WO2021149916A1 - 멀티라인빔을 이용하는 머신비전 검사 장치 - Google Patents

멀티라인빔을 이용하는 머신비전 검사 장치 Download PDF

Info

Publication number
WO2021149916A1
WO2021149916A1 PCT/KR2020/017993 KR2020017993W WO2021149916A1 WO 2021149916 A1 WO2021149916 A1 WO 2021149916A1 KR 2020017993 W KR2020017993 W KR 2020017993W WO 2021149916 A1 WO2021149916 A1 WO 2021149916A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
light source
machine vision
laser
vision inspection
Prior art date
Application number
PCT/KR2020/017993
Other languages
English (en)
French (fr)
Inventor
김영훈
김은규
Original Assignee
주식회사 유사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유사이언스 filed Critical 주식회사 유사이언스
Publication of WO2021149916A1 publication Critical patent/WO2021149916A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes

Definitions

  • the present invention relates to a machine vision inspection apparatus, and more particularly, to a machine vision inspection apparatus using a multi-line beam that implements a 2D multi-line laser beam using a diffraction optical system to inspect whether or not a defect has occurred in an object.
  • Machine vision technology is a technology that can create a synergistic effect of reducing labor costs and improving product quality by increasing inspection precision and automating the inspection process by replacing the part previously seen with the human eye with a machine. It is a technology that analyzes and is mainly used in various manufacturing processes such as surface finish inspection, physical defect tracking, textile product inspection, color inspection, and semiconductor manufacturing process inspection.
  • the conventional inspection apparatus using a line laser must acquire information through a mechanical scan, and additional devices and technologies are required for this purpose, thereby revealing a limitation in information acquisition as a light source itself.
  • a laser beam can easily form various types of beams due to a characteristic of being formed of light having the same wavelength.
  • the laser beam emitted from the light source source is refracted using at least one lens or the like, and the laser beam emitted from the light source can be transformed into a linear beam or a planar beam at a desired position and angle to be output. Since a laser beam having a desired energy intensity can be formed at a desired position and angle as described above, the laser beam is used in various and convenient ways in industrial fields, medical fields, and arts fields, and its application fields are gradually spreading.
  • a lens system in which a plurality of lenses having different functions and shapes are combined is generally used.
  • the plurality of lenses since the plurality of lenses partially absorb the laser beam emitted from the light source source, there is a problem in that the energy of the laser beam becomes weaker as it passes through the plurality of lenses.
  • the laser beam formed by using the lens system is concentrated to the center, and therefore the homogeneity of the laser beam is greatly different at the center and the edge of the linear or planar beam, so a uniform linear or planar beam is formed. I have a problem that is difficult to do.
  • Korean Patent Publication No. 10-2017-0122577 discloses a 2D pattern laser module.
  • the prior art relates to a 2D pattern laser module, including a laser source irradiating a laser beam, a triangular line grid structure, and a first transparent grid body disposed on the laser source and transmitting the irradiated laser beam , and a triangular line grid structure, which is disposed on the first transparent grid body and includes a second transparent grid body through which the laser beam passing through the first transparent grid body transmits to form a two-dimensional constant pattern light will do
  • the conventional technique includes a second grating that re-diffracts the laser beam that has passed through the first grating at a predetermined angle and transmits it, but as in the present invention, the laser beam is transmitted from the focused point light source.
  • the laser beam is transmitted from the focused point light source.
  • the present invention improves the structure of the prior art to provide a line generator that converts a laser beam generated from a point light source into line light, and a laser module that generates a 2D multi-line laser beam with a wide radiation angle by grating diffraction.
  • a line generator that converts a laser beam generated from a point light source into line light
  • a laser module that generates a 2D multi-line laser beam with a wide radiation angle by grating diffraction.
  • the present invention has been derived to solve the problems of the prior art described above, and an object of the present invention is to provide a line generator and grating diffraction generated by changing a laser beam generated as a point light source into line light in a machine vision inspection apparatus.
  • An object of the present invention is to provide a machine vision inspection apparatus using a multi-line beam that forms multi-line light of a constant ultra-fine line width with a wide radiation angle.
  • a machine vision inspection apparatus using a multi-line beam for solving the above technical problem is a light source source that irradiates a laser beam generated by a point light source, and transmits the point light source at a predetermined distance tip of the light source source
  • a laser module and the laser module for generating a 2D multi-line laser beam consisting of a line generator that converts the line light into line light and a diffraction optical system comprising at least two gratings disposed at the tip of the line generator to diffract the line light at a predetermined angle. It is characterized in that it includes a camera module that is spaced apart from the side by a predetermined distance to photograph an object.
  • the 2D multi-line laser beam formed by the diffraction optical system of the laser module of the present invention has a line radiation angle of at least 120 degrees at a working distance (WD) of 150 to 200 mm, and a line width of 50 to 100 ⁇ m. There is a characteristic.
  • a first grating body and a second grating body having a structure of a triangular line grating pattern having a pitch interval of 10 ⁇ m to 0.2 mm and an inclination angle of 10 degrees to 40 degrees are formed as a pair. It may be characterized in that the directions of the triangular line lattice pattern are mutually orthogonal to each other by being superimposed on each other.
  • the light source source of the present invention includes a laser diode (LD), and the laser diode has a focal point condensing lens on its front surface, and the laser beam generated from the laser diode is irradiated as a condensed point light source.
  • LD laser diode
  • the laser diode has a focal point condensing lens on its front surface, and the laser beam generated from the laser diode is irradiated as a condensed point light source.
  • the line generator of the present invention is characterized in that it is a glass-type cylinder lens having a focal length of 5 to 21 mm.
  • the line generator of the present invention is characterized in that it is a lattice body having a structure of a triangular line lattice pattern having a predetermined pitch and a predetermined inclination angle.
  • the camera module of the present invention may be a machine camera having an image sensor of either CCD or CMOS having a field of view (FOV) of at least 130 degrees and a frame rate of 100 fps or higher resolution.
  • FOV field of view
  • the machine vision inspection apparatus using the multi-line beam of the present invention described above, it is possible to emit 2D light source by the multi-line light source, and it is possible to check 3D information at once, thereby improving the speed of 3D information sensing. , it has the effect of being able to perform measurements in several places in the 2D area at once.
  • the machine vision inspection apparatus using the multi-line beam of the present invention can form a uniform light source by a grating diffraction optical system, so that deviation can be reduced by inspection of a wide plane inspection area and uniform line width, and the vertical depth is deep. It has the advantage of being able to inspect the area.
  • FIG. 1 is an exemplary diagram showing the configuration of a machine vision inspection apparatus using a multi-line beam according to the present invention.
  • FIG 2 is an exemplary view showing an example of use of a machine vision inspection apparatus using a multi-line beam according to the present invention.
  • 3A is an exemplary view illustrating a multi-line generation optical path formed by passing through a cylinder lens and a diffraction optical system according to a first embodiment of the present invention
  • 3B is an exemplary view illustrating a multi-line generation light path formed by passing through a grating structure and a diffraction optical system according to another embodiment of the present invention.
  • FIG. 4A is an exemplary view showing a first grid body and a second grid body according to the present invention
  • FIG. 4B is an exemplary diagram illustrating a cross-sectional view of the first and second grids of FIG. 4A and details of a triangular line grid pattern.
  • FIG. 5 is an enlarged view showing an exemplary working space showing the actual working state of a machine vision inspection apparatus using a multi-line beam of the present invention and an enlarged view of the characteristics of the generated multi-line beam.
  • FIG. 6 is a reference view showing the difference between the characteristics of laser light using the diffraction optical system according to the present invention and the characteristics of laser light using the general optical system.
  • FIG. 1 is an exemplary view showing the configuration of a machine vision inspection apparatus using a multi-line beam according to the present invention
  • FIG. 2 is an exemplary view showing an example of use of the machine vision inspection apparatus using a multi-line beam according to the present invention.
  • a machine vision inspection apparatus 10 using a multi-line beam of the present invention may include a laser module 100 and a camera module 200 .
  • the machine vision inspection apparatus 10 may further include a control unit and a device housing.
  • the laser module 100 is a diffraction light source 110 for generating a laser beam, a line generator 120 for converting a point light source into line light, and at least two gratings for diffracting the line light at a predetermined angle.
  • the optical system 130 is configured to generate a 2D multi-line laser beam.
  • the light source 100 generates a laser beam serving as a light source, and may be composed of any one of a light emitting diode (LED) or a laser diode (LD), and may form a condensed light source. Any light source may be applicable.
  • LED light emitting diode
  • LD laser diode
  • a focal point condensing lens may be provided on the front surface of the light source 100 for condensing the laser light, through which the condensed point light source is irradiated.
  • the line generator 120 serves to convert the focused point light into line light, and transmits the point light output from the tip of the light source 100 at a predetermined distance to change it into line light.
  • the one corresponding to the line generator 120 may be applied using any one of a cylinder lens (CL) 120a and a grating structure 120b.
  • FIG. 3A is an exemplary view illustrating a multi-line generation light path formed by passing through a cylinder lens and a diffraction optical system according to a first embodiment of the present invention
  • FIG. 3B is a grating structure and a diffraction optical system according to another embodiment of the present invention. It is an exemplary diagram expressing a multi-line generation optical path formed by passing through the .
  • the cylinder lens (CL) 120a is generally a lens used to change an aspect ratio of an image by focusing incident light on one line or magnifying an image only on a single axis. That is, the cylinder lens may be a lens suitable for generating a line by focusing and elongating incident light in a single line in a cylindrical shape.
  • the cylinder lens 120a of the present invention is characterized as a glass-type lens having a focal length of 5 to 21 mm.
  • the point light from the light source 100 is transmitted through the cylinder lens 120a to form a line light.
  • a grating structure 120b in which a triangular line pattern having a predetermined pitch and a predetermined inclination angle has a grid structure may be applied to the line generator 120 .
  • the lattice structure may be a transparent lattice structure composed of triangular lines having an inclination angle of 10 to 40 degrees with a pitch interval of 100 ⁇ m and 40 degrees or less.
  • the grating structure 120b or the first grating body and the second grating body used in the present invention corresponds to a diffraction grating that can diffract beams of light in several different directions when light is incident on the optics. .
  • the point light irradiated from the light source 100 is transmitted through the grating structure 120b to be formed as line light.
  • the first grating body 131 and the second grating body 132 disposed at the front end of the line generator 120 are superimposed on each other as a pair and are combined to form a transparent grating structure. am.
  • the diffraction optical system 130 includes a transparent first grating 131 disposed at the tip of the line generator 120 and diffracting line light at a predetermined angle to generate a first pattern beam, and the first grating ( 131) and re-diffracting the laser beam at a predetermined angle to transmit the transparent second grating body 132 .
  • FIG. 4A is an exemplary view showing a first grid body and a second grid body according to the present invention
  • FIG. 4B is a cross-sectional view of the first grid body and the second grid body of FIG. 4A and details of a triangular line grid pattern. It is one example diagram.
  • protrusions in the form of triangular lines are formed in a grid pattern having a predetermined pitch and a predetermined inclination angle.
  • the first grid body 131 and the second grid body 132 may include a bottom portion substantially parallel to the main surface by a predetermined interval between adjacent protrusions in the shape of a triangular line.
  • the pitch of the triangular line grid patterns 131 and 132 may be formed to be 10 ⁇ m to 0.2 mm, and the inclination angle of the triangular line grid patterns 131 and 132 is 40 degrees or less, and is formed by 10 degrees to 40 degrees.
  • the pitch of the triangular line grid patterns 131 and 132 may be formed at a pitch interval of 100 ⁇ m (0.1 mm), and the inclination angle of the triangular line grid patterns 131 and 132 is 35 degrees to 37 degrees may be formed.
  • the triangular line grid patterns 131 and 132 may have a height of 0.03 mm, and the thickness of the first and second grids on which the triangular line grid patterns 131 and 132 are formed is 0.20 mm.
  • the line directions of the triangular line grid pattern of the first grid body 131 and the triangular line grid pattern of the second grid body 132 are formed to be orthogonal to each other, so that the line width of the laser beam is 50 to 100 ⁇ m, It is possible to form a constant 2D multi-line laser beam having a uniform fine line width with a square angle of 110 degrees or more and use it for scanning.
  • the camera module 200 of the present invention has a high-performance image sensor using either a CCD (Charge Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor) having a high resolution of 100 fps or more. It's a machine camera.
  • the angle of view (FOV) of the camera module 200 may be 120 degrees to 130 degrees.
  • the laser module 100 and the camera module 200 are integrally mounted on the device housing, and the housing may have a height deviation of the laser module 100 and the camera module 200 of 60 mm,
  • the camera module 200 is disposed to be spaced apart from the side of the laser module 100 by a predetermined distance.
  • the separation distance may be preferably 70 mm.
  • the working distance WD may be, for example, 150 mm to 200 mm.
  • FIG. 5 is an enlarged view showing an exemplary working space showing the actual working state of a machine vision inspection apparatus using a multi-line beam of the present invention and an enlarged view of the characteristics of the generated multi-line beam.
  • Fig. 5 (b) is a video image obtained by photographing a 2D multi-line beam by the camera module
  • Fig. 5 (c) is an 18 times enlarged image.
  • the fine line width was formed within 50 ⁇ m (0.05 mm) with respect to a laser beam having a wavelength of 850 nm, and it can be seen that the line uniformity of the laser beam was 95%.
  • the working distance (WD) at which the fine line width is formed is 150 mm to 200 mm or less, and may be designed to have a light distribution error of less than 10%.
  • FIG. 6 is a reference diagram showing the difference between the characteristics of laser light using the diffraction optical system according to the present invention and the characteristics of laser light using the general optical system.
  • a focal length is formed according to the refractive index of the lens, and thus the measurement area may be limited to a certain portion.
  • FIG. 6(b) shows the characteristics of laser light using the diffraction optical system according to the present invention.
  • the diffraction optical system composed of the first and second gratings the focal length generated by a general lens is eliminated, and accordingly, a machine vision inspection device capable of obtaining a deep depth of field, that is, a wide measurement area, can be provided. will be.
  • the machine vision inspection apparatus using the multi-line beam of the present invention has an advantage in that the depth (vertical measurement area) is deep and the precision is improved as the laser light emitting module is implemented as a grating diffraction body.
  • the machine vision inspection apparatus using the multi-line beam of the present invention has the effect of improving the speed by inspecting a wide area (horizontal) and multiple defects at once by forming a line laser with a wide radiation angle by grating diffraction. .

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

본 발명은 멀티라인빔을 이용하는 머신비전 검사 장치에 관한 것으로, 이 장치는 점 광원으로 생성되는 레이저 빔을 조사하는 광원소스, 광원소스의 일정 거리 선단에서 점 광원을 투과시켜 라인 광으로 변화시키는 라인제너레이터, 라인제너레이터의 선단에 배치되어 상기 라인 광을 소정 각도로 회절 시키는 적어도 두 개 이상의 격자체로 이루어진 회절 광학계로 이루어져 2D 멀티라인 레이저빔을 생성하는 레이저 모듈, 및 레이저 모듈의 측면에서 일정 거리 이격되어 배치되어 대상물을 촬영하는 카메라 모듈을 포함하여 이루어진다.

Description

멀티라인빔을 이용하는 머신비전 검사 장치
본 발명은 머신비전 검사 장치에 관한 것으로서, 더욱 상세하게는 회절 광학계를 이용하여 2D 멀티라인 레이저빔을 구현하여 대상물의 결함 발생 유무를 검사하는 멀티라인빔을 이용하는 머신비전 검사 장치에 관한 것이다.
머신비전 기술은 사람의 눈으로 보아오던 부분을 기계(vision)로 대신해 검사정밀도를 높이고 검사 과정을 자동화함으로써 인건비 감소와 제품의 질적 향상이라는 시너지 효과를 창출할 수 있는 기술로서, 구체적으로는 이미지를 분석하는 기술이고, 주로 표면 마무리 검사, 물리적 결함 추적, 섬유제품의 검사, 색깔 검사, 반도체 제조 공정의 검사 등 다양한 제조과정에서 쓰인다.
그러나 종래의 라인 레이저를 이용한 검사 장치는 기계적인 스캔을 통해 정보를 획득해야 하며, 이를 위한 부가적인 장치와 기술이 요구됨으로써 광원 자체로서의 정보입수에 한계를 드러내고 있다.
일반적으로 레이저빔은 동일한 파장을 가진 광으로 형성되는 특성상 여러 형태의 빔을 용이하게 형성할 수 있다. 레이저빔의 광원은 광원소스에서 방출되는 레이저빔을 적어도 하나 이상의 렌즈 등을 이용하여 굴절시킴으로써, 광원에서 방출되는 레이저빔을 원하는 위치와 각도에서 선형 빔이나 면형 빔으로 변형하여 출력할 수 있다. 이와 같이 원하는 위치와 각도에서 원하는 에너지 강도를 가진 레이저빔을 형성할 수 있으므로, 레이저빔은 산업분야, 의료분야 및 예술분야 등에서 다양하고 편리하게 사용되고 있고, 그 응용분야도 점차 확산되는 추세이다.
한편, 레이저빔을 형성하기 위해 일반적으로 기능과 형상에 차이가 있는 다수계의 렌즈를 조합한 렌즈계를 사용하게 된다. 렌즈계를 이용하여 레이저빔을 형성하는 경우, 복수의 렌즈가 광원소스에서 방출되는 레이저빔을 일부 흡수하게 되므로 레이저빔의 에너지가 복수의 렌즈를 통과할수록 약해지는 문제점이 있다.
또한, 렌즈계를 사용하여 형성되는 레이저빔은 중앙으로 집중되고, 그로 인해 레이저빔의 균질도가 선형 빔이나 면형 빔의 중앙부와 가장자리부에서 편차가 심하므로 균일한 선형 빔이나 균일한 면형 빔을 형성하기가 어려운 문제가 있다.
또한, 렌즈계를 사용하는 경우, 복수의 렌즈를 사용하게 되므로 장치가 복잡해지고, 복수의 렌즈를 정렬하는데 어려움이 있으며, 고가의 렌즈를 사용함으로 인해 제작비용이 상승하는 문제가 있다.
또한, 현재 웨이퍼(wafer), 패키지(package) 등 소형 부품의 정확하고 신속한 검사를 위해 라인 스캔(line scan)을 이용한 3차원 모폴로지(3D Mophology) 검사 기술의 개발이 확산되고 있다.
상기와 같은 문제점을 해결하기 위한 종래의 기술로서, 대한민국 특허공개공보 제10-2017-0122577호(2017.11.06.)에서 2D 패턴 레이저 모듈을 개시하고 있다.
상기 종래의 기술은 2D 패턴 레이저 모듈에 관한 것으로, 레이저 빔을 조사하는 레이저 소스, 삼각라인 격자구조를 포함하며, 상기 레이저 소스에서 상에 배치되어 상기 조사된 레이저 빔이 투과하는 제1 투명 격자체, 및 삼각라인 격자 구조를 포함하며, 상기 제1 투명 격자체 상에 배치되어 상기 제1 투명 격자체를 투과한 레이저 빔이 투과하는 제2 투명 격자체를 포함하여 2차원의 일정한 패턴광을 형성하는 것이다.
그러나 상기 종래의 기술은 제1 격자체을 투과한 레이저 빔을 소정 각도로 재회절 시켜 투과시키는 제2 격자체를 포함하여 구성되고는 있으나, 본 발명에서와 같이 상기 레이저 빔이 집광된 점 광원으로부터 일정 라인광으로 1차 변환하고, 이를 다시 하나의 쌍으로 달라붙어 결합되어 있는 회절 광학계를 이용하여 라인의 균일도가 일정한 초미세 선폭의 멀티라인 광을 형성하게 하는 것과는 구조적 차이가 있다.
이에 본 발명은 상기 종래의 기술에 대한 구조를 개선하여 점 광원으로 생성되는 레이저 빔을 라인 광으로 변화시켜 생성하는 라인제너레이터 및 격자 회절에 의해 넓은 방사각의 2D 멀티라인 레이저빔을 생성하는 레이저 모듈을 제공함으로서, 새로운 멀티라인빔을 이용하는 머신비전 검사 장치를 개시하고자 하는 것이다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위해 도출된 것으로, 본 발명의 목적은, 머신비전 검사 장치에 있어 점 광원으로 생성되는 레이저 빔을 라인 광으로 변화시켜 생성하는 라인제너레이터 및 격자 회절에 의해 넓은 방사각의 일정한 초미세 선폭의 멀티라인 광을 형성하게 하는 멀티라인빔을 이용하는 머신비전 검사 장치를 제공하고자 하는 것이다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 측면에 따른 멀티라인빔을 이용하는 머신비전 검사 장치는 점 광원으로 생성되는 레이저 빔을 조사하는 광원소스, 상기 광원소스의 일정 거리 선단에서 상기 점 광원을 투과시켜 라인 광으로 변화시키는 라인제너레이터 및 상기 라인제너레이터의 선단에 배치되어 상기 라인 광을 소정 각도로 회절 시키는 적어도 두개 이상의 격자체로 이루어진 회절 광학계로 이루어져 2D 멀티라인 레이저빔을 생성하는 레이저 모듈과 상기 레이저 모듈의 측면에서 일정 거리 이격되어 배치되어 대상물을 촬영하는 카메라 모듈을 포함하여 이루어지는 특징이 있다.
또한, 본 발명의 상기 레이저 모듈의 회절광학계에 의해 형성되는 2D 멀티라인 레이저빔은 작업거리(WD) 150 내지 200㎜에서 라인 방사각이 적어도 120도 이상이고, 선폭이 50 내지 100㎛으로 형성되는 특징이 있다.
또한, 본 발명의 상기 회절 광학계는 피치 간격이 10㎛ 내지 0.2㎜이고, 경사각이 10도 내지 40도로 형성되는 삼각라인 격자 패턴의 구조를 갖는 제1 격자체 및 제2 격자체가 하나의 쌍으로 서로 포개어져 결합되어, 상기 삼각라인 격자 패턴의 방향이 상호 직교하도록 이루어진 것을 특징으로 할 수 있다.
또한, 본 발명의 상기 광원소스는 레이저 다이오드(laser diode, LD)를 포함하고, 상기 레이저 다이오드는 전면에 초접점 집광렌즈를 구비하여, 상기 레이저 다이오드에서 생성된 레이저 빔이 집광된 점 광원으로 조사되도록 하는 특징이 있다.
또한, 본 발명의 상기 라인제너레이터는 초점거리가 5 내지 21㎜를 갖는 글라스형 실린더 렌즈인 것을 특징이 있다.
또한, 본 발명의 상기 라인제너레이터는 일정 피치와 일정 경사각을 갖는 삼각라인 격자 패턴의 구조로 이루어진 격자체인 것을 특징이 있다.
또한, 본 발명의 상기 카메라 모듈은 화각(FOV)이 적어도 130도 내외이고, 프레임 속도가 100fps이상의 분해능을 갖는 CCD 또는 CMOS 중의 어느 하나의 이미지 센서를 구비하는 머신 카메라인 것을 특징으로 할 수 있다.
전술한 본 발명의 멀티라인빔을 이용하는 머신비전 검사 장치에 의하면, 멀티라인 광원에 의해 2D 광원의 방사가 가능하고, 3D 정보를 한 번에 확인이 가능하여 3D 정보 센싱의 속도를 향상할 수 있으며, 2D 영역내의 여러 곳의 측정을 한 번에 수행할 수 있는 효과가 있다.
또한, 본 발명의 멀티라인빔을 이용하는 머신비전 검사 장치는 격자 회절 광학계에 의한 균일 광원 형성이 가능하여 넓은 평면의 검사 영역과 균일한 선폭의 검사로 편차를 줄일 수 있으며, 수직방향의 심도가 깊은 영역의 검사가 가능한 장점이 있다.
도 1은 본 발명에 따른 멀티라인빔을 이용하는 머신비전 검사 장치의 구성을 보여주는 예시도이다.
도 2는 본 발명에 따른 멀티라인빔을 이용하는 머신비전 검사 장치의 사용예를 도시하는 예시도이다.
도 3a는 본 발명의 제1 실시예에 따른 실린더 렌즈와 회절 광학계를 투과하여 형성되는 멀티라인 생성 광 경로를 표현하는 예시도이고,
도 3b는 본 발명의 다른 실시예에 따른 격자 구조체와 회절 광학계를 투과하여 형성되는 멀티라인 생성 광 경로를 표현하는 예시도이다.
도 4a는 본 발명에 따른 제1 격자체 및 제2 격자체를 보여주는 예시도이고,
도 4b는 도 4a의 제1 격자체 및 제2 격자체의 단면도와 삼각라인 격자 패턴의 세부 사항을 도시한 예시도이다.
도 5는 본 발명의 멀티라인빔을 이용하는 머신비전 검사 장치의 실 작업 상태를 보여주는 작업공간의 예시도와 생성되는 멀티라인빔의 특성을 확대하여 보여주는 예시도이다.
도 6은 본 발명에 따른 회절 광학계를 사용한 레이저 광의 특성과 일반 광학계를 사용한 레이저 광의 특성 차이를 보여주는 참조도이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하면 아래와 같다.
이하, 첨부된 도면을 참조하여 본 발명의 멀티라인빔을 이용하는 머신비전 검사 장치의 바람직한 실시예에 대해 상세하게 설명하기로 한다.
도 1은 본 발명에 따른 멀티라인빔을 이용하는 머신비전 검사 장치의 구성을 보여주는 예시도면이고, 도 2는 본 발명에 따른 멀티라인빔을 이용하는 머신비전 검사 장치의 사용예를 도시하는 예시도이다.
도 1을 참조하면, 본 발명의 멀티라인빔을 이용하는 머신비전 검사 장치(10)는 레이저 모듈(100)과 카메라 모듈(200)을 포함하여 구성될 수 있다. 또한, 상기 머신비전 검사 장치(10)는 제어부 및 장치 하우징을 더 구비할 수 있다.
먼저 상기 레이저 모듈(100은 레이저 빔을 발생시키는 광원소스(110), 점 광원을 라인 광으로 변화시켜 생성하는 라인제너레이터(120), 상기 라인 광을 소정 각도로 회절 시키는 적어도 두개 이상의 격자체로 이루어진 회절 광학계(130)으로 이루어져 2D 멀티라인 레이저빔을 생성하게 된다.
상기 광원소스(100)는 광원이 되는 레이저 빔을 생성하는 것으로서, 발광 다이오드(light emitting diode, LED) 또는 레이저 다이오드(laser diode, LD)중 어느 하나로 구성될 수 있으며, 집광 광원을 형성할 수 있는 광원이면 어느 것이던 적용이 가능할 수 있다.
이때 레이저 광의 집광을 위하여 광원소스(100) 전면에 초접점 집광렌즈가 구비될 수 있고, 이를 통하여 집광된 점 광원이 조사되게 되는 것이다.
상기 라인제너레이터(120)는 상기 집광된 점 광을 라인 광으로 변화시켜 생성시키는 역할을 하는 것으로서, 상기 광원소스(100)의 일정 거리 선단에서 출력되는 점 광원을 투과시켜 라인 광으로 변화시킨다.
본 발명에서는 상기 라인제너레이터(120)에 해당하는 것을 실린더 렌즈(Cylinder lens, CL)(120a), 그레이팅 구조체(120b) 중의 어느 하나를 사용하여 적용될 수 있다.
도 3a는 본 발명의 제1 실시예에 따른 실린더 렌즈와 회절 광학계를 투과하여 형성되는 멀티라인 생성 광 경로를 표현하는 예시도이고, 도 3b는 본 발명의 다른 실시예에 따른 격자 구조체와 회절 광학계를 투과하여 형성되는 멀티라인 생성 광 경로를 표현하는 예시도이다.
상기 실린더 렌즈(CL)(120a)란 일반적으로 입사광을 한 줄에 초점을 맞추거나 단일 축에서만 이미지 확대가 가능하여 이미지의 화면 비(aspect ratio)를 변경하는데 사용되는 렌즈이다. 즉 상기 실린더 렌즈는 하나의 원통형의 형상으로 입사광을 한 줄로 초점을 맞추고 길게 늘여 라인 생성에 적합한 렌즈라 할 수 있다.
본 발명의 상기 실린더 렌즈(120a)는 초점거리가 5 내지 21㎜를 갖는 글라스형 렌즈인 것을 특징으로 한다.
이에 따라 상기 광원소스(100)로부터의 점 광이 상기 실린더 렌즈(120a)에 투과되어 라인 광으로 형성되게 된다.
또한, 본 발명의 다른 실시예로서, 상기 라인제너레이터(120)로 일정 피치와 일정 경사각을 갖는 삼각라인 패턴이 격자 구조로 이루어진 그레이팅(grating) 구조체(120b)를 적용할 수 있다. 상기 격자 구조는 피치 간격 100㎛와 40도 이하로서, 10도 내지 40도의 경사각을 갖는 삼각라인으로 구성되는 투명 격자 구조체일 수 있다.
본 발명에서 사용되는 그레이팅(grating) 구조체(120b) 또는 제1 격자체 및 제2 격자체는 광학에서 빛을 입사시키면 여러 다른 방향으로 빛살을 회절 시킬 수 있는 회절격자(diffraction grating)에 대응하는 것이다.
이에 따라 상기 광원소스(100)로부터의 조사된 점 광이 상기 그레이팅 구조체(120b)에 투과되어 라인 광으로 형성될 수 있게 된다.
본 발명의 상기 회절 광학계(130)는 상기 라인제너레이터(120)의 선단에 배치되는 제1 격자체(131)와 제2 격자체(132)가 하나의 쌍으로 서로 포개어져 결합되어 이루어진 투명 격자 구조체이다.
즉 상기 회절 광학계(130)는 상기 라인제너레이터(120)의 선단에 배치되어 라인 광을 소정 각도로 회절 시켜 1차 패턴 빔을 생성하는 투명한 제1 격자체(131)와, 상기 제1 격자체(131)를 투과한 레이저 빔을 소정 각도로 재회절 시켜 투과시키는 투명한 제2 격자체(132)로 구성되어진다.
이에 도 4a는 본 발명에 따른 제1 격자체 및 제2 격자체를 보여주는 예시도이고, 도 4b는 도 4a의 제1 격자체 및 제2 격자체의 단면도와 삼각라인 격자 패턴의 세부 사항을 도시한 예시도이다.
도시에서와 같이 본 발명의 제1 격자체(131)와 제2 격자체(132)는 삼각 라인 형태의 돌출부가 일정 피치와 일정 경사각을 갖는 격자 패턴으로 형성되어진다.
또한, 구현에 따라서, 제1 격자체(131)와 제2 격자체(132)는는 삼각 라인 형태의 인접한 돌출부 사이에 소정 간격만큼 주면과 대략 평행한 저면부를 구비할 수 있다.
이때, 상기 삼각라인 격자 패턴(131, 132)의 피치는 10㎛ 내지 0.2㎜로 형성될 수 있으며, 상기 삼각라인 격자 패턴(131, 132)의 경사각은 40도 이하로서, 10도 내지 40도로 형성될 수 있다.
이에 보다 바람직하게는, 상기 삼각라인 격자 패턴(131, 132)의 피치는 100㎛(0.1 ㎜)의 피치 간격으로 형성될 수 있으며, 상기 삼각라인 격자 패턴(131, 132)의 경사각은 35도 내지 37도로 형성될 수 있다.
한편, 상기 삼각라인 격자 패턴(131, 132)의 높이는 0.03 ㎜로 형성될 수 있으며, 상기 삼각라인 격자 패턴(131, 132)이 형성되는 제1, 제2 격자체의 두께는 0.20 ㎜로 형성될 수 있다.
이에 상기 제1 격자체(131)의 삼각라인 격자 패턴과 상기 제2 격자체(132)의 삼각라인 격자 패턴의 라인 방향이 상호 직교되도록 형성되어, 레이저 빔의 선폭이 50 내지 100㎛이고, 방사각이 110도 이상으로 균질한 미세 선폭을 갖는 일정한 2D 멀티라인 레이저빔을 형성하여 스캔에 활용할 수 있게 되는 것이다.
또한, 본 발명의 카메라 모듈(200)은 프레임 속도(Frame rate)이 100fps이상으로 높은 분해능을 갖는 CCD(Charge Coupled Device) 또는 CMOS(Complementary Metal-Oxide Semiconductor) 중의 어느 하나를 사용한 고성능 이미지 센서를 구비한 머신 카메라이다. 상기 카메라 모듈(200)의 화각(FOV)은 120도 내지 130도일 수 있다.
이에 따라 상기 레이저 모듈(100)과 카메라 모듈(200)은 장치 하우징에 일체로 탑재되며, 상기 하우징은 상기 레이저 모듈(100)과 카메라 모듈(200)의 높이 편차는 60㎜로 구비될 수 있으며, 상기 카메라 모듈(200)은 상기 레이저 모듈(100)의 측면에서 일정거리 이격되어 배치된다. 이때의 이격 거리는 70㎜가 바람직 할 수 있다. 이때의 작업거리(WD)는 예컨대 150㎜에서 200㎜로 형성될 수 있다.
도 5는 본 발명의 멀티라인빔을 이용하는 머신비전 검사 장치의 실 작업 상태를 보여주는 작업공간의 예시도와 생성되는 멀티라인빔의 특성을 확대하여 보여주는 예시도이다.
도 5의 (b)는 2D 멀티라인빔을 상기 카메라 모듈에 의하여 촬영한 영상 이미지이고, 도 5의 (c)는 이를 18배 부분 확대한 이미지이다.
이때 상기 미세 선폭(Line width)은 파장(Wavelength)이 850nm의 레이저 빔에 대하여 50㎛(0.05㎜)로 이내로 형성되었으며, 레이저 빔의 선 균질성(uniformity)은 95%인 것을 확인할 수 있다.
그리고 이때의 상기 미세 선폭이 형성되는 작업거리(working distance, WD)가 150㎜ 내지 200㎜ 이하이고, 10% 이내의 광분포도 오차를 갖도록 설계될 수 있다.
또한, 도 6은 본 발명에 따른 회절 광학계를 사용한 레이저 광의 특성과 일반 광학계를 사용한 레이저 광의 특성 차이를 보여주는 참조도이다.
도 6의 (a)는 일반 광학계를 사용한 레이저 광의 특성으로서, 일반 렌즈를 사용하게 되면. 렌즈의 굴절율에 따른 초점 거리(Focal Length)가 형성되게 되고, 이에 따라 측정 영역이 일정 부분으로 한정되는 단점을 가질 수 있다.
이에 도 6의 (b)는 본 발명에 따른 회절 광학계를 사용한 레이저 광의 특성을 보여주고 있다. 도시와 같이 제1, 제2 격자체로 이루어진 회절 광학계를 이용함으로서 일반 렌즈에서 생성되는 초점 거리가 없어지게 되고, 이에 따른 깊은 심도, 즉 광범위한 측정 영역을 얻을 수 있는 머신비전 검사 장치가 제공될 수 있는 것이다.
이에 따라 본 발명의 멀티라인빔을 이용하는 머신비전 검사 장치는 레이저 발광 모듈이 격자 회절체로 구현됨으로서 심도(수직측정영역)가 깊으면서 정밀도가 향상되는 장점이 있다.
또한, 본 발명의 멀티라인빔을 이용하는 머신비전 검사 장치는 격자 회절에 의해 넓은 방사각의 라인레이저를 형성함으로서 한 번에 넓은 영역(수평) 및 다수의 결함을 검사하여 속도를 향상하는 효과가 있다.
전술한 바와 같이 본 발명의 상세한 설명에서는 바람직한 실시예들에 관하여 설명하였지만, 본 발명의 기술분야에서 통상의 지식을 가진 사람이라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음은 이해할 수 있을 것이다.

Claims (6)

  1. 머신비전 검사 장치에 있어서,
    점 광원으로 생성되는 레이저 빔을 조사하는 광원소스,
    상기 광원소스의 일정 거리 선단에서 상기 점 광원을 투과시켜 라인 광으로 변화시키는 라인제너레이터 및
    상기 라인제너레이터의 선단에 배치되어 상기 라인 광을 소정 각도로 회절 시키는 적어도 두개 이상의 격자체로 이루어진 회절 광학계로 이루어져 2D 멀티라인 레이저빔을 생성하는 레이저 모듈과
    상기 레이저 모듈의 측면에서 일정 거리 이격되어 배치되어 대상물을 촬영하는 카메라 모듈을 포함하여 이루어지는 것을 특징으로 하는 멀티라인빔을 이용하는 머신비전 검사 장치.
  2. 청구항 1에 있어서,
    상기 회절 광학계는 피치 간격이 10㎛ 내지 0.2 ㎜이고, 경사각이 10도 내지 40도로 형성되는 삼각라인 격자 패턴의 구조를 갖는 제1 격자체 및 제2 격자체가 하나의 쌍으로 서로 포개어져 결합되어, 상기 삼각라인 격자 패턴의 방향이 상호 직교하도록 이루어진 것을 특징으로 하는 멀티라인빔을 이용하는 머신비전 검사 장치.
  3. 청구항 1에 있어서,
    상기 광원소스는 레이저 다이오드(laser diode, LD)를 포함하고, 상기 레이저 다이오드는 전면에 초접점 집광렌즈를 구비하여, 상기 레이저 다이오드에서 생성된 레이저 빔이 집광된 점 광원으로 조사되도록 하는 것을 특징으로 하는 멀티라인 생성 레이저 장치.
  4. 청구항 1에 있어서,
    상기 라인제너레이터는 초점거리가 5 내지 21㎜를 갖는 글라스형 실린더 렌즈인 것을 특징으로 하는 멀티라인빔을 이용하는 머신비전 검사 장치.
  5. 청구항 1에 있어서,
    상기 라인제너레이터는 일정 피치와 일정 경사각을 갖는 삼각라인 격자 패턴의 구조로 이루어진 격자체인 것을 특징으로 하는 멀티라인빔을 이용하는 머신비전 검사 장치.
  6. 청구항 1에 있어서,
    상기 카메라 모듈은 화각(FOV)이 적어도 130도 내외이고, 프레임 속도가 100fps이상의 분해능을 갖는 CCD 또는 CMOS 중의 어느 하나의 이미지 센서를 구비하는 머신 카메라인 것을 특징으로 하는 멀티라인빔을 이용하는 머신비전 검사 장치.
PCT/KR2020/017993 2020-01-20 2020-12-10 멀티라인빔을 이용하는 머신비전 검사 장치 WO2021149916A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0007560 2020-01-20
KR1020200007560A KR20210093675A (ko) 2020-01-20 2020-01-20 멀티라인빔을 이용하는 머신비전 검사 장치

Publications (1)

Publication Number Publication Date
WO2021149916A1 true WO2021149916A1 (ko) 2021-07-29

Family

ID=76993042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017993 WO2021149916A1 (ko) 2020-01-20 2020-12-10 멀티라인빔을 이용하는 머신비전 검사 장치

Country Status (2)

Country Link
KR (1) KR20210093675A (ko)
WO (1) WO2021149916A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566706A (zh) * 2021-08-01 2021-10-29 北京工业大学 一种复合快速高精度视觉定位的装置与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266523A (ja) * 1999-03-18 2000-09-29 Juki Corp 被測定物の測定方法及びその装置
KR20130000415A (ko) * 2010-03-31 2013-01-02 캐논 가부시끼가이샤 광간섭 단층촬상장치 및 그 제어장치
JP2013205332A (ja) * 2012-03-29 2013-10-07 Toray Ind Inc 欠点検査装置および欠点検査方法
KR20170122577A (ko) * 2016-04-27 2017-11-06 주식회사 유알테크놀로지 2d 패턴 레이저 모듈
KR20190040301A (ko) * 2016-08-22 2019-04-17 매직 립, 인코포레이티드 다층 회절 접안렌즈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266523A (ja) * 1999-03-18 2000-09-29 Juki Corp 被測定物の測定方法及びその装置
KR20130000415A (ko) * 2010-03-31 2013-01-02 캐논 가부시끼가이샤 광간섭 단층촬상장치 및 그 제어장치
JP2013205332A (ja) * 2012-03-29 2013-10-07 Toray Ind Inc 欠点検査装置および欠点検査方法
KR20170122577A (ko) * 2016-04-27 2017-11-06 주식회사 유알테크놀로지 2d 패턴 레이저 모듈
KR20190040301A (ko) * 2016-08-22 2019-04-17 매직 립, 인코포레이티드 다층 회절 접안렌즈

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566706A (zh) * 2021-08-01 2021-10-29 北京工业大学 一种复合快速高精度视觉定位的装置与方法

Also Published As

Publication number Publication date
KR20210093675A (ko) 2021-07-28

Similar Documents

Publication Publication Date Title
KR20180124087A (ko) 웨이퍼와 같은 물체의 2d/3d 검사를 위한 공초점 장치 및 방법
DE102006004802B4 (de) Bilderfassungssystem und Verfahren zur Herstellung mindestens eines Bilderfassungssystems
US4867570A (en) Three-dimensional information processing method and apparatus for obtaining three-dimensional information of object by projecting a plurality of pattern beams onto object
US6839469B2 (en) Multiparallel three dimensional optical microscopy system
KR20180122435A (ko) 가변적인 공간 해상도를 가지고 웨이퍼와 같은 물체의 2d/3d 검사를 위한 공초점 장치 및 방법
Kamal et al. Properties of moiré magnifiers
JP2015135463A (ja) 顕微鏡装置、及び、顕微鏡システム
US10165935B2 (en) Measuring head of an endoscopic device and process for inspecting and measuring an object
CN104457600B (zh) 一种光纤准直器阵列的测试装置
WO2016171412A1 (ko) 압전소자 기반의 패턴 모듈과 가변 초점 렌즈를 이용한 3차원의 구강 스캔 장치
WO2015088102A1 (ko) 광 전달 매질의 투과 특성을 측정하는 방법 및 이를 이용한 이미지 획득 장치
KR101466258B1 (ko) 촬상장치
WO2021149916A1 (ko) 멀티라인빔을 이용하는 머신비전 검사 장치
WO2018147631A1 (ko) 색수차 렌즈를 이용한 공초점 영상 구현 장치
DE2451668A1 (de) Anordnung zur geometrischen trennung von lichtfluessen in abbildungssystemen
JP6450392B2 (ja) 撮像装置
WO2017090922A1 (ko) 슬릿광원 및 그를 가지는 비전검사장치
JP3595117B2 (ja) アレイ素子検査方法およびアレイ素子検査装置
EP3550348A1 (en) Image sensor and method of manufacturing image sensor
WO2016068504A1 (ko) 다기능 분광장치
WO2021149915A1 (ko) 멀티라인 생성 레이저 장치
KR20210095245A (ko) 라인빔을 이용하는 머신비전 검사 장치
DE102018202096A1 (de) Bildsensor für eine positionssensorvorrichtung, positionssensorvorrichtung mit einem bildsensor, lithographieanlage mit einer positionssensorvorrichtung und verfahren zum betreiben eines bildsensors
TWI696823B (zh) 狹縫光源以及具有該狹縫光源的視覺檢查裝置
WO2021039952A1 (ja) 皮膚検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915400

Country of ref document: EP

Kind code of ref document: A1