WO2021152254A1 - Structure multicouche pour le transport ou le stockage de l'hydrogene - Google Patents

Structure multicouche pour le transport ou le stockage de l'hydrogene Download PDF

Info

Publication number
WO2021152254A1
WO2021152254A1 PCT/FR2021/050140 FR2021050140W WO2021152254A1 WO 2021152254 A1 WO2021152254 A1 WO 2021152254A1 FR 2021050140 W FR2021050140 W FR 2021050140W WO 2021152254 A1 WO2021152254 A1 WO 2021152254A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
layer
polymer
multilayer structure
weight
Prior art date
Application number
PCT/FR2021/050140
Other languages
English (en)
Inventor
Nicolas Dufaure
Patrick Dang
Antoine GOUPIL
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to KR1020227029677A priority Critical patent/KR20220133960A/ko
Priority to CN202180011517.9A priority patent/CN115003504B/zh
Priority to JP2022545848A priority patent/JP2023512008A/ja
Priority to EP21708271.8A priority patent/EP4096923A1/fr
Priority to CA3163649A priority patent/CA3163649A1/fr
Priority to US17/758,738 priority patent/US20230045067A1/en
Priority to MX2022008890A priority patent/MX2022008890A/es
Publication of WO2021152254A1 publication Critical patent/WO2021152254A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/581Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material
    • B29C53/582Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material comprising reinforcements, e.g. wires, threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/602Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels for tubular articles having closed or nearly closed ends, e.g. vessels, tanks, containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0017Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material
    • B29C63/0021Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material with coherent impregnated reinforcing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/08Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
    • B29C63/10Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • B29K2105/089Prepregs fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0609Straps, bands or ribbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0624Single wall with four or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0675Synthetics with details of composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/219Working processes for non metal materials, e.g. extruding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0173Railways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • TITLE MULTI-LAYER STRUCTURE FOR THE TRANSPORT OR STORAGE OF
  • the present patent application relates to composite multilayer structures for the transport, distribution or storage of hydrogen, in particular for the distribution or storage of hydrogen, and their manufacturing process.
  • Hydrogen tanks are a subject that is currently attracting a lot of interest from many manufacturers, especially in the automotive field.
  • One of the goals is to offer vehicles that pollute less and less.
  • electric or hybrid vehicles comprising a battery aim to gradually replace thermal vehicles, such as gasoline or diesel vehicles.
  • thermal vehicles such as gasoline or diesel vehicles.
  • the battery is a relatively complex component of the vehicle.
  • the electric vehicle still suffers today from several problems, namely the autonomy of the battery, the use in these rare earth batteries whose resources are not inexhaustible, recharging times much longer than the durations. tank filling, as well as a problem of electricity production in the different countries to be able to recharge the batteries.
  • Hydrogen therefore represents an alternative to the electric battery since hydrogen can be transformed into electricity by means of a fuel cell and thus power electric vehicles.
  • Hydrogen tanks generally consist of a metal casing (liner or sealing layer) which must prevent the permeation of hydrogen.
  • liner or sealing layer One of the types of tanks being considered, called Type IV, is based on a thermoplastic liner around which a composite is wrapped.
  • thermoplastic resin liner or sealing sheath
  • a reinforcing structure made up of fibers (glass, aramid, carbon) coated in a thermoplastic or thermosetting matrix, also called sheath or reinforcing layer, which makes it possible to work at much higher pressures while reducing the mass and avoiding the risks of explosive rupture in the event of severe external attacks.
  • the permeability of the liner is indeed a key factor in limiting hydrogen losses from the tank;
  • the first generation of type IV tanks used a liner based on high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • HDPE has the drawback of having too low a melting temperature and high hydrogen permeability, which is a problem with the new thermal withstand requirements and does not allow the filling speed of the tank to be increased. tank.
  • PA6 polyamide
  • WO1 8155491 describes a hydrogen transport component having a three-layer structure, the inner layer of which is a composition consisting of PA11, 15 to 50% of an impact modifier and 1 to 3% of plasticizer or without plasticizer which exhibits hydrogen barrier properties, good flexibility and durability at low temperature.
  • this structure is suitable for pipes for transporting hydrogen but not for storing hydrogen.
  • the inventors have therefore unexpectedly found that the use of a semi-crystalline polyamide thermoplastic polymer P1i, in particular with a short or long chain, comprising a limited proportion of impact modifier and plasticizer, for the sealing layer, with a semi-crystalline thermoplastic polymer P2j for the matrix of the composite, said composite being welded to the waterproofing layer, and the two polymers P1i and P2j of the waterproofing layer adjacent to the composite reinforcing layer differing in their number d 'carbon atom per amide function of at most 20%, made it possible to obtain a structure suitable for the transport, distribution or storage of hydrogen, and in particular for the storage of hydrogen as well as a increase in the maximum temperature of use up to 120 ° C, thus making it possible to increase the speed of filling the tanks.
  • multilayer structure is meant a tank comprising or consisting of several layers, namely several sealing layers and several reinforcing layers, or one sealing layer and several reinforcing layers, or several sealing layers and a backing layer or a waterproofing layer and a backing layer.
  • the multilayer structure is therefore meant to the exclusion of a pipe or tube.
  • Poly ether block amide are copolymers with amide units (Ba1) and polyether units (Ba2), said amide unit (Ba1) corresponding to an aliphatic repeating unit chosen from a unit obtained from at least one amino acid or a unit obtained from at least one lactam, or an XY unit obtained from polycondensation:
  • diamine being preferably chosen from a linear or branched aliphatic diamine or a mixture thereof, and
  • said dicarboxylic acid being preferably chosen from: a linear or branched aliphatic dicacid, or a mixture of these, said diamine and said dicacid comprising from 4 to 36 carbon atoms, advantageously from 6 to 18 carbon atoms; said polyether units (Ba2) being in particular derived from at least one polyalkylene ether polyol, in particular a polyalkylene ether diol.
  • said constituent composition of said sealing layer is devoid of a nucleating agent.
  • Nucleating agents are known to those skilled in the art and refer to a substance which, when incorporated into a polymer, forms nuclei for crystal growth in the molten polymer.
  • They can be chosen, for example, from micro talc, carbon black, silica, titanium dioxide and nanoclays.
  • said constituent composition of said sealing layer is devoid of nucleating agent and plasticizer.
  • said structure is also devoid of an outermost layer and adjacent to the outermost layer of polyamide polymer composite reinforcement.
  • said multilayer structure consists of only two layers, a waterproofing layer and a reinforcing layer.
  • the waterproofing layer or layers are the innermost layers compared to the composite reinforcing layers which are the outermost layers.
  • the tank can be a tank for the mobile storage of hydrogen, i.e. on a truck for transporting hydrogen, on a car for transporting hydrogen.
  • hydrogen and the hydrogen supply of a fuel cell for example, on a train for the supply of hydrogen or on a drone for the supply of hydrogen, but it can also be a stationary storage tank of the 'hydrogen in station for the distribution of hydrogen to vehicles.
  • the sealing layer (1) is impermeable to hydrogen at 23 ° C, that is to say that the permeability to hydrogen at 23 ° C is less than 500 cc.mm/m2. 24h. .atm at 23 ° C under 0% relative humidity (RH).
  • P1i thermoplastic polyamide polymer
  • i 1 to n
  • n being the number of sealing layers, semi-crystalline, excluding a polyether block amide (PEBA), and excluding PA11.
  • PEBA polyether block amide
  • the composite reinforcing layer (s) is (are) wound (s) around the waterproofing layer by means of tapes (or tapes or rovings) of fibers impregnated with polymer which are deposited, for example, by filament winding.
  • the polymers may be different.
  • the polymers of the reinforcing layers are identical, there may be several layers present, but advantageously, only one reinforcing layer is present and which then has at least one complete winding around the waterproofing layer. Even if only one layer is present, several successive complete windings around the waterproofing layer can be made and constitute said single layer.
  • the other composite reinforcement layers also adhere to each other.
  • the other waterproofing layers also adhere to each other.
  • a waterproofing layer and a reinforcing layer are present and are welded to each other.
  • One or more waterproofing layers may or may be present.
  • the term “predominantly” means that said at least one polymer is present in more than 50% by weight relative to the total weight of the composition.
  • said at least one major polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight, relative to the weight total composition.
  • Said composition can also comprise up to 50% by weight relative to the total weight of the composition of impact modifiers and / or a plasticizer and / or additives.
  • the additives can be selected from another polymer, an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a colorant, carbon black and carbonaceous nanofillers, in particular the additives are chosen from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a colorant, carbon black and carbon nanofillers.
  • the nucleating agents are excluded from the additives.
  • nucleating agents are excluded from the additives and in this case the composition is also devoid of plasticizer.
  • Said other polymer can be another semi-crystalline thermoplastic polymer or a different polymer and in particular an EVOH (Ethylene vinyl alcohol).
  • EVOH Ethylene vinyl alcohol
  • said composition comprises mainly said thermoplastic PU polymer, from 0 to 50% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, from 0 to 1, 5% plasticizer and 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • said composition consists predominantly of said thermoplastic PU polymer, from 0 to 50% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, from 0 to 1 , 5% plasticizer and from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100%.
  • said composition comprises mainly said thermoplastic PU polymer, from 0 to 50% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, from 0 to 1, 5% plasticizer and 0 to 5% by weight of additives, excluding a nucleating agent, the sum of the constituents of the composition being equal to 100%.
  • said composition consists of said thermoplastic polymer P1i predominantly, from 0 to 50% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier, from 0 to 1 , 5% of plasticizer and from 0 to 5% by weight of additives, excluding a nucleating agent, the sum of the constituents of the composition being equal to 100%.
  • said composition comprises said thermoplastic polymer P1i predominantly, from 0 to 50% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier and from 0 to 5% by weight of additives, excluding a nucleating agent and excluding plasticizer, the sum of the constituents of the composition being equal to 100%.
  • said composition consists of said thermoplastic polymer P1i predominantly, from 0 to 50% by weight of impact modifier, in particular from 0 to less than 15% of impact modifier, in particular from 0 to 12% of impact modifier and from 0 to 5 % by weight of additives, excluding a nucleating agent, and excluding plasticizer, the sum of the constituents of the composition being equal to 100%.
  • Said at least one majority polymer of each layer may be identical or different.
  • a single major polymer is present at least in the sealant layer which adheres to the composite backing layer.
  • said composition comprises an impact modifier of 0.1 to 50% by weight, in particular from 0.1 to less than 15% by weight, in particular from 0.1 to 12% by weight of impact modifier by relative to the total weight of the composition.
  • said composition is devoid of plasticizer.
  • said composition comprises an impact modifier of 0.1 to 50% by weight, in particular from 0.1 to less than 15% by weight, in particular from 0.1 to 12% by weight of impact modifier and said composition is devoid of plasticizer relative to the total weight of the composition.
  • said composition comprises an impact modifier of 0.1 to 50% by weight, in particular from 0.1 to less than 15% by weight, and from 0.1 to 1.5% by weight of plasticizer relative to the total weight of the composition.
  • thermoplastic or semi-crystalline polyamide thermoplastic polymer
  • Tg glass transition temperature
  • Tm melting temperature
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • the number-average molecular mass Mn of said semi-crystalline polyamide thermoplastic polymer is preferably in a range going from 10,000 to 85,000, in particular from 10,000 to 60,000, preferably from 10,000 to 50,000, even more preferably from 12,000 to 50,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined in m-cresol according to standard ISO 307: 2007 but by changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being of 20 ° C).
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • said thermoplastic polymer is a short-chain semi-crystalline aliphatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom of up to 9, or a long-chain aliphatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom greater than 9, preferably greater than 10.
  • the short-chain aliphatic polyamide is chosen from: PA6, a PA610, a PA612 and a PA6 / polyolefin mixture
  • the long-chain aliphatic polyamide is chosen from: polyamide 11 (PA11), polyamide 12 (PA12), polyamide 1010 (PA1010), polyamide 1012 (PA1012), polyamide 1212 (PA1012), or a mixture thereof or a copolyamide thereof, in particular PA11 and PA12.
  • the long chain aliphatic polyamide is chosen from: polyamide 12 (PA12), polyamide 1010 (PA1010), polyamide 1012 (PA1012), polyamide 1212 (PA1012), or a mixture of these- ci or a copolyamide thereof, in particular PA12.
  • said semi-crystalline polyamide thermoplastic polymer is a semi-crystalline semi-aromatic polyamide, in particular a polyamide.
  • semi-aromatic semi-crystalline having an average number of carbon atoms per nitrogen atom greater than 8, preferably greater than 9 and a melting point of between 240 ° C and less than 280 ° C.
  • the semi-crystalline polyamides are semi-aromatic polyamides, in particular a semi-aromatic polyamide of formula X / YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A / XT in which A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (diamine in Ca).
  • (Cb diacid) with a representing the number of carbon atoms of the diamine and b representing the number of carbon atoms of the diacid, a and b each being between 4 and 36, advantageously between 9 and 18, the unit (Ca diamine) being chosen from aliphatic, linear or branched diamines, cycloaliphatic diamines and alkylaromatic diamines and the unit (Cb diacid) being chosen from aliphatic, linear or branched diacids, cycloaliphatic diacids and aromatic diacids ;
  • XT denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 5 and 36, advantageously between 9 and 18, in particular a polyamide of formula A / 5T, A / 6T, A / 9T, A / 10T or A / 11 T, A being as defined above, in particular a polyamide chosen from a PA MPMDT / 6T, one PA11 / 10T, one PA 5T / 10T, one PA 11 / BACT, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 10T, PA 11 / B
  • the semi-aromatic semi-crystalline polyamide is chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • T is terephthalic acid
  • MXD is m-xylylenediamine
  • MPMD is methylpentamethylene diamine
  • BAC is bis (aminomethyl) cyclohexane.
  • Said semi-aromatic polyamides defined above have in particular a Tg greater than or equal to 80 ° C.
  • each waterproofing layer consists of a composition comprising the same type of polyamide.
  • Said composition comprising said polymer P1i may be black in color and capable of absorbing radiation suitable for the welding which is then carried out after winding the composite reinforcing layer around the waterproofing layer.
  • soldering elements made of thermoplastic polyamide polymer.
  • thermoplastic polyamide polymer thermoplastic polyamide polymer
  • the welding of elements made of thermoplastic polyamide polymer, in particular by laser welding may require that the two elements to be welded have different properties with respect to radiation, in particular laser: one of the elements must be transparent to radiation, in particular laser , and the other must absorb radiation including laser.
  • the radiation, in particular laser passes through the transparent element and then reaches the absorbent element, where it is converted into heat. This makes it possible to melt the contact zone between the two elements and therefore to carry out the weld.
  • the preferred case is a fusion of the interface at the time of removal.
  • the welding is carried out by a system chosen from among the laser, infrared heating (IR), heating by led, heating by induction or by weight or high frequency (HF) heating.
  • IR infrared heating
  • HF high frequency
  • the PU composition comprises carbonaceous fillers.
  • the PU composition comprises metal particles.
  • the welding is carried out by a laser system.
  • the impact modifier can be any impact modifier from the moment when a polymer of lower modulus than that of the resin, exhibiting good adhesion with the matrix, so as to dissipate the cracking energy.
  • the impact modifier is advantageously constituted by a polymer having a flexural modulus of less than 100 MPa measured according to the ISO 178 standard and of Tg less than 0 ° C (measured according to the 11357-2 standard at the inflection point of the DSC thermogram ), in particular a polyolefin.
  • PEBAs are excluded from the definition of impact modifiers.
  • the polyolefin of the impact modifier can be functionalized or non-functionalized or be a mixture of at least one functionalized and / or at least one non-functionalized.
  • the polyolefin has been designated by (B) and functionalized polyolefins (B1) and unfunctionalized polyolefins (B2) have been described below.
  • An unfunctionalized polyolefin (B2) is conventionally a homopolymer or copolymer of alpha olefins or diolefins, such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • alpha olefins or diolefins such as, for example, ethylene, propylene, butene-1, octene-1, butadiene.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene, or linear low density polyethylene
  • VLDPE very low density polyethylene, or very low density polyethylene
  • metallocene polyethylene metallocene polyethylene
  • ethylene / alpha-olefin copolymers such as ethylene / propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene / propylene / diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene / propylene / diene
  • SEBS ethylene-butene / styrene
  • SBS styrene / butadiene / styrene
  • SIS styrene / isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • the functionalized polyolefin (B1) can be a polymer of alpha olefins having reactive units (the functionalities); such reactive units are acid, anhydride or epoxy functions.
  • polyolefins (B2) grafted or co- or ter polymerized with unsaturated epoxides such as glycidyl (meth) acrylate, or with carboxylic acids or the corresponding salts or esters such as (meth) acrylic acid (the latter being able to be totally or partially neutralized by metals such as Zn, etc.) or alternatively by carboxylic acid anhydrides such as maleic anhydride.
  • a functionalized polyolefin is for example a PE / EPR mixture, the weight ratio of which can vary widely, for example between 40/60 and 90/10, said mixture being co-grafted with an anhydride, in particular maleic anhydride, according to a degree of grafting, for example from 0.01 to 5% by weight.
  • the functionalized polyolefin (B1) can be chosen from the following (co) polymers, grafted with maleic anhydride or glycidyl methacrylate, in which the degree of grafting is for example from 0.01 to 5% by weight:
  • - ethylene / alpha-olefin copolymers such as ethylene / propylene, EPR (abbreviation of ethylene-propylene-rubber) and ethylene / propylene / diene (EPDM).
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM ethylene / propylene / diene
  • SEBS ethylene-butene / styrene
  • SBS styrene / butadiene / styrene
  • SIS isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • alkyl (meth) acrylate copolymers containing up to 40% by weight of alkyl (meth) acrylate;
  • the functionalized polyolefin (B1) can also be chosen from ethylene / propylene copolymers predominantly in propylene grafted with maleic anhydride then condensed with mono-amine polyamide (or a polyamide oligomer) (products described in EP-A-0342066) .
  • the functionalized polyolefin (B1) can also be a co- or ter polymer of at least the following units: (1) ethylene, (2) alkyl (meth) acrylate or vinyl ester of saturated carboxylic acid and (3) anhydride such as maleic anhydride or (meth) acrylic acid or epoxy such as glycidyl (meth) acrylate.
  • (meth) acrylic acid can be salified with Zn or Li.
  • alkyl (meth) acrylate in (B1) or (B2) denotes methacrylates and acrylates of C1 to C8 alkyl, and may be chosen from methyl acrylate, ethyl acrylate , n-butyl acrylate, isobutyl acrylate, ethyl-2-hexyl acrylate, cyclohexyl acrylate, methyl methacrylate and ethyl methacrylate.
  • the aforementioned polyolefins (B1) can also be crosslinked by any suitable process or agent (diepoxy, diacid, peroxide, etc.); the term functionalized polyolefin also includes mixtures of the aforementioned polyolefins with a difunctional reagent such as as diacid, dianhydride, diepoxy, etc. capable of reacting with these or mixtures of at least two functionalized polyolefins capable of reacting with each other.
  • a difunctional reagent such as as diacid, dianhydride, diepoxy, etc.
  • copolymers mentioned above, (B1) and (B2) can be copolymerized in a random or block fashion and have a linear or branched structure.
  • the molecular weight, the MFI number, the density of these polyolefins can also vary to a large extent, which will be appreciated by those skilled in the art.
  • MFI short for Melt Flow Index, is the melt flow index. It is measured according to standard ASTM 1238.
  • the unfunctionalized polyolefins (B2) are chosen from homopolymers or copolymers of polypropylene and any homopolymer of ethylene or copolymer of ethylene and of a comonomer of higher alpha olefinic type. such as butene, hexene, octene or 4-methyl 1-Pentene.
  • PPs high density PE, medium density PE, linear low density PE, low density PE, very low density PE.
  • polyethylenes are known to those skilled in the art as being produced according to a “radical” process, according to a “Ziegler” type catalysis or, more recently, according to a so-called “metallocene” catalysis.
  • the functionalized polyolefins (B1) are chosen from any polymer comprising alpha olefinic units and units bearing polar reactive functions such as epoxy, carboxylic acid or carboxylic acid anhydride functions.
  • polymers mention may be made of the ter polymers of ethylene, of alkyl acrylate and of maleic anhydride or of glycidyl methacrylate, such as Lotader® from the Applicant or polyolefins grafted with l.
  • maleic anhydride such as Orevac® from the Applicant as well as ter polymers of ethylene, of alkyl acrylate and of (meth) acrylic acid.
  • Mention may also be made of homopolymers or copolymers of polypropylene grafted with a carboxylic acid anhydride and then condensed with polyamides or mono-amino polyamide oligomers.
  • said constituent composition of said sealant layer or layers is devoid of polyether block amide (PEBA).
  • PEBAs are therefore excluded from the impact modifiers.
  • said transparent composition is devoid of core-shell particles or “core-shell” core-shell polymers.
  • core-shell particle it is necessary to understand a particle of which the first layer forms the core and the second or all of the following layers form the respective shell.
  • the core-shell particle can be obtained by a multi-step process comprising at least two steps. Such a method is described for example in documents US2009 / 0149600 or EP0722961. Regarding the plasticizer
  • the plasticizer can be a plasticizer commonly used in compositions based on polyamide (s).
  • a plasticizer which has good thermal stability so that no fumes are formed during the stages of mixing the various polymers and of processing the composition obtained.
  • this plasticizer can be chosen from: benzene sulfonamide derivatives such as n-butyl benzene sulfonamide (BBSA), ortho and para isomers of ethyl toluene sulfonamide (ETSA), N-cyclohexyl toluene sulfonamide and N- (2-hydroxypropyl) benzenesulfonamide (HP-BSA), esters of hydroxybenzoic acids such as 2-ethylhexyl para-hydroxybenzoate
  • BBSA n-butyl benzene sulfonamide
  • ETSA ethyl toluene sulfonamide
  • HP-BSA N- (2-hydroxypropyl) benzenesulfonamide
  • esters of hydroxybenzoic acids such as 2-ethylhexyl para-hydroxybenzoate
  • EHPB 2-decylhexyl para-hydroxybenzoate
  • HDPB 2-decylhexyl para-hydroxybenzoate
  • esters or ethers of tetrahydrofurfuryl alcohol such as oligoethyleneoxy-tetrahydrofurfurylalcohol
  • esters of citric acid or hydroxymalonic acid such as oligoethylene oxymalonate.
  • a preferred plasticizer is n-butyl benzene sulfonamide (BBSA).
  • Another more particularly preferred plasticizer is N- (2-hydroxy-propyl) benzene sulfonamide (HP-BSA).
  • HP-BSA N- (2-hydroxy-propyl) benzene sulfonamide
  • the polymer P2j is a semi-crystalline polyamide thermoplastic polymer, said semi-crystalline polyamide thermoplastic polymer having the same definition as above.
  • One or more composite reinforcement layers may or may be present.
  • said at least one polymer is present in more than 50% by weight relative to the total weight of the composition and of the matrix of the composite.
  • said at least one majority polymer is present at more than 60% by weight, in particular at more than 70% by weight, particularly at more than 80% by weight, more particularly greater than or equal to 90% by weight, relative to the total weight of the composition,
  • Said composition can also comprise impact modifiers and / or additives.
  • the additives can be selected from an antioxidant, a heat stabilizer, a UV absorber, a light stabilizer, a lubricant, an inorganic filler, a flame retardant, a plasticizer and a colorant.
  • the additives are excluding a nucleating agent.
  • said composition comprises said thermoplastic polyamide polymer P2j predominantly, from 0 to 15% by weight of impact modifier, in particular from 0 to 12% by weight of impact modifier, from 0 to 5% by weight of additives, the sum of constituents of the composition being equal to 100% by weight.
  • said composition comprises said thermoplastic polyamide polymer P2j predominantly, from 0 to 15% by weight of impact modifier, in particular from 0 to 12% by weight of impact modifier, from 0 to 5% by weight of additives, to the exclusion of a nucleating agent, the sum of the constituents of the composition being equal to 100% by weight.
  • said composition consists of said thermoplastic polyamide polymer P2j predominantly, from 0 to 15% by weight of impact modifier, in particular from 0 to 12% by weight of impact modifier, from 0 to 5% by weight of additives, the sum of the constituents of the composition being equal to 100% by weight.
  • said composition consists of said thermoplastic polyamide polymer P2j predominantly, from 0 to 15% by weight of impact modifier, in particular from 0 to 12% by weight of impact modifier, from 0 to 5% by weight of additives, at l exclusion of a nucleating agent, the sum of the constituents of the composition being equal to 100% by weight.
  • each reinforcing layer may be identical or different.
  • each reinforcing layer comprises the same type of polyamide.
  • thermoplastic, or semi-crystalline polyamide thermoplastic polymer is understood to mean a material which is generally solid at room temperature, and which softens during an increase in temperature, in particular after passing its glass transition temperature (Tg), and which may exhibit a straightforward melting at the passage of its so-called melting temperature (Tm), and which becomes solid again when the temperature drops below its crystallization temperature.
  • Tg, Te and Tf are determined by differential scanning calorimetry (DSC) according to standard 11357-2: 2013 and 11357-3: 2013 respectively.
  • the number-average molecular weight Mn of said thermoplastic polyamide polymer P2j is preferably in a range from 10,000 to 40,000, preferably from 10,000 to 30,000. These Mn values may correspond to inherent viscosities greater than or equal to 0.8 as determined. in m-cresol according to standard ISO 307: 2007 but by changing the solvent (use of m-cresol in place of sulfuric acid and the temperature being 20 ° C).
  • the polyamide can be a homopolyamide or a copolyamide or a mixture thereof.
  • said thermoplastic polymer is a short-chain semi-crystalline aliphatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom of up to 9, or a long-chain aliphatic polyamide, that is to say a polyamide having an average number of carbon atoms per nitrogen atom greater than 9, preferably greater than 10.
  • the short-chain aliphatic polyamide is chosen from: PA6, a PA610, a PA612 and a PA6 / polyolefin mixture
  • the long-chain aliphatic polyamide is chosen from: polyamide 11 (PA11), polyamide 12 (PA12), polyamide 1010 (PA1010), polyamide 1012 (PA1012), polyamide 1212 (PA1012), or a mixture thereof or a copolyamide thereof, in particular PA11 and PA12.
  • the long chain aliphatic polyamide is chosen from: polyamide 12 (PA12), polyamide 1010 (PA1010), polyamide 1012 (PA1012), polyamide 1212 (PA1012), or a mixture of these- ci or a copolyamide thereof, in particular PA12.
  • said semi-crystalline polyamide thermoplastic polymer is a semi-aromatic semi-crystalline polyamide, in particular a semi-aromatic semi-crystalline polyamide having an average number of carbon atoms per nitrogen atom greater than 8 preferably greater than 9 and a melting temperature of between 240 ° C to less than 280 ° C.
  • the semi-crystalline polyamides are semi-aromatic polyamides, in particular a semi-aromatic polyamide of formula X / YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A / XT in which A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (diamine in Ca).
  • the unit (diacid in Cb) being chosen from aliphatic diamines, linear or branched, cycloaliphatic diamines and alkylaromatic diamines and the unit (Cb diacid) being chosen from aliphatic, linear or branched diacids, cycloaliphatic diacids and aromatic diacids;
  • XT denotes a unit obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 5 and 36, advantageously between 9 and 18, in particular a polyamide of formula A / 5T, A / 6T, A / 9T, A / 10T or A / 11 T, A being as defined above, in particular a polyamide chosen from a PA MPMDT / 6T, one PA11 / 10T, one PA 5T / 10T, one PA 11 / BACT, one PA 11 / 6T / 10T, one PA MXDT / 10T, one PA MPMDT / 10T, one PA BACT / 10T, one PA BACT / 6T, PA BACT / 10T / 6T, one PA 11 / BACT / 6T, PA 11 / MPMDT / 6T,
  • PA 11 / MP M DT / 10T PA 11 / BACT / 10T, one PA 11 / MXDT / 10T, one 11 / 5T / 10T.
  • the semi-aromatic semi-crystalline polyamide is chosen from polyamide 11 / 5T or 11 / 6T or 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • T is terephthalic acid
  • MXD is m-xylylenediamine
  • MPMD is methylpentamethylene diamine
  • BAC is bis (aminomethyl) cyclohexane.
  • Said semi-aromatic polyamides defined above have in particular a Tg greater than or equal to 80 ° C.
  • Said multilayer structure therefore comprises at least one waterproofing layer and at least one composite reinforcing layer, the innermost reinforcing layer being welded to the outermost waterproofing layer and which therefore adhere to each other.
  • the Tm, as measured according to ISO 11357-3: 2013, of the polyamide of said outermost adjacent sealing layer (1) differs from that of the polyamide of said outermost reinforcing layer (2). internal at most 30 ° C.
  • the Tg, as measured according to ISO 11357-2: 2013, of the polyamide of said outermost adjacent sealing layer (1) differs from that of the polyamide of said reinforcing layer (2). more internal at most 30 ° C.
  • the Tm, and the Tg of the polyamide of said outermost adjacent sealing layer (1) differ from that of the polyamide of said innermost reinforcing layer (2) at most 30 ° C.
  • each sealing layer comprises the same type of polyamide and each reinforcing layer comprises the same type of polyamide.
  • Said multilayer structure can include up to 10 sealing layers and up to
  • said multilayer structure is not necessarily symmetrical and that it can therefore include more waterproofing layers than composite layers or vice versa, but there cannot be alternation of layers and of reinforcing layer.
  • said multilayer structure comprises one, two, three, four, five, six, seven, eight, nine or ten sealing layers and one, two, three, four, five, six, seven, eight, nine or ten layers composite reinforcement.
  • said multilayer structure comprises one, two, three, four or five waterproofing layers and one, two, three, four or five composite reinforcement layers.
  • said multilayer structure comprises one, two or three waterproofing layers and one two or three composite reinforcement layers.
  • said multilayer structure comprises a single waterproofing layer and several reinforcing layers, said adjacent reinforcing layer being welded to said waterproofing layer and the other reinforcing layers being wrapped around the reinforcing layer directly. adjacent.
  • said multilayer structure comprises a single reinforcing layer and several sealing layers, said reinforcing layer being welded to said adjacent sealing layer.
  • said multilayer structure comprises a single waterproofing layer and a single composite reinforcing layer, said reinforcing layer being welded to said waterproofing layer.
  • each sealing layer consists of a composition comprising the same type of polyamide PU polymer.
  • the polyamide PU is identical for all the waterproofing layers.
  • said PU polymer is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612 and a PA6 / polyolefin mixture, or a long-chain mixture, in particular chosen from a PA1010, PA1012, PA1212, PA11 and PA12, in particular PA 11 and PA12, or a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • each reinforcing layer consists of a composition comprising the same type of polyamide polymer P2j.
  • the P2j polyamide is identical for all the reinforcing layers.
  • said polymer P2j is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612, or a long-chain one, in particular chosen from a PA1010, PA1012, PA1212, PA11 and PA12, in particular PA 11 and PA12, or a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • each sealing layer consists of a composition comprising the same type of polyamide polymer P1i and each reinforcing layer consists of a composition comprising the same type of polyamide polymer P2j.
  • said polymer P1i is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612 and a PA6 / polyolefin mixture, or a long-chain mixture, in particular chosen from a PA1010, PA1012, PA1212, PA11 and PA12, in particular PA 11 and PA12, or a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T and said polymer P2j is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612, or a long-chain polyamide, in particular chosen from a PA1010, PA1012, PA1212, PA11 and PA12, in particular PA 11 and PA12, or a semi-polyamide aromatic, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612 and a PA6 / polyolefin mixture, or a long chain mixture, in particular chosen from a PA1010, PA1012, PA1212, PA11 and PA12, in particular PA 11 and PA12, or a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T,
  • polymer P2j is a short chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612, or a long chain one, in particular chosen from a PA1010, PA1012, PA1212, PA11 and PA12, in particular PA 11 and PA12, or a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • a short chain aliphatic polyamide in particular chosen from a PA6, a PA610, a PA612, or a long chain one, in particular chosen from a PA1010, PA1012, PA1212, PA11 and PA12, in particular PA 11 and PA12, or a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612 and a PA6 / polyolefin mixture, and said polymer P2j is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612 and a PA6 / polyolefin mixture, and said polymer P2j is a polyamide long chain aliphatic, in particular chosen from a PA1010, PA1012, PA1212,
  • PA11 and PA12 in particular PA 11 and PA12.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612 and a PA6 / polyolefin mixture, and said polymer P2j is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT, MXDT / 10T, MPMDT / 10T and BACT / 10T .
  • said polymer P1i is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612 and a PA6 / polyolefin mixture
  • said polymer P2j is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT, MXDT / 10T, MPMDT / 10T and BACT / 10
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a long-chain aliphatic polyamide, in particular chosen from a PA1010, PA1012, PA1212 , PA11 and PA12, in particular PA 11 and PA12, and said polymer P2j is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a long-chain aliphatic polyamide, in particular chosen from a PA1010, PA1012, PA1212 , PA11 and PA12, in particular PA 11 and PA12, and said polymer P2j is a long-chain aliphatic polyamide, in particular chosen from a PA1010, PA1012, PA1212, PA11 and PA12, in particular PA 11 and PA12.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a long-chain aliphatic polyamide, in particular chosen from a PA1010, PA1012, PA1212 , PA11 and PA12, in particular PA 11 and PA12, and said polymer P2j is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T,
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT, MXDT / 10T, MPMDT / 10T and BACT / 10T and said polymer P2j is a short-chain aliphatic polyamide, in particular chosen from a PA6, a PA610, a PA612.
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said polymer P1i is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT, MXDT / 10T, MPMDT / 10T and BACT / 10T and said polymer P2j is a long-chain aliphatic polyamide, in particular chosen from a PA1010, PA1012, PA1212,
  • said multilayer structure consists of a single reinforcing layer and a single sealing layer in which said PU polymer is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T and said polymer P2j is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT, MXDT / 10T, MPMDT / 10T and BACT / 10T.
  • said PU polymer is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11 / 10T, MXDT / 10T, MPMDT / 10T and BACT / 10T
  • said polymer P2j is a semi-aromatic polyamide, in particular chosen from polyamide 11 / 5T, 11 / 6T, 11/1 OT
  • said multilayer structure further comprises at least one outer layer made of a continuous fiberglass fibrous material impregnated with a transparent amorphous polymer, said layer being the outermost layer of said multilayer structure.
  • Said outer layer is a second but transparent reinforcing layer which makes it possible to put an inscription on the structure.
  • constituent fibers of said fibrous material they are in particular fibers of mineral, organic or plant origin.
  • said fibrous material can be sized or not sized.
  • Said fibrous material can therefore comprise up to 3.5% by weight of an organic material (thermosetting or thermoplastic resin type) called sizing.
  • fibers of mineral origin mention may be made of carbon fibers, glass fibers, basalt or basalt-based fibers, silica fibers, or silicon carbide fibers, for example.
  • fibers of organic origin mention may be made of fibers based on a thermoplastic or thermosetting polymer, such as semi-aromatic polyamide fibers, aramid fibers or polyolefin fibers, for example.
  • they are based on an amorphous thermoplastic polymer and have a glass transition temperature Tg greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the pre-impregnation matrix when the latter is amorphous, or greater than the Tm of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline.
  • they are based on a semi-crystalline thermoplastic polymer and have a melting point Tm greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is amorphous, or greater than the Tm. of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline.
  • the organic fibers constituting the fibrous material during impregnation with the thermoplastic matrix of the final composite.
  • the fibers of plant origin mention may be made of natural fibers with base of flax, hemp, lignin, bamboo, silk, in particular spider silk, sisal, and other cellulose fibers, in particular viscose. These fibers of plant origin can be used pure, treated or else coated with a coating layer, with a view to facilitating the adhesion and the impregnation of the thermoplastic polymer matrix.
  • the fibrous material can also be fabric, braided or woven with fibers.
  • organic fibers can be mixed with mineral fibers to be pre-impregnated with thermoplastic polymer powder and to form the pre-impregnated fibrous material.
  • the rovings of organic fibers can have several grammages. They can also have several geometries.
  • the fibers constituting the fibrous material can also be in the form of a mixture of these reinforcing fibers of different geometries. Fibers are continuous fibers.
  • the fibrous material is chosen from glass fibers, carbon fibers, basalt or basalt-based fibers, or a mixture of these, in particular carbon fibers.
  • It is used as a wick or several wicks.
  • the present invention relates to a method of manufacturing a multilayer structure as defined above, characterized in that it comprises a step of filament winding of the reinforcing layer as defined above around of the sealing layer as defined above.
  • the tanks are obtained by rotational molding of the sealing layer (liner) at a temperature suitable for the nature of the thermoplastic resin used.
  • thermoplastic resin (tape).
  • This tape is deposited by filament winding using a robot comprising a 1500W power laser heater at a speed of 12m / min and there is no polymerization step.
  • Type IV hydrogen storage tank composed of an epoxy composite reinforcement (Tg 100 ° C) T700SC31E carbon fibers (produced by Toray) and a PA11 waterproofing layer.
  • Example 2 Type IV hydrogen storage tank, composed of a reinforcement in PA11 carbon fiber composite T700SC31 E (produced by T oray) and a sealing layer in PA11.
  • the tanks thus obtained are subjected to cyclic pressure tests, varying between 10 and 800 bar. Water is used to apply pressure. The test is stopped after 10,000 cycles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Structure multicouche, destinée au transport, à la distribution et au stockage de l'hydrogène, en particulier au stockage, comprenant, de l'intérieur vers l'extérieur, au moins une couche d'étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite (2) la plus interne étant soudée à ladite couche d'étanchéité (1) adjacente la plus externe, lesdites couches d'étanchéité (1) étant constituées d'une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide semi-cristallin P1i, i=1 à n, n étant le nombre de couches d'étanchéité, à l'exclusion d'un polyéther block amide (PEBA), jusqu'à 50% en poids de modifiant choc, notamment jusqu'à moins de 15% en poids de modifiant choc, en particulier jusqu'à 12% en poids de modifiant choc par rapport au poids total de la composition, jusqu'à 1,5% en poids de plastifiant par rapport au poids total de la composition, ledit au moins un polymère thermoplastique polyamide de chaque couche d'étanchéité pouvant être identique ou différent, et au moins l'une des dites couches de renfort composite étant constituée d'un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère polyamide semi-cristallin P2j, j=1 à m, m étant le nombre de couches de renfort, le nombre d'atome de carbone par fonction amide du polyamide de ladite couche d'étanchéité (1) adjacente la plus externe différant de celui du polyamide de ladite couche de renfort (2) la plus interne d'au plus 20%.

Description

DESCRIPTION
TITRE : STRUCTURE MULTICOUCHE POUR LE TRANSPORT OU LE STOCKAGE DE
L’HYDROGENE
[Domaine technique]
La présente demande de brevet concerne des structures multicouches composites pour le transport, la distribution ou le stockage de l’hydrogène, en particulier pour la distribution ou le stockage de l’hydrogène, et leur procédé de fabrication.
[Technique antérieure]
Les réservoirs d’hydrogène représentent un sujet qui attire actuellement beaucoup d’intérêt de la part de nombreux industriels, notamment dans le domaine automobile. L’un des buts recherché est de proposer des véhicules de moins en moins polluants. Ainsi, les véhicules électriques ou hybrides comportant une batterie visent à remplacer progressivement les véhicules thermiques, tels que les véhicules à essence ou bien à gasoil. Or, il s’avère que la batterie est un constituant du véhicule relativement complexe. Selon l’emplacement de la batterie dans le véhicule, il peut être nécessaire de la protéger des chocs et de l’environnement extérieur, qui peut être à des températures extrêmes et à une humidité variable. Il est également nécessaire d’éviter tout risque de flammes.
De plus, il est important que sa température de fonctionnement n’excède pas 55°C pour ne pas détériorer les cellules de la batterie et préserver sa durée de vie. A l’inverse, par exemple en hiver, il peut être nécessaire d’élever la température de la batterie de manière à optimiser son fonctionnement.
Par ailleurs, le véhicule électrique souffre encore aujourd’hui de plusieurs problèmes à savoir l’autonomie de la batterie, l’utilisation dans ces batteries de terre rares dont les ressources ne sont pas inépuisables, des temps de recharge beaucoup plus long que les durées de remplissage de réservoir, ainsi qu’un problème de production d’électricité dans les différents pays pour pouvoir recharger les batteries.
L’hydrogène représente donc une alternative à la batterie électrique puisque l’hydrogène peut être transformé en électricité au moyen d’une pile à combustible et alimenter ainsi les véhicules électriques.
Les réservoirs à hydrogène sont généralement constitués d'une enveloppe (liner ou couche d’étanchéité) métallique qui doit empêcher la perméation de l'hydrogène. L’un des types de réservoirs envisagés, appelé Type IV, est basé sur un liner thermoplastique autour duquel est enroulé un composite.
Leur principe de base est de séparer les deux fonctions essentielles que sont l'étanchéité et la tenue mécanique pour les gérer l'une indépendamment de l'autre. Dans ce type de réservoir on associe liner (ou gaine d’étanchéité) en résine thermoplastique à une structure de renforcement constituée de fibres (verre, aramide, carbone) enrobées dans une matrice thermoplastique ou thermodurcissable encore dénommée gaine ou couche de renfort qui permettent de travailler à des pressions beaucoup plus élevées tout en réduisant la masse et en évitant les risques de rupture explosive en cas d’agressions externes sévères.
Les liners doivent présenter certaines caractéristiques de base :
La possibilité d’être transformé par extrusion soufflage, rotomoulage, injection, ou extrusion
Une faible perméabilité à l’hydrogène, la perméabilité du liner est en effet un facteur clé pour limiter les pertes d’hydrogène du réservoir ;
De bonnes propriétés mécaniques (fatigue) à basses températures (-40 à -70°C) ;
Une tenue thermique à 120°C.
En effet, il est nécessaire d’augmenter la vitesse de remplissage du réservoir d’hydrogène qui doit être environ équivalente à celle d’un réservoir à essence pour moteur thermique (environ 3 à 5 minutes) mais cette augmentation de vitesse provoque un échauffement du réservoir plus importante qui atteint alors une température d’environ 100°C.
La première génération de réservoirs de type IV utilisait un liner sur base polyéthylène haute densité (HDPE).
Cependant, HDPE présente le défaut d’avoir une température de fusion trop basse et une perméabilité à l’hydrogène élevée, ce qui représente un problème avec les nouvelles exigences en matière de tenue thermique et ne permet pas d’augmenter la vitesse de remplissage du réservoir.
Depuis plusieurs années, des liners sur base polyamide PA6 se sont développés. Néanmoins, le PA6 présente le désavantage d’avoir une faible tenue à froid.
W01 8155491 décrit un composant de transport d’hydrogène présentant une structure tricouche dont la couche interne est une composition constituée de PA11, de 15 à 50% d’un modifiant choc et de 1 à 3% de plastifiant ou dépourvue de plastifiant qui présente des propriétés barrière à l’hydrogène, une bonne flexibilité et durabilité à faible température. Cependant, cette structure est adaptée à des tuyaux pour le transport de l’hydrogène mais pas pour le stockage de l’hydrogène.
Ainsi, il reste à optimiser d’une part, la matrice du composite de façon à optimiser sa résistance mécanique à haute température et d’autre part le matériau composant la gaine d’étanchéité, de façon à optimiser sa température de mise en oeuvre. Ainsi, la modification éventuelle de la composition du matériau composant la gaine d’étanchéité, qui sera faite ne doit pas se traduire par une augmentation significative de la température de fabrication (extrusion-soufflage, injection, rotomoulage...) de ce liner, par rapport à ce qui se pratique aujourd’hui. Ces problèmes sont résolus par la fourniture d’une structure multicouche de la présente invention destinée au transport, à la distribution ou au stockage de l’hydrogène Dans toute cette description, les termes « liner » et « gaine d’étanchéité » ont la même signification.
La présente invention concerne donc une structure multicouche destinée au transport, à la distribution et au stockage de l’hydrogène, en particulier au stockage, comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite (2) la plus interne étant soudée à ladite couche d’étanchéité (1) adjacente la plus externe, lesdites couches d’étanchéité (1) étant constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide semi-cristallin P1i, i=1 à n, n étant le nombre de couches d’étanchéité, à l’exclusion d’un polyéther block amide (PEBA), jusqu’à 50% en poids de modifiant choc, notamment jusqu’à moins de 15% en poids de modifiant choc, en particulier jusqu’à 12% en poids de modifiant choc par rapport au poids total de la composition, jusqu’à 1,5% en poids de plastifiant par rapport au poids total de la composition, ledit au moins un polymère thermoplastique polyamide de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère polyamide semi-cristallin P2j, j=1 à m, m étant le nombre de couches de renfort, le nombre d’atome de carbone par fonction amide du polyamide de ladite couche d’étanchéité (1) adjacente la plus externe différant de celui du polyamide de ladite couche de renfort (2) la plus interne d’au plus 20%.
Les Inventeurs ont donc trouvé de manière inattendue que l’utilisation d’un polymère thermoplastique polyamide semi-cristallin P1i, notamment à courte chaîne ou à longue chaîne, comprenant une proportion de modifiant choc et de plastifiant limitée, pour la couche d’étanchéité, avec un polymère thermoplastique semi-cristallin P2j pour la matrice du composite, ledit composite étant soudé sur la couche d’étanchéité, et les deux polymères P1i et P2j de la couche d’étanchéité adjacente à la couche de renfort composite différant par leur nombre d’atome de carbone par fonction amide d’au plus 20%, permettait l’obtention d’une structure adaptée au transport, à la distribution ou au stockage de l’hydrogène, et en particulier au stockage de l’hydrogène ainsi qu’une augmentation de la température maximale d’utilisation pouvant aller jusqu’à 120°C, permettant ainsi d’augmenter la vitesse de remplissage des réservoirs.
Par « structure multicouche » il faut entendre un réservoir comprenant ou constitué de plusieurs couches, à savoir plusieurs couches d’étanchéité et plusieurs couches de renfort, ou une couche d’étanchéité et plusieurs couches de renfort, ou plusieurs couches d’étanchéité et une couche de renfort ou une couche d’étanchéité et une couche de renfort.
La structure multicouche s’entend donc à l’exclusion d’un tuyau ou d’un tube.
Les poly ether block amide (PEBA) sont des copolymères à motifs amides (Ba1) et motifs polyéthers (Ba2) ledit motif amide (Ba1 ) correspondant à un motif répétitif aliphatique choisi parmi un motif obtenu à partir d'au moins un aminoacide ou un motif obtenu à partir d'au moins un lactame, ou un motif X.Y obtenu à partir de la polycondensation :
- d'au moins une diamine, ladite diamine étant choisie préférentiellement parmi une diamine aliphatique linéaire ou ramifiée ou un mélange de celles-ci, et
- d'au moins un diacide carboxylique, ledit diacide étant choisi préférentiellement parmi : un diacide aliphatique linéaire ou ramifié, ou un mélange de ceux-ci, ladite diamine et ledit diacide comprenant de 4 à 36 atomes de carbone, avantageusement de 6 à 18 atomes de carbone ; lesdits motifs polyéthers (Ba2) étant notamment issus d’au moins un polyalkylène éther polyol, notamment un polyalkylène éther diol.Dans un mode de réalisation, ladite composition constitutive de ladite couche d’étanchéité est dépourvue d’agent nucléant.
Les agents nucléants sont connus de l'homme du métier et se réfère à une substance qui, lorsqu'elle est incorporée dans un polymère, forme des noyaux pour la croissance de cristaux dans le polymère fondu.
Ils peuvent être choisis par exemple parmi le micro talc, le noir de carbone, la silice, le dioxyde de titane et les nano-argiles.
Dans un autre mode de réalisation, ladite composition constitutive de ladite couche d’étanchéité est dépourvue d’agent nucléant et de plastifiant.
Dans un mode de réalisation, ladite structure est également dépourvue d’une couche la plus extérieure et adjacente à la couche la plus extérieure de renfort composite en polymère polyamide.
Dans un mode de réalisation, ladite structure multicouche est constituée uniquement de deux couches, une couche d’étanchéité et une couche de renfort.
La couche ou les couches d’étanchéité sont les couches les plus internes par rapport aux couches de renfort composites qui sont les couches les plus externes.
Le réservoir peut être un réservoir pour le stockage mobile de l’hydrogène, c’est-à-dire sur un camion pour le transport de l’hydrogène, sur une voiture pour le transport de l’hydrogène et l’alimentation en hydrogène d’une pile à combustible par exemple, sur un train pour l’alimentation en hydrogène ou sur un drone pour l’alimentation en hydrogène, mais il peut être également un réservoir de stockage stationnaire de l’hydrogène en station pour la distribution d’hydrogène à des véhicules.
Avantageusement, la couche d’étanchéité (1) est étanche à l’hydrogène à 23°C, c’est-à- dire que la perméabilité à l’hydrogène à 23°C est inférieure à 500 cc.mm/m2.24h.atm à 23°C sous 0% d’humidité relative (RH).
Dans un mode de réalisation, la ou lesdites couches d’étanchéité sont constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide P1i, i=1 à n, n étant le nombre de couches d’étanchéité, semi-cristallin, à l’exclusion d’un polyéther block amide (PEBA), et à l’exclusion de PA11.
La ou les couches de renfort composite est (sont) enroulée(s) autour de la couche d’étanchéité au moyen de rubans (ou tapes ou rovings) de fibres imprégnés de polymère qui sont déposés par exemple, par enroulement filamentaire.
Lorsque plusieurs couches sont présentes, les polymères peuvent être différents.
Lorsque les polymères des couches de renfort sont identiques, il peut y avoir présence de plusieurs couches mais avantageusement, une seule couche de renfort est présente et qui présente alors au moins un enroulement complet autour de la couche d’étanchéité. Même si une seule couche est présente, plusieurs enroulements complets successifs autour de la couche d’étanchéité peuvent être effectués et constituants ladite seule couche.
Ce procédé totalement automatisé, bien connu de l’homme du métier permet, couche par couche, de choisir les angles d’enroulement qui vont donner à la structure finale son aptitude à résister au chargement de pression interne.
Lorsque plusieurs couches d’étanchéité sont présentes, seule la couche la plus interne des couches d’étanchéité est en contact direct avec l’hydrogène.
Lorsque seules une couche d’étanchéité et une couche de renfort composite sont présentes, conduisant donc à une structure multicouche à deux couches, alors ces deux couches sont soudées l’une à l’autre, c’est-à-dire qu’elles adhèrent l’une à l’autre, en contact direct l’une avec l’autre.
Lorsque plusieurs couches d’étanchéité sont présentes et/ou plusieurs couches de renfort composite, alors la couche la plus externe desdites couches d’étanchéité, et donc à l’opposé de la couche en contact avec l’hydrogène, est soudée à la couche la plus interne desdites de renfort composite, et donc adhèrent l’une à l’autre, en contact direct l’une avec l’autre.
Les autres couches de renfort composite adhèrent également entre elles. Les autres couches d’étanchéité adhèrent également entre elles.
Avantageusement, seules une couche d’étanchéité et une couche de renfort sont présentes et sont soudées l’une à l’autre.
S’agissant de la ou des couches d’étanchéité et du polymère thermoplastique P1i
Une ou plusieurs couches d’étanchéité peut ou peuvent être présente(s).
Chacune desdites couches est constituée d’une composition comprenant majoritairement au moins un polymère thermoplastique PU, i correspondant au nombre de couches présentes i est compris de 1 à 10, en particulier de 1 à 5, notamment de 1 à 3, préférentiellement i = 1.
Le terme « majoritairement » signifie que ledit au moins un polymère est présent à plus de 50% en poids par rapport au poids total de la composition.
Avantageusement, ledit au moins un polymère majoritaire est présent à plus de 60% en poids notamment à plus de 70% en poids, particulièrement à plus de 80% en poids, plus particulièrement supérieur ou égal à 90% en poids, par rapport au poids total de la composition.
Ladite composition peut également comprendre jusqu’à 50% en poids par rapport au poids total de la composition de modifiants choc et/ou un plastifiant et/ou des additifs.
Les additifs peuvent être choisis parmi un autre polymère, un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un colorant, du noir de carbone et des nanocharges carbonées, en particulier les additifs sont choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un colorant, du noir de carbone et des nanocharges carbonées.
Dans un mode de réalisation les agents nucléants sont exclus des additifs.
Dans un autre mode de réalisation les agents nucléants sont exclus des additifs et dans ce cas, la composition est également dépourvue de plastifiant.
Ledit autre polymère peut être un autre polymère thermoplastique semi-cristallin ou un polymère différent et notamment un EVOH (Ethylène vinyle alcool).
Avantageusement, ladite composition comprend ledit polymère thermoplastique PU majoritairement, de 0 à 50% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique PU majoritairement, de 0 à 50% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant et de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition comprend ledit polymère thermoplastique PU majoritairement, de 0 à 50% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant et de 0 à 5% en poids d’additifs, à l’exclusion d’un agent nucléant, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique P1i majoritairement, de 0 à 50% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc, de 0 à 1 ,5% de plastifiant et de 0 à 5% en poids d’additifs, à l’exclusion d’un agent nucléant, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition comprend ledit polymère thermoplastique P1i majoritairement, de 0 à 50% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc et de 0 à 5% en poids d’additifs, à l’exclusion d’un agent nucléant et à l’exclusion de plastifiant, la somme des constituants de la composition étant égale à 100%.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique P1i majoritairement, de 0 à 50% en poids de modifiant choc, notamment de 0 à moins de 15% de modifiant choc, en particulier de 0 à 12% de modifiant choc et de 0 à 5% en poids d’additifs, à l’exclusion d’un agent nucléant, et à l’exclusion de plastifiant, la somme des constituants de la composition étant égale à 100%.
Ledit au moins un polymère majoritaire de chaque couche peut être identique ou différent. Dans un mode de réalisation, un seul polymère majoritaire est présent au moins dans la couche d’étanchéité qui adhère à la couche de renfort composite.
Dans un mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 50% en poids, notamment de 0,1 à moins de 15% en poids, en particulier de 0,1 à 12% en poids de modifiant choc par rapport au poids total de la composition.
Dans un mode de réalisation, ladite composition est dépourvue de plastifiant.
Dans un autre mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 50% en poids, notamment de 0,1 à moins de 15% en poids, en particulier de 0,1 à 12% en poids de modifiant choc et ladite composition est dépourvue de plastifiant par rapport au poids total de la composition.
Dans encore un autre mode de réalisation, ladite composition comprend un modifiant choc de 0,1 à 50% en poids, notamment de 0,1 à moins de 15% en poids, et de 0,1 à 1 ,5% en poids de plastifiant par rapport au poids total de la composition.
Polymère thermoplastique polyamide semi-cristallin P1i On entend par thermoplastique, ou polymère thermoplastique polyamide semi-cristallin, un matériau généralement solide à température ambiante, et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg), et pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf), et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation.
La Tg, la Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement.
La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique polyamide semi-cristallin est de préférence dans une plage allant de 10000 à 85000, notamment de 10000 à 60000, préférentiellement de 10000 à 50000, encore plus préférentiellement de 12000 à 50000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C).
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874- 1 :2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Dans un mode de réalisation, ledit polymère thermoplastique est un polyamide aliphatique semi-cristallin à courte chaîne, c’est-à-dire un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote jusqu’à 9, ou un polyamide aliphatique à longue chaîne, c’est-à-dire un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 9, de préférence supérieur à 10.
En particulier, le polyamide aliphatique à courte chaîne est choisi parmi : PA6, un PA610, un PA612 et un mélange PA6/polyoléfine
En particulier, le polyamide aliphatique à longue chaîne est choisi parmi : le polyamide 11 (PA11), le polyamide 12 (PA12), le polyamide 1010 (PA1010), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA11 et le PA12.
Dans un mode de réalisation, le polyamide aliphatique à longue chaîne est choisi parmi : le polyamide 12 (PA12), le polyamide 1010 (PA1010), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA12.
Dans un autre mode de réalisation, ledit polymère thermoplastique polyamide semi- cristallin est un polyamide semi-aromatique semi-cristallin, en particulier un polyamide semi-aromatique semi-cristallin présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 8, de préférence supérieur à 9 et une température de fusion comprise entre 240°C à moins de 280°C.
Avantageusement, les polyamides semi-cristallins sont des polyamide semi-aromatiques, notamment un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d'un aminoacide, un motif obtenu à partir d’un lactame et un motif répondant à la formule (diamine en Ca). (diacide en Cb), avec a représentant le nombre d’atomes de carbone de la diamine et b représentant le nombre d’atome de carbone du diacide, a et b étant chacun compris entre 4 et 36, avantageusement entre 9 et 18, le motif (diamine en Ca) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cb) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, les diacides cycloaliphatiques et les diacides aromatiques;
X.T désigne un motif obtenu à partir de la polycondensation d'une diamine en Cx et de l’acide téréphtalique, avec x représentant le nombre d’atomes de carbone de la diamine en Cx, x étant compris entre 5 et 36, avantageusement entre 9 et 18, notamment un polyamide de formule A/5T, A/6T, A/9T, A/10T ou A/11 T, A étant tel que défini ci-dessus, en particulier un polyamide choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 5T/10T, un PA 11/BACT, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T, PA 11/MPMDT/10T, PA 11/BACT/10T, un PA 11/MXDT/10T, un 11/5T/10T.
En particulier, le polyamide semi-aromatique semi-cristallin est choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T.
T correspond à l’acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(aminométhyl)cyclohexane. Lesdits polyamides semi-aromatiques ci-dessus définis présentent notamment une Tg supérieure ou égal à 80°C.
Avantageusement, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polyamide.
Ladite composition comprenant ledit polymère P1i peut être de couleur noire et susceptible d’absorber un rayonnement adapté à la soudure qui est alors effectuée après l’enroulement de la couche de renfort composite autour de la couche d’étanchéité.
Dans le cas où une soudure est nécessaire, il existe diverses méthodes permettant de souder des éléments en polymère thermoplastique polyamide. Ainsi, il peut être utilisé des lames chauffantes avec ou sans contact, des ultrasons, des infra-rouges, de l’induction, une application de vibrations, une rotation d’un élément à souder contre l’autre ou encore la soudure laser.
La soudure d'éléments en polymère thermoplastique polyamide, notamment par soudure laser peut nécessiter que les deux éléments à souder présentent des propriétés différentes vis-à-vis du rayonnement, notamment laser : l’un des éléments doit être transparent au rayonnement, notamment laser, et l’autre doit absorber le rayonnement notamment laser. Le rayonnement notamment laser traverse ainsi l’élément transparent puis atteint l’élément absorbant, où il est converti en chaleur. Cela permet de faire fondre la zone de contact entre les deux éléments et donc de réaliser la soudure.
Dans le cas des fibres de carbone, le cas préféré est une fusion de l’interface au moment de la dépose.
Afin de les rendre absorbants, il est connu de leur ajouter divers additifs, dont par exemple le noir de carbone, qui confère au polymère une couleur noire et permet d’absorber un rayonnement adapté à la soudure.
Dans un mode de réalisation, la soudure est effectuée par un système choisi parmi le laser, un chauffage infra-rouge (IR), un chauffage par led, un chauffage par induction ou par pondes ou chauffage hautes fréquences (HF).
Dans le cas où la soudure est effectuée par soudage laser, alors la composition PU comprend des charges carbonées.
Dans le cas où la soudure est effectuée par induction, alors la composition PU comprend des particules métalliques.
Avantageusement, la soudure est effectuée par un système laser.
S’agissant du modifiant choc
Le modifiant choc peut être tout modifiant choc à partir du moment où un polymère de module inférieur à celui de la résine, présentant une bonne adhésion avec la matrice, de manière à dissiper l’énergie de fissuration.
Le modifiant choc est avantageusement constitué par un polymère présentant un module de flexion inférieur à 100 MPa mesuré selon la norme ISO 178 et de Tg inférieure à 0°C (mesurée selon la norme 11357-2 au niveau du point d’inflexion du thermogramme DSC), en particulier une polyoléfine.
Dans un mode de réalisation, les PEBA sont exclus de la définition des modifiants choc. La polyoléfine du modifiant choc peut être fonctionnalisée ou non fonctionnalisée ou être un mélange d'au moins une fonctionnalisée et/ou d'au moins une non fonctionnalisée. Pour simplifier on a désigné la polyoléfine par (B) et on a décrit ci- dessous des polyoléfines fonctionnalisées (B1) et des polyoléfines non fonctionnalisées (B2). Une polyoléfine non fonctionnalisée (B2) est classiquement un homo polymère ou copolymère d'alpha oléfines ou de dioléfines, telles que par exemple, éthylène, propylène, butène-1, octène-1 , butadiène. A titre d'exemple, on peut citer :
- les homo polymères et copolymères du polyéthylène, en particulier LDPE, HDPE, LLDPE(linear low density polyéthylène, ou polyéthylène basse densité linéaire), VLDPE(very low density polyéthylène, ou polyéthylène très basse densité) et le polyéthylène métallocène .
-les homopolymères ou copolymères du propylène.
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM).
- les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène- propylène/styrène (SEPS).
- les copolymères de l'éthylène avec au moins un produit choisi parmi les sels ou les esters d'acides carboxyliques insaturés tel que le (méth)acrylate d'alkyle (par exemple acrylate de méthyle), ou les esters vinyliques d'acides carboxyliques saturés tel que l'acétate de vinyle (EVA), la proportion de comonomère pouvant atteindre 40% en poids. La polyoléfine fonctionnalisée (B1) peut être un polymère d'alpha oléfines ayant des motifs réactifs (les fonctionnalités) ; de tels motifs réactifs sont les fonctions acides, anhydrides, ou époxy. À titre d'exemple, on peut citer les polyoléfines précédentes (B2) greffées ou co- ou ter polymérisées par des époxydes insaturés tels que le (méth)acrylate de glycidyle, ou par des acides carboxyliques ou les sels ou esters correspondants tels que l'acide (méth)acrylique (celui-ci pouvant être neutralisé totalement ou partiellement par des métaux tels que Zn, etc.) ou encore par des anhydrides d'acides carboxyliques tels que l'anhydride maléique. Une polyoléfine fonctionnalisée est par exemple un mélange PE/EPR, dont le ratio en poids peut varier dans de larges mesures, par exemple entre 40/60 et 90/10, ledit mélange étant co-greffé avec un anhydride, notamment anhydride maléique, selon un taux de greffage par exemple de 0,01 à 5% en poids.
La polyoléfine fonctionnalisée (B1) peut être choisie parmi les (co)polymères suivants, greffés avec anhydride maléique ou méthacrylate de glycidyle, dans lesquels le taux de greffage est par exemple de 0,01 à 5% en poids :
- du PE, du PP, des copolymères de l'éthylène avec propylène, butène, hexène, ou octène contenant par exemple de 35 à 80% en poids d'éthylène ;
- les copolymères éthylène/alpha-oléfine tels qu'éthylène/propylène, les EPR(abréviation d'éthylène-propylene-rubber) et éthylène/propylène/diène (EPDM). - les copolymères blocs styrène/éthylène-butène/styrène (SEBS), styrène/butadiène/styrène (SBS), styrène/isoprène/ styrène (SIS), styrène/éthylène- propylène/styrène (SEPS).
- des copolymères éthylène et acétate de vinyle (EVA), contenant jusqu'à 40% en poids d'acétate de vinyle ;
- des copolymères éthylène et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de (méth)acrylate d'alkyle ;
- des copolymères éthylène et acétate de vinyle (EVA) et (méth)acrylate d'alkyle, contenant jusqu'à 40% en poids de comonomères.
La polyoléfine fonctionnalisée (B1) peut être aussi choisie parmi les copolymères éthylène/propylène majoritaires en propylène greffés par de l'anhydride maléique puis condensés avec du polyamide (ou un oligomère de polyamide) mono aminé (produits décrits dans EP-A-0342066).
La polyoléfine fonctionnalisée (B1) peut aussi être un co- ou ter polymère d'au moins les motifs suivants : (1) éthylène, (2) (méth)acrylate d'alkyle ou ester vinylique d'acide carboxylique saturé et (3) anhydride tel que anhydride maléique ou acide (méth)acrylique ou époxy tel que (méth)acrylate de glycidyle.
A titre d'exemple de polyoléfines fonctionnalisées de ce dernier type, on peut citer les copolymères suivants, où l'éthylène représente de préférence au moins 60% en poids et où le ter monomère (la fonction) représente par exemple de 0,1 à 10% en poids du copolymère :
- les copolymères éthylène/(méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle/anhydride maléique ou méthacrylate de glycidyle ;
- les copolymères éthylène/acétate de vinyle ou (méth)acrylate d'alkyle / acide (méth)acrylique ou anhydride maléique ou méthacrylate de glycidyle.
Dans les copolymères qui précèdent, l'acide (méth)acrylique peut être salifié avec Zn ou Li.
Le terme "(méth)acrylate d'alkyle" dans (B1) ou (B2) désigne les méthacrylates et les acrylates d'alkyle en C1 à C8, et peut être choisi parmi l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de n-butyle, l'acrylate d'iso butyle, l'acrylate d'éthyl-2-hexyle, l'acrylate de cyclohexyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.
Par ailleurs, les polyoléfines précitées (B1) peuvent aussi être réticulées par tout procédé ou agent approprié (diépoxy, diacide, peroxyde, etc.) ; le terme polyoléfine fonctionnalisée comprend aussi les mélanges des polyoléfines précitées avec un réactif difonctionnel tel que diacide, dianhydride, diépoxy, etc. susceptible de réagir avec celles-ci ou les mélanges d'au moins deux polyoléfines fonctionnalisées pouvant réagir entre elles.
Les copolymères mentionnés ci-dessus, (B1 ) et (B2), peuvent être copolymérisés de façon statistique ou séquencée et présenter une structure linéaire ou ramifiée.
Le poids moléculaire, l'indice MFI, la densité de ces polyoléfines peuvent aussi varier dans une large mesure, ce que l'homme de l'art appréciera. MFI, abréviation de Melt Flow Index, est l'indice de fluidité à l'état fondu. On le mesure selon la norme ASTM 1238. Avantageusement les polyoléfines (B2) non fonctionnalisées sont choisies parmi les homopolymères ou copolymères du polypropylène et tout homo polymère de l’éthylène ou copolymère de l’éthylène et d’un comonomère de type alpha oléfinique supérieur tel que le butène, l’hexène, l’octène ou le 4-méthyl 1-Pentène. On peut citer par exemple les PP, les PE de haute densité, PE de moyenne densité, PE basse densité linéaire, PE basse densité, PE de très basse densité. Ces polyéthylènes sont connus par l’Homme de l’Art comme étant produits selon un procédé « radicalaire », selon une catalyse de type « Ziegler » ou, plus récemment, selon une catalyse dite « métallocène ».
Avantageusement les polyoléfines fonctionnalisées (B1) sont choisies parmi tout polymère comprenant des motifs alpha oléfiniques et des motifs porteurs de fonctions réactives polaires comme les fonctions époxy, acide carboxylique ou anhydride d’acide carboxylique. A titre d’exemples de tels polymères, on peut citer les ter polymères de l’éthylène, d’acrylate d’alkyle et d’anhydride maléique ou de méthacrylate de glycidyle comme les Lotader® de la Demanderesse ou des polyoléfines greffées par de l’anhydride maléique comme les Orevac® de la Demanderesse ainsi que des ter polymères de l’éthylène, d’acrylate d’alkyle et d’acide (meth) acrylique. On peut citer aussi les homopolymères ou copolymères du polypropylène greffés par un anhydride d'acide carboxylique puis condensés avec des polyamides ou des oligomères mono aminés de polyamide.
Avantageusement, ladite composition constitutive de ladite ou desdites couches d’étanchéité est dépourvue de polyéther block amide (PEBA). Dans ce mode de réalisation, les PEBA sont donc exclus des modifiants choc.
Avantageusement, ladite composition transparente est dépourvue de particules cœur- écorce ou polymères cœur-écorce « core-shell ».
Par particule cœur-écorce, il faut comprendre une particule dont la première couche forme le cœur et la deuxième ou toutes les couches suivantes forment les écorces respectives.
La particule cœur-écorce « core-shell » peut-être obtenu par un procédé à plusieurs étapes comprenant au moins deux étapes. Un tel procédé est décrit par exemple dans les documents US2009/0149600 ou EP0722961. S’agissant du plastifiant
Le plastifiant peut être un plastifiant couramment utilisé dans les compositions à base de polyamide(s).
Avantageusement, on utilise un plastifiant qui présente une bonne stabilité thermique afin qu'il ne se forme pas de fumées lors des étapes de mélange des différents polymères et de transformation de la composition obtenue.
En particulier, ce plastifiant peut être choisi parmi : les dérivés du benzène sulfonamide tels que le n-butyl benzène sulfonamide (BBSA), les isomères ortho et para de l’éthyl toluène sulfonamide (ETSA), le N-cyclohexyl toluène sulfonamide et le N-(2-hydroxypropyl) benzène sulfonamide (HP-BSA), les esters d’acides hydroxybenzoïques tels que le para-hydroxybenzoate d'éthyl-2 hexyle
(EHPB) et le para-hydroxybenzoate de décyl-2 hexyle (HDPB), les esters ou éthers du tétrahydrofurfuryl alcool comme l’oligoéthylèneoxy- tétrahydrofurfurylalcool, et les esters de l’acide citrique ou de l’acide hydroxymalonique, tels que l’oligoéthylèneoxymalonate.
Un plastifiant préféré est le n-butyl benzène sulfonamide (BBSA).
Un autre plastifiant plus particulièrement préféré est le N-(2-hydroxy-propyl) benzène sulfonamide (HP-BSA). Ce dernier présente en effet l'avantage d'éviter la formation de dépôts au niveau de la vis et/ou de la filière d'extrusion ("larmes de filières"), lors d'une étape de transformation par extrusion.
On peut bien évidemment utiliser un mélange de plastifiants.
S’agissant de la couche de renfort composite et du polymère P2j Le polymère P2j est un polymère thermoplastique polyamide semi-cristallin, ledit polymère thermoplastique polyamide semi-cristallin présentant la même définition que ci- dessus.
Une ou plusieurs couches de renfort composite peut ou peuvent être présente(s).
Chacune desdites couches est constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère thermoplastique P2j, j correspondant au nombre de couches présentes j est compris de 1 à 10, en particulier de 1 à 5, notamment de 1 à 3, préférentiellement j = 1.
Le terme « majoritairement » signifie que ledit au moins un polymère est présent à plus de 50% en poids par rapport au poids total de la composition et de la matrice du composite. Avantageusement, ledit au moins un polymère majoritaire est présent à plus de 60% en poids notamment à plus de 70% en poids, particulièrement à plus de 80% en poids, plus particulièrement supérieur ou égal à 90% en poids, par rapport au poids total de la composition,
Ladite composition peut également comprendre des modifiants choc et/ou des additifs. Les additifs peuvent être choisis parmi un antioxydant, un stabilisant à la chaleur, un absorbeur d’UV, un stabilisant à la lumière, un lubrifiant, une charge inorganique, un agent ignifugeant, un plastifiant et un colorant.
Dans un mode de réalisation, les additifs sont à l’exclusion d’un agent nucléant. Avantageusement, ladite composition comprend ledit polymère thermoplastique polyamide P2j majoritairement, de 0 à 15% en poids de modifiant choc, en particulier de 0 à 12% en poids de modifiant choc, de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100% en poids.
Avantageusement, ladite composition comprend ledit polymère thermoplastique polyamide P2j majoritairement, de 0 à 15% en poids de modifiant choc, en particulier de 0 à 12% en poids de modifiant choc, de 0 à 5% en poids d’additifs, à l’exclusion d’un agent nucléant, la somme des constituants de la composition étant égale à 100% en poids. Avantageusement, ladite composition est constituée dudit polymère thermoplastique polyamide P2j majoritairement, de 0 à 15% en poids de modifiant choc, en particulier de 0 à 12% en poids de modifiant choc, de 0 à 5% en poids d’additifs, la somme des constituants de la composition étant égale à 100% en poids.
Avantageusement, ladite composition est constituée dudit polymère thermoplastique polyamide P2j majoritairement, de 0 à 15% en poids de modifiant choc, en particulier de 0 à 12% en poids de modifiant choc, de 0 à 5% en poids d’additifs, à l’exclusion d’un agent nucléant, la somme des constituants de la composition étant égale à 100% en poids.
Ledit au moins un polymère majoritaire de chaque couche peut être identique ou différent. Dans un mode de réalisation, chaque couche de renfort comprend le même type de polyamide.
Polymère P2j
Polymère thermoplastique polyamide P2j
On entend par thermoplastique, ou polymère thermoplastique polyamide semi-cristallin, un matériau généralement solide à température ambiante, et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg), et pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf), et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation.
La Tg, Te et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 11357-2 :2013 et 11357-3 :2013 respectivement. La masse moléculaire moyenne en nombre Mn dudit polymère thermoplastique polyamide P2j est de préférence dans une plage allant de 10000 à 40000, de préférence de 10000 à 30000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C).
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874- 1 :2011 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci. Dans un mode de réalisation, ledit polymère thermoplastique est un polyamide aliphatique semi-cristallin à courte chaîne, c’est-à-dire un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote jusqu’à 9, ou un polyamide aliphatique à longue chaîne, c’est-à-dire un polyamide présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 9, de préférence supérieur à 10.
En particulier, le polyamide aliphatique à courte chaîne est choisi parmi : PA6, un PA610, un PA612 et un mélange PA6/polyoléfine
En particulier, le polyamide aliphatique à longue chaîne est choisi parmi : le polyamide 11 (PA11 ), le polyamide 12 (PA12), le polyamide 1010 (PA1010), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA11 et le PA12.
Dans un mode de réalisation, le polyamide aliphatique à longue chaîne est choisi parmi : le polyamide 12 (PA12), le polyamide 1010 (PA1010), le polyamide 1012 (PA1012), le polyamide 1212 (PA1012), ou un mélange de ceux-ci ou un copolyamide de ceux-ci, en particulier le PA12.
Dans un autre mode de réalisation, ledit polymère thermoplastique polyamide semi- cristallin est un polyamide semi-aromatique semi-cristallin, en particulier un polyamide semi-aromatique semi-cristallin présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 8 de préférence supérieur à 9 et une température de fusion comprise entre 240°C à moins de 280°C.
Avantageusement, les polyamides semi-cristallins sont des polyamide semi-aromatiques, notamment un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d'un aminoacide, un motif obtenu à partir d’un lactame et un motif répondant à la formule (diamine en Ca). (diacide en Cb), avec a représentant le nombre d’atomes de carbone de la diamine et b représentant le nombre d’atome de carbone du diacide, a et b étant chacun compris entre 4 et 36, avantageusement entre 9 et 18, le motif (diamine en Ca) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cb) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, les diacides cycloaliphatiques et les diacides aromatiques;
X.T désigne un motif obtenu à partir de la polycondensation d'une diamine en Cx et de l’acide téréphtalique, avec x représentant le nombre d’atomes de carbone de la diamine en Cx, x étant compris entre 5 et 36, avantageusement entre 9 et 18, notamment un polyamide de formule A/5T, A/6T, A/9T, A/10T ou A/11 T, A étant tel que défini ci-dessus, en particulier un polyamide choisi parmi un PA MPMDT/6T, un PA11/10T, un PA 5T/10T, un PA 11/BACT, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 11/BACT/6T, PA 11/MPMDT/6T,
PA 11 /MP M DT/10T, PA 11/BACT/10T, un PA 11/MXDT/10T, un 11/5T/10T.
En particulier, le polyamide semi-aromatique semi-cristallin est choisi parmi le polyamide 11/5T ou 11/6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T.
T correspond à l’acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(aminométhyl)cyclohexane. Lesdits polyamides semi-aromatiques ci-dessus définis présentent notamment une Tg supérieure ou égal à 80°C.
S’agissant de la structure
Ladite structure multicouche comprend donc au moins une couche d’étanchéité et au moins une couche de renfort composite, la couche de renfort la plus interne étant soudée à la couche d’étanchéité la plus externe et qui donc adhèrent entre elles.
Toutes les couches d’étanchéités présentes adhèrent l’une à l’autre et toutes les couches de renfort présentes adhèrent l’une à l’autre.
Dans un mode de réalisation, la Tf, telle que mesurée selon ISO 11357-3 : 2013, du polyamide de ladite couche d’étanchéité (1) adjacente la plus externe diffère de celle du polyamide de ladite couche de renfort (2) la plus interne d’au plus 30°C.
Dans un autre mode de réalisation, la Tg, telle que mesurée selon ISO 11357-2 : 2013, du polyamide de ladite couche d’étanchéité (1) adjacente la plus externe diffère de celle du polyamide de ladite couche de renfort (2) la plus interne d’au plus 30°C. Avantageusement, la Tf, et la Tg du polyamide de ladite couche d’étanchéité (1) adjacente la plus externe diffèrent de celle du polyamide de ladite couche de renfort (2) la plus interne d’au plus 30°C.
Dans un mode de réalisation, chaque couche d’étanchéité comprend le même type de polyamide et chaque couche de renfort comprend le même type de polyamide. Ladite structure multicouche peut comprendre jusqu’à 10 couches d’étanchéité et jusqu’à
10 couches de renfort composite de natures différentes.
11 est bien évident que ladite structure multicouche n’est pas obligatoirement symétrique et qu’elle peut donc comprendre plus de couches d’étanchéité que de couches composites ou vice et versa mais il ne peut y avoir alternance de couches et de couche de renfort. Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches d’étanchéité et une, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix couches de renfort composite.
Avantageusement, ladite structure multicouche comprend une, deux, trois, quatre ou cinq, couches d’étanchéité et une, deux, trois, quatre ou cinq couches de renfort composite. Avantageusement, ladite structure multicouche comprend une, deux ou trois couches d’étanchéité et une deux ou trois couches de renfort composite.
Dans un mode de réalisation, ladite structure multicouche comprend une seule couche d’étanchéité et plusieurs couches de renfort, ladite couche de renfort adjacente étant soudée à ladite couche d’étanchéité et les autres couches de renfort étant enroulées autour de la couche de renfort directement adjacente.
Dans un autre mode de réalisation, la ladite structure multicouche comprend une seule couche de renfort et plusieurs couches d’étanchéité, ladite couche de renfort étant soudée à ladite couche d’étanchéité adjacente.
Dans un mode de réalisation avantageux, ladite structure multicouche comprend une seule couche d’étanchéité et une seule couche de renfort composite, ladite couche de renfort étant soudée à ladite couche d’étanchéité.
Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère polyamide PU. Avantageusement, le polyamide PU est identique pour toutes les couches d’étanchéité. Avantageusement, ledit polymère PU est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612 et un mélange PA6/polyoléfine, ou à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/10T, MXDT/10T, MPMDT/10T et BACT/10T. Avantageusement, dans ladite structure multicouche, chaque couche de renfort est constituée d’une composition comprenant le même type de polymère polyamide P2j. Avantageusement, le polyamide P2j est identique pour toutes les couches de renfort. Avantageusement, ledit polymère P2j est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612, ou à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/10T, MXDT/10T, MPMDT/10T et BACT/10T.
Avantageusement, dans ladite structure multicouche, chaque couche d’étanchéité est constituée d’une composition comprenant le même type de polymère polyamide P1i et chaque couche de renfort est constituée d’une composition comprenant le même type de polymère polyamide P2j.
Avantageusement, ledit polymère P1i est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612 et un mélange PA6/polyoléfine, ou à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/10T, MXDT/10T, MPMDT/10T et BACT/10T et ledit polymère P2j est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612, ou à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi- aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/1 OT, MXDT/10T, MPMDT/10T et BACT/10T.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612 et un mélange PA6/polyoléfine, ou à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T,
11/1 OT, MXDT/10T, MPMDT/10T et BACT/10T et ledit polymère P2j est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612, ou à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/1 OT, MXDT/10T, MPMDT/10T et BACT/10T.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612 et un mélange PA6/polyoléfine, et ledit polymère P2j est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612 et un mélange PA6/polyoléfine, et ledit polymère P2j est un polyamide aliphatique à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212,
PA11 et PA12, notamment PA 11 et PA12.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612 et un mélange PA6/polyoléfine, et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11 /5T, 11 /6T, 11/1 OT, MXDT/10T, MPMDT/10T et BACT/10T.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide aliphatique à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, et ledit polymère P2j est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide aliphatique à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, et ledit polymère P2j est un polyamide aliphatique à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide aliphatique à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T,
11/1 OT, MXDT/10T, MPMDT/10T et BACT/10T.
Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/1 OT, MXDT/10T, MPMDT/10T et BACT/10T et ledit polymère P2j est un polyamide aliphatique à courte chaîne, en particulier choisi parmi un PA6, un PA610, un PA612. Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère P1i est un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/1 OT, MXDT/10T, MPMDT/10T et BACT/10T et ledit polymère P2j est un polyamide aliphatique à longue chaîne, en particulier choisi parmi un PA1010, PA1012, PA1212,
PA11 et PA12, notamment PA 11 et PA12. Dans un mode de réalisation, ladite structure multicouche est constituée d’une seule couche de renfort et d’une seule couche d’étanchéité dans lesquelles ledit polymère PU est un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/10T, MXDT/10T, MPMDT/10T et BACT/10T et ledit polymère P2j est un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11 /5T, 11 /6T, 11/1 OT, MXDT/10T, MPMDT/10T et BACT/10T.
Avantageusement, ladite structure multicouche comprend de plus au moins une couche externe constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.
Ladite couche externe est une seconde couche de renfort mais transparente qui permet de pouvoir mettre une inscription sur la structure.
S’agissant du matériau fibreux
Concernant les fibres de constitution dudit matériau fibreux, ce sont notamment des fibres d’origine minérale, organique ou végétale.
Avantageusement, ledit matériau fibreux peut être ensimé ou non ensimé.
Ledit matériau fibreux peut donc comprendre jusqu'à 3,5% en poids d’un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage.
Parmi les fibres d’origine minérale, on peut citer les fibres de carbone, les fibres de verre, les fibres de basalte ou à base de basalte, les fibres de silice, ou les fibres de carbure de silicium par exemple. Parmi les fibres d’origine organique, on peut citer les fibres à base de polymère thermoplastique ou thermodurcissable, telles que des fibres de polyamides semi-aromatiques, des fibres d’aramide ou des fibres en polyoléfines par exemple. De préférence, elles sont à base de polymère thermoplastique amorphe et présentent une température de transition vitreuse Tg supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Avantageusement, elles sont à base de polymère thermoplastique semi- cristallin et présentent une température de fusion Tf supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Ainsi, il n’y a aucun risque de fusion pour les fibres organiques de constitution du matériau fibreux lors de l’imprégnation par la matrice thermoplastique du composite final. Parmi les fibres d’origine végétale, on peut citer les fibres naturelles à base de lin, de chanvre, de lignine, de bambou, de soie notamment d’araignée, de sisal, et d’autres fibres cellulosiques, en particulier de viscose. Ces fibres d’origine végétale peuvent être utilisées pures, traitées ou bien enduites d’une couche d’enduction, en vue de faciliter l’adhérence et l’imprégnation de la matrice de polymère thermoplastique.
Le matériau fibreux peut également être un tissu, tressé ou tissé avec des fibres.
Il peut également correspondre à des fibres avec des fils de maintien.
Ces fibres de constitution peuvent être utilisées seules ou en mélanges. Ainsi, des fibres organiques peuvent être mélangées aux fibres minérales pour être pré-imprégnées de poudre polymère thermoplastique et former le matériau fibreux pré-imprégné.
Les mèches de fibres organiques peuvent avoir plusieurs grammages. Elles peuvent en outre présenter plusieurs géométries. Les fibres de constitution du matériau fibreux peuvent en outre se présenter sous forme d’un mélange de ces fibres de renfort de différentes géométries. Les fibres sont des fibres continues.
De préférence le matériau fibreux est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.
Il est utilisé sous forme d’une mèche ou de plusieurs mèches.
Selon un autre aspect, la présente invention concerne un procédé de fabrication d’une structure multicouche telle que définie ci-dessus, caractérisé en ce qu’il comprend une étape d’enroulement filamentaire de la couche de renfort telle que définie ci-dessus autour de la couche de d’étanchéité telle que définie ci-dessus.
Toutes les caractéristiques détaillée ci-dessus s’appliquent également au procédé. EXEMPLES
Dans tous les exemples, les réservoirs sont obtenus par rotomoulage de la couche d’étanchéité (liner) à une température adaptée à la nature de la résine thermoplastique utilisée.
Dans le cas du renfort composite, on utilise ensuite un matériau fibreux préalablement imprégné par la résine thermoplastique (tape). Cette tape est déposée par enroulement filamentaire au moyen d’un robot comportant un chauffage laser de puissance 1500W à la vitesse de 12m/min et il n’y a pas d’étape de polymérisation.
Exemple 1 (contre exemple) :
Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite époxyde (Tg 100°C) fibres de carbone T700SC31E (produite parToray) et d’une couche d’étanchéité en PA11.
Exemple 2 : Réservoir de stockage d’hydrogène de type IV, composé d’un renfort en composite PA11 fibres de carbone T700SC31 E (produite par T oray) et d’une couche d’étanchéité en PA11. Les réservoirs ainsi obtenus sont soumis à des essais de pression cyclée, variant entre 10 et 800 bar. De l’eau est utilisée pour appliquer la pression. L’essai est arrêté après 10 000 cycles.
Suite à cela, des bandes d’environ 1cm de large sont découpés dans le réservoir. L’adhérence entre le liner et le composite est alors mesurée, en amorçant un décollement à l’interface, et en effectuant un test de pelage à l’aide d’une machine de traction. La force de pelage est exprimée en N/cm de largeur de bande. Dans le cas de l’exemple 1, le décollement est rencontré pour une valeur de 3 N/cm. Dans le cas de l’exemple 2, une force supérieure à 30 N/cm est atteinte.

Claims

REVENDICATIONS
1. Structure multicouche destinée au transport, à la distribution et au stockage de l’hydrogène, en particulier au stockage, comprenant, de l’intérieur vers l’extérieur, au moins une couche d’étanchéité (1) et au moins une couche de renfort composite (2), ladite couche de renfort composite (2) la plus interne étant soudée à ladite couche d’étanchéité (1) adjacente la plus externe, lesdites couches d’étanchéité (1) étant constituées d’une composition comprenant majoritairement : au moins un polymère thermoplastique polyamide semi-cristallin P1i, i=1 à n, n étant le nombre de couches d’étanchéité, à l’exclusion d’un polyéther block amide (PEBA), jusqu’à 50% en poids de modifiant choc, notamment jusqu’à moins de 15% en poids de modifiant choc, en particulier jusqu’à 12% en poids de modifiant choc par rapport au poids total de la composition, jusqu’à 1,5% en poids de plastifiant par rapport au poids total de la composition, ledit au moins un polymère thermoplastique polyamide de chaque couche d’étanchéité pouvant être identique ou différent, et au moins l’une des dites couches de renfort composite étant constituée d’un matériau fibreux sous forme de fibres continues imprégné par une composition comprenant majoritairement au moins un polymère polyamide semi-cristallin P2j, j=1 à m, m étant le nombre de couches de renfort, le nombre d’atome de carbone par fonction amide du polyamide de ladite couche d’étanchéité (1) adjacente la plus externe différant de celui du polyamide de ladite couche de renfort (2) la plus interne d’au plus 20%.
2. Structure multicouche selon la revendication 1 , caractérisée en ce que la Tf, telle que mesurée selon ISO 11357-3 : 2013, du polyamide de ladite couche d’étanchéité (1) adjacente la plus externe diffère de celle du polyamide de ladite couche de renfort (2) la plus interne d’au plus 30°C.
3. Structure multicouche selon la revendication 1 , caractérisée en ce que la Tg, telle que mesurée selon ISO 11357-2 : 2013, du polyamide de ladite couche d’étanchéité (1) adjacente la plus externe diffère de celle du polyamide de ladite couche de renfort (2) la plus interne d’au plus 30°C.
4. Structure multicouche selon la revendication 2 ou 3, caractérisée en ce que la Tf, et la Tg du polyamide de ladite couche d’étanchéité (1) adjacente la plus externe diffèrent de celle du polyamide de ladite couche de renfort (2) la plus interne d’au plus 30°C.
5. Structure multicouche selon l’une des revendication 1 à 4, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polyamide.
6. Structure multicouche selon l’une des revendications 1 à 4, caractérisée en ce que chaque couche de renfort comprend le même type de polyamide
7. Structure multicouche selon l’une des revendications 5 ou 6, caractérisée en ce que chaque couche d’étanchéité comprend le même type de polyamide et chaque couche de renfort comprend le même type de polyamide.
8. Structure multicouche selon l’une des revendications 1 à 4, caractérisée en ce qu’elle présente une seule couche d’étanchéité et une seule couche de renfort.
9. Structure multicouche selon l’une des revendications 1 à 8, caractérisée en ce que ledit polymère PU est un polyamide aliphatique à courte chaîne présentant un nombre moyen d’atome de carbone par atome d’azote jusqu’à 9, en particulier choisi parmi un PA6, un PA610, un PA612 et un mélange PA6/polyoléfine, ou à longue chaîne présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 9, de préférence supérieur à 10, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/10T, MXDT/10T, MPMDT/10T et BACT/10T.
10. Structure multicouche selon l’une des revendications 1 à 8, caractérisée en ce que ledit polymère P2j est un polyamide aliphatique à courte chaîne présentant un nombre moyen d’atome de carbone par atome d’azote jusqu’à 9, en particulier choisi parmi un PA6, un PA610, un PA612, ou à longue chaîne présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 9, de préférence supérieur à 10, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi- aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/10T, MXDT/10T, MPMDT/10T et BACT/10T.
11. Structure multicouche selon l’une des revendications 9 ou 10, caractérisée en ce que ledit polymère P1i est un polyamide aliphatique à courte chaîne présentant un nombre moyen d’atome de carbone par atome d’azote jusqu’à 9, en particulier PA6, un PA610, un PA612 ou un mélange PA6/polyoléfine, ou à longue chaîne présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 9, de préférence supérieur à 10, en particulier PA1010, PA 1012, PA 1212, PA11, PA12, notamment PA 11 ou PA12 ou un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11 /5T ou 11 /6T ou le 11/10T, la MXDT/10T, la MPMDT/10T et la BACT/10T et ledit polymère P2j est un polyamide aliphatique à courte chaîne présentant un nombre moyen d’atome de carbone par atome d’azote jusqu’à 9, en particulier choisi parmi un PA6, un PA610, un PA612, ou à longue chaîne présentant un nombre moyen d’atome de carbone par atome d’azote supérieur à 9, de préférence supérieur à 10, en particulier choisi parmi un PA1010, PA1012, PA1212, PA11 et PA12, notamment PA 11 et PA12, ou un polyamide semi-aromatique, en particulier choisi parmi le polyamide 11/5T, 11/6T, 11/10T, MXDT/10T, MPMDT/10T et BACT/10T.
12. Structure multicouche selon l’une des revendications 1 à 11, caractérisée en ce que le matériau fibreux de la couche de renfort composite est choisi parmi les fibres de verre, les fibres de carbone, les fibres de basalte ou à base de basalte, ou un mélange de celles-ci, en particulier les fibres de carbone.
13. Structure multicouche selon l’une des revendications 1 à 12, caractérisée en ce que ladite structure comprend de plus au moins une couche externe constituée d’un matériau fibreux en fibre de verre continue imprégné d’un polymère amorphe transparent, ladite couche étant la couche plus externe de ladite structure multicouche.
14. Procédé de fabrication d’une structure multicouche telle que définie dans l’une des revendications 1 à 13, caractérisé en ce qu’il comprend une étape de soudage de la couche de renfort telle que définie dans la revendication 1 sur la couche d’étanchéité telle que définie dans la revendication 1.
PCT/FR2021/050140 2020-01-28 2021-01-26 Structure multicouche pour le transport ou le stockage de l'hydrogene WO2021152254A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227029677A KR20220133960A (ko) 2020-01-28 2021-01-26 수소를 수송 또는 저장하기 위한 다층 구조물
CN202180011517.9A CN115003504B (zh) 2020-01-28 2021-01-26 用于运输或储存氢气的多层结构体
JP2022545848A JP2023512008A (ja) 2020-01-28 2021-01-26 水素を輸送または貯蔵するための多層構造
EP21708271.8A EP4096923A1 (fr) 2020-01-28 2021-01-26 Structure multicouche pour le transport ou le stockage de l'hydrogene
CA3163649A CA3163649A1 (fr) 2020-01-28 2021-01-26 Structure multicouche pour le transport ou le stockage de l'hydrogene
US17/758,738 US20230045067A1 (en) 2020-01-28 2021-01-26 Multilayer structure for transporting or storing hydrogen
MX2022008890A MX2022008890A (es) 2020-01-28 2021-01-26 Estructura multicapa para transporte o almacenamiento de hidrogeno.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2000817 2020-01-28
FR2000817A FR3106647B1 (fr) 2020-01-28 2020-01-28 Structure multicouche pour le transport ou le stockage de l’hydrogene

Publications (1)

Publication Number Publication Date
WO2021152254A1 true WO2021152254A1 (fr) 2021-08-05

Family

ID=70228249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050140 WO2021152254A1 (fr) 2020-01-28 2021-01-26 Structure multicouche pour le transport ou le stockage de l'hydrogene

Country Status (9)

Country Link
US (1) US20230045067A1 (fr)
EP (1) EP4096923A1 (fr)
JP (1) JP2023512008A (fr)
KR (1) KR20220133960A (fr)
CN (1) CN115003504B (fr)
CA (1) CA3163649A1 (fr)
FR (1) FR3106647B1 (fr)
MX (1) MX2022008890A (fr)
WO (1) WO2021152254A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0722961A1 (fr) 1994-12-05 1996-07-24 Rohm And Haas Company Préparation d'agents modifiant la résistance à l'impact à base de butadiène
EP1505099A2 (fr) 2003-08-05 2005-02-09 Arkema Polymides semi aromatiques souples à faible reprise en humidité
FR2923575A1 (fr) * 2007-11-13 2009-05-15 Michelin Soc Tech Reservoir de fluide sous pression, methode et appareil pour la fabrication d'un tel reservoir.
US20090149600A1 (en) 2004-11-22 2009-06-11 Arkema Inc. Impact modified thermoplastic resin composition
US20090203845A1 (en) * 2008-02-12 2009-08-13 Ube Industries, Ltd., A Corporation Of Japan Hydrogen tank liner material and hydrogen tank liner
EP3112421A1 (fr) * 2015-02-27 2017-01-04 Toray Industries, Inc. Composition de résine polyamide pour article moulé destiné à être en contact avec de l'hydrogène haute pression, et article moulé obtenu à partir de celle-ci
EP3172273A1 (fr) * 2014-07-25 2017-05-31 DSM IP Assets B.V. Composition de polyamide thermostabilisé
WO2018155491A1 (fr) 2017-02-24 2018-08-30 株式会社ブリヂストン Élément de transport d'hydrogène
WO2021019181A1 (fr) * 2019-07-30 2021-02-04 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001462B1 (fr) * 2013-01-25 2016-01-15 Arkema France Composition adhesive et structure comprenant au moins une couche de ladite composition
FR3046826B1 (fr) * 2016-01-15 2018-05-25 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
FR3053696B1 (fr) * 2016-07-11 2018-07-06 Arkema France Composition de polyamide semi-cristallin de haute temperature de transition vitreuse pour materiau composite, son procede de fabrication et ses utilisations
SG11201900640UA (en) 2016-09-20 2019-04-29 Novartis Ag Process for producing contact lenses with durable lubricious coatings thereon

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342066A1 (fr) 1988-03-24 1989-11-15 Elf Atochem S.A. Copolymère greffé à base d'alpha-mono-oléfine, son procédé de fabrication, son application à la fabrication d'alliages thermoplastiques, alliages thermoplastiques obtenus
EP0722961A1 (fr) 1994-12-05 1996-07-24 Rohm And Haas Company Préparation d'agents modifiant la résistance à l'impact à base de butadiène
EP1505099A2 (fr) 2003-08-05 2005-02-09 Arkema Polymides semi aromatiques souples à faible reprise en humidité
US20090149600A1 (en) 2004-11-22 2009-06-11 Arkema Inc. Impact modified thermoplastic resin composition
FR2923575A1 (fr) * 2007-11-13 2009-05-15 Michelin Soc Tech Reservoir de fluide sous pression, methode et appareil pour la fabrication d'un tel reservoir.
US20090203845A1 (en) * 2008-02-12 2009-08-13 Ube Industries, Ltd., A Corporation Of Japan Hydrogen tank liner material and hydrogen tank liner
EP3172273A1 (fr) * 2014-07-25 2017-05-31 DSM IP Assets B.V. Composition de polyamide thermostabilisé
EP3112421A1 (fr) * 2015-02-27 2017-01-04 Toray Industries, Inc. Composition de résine polyamide pour article moulé destiné à être en contact avec de l'hydrogène haute pression, et article moulé obtenu à partir de celle-ci
WO2018155491A1 (fr) 2017-02-24 2018-08-30 株式会社ブリヂストン Élément de transport d'hydrogène
WO2021019181A1 (fr) * 2019-07-30 2021-02-04 Arkema France Structure multicouche pour le transport ou le stockage de l'hydrogene

Also Published As

Publication number Publication date
KR20220133960A (ko) 2022-10-05
US20230045067A1 (en) 2023-02-09
JP2023512008A (ja) 2023-03-23
FR3106647B1 (fr) 2021-12-31
MX2022008890A (es) 2022-08-15
FR3106647A1 (fr) 2021-07-30
EP4096923A1 (fr) 2022-12-07
CN115003504A (zh) 2022-09-02
CA3163649A1 (fr) 2021-08-05
CN115003504B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2021019181A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
EP3969256A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
EP4251413A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021209718A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
EP4363210A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021152253A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021152252A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
WO2021152254A1 (fr) Structure multicouche pour le transport ou le stockage de l'hydrogene
EP4221975A1 (fr) Structure multicouche pour le stockage de l'hydrogene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21708271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163649

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022545848

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227029677

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021708271

Country of ref document: EP

Effective date: 20220829