WO2008053089A1 - Vanne thermostatique multivoies pour la distribution selective et la regulation de debit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de vehicule automobile - Google Patents

Vanne thermostatique multivoies pour la distribution selective et la regulation de debit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de vehicule automobile Download PDF

Info

Publication number
WO2008053089A1
WO2008053089A1 PCT/FR2007/001682 FR2007001682W WO2008053089A1 WO 2008053089 A1 WO2008053089 A1 WO 2008053089A1 FR 2007001682 W FR2007001682 W FR 2007001682W WO 2008053089 A1 WO2008053089 A1 WO 2008053089A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
branches
distribution chamber
thermostatic valve
coolant
Prior art date
Application number
PCT/FR2007/001682
Other languages
English (en)
Inventor
Florian Blake
Jean-François KUENY
Pascal Guerry
Thierry Gouaze
Original Assignee
Mgi Coutier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mgi Coutier filed Critical Mgi Coutier
Publication of WO2008053089A1 publication Critical patent/WO2008053089A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/022Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • Multi-channel thermostatic valve for selectively dispensing and regulating the flow of a coolant in a cooling circuit of a motor vehicle engine
  • the present invention relates to a multi-channel thermostatic valve for the selective distribution and flow regulation of a cooling liquid in at least three parallel branches of a cooling circuit of an engine, in particular a thermal, electric or hybrid engine, of a motor vehicle .
  • a cooling circuit of an engine in particular a thermal, electric or hybrid engine, of a motor vehicle .
  • Such a circuit is traversed by a coolant flowing in closed circuit under the action of a pump to thermally regulate the operation of the engine.
  • the coolant usually passes through such a circuit comprising several branches, including a branch which contains a heat exchanger on the front of the vehicle, commonly called radiator, a branch which contains another heat exchanger associated with the passenger compartment. , commonly called air heater, and a bypass branch which is a bypass of the cooling radiator, commonly called "bypass".
  • a cooling circuit may also comprise other branches comprising for example a degassing jar or other heat exchangers such as water / oil or water / air exchangers commonly called charge exchangers.
  • the cooling of the structure of an internal combustion engine is an essential function to protect the engine from any damage of thermal origin, particularly in the field of motor vehicles.
  • the known cooling circuits generally regulate the temperature of the engine structure via a two-position thermostat: open or closed.
  • the change of state of the thermostat depends on the temperature of the coolant with respect to a temperature threshold pre-set at the factory and therefore fixed for the entire life of the engine.
  • the characteristic of the pressure drop of each branch of the cooling circuit determines the flow of liquid in each of them. For a given circuit, this characteristic, which determines the cooling of the motor, is also fixed.
  • the engine control strategy is increasingly geared towards continuous regulation of engine operating parameters, particularly its temperature. .
  • it is desired to be able to channel the heat to strategic areas of the engine and / or to components located on the branches of the circuit and, at the most favorable times, depending on external parameters such as the engine speed.
  • thermostat The core of all current control systems is based on the thermostat. This consists of a simple brass cartridge filled with a wax that expands when the temperature increases, sealing means
  • thermostat has only one valve, it can only control the circuit branch "radiator” and it is commonly called “single-acting thermostat", while a thermostat called “double-acting” has two valves allowing to control at the same time the two branches radiator and bypass, said branch "by-pass".
  • the bypass branch allows the liquid to return directly to the engine to limit heat exchange: in a cold engine situation to reduce the temperature rise time or vehicle running situation to increase the control temperature.
  • the radiator branch allows for it to cool the fluid by heat exchange fluid / air.
  • the system is still limited to controlling the cooling of the engine and does not allow a complete management (in the various branches) of the regulation.
  • the subject of the invention is a multi-way thermostatic valve for selectively distributing and regulating the flow rate of a cooling liquid in at least three parallel branches of a cooling circuit of a motor vehicle engine, comprising essentially:
  • a hollow valve body in which is formed a generally cylindrical distribution chamber, generally designed to receive cooling liquid from the engine and in a side wall of which are arranged at the same axial height but angularly offset at least three side lights each leading to one of the branches of the cooling circuit; a hollow rotary shutter comprising a perforated bottom and a cylindrical skirt, of outside diameter slightly smaller than the inside diameter of the chamber, and a lateral lumen of which is likely to coincide with one or more of the lateral lumens of the distribution chamber, so as to allowing a coolant flow rate in the corresponding one or more branches of the cooling circuit;
  • Rotating means for rotating the shutter, proportionally to the temperature of the cooling liquid in the chamber comprising a cylindrical and threaded rotary drive rod mounted movably in axial translation in a central hole with a cylindrical wall threaded with the rotating shutter, and whose axial translation is controlled, depending the temperature of the coolant in the chamber, by a linear actuator integral with the rod and made in the form of a heat-expandable cartridge in length.
  • the threading of the rotary drive rod has at least a substantially rectilinear portion oriented along the axis of the rod, so as to define one or more "stable" angular positions of the rotating shutter, in which the rotation of the rotating shutter is temporarily interrupted while the axial translation of the driving rod continues.
  • the threading of the drive rod advantageously has intermediate portions, inclined or curved appropriately, in order to soften the transitions between the thread itself and the rectilinear portion or portions.
  • the heat-expandable cartridge is housed in a control compartment of the dispensing chamber, separated from the remainder of the dispensing chamber by a partition having at least one communication port, and the control compartment comprises heating means controlled (for example by a computer) as a function of the temperature (measured for example by a temperature sensor) of the coolant present in the distribution chamber.
  • Two side lights of the side wall of the distribution chamber leading respectively to one of the branches and to another of the branches of the cooling circuit, may be arranged symmetrically with respect to a central axis of the distribution chamber, to minimize the maneuvering torque.
  • the valve body advantageously comprises a motor attachment flange, for example a cylinder head of the engine.
  • FIG. 1 is a block diagram illustrating an example of a cooling circuit of a motor vehicle engine comprising a coolant distribution valve according to the invention
  • FIG. 2 is a perspective bottom view of an exemplary dispensing valve according to the invention
  • FIG. 3 is a partial perspective view of the dispensing valve of FIG. 2;
  • FIG. 4 is an exploded and perspective view of the dispensing valve of FIGS. 2 and 3; - Figure 5 is a cutaway view of the dispensing valve of Figure 2;
  • Figure 6 is a view similar to Figure 5 taken at another angle
  • FIGS. 7 to 10 are schematic cross-sectional views of the dispensing valve of the preceding figures, which illustrate four different operating positions of this valve;
  • FIG. 11 is a partial perspective view of an alternative embodiment of a drive rod of the valve.
  • a cooling circuit 18 for a motor vehicle engine 2 comprises a water pump 3 for circulating coolant through the engine 2, and a branch 4 commonly called “radiator” branch and provided with a radiator 5.
  • a bypass branch 7, commonly called “bypass”, is used to divert the coolant towards the pump 3.
  • This circuit 18 is completed by a motor degassing branch 8 and a radiator degassing branch 9 connecting the radiator 5 outlet to a degassing jar 11 (in the case of a diesel engine), as well as a heater branch 12 comprising a heater or cabin exchanger 13.
  • valve 19 comprises a hollow valve body 27 having a flange 33 for fixing to a cylinder head of the engine 2.
  • a generally cylindrical, generally cylindrical distribution chamber 30 is provided in the valve body 27 and provided to receive coolant from the engine 2 through an opening 29 in the valve body 27.
  • A. side wall of the chamber of distribution 30 has, at the same axial height but angularly offset, three lateral slots 26, 26 'and 26 "each leading, via an outlet pipe 28, 28' and 28" (better visible in FIGS. and 4) of the valve body 27, towards one of the branches 7, 12 and 4 of the cooling circuit 18.
  • a temperature sensor 55 is disposed on the valve body 27 to open into the dispensing chamber 30 to measure the temperature of the coolant therein.
  • the valve body 27 houses a rotary shutter 22 of annular shape rotatably mounted in the distribution chamber 30, and of outside diameter slightly smaller than the inside diameter of the chamber 30.
  • a drive rod 37 rotation, of cylindrical and threaded shape, is mounted movably in axial translation in a central hole 23 of the rotating shutter 22, the cylindrical wall is threaded in a complementary manner to the thread of the rod 37.
  • the rod 37 is immobilized in rotation. An axial translational movement of the rod 37 therefore causes rotation of the rotating shutter 22.
  • FIG. 11 An alternative embodiment of the rotational drive rod 37 is illustrated in FIG. 11.
  • the threading 59 of the rod 37 here has short substantially rectilinear portions 60 oriented along the axis of the rod 37, so as to define a or several "stable" angular positions of the rotating shutter 22 in which the rotation of the rotating shutter 22 is temporarily interrupted while the axial translation of the rod 37 is continued.
  • Adequately inclined or curved intermediate portions allow to soften the transitions between the thread 59 itself and the rectilinear portions 60.
  • the central hole 23 is surrounded by a perforated bottom 25 of the rotating shutter 22 which allows the passage of cooling liquid through the rotating shutter 22.
  • a lateral light 24 is formed in the cylindrical skirt of the rotating shutter 22 (see Figures 4 to 6), so as to coincide with one or more side lights 26, 26 'and 26 "of the distribution chamber 30 to allow the passage of a flow of coolant in the corresponding branch or branches 7, 12 and 4 of the cooling circuit 18.
  • the variable angular position of the rotating shutter 22 in the distribution chamber 30 (and more particularly the matching or not of the lateral light 24 of the rotating shutter 22 with one, two or three side lights 26, 26 ' or 26 "of the distribution chamber 30) thus makes it possible to obtain variable coolant flow rates in the various branches 7, 12 and 4 of the circuit 18.
  • the seal between the outer wall of the rotating shutter 22 and the valve body 27 is provided by means of moldings forming sealing barriers 32 or baffles. Seals are associated with them to improve the seal.
  • the axial translation of the rod 37 is controlled, proportionally to the temperature of the cooling liquid in the chamber 30, by a linear actuator integral with the rod 37 and made in the form of a brass cartridge 43 containing a heat-expandable wax so that the cartridge 43 is of variable length depending on the temperature of its environment.
  • the heat-expansion cartridge 43 is calibrated so that its expansion stroke is maximum when a critical engine safety temperature is reached.
  • the heat-expansion cartridge 43 is housed in a control compartment 20 of the distribution chamber 30.
  • the control compartment 20 is separated from the rest of the distribution chamber 30 by a circular partition 35 and comprises a cover 21 (omitted from the 3 to facilitate reading) on which an outlet pipe 45 is provided.
  • part of the liquid coming from the opening 29 is evacuated. , through a communication orifice 44 made in the partition 35 and via the outlet pipe 45, to the degassing jar 11 for example.
  • the latter expands and moves axially the driving rod 37 which rotates, by its threading, the shutter rotating 22, so that the lateral light 24 of the rotary shutter 22 first matches the lateral light 26 of the distribution chamber 30 so as to let coolant flow in the bypass branch 7, and also in correspondence with the side lumen 26 'so as to let coolant circulate in the heater branch 12 (see Figure 8).
  • the lateral lumen 24 of the rotating shutter 22 also partially matches the lateral lumen 26 "of the distribution chamber 30 so as to also circulate a little liquid of cooling in the radiator branch 4 of the circuit 18 (see FIG. 9)
  • the lateral light 24 of the rotary shutter 22 comes entirely in correspondence with the lateral light 26 "of the chamber 30 so as to circulate coolant in the radiator branch 4 of the circuit 18.
  • the aperture 24 of the shutter 22 coincides only with the side light 26 "in a cooling position of the engine 2, so that the cooling circulates only in the radiator branch 4 (see Figure 10).
  • a return spring 31 assists the return of the rotating shutter 22 and the rod 37 to the initial position.
  • the spring 31 is here a torsion spring (see Figure 6, left) but could also be a compression spring acting directly on the end of the rod 37.
  • the side ports 26 and 26 "of the distribution chamber 30, which lead respectively to the branch branch 7 and the radiator branch 4 of the cooling circuit 18, are arranged symmetrically with respect to a central axis of the dispensing chamber 30.
  • This arrangement reacts the two forces related to the pressure difference between the inlet 29 and the pressure in the pipes 28 and 28 "which then tend to cancel (valve closed).
  • a computer 56 By regulating the engine 2 to a higher temperature, for example about 100 0 C, it is thus possible to reduce pollution and fuel consumption.

Abstract

La vanne (19) comporte une chambre de distribution (30) recevant du liquide de refroidisseme

Description

Vanne thermostatique multivoies pour la distribution sélective et la régulation de débit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de véhicule automobile
La présente invention concerne une vanne thermostatique multivoies pour la distribution sélective et la régulation de débit d'un liquide de refroidissement dans au moins trois branches parallèles d'un circuit de refroidissement d'un moteur, notamment thermique, électrique ou hybride, de véhicule automobile. Un tel circuit est parcouru par un liquide de refroidissement circulant en circuit fermé sous l'action d'une pompe afin de réguler thermiquement le fonctionnement du moteur.
Pour permettre cette régulation du moteur, le liquide de refroidissement traverse habituellement un tel circuit comprenant plusieurs branches, dont une branche qui contient un échangeur thermique en façade de véhicule, couramment appelé radiateur, une branche qui contient un autre échangeur thermique associé à l'habitacle, couramment appelé aérotherme, et une branche de dérivation qui constitue une dérivation du radiateur de refroidissement, couramment appelée "by-pass". Un tel circuit de refroidissement peut encore comporter d'autres branches comprenant par exemple un bocal de dégazage ou d'autres échangeurs thermiques tels que des échangeurs eau/huile ou eau/air couramment appelés échangeurs de suralimentation.
Le refroidissement de la structure d'un moteur à combustion interne est une fonction essentielle pour prémunir le moteur de toute avarie d'origine thermique, notamment dans le domaine des véhicules automobiles.
Les circuits de refroidissement connus régulent généralement la température de la structure du moteur par l'intermédiaire d'un thermostat à deux positions: ouverte ou fermée. Le changement d'état du thermostat dépend de la température du liquide de refroidissement par rapport à un seuil de température pré-réglé en usine et donc figé pour toute la vie du moteur. De plus, la caractéristique de la perte de charge de chaque branche du circuit de refroidissement détermine le débit de liquide dans chacune d'elle. Pour un circuit donné, cette caractéristique, qui détermine le refroidissement du moteur, est figée elle aussi. Par ailleurs, avec l'évolution des normes antipollution et les besoins de réduction de consommation en carburant, la stratégie de contrôle du moteur s'oriente de plus en plus vers une régulation en continu des paramètres de fonctionnement du moteur, en particulier de sa température. Ainsi, en ce qui concerne le refroidissement, on souhaite pouvoir canaliser la chaleur vers des zones stratégiques du moteur et/ou vers des composants situés sur les branches du circuit et ce, aux moments les plus propices, en fonction de paramètres extérieurs tels que le régime du moteur.
Le cœur de tous les systèmes de régulation actuels est basé sur le thermostat. Celui-ci est composé d'une simple cartouche de laiton remplie d'une cire se dilatant quand la température augmente, de moyens d'étanchéité
(couramment un joint) et d'un ou deux clapets pouvant être rappelés en position initiale à l'aide de ressorts.
Si le thermostat ne comprend qu'un seul clapet, il ne peut commander que la branche de circuit « radiateur » et on le dénomme couramment "thermostat à simple effet", alors qu'un thermostat dit à "double effet" possède deux clapets permettant de commander en même temps les les deux branches radiateur et de dérivation, dite branche "by-pass".
Ce principe est simple et robuste d'où son utilisation systématique dans tout type de circuit caloporteur nécessitant une régulation. Il ne permet cependant de piloter que deux branches de circuit au maximum.
Les dernières évolutions consistent à ajouter, en plus de ce thermostat piloté, des électrovannes pour le pilotage des autres branches, ou à remplacer le thermostat par un actionneur rotatif commandant plusieurs branches comme le présentent les documents de brevets FR 2 817 011 ou FR 2 837 897. Tous ces systèmes ajoutés finissent par avoir un coût non négligeable.
L'inconvénient majeur des systèmes actuels basés sur la technologie du thermostat à double effet réside dans le fait que ces systèmes ne peuvent commander les débits que dans les branches radiateur et de dérivation dite by-pass.
La branche de dérivation permet au liquide de retourner directement au moteur pour limiter les échanges thermiques: en situation de moteur froid pour diminuer le temps de montée en température ou en situation de roulage de véhicule pour augmenter la température de régulation. La branche radiateur permet quant à elle de refroidir le fluide par des échanges thermiques fluide/air.
Le système reste malgré tout limité au pilotage du refroidissement du moteur et ne permet pas une gestion complète (dans les différentes branches) de la régulation.
Les moteurs rotatifs ou les systèmes associant thermostat piloté et électrovannes permettent quant à eux de réaliser un pilotage multivoies mais l'inconvénient majeur de ces systèmes est le coût élevé ce qui en limite l'intérêt. La présente invention vise à éviter ces inconvénients en proposant une vanne robuste, simple et économique pour la distribution du liquide de refroidissement du circuit d'un moteur, qui offre de grandes possibilités de régulation de la température des zones stratégiques de la structure du moteur. A cet effet, l'invention a pour objet une vanne thermostatique multivoies pour la distribution sélective et la régulation de débit d'un liquide de refroidissement dans au moins trois branches parallèles d'un circuit de refroidissement d'un moteur de véhicule automobile, comportant essentiellement:
- un corps de vanne creux dans lequel est ménagée une chambre de distribution, de forme générale sensiblement cylindrique, prévue pour recevoir du liquide de refroidissement en provenance du moteur et dans une paroi latérale de laquelle sont ménagées, à une même hauteur axiale mais décalées angulairement, au moins trois lumières latérales conduisant chacune vers une des branches du circuit de refroidissement; - un obturateur tournant creux comprenant un fond ajouré et une jupe cylindrique, de diamètre extérieur légèrement inférieur au diamètre intérieur de la chambre, et dont une lumière latérale est susceptible de coïncider avec une ou plusieurs des lumières latérales de la chambre de distribution, de manière à autoriser un débit de liquide de refroidissement dans la ou les branches correspondantes du circuit de refroidissement;
- des moyens d'entraînement en rotation de l'obturateur tournant, proportionnellement à la température du liquide de refroidissement dans la chambre, ces moyens d'entraînement en rotation comprenant une tige d'entraînement en rotation de forme cylindrique et filetée, montée mobile en translation axiale dans un trou central à paroi cylindrique taraudée de l'obturateur tournant, et dont la translation axiale est commandée, en fonction de la température du liquide de refroidissement dans la chambre, par un actionneur linéaire solidaire de la tige et réalisé sous la forme d'une cartouche thermo-dilatable en longueur.
Selon une possibilité, le filetage de la tige d'entraînement en rotation présente au moins une portion sensiblement rectiligne orientée selon l'axe de la tige, de manière à définir une ou plusieurs positions angulaires "stables" de l'obturateur tournant, dans lesquelles la rotation de l'obturateur tournant est temporairement interrompue tandis que se poursuit la translation axiale de la tige d'entraînement. Dans ce cas, le filetage de la tige d'entraînement présente avantageusement des portions intermédiaires, inclinées ou incurvées de manière appropriée, en vue d'adoucir les transitions entre le filetage proprement dit et la ou les portions rectilignes.
Dans une forme de réalisation, la cartouche thermo-dilatable est logée dans un compartiment de commande de la chambre de distribution, séparé du reste de la chambre de distribution par une cloison possédant au moins un orifice de communication, et le compartiment de commande comporte des moyens de chauffage commandés (par exemple par un calculateur) en fonction de la température (mesurée par exemple par un capteur de température) du liquide de refroidissement présent dans la chambre de distribution.
Deux des lumières latérales de la paroi latérale de la chambre de distribution, conduisant respectivement vers une des branches et vers une autre des branches du circuit de refroidissement, peuvent être disposées symétriquement par rapport à un axe central de la chambre de distribution, afin de minimiser le couple de manœuvre.
Le corps de vanne comporte avantageusement une bride de fixation au moteur, par exemple à une culasse du moteur.
La mise en œuvre de l'invention sera mieux comprise à l'aide de la description détaillée qui suit en regard du dessin annexé dans lequel :
- la figure 1 est un schéma fonctionnel illustrant un exemple de circuit de refroidissement d'un moteur de véhicule automobile comprenant une vanne de distribution de liquide de refroidissement selon l'invention;
- la figure 2 est une vue de dessous en perspective d'un exemple de vanne de distribution selon l'invention; - la figure 3 est une vue partielle en perspective de la vanηe de distribution de la figure 2;
- la figure 4 est une vue en éclaté et en perspective de la vanne de distribution des figures 2 et 3; - la figure 5 est une vue en écorché de la vanne de distribution de la figure 2;
- la figure 6 est une vue analogue à la figure 5 prise sous un autre angle;
- les figures 7 à 10 sont des vues schématiques en coupe transversale de la vanne de distribution des figures précédentes, qui illustrent quatre positions différentes de fonctionnement de cette vanne;
- la figure 11 une vue partielle en perspective d'une variante de réalisation d'une tige d'entraînement de la vanne.
Comme montré sur la figure 1 , un circuit de refroidissement 18 pour un moteur thermique 2 de véhicule automobile comprend une pompe à eau 3 prévue pour faire circuler du liquide de refroidissement à travers le moteur 2, et une branche 4 couramment appelée branche « radiateur » et pourvue d'un radiateur 5. Une branche de dérivation 7, couramment appelée "by-pass", permet de dévier le liquide de refroidissement en direction de la pompe 3. " Ce circuit 18 est complété par une branche de dégazage moteur 8 et une branche de dégazage radiateur 9 reliant la sortie du radiateur 5 à un bocal de dégazage 11 (dans le cas d'un moteur diesel), ainsi que par une branche aérotherme 12 comprenant un aérotherme ou échangeur d'habitacle 13. D'autres branches intégrant des systèmes additionnels se greffent sur ce même circuit 18: il s'agit d'une branche d'échangeur eau/huile 14 qui comprend un échangeur eau/huile 15, et d'une branche d'échangeur air/eau 16 comprenant un échangeur d'air de suralimentation 17.
La circulation et la régulation de débit du liquide de refroidissement dans les branches radiateur 4, by-pass 7 et aérotherme 12 du circuit de refroidissement 18 est contrôlée par une vanne thermostatique 19 à trois voies. Comme montré sur la figure 2, la vanne 19 comporte un corps de vanne 27 creux présentant une bride 33 de fixation à une culasse du moteur 2.
Une chambre de distribution 30, de forme générale sensiblement cylindrique, est ménagée dans le corps de vanne 27 et prévue pour recevoir du liquide de refroidissement en provenance du moteur 2 par une ouverture 29 pratiquée dans le corps de vanne 27. Une. paroi latérale de la chambre de distribution 30 présente, à une même hauteur axiale mais décalées angulairement, trois lumières latérales 26, 26' et 26" conduisant chacune, par l'intermédiaire d'une tubulure de sortie 28, 28' et 28" (mieux visibles sur les figures 3 et 4) du corps de vanne 27, vers une des branches 7, 12 et 4 du circuit de refroidissement 18.
Une sonde de température 55 est disposée sur le corps de vanne 27 de manière à déboucher dans la chambre de distribution 30 pour y mesurer la température du liquide de refroidissement.
Comme visible sur la figure 4, le corps de vanne 27 loge un obturateur tournant 22 de forme annulaire monté rotatif dans la chambre de distribution 30, et de diamètre extérieur légèrement inférieur au diamètre intérieur de la chambre 30. Une tige 37 d'entraînement en rotation, de forme cylindrique et filetée, est montée mobile en translation axiale dans un trou central 23 de l'obturateur tournant 22 dont la paroi cylindrique est taraudée de manière complémentaire au filetage de la tige 37. La tige 37 est immobilisée en rotation. Un mouvement de translation axiale de la tige 37 provoque par conséquent une rotation de l'obturateur tournant 22.
Une variante de réalisation de la tige d'entraînement en rotation 37 est illustrée sur la figure 11. Le filetage 59 de la tige 37 présente ici de courtes portions sensiblement rectilignes 60 orientées selon l'axe de la tige 37, de manière à définir une ou plusieurs positions angulaires "stables" de l'obturateur tournant 22 dans lesquelles la rotation de l'obturateur tournant 22 est temporairement interrompue tandis que se poursuit la translation axiale de la tige 37. Des portions intermédiaires, inclinées ou incurvées de manière appropriée, permettent d'adoucir les transitions entre le filetage 59 proprement dit et les portions rectilignes 60.
Le trou central 23 est entouré d'un fond ajouré 25 de l'obturateur tournant 22 qui permet le passage de liquide de refroidissement au travers de l'obturateur tournant 22. Une lumière latérale 24 est ménagée dans la jupe cylindrique de l'obturateur tournant 22 (voir figures 4 à 6), de manière à pouvoir coïncider avec une ou plusieurs des lumières latérales 26, 26' et 26" de la chambre de distribution 30 en vue d'autoriser le passage d'un débit de liquide de refroidissement dans la ou les branches correspondantes 7, 12 et 4 du circuit de refroidissement 18. La position angulaire variable de l'obturateur tournant 22 dans la chambre de distribution 30 (et plus particulièrement la mise en correspondance ou non de la lumière latérale 24 de l'obturateur tournant 22 avec une, deux ou trois des lumières latérales 26, 26' ou 26" de la chambre de distribution 30) permet ainsi d'obtenir des débits de liquide de refroidissement variables dans les différentes branches 7, 12 et 4 du circuit 18.
L'étanchéité entre la paroi extérieure de l'obturateur tournant 22 et le corps de vanne 27 est assurée au moyen de moulages formant des barrières d'étanchéité 32 ou des chicanes. Des joints d'étanchéité leur sont associés pour améliorer l'étanchéité.
La translation axiale de la tige 37 est commandée, proportionnellement à la température du liquide de refroidissement dans la chambre 30, par un actionneur linéaire solidaire de la tige 37 et réalisé sous la forme d'une cartouche de laiton 43 contenant une cire thermo-dilatable de sorte que la cartouche 43 est de longueur variable selon la température de son environnement.
La cartouche thermo-dilatable 43 est tarée de sorte que sa course de dilatation soit maximale lorsqu'une température critique de sécurité du moteur est atteinte. La cartouche thermo-dilatable 43 est logée dans un compartiment de commande 20 de la chambre de distribution 30. Le compartiment de commande 20 est séparé du reste de la chambre de distribution 30 par une cloison circulaire 35 et comporte un couvercle 21 (omis sur la figure 3 pour en faciliter la lecture) sur lequel est prévue une tubulure de sortie 45. Afin de permettre une circulation en continu du liquide de refroidissement autour de la cartouche thermo-dilatable 43, une partie du liquide venant de l'ouverture 29 est évacuée, à travers un orifice de communication 44 pratiqué dans la cloison 35 et via la tubulure de sortie 45, vers le bocal de dégazage 11 par exemple. La figure 7 montre la vanne en position fermée lorsque le moteur est froid (au démarrage du véhicule): l'obturateur tournant 22 est dans une position de chauffage du moteur qui empêche le liquide de refroidissement de circuler vers les branches 4 et 12 du circuit 18, afin de réduire le temps de montée en température du moteur 2. Seule une légère fuite de liquide de refroidissement peut être autorisée dans la branche by-pass 7. Lorsqu'une température de tarage prédéterminée de la cartouche thermo-dilatable 43, par exemple 400C, est atteinte, celle-ci se dilate et déplace axialement la tige d'entraînement 37 laquelle entraîne en rotation, par son filetage, l'obturateur tournant 22, de sorte que la lumière latérale 24 de l'obturateur tournant 22 vient d'abord en correspondance avec la lumière latérale 26 de la chambre de distribution 30 de manière à laisser circuler du liquide de refroidissement dans la branche by-pass 7, puis également en correspondance avec la lumière latérale 26' de manière à laisser circuler du liquide de refroidissement dans la branche aérotherme 12 (voir figure 8). A une température de, par exemple, 85°C, la lumière latérale 24 de l'obturateur tournant 22 vient partiellement aussi en correspondance avec la lumière latérale 26" de la chambre de distribution 30 de manière à laisser également circuler un peu de liquide de refroidissement dans la branche radiateur 4 du circuit 18 (voir figure 9). A une température de, par exemple, 95°C, la lumière latérale 24 de l'obturateur tournant 22 vient entièrement en correspondance avec la lumière latérale 26" de la chambre 30 de manière à laisser circuler du liquide de refroidissement dans la branche radiateur 4 du circuit 18.
Enfin, à une température critique de sécurité du moteur de, par exemple, 115°C, la lumière 24 de l'obturateur 22 coïncide uniquement avec la lumière latérale 26" dans une position de refroidissement du moteur 2, de sorte que le liquide de refroidissement ne circule que dans la branche radiateur 4 (voir figure 10).
Lorsque la cire thermo-dilatable de la cartouche 43 refroidit, un ressort de rappel 31 assiste le retour de l'obturateur tournant 22 et de la tige 37 en position initiale. Le ressort 31 est ici un ressort de torsion (voir la figure 6, à gauche) mais pourrait aussi être un ressort de compression agissant directement sur l'extrémité de la tige 37.
Dans une variante non représentée, les lumières latérales 26 et 26" de la chambre de distribution 30, qui conduisent respectivement vers la branche de dérivation 7 et vers la branche radiateur 4 du circuit de refroidissement 18, sont disposées symétriquement par rapport à un axe central de la chambre de distribution 30. Cette disposition met en réaction les deux efforts liés à la différence de pression entre l'entrée 29 et la pression dans les tubulures 28 et 28" qui ont alors tendance à s'annuler (vanne fermée). II est aussi possible de déclencher la dilatation de la cartouche 43 à une température de liquide de refroidissement inférieure à la température de "tarage" de la cartouche 43, par des moyens de chauffage (non représentés) prévus dans le compartiment 20 et commandés par un calculateur 56, en fonction de la température mesurée par la sonde 55. En régulant le moteur 2 à une température supérieure, par exemple environ 1000C, il est ainsi possible de réduire la pollution et la consommation en carburant.
Bien que l'invention ait été décrite avec des exemples particuliers de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre des revendications annexées.

Claims

REVENDICATIONS
1-. Vanne thermostatique multivoies (19) pour la distribution sélective et la régulation de débit d'un liquide de refroidissement dans au moins trois branches parallèles (4, 7, 8, 9, 12, 14, 16) d'un circuit de refroidissement d'un moteur (2) de véhicule automobile, comportant
- un corps de vanne (27) creux dans lequel est ménagée une chambre de distribution (30), de forme générale légèrement cylindrique, prévue pour recevoir du liquide de refroidissement en provenance du moteur (2) et dans une paroi latérale de laquelle sont ménagées, à une même hauteur axiale mais décalées angulairement, au moins trois lumières latérales (26, 26' et 26") conduisant chacune vers une des branches du circuit de refroidissement;
- un obturateur tournant creux (22) comprenant un fond ajouré (25) et une jupe cylindrique, de diamètre extérieur légèrement inférieur au diamètre intérieur de la chambre (30), et dont une lumière latérale (24) est susceptible de coïncider avec une ou plusieurs des lumières latérales (26, 26' et 26") de la chambre de distribution (30), de manière à autoriser un débit de liquide de refroidissement dans la ou les branches correspondantes du circuit de refroidissement;
- des moyens (37, 43) d'entraînement en rotation de l'obturateur tournant (22) proportionnellement à la température du liquide de refroidissement dans la chambre (30); caractérisée en ce que les moyens d'entraînement en rotation de l'obturateur tournant (22) comprennent une tige d'entraînement en rotation (37) de forme cylindrique et filetée, montée mobile en translation axiale dans un trou central (23) à paroi cylindrique de forme complémentaire de l'obturateur tournant (22), et dont la translation axiale est commandée, en fonction de la température du liquide de refroidissement dans la chambre (30), par un actionneur linéaire solidaire de la tige (37) et réalisé sous la forme d'une cartouche (43) thermo-dilatable en longueur.
2-. Vanne thermostatique multivoies selon la revendication 1 , caractérisée en ce que le filetage (59) de la tige d'entraînement en rotation (37) présente au moins une portion sensiblement rectiligne (60) orientée selon l'axe de la tige (37), de manière à définir une ou plusieurs positions angulaires stables de l'obturateur tournant (22) dans lesquelles la rotation de l'obturateur tournant (22) est temporairement interrompue tandis que se poursuit la translation axiale de la tige d'entraînement (37).
3-. Vanne thermostatique multivoies selon la revendication 2, caractérisée en ce que le filetage (59) de la tige d'entraînement (37) présente des portions intermédiaires, inclinées ou incurvées de manière appropriée, en vue d'adoucir les transitions entre le filetage (59) proprement dit et la ou les portions rectilignes (60).
A-. Vanne thermostatique multivoies selon l'une des revendications 1 à 3, caractérisée en ce que la cartouche thermo-dilatable (43) est logée dans un compartiment de commande (20) de la chambre de distribution (30), séparé du reste de la chambre de distribution (30) par une cloison (35) possédant au moins un orifice de communication (44), et en ce que le compartiment de commande (20) comporte des moyens de chauffage commandés en fonction de la température du liquide de refroidissement présent dans la chambre de distribution (30).
5-. Vanne thermostatique multivoies selon l'une des revendications
1 à 4, caractérisée en ce que deux des lumières latérales (26, 26") de la paroi latérale de la chambre de distribution (30), conduisant respectivement vers une des branches (7; 12; 14; 16) et vers une autre des branches (4; 12; 14; 16) du circuit de refroidissement (18), sont disposées symétriquement par rapport à un axe central de la chambre de distribution (30).
6-. Vanne thermostatique multivoies selon l'une des revendications 1 à 5, caractérisée en ce que le corps de vanne (27) comporte une bride (33) de fixation au moteur (2).
PCT/FR2007/001682 2006-11-02 2007-10-15 Vanne thermostatique multivoies pour la distribution selective et la regulation de debit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de vehicule automobile WO2008053089A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0609589A FR2908155B1 (fr) 2006-11-02 2006-11-02 Vanne thermostatique multivoies pour la distribution selective et la regulation de debit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de vehicule automobile
FR0609589 2006-11-02

Publications (1)

Publication Number Publication Date
WO2008053089A1 true WO2008053089A1 (fr) 2008-05-08

Family

ID=38180698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001682 WO2008053089A1 (fr) 2006-11-02 2007-10-15 Vanne thermostatique multivoies pour la distribution selective et la regulation de debit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de vehicule automobile

Country Status (2)

Country Link
FR (1) FR2908155B1 (fr)
WO (1) WO2008053089A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944321A1 (fr) * 2009-04-14 2010-10-15 Peugeot Citroen Automobiles Sa Procede d'utilisation du circuit de refroidissement d'un moteur thermique
EP2713083A1 (fr) 2012-09-27 2014-04-02 Systèmes Moteurs (Société par Actions Simplifiée) Vanne de distribution et de régulation à boisseau rotatif
CN104634157A (zh) * 2014-12-30 2015-05-20 中国天辰工程有限公司 一种内置式换热器温度调节阀
DE102014201167A1 (de) * 2014-01-23 2015-07-23 Bayerische Motoren Werke Aktiengesellschaft Wärmemanagementsystem für eine Verbrennungskraftmaschine
WO2018069053A1 (fr) * 2016-10-10 2018-04-19 Volkswagen Aktiengesellschaft Moteur à combustion interne
CN108005773A (zh) * 2016-10-27 2018-05-08 株式会社山田制作所 控制阀

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE408097A (fr) *
CH297535A (de) * 1951-09-24 1954-03-31 Burhop Emil Mischventil.
FR2817011A1 (fr) * 2000-11-17 2002-05-24 Coutier Moulage Gen Ind Dispositif de distribution et de regulation d'un fluide
FR2837897A1 (fr) * 2002-03-26 2003-10-03 Valeo Thermique Moteur Sa Vanne a commande electrique pour circuit de circulation de fluide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE408097A (fr) *
CH297535A (de) * 1951-09-24 1954-03-31 Burhop Emil Mischventil.
FR2817011A1 (fr) * 2000-11-17 2002-05-24 Coutier Moulage Gen Ind Dispositif de distribution et de regulation d'un fluide
FR2837897A1 (fr) * 2002-03-26 2003-10-03 Valeo Thermique Moteur Sa Vanne a commande electrique pour circuit de circulation de fluide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944321A1 (fr) * 2009-04-14 2010-10-15 Peugeot Citroen Automobiles Sa Procede d'utilisation du circuit de refroidissement d'un moteur thermique
EP2713083A1 (fr) 2012-09-27 2014-04-02 Systèmes Moteurs (Société par Actions Simplifiée) Vanne de distribution et de régulation à boisseau rotatif
DE102014201167A1 (de) * 2014-01-23 2015-07-23 Bayerische Motoren Werke Aktiengesellschaft Wärmemanagementsystem für eine Verbrennungskraftmaschine
US10023025B2 (en) 2014-01-23 2018-07-17 Bayerische Motoren Werke Aktiengesellschaft Heat management system for an internal combustion engine
CN104634157A (zh) * 2014-12-30 2015-05-20 中国天辰工程有限公司 一种内置式换热器温度调节阀
WO2018069053A1 (fr) * 2016-10-10 2018-04-19 Volkswagen Aktiengesellschaft Moteur à combustion interne
US11248517B2 (en) 2016-10-10 2022-02-15 Volkswagen Aktiengesellschaft Internal combustion engine
CN108005773A (zh) * 2016-10-27 2018-05-08 株式会社山田制作所 控制阀
CN108005773B (zh) * 2016-10-27 2021-04-06 株式会社山田制作所 控制阀

Also Published As

Publication number Publication date
FR2908155A1 (fr) 2008-05-09
FR2908155B1 (fr) 2008-12-12

Similar Documents

Publication Publication Date Title
EP1404995B1 (fr) Vanne de commande pour un circuit de refroidissement
EP1819952B1 (fr) Vanne de commande pour un circuit de circulation de fluide
EP1579132B1 (fr) Vanne de commande a etancheite amelioree pour circuit de circulation de fluide
WO2008053089A1 (fr) Vanne thermostatique multivoies pour la distribution selective et la regulation de debit d'un liquide de refroidissement dans un circuit de refroidissement d'un moteur de vehicule automobile
FR2955168A1 (fr) Vanne de commande pour circuit de circulation de liquide
EP2524125B1 (fr) Dispositif de vanne a tiroir et circuit comprenant une telle vanne
WO2011110783A1 (fr) Vanne thermostatique à manchon
WO2003081003A2 (fr) Vanne a commande electrique pour circulation de fluide
WO2008093027A2 (fr) Vanne thermostatique de regulation d'un fluide, circuit de liquide de refroidissement incorporant une telle vanne et procede de fabrication d'une telle vanne
WO2008009822A2 (fr) Element thermostatique, vanne de regulation comportant un tel element et circuit de liquide de refroidissement incorporant une telle vanne
FR2827357A1 (fr) Vanne de commande pour un circuit de circulation de fluide, en particulier pour un circuit de refroidissement d'un moteur
FR2790073A1 (fr) Echangeur thermique a plaques, a vanne integree
WO2003006856A1 (fr) Vanne de commande
FR2839164A1 (fr) Vanne de commande a fonctionnement securise et circuit de fluide equipe d'une telle vanne
EP1556659B1 (fr) Echangeur de chaleur a regulation de flux, en particulier pour vehicules automobiles
FR2850726A1 (fr) Vanne de commande pour circuit de circulation de fluide, notamment de vehicule automobile
EP1697668B1 (fr) Vanne de regulation thermique pour un circuit de circulation de fluide, en particulier pour un circuit de refroidissement d'un moteur
FR3030994A1 (fr) Dispositif electrique de chauffage d'au moins un fluide pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation comportant ce meme dispositif
EP4049107B1 (fr) Vanne thermostatique
WO2017203116A1 (fr) Groupe motopropulseur d'un vehicule
FR2974146A1 (fr) Element de ligne d'echappement avec un actionneur thermosensible
WO2021151921A1 (fr) Dispositif thermostatique pour réguler la circulation d'un fluide, ainsi que vanne thermostatique comprenant un tel dispositif
WO2015091773A1 (fr) Vanne de commande avec segment d'etancheite en escalier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07858444

Country of ref document: EP

Kind code of ref document: A1