させるために、従来から様々な提案がなされている。例えば引用文献1には、従来よりも疲労限界を向上させたばね用鋼帯を得るために、重量%で、C:0.35~0.45%、Si:0.10~0.50%、Mn:0.10~0.50%、Cr:10~15%、Mo:1.0~1.5%、P:0.05%以下、S:0.005%以下、O:0.002%以下、N:0.02%以下、Al:0.005%以下、Ti:0.01%以下、残部実質的にFeよりなることを特徴とする耐久性の良好なばね用鋼帯について記載されている。
 また特許文献2には、フラッパ弁体の耐食性と疲労特性を向上させるために、板表面に圧縮残留応力を有し、また板表層部に固溶窒素濃化層を有するマルテンサイト系ステンレス鋼からなるフラッパ弁体について記載されている。ここで特許文献2では、20%以上の窒素および10%以下(0%の場合を含む)の酸素を含む雰囲気(百分比は容積%である)で、オーステナイト単相に変態する温度以上に加熱後に急冷すると、マルテンサイト系ステンレス鋼の表面の残留応力を圧縮応力に調整できることについても記載されている。
 さらに本願出願人は特許文献3において、生産性を低下させずに形状不良を抑制することを目的に、厚さ1mm以下のマルテンサイト系ステンレスの鋼帯を巻出す巻出し工程と、鋼帯を非酸化性ガス雰囲気の焼入れ炉に通板して加熱し、次いで冷却する焼入れ工程と、焼入れ後の鋼帯を、非酸化性ガス雰囲気の焼戻し炉に通板して焼戻しする焼戻し工程と、  焼戻し後の鋼帯を巻取る巻取り工程と、を連続して行い、前記焼入れ工程時の焼入れ炉は、少なくとも昇温部と保持部とを有する、マルテンサイト系ステンレス鋼帯の製造方法を提案している。
特開平4-48050号公報 特開平10-274161号公報 特開2018-111881号公報
 近年空調機用の圧縮機は高圧縮化が進んでおり、圧縮機に使用されるバルブにも、高圧化に対応するために疲労特性および機械特性の向上が要求されている。特許文献1の発明は鋼帯の疲労限界を向上させることが出来る発明であるが、使用環境によっては疲労限界が不十分な場合があり、更なる改良の余地が残されている。また、特許文献2に記載の発明は、板表面に形成された窒素濃化層による圧縮残留応力を規定した発明であるが、窒素濃化層はバルブ形状のエッジ部及び外周部に均一に形成させることが困難であり、所望の残留応力が得られない可能性がある。さらに、材料の厚みによって窒素濃化層の形成範囲も異なるため、板厚が変動するたびにガス量やガスの組成を変更しなければならず、生産性の低下が懸念される。また特許文献3は生産性を低下させずに平坦度に優れたマルテンサイト系ステンレス鋼帯を得ることができる優れた発明であるが、疲労特性および機械特性の向上に関しては記載されておらず、検討の余地が残されている。よって本発明の目的は、従来品よりも疲労特性や機械強度に優れるマルテンサイト系ステンレス鋼帯、およびそのマルテンサイト系ステンレス鋼帯を容易に製造することが可能な製造方法を提供することである。
 本発明は上述した課題に鑑みてなされたものである。
 すなわち本発明の一態様は、質量%でC:0.3~1.2%、Cr:10.0~18.0%を含有し、厚さ1mm以下の鋼帯を非酸化性ガス雰囲気の焼入れ炉に通板して焼入れ温度に加熱し、次いでMs点以下の温度に冷却する焼入れ工程と、前記焼入れ工程でMs点以下の温度に冷却した鋼帯の温度が、80℃未満にまで下がらないように保温しながら焼戻し炉に搬送する保温搬送工程と、前記保温搬送工程で80℃未満の温度に下がらないように保温しながら搬送した鋼帯を、非酸化性ガス雰囲気の焼戻し炉に通板して焼戻し温度に加熱する焼戻し工程とを行う、マルテンサイト系ステンレス鋼帯の製造方法である。
 本発明の他の一態様は、質量%でC:0.3~1.2%、Cr:10.0~18.0%を含有しマルテンサイト組織を有する厚さ1mm以下のマルテンサイト系ステンレス鋼帯であって、前記マルテンサイト系ステンレス鋼帯の残留オーステナイト量が10~25体積%であり、引張強度が1600MPa以上2300MPa以下であり、引張強度に対する0.2%耐力の比率である耐力比が、75%以下であるマルテンサイト系ステンレス鋼帯である。
 好ましくは、前記マルテンサイト系ステンレス鋼帯の圧延方向の圧縮残留応力に対する、幅方向の圧縮残留応力の比率が、75%以上である。
 本発明によれば、従来品よりも疲労特性と機械特性に優れる、マルテンサイト系ステンレス鋼帯を得ることができる。
 以下、本発明を詳細に説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。本発明はマルテンサイト系ステンレス鋼の組成を有するものに適用できる。組成範囲を限定するものではないが、例えば、本発明の鋼帯の成分組成は、質量%で、C:0.3~1.2%、Cr:10.0~18.0%を含むことが好ましい。さらに本発明の鋼帯の成分組成は、C:0.3~1.2%(より好ましくは0.3~1.0%、さらに好ましくは0.3~0.8%)、Si:1%以下、Mn:2%以下、Mo:3.0%以下(より好ましくは2.5%以下、さらに好ましくは2.0%以下)、Ni:1.0%以下(0%を含む)、Cr:10.0~18.0%(より好ましくは11.0%~16.0%、さらに好ましくは12.0%~15.0%)、残部Feおよび不可避的不純物であるマルテンサイト系ステンレス鋼であることが好ましい。
 まず本発明のマルテンサイト系ステンレス鋼帯の製造方法について説明する。本発明は、厚さ1mm以下の鋼帯を非酸化性ガス雰囲気の焼入れ炉に通板して加熱し、次いで冷却する焼入れ工程と、前記焼入れ工程後の鋼帯を、その温度が80℃未満にまで下がらないように保温しながら(言い換えれば、80℃以上で、Ms点以下であるかまたは焼戻し温度未満の温度範囲で保温しながら)焼戻し炉に搬送する保温搬送工程と、保温搬送工程で運ばれてきた鋼帯を、非酸化性ガス雰囲気の焼戻し炉に通板して焼戻しする焼戻し工程とを行う、マルテンサイト系ステンレス鋼帯の製造方法である。上述した焼入れ工程、保温搬送工程、焼戻し工程は連続して行っても良く、本発明の効果を損なわない程度であれば、例えば予熱工程といった他工程を追加することもできる。以下、本発明の実施形態の製造方法について説明する。
 (焼入れ工程)
 本実施形態では、準備した鋼帯を非酸化性ガス雰囲気の焼入炉に通板して加熱し、次いで鋼帯を冷却する焼入れ工程を行う。この焼入炉に搬送する前に、コイル状に巻かれている圧延済みの鋼帯を巻出し機に装着し、鋼帯を焼入れ炉に搬送する巻出し工程を行っても良い。この焼入炉における設定加熱温度は、850~1200℃であることが好ましい。850℃未満の場合、炭化物の固溶が不十分となる傾向にある。対して1200℃超の場合、炭化物の固溶量が大きくなり、焼戻し時の硬さが低下する傾向にある。なお焼入れ炉の温度は、炉の入口から出口まで一定の温度に設定してもよく、一定温度で焼入れする保持部の前後に、昇温部または降温部の少なくとも一方を設けても良い。
 本発明はさらに生産効率を向上させるために、巻出し工程と焼入れ工程との間に予熱工程を設けてもよい。予熱工程では既存の加熱装置を適用することができるが、鋼帯の急速昇温を可能とする誘導加熱装置を使用することが好ましい。
 また予熱工程時の予熱温度は、予熱を有効なものにするために、600℃以上に設定することが好ましい。一方で急激な昇温による変形をより確実に抑制するために、800℃未満に設定することが好ましい。
 続いて焼入れ炉にて加熱した鋼帯を急冷して焼入れを行う。急冷の方法としては、ソルトバス、溶融金属、油、水、ポリマー水溶液、食塩水、ガスを用いることができる。好ましくは、水を噴射する噴霧冷却方法や、非酸化性ガスを用いるガス冷却法を用いる。急冷方法にガス冷却を選択した際、非酸化性ガスは、水素、ヘリウム、窒素、アルゴン、水素混合ガスを用いることが好ましい。この急冷工程により、鋼帯の温度をMs点以下まで冷却するが、後述する保温搬送工程による効果を得るために、鋼帯の温度が80℃未満に低下しないように調整して冷却する。また急冷工程はパーライトノーズを避けるために急冷と徐冷とを組み合わせ二段階焼入れを実施してもよく、例えば、鋼帯を噴霧冷却によってMs点超350℃以下に冷却する一次冷却工程の後、鋼帯を挟み込むように水冷定盤で拘束し、形状を矯正しながらMs点以下に冷却する二次冷却工程を行うことが好ましい。
 (保温搬送工程)
 続いて本実施形態では、焼入れ工程後の鋼帯の温度が80℃未満にまで下がらないように保温しながら焼戻し炉に搬送する保温搬送工程を実施する。この工程を備えることで、鋼帯内の残留オーステナイト量と鋼帯表層の圧縮残留応力を増加させることができ、疲労強度向上の効果を得ることが可能である。保温搬送工程時の温度が80℃未満である場合、所望の残留オーステナイト量を得ることが困難である。また、保温搬送工程にある鋼帯は、上記の焼入れ工程によってMs点以下の温度に冷却されるものの、その後の復熱などによってMs点超に昇温することも考えられる。但し、次の焼戻し工程で設定する焼戻し温度以上になることは避けるべきである。そして、このような場合も含めて、保温時の温度が高くなりすぎる(例:300℃超)場合は、焼入れ硬さが低下する傾向にある。この保温搬送工程において鋼帯を保温する方法としては、例えば、保温設備として断熱材を配置した金属カバー、またはトンネル炉等を焼入れ炉と焼戻し炉との間に設置し、鋼帯が上述したカバー内や炉内を通過するように搬送すればよい。断熱材は既存の無機繊維系やプラスチック系の断熱材等を用いれば良い。またトンネル炉も既存の設備を用いることができるが、より高い表面酸化防止効果と、搬送時の鋼帯温度をより安定させる効果を得るために、ガス雰囲気炉を用いることが好ましい。理想的には上述した保温設備が、焼入れ後の急冷設備出口および焼戻し炉の入口と直結していることが最も好ましいが、焼戻し炉に通板されるまでに鋼帯の温度が80℃未満にならないようであれば、急冷設備および焼戻し炉と保温設備との間に空隙を設けていてもよい。なお本実施形態では、焼入れ炉及び後述する焼戻し炉に連続炉を適用しているが、焼入れ炉及び焼戻し炉がバッチ炉である場合にも、本発明を実施することが可能である。
 (焼戻し工程)
 本実施形態では保温搬送工程後の鋼帯を、非酸化性ガス雰囲気の焼戻し炉にて焼戻し、鋼帯を所望の硬さに調整する焼戻し工程を有する。この焼戻し炉の温度は用途により所望の温度に設定することが可能である。例えば、より高硬度な特性が必要な場合は、200~300℃に設定することができる。またプレス加工等の形状加工性を良くするためには、300℃~400℃に設定することもできる。なお、焼戻し工程における通板速度が過度に速すぎると、上述した温度範囲に到達しない可能性があるため、鋼帯が焼戻し炉の通過に要する時間をM[min]、鋼帯の板厚をt[mm]としたときに、M/tを5~9となるように設定することが好ましい。上述した焼入れ工程、保温搬送工程、焼戻し工程は連続で行うことで、生産性を低下させることなく機械特性と疲労強度に優れた鋼帯を得ることができるため好ましい。
 焼戻し工程後の鋼帯には、鋼帯の表層スケールを除去するために研磨工程を実施してもよい。研磨手法としては砥石研磨、ベルト研磨、ブラシ研磨、バフ研磨等の機械加工による研磨を選択すればよい。中でもバフ研磨を適用すれば、鋼帯の表面に大きなダメージを与えることなく表層のスケール除去を行うことができるため、好ましい。
 続いて本実施形態のマルテンサイト系ステンレス鋼帯について説明する。本実施形態のマルテンサイト系ステンレス鋼帯は、残留オーステナイト量が10~25体積%であることが特徴の一つである。焼入れ後の鋼帯における残留オーステナイト量は、機械特性を向上させるために低減させることが一般的であった。本発明では焼入れ焼戻し後の鋼帯における残留オーステナイト量を10体積%以上とすることによって、鋼帯の機械特性を大幅に低下させることなく、鋼帯の亀裂進行を抑制し、疲労強度特性を大幅に増加させることが可能である。一方で残留オーステナイト量が多すぎると、機械特性が大幅に低下する傾向にあるため、残留オーステナイト量の上限は25体積%とする。好ましい残留オーステナイト量の下限は12体積%であり、好ましい残留オーステナイト量の上限は20体積%である。なお本実施形態における残留オーステナイト量の測定方法は、X線回折装置を用い、得られた回折X線強度分布から残留オーステナイト量(体積%)を導出している。
 本実施形態の鋼帯は、より製品の耐久性を高めるために、引張強度が1600MPa以上2300MPa以下である。より好ましい引張強度の下限は1700MPaであり、より好ましい引張強度の上限は2200MPaである。さらに好ましい引張強度の上限は2000MPaである。また本実施形態の鋼帯は、上記の引張強度範囲を満たしつつ、引張強度に対する0.2%耐力の比率である耐力比が75%以下である。この耐力比とすることで鋼帯に適度な靭性を付与し、疲労強度をさらに向上させることが可能である。耐力比の下限に関しては特に限定しないが、あまりに低すぎる耐力比は硬度等の機械特性の低下を招く傾向にあるため、例えば50%以上と設定することができる。
 本実施形態の鋼帯は、マルテンサイト系ステンレス鋼帯の圧延方向の圧縮残留応力に対する、幅方向の圧縮残留応力の比率が、75%以上であることが好ましい。これにより本発明の鋼帯は圧縮残留応力の異方性が小さいため、切断方向による特性のばらつきを抑制することが可能である。この効果は放射状に複数のリードが配置され、回転対称形状を有するフラッパーバルブに特に有効である。好ましくは圧延方向の圧縮残留応力に対する、幅方向の圧縮残留応力の比率が77%以上である。なお圧縮残留応力の値に関しては特に限定しないが、疲労強度向上効果をより確実に得たい場合、圧縮残留応力の下限を300MPaとすることが好ましい。より好ましい圧縮残留応力の下限は330MPaであり、さらに好ましい圧縮残留応力の下限は360MPaである。なお本実施形態における鋼帯表面の残留応力は、X線残留応力測定装置により測定することが可能である。本実施形態では、2θ-sinΨ法を用いて残留応力を測定している。なお、圧延直角方向とは圧延方向に対して垂直な方向であり、長尺の鋼帯において、長さ方向が圧延方向であるときの幅方向に相当する。
 本実施形態の鋼帯は、板厚が1mm以下のマルテンサイト系ステンレス鋼帯に適用できる。薄くなるほど焼入れ時の加熱による形状不良が発生しやすくなる傾向にあるため、板厚が0.5mm以下のマルテンサイト系ステンレス鋼帯に適用することが好ましい。尚、板厚の下限は、特に設定する必要はないが、例えば圧延にて製造される鋼板としては板厚が薄すぎると製造上困難であるため、0.01mm程度と設定することができる。より好ましい板厚の下限は0.05mmであり、さらに好ましい板厚の下限は0.1mmである
 まず幅が約300mmであり、厚さが0.15mmであるマルテンサイト系ステンレス鋼帯を用意した。組成を表1に示す。用意した鋼帯はコイル状に巻かれており、それを巻出し機1にセットし、鋼帯を巻出し機より巻き出し、巻き出された鋼帯を、アルゴンガス雰囲気とし、温度を850℃~1200℃に調整した焼入れ炉に通板した。続いて、焼入れ炉の出側に設置された冷却液噴霧装置より、鋼帯に純水を噴霧して急冷する1次冷却を行った後、鋼帯を290℃~350℃まで冷却し、水冷定盤で押圧する2次冷却でMs点(約270℃)以下への冷却を行う焼入れ工程を実施した。そして焼入れ工程後の鋼帯にロックウール製の筒内に通板する保温搬送工程を実施したものを本発明例とし、保温搬送工程を行わないものを比較例とした。本発明例と比較例の鋼帯の、焼戻し炉に搬送する直前の温度を表2に示す。保温搬送工程後の本発明例の鋼帯、および焼入れ工程後の比較例の鋼帯をアルゴンガス雰囲気とした焼戻し炉に通板し、温度を約350℃に調整して焼戻しを行った。最後に焼戻し後の鋼帯にバフ研磨による機械研磨を行い、巻取り機によって鋼帯を巻取って本発明例のマルテンサイト系ステンレス鋼帯を作製した。
Figure JPOXMLDOC01-appb-T000001
 続いて、作製した本発明例および比較例の試料から残留オーステナイト量、残留応力、引張強度および0.2%耐力を測定した。残留オーステナイト量は、回転対陰極型自動X線回折装置を用いて測定した。残留応力は、リガク社製残留応力測定装置AUTOMATE-IIを用いて測定した。引張強度および0.2%耐力はJIS-Z2241に規定された方法に従って行い、試験片はJIS13号B試験片を使用した。残留オーステナイトおよび引張試験の結果を表2に、圧縮残留応力の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、保温搬送工程を実施したNo.1、No.2の試料は、比較例であるNo.11の試料と比較して残留オーステナイトが増加していることが確認できた。また引張強度に関しては比較例と同等水準であり、かつ耐力比は比較例より低下していることも確認できた。この結果より、本発明例は従来品と同等の機械強度を保ちながらも、耐疲労強度向上にも有利であることが伺えた。
 圧縮残留応力に関しても比較例よりも大きな値を示しており、圧縮残留応力比も高くなっていることから、圧延方向と幅方向における圧縮残留応力のばらつきが少なく、例えばフラッパーバルブ材などの製品に適用した際に、生産性の向上が期待できる。

 

Claims (3)

  1.  質量%でC:0.3~1.2%、Cr:10.0~18.0%を含有し、厚さ1mm以下の鋼帯を非酸化性ガス雰囲気の焼入れ炉に通板して焼入れ温度に加熱し、次いでMs点以下の温度に冷却する焼入れ工程と、
     前記焼入れ工程でMs点以下の温度に冷却した鋼帯の温度が、80℃未満にまで下がらないように保温しながら焼戻し炉に搬送する保温搬送工程と、
     前記保温搬送工程で80℃未満の温度に下がらないように保温しながら搬送した鋼帯を、非酸化性ガス雰囲気の焼戻し炉に通板して焼戻し温度に加熱する焼戻し工程とを行う、マルテンサイト系ステンレス鋼帯の製造方法。
  2.  質量%でC:0.3~1.2%、Cr:10.0~18.0%を含有しマルテンサイト組織を有する厚さ1mm以下のマルテンサイト系ステンレス鋼帯であって、
     前記マルテンサイト系ステンレス鋼帯の残留オーステナイト量が10~25体積%であり、
     引張強度が1600MPa以上2300MPa以下であり、
     引張強度に対する0.2%耐力の比率である耐力比が、75%以下である、マルテンサイト系ステンレス鋼帯。
  3.  前記マルテンサイト系ステンレス鋼帯の圧延方向の圧縮残留応力に対する、幅方向の圧縮残留応力の比率が、75%以上である、請求項2に記載のマルテンサイト系ステンレス鋼帯。
PCT/JP2021/002614 2020-01-27 2021-01-26 マルテンサイト系ステンレス鋼帯の製造方法およびマルテンサイト系ステンレス鋼帯 WO2021153549A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180011100.2A CN115023510A (zh) 2020-01-27 2021-01-26 马氏体系不锈钢钢带的制造方法及马氏体系不锈钢钢带
EP21747498.0A EP4098757A4 (en) 2020-01-27 2021-01-26 METHOD FOR PRODUCING MARTENSITIC STAINLESS STEEL STRIP AND MARTENSITIC STAINLESS STEEL STRIP
US17/795,224 US20230075843A1 (en) 2020-01-27 2021-01-26 Method for producing martensitic stainless steel strip, and martensitic stainless steel strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020010550A JP2021116456A (ja) 2020-01-27 2020-01-27 マルテンサイト系ステンレス鋼帯の製造方法およびマルテンサイト系ステンレス鋼帯
JP2020-010550 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153549A1 true WO2021153549A1 (ja) 2021-08-05

Family

ID=77079744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002614 WO2021153549A1 (ja) 2020-01-27 2021-01-26 マルテンサイト系ステンレス鋼帯の製造方法およびマルテンサイト系ステンレス鋼帯

Country Status (5)

Country Link
US (1) US20230075843A1 (ja)
EP (1) EP4098757A4 (ja)
JP (1) JP2021116456A (ja)
CN (1) CN115023510A (ja)
WO (1) WO2021153549A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015839A (zh) * 2021-10-18 2022-02-08 南京筑新技术集团有限公司 一种不锈钢结构加工的热应力释放方法
CN118086663A (zh) * 2024-04-23 2024-05-28 山西广信机械制造有限公司 一种w形钢带加工热处理设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448050A (ja) 1990-06-14 1992-02-18 Daido Steel Co Ltd ばね用鋼帯
JPH10140294A (ja) * 1996-11-05 1998-05-26 Nisshin Steel Co Ltd 疲労特性に優れたフラッパーバルブ用高強度オーステナイト系ステンレス鋼板およびその製造方法
JPH10274161A (ja) 1997-03-31 1998-10-13 Nisshin Steel Co Ltd 空調機用圧縮機のフラッパ弁体およびその製法
JP2000129400A (ja) * 1998-10-21 2000-05-09 Nisshin Steel Co Ltd 強度・靱性・ばね特性の良好なマルテンサイト系ステンレス鋼焼鈍鋼材
JP2003213380A (ja) * 2002-01-22 2003-07-30 Nsk Ltd 転動装置
JP2003231951A (ja) * 2002-02-07 2003-08-19 Sanyo Special Steel Co Ltd 高強度析出硬化型ステンレス鋼、ステンレス鋼線並びにその鋼線による締結用高強度部品
JP2015067873A (ja) * 2013-09-30 2015-04-13 日立金属株式会社 マルテンサイト系ステンレス鋼鋼帯の製造方法
JP2015221927A (ja) * 2014-05-23 2015-12-10 新日鐵住金株式会社 鋼材およびその製造方法
JP2017508863A (ja) * 2014-12-09 2017-03-30 フェストアルピーネ プレジション ストリップ アーベーVoestalpine Precision Strip Ab フラッパ弁用ステンレス鋼帯
JP2018111881A (ja) 2017-01-12 2018-07-19 日立金属株式会社 マルテンサイト系ステンレス鋼帯の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363829A (zh) * 2011-11-14 2012-02-29 湖南华菱湘潭钢铁有限公司 生产超高强钢的热处理系统
CN104711482A (zh) * 2015-03-26 2015-06-17 宝钢不锈钢有限公司 一种控氮马氏体不锈钢及其制造方法
JP7258619B2 (ja) * 2018-03-26 2023-04-17 株式会社神戸製鋼所 鋼板連続焼鈍設備及び焼鈍鋼板の製造方法
WO2020013223A1 (ja) * 2018-07-11 2020-01-16 日立金属株式会社 マルテンサイト系ステンレス鋼帯およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448050A (ja) 1990-06-14 1992-02-18 Daido Steel Co Ltd ばね用鋼帯
JPH10140294A (ja) * 1996-11-05 1998-05-26 Nisshin Steel Co Ltd 疲労特性に優れたフラッパーバルブ用高強度オーステナイト系ステンレス鋼板およびその製造方法
JPH10274161A (ja) 1997-03-31 1998-10-13 Nisshin Steel Co Ltd 空調機用圧縮機のフラッパ弁体およびその製法
JP2000129400A (ja) * 1998-10-21 2000-05-09 Nisshin Steel Co Ltd 強度・靱性・ばね特性の良好なマルテンサイト系ステンレス鋼焼鈍鋼材
JP2003213380A (ja) * 2002-01-22 2003-07-30 Nsk Ltd 転動装置
JP2003231951A (ja) * 2002-02-07 2003-08-19 Sanyo Special Steel Co Ltd 高強度析出硬化型ステンレス鋼、ステンレス鋼線並びにその鋼線による締結用高強度部品
JP2015067873A (ja) * 2013-09-30 2015-04-13 日立金属株式会社 マルテンサイト系ステンレス鋼鋼帯の製造方法
JP2015221927A (ja) * 2014-05-23 2015-12-10 新日鐵住金株式会社 鋼材およびその製造方法
JP2017508863A (ja) * 2014-12-09 2017-03-30 フェストアルピーネ プレジション ストリップ アーベーVoestalpine Precision Strip Ab フラッパ弁用ステンレス鋼帯
JP2018111881A (ja) 2017-01-12 2018-07-19 日立金属株式会社 マルテンサイト系ステンレス鋼帯の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4098757A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015839A (zh) * 2021-10-18 2022-02-08 南京筑新技术集团有限公司 一种不锈钢结构加工的热应力释放方法
CN118086663A (zh) * 2024-04-23 2024-05-28 山西广信机械制造有限公司 一种w形钢带加工热处理设备

Also Published As

Publication number Publication date
EP4098757A4 (en) 2023-12-27
US20230075843A1 (en) 2023-03-09
JP2021116456A (ja) 2021-08-10
CN115023510A (zh) 2022-09-06
EP4098757A1 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
JP7072268B2 (ja) 超高伝導低コスト鋼
EP2801636B1 (en) High carbon hot-rolled steel sheet and method for producing same
WO2021153549A1 (ja) マルテンサイト系ステンレス鋼帯の製造方法およびマルテンサイト系ステンレス鋼帯
KR101239589B1 (ko) 고내식 마르텐사이트 스테인리스강 및 그 제조방법
KR20180040658A (ko) 고규소 강판 및 그 제조 방법
KR20140010248A (ko) 마르텐사이트계 스테인리스강 및 그 제조방법
EP2801635B1 (en) High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
JP6252833B2 (ja) マルテンサイト系ステンレス鋼鋼帯の製造方法
JP6948565B2 (ja) マルテンサイト系ステンレス鋼帯の製造方法
JP5534492B2 (ja) 炭素工具鋼鋼帯の製造方法
EP3378578A1 (en) Roll for hot rolling process and method for manufacturing same
JP7318648B2 (ja) マルテンサイト系ステンレス鋼帯およびその製造方法
CN109338086A (zh) 一种高品质工具钢热处理钢带及其生产方法和应用
WO2011102402A1 (ja) 孔加工性および加工歪の抑制に優れた金型用鋼およびその製造方法
EP2801633B1 (en) High carbon hot-rolled steel sheet and method for producing same
JP7255287B2 (ja) 炭素工具鋼鋼帯の製造方法
JPH11229031A (ja) 高速度工具鋼工具の製造方法
JPS6013025A (ja) 低降伏点高強度電縫鋼管の製造方法
KR101879077B1 (ko) 냉간 압연성이 우수한 고Si 전기강판의 제조방법
KR100328024B1 (ko) 316스테인레스선재의제조방법
JP2024532749A (ja) 高強度高靭性鋼板及びその製造方法
KR101428173B1 (ko) 내마모성이 우수한 고탄소 강선 및 그 제조방법
JPH0280501A (ja) 工具鋼みがき帯鋼の製造方法
KR20120127097A (ko) 내마모성이 우수한 쏘우 와이어용 신선재의 제조방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021747498

Country of ref document: EP

Effective date: 20220829