WO2021149731A1 - 新規吸着剤 - Google Patents

新規吸着剤 Download PDF

Info

Publication number
WO2021149731A1
WO2021149731A1 PCT/JP2021/001879 JP2021001879W WO2021149731A1 WO 2021149731 A1 WO2021149731 A1 WO 2021149731A1 JP 2021001879 W JP2021001879 W JP 2021001879W WO 2021149731 A1 WO2021149731 A1 WO 2021149731A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
salt
water
acid
metal
Prior art date
Application number
PCT/JP2021/001879
Other languages
English (en)
French (fr)
Inventor
和之 石井
恭子 榎本
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to EP21744438.9A priority Critical patent/EP4094829A4/en
Priority to US17/793,807 priority patent/US20230071223A1/en
Priority to JP2021572771A priority patent/JPWO2021149731A1/ja
Publication of WO2021149731A1 publication Critical patent/WO2021149731A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/10Simple alkali metal cyanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/11Complex cyanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a novel adsorbent capable of adsorbing specific metal element ions.
  • Porous substances such as activated carbon and zeolite are widely used for the treatment of wastewater. These are inexpensive and effective for removing organic substances, but have poor ability to adsorb metal ions. Therefore, various adsorbents and methods for removing specific elemental ions, particularly harmful heavy metal ions and radioactive metal ions, from wastewater are being studied.
  • An object of the present invention is to provide an adsorbent having low cost, versatility, and high adsorption performance.
  • the present inventors have been conducting research on a technique for adsorbing radioactive cesium using Prussian blue or an analog thereof, that is, a metal salt of cyanometallic acid. Among them, he found that the metal salt of cyanometallic acid can efficiently adsorb metal element ions other than cesium and strontium, and completed the present invention.
  • the particles of the metallic salt of cyanometallic acid obtained by reacting the salt of cyanometallic acid with a compound containing a metal element in the presence of a water-soluble compound.
  • a water-soluble compound if the water-soluble compound is incorporated therein and the counterion of the incorporated water-soluble compound is capable of forming a compound having a low solubility product with a specific elemental ion contained in the waste water.
  • a compound having a low solubility product is formed and adsorbed on the particles of the metal salt of cyanometallic acid. Therefore, it has been found that a specific element ion contained in the waste water or the like can be removed. Completed.
  • the present invention is as follows: (1) A metal element adsorbent containing a metal salt of cyanometallic acid, excluding cesium and strontium. (2) The adsorbent according to (1) above, wherein the metal element is at least one selected from the group consisting of manganese, iron, cobalt, nickel, zinc, ruthenium, rhodium, barium, lanthanum and cerium. (3) The adsorbent according to (1) or (2) above, wherein the metal salt of cyanometallic acid is obtained by reacting the salt of cyanometallic acid with a compound containing a metal element.
  • the reaction was carried out using a porous substance in which one of a compound containing a metal element and a salt of cyanometallic acid was supported and an aqueous solution of the other, and the metal salt of cyanometallic acid was a porous substance.
  • the adsorbent according to (3) above which is formed and immobilized inside and outside.
  • the present invention includes the following inventions.
  • the metal salt of cyanometallic acid is a transition metal salt of hexacyanometallic acid.
  • the adsorbent according to (11) or (12) above, wherein the compound having a low solubility product is strontium sulfate or barium sulfate.
  • the solubility product comprises a step of reacting a salt of cyanometallic acid with a compound containing a metal element in the presence of a water-soluble compound to produce a metal salt of cyanometallic acid containing a water-soluble compound.
  • the metal salt of cyanometallic acid is a transition metal salt of hexacyanometallic acid.
  • the adsorbent of the present invention has high adsorption performance, and not only cesium and strontium, but also a plurality of harmful metal ions in wastewater such as manganese, iron, cobalt, nickel, zinc, ruthenium, rhodium, barium, lanthanum and cerium. It is excellent in versatility because it can be targeted.
  • the adsorbent of the present invention is obtained by reacting a salt of cyanometallic acid with a compound containing a metal element in the presence of a water-soluble compound. That is, it is considered that the metal salt of cyanometallic acid obtained by the reaction contains the water-soluble compound. Then, when the counter ion of the water-soluble compound in the adsorbent can form a compound having a low solubility product with a specific elemental ion contained in waste water or the like, the adsorbent is brought into contact with the waste water.
  • the adsorbent of the present invention can be appropriately used by selecting a water-soluble compound capable of supplying a counter ion capable of forming a compound having a low solubility product with the element ion according to the element ion to be adsorbed in the waste water. Since it can be designed, it has excellent versatility.
  • the adsorbent of the present invention can be obtained from an inexpensive and easy-to-handle material by a simple manufacturing method, it is suitable for industrial use such as treatment of a large amount of wastewater from an economical point of view. It is a thing. Further, since both the metal salt of cyanometallic acid and the compound having a low solubility product are almost insoluble in water, the treated adsorbent can be easily recovered without leaving it in the aquatic environment.
  • Test Example 14 the diffraction peaks of the adsorbents of Examples 9, 10, 14 and 15 by powder X-ray diffraction measurement are shown.
  • the present invention relates to a metal element adsorbent containing a metal salt of cyanometallic acid and excluding cesium and strontium (hereinafter, also referred to as "first adsorbent").
  • the metal salt of cyanometallic acid contained in the first adsorbent of the present invention is a kind of cyano-bridged metal complex having cyanometallic acid ion as a constructing element. It is preferably a metal salt of hexacyanometallic acid or a metal salt of octacyanometallic acid, and more preferably a metal salt of hexacyanometallic acid.
  • metal salts of hexacyanoferrate metal acid its composition formula: a M A m [M B (CN ) 6] compound represented by n ⁇ hH 2 O, the metal ions (M A, M B) cyano It is understood that it has a face-centered cubic structure in which the bases are alternately bridged.
  • M A is preferably a transition metal, more preferably a first row transition metal.
  • the first transition metal include scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu). ) And zinc (Zn).
  • manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu) and zinc (Zn), more preferably iron (Fe), cobalt (Co), copper (Cu). ) And zinc (Zn), more preferably iron (Fe), copper (Cu) and zinc (Zn), even more preferably iron (Fe) and copper (Cu), especially ferric (Fe (III)) or Second copper (Cu (II)) can be mentioned.
  • the metal salts of hexacyanometal acids of the present invention, a part of the metal ions (e.g., M A) may also include those substituted with an alkali metal ion or the like derived from the raw material.
  • M B may be any metal species capable of forming a octahedral six-coordinate structure, preferably, a chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), more Preferred is iron (Fe), especially ferrous iron (Fe (II)).
  • Cr chromium
  • Mn manganese
  • Fe iron
  • Co cobalt
  • m iron
  • n and h is determined according to the oxidation number of M A and M B.
  • examples of the metal salt of hexacyanoferrate (II), which is one aspect of the metal salt of cyanometal acid of the present invention, include the first transition metal salt thereof, and specifically, a scandium (Sc) salt. Titanium (Ti) salt, vanadium (V) salt, chromium (Cr) salt, manganese (Mn) salt, iron (Fe) salt, cobalt (Co) salt, nickel (Ni) salt, copper (Cu) salt, zinc ( Zn) salts, and one or more mixed salts thereof.
  • a scandium (Sc) salt a scandium (Sc) salt. Titanium (Ti) salt, vanadium (V) salt, chromium (Cr) salt, manganese (Mn) salt, iron (Fe) salt, cobalt (Co) salt, nickel (Ni) salt, copper (Cu) salt, zinc ( Zn) salts, and one or more mixed salts thereof.
  • manganese (Mn) salt of hexacyanoferric (II) acid iron (Fe) salt, cobalt (Co) salt, nickel (Ni) salt, copper (Cu) salt, zinc (Zn) salt and one of them.
  • a mixed salt of two or more kinds can be mentioned, more preferably iron (Fe) salt, cobalt (Co) salt, copper (Cu) salt and zinc (Zn) salt, and further preferably iron (Fe) salt, copper ( Cu) and zinc (Zn) salts, even more preferably copper (Cu) or iron (Fe) salts, especially ferric (Fe (III)) or ferric (Cu (II)) salts.
  • the ferric (Fe (III)) salt of hexacyanoferrate (II) acid which is one aspect of the metal salt of hexacyanometallic acid of the present invention, is also called Prussian blue or Prussian blue, and has been used as a pigment for a long time.
  • Its ideal chemical composition Fe (III) 4 [Fe ( II) (CN) 6] 3 ⁇ xH 2 O (x 14 ⁇ 16) ( i.e., "hexacyanoferrate (II) iron (III) hydrate
  • some iron ions may be replaced with alkali metal ions derived from the raw material.
  • the first adsorbent of the present invention is obtained by reacting a salt of cyanometallic acid with a compound containing a metal element.
  • the reaction is preferably carried out in theoretical quantities.
  • the "theoretical amount” is the molar amount (theoretical amount) of the compound containing a metal element with respect to 1 mol of the cyanometallic acid salt, which is theoretically required to generate the composition of the metal salt of the cyanometallic acid. means.
  • the metal salt of cyanometallic acid is copper (II) hexacyanoferrate (II)
  • the amount of a compound containing Cu (II), for example, copper (II) chloride is 2 mol with respect to 1 mol of a salt of hexacyanometallic acid, which is theoretically required for the above, the amount is 100 mol% of the theoretical amount. Means 2 mol.
  • the amount of the compound containing a metal element to be used per 1 mol of the salt of cyanometallic acid may be 100 mol% or more of the theoretical amount, but may be less than 100 mol% of the theoretical amount, and is preferable. It is 10 mol% or more and 120 mol% or less, more preferably 15 mol% or more and 110 mol% or less, and further preferably 20 mol% or more and 100% mol% or less.
  • the salt of cyanometallic acid used in the present invention is water-soluble and reacts with a compound containing a metal element to form a Prussian blue analog of the present invention (that is, a metal salt of cyanometallic acid).
  • a metal salt of cyanometallic acid there is no particular limitation as long as it is possible.
  • Examples include alkali metal salts of cyanometallic acids (sodium salts, potassium salts, etc.) or hydrates thereof.
  • the salt of hexacyanoferric (II) acid used in the present invention is water-soluble and hexacyano by reaction with a compound containing a metal element.
  • a metal salt of iron (II) acid There is no particular limitation as long as it can form a metal salt of iron (II) acid.
  • Specific examples include potassium hexacyanoferrate (II), sodium hexacyanoferrate (II), and hydrates thereof. The use of potassium hexacyanoferrate (II) or a hydrate thereof is preferred.
  • the compound containing a metal element used in the present invention is particularly limited as long as it is water-soluble and can form a metal salt of the cyanometallic acid of the present invention by reaction with a salt of the cyanometallic acid. do not have.
  • Examples of the compound containing such a metal element include halides, nitrates, sulfates, perchlorates, acetates, phosphates, hexafluorophosphates, borates, and tetrafluoroborates of the first transition metal. Examples include phosphates or hydrates thereof.
  • halides such as manganese chloride (II), ferric chloride (III), cobalt chloride (II), nickel chloride (II), copper (II) chloride; ferric nitrate (III), ferric nitrate.
  • Nitric acid such as ferric chloride (II); ferric sulfate (III), sulfate such as ferric sulfate (II); perchlorate such as ferric perchlorate (III); copper acetate (II) , Acetates such as zinc acetate (II); or hydrates thereof.
  • the first adsorbent of the present invention can be obtained by reacting a salt of cyanometallic acid with a compound containing a metal element.
  • the reaction is carried out by mixing a salt of cyanometallic acid and a compound containing a metal element in water, and the order of addition thereof is not particularly limited.
  • an aqueous solution of a salt of a cyanometallic acid and an aqueous solution of a compound containing a metal element may be prepared and mixed in advance.
  • the concentration of the cyanometallic acid salt in the reaction solution may be appropriately selected depending on the water solubility of the cyanometallic acid salt to be used, and is preferably in the range of 0.001 to 1M, particularly 0.01 to 0. .Selected from the range of 3M.
  • the concentration of the compound containing a metal element in the reaction solution may be appropriately selected depending on the water solubility of the compound containing the metal element to be used, and is preferably in the range of 0.001 to 1 M, particularly 0. It is selected from the range of 01 to 0.3M.
  • the reaction temperature varies depending on the type of raw material, the amount used, etc., but is usually 0 ° C to 100 ° C, preferably 10 ° C to 30 ° C, and more preferably the ambient temperature (about 25 ° C).
  • the reaction time varies depending on the reaction temperature and the like, but is usually 1 second to 24 hours, preferably 1 second to 10 minutes.
  • the reaction pressure is appropriately set as needed and may be pressurized, depressurized, or atmospheric pressure, but is preferably atmospheric pressure.
  • the reaction atmosphere can be appropriately selected as needed, but is preferably an air atmosphere or an inert gas atmosphere such as nitrogen or argon.
  • an adsorbent containing a metal salt of cyanometallic acid precipitates as a solid.
  • the precipitated metal salt of cyanometallic acid can be isolated and purified by known means such as centrifugation, filtration, decantation, extraction, washing and the like. Further, if necessary, the adsorbent of the present invention can be obtained as a powder by using means such as drying and pulverization.
  • the first adsorbent of the present invention may be in the form of being supported on a porous substance.
  • the reaction uses a porous substance in which one of a compound containing a salt of cyanometallic acid and a metal element is supported in advance and an aqueous solution of the other.
  • the reaction is preferably carried out using an aqueous solution of a porous material carrying a compound containing a metal element and a salt of a cyanometallic acid.
  • the obtained metal salt of cyanometallic acid is formed and immobilized inside or outside the porous substance.
  • Metal salts of cyanometallic acids are insoluble in media such as water and organic solvents and are not dyeable to substrates. Therefore, when it is supported on a porous substance, it is usually necessary to post-treat it with a binder resin or the like to fix the metal salt of cyanometallic acid in a form attached to the surface of the porous substance.
  • the metal salt of cyanometallic acid is formed in situ and exists as fine particles on the surface and / or inside of the porous substance, so that the porous substance is stable regardless of the binder resin or the like. Can be fixed to.
  • porous materials include powders, particles, films, foams, woven fabrics, non-woven fabrics, woven fabrics, etc., preferably hydrophilic or water-absorbent powders, particles, films, foams, woven fabrics, non-woven fabrics, woven fabrics and the like. It can be appropriately selected from the materials.
  • the porous material include hydrophilic inorganic particles such as silica gel, alumina, and diatomaceous earth; and a filter medium based on hydrophilic fibers (for example, filter paper, membrane filter, porous particles, fiber rod, etc.). ..
  • the hydrophilic fiber in the present invention may be paraphrased as a water-absorbent fiber.
  • Hydrophilic fiber is a general term for fibers that easily take in water molecules, and is typically a cellulose fiber.
  • cellulose fibers include natural fibers such as wool, cotton, silk, hemp and pulp, recycled fibers such as rayon, polynosic, cupra (Bemberg®) and lyocell (Tencell®), or theirs.
  • composite fibers include composite fibers.
  • semi-synthetic fibers such as acetate and triacetate, or synthetic fibers such as polyamide-based, polyvinyl alcohol-based, polyvinylidene chloride-based, polyvinyl chloride-based, polyester-based, polyacrylonitrile-based, polyolefin-based or polyurethane-based fibers, or composites thereof.
  • the fiber may be modified by a known method to impart hydrophilicity. Further, as long as it has a desired hydrophilicity, it may be a composite material of hydrophilic fiber and synthetic fiber, for example, a cellulose composite fiber of cellulose fiber and synthetic fiber (for example, a polyolefin fiber such as polyethylene or polypropylene). .. Cellulose fibers or cellulose composite fibers are preferable as the hydrophilic fibers because of their price and availability.
  • the present invention is selected from the group consisting of metal elements contained in wastewater and the like, specifically metal elements other than cesium and strontium, particularly manganese, iron, cobalt, nickel, zinc, ruthenium, rhodium, barium, lantern and cerium.
  • the present invention relates to a method for adsorbing and removing at least one of these elements.
  • the above-mentioned adsorbent of the present invention is brought into contact with an aqueous sample containing a metal element to be adsorbed, and metal element ions are formed in defects or voids of the metal salt of cyanometallic acid contained in the adsorbent. Includes the step of adsorbing.
  • an aqueous sample containing a metal element typically refers to water contaminated with a harmful substance such as a chemical substance.
  • a harmful substance such as a chemical substance.
  • chemicals are harmful metal element ions or compounds capable of releasing such harmful metal element ions.
  • harmful metal elements are harmful heavy metals or radioactive metals. Examples of such metals include magnesium (Mg), aluminum (Al), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc.
  • Examples of the aqueous sample containing the metal element to be adsorbed include water environments such as polluted seas, rivers, ponds and lakes, water taken from polluted water environments, industrial wastewater and the like.
  • the adsorbent is removed following the above-mentioned step of contacting the adsorbent of the present invention with an aqueous sample containing a metal element to be adsorbed.
  • the process may be included.
  • the metal salt of the cyanometallic acid contained in the adsorbent is almost insoluble in water, the adsorbent after the treatment is not left in the aqueous solution, and is known means such as centrifugation and filtration. , Can be easily collected by decantation, etc.
  • the present invention also relates to an adsorbent for elemental ions constituting a compound having a low solubility product, which comprises a metal salt of cyanometallic acid containing a water-soluble compound capable of supplying counter ions of the elemental ions (hereinafter referred to as "adsorbent”. , Also called “second adsorbent”).
  • the solubility product (also referred to as "K sp ”) means the product of the concentrations of the yin and yang ions constituting the poorly soluble salt when it is present in the solution. That is, salts MA sparingly soluble slightly soluble in the solvent M + and A at a constant temperature - when you are dissociated, M + concentrations [M +] and A - concentration [A -] and the means - product [M +] ⁇ [a] .
  • the solubility product of a sparingly soluble salt is known to show a constant value at a constant temperature, has been published in various materials, and is known to those skilled in the art.
  • the “compound having a low solubility product” means a compound having a solubility product of 10-5 or less, preferably 10-6 or less, and more preferably 10-7 or less.
  • the compound having a low solubility product is formed from element ions constituting the compound having a low solubility product and counter ions supplied from a water-soluble compound described later.
  • the "elemental ion constituting the compound having a low solubility product" is an elemental ion to be adsorbed. Therefore, the compound having a low solubility product of the present invention contains the element to be adsorbed and has a solubility product of 10-5 or less, preferably 10-6 or less, more preferably 10 depending on the element ion to be adsorbed. From the compounds of -7 or less, it can be appropriately designed in consideration of cost, safety and the like.
  • strontium ion (Sr 2+ ) strontium carbonate
  • strontium sulfate is preferable from the viewpoint of cost and safety of the water-soluble compound that supplies counter ions.
  • the element ion to be adsorbed is not particularly limited as long as it constitutes a compound having a low solubility product, but is preferably a metal ion, for example, a harmful heavy metal ion or a radioactive one. It is a metal ion.
  • metals include magnesium (Mg), aluminum (Al), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc.
  • a particularly preferred adsorption target is barium or strontium.
  • the water-soluble compound of the present invention is not particularly limited as long as it contains a counter ion constituting a compound having a low solubility product together with an element ion to be adsorbed and is soluble in water.
  • counter ions arsenate ion (AsO 4 3-), a halide ion (F -, Cl -, Br -, I -), carbonate ions (CO 3 2-), phosphate ion ( PO 4 3-), sulfate ion (SO 4 2-), hydroxide ions (OH -), formate ions (CHO 2 -), oxalate (C 2 O 4 2-), acetate ion (C 2 H 3 O 2 -), and the like sulfide ions (S 2-).
  • the water-soluble compound of the present invention is a water-soluble salt of these counter ions, preferably an alkali metal salt or an alkaline earth metal salt of these counter ions, for example, a sodium salt or a potassium salt.
  • a particularly preferred water-soluble compound is sodium sulfate.
  • the second adsorbent of the present invention comprises a metal salt of a cyanometallic acid containing a water-soluble compound.
  • the metal salt of the cyanometallic acid is as described in the first adsorbent described above.
  • the second adsorbent of the present invention is obtained by reacting a salt of cyanometallic acid with a compound containing a metal element in the presence of a water-soluble compound, and the metal salt of cyanometallic acid produced by such a reaction. It is considered that the coordination structure contains a water-soluble compound.
  • the compound containing the salt of cyanometallic acid and the metal element used in the present invention is as described in the above-mentioned first adsorbent.
  • the second adsorbent of the present invention is obtained by reacting a salt of cyanometallic acid with a compound containing a metal element in the presence of a water-soluble compound.
  • the reaction is carried out by mixing a water-soluble compound, a salt of a cyanometallic acid, and a compound containing a metal element in water, and the order of addition thereof is not particularly limited.
  • it may be carried out by preparing an aqueous solution of each raw material in advance and mixing them, or an aqueous solution of two kinds of raw materials (for example, a water-soluble compound and a salt of cyanometallic acid) and the remaining one kind of raw material (for example).
  • it may be carried out by preparing an aqueous solution of (a compound containing a metal element) and mixing it. Further, as shown in Examples described later, it may be carried out by preparing and mixing a solution of a salt of cyanometallic acid and a solution of a compound containing a metal element using an aqueous solution of a water-soluble compound as a solvent. ..
  • the concentration of the cyanometallic acid salt in the reaction solution may be appropriately selected depending on the water solubility of the cyanometallic acid salt to be used, and is preferably in the range of 0.001 to 1M, particularly 0.01 to 0. .Selected from the range of 3M.
  • the concentration of the compound containing a metal element may be appropriately selected depending on the water solubility of the compound containing the metal element to be used, and the like, for example, is in the range of 0.001 to 1M, particularly 0.01 to 0. .Selected from the range of 3M.
  • the ratio of the cyanometallic acid salt to the compound containing the metal element may be appropriately selected depending on the type of the cyanometallic acid salt to be used and the compound containing the metal element, and the like, for example, 3: 1 to 1. : Selected from the range of 10.
  • the concentration of the water-soluble compound in the reaction solution may be appropriately selected depending on the water solubility of the water-soluble compound used, and the like, for example, from the range of 0.1 to 10 M, particularly from the range of 0.5 to 5 M. Be selected.
  • the water-soluble compound is preferably used in an excess amount with respect to the compound containing the salt of cyanometallic acid and the metal element, and, for example, the total molar amount of the compound containing the salt of cyanometallic acid and the metal element. On the other hand, it is used in an amount selected from a range of 2 times or more, particularly 2 to 100 times.
  • the reaction temperature varies depending on the type of raw material, the amount used, etc., but is usually 0 ° C to 100 ° C, preferably 10 ° C to 30 ° C, and more preferably the ambient temperature (about 25 ° C).
  • the reaction time varies depending on the reaction temperature and the like, but is usually 1 second to 24 hours, preferably 1 second to 10 minutes.
  • the reaction pressure is appropriately set as needed and may be pressurized, depressurized, or atmospheric pressure, but is preferably atmospheric pressure.
  • the reaction atmosphere can be appropriately selected as needed, but is preferably an air atmosphere or an inert gas atmosphere such as nitrogen or argon.
  • a metal salt of cyanometallic acid containing a water-soluble compound precipitates as a solid.
  • the precipitated solid can be isolated and purified by known means such as centrifugation, filtration, decantation, extraction, washing and the like. Further, if necessary, the adsorbent of the present invention can be obtained as a powder by using means such as drying and pulverization.
  • the present invention relates to a method for adsorbing and removing specific elemental ions, particularly harmful heavy metal ions and radioactive metal ions, contained in wastewater and the like.
  • the method of the present invention includes a step of bringing the above-mentioned second adsorbent of the present invention into contact with an aqueous solution containing an elemental ion to be adsorbed to form a compound having a low solubility product.
  • the aqueous solution containing elemental ions to be adsorbed typically refers to water contaminated with harmful substances such as chemical substances.
  • Examples of chemical substances are the above-mentioned elemental ions to be adsorbed or compounds capable of releasing such elemental ions. Therefore, examples of the aqueous solution containing elemental ions to be adsorbed include water environments such as polluted seas, rivers, ponds and lakes, water taken from polluted water environments, industrial wastewater and the like. Above all, since the method using the second adsorbent of the present invention is suitable for adsorbing and removing strontium, the wastewater is water contaminated with radioactive strontium, that is, sea or river contaminated with radioactive strontium. , Water environment such as ponds and lakes, water taken from water environment contaminated with radioactive strontium, wastewater containing radioactive strontium, groundwater, etc. are targeted.
  • the above-mentioned second adsorbent of the present invention is brought into contact with the aqueous solution containing the elemental ion to be adsorbed to form a compound having a low solubility product.
  • a step of removing the formed compound having a low solubility product together with the adsorbent may be included.
  • both the metal salt of cyanometallic acid contained in the adsorbent and the compound having a low solubility product formed from the counter ion in the water-soluble compound and the element ion to be adsorbed are almost insoluble in water. Therefore, the adsorbent after the treatment can be easily recovered by a known means such as centrifugation, filtration, decantation, etc. without leaving it in the aqueous solution.
  • Example 1 Preparation of Adsorbent 80 mL of 0.06 M potassium hexacyanoferrate (II) trihydrate solution was prepared using a 2 M aqueous sodium sulfate solution as a solvent. Similarly, 80 mL of a 0.06 M cupric chloride solution was prepared using a 2 M aqueous sodium sulfate solution as a solvent. By mixing the two prepared solutions, copper (II) hexacyanoferrate (II) (copper ferrocyanide) containing sodium sulfate was precipitated as a brown solid. After completion of the reaction, the reaction solution was centrifuged at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • II potassium hexacyanoferrate
  • the solid was washed with 1% aqueous sodium chloride solution or purified water and decantation was repeated using a centrifuge.
  • the obtained solid was dried under reduced pressure at 50 ° C. and then ground in a mortar. Washing was performed again with purified water, and decantation was repeated using a centrifuge.
  • the obtained solid was dried under reduced pressure at 50 ° C., then pulverized in a mortar to obtain a powder, and dried at 50 ° C. under reduced pressure to obtain 1.0 g of an adsorbent.
  • Test Example 1 Strontium adsorption capacity measurement experiment [procedure] (1) An aqueous solution of Sr0.6 ppm was prepared using a strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. (2) 5.0 mg of the strontium adsorbent prepared in Example 1 was weighed into 40 mL of a 0.6 ppm aqueous solution of strontium, and the mixture was stirred with an AS ONE Double Action Lab Shaker SRR-2 at 150 rpm for 5 hours. (3) After stirring, the container was centrifuged as it was at 4000 rpm for 1 hour to precipitate the adsorbent.
  • Sr1000 strontium standard solution manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Example 2 Preparation of Adsorbent (Cu-PBA) 80 mL of 0.06 M potassium hexacyanoferrate (II) trihydrate aqueous solution was prepared. Similarly, 80 mL of a 0.06 M aqueous solution of copper (II) chloride was prepared. By mixing the two prepared aqueous solutions, copper (II) hexacyanoferrate (II) (copper ferrocyanide: Cu-PBA) was precipitated as a brown solid. After completion of the reaction, the reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • Adsorbent Cu-PBA
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, about 1 g of adsorbent was obtained.
  • Example 3 Preparation of Adsorbent (Cu-PBA) 10 mL of 0.06 M potassium hexacyanoferrate (II) trihydrate aqueous solution was prepared. Similarly, 10 mL of a 0.12 M aqueous solution of copper (II) chloride was prepared. By mixing the two prepared aqueous solutions, copper (II) hexacyanoferrate (II) (copper ferrocyanide: Cu-PBA) was precipitated as a brown solid. After completion of the reaction, the reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • Adsorbent Cu-PBA
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • Reference example 1 Strontium adsorption capacity measurement experiment [Procedure] (1) A strontium aqueous solution of about 0.6 ppm was prepared using a strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. (2) 5 mg of the adsorbent prepared in Example 2 or 3 was weighed into 40 mL of the strontium aqueous solution prepared in (1), and the mixture was stirred with AS ONE Double Action Lab Shaker SRR-2 at 150 rpm for 5 hours. (3) After stirring, the container was centrifuged as it was with a KUBOTA desktop small centrifuge model 2410 swing rotor at 4000 rpm for 1 hour to precipitate an adsorbent.
  • Sr1000 strontium standard solution manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Reference example 2 Cesium adsorption capacity measurement experiment Except for replacing the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. with the cesium standard solution (Cs1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. , [Procedure] of Reference Example 1 [Procedure] A cesium adsorption capacity measurement experiment was carried out in the same procedure as in (1) to (5), and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 2 Zinc adsorption capacity measurement experiment Except that the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was replaced with zinc acetate (anhydrous) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. A zinc acetate adsorption capacity measurement experiment was carried out in the same procedure as in [Procedure] (1) to (5) of Reference Example 1, and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 3 Barium adsorption capacity measurement experiment Except that the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was replaced with the barium standard solution (Ba1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. , [Procedure] of Reference Example 1 [Procedure] A barium adsorption capacity measurement experiment was carried out in the same procedure as (1) to (5), and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 4 Manganese adsorption capacity measurement experiment The strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. is replaced with manganese (II) chloride tetrahydrate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Manganese adsorption capacity measurement experiments were carried out in the same procedure as in [Procedures] (1) to (5) of Reference Example 1, and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 5 Lantern adsorption capacity measurement experiment Except that the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was replaced with lanthanum chloride heptahydrate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. , [Procedure] of Reference Example 1 [Procedure] A lantern adsorption capacity measurement experiment was carried out in the same procedure as in (1) to (5), and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 6 Nickel adsorption capacity measurement experiment Replace the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. with nickel (II) chloride hexahydrate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Except for the above, nickel adsorption capacity measurement experiments were carried out in the same procedure as in [Procedures] (1) to (5) of Reference Example 1, and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 7 Cerium adsorption capacity measurement experiment Except that the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was replaced with cerium (III) (anhydrous) manufactured by Tokyo Kagyo Co., Ltd. A cerium adsorption capacity measurement experiment was carried out in the same procedure as in [Procedure] (1) to (5) of Reference Example 1, and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 8 Cobalt adsorption capacity measurement experiment Except that the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was replaced with the cobalt standard solution (Co1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • the cobalt adsorption capacity measurement experiment was carried out in the same procedure as in [Procedure] (1) to (5) of Reference Example 1, and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 9 Iron adsorption capacity measurement experiment Except that the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was replaced with the iron standard solution (Fe1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. An iron adsorption capacity measurement experiment was carried out in the same procedure as in [Procedure] (1) to (5) of Reference Example 1, and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 10 Rhodium adsorption capacity measurement experiment Rhodium (III) trihydrate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. is replaced with the strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Except for the above, a rhodium adsorption capacity measurement experiment was carried out in the same procedure as in [Procedures] (1) to (5) of Reference Example 1, and each adsorbent prepared in Examples 2 and 3 was evaluated by the residual rate. The results are shown in Table 2.
  • Test Example 11 Ruthenium Adsorption Capacity Measurement Experiment Using a strontium standard solution (Sr1000) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., and ruthenium (III) n hydrate (purity) manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. A ruthenium adsorption capacity measurement experiment was carried out in the same procedure as in [Procedures] (1) to (5) of Reference Example 1 except that it was replaced with 36-44% and 40% purity), and in Examples 2 and 3. Each prepared adsorbent was evaluated by the residual rate. The results are shown in Table 2.
  • Example 4 Preparation of Adsorbent (Mn-PBA) 20 mL of 0.06 M potassium hexacyanoferrate (II) trihydrate aqueous solution was prepared. Similarly, 20 mL of a 0.06 M aqueous manganese (II) chloride tetrahydrate solution was prepared. By mixing the two prepared aqueous solutions, manganese (II) hexacyanoferrate (II) (Mn-PBA) was precipitated as a white solid. After completion of the reaction, the reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • Adsorbent Mn-PBA
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a Hitachi micro high-speed centrifuge CF15RXII type, 11000 rpm. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • Example 5 Preparation of adsorbent (Ni-PBA) 20 mL of 0.06 M potassium hexacyanoferrate (II) trihydrate aqueous solution was prepared. Similarly, 20 mL of a 0.06 M nickel (II) chloride hexahydrate aqueous solution was prepared. By mixing the two prepared aqueous solutions, nickel (II) hexacyanoferrate (II) (Ni-PBA) was precipitated as a light blue solid. After completion of the reaction, the reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a Hitachi micro high-speed centrifuge CF15RXII type, 11000 rpm. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • Example 6 Preparation of Adsorbent (Co-PBA) 20 mL of 0.06 M potassium hexacyanoferrate (II) trihydrate aqueous solution was prepared. Similarly, 20 mL of a 0.06 M aqueous solution of cobalt (II) chloride hexahydrate was prepared. By mixing the two prepared aqueous solutions, cobalt (II) hexacyanoferrate (II) (Co-PBA) was precipitated as a dark green solid. After completion of the reaction, the reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • Adsorbent Co-PBA
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a Hitachi micro high-speed centrifuge CF15RXII type, 11000 rpm. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • Example 7 Preparation of Adsorbent (Zn-PBA) 20 mL of 0.06 M potassium hexacyanoferrate (II) trihydrate aqueous solution was prepared. Similarly, 20 mL of a 0.06 M zinc acetate (anhydrous) aqueous solution was prepared. By mixing the two prepared aqueous solutions, zinc hexacyanoferrate (II) (II) (Zn-PBA) was precipitated as a white solid. After completion of the reaction, the reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • Adsorbent Zn-PBA
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a Hitachi micro high-speed centrifuge CF15RXII type, 11000 rpm. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • Reference Example 3 Strontium adsorption capacity measurement experiment A strontium adsorption capacity measurement experiment was performed in the same procedure as in [Procedures] (1) to (5) of Reference Example 1, and the adsorbents prepared in Examples 5 to 7 were subjected to the residual rate. evaluated. The results are shown in Table 3.
  • Reference Example 4 Cesium Adsorbability Measurement Experiment A cesium adsorption capacity measurement experiment was carried out in the same procedure as in Reference Example 2, and the adsorbents prepared in Examples 4 to 7 were evaluated by the residual rate. The results are shown in Table 4.
  • Test Example 12 Barium Adsorbability Measurement Experiment A barium adsorption capacity measurement experiment was carried out in the same procedure as in Test Example 3, and the adsorbents prepared in Examples 5 to 7 were evaluated by the residual rate. The results are shown in Table 5.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • reaction solution was centrifuged with a KUBOTA desktop small centrifuge 2410 swing rotor at 4000 rpm for 10 minutes, and the supernatant was discarded.
  • the solid was washed with 1% aqueous sodium chloride solution or purified water, and decantation washing was repeated 22 times or more using a centrifuge. During this washing, the washed solid was sometimes dried at 50 ° C. or crushed in a mortar under reduced pressure. After these operations, an adsorbent was obtained.
  • Reference Example 5 Strontium Adsorbability Measurement Experiment A strontium adsorption capacity measurement experiment was performed in the same procedure as [Procedure] (1) to (5) of Reference Example 1, and each adsorbent prepared in Examples 8 to 16 had a residual ratio. Evaluated in. The results are shown in Table 6.
  • Test Example 13 Quantification of iron and copper [Procedure]
  • Aluminum foil was screwed to the platen, and the adsorbents of Examples 2 and 3 were fixed thereto with silver paste, respectively.
  • Each sample was measured for iron and copper with XPS (X-ray photoelectron spectrometer: PHI Quantera SXM manufactured by ULVAC-PHI, Inc.).
  • XPS X-ray photoelectron spectrometer: PHI Quantera SXM manufactured by ULVAC-PHI, Inc.
  • the results of the obtained atomic composition ratio are shown in Table 7.
  • Test Example 14 Powder X-ray diffraction measurement
  • the adsorbent of Example 9, 10, 14 or 15 was filled in a glass holder as a sample, and using a fully automatic horizontal multipurpose X-ray diffractometer of Rigaku Co., Ltd., centralized optical Measurements were made on the system. The results are shown in FIG. Diffraction peaks were observed at similar positions in all of the adsorbents of Examples 9, 10, 14 and 15. Since these diffraction peaks were similar to the crystal phase of Prussian blue (ICDD 00-052-1907), they were found to be cubic.
  • Test Example 15 Strontium adsorption capacity measurement experiment in environmental water (simulated groundwater) Strontium standard solution (1.0 g / L), calcium standard solution (1.0 g / L), magnesium manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Simulated groundwater (strontium 1 ppm, calcium 30 ppm, sodium 14 ppm, magnesium 8 ppm) was prepared using a standard solution (1.0 g / L) and a sodium standard solution (1.0 g / L).
  • test solution was appropriately diluted with ultrapure water, and nitrate was added so as to be about 0.6%, and the mixture was added to an ICP mass spectrometer (Agilent 7500ccx, a quadrupole ICP mass spectrometer manufactured by Agilent Technologies, Inc.). It was introduced, quantitative analysis of strontium was performed, and the residual rate was evaluated. The results are shown in Table 8.
  • Test Example 16 Strontium adsorption capacity measurement experiment in environmental water (simulated groundwater) Strontium standard solution (1.0 g / L), calcium standard solution (1.0 g / L), magnesium manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. Simulated groundwater (strontium 1 ppm, calcium 30 ppm, sodium 14 ppm, magnesium 8 ppm) was prepared using a standard solution (1.0 g / L) and a sodium standard solution (1.0 g / L).
  • test solution was appropriately diluted with ultrapure water, and nitrate was added so as to be about 0.6%, and the mixture was added to an ICP mass spectrometer (Agilent 7500ccx, a quadrupole ICP mass spectrometer manufactured by Agilent Technologies, Inc.). It was introduced, quantitative analysis of strontium was performed, and the residual rate was evaluated. The results are shown in Table 9.
  • the adsorbent of the present invention has high adsorption performance, and not only cesium and strontium, but also a plurality of harmful metal ions in wastewater such as manganese, iron, cobalt, nickel, zinc, ruthenium, rhodium, barium, lanthanum and cerium. It is excellent in versatility because it can be targeted.
  • the adsorbent of the present invention was also able to efficiently remove strontium from the aqueous solution.
  • the adsorbent of the present invention selects a water-soluble compound capable of supplying a counter ion capable of forming a compound having a low solubility product with the element ion according to the element ion to be adsorbed, and uses this as a salt of cyanometallic acid. It is excellent in versatility because it can be produced by incorporating it into the structure of a metal salt of cyanometallic acid by reacting with a compound containing a metal element. Further, since the raw materials of the adsorbent are all inexpensive and easy to manufacture, they are also suitable for industrial use such as treatment of a large amount of wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本発明は、低コストで、汎用性があり、かつ吸着性能の高い新規吸着剤を提供する。具体的に、本発明は、シアノ金属酸の金属塩を含む、特定の金属元素の吸着剤、その製造方法、およびかかる吸着剤を用いた吸着対象である元素イオンの除去方法を提供する。

Description

新規吸着剤
 本発明は、特定の金属元素イオンを吸着できる新規吸着剤に関する。
 廃水の処理には活性炭やゼオライトのような多孔性物質が汎用されている。これらは安価で、また有機物の除去には有効であるが、金属イオンの吸着能には乏しい。そのため特定の元素イオン、特に有害な重金属イオンや放射性金属イオンを廃水から除去するための様々な吸着剤や方法が研究されている。
 例えば、放射性セシウム(134Cs、137Cs)の吸着剤として、プルシアンブルーまたはその類縁体を利用した技術が報告されている(例えば、特許文献1参照)。これによれば、汚染水からセシウムを吸着して除去できる。しかしながらプルシアンブルーまたはその類縁体を利用した技術において、他の元素の吸着能についての報告はほとんどない。
 また、放射性セシウム(134Cs、137Cs)またはストロンチウム(90Sr)の吸着剤として、特定組成の結晶性シリコチタネートおよびチタン酸塩を利用した技術が報告されている(例えば、特許文献2参照)。しかしながら結晶性シリコチタネートおよびチタン酸塩は高価であり、大量の廃水処理のような工業的利用には高コストのため適さない。
再表2013/27652号公報 特許第5696244号
 本発明は、低コストで、汎用性があり、かつ吸着性能の高い吸着剤を提供することを目的とする。
 本発明者らは、これまでに、プルシアンブルーまたはその類縁体、すなわちシアノ金属酸の金属塩を利用した放射性セシウム吸着技術について研究を重ねてきた。その中で、シアノ金属酸の金属塩が、セシウムおよびストロンチウム以外の金属元素イオンも効率的に吸着しうることを見出し、本発明を完成させた。
 またシアノ金属酸の金属塩を製造する際に、シアノ金属酸の塩と金属元素を含む化合物との反応を水溶性化合物の存在下で行うことにより、得られたシアノ金属酸の金属塩の粒子中に水溶性化合物が取り込まれること、そして取り込まれた水溶性化合物のカウンターイオンが、廃水中に含まれる特定の元素イオンと溶解度積が低い化合物を形成しうるものである場合、そのような粒子と廃水を接触させることにより、溶解度積が低い化合物が形成し、シアノ金属酸の金属塩の粒子に吸着することから、廃水中などに含まれる特定の元素イオンを除去できることを見出し、本発明を完成させた。
 本発明は、以下のとおりである:
(1) シアノ金属酸の金属塩を含む、セシウムおよびストロンチウムを除く金属元素吸着剤。
(2) 金属元素が、マンガン、鉄、コバルト、ニッケル、亜鉛、ルテニウム、ロジウム、バリウム、ランタンおよびセリウムからなる群より選択される少なくとも1種である、上記(1)に記載の吸着剤。
(3) シアノ金属酸の金属塩が、シアノ金属酸の塩と、金属元素を含む化合物との反応により得られる、上記(1)または(2)に記載の吸着剤。
(4) 反応が、金属元素を含む化合物およびシアノ金属酸の塩の一方が担持された多孔性物質と、他方の水溶液とを用いて実施され、シアノ金属酸の金属塩が、多孔性物質の内部および外部で形成、固定化されることを特徴とする、上記(3)に記載の吸着剤。
(5) 多孔性物質が親水性繊維である、上記(4)に記載の吸着剤。
(6) シアノ金属酸の金属塩が、ヘキサシアノ金属酸の第一遷移金属塩である、上記(1)~(5)のいずれかに記載の吸着剤。
(7) 第一遷移金属が鉄、コバルト、銅および亜鉛からなる群より選択される少なくとも1種である、上記(6)に記載の吸着剤。
(8) セシウムおよびストロンチウムを除く金属元素を水中から除去する方法であって、上記(1)~(7)のいずれかに記載の吸着剤と、前記金属元素を含む水性試料とを接触させる工程を含む方法。
(9) 金属元素が、マンガン、鉄、コバルト、ニッケル、亜鉛、ルテニウム、ロジウム、バリウム、ランタンおよびセリウムからなる群より選択される少なくとも1種である、上記(8)に記載の方法。
(10) さらに、吸着剤を除去する工程を含む、上記(8)または(9)に記載の方法。
 さらに本発明は、以下の発明を包含する。
(11) 溶解度積が低い化合物を構成する元素イオンの吸着剤であって、前記元素イオンのカウンターイオンを供給しうる水溶性化合物を含むシアノ金属酸の金属塩からなる吸着剤。
(12) シアノ金属酸の金属塩が、ヘキサシアノ金属酸の遷移金属塩である、上記(11)に記載の吸着剤。
(13) 溶解度積の低い化合物が、硫酸ストロンチウムまたは硫酸バリウムである、上記(11)または(12)に記載の吸着剤。
(14) 溶解度積が低い化合物を構成する元素イオンのカウンターイオンを供給しうる水溶性化合物が、硫酸ナトリウムである、上記(11)~(13)のいずれかに記載の吸着剤。
(15) 溶解度積が低い化合物を構成する元素イオンを水中から除去する方法であって、上記(11)~(14)のいずれかに記載の吸着剤と、前記元素イオンを含む水溶液とを接触させ、溶解度積の低い化合物を形成させる工程を含む、方法。
(16) さらに、形成した溶解度積の低い化合物を吸着剤と共に除去する工程を含む、上記(15)に記載の方法。
(17) 水溶性化合物の存在下で、シアノ金属酸の塩と、金属元素を含む化合物とを反応させて、水溶性化合物を含むシアノ金属酸の金属塩を生成させる工程を含む、溶解度積が低い化合物を構成する元素イオンの吸着剤の製造方法であって、前記水溶性化合物が、溶解度積が低い化合物を構成する元素イオンのカウンターイオンを供給するものである、方法。
(18) シアノ金属酸の金属塩が、ヘキサシアノ金属酸の遷移金属塩である、上記(17)に記載の方法。
(19) 溶解度積が低い化合物が、硫酸ストロンチウムまたは硫酸バリウムである、上記(17)または(18)に記載の方法。
(20) 水溶性化合物が、硫酸ナトリウムである、上記(17)~(19)のいずれかに記載の方法。
 本発明の吸着剤は、吸着性能が高く、セシウムおよびストロンチウムのみならず、マンガン、鉄、コバルト、ニッケル、亜鉛、ルテニウム、ロジウム、バリウム、ランタンおよびセリウムのような、廃水中の複数の有害金属イオンを対象とすることができるため、汎用性に優れている。
 さらに本発明の吸着剤は、水溶性化合物の存在下で、シアノ金属酸の塩と、金属元素を含む化合物との反応により得られる。すなわち、反応により得られるシアノ金属酸の金属塩が、前記水溶性化合物を含むと考えられる。そして、吸着剤中の水溶性化合物のカウンターイオンが、廃水中などに含まれる特定の元素イオンと溶解度積が低い化合物を形成しうるものである場合、そのような吸着剤と廃水を接触させることにより、吸着剤中の水溶性化合物の元素イオンと廃水中などの吸着対象である元素イオンの間でイオン交換が生じ、溶解度積が低い化合物が形成することにより、廃水中に含まれる特定の元素イオンを除去できる。したがって、廃水中の吸着対象である元素イオンに応じて、かかる元素イオンと溶解度積が低い化合物を構成しうるカウンターイオンを供給しうる水溶性化合物を選択することにより、本発明の吸着剤を適宜設計することができるため、汎用性に優れている。
 また本発明の吸着剤は、安価で、かつ取り扱いが容易な材料から、簡便な製造方法により得ることが出来るため、経済的な側面からも、大量の廃水処理のような工業的利用に適したものである。さらにシアノ金属酸の金属塩および溶解度積が低い化合物は、いずれも水にほとんど不溶であることから、処理後の吸着剤を水環境中に取り残すことなく、容易に回収できる。
試験例14において、実施例9、10、14および15の吸着剤の粉末X線回折測定による回折ピークを示す。
[第一の吸着剤およびその製造方法]
 本発明は、シアノ金属酸の金属塩を含む、セシウムおよびストロンチウムを除く金属元素吸着剤に関する(以下、「第一の吸着剤」ともいう)。
(シアノ金属酸の金属塩)
 本発明の第一の吸着剤に含まれるシアノ金属酸の金属塩(「プルシアンブルー類縁体(PBA)」とも称される)は、シアノ金属酸イオンを構築素子としたシアノ架橋型金属錯体の一種であり、好ましくはヘキサシアノ金属酸の金属塩またはオクタシアノ金属酸の金属塩であり、より好ましくはヘキサシアノ金属酸の金属塩である。例えば、ヘキサシアノ金属酸の金属塩は、その組成が式:M [M(CN)・hHOで示される化合物であり、この金属イオン(M、M)がシアノ基で交互に架橋した面心立方構造をしていると解される。ここで、Mは、好ましくは遷移金属であり、より好ましくは第一遷移金属である。第一遷移金属としては、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)および亜鉛(Zn)が挙げられる。好ましくは、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)および亜鉛(Zn)、より好ましくは、鉄(Fe)、コバルト(Co)、銅(Cu)および亜鉛(Zn)、さらに好ましくは鉄(Fe)、銅(Cu)および亜鉛(Zn)、さらにより好ましくは鉄(Fe)および銅(Cu)、特に第二鉄(Fe(III))または第二銅(Cu(II))が挙げられる。なお、本発明のシアノ金属酸の金属塩は、その一部の金属イオン(例えば、M)が、原料由来のアルカリ金属イオン等で置換されているものを含んでいてもよい。
 前記式において、Mは、八面体6配位構造をとりうる金属種であればよく、好ましくは、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)であり、より好ましくは、鉄(Fe)、特に第一鉄(Fe(II))である。なお前記式において、m、nおよびhの値は、MおよびMの酸化数に応じて定まる。
 例えば、本発明のシアノ金属酸の金属塩の一態様である、ヘキサシアノ鉄(II)酸の金属塩としては、その第一遷移金属塩が挙げられ、具体的には、スカンジウム(Sc)塩、チタン(Ti)塩、バナジウム(V)塩、クロム(Cr)塩、マンガン(Mn)塩、鉄(Fe)塩、コバルト(Co)塩、ニッケル(Ni)塩、銅(Cu)塩、亜鉛(Zn)塩、およびそれらの1種または2種以上の混合塩が挙げられる。好ましくは、ヘキサシアノ鉄(II)酸のマンガン(Mn)塩、鉄(Fe)塩、コバルト(Co)塩、ニッケル(Ni)塩、銅(Cu)塩、亜鉛(Zn)塩およびそれらの1種または2種以上の混合塩が挙げられ、より好ましくは、鉄(Fe)塩、コバルト(Co)塩、銅(Cu)塩および亜鉛(Zn)塩、さらに好ましくは鉄(Fe)塩、銅(Cu)塩および亜鉛(Zn)塩、さらにより好ましくは銅(Cu)塩または鉄(Fe)塩、特に第二鉄(Fe(III))塩または第二銅(Cu(II))塩が挙げられる。
 本発明のヘキサシアノ金属酸の金属塩の一態様である、ヘキサシアノ鉄(II)酸の第二鉄(Fe(III))塩は、プルシアンブルーまたは紺青などとも称され、古くから顔料として用いられている。その理想的な化学組成はFe(III)[Fe(II)(CN)・xHO(x=14~16)(すなわち「ヘキサシアノ鉄(II)酸鉄(III)水和物」)であるが、その製法などに応じて一部の鉄イオンが、原料由来のアルカリ金属イオン等で置換されていることもある。
(シアノ金属酸の塩)
 本発明の第一の吸着剤は、シアノ金属酸の塩と、金属元素を含む化合物との反応により得られる。反応は、好ましくは理論量で実施される。ここで「理論量」とは、シアノ金属酸の金属塩の組成を生成するのに理論的に必要な、シアノ金属酸の塩1モルに対する、金属元素を含む化合物のモル量(理論量)を意味する。例えば、シアノ金属酸の金属塩がヘキサシアノ鉄(II)酸銅(II)である場合、理想的な組成である、式:Cu(II)[Fe(II)(CN)]を生成するのに理論的に必要な、ヘキサシアノ金属酸の塩1モルに対する、Cu(II)を含む化合物、例えば塩化銅(II)のモル量は2モルであるので、理論量の100モル%の量とは2モルを意味する。シアノ金属酸の塩1モルに対する、金属元素を含む化合物の使用量は、理論量の100モル%またはそれ以上であってもよいが、理論量の100モル%未満であってもよく、好ましくは10モル%以上120モル%以下、より好ましくは15モル%以上110モル%以下、さらに好ましくは20モル%以上100%モル%以下である。シアノ金属酸の塩1モルに対する、金属元素を含む化合物の使用量が、理論量の100モル%未満であっても、シアノ金属酸の金属塩の配位構造の欠陥を増やすことができ、その欠陥または空隙部分に有害イオンを吸着させることができると考えられる。
 本発明で使用されるシアノ金属酸の塩は、水溶性であって、かつ金属元素を含む化合物との反応により、本発明のプルシアンブルー類縁体(すなわち、シアノ金属酸の金属塩)を形成しうるものであれば特に限定はない。例としては、シアノ金属酸のアルカリ金属塩(ナトリウム塩、カリウム塩など)またはその水和物が挙げられる。具体的には、ヘキサシアノクロム(III)酸、ヘキサシアノマンガン(II)酸、ヘキサシアノ鉄(II)酸もしくはヘキサシアノコバルト(III)酸のアルカリ金属塩(ナトリウム塩、カリウム塩など)、またはそれらの水和物が挙げられる。
 例えば、シアノ金属酸が、ヘキサシアノ鉄(II)酸である場合、本発明で使用されるヘキサシアノ鉄(II)酸の塩は、水溶性であって、かつ金属元素を含む化合物との反応によりヘキサシアノ鉄(II)酸の金属塩を形成しうるものであれば特に限定はない。具体例としては、ヘキサシアノ鉄(II)酸カリウム、ヘキサシアノ鉄(II)酸ナトリウムまたはそれらの水和物が挙げられる。ヘキサシアノ鉄(II)酸カリウムまたはその水和物の使用が好ましい。
(金属元素を含む化合物)
 本発明で使用される金属元素を含む化合物は、水溶性であって、かつシアノ金属酸の塩との反応により、本発明のシアノ金属酸の金属塩を形成しうるものであれば特に限定はない。そのような金属元素を含む化合物としては、前記第一遷移金属のハロゲン化物、硝酸塩、硫酸塩、過塩素酸塩、酢酸塩、リン酸塩、ヘキサフルオロリン酸塩、ホウ酸塩、テトラフルオロホウ酸塩またはそれらの水和物などが挙げられる。例えば、塩化マンガン(II)、塩化第二鉄(III)、塩化コバルト(II)、塩化ニッケル(II)、塩化第二銅(II)などのハロゲン化物;硝酸第二鉄(III)、硝酸第二銅(II)などの硝酸塩;硫酸第二鉄(III)、硫酸第二銅(II)などの硫酸塩;過塩素酸第二鉄(III)などの過塩素酸塩;酢酸銅(II)、酢酸亜鉛(II)などの酢酸塩;またはそれらの水和物が挙げられる。
 本発明の第一の吸着剤は、シアノ金属酸の塩と、金属元素を含む化合物との反応により得ることができる。反応は、水中で、シアノ金属酸の塩、および金属元素を含む化合物を混合することにより実施され、その添加順序等に特に限定はない。例えば、後述の実施例で示すように、予めシアノ金属酸の塩の水溶液と、金属元素を含む化合物の水溶液を調製し、混合することにより実施してもよい。
 反応溶液におけるシアノ金属酸の塩の濃度は、使用するシアノ金属酸の塩の水溶解度などに応じて適宜選択すればよいが、例としては0.001~1Mの範囲、特に0.01~0.3Mの範囲から選択される。同様に、反応溶液における金属元素を含む化合物の濃度は、使用する金属元素を含む化合物の水溶解度などに応じて適宜選択すればよいが、例としては0.001~1Mの範囲、特に0.01~0.3Mの範囲から選択される。
 反応温度は、原料の種類、使用量等によって異なるが、通常、0℃~100℃であり、好ましくは、10℃~30℃であり、より好ましくは周囲温度(約25℃)である。反応時間は、反応温度等によって異なるが、通常、1秒間~24時間であり、好ましくは、1秒間~10分間である。反応圧力は、必要に応じて適宜設定され、加圧、減圧、大気圧のいずれでもよいが、好ましくは、大気圧である。反応雰囲気は、必要に応じて適宜選ばれた雰囲気で行うことができるが、好ましくは、空気雰囲気、又は窒素もしくはアルゴン等の不活性気体雰囲気である。
 反応が進行すると、シアノ金属酸の金属塩を含む吸着剤が固体として析出する。反応終了後、析出したシアノ金属酸の金属塩を、公知の手段、例えば、遠心分離、濾過、デカンテーション、抽出、洗浄等により単離・精製することができる。さらに必要に応じて、乾燥、粉砕等の手段を用いることにより、本発明の吸着剤を粉末として得ることができる。
 また本発明の第一の吸着剤は、多孔性物質に担持された形態であってもよい。本発明の吸着剤が多孔性物質に担持された形態である場合、反応は、予めシアノ金属酸の塩および金属元素を含む化合物の一方が担持された多孔性物質と、他方の水溶液とを用いて実施され、好ましくは、反応が、金属元素を含む化合物が担持された多孔性物質と、シアノ金属酸の塩の水溶液を用いて実施される。かかる反応により、得られるシアノ金属酸の金属塩は、多孔性物質の内部または外部で形成、固定化される。シアノ金属酸の金属塩、特に、プルシアンブルーのような「顔料」は、水や有機溶媒などの媒質に不溶で、基質に対して染着性がない。したがって多孔性物質に担持する場合、通常、バインダー樹脂などで後処理し、シアノ金属酸の金属塩を多孔性物質の表面に付着した形で固定化することを要する。一方、本発明の吸着剤では、シアノ金属酸の金属塩はin situで形成され、多孔性物質の表面および/または内部に微粒子として存在するため、バインダー樹脂などによらず安定的に多孔性物質に固定できる。
 多孔性物質は、粉末、粒子、膜、発泡体、織布、不織布、織物等、好ましくは親水性または吸水性の、粉末、粒子、膜、発泡体、織布、不織布、織物等の公知の材料から適宜選択できる。多孔質物質の例としては、シリカゲル、アルミナ、ケイ藻土等の親水性無機粒子;親水性繊維を基材としたろ材(例えば、ろ紙、メンブレンフィルター、多孔質粒子、ファイバーロッド等)が挙げられる。本発明における親水性繊維は、吸水性繊維と言い換えてもよい。親水性繊維は、一般に水分子を取り込みやすい繊維の総称であり、典型的には、セルロース繊維である。セルロース繊維の例としては、羊毛、綿、絹、麻、パルプ等の天然繊維、レーヨン、ポリノジック、キュプラ(ベンベルグ(登録商標))、リヨセル(テンセル(登録商標))等の再生繊維、またはそれらの複合繊維が挙げられる。またアセテート、トリアセテートなどの半合成繊維、あるいはポリアミド系、ポリビニルアルコール系、ポリ塩化ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ポリアクリロニトリル系、ポリオレフィン系もしくはポリウレタン系繊維等の合成繊維、またはそれらの複合繊維を公知の方法で改質し、親水性を付与したものであってもよい。また所望の親水性を有する範囲であれば、親水性繊維と合成繊維の複合素材、例えば、セルロース繊維と合成繊維(例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系繊維)のセルロース複合繊維であってもよい。価格や入手の容易さから、親水性繊維としてはセルロース繊維またはセルロース複合繊維が好ましい。
[金属元素を水中から除去する方法]
 本発明は、廃水などに含まれる金属元素、具体的にはセシウムおよびストロンチウムを除く金属元素、特にはマンガン、鉄、コバルト、ニッケル、亜鉛、ルテニウム、ロジウム、バリウム、ランタンおよびセリウムからなる群より選択される少なくとも1種を吸着除去する方法に関する。本発明の方法は、上述の本発明の吸着剤と、吸着対象である金属元素を含む水性試料とを接触させ、吸着剤に含まれるシアノ金属酸の金属塩の欠陥または空隙部分に金属元素イオンを吸着させる工程を含む。本発明において、金属元素を含む水性試料は、典型的には、化学物質などの有害物質に汚染された水を指す。化学物質の例は、有害な金属元素イオンまたはそのような有害な金属元素イオンを放出しうる化合物である。有害な金属元素の例は、有害重金属または放射性金属である。そのような金属の例としては、マグネシウム(Mg)、アルミニウム(Al)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ストロンチウム(Sr)、ルテニウム(Ru)、ロジウム(Rh)、銀(Ag)、カドミウム(Cd)、錫(Sn)、セシウム(Cs)、バリウム(Ba)、水銀(Hg)、タリウム(Tl)、鉛(Pb)、ランタン(La)、セリウム(Ce)およびその放射性同位体などが挙げられる。吸着対象である金属元素として、マンガン、鉄、コバルト、ニッケル、亜鉛、ルテニウム、ロジウム、バリウム、ランタンまたはセリウムが好適である。したがって吸着対象である金属元素を含む水性試料としては、汚染された海、川、池、湖沼等の水環境、汚染された水環境から取水した水、工業排水等が挙げられる。
 本発明の吸着対象である有害イオンを水中から除去する方法では、上述の本発明の吸着剤と、吸着対象である金属元素を含む水性試料とを接触させる工程に続いて、吸着剤を除去する工程を含んでもよい。本発明の方法では、吸着剤に含まれるシアノ金属酸の金属塩は水にほとんど不溶であることから、処理後の吸着剤を水溶液中に取り残すことなく、公知の手段、例えば、遠心分離、濾過、デカンテーション等により容易に回収できる。
[第二の吸着剤]
 本発明はまた、溶解度積が低い化合物を構成する元素イオンの吸着剤であって、前記元素イオンのカウンターイオンを供給しうる水溶性化合物を含むシアノ金属酸の金属塩からなる吸着剤に関する(以下、「第二の吸着剤」ともいう)。
(溶解度積が低い化合物)
 溶解度積(「Ksp」とも表記される)とは、溶液中に難溶性の塩が存在するとき、その塩を構成する陰陽両イオンの濃度の積を意味する。すなわち、難溶性の塩MAが一定の温度で溶媒にわずかに溶けてMとAに解離しているときの、Mの濃度[M]とAの濃度[A]との積[M]・[A]を意味する。難溶性の塩の溶解度積は、一定の温度で一定の値を示すことが知られ、各種資料に掲載されており、当業者には公知である。本発明では、特に断りのない限り、25℃(298K)における溶解度積を意味する。本発明において「溶解度積が低い化合物」とは、溶解度積が10-5以下、好ましくは10-6以下、より好ましくは10-7以下である化合物を意味する。
 本発明において、溶解度積が低い化合物は、溶解度積が低い化合物を構成する元素イオンと、後述する水溶性化合物から供給されるカウンターイオンから形成されるものである。本発明において「溶解度積が低い化合物を構成する元素イオン」は、吸着対象である元素イオンである。したがって、本発明の溶解度積が低い化合物は、吸着対象である元素イオンに応じて、吸着対象である元素を含み、かつ溶解度積が10-5以下、好ましくは10-6以下、より好ましくは10-7以下である化合物の中から、コストや安全性等を考慮し、適宜設計することができる。
 例えば、吸着対象である元素イオンがストロンチウムイオン(Sr2+)である場合、ストロンチウムを含み、かつ溶解度積が10-5以下の化合物として、炭酸ストロンチウム(Ksp=7.0×10-10)、シュウ酸ストロンチウム(Ksp=5.6×10-8)、クロム酸ストロンチウム(Ksp=5.0×10-6)、フッ化ストロンチウム(Ksp=7.9×10-10)、ヨウ素酸ストロンチウム(Ksp=3.3×10-7)、リン酸ストロンチウム(Ksp=1.0×10-31)または硫酸ストロンチウム(Ksp=7.6×10-7)などが知られているが(例えば、H・Freiser、Q・Fernando共著、イオン平衡-分析化学における-等参照)、カウンターイオンを供給する水溶性化合物のコストや安全性の点から、硫酸ストロンチウムが好ましい。
 このように本発明の第二の吸着剤において、吸着対象である元素イオンは、溶解度積が低い化合物を構成する限り特に限定はないが、好ましくは金属イオンであり、例えば、有害重金属イオンまたは放射性金属イオンである。そのような金属の例としては、マグネシウム(Mg)、アルミニウム(Al)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ストロンチウム(Sr)、ルテニウム(Ru)、ロジウム(Rh)、銀(Ag)、カドミウム(Cd)、錫(Sn)、セシウム(Cs)、バリウム(Ba)、水銀(Hg)、タリウム(Tl)、鉛(Pb)、ランタン(La)、セリウム(Ce)およびその放射性同位体などが挙げられる。特に好ましい吸着対象は、バリウムまたはストロンチウムである。
(水溶性化合物)
 本発明の水溶性化合物は、吸着対象である元素イオンと共に溶解度積が低い化合物を構成するカウンターイオンを含み、かつ水に溶けるものであれば、特に限定はない。そのようなカウンターイオンの例としては、ヒ酸イオン(AsO 3-)、ハロゲン化物イオン(F、Cl、Br、I)、炭酸イオン(CO 2-)、リン酸イオン(PO 3-)、硫酸イオン(SO 2-)、水酸化物イオン(OH)、ギ酸イオン(CHO )、シュウ酸イオン(C 2-)、酢酸イオン(C )、硫化物イオン(S2-)などが挙げられる。したがって、本発明の水溶性化合物は、これらのカウンターイオンの水溶性塩であり、好ましくはこれらのカウンターイオンのアルカリ金属塩またはアルカリ土類金属塩、例えば、ナトリウム塩またはカリウム塩である。特に好ましい水溶性化合物は、硫酸ナトリウムである。
(シアノ金属酸の金属塩)
 本発明の第二の吸着剤は、水溶性化合物を含むシアノ金属酸の金属塩からなる。シアノ金属酸の金属塩については、上記の第一の吸着剤で述べたとおりである。
[第二の吸着剤の製造方法]
 本発明の第二の吸着剤は、水溶性化合物の存在下で、シアノ金属酸の塩と、金属元素を含む化合物との反応により得られ、かかる反応により生成されるシアノ金属酸の金属塩の配位構造に水溶性化合物が含まれると考えられる。
 本発明で使用されるシアノ金属酸の塩および金属元素を含む化合物については、上記の第一の吸着剤で述べたとおりである。
 本発明の第二の吸着剤は、水溶性化合物の存在下で、シアノ金属酸の塩と、金属元素を含む化合物との反応により得られる。反応は、水中で、水溶性化合物、シアノ金属酸の塩、および金属元素を含む化合物を混合することにより実施され、その添加順序等に特に限定はない。例えば、予め各原料の水溶液を調製し、混合することにより実施してもよく、あるいは2種の原料(例えば、水溶性化合物およびシアノ金属酸の塩)の水溶液と、残りの1種の原料(例えば、金属元素を含む化合物)の水溶液とを調製し、混合することにより実施してもよい。さらには、後述の実施例で示すように、水溶性化合物の水溶液を溶媒として、シアノ金属酸の塩の溶液と、金属元素を含む化合物の溶液を調製し、混合することにより実施してもよい。
 反応溶液におけるシアノ金属酸の塩の濃度は、使用するシアノ金属酸の塩の水溶解度などに応じて適宜選択すればよいが、例としては0.001~1Mの範囲、特に0.01~0.3Mの範囲から選択される。同様に、金属元素を含む化合物の濃度は、使用する金属元素を含む化合物の水溶解度などに応じて適宜選択すればよいが、例としては0.001~1Mの範囲、特に0.01~0.3Mの範囲から選択される。またシアノ金属酸の塩の金属元素を含む化合物に対する比は、使用するシアノ金属酸の塩および金属元素を含む化合物の種類などに応じて適宜選択すればよいが、例としては3:1~1:10の範囲から選択される。
 さらに反応溶液における水溶性化合物の濃度は、使用する水溶性化合物の水溶解度などに応じて適宜選択すればよいが、例としては0.1~10Mの範囲、特に0.5~5Mの範囲から選択される。また水溶性化合物は、シアノ金属酸の塩および金属元素を含む化合物に対して、過剰量で使用するのが好ましく、例としては、シアノ金属酸の塩および金属元素を含む化合物の総モル量に対して、2倍以上、特に2~100倍の範囲から選択される量で使用される。
 反応温度は、原料の種類、使用量等によって異なるが、通常、0℃~100℃であり、好ましくは、10℃~30℃であり、より好ましくは周囲温度(約25℃)である。反応時間は、反応温度等によって異なるが、通常、1秒間~24時間であり、好ましくは、1秒間~10分間である。反応圧力は、必要に応じて適宜設定され、加圧、減圧、大気圧のいずれでもよいが、好ましくは、大気圧である。反応雰囲気は、必要に応じて適宜選ばれた雰囲気で行うことができるが、好ましくは、空気雰囲気、又は窒素もしくはアルゴン等の不活性気体雰囲気である。
 反応が進行すると、水溶性化合物を含むシアノ金属酸の金属塩が固体として析出する。反応終了後、析出した固体を、公知の手段、例えば、遠心分離、濾過、デカンテーション、抽出、洗浄等により単離・精製することができる。さらに必要に応じて、乾燥、粉砕等の手段を用いることにより、本発明の吸着剤を粉末として得ることができる。
[吸着対象である元素イオンを水中から除去する方法]
 本発明は、廃水などに含まれる特定の元素イオン、特に有害な重金属イオンや放射性金属イオンを吸着除去する方法に関する。本発明の方法は、上述の本発明の第二の吸着剤と、吸着対象である元素イオンを含む水溶液とを接触させ、溶解度積の低い化合物を形成させる工程を含む。本発明において、吸着対象である元素イオンを含む水溶液は、典型的には、化学物質などの有害物質に汚染された水を指す。化学物質の例は、上述の吸着対象である元素イオンまたはそのような元素イオンを放出しうる化合物である。したがって吸着対象である元素イオンを含む水溶液としては、汚染された海、川、池、湖沼等の水環境、汚染された水環境から取水した水、工業排水等が挙げられる。中でも、本発明の第二の吸着剤を用いる方法は、ストロンチウムを吸着除去するのに好適であることから、廃水としては、放射性ストロンチウムで汚染された水、すなわち放射性ストロンチウムで汚染された海、川、池、湖沼等の水環境、放射性ストロンチウムで汚染された水環境から取水した水、放射性ストロンチウムを含む排水や地下水等が対象とされる。
 本発明の吸着対象である元素イオンを水中から除去する方法では、上述の本発明の第二の吸着剤と、吸着対象である元素イオンを含む水溶液とを接触させ、溶解度積の低い化合物を形成させる工程に続いて、形成した溶解度積の低い化合物を吸着剤と共に除去する工程を含んでもよい。本発明の方法では、吸着剤に含まれるシアノ金属酸の金属塩および水溶性化合物中のカウンターイオンと吸着対象である元素イオンから形成される溶解度積の低い化合物のいずれも、水にほとんど不溶であることから、処理後の吸着剤を水溶液中に取り残すことなく、公知の手段、例えば、遠心分離、濾過、デカンテーション等により容易に回収できる。
 以下、本発明の具体的態様を実施例として示すが、これらは例示であって、本発明を限定することを意図するものではない。
実施例1:吸着剤の調製
 2Mの硫酸ナトリウム水溶液を溶媒として、0.06Mヘキサシアノ鉄(II)酸カリウム三水和物溶液80mLを作製した。同様に、2Mの硫酸ナトリウム水溶液を溶媒として、0.06Mの塩化第二銅溶液80mLを作製した。作製した2つの溶液を混ぜ合わせることにより、硫酸ナトリウムを含むヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド)を茶色の固体として析出した。反応終了後、反応液を4000rpmで10分遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水を使用し洗浄し、遠心分離機を使用しデカンテーションを繰り返した。得られた固体を減圧下、50℃で乾燥し、次いで乳鉢で粉砕した。再度、精製水を使用し洗浄し、遠心分離機を使用しデカンテーションを繰り返した。得られた固体を減圧下、50℃で乾燥し、次いで乳鉢で粉砕して粉末とし、減圧下、50℃で乾燥し、吸着剤1.0gを得た。
試験例1:ストロンチウム吸着能測定実験
[手順]
(1)富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を使用し、Sr0.6ppm水溶液を調製した。
(2)ストロンチウム0.6ppm水溶液40mLに実施例1で調製したストロンチウム吸着剤5.0mgを量り入れ、アズワン ダブルアクションラボシェーカーSRR-2で150rpm、5時間撹拌した。
(3)撹拌後、容器をそのまま4000rpmで1時間遠心分離し、吸着剤を沈殿させた。
(4)上澄みを別な容器に取り分け、一晩静置し試料溶液とした。
(5)それぞれの試料溶液をICP-MS(誘導結合プラズマ質量分析:セイコーインスツル(株)製SPQ9000)で測定した。濃度既知の標準試料とブランク試料(ミリQ水)の計数率の値で一次の検量線を引き、各試料の濃度を決定した。下記式で表される残存率で評価した。結果を表1に示す。
残存率の計算式
Figure JPOXMLDOC01-appb-M000001

:吸着操作前における試験液中のSrイオン濃度[mg/L]
C:吸着操作後における試験液中のSrイオン濃度[mg/L]
Figure JPOXMLDOC01-appb-T000002
実施例2:吸着剤(Cu-PBA)の調製
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液80mLを作製した。同様に、0.06Mの塩化銅(II)水溶液80mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、約1gの吸着剤を得た。
実施例3:吸着剤(Cu-PBA)の作製
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.12Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
参考例1:ストロンチウム吸着能測定実験
[手順]
(1)富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を使用し、0.6ppm程度のストロンチウム水溶液を調製した。
(2)(1)で調製したストロンチウム水溶液40mLに実施例2または3で作製した吸着剤5mgを量り入れ、アズワン ダブルアクションラボシェーカーSRR-2で150rpm、5時間撹拌した。
(3)撹拌後、容器をそのままKUBOTA卓上小型遠心分離機型式2410スイングローターで4000rpm、1時間遠心分離し、吸着剤を沈殿させた。
(4)上澄みを別な容器に取り分け、一晩静置し試料溶液とした。
(5)それぞれの試料溶液をICP-MS(誘導結合プラズマ質量分析:セイコーインスツル(株)製SPQ9000)で測定した。濃度既知の標準試料とブランク試料(超純水)の計数率の値で一次の検量線を引き、各試料の濃度を決定し、残存率で評価した。結果を表2に示す。
参考例2:セシウム吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製のセシウム標準液(Cs1000)に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でセシウム吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例2:亜鉛吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製の酢酸亜鉛(無水)に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順で亜鉛吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例3:バリウム吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製のバリウム標準液(Ba1000)に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でバリウム吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例4:マンガン吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製の塩化マンガン(II)四水和物に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でマンガン吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例5:ランタン吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製の塩化ランタン七水和物に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でランタン吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例6:ニッケル吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製の塩化ニッケル(II)六水和物に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でニッケル吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例7:セリウム吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、東京化工業(株)製の塩化セリウム(III)(無水)に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でセリウム吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例8:コバルト吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製のコバルト標準液(Co1000)に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でコバルト吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例9:鉄吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製の鉄標準液(Fe1000)に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順で鉄吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例10:ロジウム吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製の塩化ロジウム(III)三水和物に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でロジウム吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
試験例11:ルテニウム吸着能測定実験
 富士フイルム和光純薬工業(株)製のストロンチウム標準液(Sr1000)を、富士フイルム和光純薬工業(株)製の塩化ルテニウム(III)n水和物(純度36-44%、純度40%として計算)に代えた以外は、参考例1の[手順](1)乃至(5)と同様の手順でルテニウム吸着能測定実験を行い、実施例2および3で作製した各吸着剤を残存率で評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
実施例4:吸着剤(Mn-PBA)の調製
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液20mLを作製した。同様に、0.06Mの塩化マンガン(II)四水和物水溶液20mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸マンガン(II)(Mn-PBA)が白色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、日立微量高速遠心機CF15RXII型、11000rpmを使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例5:吸着剤(Ni-PBA)の調製
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液20mLを作製した。同様に、0.06Mの塩化ニッケル(II)六水和物水溶液20mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸ニッケル(II)(Ni-PBA)が水色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、日立微量高速遠心機CF15RXII型、11000rpmを使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例6:吸着剤(Co-PBA)の調製
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液20mLを作製した。同様に、0.06Mの塩化コバルト(II)六水和物水溶液20mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸コバルト(II)(Co-PBA)が濃緑色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、日立微量高速遠心機CF15RXII型、11000rpmを使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例7:吸着剤(Zn-PBA)の調製
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液20mLを作製した。同様に、0.06Mの酢酸亜鉛(無水)水溶液20mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸亜鉛(II)(Zn-PBA)が白色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、日立微量高速遠心機CF15RXII型、11000rpmを使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
参考例3:ストロンチウム吸着能測定実験
 参考例1の[手順](1)乃至(5)と同様の手順でストロンチウム吸着能測定実験を行い、実施例5乃至7で作製した吸着剤を残存率で評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
参考例4:セシウム吸着能測定実験
 参考例2と同様の手順でセシウム吸着能測定実験を行い、実施例4乃至7で作製した吸着剤を残存率で評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
試験例12:バリウム吸着能測定実験
 試験例3と同様の手順でバリウム吸着能測定実験を行い、実施例5乃至7で作製した吸着剤を残存率で評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
実施例8:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=3:1)
 0.18Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.06Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例9:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=2:1)
 0.12Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.06Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例10:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=1:1)
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.06Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例11:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=1:1.5)
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.09Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例12:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=1:1.67)
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.10Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例13:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=1:1.83)
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.11Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例14:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=1:2)
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.12Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例15:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=1:3)
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.18Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
実施例16:吸着剤(Cu-PBA)の調製(ヘキサシアノ鉄(II)酸カリウム:塩化銅(II)=1:4)
 0.06Mヘキサシアノ鉄(II)酸カリウム三水和物水溶液10mLを作製した。同様に、0.24Mの塩化銅(II)水溶液10mLを作製した。作製した2つの水溶液を混ぜ合わせることにより、ヘキサシアノ鉄(II)酸銅(II)(銅フェロシアニド:Cu-PBA)が茶色の固体として析出した。反応終了後、反応液をKUBOTA卓上小型遠心分離機2410スイングローターで4000rpm、10分間遠心分離し、上澄みを捨てた。固体を1%塩化ナトリウム水溶液または精製水で洗浄し、遠心分離機を使用しデカンテーション洗浄を22回以上繰り返した。この洗浄の際に、洗浄された固体に対して、時には、減圧下、50℃の乾燥や乳鉢での粉砕も行った。これらの操作の後、吸着剤を得た。
参考例5:ストロンチウム吸着能測定実験
 参考例1の[手順](1)乃至(5)と同様の手順でストロンチウム吸着能測定実験を行い、実施例8乃至16で作製した各吸着剤を残存率で評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
試験例13:鉄と銅の定量
[手順]
(1)プラテンにアルミホイルをねじ止めし、その上に銀ペーストで実施例2および3の吸着剤をそれぞれ固定した。
(2)それぞれの試料を鉄、銅についてXPS(X線光電子分光装置:アルバック・ファイ(株)製PHI Quantera SXM)で測定した。
(3)測定終了後、アルバック・ファイ(株)製 MultiPacで解析を行った。求めた原子組成比(Atomic Concentration)の結果を表7に示す。
Figure JPOXMLDOC01-appb-T000008
試験例14:粉末X線回折測定
 実施例9、10、14または15の吸着剤を試料としてガラスホルダーに充填し、(株)リガク全自動水平型多目的X線回折装置を使用し、集中法光学系で測定を行った。結果を図1に示す。
 実施例9、10、14および15の吸着剤はいずれも同様の位置に回折ピークが観測された。これらの回折ピークは、プルシアンブルー(ICDD 00-052-1907)の結晶相と同様であったため、立方晶であることがわかった。
試験例15:環境水中(模擬地下水)でのストロンチウム吸着能測定実験
 富士フイルム和光純薬(株)製のストロンチウム標準液(1.0g/L)、カルシウム標準液(1.0g/L)、マグネシウム標準液(1.0g/L)およびナトリウム標準液(1.0g/L)を使用し、模擬地下水(ストロンチウム1ppm、カルシウム30ppm、ナトリウム14ppm、マグネシウム8ppm)を調製した。
 遠沈チューブ5本に調製した模擬地下水をそれぞれ30mLずつ加え、実施例1の吸着剤を50mg、100mg、200mg、400mg、800mg投入し、振とう幅5cm、回転数150rpmで5時間振とうさせた。振とう終了後、各遠沈チューブを室温にて回転数4000rpmで60分間遠心分離した。遠心分離後の上澄み液20mLを別の遠沈チューブに取り、24時間室温にて静置した。静置後の上澄み液15mLを別の遠沈チューブに取り、これを前処理溶液とした。
 検液を超純水で適宜希釈し、硝酸を約0.6%となるように添加したものをICP質量分析装置(アジレントテクノロジー(株)製、四重極型ICP質量分析装置Agilent 7500cx)に導入し、ストロンチウムの定量分析を行い、残存率で評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000009
試験例16:環境水中(模擬地下水)でのストロンチウム吸着能測定実験
 富士フイルム和光純薬(株)製のストロンチウム標準液(1.0g/L)、カルシウム標準液(1.0g/L)、マグネシウム標準液(1.0g/L)およびナトリウム標準液(1.0g/L)を使用し、模擬地下水(ストロンチウム1ppm、カルシウム30ppm、ナトリウム14ppm、マグネシウム8ppm)を調製した。
 遠沈チューブ4本に調製した模擬地下水をそれぞれ30mLずつ加え、実施例2の吸着剤を50mg、100mg、200mg、400mg投入し、振とう幅5cm、回転数150rpmで5時間振とうさせた。振とう終了後、各遠沈チューブを室温にて回転数4000rpmで60分間遠心分離した。遠心分離後の上澄み液20mLを別の遠沈チューブに取り、24時間室温にて静置した。静置後の上澄み液15mLを別の遠沈チューブに取り、これを前処理溶液とした。
 検液を超純水で適宜希釈し、硝酸を約0.6%となるように添加したものをICP質量分析装置(アジレントテクノロジー(株)製、四重極型ICP質量分析装置Agilent 7500cx)に導入し、ストロンチウムの定量分析を行い、残存率で評価した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000010
 本発明の吸着剤は、吸着性能が高く、セシウムおよびストロンチウムのみならず、マンガン、鉄、コバルト、ニッケル、亜鉛、ルテニウム、ロジウム、バリウム、ランタンおよびセリウムのような、廃水中の複数の有害金属イオンを対象とすることができるため、汎用性に優れている。
 本発明の吸着剤はまた水溶液からストロンチウムを効率よく除去することができた。本発明の吸着剤は、吸着対象である元素イオンに応じて、かかる元素イオンと溶解度積が低い化合物を構成しうるカウンターイオンを供給しうる水溶性化合物を選択し、これをシアノ金属酸の塩と、金属元素を含む化合物との反応によりシアノ金属酸の金属塩の構造内部に含ませることにより製造することができるため、汎用性に優れる。また吸着剤の原料がいずれも安価であり、かつ製造も容易であることから、大量の廃水処理のような工業的な利用にも適している。

Claims (10)

  1.  シアノ金属酸の金属塩を含む、セシウムおよびストロンチウムを除く金属元素吸着剤。
  2.  金属元素が、マンガン、鉄、コバルト、ニッケル、亜鉛、ルテニウム、ロジウム、バリウム、ランタンおよびセリウムからなる群より選択される少なくとも1種である、請求項1に記載の吸着剤。
  3.  シアノ金属酸の金属塩が、シアノ金属酸の塩と、金属元素を含む化合物との反応により得られる、請求項1または2に記載の吸着剤。
  4.  反応が、金属元素を含む化合物およびシアノ金属酸の塩の一方が担持された多孔性物質と、他方の水溶液とを用いて実施され、シアノ金属酸の金属塩が、多孔性物質の内部および外部で形成、固定化されることを特徴とする、請求項3に記載の吸着剤。
  5.  多孔性物質が親水性繊維である、請求項4に記載の吸着剤。
  6.  シアノ金属酸の金属塩が、ヘキサシアノ金属酸の第一遷移金属塩である、請求項1~5のいずれかに記載の吸着剤。
  7.  第一遷移金属が鉄、コバルト、銅および亜鉛からなる群より選択される少なくとも1種である、請求項6に記載の吸着剤。
  8.  セシウムおよびストロンチウムを除く金属元素を水中から除去する方法であって、請求項1~7のいずれかに記載の吸着剤と、前記金属元素を含む水性試料とを接触させる工程を含む方法。
  9.  金属元素が、マンガン、鉄、コバルト、ニッケル、亜鉛、ルテニウム、ロジウム、バリウム、ランタンおよびセリウムからなる群より選択される少なくとも1種である、請求項8に記載の方法。
  10.  さらに、吸着剤を除去する工程を含む、上記(8)または(9)に記載の方法。
PCT/JP2021/001879 2020-01-20 2021-01-20 新規吸着剤 WO2021149731A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21744438.9A EP4094829A4 (en) 2020-01-20 2021-01-20 NEW ADSORPTION AGENT
US17/793,807 US20230071223A1 (en) 2020-01-20 2021-01-20 Novel adsorbent
JP2021572771A JPWO2021149731A1 (ja) 2020-01-20 2021-01-20

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020007095 2020-01-20
JP2020-007094 2020-01-20
JP2020007094 2020-01-20
JP2020-007095 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021149731A1 true WO2021149731A1 (ja) 2021-07-29

Family

ID=76992891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001879 WO2021149731A1 (ja) 2020-01-20 2021-01-20 新規吸着剤

Country Status (4)

Country Link
US (1) US20230071223A1 (ja)
EP (1) EP4094829A4 (ja)
JP (1) JPWO2021149731A1 (ja)
WO (1) WO2021149731A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407889A (en) * 1991-12-24 1995-04-18 Compomet Cantec Method of composite sorbents manufacturing
JP2013027652A (ja) 2011-07-29 2013-02-07 Daito Giken:Kk 遊技台
WO2013027652A1 (ja) * 2011-08-19 2013-02-28 一般財団法人生産技術研究奨励会 放射性セシウム吸着材およびその製造方法、ならびに該吸着材による環境中の放射性セシウムの除去方法
JP5696244B1 (ja) 2014-03-27 2015-04-08 日本化学工業株式会社 吸着材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224223B1 (ja) * 2012-01-24 2013-07-03 独立行政法人産業技術総合研究所 陽イオン収着剤の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407889A (en) * 1991-12-24 1995-04-18 Compomet Cantec Method of composite sorbents manufacturing
JP2013027652A (ja) 2011-07-29 2013-02-07 Daito Giken:Kk 遊技台
WO2013027652A1 (ja) * 2011-08-19 2013-02-28 一般財団法人生産技術研究奨励会 放射性セシウム吸着材およびその製造方法、ならびに該吸着材による環境中の放射性セシウムの除去方法
JP5696244B1 (ja) 2014-03-27 2015-04-08 日本化学工業株式会社 吸着材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4094829A4

Also Published As

Publication number Publication date
JPWO2021149731A1 (ja) 2021-07-29
EP4094829A4 (en) 2024-04-17
EP4094829A1 (en) 2022-11-30
US20230071223A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
Liu et al. A novel monolith ZnS-ZIF-8 adsorption material for ultraeffective Hg (II) capture from wastewater
Kim et al. Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate
Zheng et al. Efficient adsorption of europium (III) and uranium (VI) by titanate nanorings: insights into radioactive metal species
WO2012096346A1 (ja) ヒ素イオン吸着性化合物を担持したナノ構造物およびそれを用いたヒ素イオン回収方法
US11420186B2 (en) Ca-Y-carbonate nanosheets, their use, and synthesis
CN105324340B (zh) 用于从液体料流除去汞(+2)离子的基于锰氧化物和基于金属锰氧化物的离子交换剂
Kim et al. Conventional and photoinduced radioactive 137Cs removal by adsorption on FeFe, CoFe, and NiFe Prussian blue analogues
JP2004532725A (ja) 汚染金属イオンを液体の流れから除去する無機イオン交換体
CN101289169B (zh) 复合金属氧化物的制备方法
Gomaa et al. Selective removal of thorium ions from aqueous solutions using a hybrid mesoporous adsorbent as benzenesulfonamide-derivative@ ZrO2
Torad et al. Decontamination of very dilute Cs in seawater by a coagulation–precipitation method using a nanoparticle slurry of copper hexacyanoferrate
Das et al. Adsorption of Hg2+ on cyclophosphazene and triazine moieties based inorganic-organic hybrid nanoporous materials synthesized by microwave assisted method
Abdelrahman et al. Facile synthesis of MgO/CuO and MgO/Cu3MgO4 binary nanocomposites as promising adsorbents for the disposal of Zn (II) ions
Zeng et al. Ultra-fast 137 Cs sequestration via a layered inorganic indium thioantimonate
WO2021149731A1 (ja) 新規吸着剤
WO2021149730A1 (ja) 新規吸着剤
Mandal et al. n-Capric acid-anchored silanized silica gel: its application to sample clean-up of Th (IV) sorbed as a dinuclear species in quantified H-bonded dimeric metal-trapping cores
KR20210002988A (ko) 독성 음이온 흡착제거용 란타늄-알콕사이드 하이브리드 물질과 그 제조방법 및 이를 이용한 독성 음이온의 흡착제거 방법
JP2022033711A (ja) 金属含有液の処理方法、及び有機溶剤の製造方法
CN115216022B (zh) 硫醇化的Zr基金属有机骨架及其制备方法和应用
JP5950326B2 (ja) ヒ素イオン吸着性化合物を担持したメソポーラスアルミナおよびそれを用いたヒ素イオン回収方法およびヒ素フリー水溶液の製造方法
WO2016149267A1 (en) Methods of removing perchlorate from water and vessels and systems for practicing the same
JP5099349B2 (ja) 吸着剤
JP4189652B2 (ja) 吸着剤
CN115845788B (zh) 天然锰矿粉在吸附汞离子中的应用及去除废水中汞离子的应用和去除土壤中汞离子的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021744438

Country of ref document: EP

Effective date: 20220822