WO2021153357A1 - 内視鏡用対物光学系及び内視鏡 - Google Patents

内視鏡用対物光学系及び内視鏡 Download PDF

Info

Publication number
WO2021153357A1
WO2021153357A1 PCT/JP2021/001734 JP2021001734W WO2021153357A1 WO 2021153357 A1 WO2021153357 A1 WO 2021153357A1 JP 2021001734 W JP2021001734 W JP 2021001734W WO 2021153357 A1 WO2021153357 A1 WO 2021153357A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
prism
optical system
endoscope
objective optical
Prior art date
Application number
PCT/JP2021/001734
Other languages
English (en)
French (fr)
Inventor
恵介 原田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180010775.5A priority Critical patent/CN115210624B/zh
Priority to JP2021574659A priority patent/JP7334277B2/ja
Publication of WO2021153357A1 publication Critical patent/WO2021153357A1/ja
Priority to US17/813,251 priority patent/US20220382039A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Definitions

  • the present disclosure relates to an objective optical system for an endoscope and an endoscope.
  • Japanese Patent No. 4827391 describes a lens system that can be used as an objective optical system for an endoscope.
  • the present disclosure provides an objective optical system for an endoscope, which has a wide angle, a small size, and good optical performance, and an endoscope provided with the objective optical system for the endoscope.
  • the first aspect of the present disclosure is an objective optical system for an endoscope, which is composed of a front group and a rear group in order from the object side to the image side, and the front group is in order from the object side to the image side. It consists of one negative lens, an optical path deflection prism, an aperture aperture, and one positive lens.
  • the rear group includes a plurality of junction lenses in which a positive lens and a negative lens are joined, and is the most object side.
  • the d-line reference Abbe number of the positive lens that constitutes the junction lens is ⁇ pa
  • the d-line reference Abbe number of the negative lens that constitutes the most object-side junction lens is ⁇ na
  • the positive lens that constitutes the most image-side junction lens is a
  • the d-line reference abbe number is ⁇ pb
  • the d-line reference abbe number of the negative lens constituting the most image-side junction lens is ⁇ nb
  • the distance on the optical axis from the aperture aperture to the junction surface of the most object-side junction lens Is Lca
  • the distance on the optical axis from the aperture aperture to the junction surface of the most image-side junction lens is Lcb
  • the radius of curvature of the junction surface of the most object-side junction lens is Rca
  • the most image-side junction lens junction surface is satisfied.
  • the second aspect of the present disclosure is an objective optical system for an endoscope, which is composed of a front group and a rear group in order from the object side to the image side, and the front group is in order from the object side to the image side. It consists of one negative lens, an optical path deflection prism, an aperture aperture, and one positive lens.
  • the total number is k, the natural number from 1 to k is i, the abbe number of the d-line reference of the positive lens constituting the i-th junction lens from the object side is ⁇ pi, and the negative lens constituting the i-th junction lens from the object side.
  • the abbe number based on the d-line is ⁇ ni
  • the distance on the optical axis from the aperture aperture to the junction surface of the i-th junction lens is Lci
  • the radius of curvature of the junction surface of the i-th junction lens from the object side is Rci.
  • the rear group includes a set of bonded lenses and a normal lens or a set of bonded lenses in order from the object side to the image side.
  • the radius of curvature of the image-side surface of the negative lens in the front group is Rr1
  • the radius of curvature of the object-side surface of the negative lens in the front group is Rf1
  • the focal length of the entire system is f1
  • f and the focal length of the negative lens in the front group is f1
  • the radius of curvature of the image-side surface of the negative lens in the front group is Rr1
  • the radius of curvature of the surface of the negative lens in the front group on the object side is Rf1
  • the negative lens in the front group is Rr1
  • the refractive index with respect to the d-line is Nd1
  • the distance on the optical axis from the aperture diaphragm to the lens surface closest to the object is Lf
  • the refractive index of the optical path deflection prism with respect to the d line is Ndp
  • the negative lens of the front group is Lf
  • the focal length is f1
  • the optical path deflection prism includes at least one surface that bends the optical path due to total reflection.
  • a ninth aspect of the present disclosure is an objective optical system for an endoscope, which comprises a front group and a rear group having a positive refractive force in order from the object side to the image side, and the front group is an object. From the side to the image side, it consists of one negative lens, an optical path deflection prism, an aperture aperture, and one positive lens.
  • the optical path deflection prism is the first prism in order from the object side to the image side.
  • a first prism and a second prism arranged apart from each other via an air gap, and the light beam incident on the optical path deflecting prism is separated from the air spacing of the optical path deflecting prism after passing through the air spacing.
  • the optical path is bent by total reflection at the interface, the focal distance of the entire system is f, the air spacing between the first prism and the second prism is Dp, the incident surface of the first prism and the optical axis of the rear group.
  • the absolute value of the angle formed by is ⁇ 1
  • the absolute value of the angle formed by the incident surface of the second prism and the optical axis of the rear group is ⁇ 2
  • the units of ⁇ 1 and ⁇ 2 are degrees
  • the following conditional equation (7) ) And (8) are satisfied.
  • the geometrical length of the optical path of the axial main ray in the first prism is GLf
  • the geometry of the optical path of the axial main ray in the second prism is defined in the ninth aspect.
  • the target length is GLs
  • the geometrical length of the optical path of the axial main ray in the first prism is GLf
  • the optical path of the axial main ray in the second prism is Ndp
  • the maximum total angle of view of the objective optical system for an endoscope is set to 2 ⁇ , and the refractive index of the first prism and the second prism with respect to the d line.
  • the average value is Ndp and the unit of 2 ⁇ is degree
  • the following conditional expression (11) is preferably satisfied, and the following conditional expression (11-1) is more preferable. 8.8 ⁇ (2 ⁇ ⁇ Ndp) /
  • the thirteenth aspect of the present disclosure is an endoscope, which includes an objective optical system for an endoscope according to the above aspect.
  • the fourteenth aspect of the present disclosure further includes an image pickup element arranged on the image plane of the objective optical system for an endoscope in the thirteenth aspect, and the front group and the rear group are aligned with the optical axis of the rear group. It is preferable that the image sensor is configured to be relatively rotatable, and the image sensor is integrally configured with the rear group.
  • Consisting of and “consisting of” refer to a lens having substantially no refractive power, a diaphragm, a filter, a cover glass, and the like, in addition to the components listed above. It is intended that optical elements other than the lens, as well as a lens flange, a lens barrel, an image sensor, and the like may be included.
  • having a positive refractive power-group means having a positive refractive power as a whole group.
  • the “ ⁇ group” is not limited to a configuration consisting of a plurality of lenses, and may be a configuration consisting of only one lens.
  • “Lens with positive refractive power” and “positive lens” are synonymous.
  • “Lens with negative refractive power” and “negative lens” are synonymous.
  • a composite aspherical lens (that is, a lens in which a spherical lens and an aspherical film formed on the spherical lens are integrally formed and function as one aspherical lens as a whole) is a junction lens. Is not considered and is treated as a single lens.
  • the sign of the refractive power, the radius of curvature of the lens surface, and the surface shape of the lens surface shall be considered in the paraxial region unless otherwise specified.
  • the sign of the radius of curvature the sign of the radius of curvature of the surface having the convex surface facing the object side is positive, and the sign of the radius of curvature of the surface having the convex surface facing the image side is negative.
  • the "focal length” used in the conditional expression is the paraxial focal length.
  • the value of the conditional expression is a value when the d line is used as a reference.
  • the "d line”, “C line” and “F line” described in the present specification are bright lines, the wavelength of the d line is 587.56 nm (nanometer), and the wavelength of the C line is 656.27 nm (nanometer). , The wavelength of the F-line is 486.13 nm (nanometers).
  • the objective optical system for an endoscope of the present disclosure and the endoscope provided with the objective optical system for an endoscope have a wide angle, a small size, and good optical performance.
  • FIG. 1 It is sectional drawing which shows the structure of the objective optical system for an endoscope which concerns on one exemplary embodiment of this disclosure. It is a figure which shows the structure of the optical path deflection prism P1. It is an enlarged schematic diagram of an optical path deflection prism P1. It is sectional drawing which shows the structure and the luminous flux of the objective optical system for an endoscope of Example 1. FIG. It is each aberration diagram of the objective optical system for an endoscope of Example 1. FIG. It is sectional drawing which shows the structure and the luminous flux of the objective optical system for an endoscope of Example 2. FIG. It is each aberration diagram of the objective optical system for an endoscope of Example 2. FIG.
  • FIG. It is each aberration diagram of the objective optical system for an endoscope of Example 4.
  • FIG. It is sectional drawing which shows the structure and the luminous flux of the objective optical system for an endoscope of Example 5. It is each aberration diagram of the objective optical system for an endoscope of Example 5. It is sectional drawing which shows the structure and the luminous flux of the objective optical system for an endoscope of Example 5A. It is a figure which shows the structure of the optical path deflection prism P4. It is sectional drawing which shows the structure and the luminous flux of the objective optical system for an endoscope of Example 6. It is a figure which shows the structure of the optical path deflection prism P5. It is each aberration diagram of the objective optical system for an endoscope of Example 6.
  • FIG. 5 is a cross-sectional view showing another configuration of an objective optical system for an endoscope and a luminous flux according to the first embodiment. It is a figure which shows the structure of the optical path deflection prism P7.
  • FIG. 5 is a cross-sectional view showing another configuration of an objective optical system for an endoscope and a luminous flux according to the first embodiment. It is a figure which shows the structure of the optical path deflection prism P8. It is a schematic block diagram of the endoscope system using the endoscope which concerns on one exemplary embodiment of this disclosure. It is a schematic block diagram of the endoscope which concerns on one exemplary embodiment of this disclosure. It is sectional drawing which shows the structure of the endoscope which concerns on one exemplary embodiment of this disclosure. It is sectional drawing which shows the structure of the endoscope which concerns on one exemplary embodiment of this disclosure.
  • FIG. 1 is a cross-sectional view showing a configuration of an objective optical system 1 for an endoscope according to the first exemplary embodiment.
  • the left side is the object side and the right side is the image side.
  • the optical axis Z shown in FIG. 1 is the optical axis of the rear group G2.
  • the example shown in FIG. 1 corresponds to the first embodiment described later, and is an objective optical system for a perspective endoscope in which the axial luminous flux from the object to the front group G1 is not parallel to the optical axis Z but is inclined. be.
  • the cover glass CG is arranged on the object side of the objective optical system 1 for the endoscope
  • the optical member PP is arranged on the image side of the objective optical system 1 for the endoscope in consideration of the usage situation.
  • the optical member PP is a member that assumes various filters and / or prisms and the like.
  • the various filters include, for example, a low-pass filter, an infrared cut filter, a filter that cuts a specific wavelength range, and the like.
  • the cover glass CG and the optical member PP are members whose incident surface and exit surface do not have parallel refractive powers, and are not lenses. In the present disclosure, it is possible to omit at least one of the cover glass CG and the optical member PP.
  • FIG. 1 shows an example in which the image plane Sim is located on the image side surface of the optical member PP, the position of the image plane Sim is not limited to this position in the present disclosure.
  • the image plane Sim shown in FIG. 1 does not indicate the size but the position on the optical axis.
  • the objective optical system 1 for an endoscope of this exemplary embodiment is composed of a front group G1 and a rear group G2 in order from the object side to the image side along the optical axis Z.
  • the front group G1 is composed of one negative lens L1, an optical path deflection prism P1, an aperture diaphragm St, and one positive lens L2 in order from the object side to the image side along the optical path.
  • the negative lens L1 it is possible to obtain a wide viewing angle required for an endoscope and to secure back focus. Since the positive and negative refractive power balance in the front group G1 can be adjusted by the positive lens L2, it is advantageous in suppressing astigmatism and curvature of field.
  • the aperture stop St shown in FIG. 1 does not necessarily represent the size and shape, but indicates the position on the optical axis Z.
  • FIG. 2 shows an example of the configuration of the optical path deflection prism P1 constituting the front group G1.
  • FIG. 2 shows the angles of the surfaces of the optical path deflection prism P1.
  • the optical path deflection prism P1 includes at least one surface Sr that bends the optical path by total reflection.
  • the optical path deflection prism P1 shown in FIG. 2 includes two prisms, a first prism PF and a second prism PS, and includes one surface Sr that bends the optical path by total reflection. By using total reflection in this way, a folded optical path can be formed in the optical path deflection prism P1, which is advantageous for miniaturization.
  • the optical path deflection prism P1 may include, for example, a surface coated with a metal film such as aluminum and / or a surface coated with a dielectric film as a reflecting surface in addition to the surface Sr that bends the optical path by total reflection. good.
  • FIG. 2 shows an example in which the optical path deflection prism P1 is composed of two prisms, the number of prisms constituting the optical path deflection prism P1 is not particularly limited in this exemplary embodiment.
  • the rear group G2 includes a plurality of bonded lenses formed by bonding a positive lens and a negative lens.
  • the inclusion of a plurality of bonded lenses in the rear group G2 is advantageous for correcting chromatic aberration of magnification.
  • Each of the plurality of bonded lenses may be a bonded lens in which a positive lens and a negative lens are bonded in order from the object side, or may be a bonded lens in which a negative lens and a positive lens are bonded in order from the object side.
  • the rear group G2 preferably includes a set of junction lenses CE1 on the most object side.
  • arranging the junction lens closest to the object is advantageous for correcting chromatic aberration of magnification.
  • the rear group G2 includes a set of the bonded lens CE1 and the positive lens L4 in order from the object side to the image side. Since the positive and negative refractive power balance in the rear group G2 can be adjusted by the positive lens L4, it is advantageous in suppressing astigmatism and curvature of field.
  • the rear group G2 is composed of a set of a bonding lens CE1, a positive lens L4, and a set of bonding lenses CE2 in this order from the object side to the image side along the optical axis Z.
  • the bonded lens CE2 is further advantageous for correcting chromatic aberration of magnification.
  • the positive lens L4 may be replaced with the junction lens CE3, and in this case as well, the effect of suppressing astigmatism and curvature of field can be obtained. ..
  • the rear group G2 is joined with a positive lens L31 and a negative lens L32 in order from the object side to the image side along the optical axis Z. It is configured to consist of a bonded lens CE1, a positive lens L4, and a bonded lens CE2 in which a positive lens L51 and a negative lens L52 are bonded.
  • the above configuration relating to the objective optical system 1 for an endoscope will be referred to as a basic configuration.
  • the abbe number of the d-line reference of the positive lens constituting the junction lens on the most object side is ⁇ pa
  • d of the negative lens constituting the junction lens on the most object side is ⁇ na
  • the line-referenced Abbe number is ⁇ na
  • the d-line reference Abbe number of the positive lens that constitutes the most image-side junction lens is ⁇ pb
  • the d-line reference Abbe number of the negative lens that constitutes the most image-side junction lens is ⁇ nb.
  • the distance on the optical axis Z from the aperture aperture St to the junction surface of the most object-side junction lens is Lca
  • the distance from the aperture aperture St to the junction surface of the most image-side junction lens on the optical axis Z is Lcb
  • the most object is Lcb
  • the radius of curvature of the junction surface of the side junction lens is Rca
  • the radius of curvature of the junction surface of the most image side junction lens is Rcb
  • the focal distance of the entire system is f
  • the focal distance of the rear group G2 is fg
  • the distance on the optical axis from the aperture stop St to the junction surface of the most object-side junction lens CE1 is Lca
  • the above distance is shown as Lcb.
  • the radius of curvature of the bonding surface of the bonding lens CE1 on the most object side is shown as Rca
  • the radius of curvature of the bonding surface of the bonding lens CE2 on the most image side is shown as Rcb.
  • the total number of junction lenses is k
  • the natural number from 1 to k is i
  • the d-line reference of the positive lens constituting the i-th junction lens from the object side is used.
  • the Abbe number is ⁇ pi
  • the d-line reference Abbe number of the negative lens constituting the i-th junction lens from the object side is ⁇ ni
  • conditional expression (2) When the distance is Lci, the radius of curvature of the junction surface of the i-th junction lens from the object side is Rci, the focal length of the front group G1 is ff, and the focal length of the rear group G2 is fg, the following conditional expression (2) is used. It is preferably configured to be satisfactory. By making sure that the value does not fall below the lower limit of the conditional expression (2), it is advantageous for correcting the chromatic aberration of magnification. By not exceeding the upper limit of the conditional expression (2), it is possible to suppress an increase in the overall length of the lens system, which is advantageous for miniaturization. If the configuration satisfies the following conditional expression (2-1), better characteristics can be obtained.
  • the following conditional expression (3) is used. It is preferable to be satisfied. By making sure that the value does not fall below the lower limit of the conditional expression (3), the length of the back focus can be lengthened, which is advantageous for fixing the image sensor. By not exceeding the upper limit of the conditional expression (3), it is possible to suppress an increase in the overall length of the lens system, which is advantageous for miniaturization. If the configuration satisfies the conditional expression (3-1), better characteristics can be obtained. 0.95 ⁇ Bf / f ⁇ 2 (3) 1 ⁇ Bf / f ⁇ 1.8 (3-1)
  • the radius of curvature of the image-side surface of the negative lens L1 of the front group G1 is Rr1, and the curvature of the surface of the negative lens L1 of the front group G1 on the object side.
  • the radius is Rf1
  • the focal length of the entire system is f
  • the focal length of the negative lens L1 of the front group G1 is f1
  • (Rr1 + Rf1) / (Rr1-Rf1) of the conditional expression (4) is a term relating to the lens shape of the negative lens L1 of the front group G1.
  • conditional expression (4) By making sure that the value does not fall below the lower limit of the conditional expression (4), it becomes easy to control the refraction of the off-axis light rays and suppress the distortion. By not exceeding the upper limit of the conditional expression (4), it is advantageous for miniaturization. If the configuration satisfies the following conditional expression (4-1), better characteristics can be obtained.
  • the radius of curvature of the image-side surface of the negative lens L1 of the front group G1 is Rr1, and the curvature of the surface of the negative lens L1 of the front group G1 on the object side.
  • Rr1 the radius of curvature of the image-side surface of the negative lens L1 of the front group G1
  • Nd1 the refractive index of the negative lens L1 of the front group G1 with respect to the d line
  • conditional expression (5) By making sure that the value does not fall below the lower limit of the conditional expression (5), it becomes easy to control the refraction of the off-axis light rays and suppress the distortion. By not exceeding the upper limit of the conditional expression (5), it is advantageous for miniaturization. If the configuration satisfies the following conditional expression (5-1), better characteristics can be obtained.
  • the distance on the optical axis from the aperture diaphragm St to the lens surface on the most object side is Lf
  • the refractive index of the optical path deflection prism P1 with respect to the d line is Ndp.
  • the focal length of the negative lens L1 of the front group G1 is f1
  • Ndp is the average value of the refractive indexes of the plurality of prisms included in the optical path deflection prism P1 with respect to the d line.
  • conditional expression (6) By making sure that the value does not fall below the lower limit of the conditional expression (6), it is advantageous to increase the angle of the on-axis main ray incident on the front group G1 with respect to the optical axis Z, that is, the angle in the perspective direction. By not exceeding the upper limit of the conditional expression (6), it is advantageous for miniaturization. If the configuration satisfies the following conditional expression (6-1), better characteristics can be obtained. 0.75 ⁇ Lf / (Ndp ⁇ f1)
  • the first configuration example is an objective optical system for an endoscope having the above-mentioned basic configuration and satisfying the conditional expression (1). According to the first configuration example, it is advantageous for correction of chromatic aberration of magnification, while suppressing an increase in the overall length of the lens system, which is advantageous for miniaturization.
  • the second configuration example is an objective optical system for an endoscope having the above-mentioned basic configuration and satisfying the conditional expression (2). According to the second configuration example, it is advantageous for correction of chromatic aberration of magnification, while suppressing an increase in the overall length of the lens system, which is advantageous for miniaturization.
  • FIG. 1 The configuration of the objective optical system 1 for an endoscope according to the second exemplary embodiment is shown in FIG. 1 as in the first exemplary embodiment. That is, the objective optical system 1 for an endoscope according to the second exemplary embodiment has the above-mentioned basic configuration.
  • FIG. 1 The configuration of the objective optical system 1 for an endoscope according to the second exemplary embodiment is shown in FIG. 1 as in the first exemplary embodiment. That is, the objective optical system 1 for an endoscope according to the second exemplary embodiment has the above-mentioned basic configuration.
  • some description of configurations, effects, and illustration methods that overlap with the above-mentioned basic configurations will be omitted.
  • the objective optical system 1 for an endoscope of this exemplary embodiment is composed of a front group G1 and a rear group G2 having a positive refractive power in order from the object side to the image side along the optical axis Z. .. Since the rear group G2 has a positive refractive power, an image can be formed on the image plane Sim.
  • the front group G1 is composed of one negative lens L1, an optical path deflection prism P1, an aperture diaphragm St, and one positive lens L2 in order from the object side to the image side along the optical path.
  • the negative lens L1 it is possible to obtain a wide viewing angle required for an endoscope and to secure back focus.
  • the optical path deflection prism P1 is arranged along the optical path from the object side to the image side in order from the first prism PF, the first prism PF, and the second prism PS separated by an air gap Dp. And consists of.
  • the optical path deflection prism P1 can be used as an objective optical system for an endoscope for strabismus in which the axial luminous flux from the object to the front group G1 is not parallel to the optical axis Z but is inclined. Further, after the light beam incident on the optical path deflection prism P1 passes through the air interval Dp, the optical path is bent by total internal reflection at the interface of the optical path deflection prism P1 with the air interval Dp. By using total reflection in the optical path deflection prism P1, a folded optical path can be formed in the optical path deflection prism P1, which is advantageous for miniaturization.
  • FIG. 3 is a schematic view of the optical path deflection prism P1, and also shows the on-axis main ray (that is, the central ray of the on-axis luminous flux) A1p incident on the optical path deflection prism P1 and the main rays A2p and A3p having the maximum angle of view. ing.
  • the upper side of the rear group G2 above the optical axis Z is the positive side
  • the lower side of the rear group G2 below the optical axis Z is the negative side
  • A2p is the main ray with the maximum angle of view on the positive side
  • A3p is the maximum image on the negative side. It is called the main ray of the angle.
  • the air spacing Dp is exaggerated for the purpose of explaining the principle of image plane tilt.
  • the aperture stop St is also shown in FIG. 3, the aperture stop St shown in FIG. 3 does not necessarily represent the size and shape.
  • the incident surface Sfi of the first prism PF and the incident surface Ssi of the second prism PS are flat surfaces.
  • the incident surface Sfi of the first prism PF is tilted by an angle ⁇ 1 with respect to the optical axis Z of the rear group G2, and the incident surface Ssi of the second prism PS is tilted by an angle ⁇ 2 with respect to the optical axis Z of the rear group G2. It is tilted.
  • the exit surface Sfo of the first prism PF and the incident surface Ssi of the second prism PS are parallel to each other.
  • the incident surface Ssi of the second prism PS which is the interface with the air spacing Dp, is the surface Sr that bends the optical path due to total reflection.
  • the light rays incident on the first prism PF from the incident surface Sfi pass through the first prism PF, are emitted from the exit surface Sfo, pass through the air gap Dp, and pass from the incident surface Ssi to the second prism PF. It is incident on the prism PS of. After that, it is reflected by the reflecting surface Sc coated with aluminum or a dielectric film, and is totally reflected by the incident surface Ssi (that is, the surface Sr that bends the optical path by total reflection) and faces the opening aperture St. It is emitted from the exit surface Sso of the second prism PS. That is, the light beam incident on the optical path deflection prism P1 is reflected twice in the second prism PS, so that the optical path is bent twice.
  • the on-axis main ray A1p is incident perpendicularly to the incident surface Sfi of the first prism PF.
  • the on-axis main ray A1p is not incident perpendicularly to the incident surface Ssi of the second prism PS, and is incident on the second prism PS. It is incident at an angle with respect to the perpendicular line of the surface Ssi.
  • is expressed by the following equation.
  • the angle ⁇ can be said to be the inclination of the incident surface Ssi of the second prism PS with respect to the on-axis main ray A1p and the inclination of the air interval Dp with respect to the on-axis main ray A1p.
  • the geometric lengths of the optical paths of the on-axis main ray A1p, the main ray A2p with the maximum angle of view on the plus side, and the main ray A3p with the maximum angle of view on the minus side at the air spacing Dp are set to GLa1, GLa2, and GLa3, respectively.
  • the air spacing Dp is inclined by an angle ⁇ with respect to the on-axis main ray A1p. Therefore, as shown in FIG. 3, GLa2 and GLa3 have different lengths, and the main ray A2p having the maximum angle of view on the plus side and the main ray A3p having the maximum angle of view on the minus side are asymmetrical, so that the image plane collapses. Occurs.
  • the larger the air spacing Dp and the larger the angle ⁇ the larger the difference between GLa2 and GLa3, so that the image plane tilting appears remarkably.
  • the objective optical system 1 for an endoscope of this exemplary embodiment has the following conditions, where the focal length of the entire system is f and the air spacing between the first prism PF and the second prism PS is Dp. It is preferable to satisfy the formula (7). By making sure that the value does not fall below the lower limit of the conditional expression (7), the air spacing Dp does not become excessive, so that the occurrence of image plane tilt can be suppressed. By not exceeding the upper limit of the conditional expression (7), the air spacing Dp is not excessively reduced, so that interference fringes and ghosts that may occur between the first prism PF and the second prism PS can be suppressed. .. If the configuration satisfies the following conditional expression (7-1), better characteristics can be obtained. 30 ⁇ f / Dp ⁇ 500 (7) 50 ⁇ f / Dp ⁇ 300 (7-1)
  • the absolute value of the angle formed by the incident surface Sfi of the first prism PF and the optical axis Z of the rear group G2 is ⁇ 1, and the second prism PS
  • the absolute value of the angle formed by the incident surface of the above and the optical axis Z of the rear group G2 is ⁇ 2 and the units of ⁇ 1 and ⁇ 2 are degrees
  • the conditional expression (8) is an expression relating to the above-mentioned angle ⁇ .
  • the air gap between the first prism PF and the second prism PS is set to Dp, and the axial main ray A1p in the first prism PF is set.
  • the geometrical length of the optical path is GLf
  • the geometrical length of the optical path of the axial main ray A1p in the second prism PS is GLs
  • the air spacing Dp is not excessively reduced, so that interference fringes and ghosts that may occur between the first prism PF and the second prism PS can be suppressed. .. If the configuration satisfies the following conditional expression (9-1), better characteristics can be obtained. 60 ⁇ (GLf + GLs) / Dp ⁇ 600 (9) 100 ⁇ (GLf + GLs) / Dp ⁇ 500 (9-1)
  • the geometrical length of the optical path of the axial main ray A1p in the first prism PF is GLf
  • the axial main ray in the second prism PS is set to GLf.
  • conditional expression (10) By making sure that the value does not fall below the lower limit of the conditional expression (10), it is advantageous to secure a region in which the light rays are reflected in the second prism PS, and it is possible to prevent the light rays from overlapping each other. By not exceeding the upper limit of the conditional expression (10), the occurrence of image plane tilt can be suppressed. If the configuration satisfies the following conditional expression (10-1), better characteristics can be obtained. 1 ⁇ (GLs / GLf) /Npd ⁇ 2.5 (10) 2 ⁇ (GLs / GLf) / Ndp ⁇ 2.2 (10-1)
  • the maximum total angle of the objective optical system 1 for an endoscope is 2 ⁇
  • the refractive index of the first prism PF and the second prism PS with respect to the d line is Ndp
  • the absolute value of the angle formed by the incident surface Sfi of the first prism PF and the optical axis Z of the rear group G2 is ⁇ 1
  • the preferred configurations and possible configurations according to the first and second exemplary embodiments described above, including the configuration related to the conditional expression, can be any combination and are appropriately selectively adopted according to the required specifications. Is preferable.
  • FIG. 4 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope according to the first embodiment.
  • FIG. 4 shows the axial luminous flux A1 and the luminous fluxes A2 and A3 having the maximum angle of view, and also shows the maximum total angle of view 2 ⁇ . Further, FIG. 4 also shows the cover glass CG and the optical member PP in the same manner as in FIG. 1 in consideration of the usage situation. Since the configuration of the front group G1 of the objective optical system 1 for an endoscope of the first embodiment is as described above, duplicate description will be omitted here.
  • the rear group G2 is a bonded lens CE1 in which a positive lens L31 and a negative lens L32 are bonded, a positive lens L4, and a bonded lens CE2 in which a positive lens L51 and a negative lens L52 are bonded in order from the object side to the image side. And consists of.
  • Table 1 shows the basic lens data and Table 2 shows the specifications of the objective optical system 1 for the endoscope of the first embodiment.
  • the Sn column shows the surface number when the surface on the object side is the first surface and the number is increased by one toward the image side
  • the R column shows the radius of curvature of each surface.
  • the column D the distance between each surface and the surface adjacent to the image side is shown.
  • the column of Nd shows the refractive index of each component with respect to the d-line
  • the column of ⁇ d shows the Abbe number of each component based on the d-line.
  • Table 1 the sign of the radius of curvature of the surface having the convex surface facing the object side is positive, and the sign of the radius of curvature of the surface having the convex surface facing the image side is negative.
  • Table 1 also shows the cover glass CG, the optical path deflection prism P1, the aperture stop St, and the optical member PP.
  • the surface number and the phrase (St) are described in the column of the surface number of the surface corresponding to the aperture stop St.
  • the value in the bottom column of D in Table 1 is the distance between the surface closest to the image and the image surface Sim in the table.
  • Table 2 shows the focal length f of the entire system, the back focus Bf of the entire system in terms of air conversion distance, and the F number FNo. , And the value of the maximum total angle of view 2 ⁇ are shown on the d-line basis. (°) in the column of 2 ⁇ means that the unit is degree. In each table shown below, numerical values rounded with predetermined digits are listed.
  • FIG. 5 shows each aberration diagram of the objective optical system 1 for an endoscope according to the first embodiment.
  • spherical aberration, astigmatism, distortion, and chromatic aberration of magnification are shown in order from the left.
  • the aberrations on the d-line, C-line, and F-line are shown by solid lines, long dashed lines, and short dashed lines, respectively.
  • the aberration on the d-line in the sagittal direction is shown by a solid line
  • the aberration on the d-line in the tangential direction is shown by a short dashed line.
  • the aberration on the d line is shown by a solid line.
  • the aberrations on the C line and the F line are shown by long broken lines and short broken lines, respectively.
  • FNo. Of the spherical aberration diagram.
  • Means F number, and ⁇ in other aberration diagrams means half angle of view.
  • Table 1 and FIG. 5 are data when the distance from the object to the surface of the cover glass CG on the object side is 36.9.
  • FIG. 6 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope according to the second embodiment. Since the configuration of the front group G1 of the objective optical system 1 for an endoscope of the second embodiment is as described above, duplicate description will be omitted here.
  • the rear group G2 is a bonded lens CE1 in which a positive lens L31 and a negative lens L32 are bonded, a positive lens L4, and a bonded lens CE2 in which a positive lens L51 and a negative lens L52 are bonded in order from the object side to the image side. And consists of.
  • the basic lens data is shown in Table 3, the specifications are shown in Table 4, and each aberration diagram is shown in FIG. These data are data when the distance from the object to the surface of the cover glass CG on the object side is 38.6.
  • FIG. 8 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope of the second embodiment A.
  • the optical path deflection prism P1 in the second embodiment is replaced with the optical path deflection prism P2 shown in FIG. Since the configuration of the objective optical system 1 for an endoscope of the second embodiment A is the same as that of the second embodiment except for the above-mentioned replaced portion, duplicate description will be omitted here.
  • Table 5 shows the basic lens data and Table 6 shows the specifications of the objective optical system 1 for the endoscope of Example 2A.
  • Each aberration diagram is the same as in Example 2 shown in FIG.
  • These data are data when the distance from the object to the surface of the cover glass CG on the object side is 38.6.
  • FIG. 10 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope according to the third embodiment. Since the configuration of the front group G1 of the objective optical system 1 for an endoscope of the third embodiment is as described above, duplicate description will be omitted here.
  • the rear group G2 is a bonded lens CE1 in which a positive lens L31 and a negative lens L32 are bonded, a positive lens L4, and a bonded lens CE2 in which a negative lens L51 and a positive lens L52 are bonded in order from the object side to the image side. And consists of.
  • the basic lens data is shown in Table 7, the specifications are shown in Table 8, and each aberration diagram is shown in FIG. These data are data when the distance from the object to the surface of the cover glass CG on the object side is 36.3.
  • FIG. 12 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope of the third embodiment A.
  • the optical path deflection prism P1 in Example 3 is replaced with the optical path deflection prism P3 shown in FIG. Since the configuration of the objective optical system 1 for an endoscope of the third embodiment A is the same as that of the third embodiment except for the above-mentioned replaced portion, duplicate description will be omitted here.
  • Table 9 shows the basic lens data and Table 10 shows the specifications of the objective optical system 1 for the endoscope of Example 3A.
  • Each aberration diagram is the same as in Example 3 shown in FIG.
  • These data are data when the distance from the object to the surface of the cover glass CG on the object side is 36.3.
  • FIG. 14 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope according to the fourth embodiment. Since the configuration of the front group G1 of the objective optical system 1 for an endoscope of the fourth embodiment is as described above, duplicate description will be omitted here.
  • the rear group G2 is a bonded lens CE1 in which a positive lens L31 and a negative lens L32 are bonded, a positive lens L4, and a bonded lens CE2 in which a negative lens L51 and a positive lens L52 are bonded in order from the object side to the image side. And consists of.
  • the basic lens data is shown in Table 11, the specifications are shown in Table 12, and each aberration diagram is shown in FIG. These data are data when the distance from the object to the surface of the cover glass CG on the object side is 37.7.
  • FIG. 16 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope according to the fifth embodiment. Since the configuration of the front group G1 of the objective optical system 1 for an endoscope of the fifth embodiment is as described above, duplicate description will be omitted here.
  • the rear group G2 is a bonded lens CE1 in which a positive lens L31 and a negative lens L32 are bonded, a positive lens L4, and a bonded lens CE2 in which a negative lens L51 and a positive lens L52 are bonded in order from the object side to the image side. And consists of.
  • the basic lens data is shown in Table 13, the specifications are shown in Table 14, and each aberration diagram is shown in FIG. These data are data when the distance from the object to the surface of the cover glass CG on the object side is 38.4.
  • Example 5A As a modification of Example 5, a cross-sectional view showing the configuration and light flux of the objective optical system 1 for an endoscope of Example 5A is shown in FIG.
  • the optical path deflection prism P1 in Example 5 is replaced with the optical path deflection prism P4 shown in FIG. Since the configuration of the objective optical system 1 for an endoscope of the fifth embodiment A is the same as that of the fifth embodiment except for the above-mentioned replaced portion, duplicate description will be omitted here.
  • Table 15 shows the basic lens data and Table 16 shows the specifications of the objective optical system 1 for the endoscope of Example 5A.
  • Each aberration diagram is the same as in Example 5 shown in FIG.
  • These data are data when the distance from the object to the surface of the cover glass CG on the object side is 38.4.
  • FIG. 20 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope according to the sixth embodiment.
  • the front group G1 has a configuration in which the above-mentioned optical path deflection prism P1 is replaced with the optical path deflection prism P5 shown in FIG.
  • the rear group G2 is a bonded lens CE1 in which a positive lens L31 and a negative lens L32 are bonded, a positive lens L4, and a bonded lens CE2 in which a positive lens L51 and a negative lens L52 are bonded in order from the object side to the image side. And consists of.
  • the basic lens data is shown in Table 17, the specifications are shown in Table 18, and each aberration diagram is shown in FIG. These data are data when the distance from the object to the surface of the cover glass CG on the object side is 40.1.
  • FIG. 23 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope according to the seventh embodiment.
  • the front group G1 has a configuration in which the above-mentioned optical path deflection prism P1 is replaced with the optical path deflection prism P6 shown in FIG. 24.
  • the rear group G2 is a bonded lens CE1 in which a positive lens L31 and a negative lens L32 are bonded, a positive lens L4, and a bonded lens CE2 in which a positive lens L51 and a negative lens L52 are bonded in order from the object side to the image side. And consists of.
  • the basic lens data is shown in Table 19, the specifications are shown in Table 20, and each aberration diagram is shown in FIG. 25. These data are data when the distance from the object to the surface of the cover glass CG on the object side is 38.3.
  • FIG. 26 shows a cross-sectional view showing the configuration and the luminous flux of the objective optical system 1 for an endoscope according to the eighth embodiment. Since the configuration of the front group G1 of the objective optical system 1 for an endoscope of the eighth embodiment is as described above, duplicate description will be omitted here.
  • the rear group G2 includes a bonded lens CE1 in which a positive lens L31 and a negative lens L32 are bonded, a bonded lens CE3 in which a positive lens L41 and a negative lens L42 are bonded, and a positive lens L51 in order from the object side to the image side. It is composed of a bonded lens CE2 in which a negative lens L52 and a negative lens L52 are bonded.
  • the basic lens data is shown in Table 21, the specifications are shown in Table 22, and each aberration diagram is shown in FIG. 27. These data are data when the distance from the object to the surface of the cover glass CG on the object side is 38.4.
  • Table 23 shows the corresponding values of the conditional expressions (1) to (6) of the objective optical system for endoscopes of Examples 1 to 8.
  • the d line is used as a reference wavelength.
  • Table 23 shows the values based on the d-line.
  • the objective optical systems for endoscopes of Examples 1 to 8 satisfy the conditional expressions (1) to (6), respectively, and are compact and compact while being configured to have a wide angle of view of 75 degrees or more. It can be seen that it has good optical performance with various aberrations corrected well.
  • Table 24 shows the corresponding values of the conditional expressions (7) to (11) of the objective optical system for the endoscope of Examples 1, 2A, 3A, 5A, 6 and 7.
  • the d line is used as a reference wavelength.
  • Table 24 shows the values based on the d-line.
  • the objective optical systems for endoscopes of Examples 1, 2A, 3A, 5A, 6 and 7 satisfy the conditional expressions (7) to (11), respectively, and the total angle of view becomes a wide angle of 75 degrees or more. It can be seen that the configuration is small and has good optical performance in which asymmetrical image plane tilt is suppressed.
  • the optical path deflection prism used in the objective optical system 1 for an endoscope of the present disclosure is not limited to the above-mentioned optical path deflection prisms P1 to P6.
  • FIG. 28 shows a configuration and a cross-sectional view showing a luminous flux when the optical path deflection prism P1 is replaced with the optical path deflection prism P7 shown in FIG. 29 in the objective optical system 1 for an endoscope of the first embodiment.
  • FIG. 30 shows a cross-sectional view showing the configuration and the luminous flux when the optical path deflection prism P1 is replaced with the optical path deflection prism P8 shown in FIG. 31 in the objective optical system 1 for an endoscope of the first embodiment.
  • the objective optical system 1 for an endoscope shown in FIG. 30 is for lateral viewing.
  • any optical path deflection prism can be applied to the objective optical system 1 for an endoscope of the present disclosure.
  • FIG. 32 shows a schematic configuration diagram of an endoscope system using an endoscope according to an exemplary embodiment of the present disclosure.
  • the endoscope system 11 shown in FIG. 32 includes an endoscope 10, a light source device 12, an image processing device 13, and a monitor 14.
  • the light emitted by the light source device 12 is guided to the endoscope 10 via the optical cable 16, and the endoscope 10 irradiates the light to image the observed portion.
  • the image processing device 13 acquires the image signal captured by the endoscope 10 via the cable 15, performs a predetermined process on the acquired image signal, and obtains an image based on the image signal subjected to the predetermined process. Is generated, and the generated image is displayed on the monitor 14.
  • the endoscope 10 is a so-called rigid endoscope including an imaging unit 20 and a rigid insertion portion 30.
  • the hard insertion portion 30 is a portion to be inserted into the abdominal cavity when taking an image in the abdominal cavity, is formed of a hard material, and has, for example, a cylindrical shape having a diameter of about 5 mm (millimeters).
  • the objective optical system 1 for an endoscope according to the exemplary embodiment of the present disclosure is arranged.
  • FIG. 32 schematically illustrates the objective optical system 1 for an endoscope.
  • the image pickup unit 20 is detachably connected to the other end side of the rigid insertion portion 30, and the image formed by the endoscope objective optical system 1 is sent to the image pickup unit 20.
  • the image pickup unit 20 takes an image image formed by the objective optical system 1 for an endoscope and generates an image signal of an observed portion.
  • the endoscope of the present disclosure includes the objective optical system 1 for an endoscope according to the exemplary embodiment of the present disclosure, it is possible to observe in a wide field of view and obtain a good image. can do.
  • the endoscope 10 may be provided with an operation unit for rotatably operating the objective optical system 1 for an endoscope about its optical axis so that the field of view for imaging can be easily changed.
  • FIG. 33 shows an example of a schematic overall configuration diagram of a flexible endoscope according to an exemplary embodiment of the present disclosure.
  • the endoscope 100 shown in FIG. 33 mainly includes an operation unit 102, an insertion unit 104, and a universal cord 106 connected to a connector unit (not shown).
  • the insertion portion 104 is a soft portion 107 that bends in an arbitrary direction along the insertion path, a curved portion 108 is connected to the tip of the soft portion 107, and a tip portion 110 is connected to the tip of the curved portion 108. There is.
  • the bending portion 108 is provided to direct the tip portion 110 in a desired direction, and the bending operation can be performed by rotating the bending operation knob 109 provided on the operation portion 102.
  • the objective optical system 1 for an endoscope according to the exemplary embodiment of the present disclosure is arranged at the inner tip of the tip portion 110.
  • FIG. 33 schematically illustrates the objective optical system 1 for an endoscope. As described above, since the endoscope of the present disclosure includes the objective optical system 1 for an endoscope according to the exemplary embodiment of the present disclosure, it is possible to observe in a wide field of view and obtain a good image. can do.
  • the endoscope of the present disclosure further includes an image pickup element S arranged on the image plane Sim of the objective optical system 1 for the endoscope, and the objective optical system 1 for the endoscope is further provided.
  • the front group G1 and the rear group G2 are configured to be relatively rotatable about the optical axis Z of the rear group G2, and the imaging element S is preferably configured integrally with the rear group G2.
  • the front group G1 is arranged on the tip member 2
  • the rear group G2 and the image sensor S are arranged on the accommodating member 3
  • at least one of the tip member 2 and the accommodating member 3 has the optical axis Z as an axis. It is configured to be rotatable.
  • only the front group G1 may rotate by rotating only the tip member 2, or only the rear group G2 and the image sensor S may rotate integrally by rotating only the accommodating member 3. You may move it. Further, the front group G1 and the rear group G2 and the image sensor S may rotate relatively by rotating the tip member 2 and the accommodating member 3 with each other.
  • integralally rotating as used herein means rotating in the same direction, by the same amount, and at the same time.
  • the optical path may be bent by arranging an optical member PP or the like made of a prism between the rear group G2 and the image sensor S. When the optical path is bent, it is advantageous for miniaturization.
  • the techniques of the present disclosure have been described above with reference to exemplary embodiments and examples, the techniques of the present disclosure are not limited to the above exemplary embodiments and examples, and various modifications are possible.
  • the radius of curvature, the interplanar spacing, the refractive index, the Abbe number, and the like of each lens are not limited to the values shown in the above numerical examples, and may take other values.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Lenses (AREA)

Abstract

物体側から像側へ順に、前群と、後群と、からなり、前記前群は、物体側から像側へ順に、1枚の負レンズと、光路偏向プリズムと、開口絞りと、1枚の正レンズと、からなり、予め定められた条件式を満足する内視鏡用対物光学系。

Description

内視鏡用対物光学系及び内視鏡
 本開示は、内視鏡用対物光学系及び内視鏡に関する。
 従来、医療分野において患者の体内の観察及び処置等を行うために内視鏡が用いられている。特許第4827391号公報には、内視鏡用対物光学系として使用可能なレンズ系が記載されている。
 近年、広角でありながら、小型で、かつ良好な光学性能を有する内視鏡用対物光学系が要望されている。
 本開示は、広角でありながら、小型で、かつ良好な光学性能を有する内視鏡用対物光学系、及びこの内視鏡用対物光学系を備えた内視鏡を提供する。
 本開示の第1の態様は、内視鏡用対物光学系であって、物体側から像側へ順に、前群と、後群と、からなり、前群は、物体側から像側へ順に、1枚の負レンズと、光路偏向プリズムと、開口絞りと、1枚の正レンズと、からなり、後群は、正レンズと負レンズとが接合された接合レンズを複数含み、最も物体側の接合レンズを構成する正レンズのd線基準のアッベ数をνpa、最も物体側の接合レンズを構成する負レンズのd線基準のアッベ数をνna、最も像側の接合レンズを構成する正レンズのd線基準のアッベ数をνpb、最も像側の接合レンズを構成する負レンズのd線基準のアッベ数をνnb、開口絞りから最も物体側の接合レンズの接合面までの光軸上の距離をLca、開口絞りから最も像側の接合レンズの接合面までの光軸上の距離をLcb、最も物体側の接合レンズの接合面の曲率半径をRca、最も像側の接合レンズの接合面の曲率半径をRcb、全系の焦点距離をf、後群の焦点距離をfg、とした場合、下記条件式(1)を満足する。
Figure JPOXMLDOC01-appb-M000009
 本開示の第1の態様において、下記条件式(1-1)を満足することが好ましい。
Figure JPOXMLDOC01-appb-M000010
 本開示の第2の態様は、内視鏡用対物光学系であって、物体側から像側へ順に、前群と、後群と、からなり、前群は、物体側から像側へ順に、1枚の負レンズと、光路偏向プリズムと、開口絞りと、1枚の正レンズと、からなり、後群は、正レンズと負レンズとが接合された接合レンズを複数含み、接合レンズの総数をk、1からkまでの自然数をi、物体側からi番目の接合レンズを構成する正レンズのd線基準のアッベ数をνpi、物体側からi番目の接合レンズを構成する負レンズのd線基準のアッベ数をνni、開口絞りから物体側からi番目の接合レンズの接合面までの光軸上の距離をLci、物体側からi番目の接合レンズの接合面の曲率半径をRci、前群の焦点距離をff、後群の焦点距離をfg、とした場合、下記条件式(2)を満足する。
Figure JPOXMLDOC01-appb-M000011
 本開示の第2の態様において、下記条件式(2-1)を満足することが好ましい。
Figure JPOXMLDOC01-appb-M000012
 本開示の第3の態様は、上記態様において、後群が、最も物体側から像側へ順に、1組の接合レンズと、正レンズ又は1組の接合レンズと、を含むことが好ましい。
 本開示の第4の態様は、上記態様において、空気換算距離での全系のバックフォーカスをBf、全系の焦点距離をf、とした場合、下記条件式(3)を満足することが好ましく、下記条件式(3-1)を満足することがより好ましい。
  0.95<Bf/f<2  (3)
  1<Bf/f<1.8  (3-1)
 本開示の第5の態様は、上記態様において、前群の負レンズの像側の面の曲率半径をRr1、前群の負レンズの物体側の面の曲率半径をRf1、全系の焦点距離をf、前群の負レンズの焦点距離をf1、とした場合、下記条件式(4)を満足することが好ましく、下記条件式(4-1)を満足することがより好ましい。
Figure JPOXMLDOC01-appb-M000013

Figure JPOXMLDOC01-appb-M000014
 本開示の第6の態様は、上記態様において、前群の負レンズの像側の面の曲率半径をRr1、前群の負レンズの物体側の面の曲率半径をRf1、前群の負レンズのd線に対する屈折率をNd1、とした場合、下記条件式(5)を満足することが好ましく、下記条件式(5-1)を満足することがより好ましい。
Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-M000016
 本開示の第7の態様は、上記態様において、開口絞りから最も物体側のレンズ面までの光軸上の距離をLf、光路偏向プリズムのd線に対する屈折率をNdp、前群の負レンズの焦点距離をf1、とした場合、下記条件式(6)を満足することが好ましく、下記条件式(6-1)を満足することがより好ましい。
  0.75<|Lf/(Ndp×f1)|<1  (6)
  0.8<|Lf/(Ndp×f1)|<0.95  (6-1)
 本開示の第8の態様は、上記態様において、光路偏向プリズムが、全反射により光路を折り曲げる面を少なくとも1面含むことが好ましい。
 本開示の第9の態様は、内視鏡用対物光学系であって、物体側から像側へ順に、前群と、正の屈折力を有する後群と、からなり、前群は、物体側から像側へ順に、1枚の負レンズと、光路偏向プリズムと、開口絞りと、1枚の正レンズと、からなり、光路偏向プリズムは、物体側から像側へ順に、第1のプリズムと、第1のプリズムと空気間隔を介して離隔して配置された第2のプリズムと、からなり、光路偏向プリズムに入射した光線は、空気間隔を通過後に、光路偏向プリズムの空気間隔との界面において全反射により光路が折り曲げられ、全系の焦点距離をf、第1のプリズムと第2のプリズムとの間の空気間隔をDp、第1のプリズムの入射面と後群の光軸とのなす角度の絶対値をθ1、第2のプリズムの入射面と後群の光軸とのなす角度の絶対値をθ2、とし、θ1及びθ2の単位を度とした場合、下記条件式(7)及び(8)を満足する。
  30<f/Dp<500  (7)
  5<|θ1-θ2|<45  (8)
 本開示の第9の態様において、下記条件式(7-1)及び(8-1)の少なくとも一方を満足することが好ましく、両方を満足することがさらに好ましい。
  50<f/Dp<300  (7-1)
  7<|θ1-θ2|<30  (8-1)
 本開示の第10の態様は、上記第9の態様において、第1のプリズムにおける軸上主光線の光路の幾何学的長さをGLf、第2のプリズムにおける軸上主光線の光路の幾何学的長さをGLs、とした場合、下記条件式(9)を満足することが好ましく、下記条件式(9-1)を満足することがより好ましい。
  60<(GLf+GLs)/Dp<600  (9)
  100<(GLf+GLs)/Dp<500  (9-1)
 本開示の第11の態様は、上記第9及び第10の態様において、第1のプリズムにおける軸上主光線の光路の幾何学的長さをGLf、第2のプリズムにおける軸上主光線の光路の幾何学的長さをGLs、第1のプリズム及び第2のプリズムのd線に対する屈折率の平均値をNdp、とした場合、下記条件式(10)を満足することが好ましく、下記条件式(10-1)を満足することがより好ましい。
  1<(GLs/GLf)/Ndp<2.5  (10)
  2<(GLs/GLf)/Ndp<2.2  (10-1)
 本開示の第12の態様は、上記第9から第11の態様において、内視鏡用対物光学系の最大全画角を2ω、第1のプリズム及び第2のプリズムのd線に対する屈折率の平均値をNdp、とし、2ωの単位を度とした場合、下記条件式(11)を満足することが好ましく、下記条件式(11-1)を満足することがより好ましい。
  8.8<(2ω×Ndp)/|θ1-θ2|<25  (11)
  9<(2ω×Ndp)/|θ1-θ2|<22  (11-1)
 本開示の第13の態様は、内視鏡であっては、上記態様に係る内視鏡用対物光学系を備えている。
 本開示の第14の態様は、上記第13の態様において、内視鏡用対物光学系の像面に配置された撮像素子を更に備え、前群及び後群は、後群の光軸を軸として相対的に回動可能に構成され、撮像素子は、後群と一体的に構成されていることが好ましい。
 なお、本明細書において、「~からなり」及び「~からなる」は、挙げられた構成要素以外に、実質的に屈折力を有さないレンズ、並びに、絞り、フィルタ、及びカバーガラス等のレンズ以外の光学要素、並びに、レンズフランジ、レンズバレル、及び撮像素子等が含まれていてもよいことを意図する。
 本明細書において、「正の屈折力を有する~群」は、群全体として正の屈折力を有することを意味する。「~群」は、複数のレンズからなる構成に限らず、1枚のみのレンズからなる構成としてもよい。「正の屈折力を有するレンズ」及び「正レンズ」は同義である。「負の屈折力を有するレンズ」及び「負レンズ」は同義である。
 複合非球面レンズ(つまり、球面レンズと、その球面レンズ上に形成された非球面形状の膜とが一体的に構成されて、全体として1つの非球面レンズとして機能するレンズ)は、接合レンズとは見なさず、1枚のレンズとして扱う。非球面を含むレンズについて、屈折力の符号、レンズ面の曲率半径、及びレンズ面の面形状は、特に断りが無い限り近軸領域で考えることとする。曲率半径の符号は、物体側に凸面を向けた形状の面の曲率半径の符号を正、像側に凸面を向けた形状の面の曲率半径の符号を負とする。
 「全系」は、「内視鏡用対物光学系」を意味する。条件式で用いる「焦点距離」は、近軸焦点距離である。条件式の値は、d線を基準とした場合の値である。本明細書に記載の「d線」、「C線」及び「F線」は輝線であり、d線の波長は587.56nm(ナノメートル)、C線の波長は656.27nm(ナノメートル)、F線の波長は486.13nm(ナノメートル)である。
 上記態様によれば、本開示の内視鏡用対物光学系、及びこの内視鏡用対物光学系を備えた内視鏡は、広角でありながら、小型で、かつ良好な光学性能を有する。
本開示の一例示的実施形態に係る内視鏡用対物光学系の構成を示す断面図である。 光路偏向プリズムP1の構成を示す図である。 光路偏向プリズムP1の拡大模式図である。 実施例1の内視鏡用対物光学系の構成と光束を示す断面図である。 実施例1の内視鏡用対物光学系の各収差図である。 実施例2の内視鏡用対物光学系の構成と光束を示す断面図である。 実施例2の内視鏡用対物光学系の各収差図である。 実施例2Aの内視鏡用対物光学系の構成と光束を示す断面図である。 光路偏向プリズムP2の構成を示す図である。 実施例3の内視鏡用対物光学系の構成と光束を示す断面図である。 実施例3の内視鏡用対物光学系の各収差図である。 実施例3Aの内視鏡用対物光学系の構成と光束を示す断面図である。 光路偏向プリズムP3の構成を示す図である。 実施例4の内視鏡用対物光学系の構成と光束を示す断面図である。 実施例4の内視鏡用対物光学系の各収差図である。 実施例5の内視鏡用対物光学系の構成と光束を示す断面図である。 実施例5の内視鏡用対物光学系の各収差図である。 実施例5Aの内視鏡用対物光学系の構成と光束を示す断面図である。 光路偏向プリズムP4の構成を示す図である。 実施例6の内視鏡用対物光学系の構成と光束を示す断面図である。 光路偏向プリズムP5の構成を示す図である。 実施例6の内視鏡用対物光学系の各収差図である。 実施例7の内視鏡用対物光学系の構成と光束を示す断面図である。 光路偏向プリズムP6の構成を示す図である。 実施例7の内視鏡用対物光学系の各収差図である。 実施例8の内視鏡用対物光学系の構成と光束を示す断面図である。 実施例8の内視鏡用対物光学系の各収差図である。 実施例1の内視鏡用対物光学系の他の構成と光束を示す断面図である。 光路偏向プリズムP7の構成を示す図である。 実施例1の内視鏡用対物光学系の他の構成と光束を示す断面図である。 光路偏向プリズムP8の構成を示す図である。 本開示の一例示的実施形態に係る内視鏡を用いた内視鏡システムの概略構成図である。 本開示の一例示的実施形態に係る内視鏡の概略構成図である。 本開示の一例示的実施形態に係る内視鏡の構成を示す断面図である。 本開示の一例示的実施形態に係る内視鏡の構成を示す断面図である。
[第1例示的実施形態]
 以下、本開示の一例示的実施形態である第1例示的実施形態について図面を参照して詳細に説明する。図1は、第1例示的実施形態に係る内視鏡用対物光学系1の構成を示す断面図である。図1では、左側が物体側、右側が像側である。図1に示す光軸Zは、後群G2の光軸である。図1に示す例は、後述の実施例1に対応し、物体から前群G1までの軸上光束が光軸Zに対して平行ではなく傾いている斜視用の内視鏡用対物光学系である。
 なお、図1では、使用状況を考慮して、内視鏡用対物光学系1の物体側にカバーガラスCGが配置され、内視鏡用対物光学系1の像側に光学部材PPが配置された例を示している。光学部材PPは、各種フィルタ、及び/又はプリズム等を想定した部材である。各種フィルタとは例えば、ローパスフィルタ、赤外線カットフィルタ、及び特定の波長域をカットするフィルタ等である。カバーガラスCG及び光学部材PPは、入射面と出射面が平行な屈折力を有しない部材であり、レンズではない。本開示においてはカバーガラスCG及び光学部材PPの少なくとも一方を省略した構成も可能である。また、図1では光学部材PPの像側の面に像面Simが位置する例を示しているが、本開示においては像面Simの位置はこの位置に限定されない。なお、図1に示す像面Simは大きさを示しているのではなく、光軸上の位置を示している。
 本例示的実施形態の内視鏡用対物光学系1は、光軸Zに沿って物体側から像側へ向かって順に、前群G1と、後群G2と、からなる。
 前群G1は、光路に沿って物体側から像側へ向かって順に、1枚の負レンズL1と、光路偏向プリズムP1と、開口絞りStと、1枚の正レンズL2と、からなる。負レンズL1によって、内視鏡に要求される広い視野角を得ることができるとともに、バックフォーカスを確保することができる。正レンズL2によって、前群G1における正負の屈折力のバランスを調整することができるので、非点収差及び像面湾曲の抑制に有利となる。なお、図1に示す開口絞りStは必ずしも大きさ及び形状を表すものではなく、光軸Z上の位置を示すものである。
 図2に、前群G1を構成する光路偏向プリズムP1の構成の一例を示す。図2では、光路偏向プリズムP1の各面の角度を示している。詳細を後述する図3に示すように、光路偏向プリズムP1は、全反射により光路を折り曲げる面Srを少なくとも1面含むことが好ましい。図2に例を示す光路偏向プリズムP1は、第1のプリズムPFと、第2のプリズムPSと、の2つのプリズムを含み、全反射により光路を折り曲げる面Srを1面含んでいる。このように全反射を用いることで、光路偏向プリズムP1内で折り返し光路を形成できるため、小型化に有利となる。なお、光路偏向プリズムP1は、全反射により光路を折り曲げる面Sr以外にも、反射面として、例えば、アルミ等の金属膜がコートされた面及び/又は誘電体膜がコートされた面を含んでもよい。また、図2には光路偏向プリズムP1が2つのプリズムからなる例を示しているが、本例示的実施形態においては、光路偏向プリズムP1を構成するプリズムの数は特に限定されない。
 後群G2は、正レンズと負レンズとが接合されて構成される接合レンズを複数含む。後群G2が複数の接合レンズを含むことで、倍率色収差の補正に有利となる。なお、複数の接合レンズの各々は、物体側から順に正レンズと負レンズとが接合された接合レンズでもよいし、物体側から順に負レンズと正レンズとが接合された接合レンズでもよい。
 具体的には、後群G2は、最も物体側に、1組の接合レンズCE1を含むことが好ましい。後群G2において、最も物体側に接合レンズを配置することで、倍率色収差の補正に有利となる。
 また、後群G2は、最も物体側から像側へ順に、1組の接合レンズCE1と、正レンズL4と、を含むことが好ましい。正レンズL4によって、後群G2における正負の屈折力のバランスを調整することができるので、非点収差及び像面湾曲の抑制に有利となる。
 また、後群G2は、光軸Zに沿って物体側から像側へ向かって順に、1組の接合レンズCE1と、正レンズL4と、1組の接合レンズCE2と、からなることが好ましい。接合レンズCE2によって、倍率色収差の補正にさらに有利となる。
 なお、後群G2においては、後述する実施例8の構成のように、正レンズL4を接合レンズCE3に置き換えた構成としてもよく、この場合も非点収差及び像面湾曲を抑える効果が得られる。
 一例として、図1に示す内視鏡用対物光学系1は、後群G2が、光軸Zに沿って物体側から像側へ向かって順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL4と、正レンズL51と負レンズL52とが接合された接合レンズCE2と、からなるよう構成されている。内視鏡用対物光学系1に関する以上の構成を基本構成と称することにする。
 本例示的実施形態の内視鏡用対物光学系1は、最も物体側の接合レンズを構成する正レンズのd線基準のアッベ数をνpa、最も物体側の接合レンズを構成する負レンズのd線基準のアッベ数をνna、最も像側の接合レンズを構成する正レンズのd線基準のアッベ数をνpb、最も像側の接合レンズを構成する負レンズのd線基準のアッベ数をνnb、開口絞りStから最も物体側の接合レンズの接合面までの光軸Z上の距離をLca、開口絞りStから最も像側の接合レンズの接合面までの光軸Z上の距離をLcb、最も物体側の接合レンズの接合面の曲率半径をRca、最も像側の接合レンズの接合面の曲率半径をRcb、全系の焦点距離をf、後群G2の焦点距離をfg、とした場合、下記条件式(1)を満足するように構成されていることが好ましい。条件式(1)の下限以下とならないようにすることによって、倍率色収差の補正に有利となる。条件式(1)の上限以上とならないようにすることによって、レンズ系の全長が長くなることを抑制し、小型化に有利となる。なお、下記条件式(1-1)を満足する構成とすれば、より良好な特性とすることができる。
Figure JPOXMLDOC01-appb-M000017

Figure JPOXMLDOC01-appb-M000018
 図1には、一例として、開口絞りStから最も物体側の接合レンズCE1の接合面までの光軸上の距離をLca、開口絞りStから最も像側の接合レンズCE2の接合面までの光軸上の距離をLcbとして示している。また、最も物体側の接合レンズCE1の接合面の曲率半径をRca、最も像側の接合レンズCE2の接合面の曲率半径をRcbとして示している。
 本例示的実施形態の内視鏡用対物光学系1は、接合レンズの総数をk、1からkまでの自然数をi、物体側からi番目の接合レンズを構成する正レンズのd線基準のアッベ数をνpi、物体側からi番目の接合レンズを構成する負レンズのd線基準のアッベ数をνni、開口絞りStから物体側からi番目の接合レンズの接合面までの光軸Z上の距離をLci、物体側からi番目の接合レンズの接合面の曲率半径をRci、前群G1の焦点距離をff、後群G2の焦点距離をfg、とした場合、下記条件式(2)を満足するように構成されていることが好ましい。条件式(2)の下限以下とならないようにすることによって、倍率色収差の補正に有利となる。条件式(2)の上限以上とならないようにすることによって、レンズ系の全長が長くなることを抑制し、小型化に有利となる。なお、下記条件式(2-1)を満足する構成とすれば、より良好な特性とすることができる。
Figure JPOXMLDOC01-appb-M000019

Figure JPOXMLDOC01-appb-M000020
 また、本例示的実施形態の内視鏡用対物光学系1は、空気換算距離での全系のバックフォーカスをBf、全系の焦点距離をf、とした場合、下記条件式(3)を満足することが好ましい。条件式(3)の下限以下とならないようにすることによって、バックフォーカスの長さを長くすることができ、撮像素子の固定に有利となる。条件式(3)の上限以上とならないようにすることによって、レンズ系の全長が長くなることを抑制し、小型化に有利となる。なお、条件式(3-1)を満足する構成とすれば、より良好な特性とすることができる。
  0.95<Bf/f<2  (3)
  1<Bf/f<1.8  (3-1)
 また、本例示的実施形態の内視鏡用対物光学系1は、前群G1の負レンズL1の像側の面の曲率半径をRr1、前群G1の負レンズL1の物体側の面の曲率半径をRf1、全系の焦点距離をf、前群G1の負レンズL1の焦点距離をf1、とした場合、下記条件式(4)を満足することが好ましい。条件式(4)の(Rr1+Rf1)/(Rr1-Rf1)は、前群G1の負レンズL1のレンズ形状に関する項である。条件式(4)の下限以下とならないようにすることによって、軸外光線の屈折を好適に制御して、歪曲収差を抑えることが容易となる。条件式(4)の上限以上とならないようにすることによって、小型化に有利となる。なお、下記条件式(4-1)を満足する構成とすれば、より良好な特性とすることができる。
Figure JPOXMLDOC01-appb-M000021

Figure JPOXMLDOC01-appb-M000022
 また、本例示的実施形態の内視鏡用対物光学系1は、前群G1の負レンズL1の像側の面の曲率半径をRr1、前群G1の負レンズL1の物体側の面の曲率半径をRf1、前群G1の負レンズL1のd線に対する屈折率をNd1、とした場合、下記条件式(5)を満足することが好ましい。条件式(5)の(Rr1+Rf1)/(Rr1-Rf1)は、前群G1の負レンズL1のレンズ形状に関する項である。条件式(5)の下限以下とならないようにすることによって、軸外光線の屈折を好適に制御して、歪曲収差を抑えることが容易となる。条件式(5)の上限以上とならないようにすることによって、小型化に有利となる。なお、下記条件式(5-1)を満足する構成とすれば、より良好な特性とすることができる。
Figure JPOXMLDOC01-appb-M000023

Figure JPOXMLDOC01-appb-M000024
 また、本例示的実施形態の内視鏡用対物光学系1は、開口絞りStから最も物体側のレンズ面までの光軸上の距離をLf、光路偏向プリズムP1のd線に対する屈折率をNdp、前群G1の負レンズL1の焦点距離をf1、とした場合、下記条件式(6)を満足することが好ましい。なお、図2に示すように、光路偏向プリズムP1が複数のプリズムを含む場合、Ndpとは、光路偏向プリズムP1に含まれる複数のプリズムのd線に対する屈折率の平均値である。条件式(6)の下限以下とならないようにすることによって、前群G1へ入射する軸上主光線の光軸Zに対する角度、すなわち斜視方向の角度を大きくすることに有利となる。条件式(6)の上限以上とならないようにすることによって、小型化に有利となる。なお、下記条件式(6-1)を満足する構成とすれば、より良好な特性とすることができる。
  0.75<|Lf/(Ndp×f1)|<1  (6)
  0.8<|Lf/(Ndp×f1)|<0.95  (6-1)
 ここで、上述した条件式を考慮した2つの好ましい構成例と、その効果について説明する。第1の構成例は、上述した基本構成を有し、条件式(1)を満足する内視鏡用対物光学系である。第1の構成例によれば、倍率色収差の補正に有利としながら、レンズ系の全長が長くなることを抑制し、小型化に有利となる。
 第2の構成例は、上述した基本構成を有し、条件式(2)を満足する内視鏡用対物光学系である。第2の構成例によれば、倍率色収差の補正に有利としながら、レンズ系の全長が長くなることを抑制し、小型化に有利となる。
[第2例示的実施形態]
 次に、本開示の別の一例示的実施形態として、第2例示的実施形態について図面を参照して詳細に説明する。第2例示的実施形態に係る内視鏡用対物光学系1の構成は、第1例示的実施形態と同様に、図1に示されている。すなわち、第2例示的実施形態に係る内視鏡用対物光学系1は、上述した基本構成を有する。以下、上述の基本構成と重複する構成、効果及び図示方法については、説明を一部省略する。
 本例示的実施形態の内視鏡用対物光学系1は、光軸Zに沿って物体側から像側へ向かって順に、前群G1と、正の屈折力を有する後群G2と、からなる。後群G2が正の屈折力を有することによって、像面Simに結像させることができる。
 前群G1は、光路に沿って物体側から像側へ向かって順に、1枚の負レンズL1と、光路偏向プリズムP1と、開口絞りStと、1枚の正レンズL2と、からなる。負レンズL1によって、内視鏡に要求される広い視野角を得ることができるとともに、バックフォーカスを確保することができる。
 光路偏向プリズムP1は、光路に沿って物体側から像側へ向かって順に、第1のプリズムPFと、第1のプリズムPFと空気間隔Dpを介して離隔して配置された第2のプリズムPSと、からなる。光路偏向プリズムP1によって、物体から前群G1までの軸上光束が光軸Zに対して平行ではなく傾いている斜視用の内視鏡用対物光学系とすることができる。また、光路偏向プリズムP1に入射した光線は、空気間隔Dpを通過後に、光路偏向プリズムP1の空気間隔Dpとの界面において全反射により光路が折り曲げられる。光路偏向プリズムP1において全反射を用いることで、光路偏向プリズムP1内で折り返し光路を形成できるため、小型化に有利となる。
 ここで、図3を参照して、本例示的実施形態に係る光路偏向プリズムP1の詳細な構成を説明するとともに、光路偏向プリズムP1で発生し得る像面倒れについて説明する。図3は、光路偏向プリズムP1の模式図であり、光路偏向プリズムP1に入射される軸上主光線(すなわち軸上光束の中心光線)A1p、並びに最大画角の主光線A2p及びA3pも図示している。以下、後群G2の光軸Zより上側をプラス側とし、後群G2の光軸Zより下側をマイナス側として、A2pをプラス側の最大画角の主光線、A3pをマイナス側の最大画角の主光線という。なお、図3では、像面倒れの原理の説明のため、空気間隔Dpを誇張して表している。また、図3には開口絞りStも図示しているが、図3に示す開口絞りStは必ずしも大きさ及び形状を表すものではない。
 図3に示すように、第1のプリズムPFの入射面Sfi及び第2のプリズムPSの入射面Ssiは、平面である。第1のプリズムPFの入射面Sfiは後群G2の光軸Zに対して角度θ1だけ傾いており、第2のプリズムPSの入射面Ssiは後群G2の光軸Zに対して角度θ2だけ傾いている。第1のプリズムPFの出射面Sfoと、第2のプリズムPSの入射面Ssiと、は平行である。空気間隔Dpとの界面である第2のプリズムPSの入射面Ssiが、全反射により光路を折り曲げる面Srである。
 図3に示すように、入射面Sfiから第1のプリズムPFに入射した光線は、第1のプリズムPFを透過して出射面Sfoから出射し、空気間隔Dpを通り、入射面Ssiから第2のプリズムPSに入射する。その後、アルミ又は誘電体膜等のコートが施されている反射面Scで反射されて、入射面Ssi(すなわち全反射により光路を折り曲げる面Sr)で全反射され、開口絞りStに対向している第2のプリズムPSの出射面Ssoから出射する。すなわち、光路偏向プリズムP1に入射した光線は、第2のプリズムPS内で2回反射されることで、光路が2回折り曲げられる。
 軸上主光線A1pは、第1のプリズムPFの入射面Sfiに対して垂直に入射される。この場合、角度θ1と角度θ2とが異なる角度であれば、軸上主光線A1pが第2のプリズムPSの入射面Ssiに対して垂直に入射されることはなく、第2のプリズムPSの入射面Ssiの垂線に対して傾いて入射される。この軸上主光線A1pの第2のプリズムPSの入射面Ssiの垂線に対する角度をθとすると、θは下式で表される。なお、換言すれば、角度θは、軸上主光線A1pに対する第2のプリズムPSの入射面Ssiの傾き、及び軸上主光線A1pに対する空気間隔Dpの傾きともいえる。
  θ=|θ1-θ2|
 軸上主光線A1p、プラス側の最大画角の主光線A2p、及びマイナス側の最大画角の主光線A3pの、空気間隔Dpにおける光路の幾何学的長さを、それぞれGLa1、GLa2、及びGLa3とする。上述したように、空気間隔Dpは、軸上主光線A1pに対して角度θだけ傾いている。したがって、図3に示すように、GLa2とGLa3とが異なる長さとなり、プラス側の最大画角の主光線A2pとマイナス側の最大画角の主光線A3pとが非対称となるため、像面倒れが発生する。また、空気間隔Dpが大きいほど、及び角度θが大きいほど、GLa2とGLa3との差が大きくなるため、像面倒れが顕著に現れる。
 本例示的実施形態の内視鏡用対物光学系1は、全系の焦点距離をf、第1のプリズムPFと第2のプリズムPSとの間の空気間隔をDp、とした場合、下記条件式(7)を満足することが好ましい。条件式(7)の下限以下とならないようにすることによって、空気間隔Dpが過大にならないので、像面倒れの発生を抑制できる。条件式(7)の上限以上とならないようにすることによって、空気間隔Dpが過小にならないので、第1のプリズムPFと第2のプリズムPSとの間で発生し得る干渉縞及びゴーストを抑制できる。なお、下記条件式(7-1)を満足する構成とすれば、より良好な特性とすることができる。
  30<f/Dp<500  (7)
  50<f/Dp<300  (7-1)
 また、本例示的実施形態の内視鏡用対物光学系1は、第1のプリズムPFの入射面Sfiと後群G2の光軸Zとのなす角度の絶対値をθ1、第2のプリズムPSの入射面と後群G2の光軸Zとのなす角度の絶対値をθ2、とし、θ1及びθ2の単位を度とした場合、下記条件式(8)を満足することが好ましい。条件式(8)は、上述の角度θに関する式である。条件式(8)の下限以下とならないようにすることによって、前群G1へ入射する軸上主光線A1pの光軸Zに対する角度、すなわち斜視方向の角度を大きくすることに有利となる。条件式(8)の上限以上とならないようにすることによって、軸上主光線A1pに対する空気間隔Dpの傾き(すなわち角度θ)が過大にならないので、像面倒れの発生を抑制できる。なお、下記条件式(8-1)を満足する構成とすれば、より良好な特性とすることができる。
  5<|θ1-θ2|<45  (8)
  7<|θ1-θ2|<30  (8-1)
 また、本例示的実施形態の内視鏡用対物光学系1は、第1のプリズムPFと第2のプリズムPSとの間の空気間隔をDp、第1のプリズムPFにおける軸上主光線A1pの光路の幾何学的長さをGLf、第2のプリズムPSにおける軸上主光線A1pの光路の幾何学的長さをGLs、とした場合、下記条件式(9)を満足することが好ましい。条件式(9)の下限以下とならないようにすることによって、空気間隔Dpが過大にならないので、像面倒れの発生を抑制できる。条件式(9)の上限以上とならないようにすることによって、空気間隔Dpが過小にならないので、第1のプリズムPFと第2のプリズムPSとの間で発生し得る干渉縞及びゴーストを抑制できる。なお、下記条件式(9-1)を満足する構成とすれば、より良好な特性とすることができる。
  60<(GLf+GLs)/Dp<600  (9)
  100<(GLf+GLs)/Dp<500  (9-1)
 また、本例示的実施形態の内視鏡用対物光学系1は、第1のプリズムPFにおける軸上主光線A1pの光路の幾何学的長さをGLf、第2のプリズムPSにおける軸上主光線A1pの光路の幾何学的長さをGLs、第1のプリズムPF及び第2のプリズムPSのd線に対する屈折率の平均値をNdp、とした場合、下記条件式(10)を満足することが好ましい。条件式(10)の下限以下とならないようにすることによって、第2のプリズムPSにおいて光線が反射する領域を確保することに有利となり、光線同士が重なることを避けられる。条件式(10)の上限以上とならないようにすることによって、像面倒れの発生を抑制できる。なお、下記条件式(10-1)を満足する構成とすれば、より良好な特性とすることができる。
  1<(GLs/GLf)/Ndp<2.5  (10)
  2<(GLs/GLf)/Ndp<2.2  (10-1)
 また、本例示的実施形態の内視鏡用対物光学系1は、内視鏡用対物光学系1の最大全画角を2ω、第1のプリズムPF及び第2のプリズムPSのd線に対する屈折率の平均値をNdp、第1のプリズムPFの入射面Sfiと後群G2の光軸Zとのなす角度の絶対値をθ1、第2のプリズムPSの入射面Ssiと後群G2の光軸Zとのなす角度の絶対値をθ2、とし、2ω、θ1及びθ2の単位を度とした場合、下記条件式(11)を満足することが好ましい。条件式(11)の下限以下とならないようにすることによって、広角化に有利となる。条件式(11)の上限以上とならないようにすることによって、第2のプリズムPSにおいて全反射により光路を折り曲げつつ、後群G2に向かって光線を射出させることができる。仮に条件式(11)の上限以上となるようにすると、光線を全反射させること、及び光線を後群G2に向かって出射させることができない場合がある。なお、下記条件式(11-1)を満足する構成とすれば、より良好な特性とすることができる。
  8.8<(2ω×Ndp)/|θ1-θ2|<25  (11)
  9<(2ω×Ndp)/|θ1-θ2|<22  (11-1)
 条件式に関する構成も含め、上述した第1及び第2例示的実施形態に係る好ましい構成及び可能な構成は、任意の組合せが可能であり、要求される仕様に応じて適宜選択的に採用されることが好ましい。
 次に、本開示の第1及び/又は第2例示的実施形態に係る内視鏡用対物光学系1の数値実施例について説明する。なお、以下に示す各実施例のデータは全て、内視鏡用対物光学系1の焦点距離が1.00になるように規格化された場合のデータである。また、各実施例の断面図のレンズに付された参照符号は、参照符号の桁数の増大による説明及び図面の煩雑化を避けるため、実施例ごとに独立して用いている。したがって、異なる実施例の図面において共通の参照符号が付されていても、必ずしも共通の構成ではない。
 [実施例1]
 実施例1の内視鏡用対物光学系1の構成と光束を示す断面図を図4に示す。図4には光束として、軸上光束A1と、最大画角の光束A2及びA3を示し、最大全画角2ωも図示している。また、図4には使用状況を考慮して、図1と同様にカバーガラスCGと光学部材PPも合わせて示している。実施例1の内視鏡用対物光学系1について、前群G1の構成は上述したとおりであるので、ここでは重複説明を省略する。後群G2は、物体側から像側へ順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL4と、正レンズL51と負レンズL52とが接合された接合レンズCE2と、からなる。
 実施例1の内視鏡用対物光学系1について、基本レンズデータを表1に、諸元を表2に示す。表1において、Snの欄には最も物体側の面を第1面とし像側に向かうに従い1つずつ番号を増加させた場合の面番号を示し、Rの欄には各面の曲率半径を示し、Dの欄には各面とその像側に隣接する面との面間隔を示す。また、Ndの欄には各構成要素のd線に対する屈折率を示し、νdの欄には各構成要素のd線基準のアッベ数を示す。
 表1では、物体側に凸面を向けた形状の面の曲率半径の符号を正、像側に凸面を向けた形状の面の曲率半径の符号を負としている。表1には、カバーガラスCG、光路偏向プリズムP1、開口絞りSt及び光学部材PPも合わせて示している。表1では、開口絞りStに相当する面の面番号の欄には、面番号と(St)という語句を記載している。表1のDの最下欄の値は、表中の最も像側の面と像面Simとの間隔である。
 表2に、全系の焦点距離f、空気換算距離での全系のバックフォーカスBf、FナンバーFNo.、及び最大全画角2ωの値をd線基準で示す。2ωの欄の(°)は単位が度であることを意味する。なお、以下に示す各表では予め定められた桁でまるめた数値を記載している。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 図5に、実施例1の内視鏡用対物光学系1の各収差図を示す。図5では左から順に、球面収差、非点収差、歪曲収差及び倍率色収差を示す。球面収差図では、d線、C線及びF線における収差をそれぞれ実線、長破線及び短破線で示す。非点収差図では、サジタル方向のd線における収差を実線で示し、タンジェンシャル方向のd線における収差を短破線で示す。歪曲収差図ではd線における収差を実線で示す。倍率色収差図では、C線及びF線における収差をそれぞれ長破線及び短破線で示す。球面収差図のFNo.はFナンバーを意味し、その他の収差図のωは半画角を意味する。表1及び図5に示すデータは、物体からカバーガラスCGの物体側の面までの距離を36.9にした場合のデータである。
 上記の実施例1に関する各データの記号、意味、記載方法、及び図示方法は、特に断りが無い限り以下の実施例においても同様であるので、以下では重複説明を省略する。
[実施例2]
 実施例2の内視鏡用対物光学系1の構成と光束を示す断面図を図6に示す。実施例2の内視鏡用対物光学系1について、前群G1の構成は上述したとおりであるので、ここでは重複説明を省略する。後群G2は、物体側から像側へ順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL4と、正レンズL51と負レンズL52とが接合された接合レンズCE2と、からなる。
 実施例2の内視鏡用対物光学系1について、基本レンズデータを表3に、諸元を表4に、各収差図を図7に示す。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を38.6にした場合のデータである。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
[実施例2A]
 実施例2の変形例として、実施例2Aの内視鏡用対物光学系1の構成と光束を示す断面図を図8に示す。実施例2Aは、実施例2における光路偏向プリズムP1が、図9に示す光路偏向プリズムP2に置き換わった構成となっている。実施例2Aの内視鏡用対物光学系1について、上記の置換した部分以外の構成は実施例2と同様であるので、ここでは重複説明を省略する。
 実施例2Aの内視鏡用対物光学系1について、基本レンズデータを表5に、諸元を表6に示す。各収差図は、図7に示した実施例2と同様である。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を38.6にした場合のデータである。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
[実施例3]
 実施例3の内視鏡用対物光学系1の構成と光束を示す断面図を図10に示す。実施例3の内視鏡用対物光学系1について、前群G1の構成は上述したとおりであるので、ここでは重複説明を省略する。後群G2は、物体側から像側へ順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL4と、負レンズL51と正レンズL52とが接合された接合レンズCE2と、からなる。
 実施例3の内視鏡用対物光学系1について、基本レンズデータを表7に、諸元を表8に、各収差図を図11に示す。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を36.3にした場合のデータである。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
[実施例3A]
 実施例3の変形例として、実施例3Aの内視鏡用対物光学系1の構成と光束を示す断面図を図12に示す。実施例3Aは、実施例3における光路偏向プリズムP1が、図13に示す光路偏向プリズムP3に置き換わった構成となっている。実施例3Aの内視鏡用対物光学系1について、上記の置換した部分以外の構成は実施例3と同様であるので、ここでは重複説明を省略する。
 実施例3Aの内視鏡用対物光学系1について、基本レンズデータを表9に、諸元を表10に示す。各収差図は、図11に示した実施例3と同様である。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を36.3にした場合のデータである。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
[実施例4]
 実施例4の内視鏡用対物光学系1の構成と光束を示す断面図を図14に示す。実施例4の内視鏡用対物光学系1について、前群G1の構成は上述したとおりであるので、ここでは重複説明を省略する。後群G2は、物体側から像側へ順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL4と、負レンズL51と正レンズL52とが接合された接合レンズCE2と、からなる。
 実施例4の内視鏡用対物光学系1について、基本レンズデータを表11に、諸元を表12に、各収差図を図15に示す。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を37.7にした場合のデータである。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
[実施例5]
 実施例5の内視鏡用対物光学系1の構成と光束を示す断面図を図16に示す。実施例5の内視鏡用対物光学系1について、前群G1の構成は上述したとおりであるので、ここでは重複説明を省略する。後群G2は、物体側から像側へ順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL4と、負レンズL51と正レンズL52とが接合された接合レンズCE2と、からなる。
 実施例5の内視鏡用対物光学系1について、基本レンズデータを表13に、諸元を表14に、各収差図を図17に示す。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を38.4にした場合のデータである。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
[実施例5A]
 実施例5の変形例として、実施例5Aの内視鏡用対物光学系1の構成と光束を示す断面図を図18に示す。実施例5Aは、実施例5における光路偏向プリズムP1が、図19に示す光路偏向プリズムP4に置き換わった構成となっている。実施例5Aの内視鏡用対物光学系1について、上記の置換した部分以外の構成は実施例5と同様であるので、ここでは重複説明を省略する。
 実施例5Aの内視鏡用対物光学系1について、基本レンズデータを表15に、諸元を表16に示す。各収差図は、図17に示した実施例5と同様である。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を38.4にした場合のデータである。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
[実施例6]
 実施例6の内視鏡用対物光学系1の構成と光束を示す断面図を図20に示す。実施例6の内視鏡用対物光学系1について、前群G1は、上述した光路偏向プリズムP1が、図21に示す光路偏向プリズムP5に置き換わった構成となっている。後群G2は、物体側から像側へ順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL4と、正レンズL51と負レンズL52とが接合された接合レンズCE2と、からなる。
 実施例6の内視鏡用対物光学系1について、基本レンズデータを表17に、諸元を表18に、各収差図を図22に示す。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を40.1にした場合のデータである。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
[実施例7]
 実施例7の内視鏡用対物光学系1の構成と光束を示す断面図を図23に示す。実施例7の内視鏡用対物光学系1について、前群G1は、上述した光路偏向プリズムP1が、図24に示す光路偏向プリズムP6に置き換わった構成となっている。後群G2は、物体側から像側へ順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL4と、正レンズL51と負レンズL52とが接合された接合レンズCE2と、からなる。
 実施例7の内視鏡用対物光学系1について、基本レンズデータを表19に、諸元を表20に、各収差図を図25に示す。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を38.3にした場合のデータである。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
[実施例8]
 実施例8の内視鏡用対物光学系1の構成と光束を示す断面図を図26に示す。実施例8の内視鏡用対物光学系1について、前群G1の構成は上述したとおりであるので、ここでは重複説明を省略する。後群G2は、物体側から像側へ順に、正レンズL31と負レンズL32とが接合された接合レンズCE1と、正レンズL41と負レンズL42とが接合された接合レンズCE3と、正レンズL51と負レンズL52とが接合された接合レンズCE2と、からなる。
 実施例8の内視鏡用対物光学系1について、基本レンズデータを表21に、諸元を表22に、各収差図を図27に示す。これらのデータは、物体からカバーガラスCGの物体側の面までの距離を38.4にした場合のデータである。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 表23に実施例1~8の内視鏡用対物光学系の条件式(1)~(6)の対応値を示す。実施例1~8はd線を基準波長としている。表23にはd線基準での値を示す。
Figure JPOXMLDOC01-appb-T000047
 以上のデータから、実施例1~8の内視鏡用対物光学系はそれぞれ条件式(1)~(6)を満たし、全画角が75度以上の広角に構成されながら、小型で、かつ諸収差が良好に補正された良好な光学性能を有することが分かる。
 表24に実施例1、2A、3A、5A、6及び7の内視鏡用対物光学系の条件式(7)~(11)の対応値を示す。実施例1、2A、3A、5A、6及び7はd線を基準波長としている。表24にはd線基準での値を示す。
Figure JPOXMLDOC01-appb-T000048
 以上のデータから、実施例1、2A、3A、5A、6及び7の内視鏡用対物光学系はそれぞれ条件式(7)~(11)を満たし、全画角が75度以上の広角に構成されながら、小型で、かつ非対称の像面倒れが抑制された良好な光学性能を有することが分かる。
 なお、本開示の内視鏡用対物光学系1において用いられる光路偏向プリズムは、上述した光路偏向プリズムP1~P6に限定されるものではない。例えば、実施例1の内視鏡用対物光学系1において、光路偏向プリズムP1を、図29に示す光路偏向プリズムP7に置き換えた場合の構成と光束を示す断面図を図28に示す。また、実施例1の内視鏡用対物光学系1において、光路偏向プリズムP1を、図31に示す光路偏向プリズムP8に置き換えた場合の構成と光束を示す断面図を図30に示す。図30に示す内視鏡用対物光学系1は、側視用のものになっている。図28~図31に示すように、本開示の内視鏡用対物光学系1には、任意の光路偏向プリズムを適用することができる。
 次に、本開示の例示的実施形態に係る内視鏡の一例について説明する。図32に本開示の一例示的実施形態に係る内視鏡を用いた内視鏡システムの概略構成図を示す。図32に示す内視鏡システム11は、内視鏡10と、光源装置12と、画像処理装置13と、モニタ14と、を含む。内視鏡システム11では、光源装置12が射出する光を光ケーブル16を介して内視鏡10に導光し、内視鏡10が光を照射しながら被観察部を撮像する。また、画像処理装置13が、内視鏡10によって撮像された画像信号をケーブル15を介して取得し、取得した画像信号に所定の処理を施し、所定の処理を施した画像信号に基づいて画像を生成し、生成した画像をモニタ14に表示させる。
 内視鏡10は、撮像ユニット20と、硬質挿入部30と、を含む、いわゆる硬性内視鏡である。硬質挿入部30は、腹腔内の撮影を行う場合に腹腔内に挿入される部位であり、硬質な材料から形成され、例えば、直径略5mm(ミリメートル)の円柱形状を有している。硬質挿入部30の内部先端に、本開示の例示的実施形態に係る内視鏡用対物光学系1が配設される。図32では内視鏡用対物光学系1を概略的に図示している。硬質挿入部30の他端側には撮像ユニット20が着脱可能に接続され、内視鏡用対物光学系1により結像された像が撮像ユニット20に送られる。撮像ユニット20は、内視鏡用対物光学系1により結像された像を撮像して、被観察部の画像信号を生成する。
 このように、本開示の内視鏡は、本開示の例示的実施形態に係る内視鏡用対物光学系1を備えているため、広い視野で観察が可能でありながら、良好な画像を取得することができる。なお、内視鏡10に、内視鏡用対物光学系1をその光軸を軸として回動可能に操作するための操作部を設け、撮像する視野を容易に変更できるようにしてもよい。
 また、本開示の内視鏡は、上述したような硬性内視鏡に限らず、挿入部が軟質な材料で形成された、いわゆる軟性内視鏡であってもよい。例えば、図33に本開示の一例示的実施形態に係る軟性内視鏡の概略的な全体構成図の一例を示す。図33に示す内視鏡100は、主として、操作部102と、挿入部104と、コネクタ部(不図示)と接続されるユニバーサルコード106とを備える。挿入部104の大半は挿入経路に沿って任意の方向に曲がる軟性部107であり、軟性部107の先端には湾曲部108が連結され、湾曲部108の先端には先端部110が連結されている。湾曲部108は、先端部110を所望の方向に向けるために設けられるものであり、操作部102に設けられた湾曲操作ノブ109を回動させることにより湾曲操作が可能となっている。先端部110の内部先端に本開示の例示的実施形態に係る内視鏡用対物光学系1が配設される。図33では内視鏡用対物光学系1を概略的に図示している。このように、本開示の内視鏡は、本開示の例示的実施形態に係る内視鏡用対物光学系1を備えているため、広い視野で観察が可能でありながら、良好な画像を取得することができる。
 なお、本開示の内視鏡は、図34に一例を示すように、内視鏡用対物光学系1の像面Simに配置された撮像素子Sを更に備え、内視鏡用対物光学系1の前群G1及び後群G2は、後群G2の光軸Zを軸として相対的に回動可能に構成され、撮像素子Sは、後群G2と一体的に構成されていることが好ましい。図34の例では、前群G1が先端部材2に配置され、後群G2及び撮像素子Sが収容部材3に配置され、先端部材2及び収容部材3の少なくとも一方が、光軸Zを軸として回動可能に構成されている。すなわち、先端部材2のみが回動することで、前群G1のみが回動してもよいし、収容部材3のみが回動することで、後群G2及び撮像素子Sのみが一体的に回動してもよい。また、先端部材2及び収容部材3が互いに回動することで、前群G1と、後群G2及び撮像素子Sとが相対的に回動してもよい。なお、ここでいう「一体的に回動」とは、同時に、同方向、同量、回動することを意味する。
 このような構成によれば、先端部材2及び収容部材3の少なくとも一方を回動させることで視野を変更する場合でも、倍率色収差の光軸Zに対するずれの変化を抑制し、撮像素子Sで得られる画像の色の変動を抑えることができる。なお、図35に示すように、後群G2と撮像素子Sとの間にプリズムからなる光学部材PP等を配置することで、光路を折り曲げる形態としてもよい。光路を折り曲げる場合は、小型化に有利となる。
 以上、例示的実施形態及び実施例を挙げて本開示の技術を説明したが、本開示の技術は上記例示的実施形態及び実施例に限定されず、種々の変形が可能である。例えば、各レンズの曲率半径、面間隔、屈折率、及びアッベ数等は、上記各数値実施例で示した値に限定されず、他の値をとり得る。
 2020年1月29日に出願された日本国特許出願2020-012967号の開示、及び2021年1月13日に出願された日本国特許出願2021-003772号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (20)

  1.  物体側から像側へ順に、前群と、後群と、からなり、
     前記前群は、物体側から像側へ順に、1枚の負レンズと、光路偏向プリズムと、開口絞りと、1枚の正レンズと、からなり、
     前記後群は、正レンズと負レンズとが接合された接合レンズを複数含み、
     最も物体側の前記接合レンズを構成する正レンズのd線基準のアッベ数をνpa、
     最も物体側の前記接合レンズを構成する負レンズのd線基準のアッベ数をνna、
     最も像側の前記接合レンズを構成する正レンズのd線基準のアッベ数をνpb、
     最も像側の前記接合レンズを構成する負レンズのd線基準のアッベ数をνnb、
     前記開口絞りから最も物体側の前記接合レンズの接合面までの光軸上の距離をLca、
     前記開口絞りから最も像側の前記接合レンズの接合面までの光軸上の距離をLcb、
     最も物体側の前記接合レンズの接合面の曲率半径をRca、
     最も像側の前記接合レンズの接合面の曲率半径をRcb、
     全系の焦点距離をf、
     前記後群の焦点距離をfg、とした場合、
    Figure JPOXMLDOC01-appb-M000001

    で表される条件式(1)を満足する内視鏡用対物光学系。
  2.  物体側から像側へ順に、前群と、後群と、からなり、
     前記前群は、物体側から像側へ順に、1枚の負レンズと、光路偏向プリズムと、開口絞りと、1枚の正レンズと、からなり、
     前記後群は、正レンズと負レンズとが接合された接合レンズを複数含み、
     前記接合レンズの総数をk、
     1からkまでの自然数をi、
     物体側からi番目の前記接合レンズを構成する正レンズのd線基準のアッベ数をνpi、
     物体側からi番目の前記接合レンズを構成する負レンズのd線基準のアッベ数をνni、
     前記開口絞りから、物体側からi番目の前記接合レンズの接合面までの光軸上の距離をLci、
     物体側からi番目の前記接合レンズの接合面の曲率半径をRci、
     前記前群の焦点距離をff、
     前記後群の焦点距離をfg、とした場合、
    Figure JPOXMLDOC01-appb-M000002

    で表される条件式(2)を満足する内視鏡用対物光学系。
  3.  前記後群は、最も物体側から像側へ順に、1組の前記接合レンズと、正レンズ又は1組の前記接合レンズと、を含む
     請求項1又は請求項2に記載の内視鏡用対物光学系。
  4.  空気換算距離での全系のバックフォーカスをBf、
     全系の焦点距離をf、とした場合、
      0.95<Bf/f<2  (3)
    で表される条件式(3)を満足する請求項1から請求項3の何れか1項に記載の内視鏡用対物光学系。
  5.  前記前群の前記負レンズの像側の面の曲率半径をRr1、
     前記前群の前記負レンズの物体側の面の曲率半径をRf1、
     全系の焦点距離をf、
     前記前群の前記負レンズの焦点距離をf1、とした場合、
    Figure JPOXMLDOC01-appb-M000003

    で表される条件式(4)を満足する請求項1から請求項4の何れか1項に記載の内視鏡用対物光学系。
  6.  前記前群の前記負レンズの像側の面の曲率半径をRr1、
     前記前群の前記負レンズの物体側の面の曲率半径をRf1、
     前記前群の前記負レンズのd線に対する屈折率をNd1、とした場合、
    Figure JPOXMLDOC01-appb-M000004

    で表される条件式(5)を満足する請求項1から請求項5の何れか1項に記載の内視鏡用対物光学系。
  7.  前記開口絞りから最も物体側のレンズ面までの光軸上の距離をLf、
     前記光路偏向プリズムのd線に対する屈折率をNdp、
     前記前群の前記負レンズの焦点距離をf1、とした場合、
      0.75<|Lf/(Ndp×f1)|<1  (6)
    で表される条件式(6)を満足する請求項1から請求項6の何れか1項に記載の内視鏡用対物光学系。
  8.  前記光路偏向プリズムは、全反射により光路を折り曲げる面を少なくとも1面含む
     請求項1から請求項7の何れか1項に記載の内視鏡用対物光学系。
  9. Figure JPOXMLDOC01-appb-M000005

    で表される条件式(1-1)を満足する請求項1に記載の内視鏡用対物光学系。
  10. Figure JPOXMLDOC01-appb-M000006

    で表される条件式(2-1)を満足する請求項2に記載の内視鏡用対物光学系。
  11.   1<Bf/f<1.8  (3-1)
    で表される条件式(3-1)を満足する請求項4に記載の内視鏡用対物光学系。
  12. Figure JPOXMLDOC01-appb-M000007

    で表される条件式(4-1)を満足する請求項5に記載の内視鏡用対物光学系。
  13. Figure JPOXMLDOC01-appb-M000008

    で表される条件式(5-1)を満足する請求項6に記載の内視鏡用対物光学系。
  14.   0.8<|Lf/(Ndp×f1)|<0.95  (6-1)
    で表される条件式(6-1)を満足する請求項7に記載の内視鏡用対物光学系。
  15.  物体側から像側へ順に、前群と、正の屈折力を有する後群と、からなり、
     前記前群は、物体側から像側へ順に、1枚の負レンズと、光路偏向プリズムと、開口絞りと、1枚の正レンズと、からなり、
     前記光路偏向プリズムは、物体側から像側へ順に、第1のプリズムと、前記第1のプリズムと空気間隔を介して離隔して配置された第2のプリズムと、からなり、
     前記光路偏向プリズムに入射した光線は、前記空気間隔を通過後に、前記光路偏向プリズムの前記空気間隔との界面において全反射により光路が折り曲げられ、
     全系の焦点距離をf、
     前記第1のプリズムと前記第2のプリズムとの間の前記空気間隔をDp、
     前記第1のプリズムの入射面と前記後群の光軸とのなす角度の絶対値をθ1、
     前記第2のプリズムの入射面と前記後群の光軸とのなす角度の絶対値をθ2、とし、
     θ1及びθ2の単位を度とした場合、
      30<f/Dp<500  (7)
      5<|θ1-θ2|<45  (8)
    で表される条件式(7)及び(8)を満足する内視鏡用対物光学系。
  16.  前記第1のプリズムにおける軸上主光線の光路の幾何学的長さをGLf、
     前記第2のプリズムにおける軸上主光線の光路の幾何学的長さをGLs、とした場合、
      60<(GLf+GLs)/Dp<600  (9)
    で表される条件式(9)を満足する請求項15に記載の内視鏡用対物光学系。
  17.  前記第1のプリズムにおける軸上主光線の光路の幾何学的長さをGLf、
     前記第2のプリズムにおける軸上主光線の光路の幾何学的長さをGLs、
     前記第1のプリズム及び前記第2のプリズムのd線に対する屈折率の平均値をNdp、とした場合、
      1<(GLs/GLf)/Ndp<2.5  (10)
    で表される条件式(10)を満足する請求項15又は請求項16に記載の内視鏡用対物光学系。
  18.  前記内視鏡用対物光学系の最大全画角を2ω、
     前記第1のプリズム及び前記第2のプリズムのd線に対する屈折率の平均値をNdp、とし、
     2ωの単位を度とした場合、
      8.8<(2ω×Ndp)/|θ1-θ2|<25  (11)
    で表される条件式(11)を満足する請求項15から請求項17の何れか1項に記載の内視鏡用対物光学系。
  19.  請求項1から請求項18の何れか1項に記載の内視鏡用対物光学系を備えた内視鏡。
  20.  前記内視鏡用対物光学系の像面に配置された撮像素子を更に備え、
     前記前群及び前記後群は、前記後群の光軸を軸として相対的に回動可能に構成され、
     前記撮像素子は、前記後群と一体的に構成されている
     請求項19に記載の内視鏡。
PCT/JP2021/001734 2020-01-29 2021-01-19 内視鏡用対物光学系及び内視鏡 WO2021153357A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180010775.5A CN115210624B (zh) 2020-01-29 2021-01-19 内窥镜用物镜光学系统及内窥镜
JP2021574659A JP7334277B2 (ja) 2020-01-29 2021-01-19 内視鏡用対物光学系及び内視鏡
US17/813,251 US20220382039A1 (en) 2020-01-29 2022-07-18 Objective optical system for endoscope and endoscope

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-012967 2020-01-29
JP2020012967 2020-01-29
JP2021-003772 2021-01-13
JP2021003772 2021-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/813,251 Continuation US20220382039A1 (en) 2020-01-29 2022-07-18 Objective optical system for endoscope and endoscope

Publications (1)

Publication Number Publication Date
WO2021153357A1 true WO2021153357A1 (ja) 2021-08-05

Family

ID=77078548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001734 WO2021153357A1 (ja) 2020-01-29 2021-01-19 内視鏡用対物光学系及び内視鏡

Country Status (4)

Country Link
US (1) US20220382039A1 (ja)
JP (1) JP7334277B2 (ja)
CN (1) CN115210624B (ja)
WO (1) WO2021153357A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097601A (zh) * 2022-06-22 2022-09-23 上海微觅医疗器械有限公司 内窥镜光学系统、内窥镜物镜及内窥镜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073762A (ja) * 1996-08-30 1998-03-17 Olympus Optical Co Ltd 硬性鏡光学系
JP2008107391A (ja) * 2006-10-23 2008-05-08 Olympus Medical Systems Corp 内視鏡対物光学系
JP2017219783A (ja) * 2016-06-10 2017-12-14 オリンパス株式会社 内視鏡対物光学系
JP2020013146A (ja) * 2016-07-29 2020-01-23 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung 光学系及び該光学系を有する外科用器具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357773A (ja) * 2001-06-04 2002-12-13 Olympus Optical Co Ltd 光学コンポーネントとそれを用いた内視鏡、内視鏡光学系
JP7113783B2 (ja) * 2019-04-25 2022-08-05 富士フイルム株式会社 内視鏡用対物光学系および内視鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073762A (ja) * 1996-08-30 1998-03-17 Olympus Optical Co Ltd 硬性鏡光学系
JP2008107391A (ja) * 2006-10-23 2008-05-08 Olympus Medical Systems Corp 内視鏡対物光学系
JP2017219783A (ja) * 2016-06-10 2017-12-14 オリンパス株式会社 内視鏡対物光学系
JP2020013146A (ja) * 2016-07-29 2020-01-23 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung 光学系及び該光学系を有する外科用器具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097601A (zh) * 2022-06-22 2022-09-23 上海微觅医疗器械有限公司 内窥镜光学系统、内窥镜物镜及内窥镜

Also Published As

Publication number Publication date
CN115210624A (zh) 2022-10-18
JP7334277B2 (ja) 2023-08-28
US20220382039A1 (en) 2022-12-01
CN115210624B (zh) 2024-04-09
JPWO2021153357A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP5324321B2 (ja) 内視鏡用対物レンズおよび内視鏡
WO2017146021A1 (ja) 内視鏡用変倍光学系、内視鏡及び内視鏡システム
US10948708B2 (en) Objective optical system for endoscope and endoscope
JP7091268B2 (ja) 内視鏡用対物レンズおよび内視鏡
US20160178885A1 (en) Objective lens for endoscopes and endoscope
US9696526B2 (en) Imaging lens and imaging apparatus
US10426323B2 (en) Objective lens for endoscopes and endoscope
WO2021153357A1 (ja) 内視鏡用対物光学系及び内視鏡
CN111443457B (zh) 内窥镜用物镜及内窥镜
JP7061989B2 (ja) 内視鏡用対物レンズ及び内視鏡
WO2019167310A1 (ja) 内視鏡用対物光学系
JP7113783B2 (ja) 内視鏡用対物光学系および内視鏡
US11561379B2 (en) Objective optical system for endoscope and endoscope including two lens group of −+ refractive powers having sixth lenses of −−+++− refractive powers
JPH08179226A (ja) 内視鏡用対物光学系
WO2020217443A1 (ja) 内視鏡対物光学系
JP4618463B2 (ja) フロントテレコンバーター
JP7302034B2 (ja) 内視鏡用対物光学系及び内視鏡
WO2020178886A1 (ja) 広角光学系及びそれを備えた撮像装置
JP3665481B2 (ja) 双眼鏡のクローズアップアタッチメント
US20220163784A1 (en) Objective lens for endoscope and endoscope
JP2023074578A (ja) レンズ装置および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747306

Country of ref document: EP

Kind code of ref document: A1