WO2021151921A1 - Dispositif thermostatique pour réguler la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif - Google Patents
Dispositif thermostatique pour réguler la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif Download PDFInfo
- Publication number
- WO2021151921A1 WO2021151921A1 PCT/EP2021/051817 EP2021051817W WO2021151921A1 WO 2021151921 A1 WO2021151921 A1 WO 2021151921A1 EP 2021051817 W EP2021051817 W EP 2021051817W WO 2021151921 A1 WO2021151921 A1 WO 2021151921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- thermostatic
- fluid
- chamber
- thermostatic device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/01—Control of temperature without auxiliary power
- G05D23/02—Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
- G05D23/021—Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
- G05D23/022—Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P2007/146—Controlling of coolant flow the coolant being liquid using valves
Definitions
- Thermostatic device for regulating the circulation of a fluid, as well as a thermostatic valve comprising such a device
- the present invention relates to a thermostatic device, as well as to a thermostatic valve comprising such a device.
- the invention relates in particular to thermostatic devices and valves which are used in thermal engine cooling circuits, in particular those of motor vehicles, heavy goods vehicles, two-wheelers and stationary engines.
- thermal engine cooling circuits in particular those of motor vehicles, heavy goods vehicles, two-wheelers and stationary engines.
- this field of application is not limiting of the invention, in the sense that the device and the valve in accordance with the invention can be used in various other fluid circuits, for example the cooling circuits of a gearbox. speed, water circuits, oil circuits, etc.
- thermostatic valves are used to regulate the circulation of a fluid, that is to say to distribute this fluid in different circulation paths, generally as a function of the temperature of this fluid.
- These valves are said to be thermostatic, in the sense that the movement of their internal shutter (s) is controlled by a thermostatic element, that is to say an element which comprises a body, containing a thermally expandable material. , and a piston, immersed in this heat-expandable material, the body and the piston being movable relative to each other in translation along an axis corresponding to the central longitudinal axis of the piston.
- the invention is more specifically concerned with three-way valves, which distribute a fluid inlet between two fluid outlets or else which feed a fluid outlet through two fluid inlets.
- These three-way valves are typically used to regulate the circulation of a cooling fluid with respect to both an engine to be cooled by this fluid and a heat exchanger, in particular a radiator, cooling.
- this fluid when the fluid has too high a temperature at the valve, the latter sends it to the exchanger to be cooled there before being sent to the motor to be cooled and then returned to the valve, while, when the fluid temperature is sufficiently low at the level of the valve, the latter sends the fluid directly to the motor via a bypass channel not passing through the exchanger, commonly called the bypass channel.
- the valve includes a main shutter, which controls the circulation of the fluid vis-à-vis the heat exchanger, and a by-pass shutter, which controls the circulation of the fluid in the by-pass path. .
- the invention is concerned with valves in which the same thermostatic element actuates, in an inverse manner, the main shutter and the by-pass shutter.
- the valve housing to which a fixed part of the thermostatic element is fixedly connected in service, has two seats which are aligned along the axis of the thermostatic element and against which the main shutter rests axially and the bypass shutter, carried by the movable part of the thermostatic element.
- This solution requires that the circulation path vis-à-vis the exchanger and the bypass path open axially inside the housing.
- EP 1 619 568 proposes to produce the bypass shutter in the form of a plane slide, which extends parallel to the axis and which, by driving by the movable part of the thermostatic element, can be moved along a flat region of the housing, through which the lateral bypass path opens into the interior of the housing.
- This solution is subject to risks of its plane slide jamming, except for integrating guide arrangements into the housing which are expensive and which induce friction.
- this solution is not modular, in the sense that it is specific to a specific geometry of the valve housing.
- the object of the present invention is to provide a thermostatic device for side bypass valves, which is efficient and economical, as well as adaptable to various valve housing geometries.
- the invention relates to a thermostatic device for regulating the circulation of a fluid, as defined in claim 1.
- the subject of the invention is also a thermostatic valve, as defined in claim 11.
- One of the ideas at the basis of the invention is to integrate into the thermostatic device a modular adapter to the geometric specificities of the valve housing in which the thermostatic device is to be installed.
- This adapter is connected, by a lateral tubing, to the lateral passage of the housing, typically associated with a bypass channel.
- the flow of fluid between this side passage and the chamber internal to the housing is controlled by a cylindrical sleeve of the bypass shutter, which slides snugly in a tubular body of the adapter so as to open-close the valve. outlet of the lateral tubing in this tubular body.
- the cooperation between the cylindrical sleeve of the bypass shutter and the tubular body of the adapter ensures long centering of this cylindrical sleeve and therefore efficient and reliable guidance of the latter, regardless of the geometry of the housing.
- the side tubing of the adapter is easily adapted to the geometrical specificities of the housing, in particular by appropriately shaping its end opposite the tubular body of the adapter.
- the adapter can advantageously present additional arrangements, which will be detailed below, making it possible to enhance the practicality and performance of the thermostatic device according to the invention.
- FIG 1 is a perspective view of a thermostatic device according to the invention.
- FIG. 2 is a view similar to FIG. 1, illustrating the thermostatic device in exploded view;
- FIG 3 is a longitudinal section of a thermostatic valve according to the invention, comprising the thermostatic device of Figure 1;
- Figure 4 is a section along the line IV-IV of Figure 3;
- FIG 5 is a view similar to Figure 3, showing an operating configuration of the valve, different from the operating configuration shown in Figures 3 and 4;
- FIG 6 is a view similar to Figure 1, illustrating a variant of the thermostatic device according to the invention.
- FIG. 8 are views respectively similar to FIGS. 3 and 4, illustrating a valve equipped with the thermostatic device of FIG. 6.
- thermostatic device 1 which makes it possible to regulate the circulation of a fluid.
- This fluid is in particular a cooling fluid, the thermostatic device 1 then belonging for example to a cooling circuit of a heat engine, in particular of an engine of a motor vehicle.
- thermostatic device 1 is shown alone in Figures 1 and 2 while, in Figures 3 to 5, this thermostatic device is installed in a housing 2 of a thermostatic valve 3.
- the housing 2 is shown only partially and schematically, its embodiment not being limiting of the invention.
- this housing 2 can just as easily be made in one piece as it can consist of several pieces fixedly assembled to one another.
- the housing 2 channels the fluid, by advantageously defining three channels 3A, 3B and 3C for the circulation of the fluid: these three channels constitute either one fluid inlet and two outlets, or two fluid inlets and outlet for valve 3.
- valve 3 when valve 3 belongs to a cooling circuit of an engine, the channel 3A constitutes an inlet of cooling fluid, coming from the engine to be cooled, while, on the one hand, the channel 3B constitutes a first outlet of this cooling fluid, sending the latter to a heat exchanger, in particular a radiator, designed to lower the temperature of the fluid passing through it, before this fluid is sent to the engine to be cooled, and, on the other hand, channel 3C constitutes a second outlet for the cooling fluid , which sends the latter directly to the engine to be cooled, without going through the aforementioned heat exchanger. It is understood that the channel 3C forms a bypass for the cooling fluid, commonly called the bypass channel.
- the cooling fluid sent to the engine by the valve 3 comes from the outputs 3B and 3C of the latter and, after having cooled the engine, is returned to the valve, more precisely to its channel 3A.
- the thermostatic device 1 makes it possible to regulate the flow of the fluid through the housing 2, by distributing the fluid between the various channels 3A, 3B and 3C.
- the thermostatic device 1 thus makes it possible to distribute, between the outputs of channels 3B and 3C, the fluid entering the housing through channel 3A.
- the housing 2 delimits a chamber 4, into which each of the channels 3A, 3B and 3C opens and inside which the thermostatic device 1 is at least partially arranged when the valve 3 is in use.
- the thermostatic device 1 comprises a thermostatic element 10 which is centered on a geometric axis X-X.
- This thermostatic element 10 includes a body 12, which contains a thermally expandable material, such as a wax, and which is substantially centered on the X-X axis.
- the thermostatic element 10 also comprises a piston 14, the central longitudinal geometric axis of which is aligned with the axis XX and of which an end axial portion is immersed in the heat-expandable material contained in the body 12.
- the body 12 and the piston 14 are movable relative to each other in translation along the axis XX: under the effect of an expansion of the heat-expandable material, the piston 14 moves away from the body 12 by deploying outside this last, while, during a contraction of the heat-expandable material, the piston is retractable inside the body 12.
- the piston 14 is fixedly linked to the housing 2. More precisely, in a manner known per se, the end part of this piston 14, opposite to that immersed in the body 12, is fixedly linked to a region 2.1 of the housing 2, arranged across the axis XX.
- this fixed connection can be produced either only by axial support, or by removable fixing, of clipping type or sliding fitting, either by permanent connection of the press fitting type, overmolding or adding a mechanical maintenance system. In all cases, it is understood that, when the heat-expandable material contained in the body 12 expands or contracts, the piston 14 is kept stationary relative to the housing 2.
- the thermostatic device 1 also includes a main shutter 20 which is movable along the X-X axis relative to the housing 2 so as to control the flow of fluid between the chamber 4 and the exterior of the housing 2 via the channel 3B. More specifically, the main shutter 20 is axially movable with respect to a seat 5, carried fixedly by the housing 2 and located at the junction between the chamber 4 and the channel 3B. The main shutter 20 is thus movable between:
- At least part of the fluid entering chamber 4 through channel 3A thus passes into the outlet of channel 3B when the main shutter 20 is in the open position.
- this main shutter prevents fluid entering chamber 4 through channel 3A from reaching the outlet of channel 3B.
- the structural and geometric specificities of the seat 5 are not restrictive of the invention and may be different from the example of the figures in which the seat 5 is frustoconical and integrally formed with the rest of the housing 2.
- the main shutter 20 is connected to the body 12 of the thermostatic element 10 so that, when the valve 3 is in service, the axial displacement of the body 12 relative to the housing 2, resulting from the expansion of the thermally expandable material causes a corresponding displacement of the main shutter 20 so as to pass the latter from the closed position to the open position.
- the main shutter 20 is fixedly linked to the body 12.
- the main shutter 20 comprises a rigid frame 22, typically metallic, which is substantially centered on the axis XX and whose outer periphery, that is to say that turned radially to the side. 'opposite the axis XX, is provided, for example by overmolding, with a flexible sealing gasket 24, typically made of polymer or rubber.
- the seal 24 constitutes the part of the main shutter 20, which cooperates by axial support with the seat 5 of the housing 2 in order to control the flow of fluid between the chamber 4 and the exterior of the housing via the channel 3B, while the frame 22 constitutes the part of the main shutter 20, which cooperates with the body 12 of the thermostatic element 10 for the purpose of connecting the main shutter to this body 12.
- the frame 22 is for example fitted tightly around the body 12 of the thermostatic element 10, by fixedly bonding the main shutter 20 to this body 12.
- the main shutter 20 considered here is similar to a valve.
- other embodiments can be envisaged for the main shutter 20, without limiting the invention.
- the thermostatic device 1 also comprises a bypass shutter 30 which is movable along the axis XX relative to the housing 2 so as to control the flow of fluid between the chamber 4 and a lateral passage 6 of the housing 2.
- this lateral passage 6 forms the path 3C and opens into the chamber 4 transversely to the axis XX, or even radially to the axis XX as in the example considered in the figures.
- the side passage 6 extends from the chamber 4 in a transverse, or even radial, direction to the X-X axis.
- the orientation of the lateral passage 6 with respect to the axis XX is not restrictive of the invention: thus, outside the junction zone between the lateral passage 6 and the chamber 4, the side passage 6 can be bent or extend with an inclination different from the direction in which this side passage opens into the chamber 4.
- the bypass shutter 30 comprises a cylindrical sleeve 32, which is substantially centered on the axis XX and which, as explained below, acts on the flow of fluid between the chamber 4 and the side passage 6.
- the bypass shutter 30 also comprises a frame 34 which fixedly connects the cylindrical sleeve 32 to the body 12 of the thermostatic element 10.
- the embodiment of the frame 34 does not is not restrictive of the invention as long as this frame 34 provides a fixed connection between the by-pass shutter 30 and the body 12 of the thermostatic element 10 so that the by-pass shutter 30 leaves the fluid flow between chamber 4 and side passage 6 when main shutter 20 is in the closed position while bypass plug 30 prevents fluid from flowing between chamber 4 and side passage 6 when main shutter 20 is in the open position.
- the frame 34 is produced in the form of a rim stamped at an axial end of the cylindrical sleeve 32, this rim being fitted tightly around the body 12 of the thermostatic element 10.
- the thermostatic device 1 further comprises an adapter 40 which, in the assembled state of the valve 3, is arranged in the chamber 4.
- the adapter 40 includes a tubular body 41 which is substantially centered on the X-X axis.
- the inner side face of the tubular body 41 is fitted to the outer side face of the cylindrical sleeve 32, allowing the latter to be both snugly received and slidably mounted along the XX axis inside the tubular body 41
- the cylindrical sleeve 32 has a circular cross section, the outside diameter of which is then substantially equal to the inside diameter of the circular cross section of the tubular body 41: in this case, the cylindrical sleeve 32 can slide in an adjusted manner inside of the tubular body 41 regardless of their respective angular positioning around the axis XX, which in particular facilitates the assembly between the bypass shutter 30 and the adapter 40.
- the tubular body 41 is advantageously perforated to facilitate the circulation of the fluid through it.
- the adapter 40 also comprises a side tube 42 which extends from the outer side face of the tubular body 41. At its end facing the tubular body 41, the side tube 42 opens inside the tubular body 41 in a direction transverse, or even radial, to the X-X axis via an orifice 43, while, opposite the tubular body 41, the lateral tube 42 has a free end 42.1 .
- the orifice 43 is thus delimited through the tubular body 41, placing the interior of this tubular body 41 in fluid communication with the lateral tubing 42.
- the orifice 43 has a smaller dimension. to the axial dimension of the cylindrical sleeve 32.
- the orifice 43 occupies a limited peripheral portion, corresponding totally or partially to the peripheral portion occupied by the lateral pipe 42.
- the cylindrical sleeve 32 covers and thus closes, if necessary completely, the orifice 43 when the main shutter 10 is in the open position, as in FIG. 5, while the cylindrical sleeve 32 leaves open.
- the precise geometric contour of the orifice 43 is not limiting of the invented on, this contour being notably shaped according to the axial dimension of the cylindrical sleeve 32 to allow the latter to completely close the orifice 43 as in FIG. 5.
- the end 42.1 of the side pipe 42 makes it possible to connect the latter to the side passage 6.
- the end 42.1 is arranged in alignment with the outlet of the side passage 6 in the chamber 4, as visible in Figures 3 and 4.
- this end 42.1 is advantageously designed to cooperate by complementarity of shapes with the region 2.2 of the housing 2 through which the lateral passage 6 opens into the chamber 4: in the embodiment considered in the figures, the end 42.1 of the pipe side 42 and the region 2.2 of the housing 2 are thus provided flat, extending substantially parallel to the axis XX.
- the adapter 40 incorporates fixing lugs 44 capable of deforming elastically with respect to the rest of the adapter 40.
- these fixing lugs 44 are deformed, in particular by being folded towards the axis XX, so as to allow the introduction of the adapter 40 inside the chamber 4 without axially interfering with the housing 2.
- the fixing lugs 44 tend to return to their initial undeformed configuration, by elastic return, in particular by deploying in the direction opposite to the axis XX, so as to penetrate in ad hoc 2.3 slots of box 2.
- the tabs s fixing 44 then interfere with these housings 2.3 in the direction of axis XX, which axially maintains in place the adapter 40 inside the chamber 4, as clearly visible in Figure 4.
- the tabs fixing 44 allow the adapter 40 to be fixed to the housing 2 by elastic clipping.
- the fixing lugs 44 which have just been described and which are illustrated in the figures, are only one example of fixing elements that the adapter 40 can integrate and which make it possible to fix the latter to the housing 2. by elastic deformation.
- the thermostatic device 1 furthermore comprises a spring 50 which, in the assembled state of the valve 3, is provided to return the body 12 of the thermostatic element 10 towards the piston 14 of this thermostatic element during a contraction of the thermostatic element. thermally expandable material so as to drive the main shutter 20 from its open position to its closed position.
- the spring 50 is operatively interposed between the body 12 and the piston 14 of the thermostatic element 10 so as to be compressed in the axis XX when the body 12 and the piston 14 move apart axially from one another. Structurally, several arrangements are possible for this spring 50 within the thermostatic device 1.
- the spring 50 is supported axially, by one of its axial ends, against the adapter 40, while, by its opposite axial end, the spring 50 bears axially either directly against the body 12 of the thermostatic element, or against one of the shutters 20 and 30.
- the adapter 40 comprises a transverse wall 45, which, as clearly visible on the Figures 3 to 5, extends across the tubular body 41 and against which the spring 50 is pressed along the axis XX. The spring 50 is thus taken on board by the adapter 40.
- the thermostatic device 1 then advantageously comprises, as an additional part, a sleeve 60, which is secured to the body 12 of the thermostatic element 10 and which is suitable for axially retain the adapter 40 with respect to the body 12 against the thrust of the spring 50 before the adapter is fixedly attached to the housing 2, as in FIG. 1.
- This bush 60 is only an example a retaining piece, which allows to keep assembled the adapter 40, the body 12 of the thermostatic element 10 and the spring 50 as long as the thermostatic device 1 is not installed in the housing 2, it being noted that, once the adapter 40 is received in the chamber 4 and thus fixed to the housing 2, this retaining piece is no longer of functional interest.
- this retaining part such as the sleeve 60
- the thermostatic element 10, the shutters 20 and 30, the adapter 40, the spring 50 and this retaining part are advantageously assembled. to each other by forming a module, as shown in Figure 1, independent of the housing 2. This module can thus be handled in one piece, independently of the housing 2, until it is installed inside the housing. this last.
- valve 3 The operation of the valve 3 will now be described with reference to Figures 3 to 5, in the context of the application example of this valve, mentioned above.
- the fluid entering the chamber 4 through the channel 3A is, on the one hand, prevented from passing through the seat 5 and therefore from circulating in the channel 3B by the main shutter 20 in the closed position and, on the other hand, sent entirely into the lateral passage 6, thus flowing in the path 3C, due to the opening of the orifice 43 by the cylindrical sleeve 32 of the shutter bypass 30, the fluid flowing by passing successively through the tubular body 41, through the orifice 43 and through the lateral pipe 42.
- the heat-expandable material of the thermostatic element 10 expands, the heat of the fluid being imparted to this thermally expandable material because the body 12 of the thermostatic element is swept by streams of fluid.
- the axial displacement of the body 12 relative to the piston 14, which is fixed relative to the housing 2 causes the corresponding axial displacement of the main shutter 20 and of the bypass shutter 30.
- the main shutter 20 s' then gradually moves away from the seat 5, opening the flow of fluid between the chamber 4 and the channel 3B, while, at the same time, the bypass shutter 30 gradually closes the orifice 43, by covering this last by the cylindrical sleeve 32.
- the fluid admitted through the channel 3A is then distributed between the channels 3B and 3C.
- the main shutter 20 moves further away from the seat 5, while the orifice 43 closes further, correspondingly, until it is completely closed, as shown. in FIG. 5.
- the fluid admitted through channel 3A is then sent in full to channel 3B.
- the thermally expandable material of the thermostatic element 10 contracts and, under the decompression effect of the spring 50, the main shutter 20 gradually approaches the seat 5 and the shutter of bypass 30 gradually discovers orifice 43.
- thermostatic device 1 and of the valve 3 described so far are also possible.
- valve 3 Various arrangements and variants of the thermostatic device 1 and of the valve 3 described so far are also possible. For example:
- this adapter 40 can integrate fixing elements, such as the fixing lugs 44, the fixing of this adapter to the housing 2 can be provided by an attached part, as in the variant of the thermostatic device 1 shown on the Figures 6 to 8 in which this insert, referenced 70, is a so-called "quarter turn" caliper;
- this bracket is in the form of a bar, which extends perpendicularly to the axis XX and which is axially linked to the body 12 of the thermostatic element 10, while being able to pivot freely around the axis XX with respect to to the body 12 to go from a first orientation, in which the bar does not interfere axially with the housing 2, to a second orientation, which is illustrated in Figures 7 and 8 and in which the opposite ends of this bar axially interfere with the housing 2, being received in housings of the latter similar to the housings 2.3;
- thermostatic element 10 is not limiting; in particular, the body 12 and the piston 14 of this thermostatic element can have various diameters;
- the thermostatic element 10 can, as an option, be controlled, that is to say integrate into its piston 14 an electric heating resistor, electrically connected through region 2.1 of the housing 2; in this case, the mechanical connection between the piston 14 and the region 2.1 of the housing is provided to ensure the corresponding electrical connection, which can be provided by an ad hoc connection of the piston 14 when the thermostatic device 1 is installed in the housing 2 or by a prior assembly between the housing 2 and the piston 14 without the rest of the device 1; in the latter case, the module which was mentioned above as being independent of the housing 2 corresponds to the assembly of the body 12 of the thermostatic element, of the shutters 20 and 30, of the adapter 40, of the spring 50 and of the socket 60 or a retaining piece similar to this socket;
- the piston 14 of the thermostatic element 10 may be the body 12 of this thermostatic element which is provided fixed with respect to the housing, the piston 14 then constituting the movable part of the element thermostatic, ensuring the drive function described so far for the body 12; and or
- the main shutter 20 can be mounted on this movable part with freedom of movement along the axis XX, subject to being associated a dedicated return spring; the main shutter 20 thus integrates a load shedding function in the event of overpressure between chamber 4 and channel 3B.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Temperature-Responsive Valves (AREA)
- Lift Valve (AREA)
Abstract
Dispositif thermostatique pour réguler la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif Ce dispositif (1) comprend un obturateur principal (20), commandant l'écoulement d'un fluide entre une chambre (4) et l'extérieur d'un boîtier (2) par appui contre un siège (5) du boîtier, et un obturateur de by-pass (30) commandant l'écoulement du fluide entre la chambre et un passage latéral (6) du boîtier. Le dispositif comprend également un élément thermostatique (10) ayant une partie mobile (12) à laquelle les obturateurs sont liés de manière à commander ces écoulements de manière inverse. Afin que le dispositif soit performant, économique et modulable à diverses géométries de boîtiers, ce dispositif comprend un adaptateur (40), rapporté fixement au boîtier à l'intérieur de la chambre et comportant à la fois un corps tubulaire (41), à l'intérieur duquel un manchon cylindrique de l'obturateur de by-pass est reçu de manière ajustée et monté coulissant, et une tubulure latérale (42), qui s'étend depuis une face latérale extérieure du corps tubulaire, qui présente une extrémité (42.1) de raccordement au passage latéral du boîtier, et qui débouche à l'intérieur du corps tubulaire transversalement via un orifice (43), cet orifice étant fermé par le manchon cylindrique lorsque l'obturateur principal est ouvert tandis que le manchon cylindrique laisse ouvert l'orifice lorsque l'obturateur principal est fermé.
Description
Dispositif thermostatique pour réguler la circulation d’un fluide, ainsi que vanne thermostatique comprenant un tel dispositif
La présente invention concerne un dispositif thermostatique, ainsi qu’une vanne thermostatique comprenant un tel dispositif.
L’invention s’intéresse en particulier aux dispositifs et vannes thermostatiques qui sont utilisés dans les circuits de refroidissement de moteur thermique, notamment ceux des véhicules automobiles, des poids-lourds, des deux-roues et des moteurs stationnaires. Ceci étant, ce domaine d’application n’est pas limitatif de l’invention, dans le sens où le dispositif et la vanne conformes à l’invention sont utilisables dans divers autres circuits de fluide, par exemple les circuits de refroidissement de boîte de vitesse, les circuits d’eau, les circuits d’huile, etc.
Dans de nombreuses applications du domaine fluidique, notamment pour le refroidissement de moteurs thermiques, des vannes thermostatiques sont utilisées pour réguler la circulation d’un fluide, c’est-à-dire répartir ce fluide dans différentes voies de circulation, généralement en fonction de la température de ce fluide. Ces vannes sont dites thermostatiques, dans le sens où le déplacement de leur(s) obturateur(s) interne(s) est commandé par un élément thermostatique, c’est-à-dire un élément qui comprend un corps, contenant une matière thermodilatable, et un piston, plongé dans cette matière thermodilatable, le corps et le piston étant déplaçables l’un par rapport à l’autre en translation selon un axe correspondant à l’axe longitudinal central du piston.
L’invention s’intéresse plus spécifiquement aux vannes à trois voies, qui répartissent une entrée de fluide entre deux sorties de fluide ou bien qui alimentent une sortie de fluide par deux entrées de fluide. Ces vannes trois voies sont typiquement utilisées pour réguler la circulation d’un fluide de refroidissement vis-à-vis, à la fois, d’un moteur à refroidir par ce fluide et d’un échangeur de chaleur, en particulier un radiateur, refroidissant ce fluide : lorsque le fluide présente une trop forte température au niveau de la vanne, cette dernière l’envoie à l’échangeur pour y être refroidi avant d’être envoyé au moteur à refroidir puis retourné à la vanne, tandis que, lorsque la température du fluide est suffisamment basse au niveau de la vanne, cette dernière envoie le fluide directement au moteur via une voie de dérivation ne passant pas par l’échangeur, communément appelée voie de by-pass. Pour ce faire, la vanne inclut un obturateur principal, qui commande la circulation du fluide vis-à-vis de l’échangeur de chaleur, et un obturateur de by-pass, qui commande la circulation du fluide dans la voie de by-pass.
L’invention s’intéresse aux vannes dont le même élément thermostatique actionne, de manière inverse, l’obturateur principal et l’obturateur de by-pass. Dans ce cas, il peut
être prévu que le boîtier de vanne, auquel une partie fixe de l’élément thermostatique est lié fixement en service, présente deux sièges qui sont alignés selon l’axe de l’élément thermostatique et contre respectivement lesquels s’appuient axialement l’obturateur principal et l’obturateur de by-pass, portés par la partie mobile de l’élément thermostatique. Cette solution oblige à ce que la voie de circulation vis-à-vis de l’échangeur et la voie de by-pass débouchent axialement à l’intérieur du boîtier.
Lorsque la voie de by-pass est latérale au boîtier, c’est-à-dire qu’elle débouche dans le boîtier suivant une direction transversale à l’axe, l’obturateur de by-pass doit être aménagé en conséquence. EP 1 619 568 propose de réaliser l’obturateur de by-pass sous forme d’un coulisseau plan, qui s’étend parallèlement à l’axe et qui, par entraînement par la partie mobile de l’élément thermostatique, est déplaçable le long d’une région plane du boîtier, au travers de laquelle la voie de by-pass latérale débouche à l’intérieur du boîtier. Cette solution est sujette à des risques de coincement de son coulisseau plan, sauf à intégrer au boîtier des aménagements de guidage qui sont coûteux et qui induisent des frottements. De plus, cette solution n’est pas modulable, dans le sens où elle est propre à une géométrie spécifique du boîtier de vanne.
Le but de la présente invention est de proposer un dispositif thermostatique pour des vannes à voie de by-pass latérale, qui soit performant et économique, ainsi que modulable à diverses géométries de boîtiers de vanne.
A cet effet, l’invention a pour objet un dispositif thermostatique pour réguler la circulation d’un fluide, tel que défini à la revendication 1 .
L’invention a également pour objet une vanne thermostatique, telle que définie à la revendication 11 .
Une des idées à la base de l’invention est d’intégrer au dispositif thermostatique un adaptateur modulable aux spécificités géométriques du boîtier de vanne dans lequel le dispositif thermostatique est à installer. Cet adaptateur se raccorde, par une tubulure latérale, au passage latéral du boîtier, typiquement associé à une voie de by-pass. L’écoulement du fluide entre ce passage latéral et la chambre interne au boîtier est commandé par un manchon cylindrique de l’obturateur de by-pass, qui coulisse de manière ajustée dans un corps tubulaire de l’adaptateur de manière à ouvrir-fermer le débouché de la tubulure latérale dans ce corps tubulaire. La coopération entre le manchon cylindrique de l’obturateur de by-pass et le corps tubulaire de l’adaptateur assure un centrage long de ce manchon cylindrique et donc un guidage performant et fiable de ce dernier, quelle que soit la géométrie du boîtier. La tubulure latérale de l’adaptateur est facilement adaptée aux spécificités géométriques du boîtier, notamment en façonnant de manière appropriée son extrémité opposée au corps tubulaire de l’adaptateur. Par ailleurs, l’adaptateur peut
avantageusement présenter des aménagements additionnels, qui seront détaillés par la suite, permettant de renforcer la praticité et les performances du dispositif thermostatique selon l’invention.
Des caractéristiques additionnelles avantageuses du dispositif thermostatique conforme à l’invention sont spécifiées aux autres revendications.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins sur lesquels :
[Fig 1] la figure 1 est une vue en perspective d’un dispositif thermostatique conforme à l’invention ;
[Fig 2] la figure 2 est une vue similaire à la figure 1 , illustrant le dispositif thermostatique en éclaté ;
[Fig 3] la figure 3 est une coupe longitudinale d’une vanne thermostatique conforme à l’invention, comportant le dispositif thermostatique de la figure 1 ;
[Fig 4] la figure 4 est une coupe selon la ligne IV-IV de la figure 3 ;
[Fig 5] la figure 5 est une vue similaire à la figure 3, montrant une configuration de fonctionnement de la vanne, différente de la configuration de fonctionnement montrée aux figures 3 et 4 ;
[Fig 6] la figure 6 est une vue similaire à la figure 1 , illustrant une variante du dispositif thermostatique conforme à l’invention ; et
[Fig 7] la figure 7 et [Fig. 8] la figure 8 sont des vues respectivement similaires aux figures 3 et 4, illustrant une vanne équipée du dispositif thermostatique de la figure 6.
Sur les figures 1 à 5 est représenté un dispositif thermostatique 1 qui permet de réguler la circulation d’un fluide. Ce fluide est notamment un fluide de refroidissement, le dispositif thermostatique 1 appartenant alors par exemple à un circuit de refroidissement d’un moteur thermique, notamment d’un moteur d’un véhicule automobile.
Le dispositif thermostatique 1 est montré seul sur les figures 1 et 2 tandis que, sur les figures 3 à 5, ce dispositif thermostatique est installé dans un boîtier 2 d’une vanne thermostatique 3.
En pratique, sur les figures 3 à 5, le boîtier 2 n’est représenté que de manière partielle et schématique, sa forme de réalisation n’étant pas limitative de l’invention. En particulier, ce boîtier 2 peut aussi bien être réalisé d’une seule pièce que constitué de plusieurs pièces assemblées fixement les unes aux autres. Dans tous le cas, lorsque la vanne 3 est en service, le boîtier 2 canalise le fluide, en définissant avantageusement trois voies 3A, 3B et 3C de circulation du fluide : ces trois voies constituent soit une entrée et deux sorties de fluide, soit deux entrées et une sortie de fluide pour la vanne 3. A titre d’exemple d’application qui sera réévoquée par la suite, lorsque la vanne 3 appartient à un
circuit de refroidissement d’un moteur, la voie 3A constitue une entrée de fluide de refroidissement, provenant du moteur à refroidir, tandis que, d’une part, la voie 3B constitue une première sortie de ce fluide de refroidissement, envoyant ce dernier à un échangeur de chaleur, en particulier un radiateur, conçu pour abaisser la température du fluide le traversant, avant que ce fluide ne soit envoyé au moteur à refroidir, et, d’autre part, la voie 3C constitue une seconde sortie du fluide de refroidissement, qui envoie directement ce dernier au moteur à refroidir, sans passer par l’échangeur de chaleur précité. On comprend que la voie 3C forme une dérivation pour le fluide de refroidissement, couramment appelée voie de by-pass. Ainsi, le fluide de refroidissement envoyé au moteur par la vanne 3 vient des sorties 3B et 3C de cette dernière et, après avoir refroidi le moteur, est renvoyé à la vanne, plus précisément à sa voie 3A.
Le dispositif thermostatique 1 permet de réguler l’écoulement du fluide à travers le boîtier 2, en répartissant le fluide entre les différentes voies 3A, 3B et 3C. Dans l’exemple d’application défini ci-dessus, le dispositif thermostatique 1 permet ainsi de repartir, entre les sorties des voies 3B et 3C, le fluide entrant dans le boîtier par la voie 3A. Dans tous les cas, le boîtier 2 délimite une chambre 4, dans laquelle chacune des voies 3A, 3B et 3C débouche et à l’intérieur de laquelle le dispositif thermostatique 1 est au moins partiellement agencé lorsque la vanne 3 est en service.
Le dispositif thermostatique 1 comporte un élément thermostatique 10 qui est centré sur un axe géométrique X-X. Cet élément thermostatique 10 inclut un corps 12, qui contient une matière thermodilatable, telle qu’une cire, et qui est sensiblement centré sur l’axe X-X. L’élément thermostatique 10 comprend également un piston 14, dont l’axe géométrique longitudinal central est aligné sur l’axe X-X et dont une partie axiale terminale est plongée dans la matière thermodilatable contenue dans le corps 12. Le corps 12 et le piston 14 sont mobiles l’un par rapport à l’autre en translation selon l’axe X-X : sous l’effet d’une dilatation de la matière thermodilatable, le piston 14 s’écarte du corps 12 en se déployant à l’extérieur de ce dernier, tandis que, lors d’une contraction de la matière thermodilatable, le piston est escamotable à l’intérieur du corps 12.
Au sein de la vanne 3 lorsque celle-ci est en service, le piston 14 est lié fixement au boîtier 2. Plus précisément, de manière connue en soi, la partie terminale de ce piston 14, opposée à celle plongée dans le corps 12, est liée fixement à une région 2.1 du boîtier 2, agencée en travers de l’axe X-X. En pratique, diverses formes de réalisation sont envisageables en ce qui concerne la liaison fixe de la partie terminale précitée du piston 14 à la région 2.1 du boîtier 2 : cette liaison fixe peut être réalisée soit uniquement par appui axial, soit par fixation amovible, de type clipsage ou emmanchement glissant, soit par solidarisation à demeure de type emmanchement en force, surmoulage ou ajout d’un
système mécanique de maintien. Dans tous les cas, on comprend que, lorsque la matière thermodilatable contenue dans le corps 12 se dilate ou se contracte, le piston 14 est maintenu immobile par rapport au boîtier 2.
Le dispositif thermostatique 1 comprend également un obturateur principal 20 qui est déplaçable selon l’axe X-X par rapport au boîtier 2 de manière à commander l’écoulement du fluide entre la chambre 4 et l’extérieur du boîtier 2 via la voie 3B. Plus précisément, l’obturateur principal 20 est mobile axialement vis-à-vis d’un siège 5, porté fixement par le boîtier 2 et situé à la jonction entre la chambre 4 et la voie 3B. L’obturateur principal 20 est ainsi déplaçable entre :
- une position fermée, qui est montrée sur les figures 3 et 4 et dans laquelle l’obturateur principal 20 est appuyé axialement contre le siège 5 de manière à empêcher le fluide de franchir ce siège pour circuler entre la chambre 4 et l’extérieur du boîtier via la voie 3B, et
- une position ouverte, qui est montrée sur la figure 5 et dans laquelle l’obturateur principal 20 est écarté du siège 5 de manière à laisser le fluide s’écouler entre la chambre 4 et l’extérieur du boîtier via la voie 3B, en franchissant le siège 5.
Dans l’exemple d’application défini plus haut, au moins une partie du fluide entrant dans la chambre 4 par la voie 3A passe ainsi dans la sortie de la voie 3B lorsque l’obturateur principal 20 est en position ouverte. Lorsque l’obturateur principal 20 est en position fermée, cet obturateur principal empêche le fluide entrant dans la chambre 4 par la voie 3A d’atteindre la sortie de la voie 3B.
Les spécificités structurelles et géométriques du siège 5 ne sont pas limitatives de l’invention et peuvent être différentes de l’exemple des figures sur lesquelles le siège 5 est tronconique et venu de matière avec le reste du boîtier 2.
Pour commander en déplacement l’obturateur principal 20, ce dernier est lié au corps 12 de l’élément thermostatique 10 de sorte que, lorsque la vanne 3 est en service, le déplacement axial du corps 12 par rapport au boîtier 2, résultant de la dilation de la matière thermodilatable, provoque un déplacement correspondant de l’obturateur principal 20 de manière à passer ce dernier de la position fermée vers la position ouverte. Suivant une forme de réalisation pratique, qui est mise en œuvre dans la forme de réalisation considérée sur les figures, l’obturateur principal 20 est lié fixement au corps 12.
Dans l’exemple de réalisation considéré ici, l’obturateur principal 20 comprend une armature rigide 22, typiquement métallique, qui est sensiblement centrée sur l’axe X-X et dont la périphérie extérieure, c’est-à-dire celle tournée radialement à l’opposé de l’axe X-X, est pourvue, par exemple par surmoulage, d’une garniture souple d’étanchéité 24, typiquement en polymère ou en caoutchouc. La garniture d’étanchéité 24 constitue la partie
de l’obturateur principal 20, qui coopère par appui axial avec le siège 5 du boîtier 2 afin de commander l’écoulement du fluide entre la chambre 4 et l’extérieur du boîtier via la voie 3B, tandis que l’armature 22 constitue la partie de l’obturateur principal 20, qui coopère avec le corps 12 de l’élément thermostatique 10 aux fins de la liaison de l’obturateur principal à ce corps 12. Ainsi, l’armature 22 est par exemple emmanchée serrée autour du corps 12 de l’élément thermostatique 10, en liant fixement l’obturateur principal 20 à ce corps 12. Eu égard à sa forme de réalisation, l’obturateur principal 20 considéré ici s’apparente à un clapet. Bien entendu, d’autres formes de réalisation sont envisageables pour l’obturateur principal 20, sans limiter l’invention.
Le dispositif thermostatique 1 comprend aussi un obturateur de by-pass 30 qui est déplaçable selon l’axe X-X par rapport au boîtier 2 de manière à commander l’écoulement du fluide entre la chambre 4 et un passage latéral 6 du boîtier 2. Comme bien visible sur les figures 3 et 5, ce passage latéral 6 forme la voie 3C et débouche dans la chambre 4 de manière transversale à l’axe X-X, voire de manière radiale à l’axe X-X comme dans l’exemple envisagé sur les figures. En d’autres termes, le passage latéral 6 s’étend depuis la chambre 4 suivant une direction transversale, voire radiale, à l’axe X-X. Bien entendu, à distance de la chambre 4, l’orientation du passage latéral 6 vis-à-vis de l’axe X-X n’est pas limitative de l’invention : ainsi, en dehors de la zone de jonction entre le passage latéral 6 et la chambre 4, le passage latéral 6 peut être coudé ou s’étendre avec une inclinaison différente de la direction selon laquelle ce passage latéral débouche dans la chambre 4.
Comme bien visible sur les figures 2 à 5, l’obturateur de by-pass 30 comporte un manchon cylindrique 32, qui est sensiblement centré sur l’axe X-X et qui, comme expliqué par la suite, agit sur l’écoulement du fluide entre la chambre 4 et le passage latéral 6. L’obturateur de by-pass 30 comporte également une armature 34 qui relie fixement le manchon cylindrique 32 au corps 12 de l’élément thermostatique 10. La forme de réalisation de l’armature 34 n’est pas limitative de l’invention du moment que cette armature 34 assure une liaison fixe entre l’obturateur de by-pass 30 et le corps 12 de l’élément thermostatique 10 de manière que l’obturateur de by-pass 30 laisse le fluide s’écouler entre la chambre 4 et le passage latéral 6 lorsque l’obturateur principal 20 est en position fermée tandis que l’obturateur de by-pass 30 empêche le fluide de s’écouler entre la chambre 4 et le passage latéral 6 lorsque l’obturateur principal 20 est en position ouverte. Dans l’exemple de réalisation considéré sur les figures, l’armature 34 est réalisée sous forme d’un rebord embouti à une extrémité axiale du manchon cylindrique 32, ce rebord étant emmanché serré autour du corps 12 de l’élément thermostatique 10. De multiples autres formes de réalisation sont envisageables.
Le dispositif thermostatique 1 comporte en outre un adaptateur 40 qui, à l’état assemblé de la vanne 3, est agencé dans la chambre 4.
Comme bien visible sur les figures 1 à 5, l’adaptateur 40 comporte un corps tubulaire 41 qui est sensiblement centré sur l’axe X-X. La face latérale intérieure du corps tubulaire 41 est ajustée sur la face latérale extérieure du manchon cylindrique 32, permettant à ce dernier d’être à la fois reçu de manière ajustée et monté coulissant suivant l’axe X-X à l’intérieur du corps tubulaire 41. Avantageusement, le manchon cylindrique 32 présente une section transversale circulaire dont le diamètre extérieur est alors sensiblement égal au diamètre intérieur de la section transversale circulaire du corps tubulaire 41 : dans ce cas, le manchon cylindrique 32 peut coulisser de manière ajustée à l’intérieur du corps tubulaire 41 quel que soit leur positionnement angulaire respectif autour de l’axe X-X, ce qui facilite notamment l’assemblage entre l’obturateur de by-pass 30 et l’adaptateur 40. Dans tous les cas, le corps tubulaire 41 est avantageusement ajouré pour faciliter la circulation du fluide à travers lui.
Comme bien visible sur les figures 1 à 3 et 5, l’adaptateur 40 comporte également une tubulure latérale 42 qui s’étend depuis la face latérale extérieure du corps tubulaire 41. A son extrémité tournée vers le corps tubulaire 41 , la tubulure latérale 42 débouche à l’intérieur du corps tubulaire 41 suivant une direction transversale, voire radiale, à l’axe X- X via un orifice 43, tandis que, à l’opposé du corps tubulaire 41, la tubulure latérale 42 présente une extrémité 42.1 libre.
L’orifice 43 est ainsi délimité au travers du corps tubulaire 41, en mettant en communication fluidique l’intérieur de ce corps tubulaire 41 avec la tubulure latérale 42. Suivant la direction de l’axe X-X, l’orifice 43 présente une dimension inférieure à la dimension axiale du manchon cylindrique 32. Suivant une direction périphérique à l’axe X- X, l’orifice 43 occupe une portion périphérique limitée, correspondant totalement ou partiellement à la portion périphérique occupée par la tubulure latérale 42. A l’état assemblé de la vanne 3, le manchon cylindrique 32 recouvre et ainsi ferme, le cas échéant totalement, l’orifice 43 lorsque l’obturateur principal 10 est en position ouverte, comme sur la figure 5, tandis que le manchon cylindrique 32 laisse ouvert l’orifice 43, en se décalant axialement de ce dernier, lorsque l’obturateur principal 10 est en position fermée comme sur les figures 3 et 4. En pratique, le contour géométrique précis de l’orifice 43 n’est pas limitatif de l’invention, ce contour étant notamment façonné en fonction de la dimension axiale du manchon cylindrique 32 pour permettre à ce dernier de fermer totalement l’orifice 43 comme sur la figure 5.
L’extrémité 42.1 de la tubulure latérale 42 permet de raccorder cette dernière au passage latéral 6. A cet effet, à l’état assemblé de la vanne 3, l’extrémité 42.1 est agencée
en alignement avec le débouché du passage latéral 6 dans la chambre 4, comme visible sur les figures 3 et 4. Pour notamment limiter la fuite de fluide au niveau du raccordement entre l’extrémité 42.1 de la tubulure latérale 42 et le passage latéral 6, cette extrémité 42.1 est avantageusement conçue pour coopérer par complémentarité de formes avec la région 2.2 du boîtier 2 à travers laquelle le passage latéral 6 débouche dans la chambre 4 : dans l’exemple de réalisation considéré sur les figures, l’extrémité 42.1 de la tubulure latérale 42 et la région 2.2 du boîtier 2 sont ainsi prévues planes, en s’étendant de manière sensiblement parallèle à l’axe X-X. Bien entendu, d’autres géométries peuvent être envisagées au niveau de l’interface complémentaire entre l’extrémité 42.1 de la tubulure latérale 42 et la région 2.2 du boîtier 2. Plus globalement, on comprend que la tubulure latérale 42 permet à l’adaptateur 40 d’être modulé à diverses spécificités géométriques du boîtier 2 en lien avec le passage latéral 6 de ce dernier.
Quelles que soient les formes de réalisation du corps tubulaire 41 et de la tubulure latérale 42 de l’adaptateur 40, ce dernier est prévu pour être agencé à l’intérieur de la chambre 4 en étant rapporté fixement au boîtier 2. A cet effet, dans le mode de réalisation des figures 1 à 5, l’adaptateur 40 intègre des pattes de fixation 44 à même de se déformer élastiquement par rapport au reste de l’adaptateur 40. Lors de l’assemblage de l’adaptateur 40 au boîtier 2, ces pattes de fixation 44 sont déformées, notamment en étant rabattues vers l’axe X-X, de manière à permettre l’introduction de l’adaptateur 40 à l’intérieur de la chambre 4 sans interférer axialement avec le boîtier 2. Une fois que l’adaptateur 40 est placé à l’intérieur de la chambre 4, les pattes de fixation 44 tendent à reprendre leur configuration initiale non déformée, par rappel élastique, notamment en se déployant en direction opposée à l’axe X-X, de façon à pénétrer dans des logements 2.3 ad hoc du boîtier 2. Les pattes de fixation 44 interfèrent alors avec ces logements 2.3 suivant la direction de l’axe X-X, ce qui maintient axialement en place l’adaptateur 40 à l’intérieur de la chambre 4, comme bien visible sur la figure 4. Ainsi, les pattes de fixation 44 permettent à l’adaptateur 40 de se fixer au boîtier 2 par clipsage élastique. Bien entendu, les pattes de fixation 44, qui viennent d’être décrites et qui sont illustrées aux figures, ne sont qu’un exemple d’éléments de fixation que peut intégrer l’adaptateur 40 et qui permettent de fixer ce dernier au boîtier 2 par déformation élastique.
Le dispositif thermostatique 1 comprend par ailleurs un ressort 50 qui, à l’état assemblé de la vanne 3, est prévu pour rappeler le corps 12 de l’élément thermostatique 10 vers le piston 14 de cet élément thermostatique lors d’une contraction de la matière thermodilatable de manière à entraîner l’obturateur principal 20 de sa position ouverte vers sa position fermée. Pour ce faire, le ressort 50 est interposé fonctionnellement entre le corps 12 et le piston 14 de l’élément thermostatique 10 de manière à être comprimé dans
l’axe X-X lorsque le corps 12 et le piston 14 s’écartent axialement l’un de l’autre. Structurellement, plusieurs agencements sont possibles pour ce ressort 50 au sein du dispositif thermostatique 1 .
Suivant une possibilité d’agencement avantageuse qui est mise en œuvre sur les figures, le ressort 50 s’appuie axialement, par l’une de ses extrémités axiales, contre l’adaptateur 40, tandis, que, par son extrémité axiale opposée, le ressort 50 s’appuie axialement soit directement contre le corps 12 de l’élément thermostatique, soit contre l’un des obturateurs 20 et 30. A cet effet, l’adaptateur 40 comporte une paroi transversale 45, qui, comme bien visible sur les figures 3 à 5, s’étend en travers du corps tubulaire 41 et contre laquelle le ressort 50 est appuyé suivant l’axe X-X. Le ressort 50 est ainsi embarqué par l’adaptateur 40. De plus, le dispositif thermostatique 1 comporte alors avantageusement, en tant que pièce additionnelle, une douille 60, qui est solidarisée au corps 12 de l’élément thermostatique 10 et qui est adaptée pour retenir axialement l’adaptateur 40 par rapport au corps 12 à l’encontre de la poussée du ressort 50 avant que l’adaptateur ne soit rapporté fixement au boîtier 2, comme sur la figure 1. Cette douille 60 n’est qu’un exemple d’une pièce de retenue, qui permet de maintenir assemblés l’adaptateur 40, le corps 12 de l’élément thermostatique 10 et le ressort 50 tant que le dispositif thermostatique 1 n’est pas installé dans le boîtier 2, étant remarqué que, une fois que l’adaptateur 40 est reçu dans la chambre 4 et ainsi fixé au boîtier 2, cette pièce de retenue n’a plus d’intérêt fonctionnel. Quelle que soit la forme de réalisation de cette pièce de retenue, telle que la douille 60, on comprend que l’élément thermostatique 10, les obturateurs 20 et 30, l’adaptateur 40, le ressort 50 et cette pièce de retenue sont avantageusement assemblés les uns aux autres en formant un module, tel qu’illustré à la figure 1, indépendant du boîtier 2. Ce module peut ainsi être manipulé d’un seul tenant, indépendamment du boîtier 2, jusqu’à être installé à l’intérieur de ce dernier.
Le fonctionnement de la vanne 3 va maintenant être décrit en regard des figures 3 à 5, dans le cadre de l’exemple d’application de cette vanne, évoqué plus haut.
Dans la configuration de fonctionnement montrée sur les figures 3 et 4, le fluide entrant dans la chambre 4 par la voie 3A est, d’une part, empêché de franchir le siège 5 et donc de circuler dans la voie 3B par l’obturateur principal 20 en position fermée et, d’autre part, envoyé en totalité dans le passage latéral 6, en s’écoulant ainsi dans la voie 3C, du fait de l’ouverture de l’orifice 43 par le manchon cylindrique 32 de l’obturateur de by-pass 30, le fluide s’écoulant en passant successivement par le corps tubulaire 41, par l’orifice 43 et par la tubulure latérale 42.
Si la température du fluide alimentant la voie 3A augmente, la matière thermodilatable de l’élément thermostatique 10 se dilate, la chaleur du fluide étant
transmise à cette matière thermodilatable du fait que le corps 12 de l’élément thermostatique est balayé par des courants de fluide. Le déplacement axial du corps 12 par rapport au piston 14, qui est fixe par rapport au boîtier 2, entraîne le déplacement axial correspondant de l’obturateur principal 20 et de l’obturateur de by-pass 30. L’obturateur principal 20 s’écarte alors progressivement du siège 5, en ouvrant l’écoulement du fluide entre la chambre 4 et la voie 3B, tandis que, dans le même temps, l’obturateur de by-pass 30 ferme progressivement l’orifice 43, par recouvrement de ce dernier par le manchon cylindrique 32. Le fluide admis par la voie 3A est alors réparti entre les voies 3B et 3C.
Si la température du fluide alimentant la voie 3A continue d’augmenter, l’obturateur principal 20 s’écarte davantage du siège 5, tandis que l’orifice 43 se referme davantage, de manière correspondante, jusqu’à être totalement fermé, comme représenté sur la figure 5. Le fluide admis par la voie 3A est alors envoyé en totalité dans la voie 3B.
Si la température du fluide alimentant la voie 3A diminue ensuite, la matière thermodilatable de l’élément thermostatique 10 se contracte et, sous l’effet de décompression du ressort 50, l’obturateur principal 20 se rapproche progressivement du siège 5 et l’obturateur de by-pass 30 découvre progressivement l’orifice 43.
Divers aménagements et variantes au dispositif thermostatique 1 et à la vanne 3 décrits jusqu’ici sont par ailleurs envisageables. A titre d’exemples :
- plutôt que l’adaptateur 40 n’intègre des éléments de fixation, tels que les pattes de fixation 44, la fixation de cet adaptateur au boîtier 2 peut être prévue par une pièce rapportée, comme dans la variante du dispositif thermostatique 1 montrée sur les figures 6 à 8 sur lesquelles cette pièce rapportée, référencée 70, est un étrier dit « quart de tour » ; cet étrier se présente sous la forme d’une barrette, qui s’étend perpendiculairement à l’axe X-X et qui est liée axialement au corps 12 de l’élément thermostatique 10, tout en pouvant pivoter librement autour de l’axe X-X par rapport au corps 12 pour passer d’une première orientation, dans laquelle la barrette n’interfère pas axialement avec le boîtier 2, à une seconde orientation, qui est illustrée sur les figures 7 et 8 et dans laquelle les extrémités opposées de cette barrette interfèrent axialement avec le boîtier 2, en étant reçues dans des logements de ce dernier similaires aux logements 2.3 ;
- la forme de réalisation de l’élément thermostatique 10 n’est pas limitative ; en particulier, le corps 12 et le piston 14 de cet élément thermostatique peuvent présenter divers diamètres ;
- l’élément thermostatique 10 peut, en option, être piloté, c’est-à-dire intégrer dans son piston 14 une résistance électrique chauffante, raccordée électriquement au travers de la région 2.1 du boîtier 2 ; dans ce cas, la liaison mécanique entre le piston 14 et la région 2.1 du boîtier est prévue pour assurer le raccordement électrique correspondant, ce qui
peut être assuré par une connexion ad hoc du piston 14 lorsque le dispositif thermostatique 1 est installé dans le boîtier 2 ou par un assemblage préalable entre le boîtier 2 et le piston 14 sans le reste du dispositif 1 ; dans ce dernier cas, le module qui a été mentionné plus haut comme étant indépendant du boîtier 2 correspond à l’assemblage du corps 12 de l’élément thermostatique, des obturateurs 20 et 30, de l’adaptateur 40, du ressort 50 et de la douille 60 ou d’une pièce de retenue similaire à cette douille ;
- plutôt que de lier fixement le piston 14 de l’élément thermostatique 10 au boîtier 2, cela peut être le corps 12 de cet élément thermostatique qui est prévu fixe par rapport au boîtier, le piston 14 constituant alors la partie mobile de l’élément thermostatique, en assurant la fonction d’entraînement décrite jusqu’ici pour le corps 12 ; et/ou
- plutôt que d’être lié de manière fixe à la partie mobile de l’élément thermostatique 10, l’obturateur principal 20 peut être monté sur cette partie mobile avec une liberté de mouvement suivant l’axe X-X, sous réserve d’être associé à un ressort de rappel dédié ; l’obturateur principal 20 intègre alors ainsi une fonction de délestage en cas de surpression entre la chambre 4 et la voie 3B.
Claims
1. Dispositif thermostatique (1) pour réguler la circulation d’un fluide, ce dispositif thermostatique comprenant :
- un élément thermostatique (10), qui inclut une partie fixe (14), prévue pour être liée fixement à un boîtier (2) de canalisation du fluide, et une partie mobile (12) déplaçable selon un axe (X-X) par rapport à la partie fixe, en s’écartant de cette partie fixe sous l’action d’une dilatation d’une matière thermodilatable de l’élément thermostatique,
- un obturateur principal (20), qui est déplaçable selon l’axe par rapport au boîtier entre une position fermée, dans laquelle l’obturateur principal est appuyé axialement contre un siège fixe (5) du boîtier de manière à empêcher le fluide de circuler entre une chambre (4) du boîtier et l’extérieur du boîtier en franchissant le siège fixe, et une position ouverte, dans laquelle l’obturateur principal est écarté du siège fixe de manière à laisser le fluide s’écouler entre la chambre et l’extérieur du boîtier en franchissant le siège fixe, lequel obturateur principal est lié à la partie mobile de l’élément thermostatique de sorte que, lors de la dilatation de la matière thermodilatable, la partie mobile de l’élément thermostatique entraîne l’obturateur principal de la position fermée vers la position ouverte, et
- un obturateur de by-pass (30) qui est déplaçable selon l’axe par rapport au boîtier de manière à commander l’écoulement du fluide entre la chambre et un passage latéral (6) du boîtier, débouchant dans la chambre de manière transversale à l’axe, lequel obturateur de by-pass est lié fixement à la partie mobile de l’élément thermostatique de manière à laisser le fluide s’écouler entre la chambre et le passage latéral lorsque l’obturateur principal est en position fermée et à empêcher le fluide de s’écouler entre la chambre et le passage latéral lorsque l’obturateur principal est en position ouverte, caractérisé en ce que l’obturateur de by-pass (30) comporte un manchon cylindrique (32) qui est sensiblement centré sur l’axe (X-X), et en ce que le dispositif thermostatique (1 ) comprend en outre un adaptateur (40), qui est adapté pour être rapporté fixement au boîtier (2) à l’intérieur de la chambre (4) et qui comporte :
- un corps tubulaire (41 ), qui est sensiblement centré sur l’axe et à l’intérieur duquel le manchon cylindrique est à la fois reçu de manière ajustée et monté coulissant suivant l’axe, et
- une tubulure latérale (42), qui s’étend depuis une face latérale extérieure du corps tubulaire, qui présente, à l’opposé du corps tubulaire, une extrémité (42.1) de raccordement au passage latéral (6) du boîtier, et qui débouche à l’intérieur du corps tubulaire suivant une direction transversale à l’axe via un orifice (43), cet orifice étant fermé par le manchon cylindrique lorsque l’obturateur principal est en position ouverte tandis que le manchon cylindrique laisse ouvert l’orifice lorsque l’obturateur principal est en position fermée.
2. Dispositif thermostatique suivant la revendication 1 , dans lequel le dispositif thermostatique (1) comprend en outre un ressort (50), qui est comprimé dans l’axe (X-X) et qui rappelle la partie mobile (12) vers la partie fixe (14) de l’élément thermostatique (10) lors d’une contraction de la matière thermodilatable de manière à entraîner l’obturateur principal (20) de sa position ouverte vers sa position fermée.
3. Dispositif thermostatique suivant la revendication 2, dans lequel le ressort (50) est appuyé axialement contre l’adaptateur (40).
4. Dispositif thermostatique suivant la revendication 3, dans lequel le dispositif thermostatique (1) comporte en outre une pièce de retenue (60), qui est solidarisée à la partie mobile (12) de l’élément thermostatique (10) et qui est adaptée pour retenir axialement l’adaptateur (40) par rapport à la partie mobile de l’élément thermostatique à l’encontre de la poussée du ressort (50) avant que l’adaptateur ne soit rapporté fixement au boîtier (2).
5. Dispositif thermostatique suivant la revendication 4, dans lequel l’obturateur principal (20), le ressort (50), l’obturateur de by-pass (30), l’adaptateur (40) et la pièce de retenue (60), ainsi que la partie mobile (12) de l’élément thermostatique ou bien les parties mobile et fixe de l’élément thermostatique sont assemblés les uns aux autres en formant un module indépendant du boîtier (2).
6. Dispositif thermostatique suivant l’une quelconque des revendications précédentes, dans lequel ladite extrémité (42.1 ) de la tubulure latérale (42) est adaptée pour coopérer par complémentarité de formes avec une région (2.2) du boîtier (2) à travers laquelle le passage latéral (6) débouche dans la chambre (4).
7. Dispositif thermostatique suivant la revendication 6, dans lequel ladite extrémité (42.1) de la tubulure latérale (42) et ladite région (2.2) du boîtier (2) sont planes, en s’étendant de manière sensiblement parallèle à l’axe (X-X).
8. Dispositif thermostatique suivant l’une quelconque des revendications précédentes, dans lequel le manchon cylindrique (32) présente une section transversale circulaire.
9. Dispositif thermostatique suivant l’une quelconque des revendications précédentes, dans lequel l’adaptateur (40) intègre des éléments (44) de fixation au boîtier (2), qui sont adaptés pour se fixer au boîtier par déformation élastique, notamment par clipsage.
10. Dispositif thermostatique suivant l’une quelconque des revendications 1 à 8, dans lequel le dispositif thermostatique (1 ) comporte en outre au moins une pièce rapportée (70) de fixation de l’adaptateur (40) au boîtier (2), par exemple un étrier quart de tour.
11. Vanne thermostatique (3), comprenant un dispositif thermostatique (1) qui est conforme à l’une quelconque des revendications précédentes, et un boîtier (2) qui comporte :
- un siège fixe (5) contre lequel l’obturateur principal (20) du dispositif thermostatique est appuyé axialement lorsque l’obturateur principal est en position fermée,
- une chambre (4) à l’intérieur de laquelle l’adaptateur (40) du dispositif thermostatique est fixé au boîtier, et
- un passage latéral (6), qui débouche dans la chambre de manière transversale à l’axe (X-X), l’écoulement d’un fluide entre le passage latéral et la chambre étant commandé par l’obturateur de by-pass (30) du dispositif thermostatique.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180011582.1A CN115039051A (zh) | 2020-01-28 | 2021-01-27 | 用于控制流体循环的恒温装置以及包含所述装置的恒温阀 |
US17/794,958 US20230251675A1 (en) | 2020-01-28 | 2021-01-27 | Thermostatic device for controlling the circulation of a fluid, and thermostatic valve comprising such a device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2000812 | 2020-01-28 | ||
FR2000812A FR3106640B1 (fr) | 2020-01-28 | 2020-01-28 | Dispositif thermostatique pour réguler la circulation d’un fluide, ainsi que vanne thermostatique comprenant un tel dispositif |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021151921A1 true WO2021151921A1 (fr) | 2021-08-05 |
Family
ID=70295364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/051817 WO2021151921A1 (fr) | 2020-01-28 | 2021-01-27 | Dispositif thermostatique pour réguler la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230251675A1 (fr) |
CN (1) | CN115039051A (fr) |
FR (1) | FR3106640B1 (fr) |
WO (1) | WO2021151921A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024144619A1 (fr) * | 2022-12-28 | 2024-07-04 | Kirpart Otomotiv Parcalari Sanayi Ve Ticaret Anonim Sirketi | Ensemble thermostat fournissant une perméabilité élevée à faible course |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2589219A1 (fr) * | 1985-10-28 | 1987-04-30 | Vernet Procedes | Perfectionnements aux vannes mitigeuses thermostatiques pour circuits de refroidissement a liquide de moteurs a combustion interne |
GB2261934A (en) * | 1991-11-29 | 1993-06-02 | Behr Thomson Dehnstoffregler | A thermostatically controlled valve |
EP1024257A2 (fr) * | 1999-01-27 | 2000-08-02 | Nippon Thermostat Co., Ltd. | Thermostat |
EP1619568A2 (fr) | 2004-07-21 | 2006-01-25 | Gustav Wahler GmbH u. Co.KG | Clapet thérmostatique |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3633559A1 (de) * | 1985-10-09 | 1987-04-09 | Volkswagen Ag | Kuehlwasserregler |
US6742716B1 (en) * | 2003-02-28 | 2004-06-01 | Standard-Thomson Corporation | Thermostat |
FR3024520B1 (fr) * | 2014-07-29 | 2016-09-02 | Vernet | Vanne thermostatique a manchon |
FR3026458B1 (fr) * | 2014-09-25 | 2016-10-21 | Vernet | Dispositif thermostatique de regulation de la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif |
EP3163135A1 (fr) * | 2015-10-27 | 2017-05-03 | IMI Hydronic Engineering International SA | Soupape comportant un insert de vanne |
CN107559460A (zh) * | 2017-08-14 | 2018-01-09 | 上海易匠阀芯有限公司 | 一种恒温阀芯 |
US20190195375A1 (en) * | 2017-12-21 | 2019-06-27 | Caltherm Corporation | Cartridge assembly for a thermally responsive by-pass valve |
-
2020
- 2020-01-28 FR FR2000812A patent/FR3106640B1/fr active Active
-
2021
- 2021-01-27 US US17/794,958 patent/US20230251675A1/en active Pending
- 2021-01-27 CN CN202180011582.1A patent/CN115039051A/zh active Pending
- 2021-01-27 WO PCT/EP2021/051817 patent/WO2021151921A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2589219A1 (fr) * | 1985-10-28 | 1987-04-30 | Vernet Procedes | Perfectionnements aux vannes mitigeuses thermostatiques pour circuits de refroidissement a liquide de moteurs a combustion interne |
GB2261934A (en) * | 1991-11-29 | 1993-06-02 | Behr Thomson Dehnstoffregler | A thermostatically controlled valve |
EP1024257A2 (fr) * | 1999-01-27 | 2000-08-02 | Nippon Thermostat Co., Ltd. | Thermostat |
EP1619568A2 (fr) | 2004-07-21 | 2006-01-25 | Gustav Wahler GmbH u. Co.KG | Clapet thérmostatique |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024144619A1 (fr) * | 2022-12-28 | 2024-07-04 | Kirpart Otomotiv Parcalari Sanayi Ve Ticaret Anonim Sirketi | Ensemble thermostat fournissant une perméabilité élevée à faible course |
Also Published As
Publication number | Publication date |
---|---|
US20230251675A1 (en) | 2023-08-10 |
CN115039051A (zh) | 2022-09-09 |
FR3106640B1 (fr) | 2022-02-18 |
FR3106640A1 (fr) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1106883B1 (fr) | Dispositif thermostatique motorisé à élément thermostatique de sécurité | |
WO2016046340A2 (fr) | Dispositif thermostatique de régulation de la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif | |
FR2916479A1 (fr) | Module pour un circuit de refroidissement d'un moteur de vehicule automobile. | |
WO2011110783A1 (fr) | Vanne thermostatique à manchon | |
WO2015104325A1 (fr) | Vanne thermostatique | |
FR2987095A1 (fr) | Vanne thermostatique a manchon | |
EP1611320A2 (fr) | Module de refroidissement a derivation, notamment pour vehicule automobile | |
EP1614873A2 (fr) | Vanne pour un circuit de circulation de fluide et circuit associé à un moteur comportant une telle vanne | |
WO2008093027A2 (fr) | Vanne thermostatique de regulation d'un fluide, circuit de liquide de refroidissement incorporant une telle vanne et procede de fabrication d'une telle vanne | |
WO2021151921A1 (fr) | Dispositif thermostatique pour réguler la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif | |
WO2008053089A1 (fr) | Vanne thermostatique multivoies pour la distribution selective et la regulation de debit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de vehicule automobile | |
EP2655946B1 (fr) | Dispositif de commande du débit d'un fluide de refroidissement | |
WO2008009822A2 (fr) | Element thermostatique, vanne de regulation comportant un tel element et circuit de liquide de refroidissement incorporant une telle vanne | |
EP1486843B1 (fr) | Vanne thermostatique pour un circuit de circulation de fluide et moteur thermique muni d'un circuit de refroidissement comportant une telle vanne | |
WO2016169958A1 (fr) | Dispositif thermostatique de régulation de la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif | |
WO2014009287A1 (fr) | Vanne thermostatique à cartouche chauffante | |
WO2017162760A1 (fr) | Vanne thermostatique pour un circuit de circulation de fluide, ainsi que procédé de fabrication d'une telle vanne thermostatique | |
EP0677154B1 (fr) | Embrayage de vehicule automobile du type tire et a actionnement hydraulique | |
WO2023006902A1 (fr) | Vanne thermostatique | |
WO2023144175A1 (fr) | Vanne thermostatique | |
WO2024003144A1 (fr) | Vanne thermostatique à manchon | |
FR3137429A1 (fr) | Vanne thermostatique à manchon | |
WO2016151088A1 (fr) | Dispositif thermostatique de régulation de la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif | |
WO2016170268A1 (fr) | Electrovanne de purge pour dispositif d'evacuation de vapeurs | |
EP3464952A1 (fr) | Groupe motopropulseur d'un vehicule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21700992 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21700992 Country of ref document: EP Kind code of ref document: A1 |