WO2021149463A1 - 耐遅れ破壊特性に優れた高強度鋼板 - Google Patents

耐遅れ破壊特性に優れた高強度鋼板 Download PDF

Info

Publication number
WO2021149463A1
WO2021149463A1 PCT/JP2020/049182 JP2020049182W WO2021149463A1 WO 2021149463 A1 WO2021149463 A1 WO 2021149463A1 JP 2020049182 W JP2020049182 W JP 2020049182W WO 2021149463 A1 WO2021149463 A1 WO 2021149463A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
amount
delayed fracture
Prior art date
Application number
PCT/JP2020/049182
Other languages
English (en)
French (fr)
Inventor
航佑 柴田
潤一郎 衣笠
啓亮 中田
厚寛 白木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to MX2022008956A priority Critical patent/MX2022008956A/es
Priority to EP20915995.3A priority patent/EP4071260A4/en
Priority to KR1020227023693A priority patent/KR20220111699A/ko
Priority to CN202080093566.7A priority patent/CN115003834B/zh
Priority to US17/790,890 priority patent/US20230040459A1/en
Publication of WO2021149463A1 publication Critical patent/WO2021149463A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • This disclosure relates to a high-strength steel plate having excellent delayed fracture resistance.
  • Patent Document 1 satisfies the formula (1) showing a predetermined component and the relationship between S and N, and in the structure, the total area ratio of tempered martensite and bainite to the entire structure is 95% or more and 100%.
  • the distance between the inclusion particles is 30 ⁇ m or less, the total length in the rolling direction is more than 120 ⁇ m, the inclusion group is 0.8 pieces / mm 2 or less, the aspect ratio is 2.5 or less, and the long axis.
  • the number of carbides containing Fe as a main component is 3500 pieces / mm 2 or less, and the amount of carbides having a diameter of 10 to 50 nm distributed inside the tempered martensite structure and / or the bainite is 0.20 ⁇ m or more and 2 ⁇ m or less.
  • Cold-rolled steel sheets having 0.7 ⁇ 10 7 pieces / mm 2 or more and an average particle size of old ⁇ grains of 18 ⁇ m or less are shown.
  • Patent Document 2 a predetermined composition is satisfied, the steel structure is a single structure of martensite structure, and in the surface layer region from the surface of the steel sheet to the depth (plate thickness ⁇ 0.1), the inclusion group A high-strength cold-rolled steel sheet having a defined arrangement and excellent bending workability is disclosed.
  • Patent Documents 1 and 2 above improvement of the delayed fracture resistance of a high-strength steel sheet has been studied, but the delayed fracture resistance of a higher-strength steel sheet, particularly a steel sheet having a tensile strength of 1700 MPa or more, is improved. Needs further study.
  • the present disclosure has been made in view of the above circumstances, and an object of the present invention is the realization of a steel sheet having both high strength with a tensile strength of 1700 MPa or more and excellent delayed fracture resistance.
  • Aspect 1 of the present invention is C: 0.280% by mass or more, 0.404% by mass or less, Si: 0% by mass or more, 0.6% by mass or less, Mn: more than 0% by mass, 1.5% by mass or less, Al: More than 0% by mass, 0.15% by mass or less, B: 0.01% by mass or less Cu: 0.5% by mass or less Ni: 0.5% by mass or less Ti: 0.20% by mass or less N: More than 0% by mass, 0.01% by mass or less, P: more than 0% by mass, 0.02% by mass or less, and S: more than 0% by mass, 0.01% by mass or less, the balance consisting of Fe and unavoidable impurities.
  • the ratio of martensite structure to the total metal structure is 95 area% or more, and the ratio of transition carbide to the total metal structure is 0.8% by volume or more. It is a steel plate.
  • Aspect 2 of the present invention The high-strength steel plate according to aspect 1, further containing Cr: more than 0% by mass and 1.0% by mass or less.
  • Aspect 3 of the present invention V More than 0% by mass, 0.1% by mass or less, 1 or 2 according to aspect 1 or 2, further comprising at least one selected from the group consisting of Nb: greater than 0% by mass, 0.1% by mass or less, and Mo: greater than 0% by mass, 0.5% by mass or less. It is a high-strength steel plate.
  • Aspect 4 of the present invention Described in any of aspects 1 to 3, further containing one or two of Ca: more than 0% by mass and 0.005% by mass or less, and Mg: more than 0% by mass and 0.005% by mass or less. High-strength steel sheet.
  • FIG. 1 is a diagram showing a heat treatment process according to an embodiment of the present invention.
  • the present inventors improve the delayed fracture resistance of a steel sheet mainly composed of martensite structure capable of achieving high strength, particularly ultra-high strength having a tensile strength of 1700 MPa or more.
  • the transitional carbide described later works effectively as a hydrogen trap site, and by securing 0.8% by volume or more of the transitional carbide in the total metal structure, the fracture in the U-bending hydrochloric acid immersion test described later is performed. It was found that excellent delayed fracture resistance with a time of more than 4 hours can be realized.
  • the metal structure of the high-strength steel plate according to the embodiment of the present invention has a martensite structure in the total metal structure of 95 area% or more and a transition carbide ratio in the total metal structure of 0.8% by volume or more. It is characterized by being.
  • the ratio of martensite structure is 95 area% or more
  • the ratio of martensite structure to the total metal structure is 95 area% or more in order to secure a tensile strength of 1700 MPa or more.
  • the proportion of the martensite structure is preferably 97 area% or more, and may be 100 area%.
  • the high-strength steel sheet according to the embodiment of the present invention may also include a ferrite structure, a bainite structure, a retained austenite structure, and the like as structures that can be unavoidably contained in the manufacturing process.
  • Transition carbide content is 0.8% by volume or more
  • transitional carbides which are iron-based carbides
  • the "transitional carbide” means a carbide mainly composed of Fe, that is, a carbide having the highest Fe content among metal elements, and means an epsilon carbide ( ⁇ ) and an eta carbide ( ⁇ ). , Cementite ( ⁇ ) is not included.
  • the "transitional carbide” in the embodiment of the present invention can also be expressed as a "transitional carbide ( ⁇ , ⁇ )" which is a combination of the epsilon carbide ( ⁇ ) and the eta carbide ( ⁇ ).
  • the transition carbide may further contain an element (for example, Cr, V, etc.) capable of forming the carbide.
  • the transition carbide needs to be present in an amount of 0.8% by volume or more in order to exert the effect as the hydrogen trap site.
  • the transition carbide is preferably present in an amount of 0.9% by volume or more, more preferably 1.0% by volume or more.
  • the total amount of the epsilon carbide ( ⁇ ) and the eta carbide ( ⁇ ) may be 0.8% by volume or more, and the respective ratios of the epsilon carbide ( ⁇ ) and the eta carbide ( ⁇ ) have an effect. do not.
  • the upper limit of the amount of transition carbide is not particularly limited, but is substantially 3.0% by volume.
  • the carbide described in Patent Document 1 is different from the carbide according to the embodiment of the present invention.
  • carbides are observed by SEM, and the size is defined as 10 nm or more. However, since these carbides are relatively coarse, they are presumed to be cementite and have a low hydrogen trapping ability.
  • the transition carbide according to the embodiment of the present invention is a fine transition carbide having a diameter equivalent to a circle of 10 nm or less, and cannot be observed by SEM. Further, the transition carbide according to the embodiment of the present invention is characterized by having a higher hydrogen trapping ability than cementite, and can suppress hydrogen embrittlement more effectively.
  • Patent Document 2 describes a martensite structure steel in which inclusions are controlled.
  • Patent Document 2 does not have an idea according to the embodiment of the present invention that finely precipitates transitional carbide having a high hydrogen trapping ability by controlling tempering described later, and Patent Document 2 has a short tempering time of 100 seconds. It is considered that sufficient delayed fracture resistance cannot be exhibited.
  • Component Composition The component composition of the high-strength steel sheet according to the embodiment of the present invention will be described below.
  • C 0.280% by mass or more, 0.404% by mass or less
  • C is an element required to obtain a tensile strength of 1700 MPa or more. Therefore, the amount of C is set to 0.280% by mass or more.
  • the amount of C is preferably 0.290% by mass or more, more preferably 0.300% by mass or more.
  • the amount of C is set to 0.404% by mass or less.
  • the amount of C is preferably 0.380% by mass or less, more preferably 0.360% by mass or less.
  • Si 0% by mass or more, 0.6% by mass or less
  • Si is an element effective for improving tempering and softening resistance. It is also an element that is effective in improving strength by strengthening solid solution.
  • the amount of Si may be 0% by mass, but in order to exert the above effect, it is preferable to contain 0.02% by mass or more of Si. However, since Si is a ferrite-forming element, if it is contained in a large amount, hardenability is impaired and it becomes difficult to secure high strength. Therefore, the amount of Si is set to 0.6% by mass or less.
  • the amount of Si is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, further 0.1% by mass or less, and further preferably 0.05% by mass or less.
  • Mn is an element effective for improving hardenability and increasing strength.
  • the amount of Mn is set to more than 0% by mass.
  • the amount of Mn is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more, still more preferably 0.65% by mass or more.
  • the amount of Mn is set to 1.5% by mass or less.
  • the amount of Mn is preferably 1.2% by mass or less, more preferably 1.0% by mass or less, and further may be 0.8% by mass or less.
  • Al acts as a deoxidizer and also has the effect of improving the corrosion resistance of steel.
  • the amount of Al is set to more than 0% by mass.
  • the Al content is preferably 0.035% by mass or more, and further may be 0.040% by mass or more.
  • the amount of Al is preferably 0.10% by mass or less, more preferably 0.07% by mass or less, and further preferably 0.055% by mass or less.
  • B is an element effective for enhancing hardenability.
  • the amount of B is preferably more than 0% by mass, more preferably 0.0001% by mass or more, still more preferably 0.0005% by mass or more, still more preferably 0. It is 0010% by mass or more.
  • the amount of B is 0.01% by mass or less, preferably 0.0080% by mass or less, more preferably 0.0065% by mass or less, still more preferably 0. .0040% by mass or less.
  • Cu and Ni are elements effective for improving the corrosion resistance of the steel sheet, suppressing the generation of hydrogen involved in hydrogen embrittlement, and improving the delayed fracture resistance.
  • Cu it is preferably more than 0% by mass, more preferably 0.01% by mass or more, still more preferably 0.05% by mass or more, still more preferably 0.08% by mass or more. Incorporate.
  • the pickling property and the chemical conversion treatment property are deteriorated, so that the amount of Cu is 0.5% by mass or less, preferably 0.4% by mass or less, and more preferably 0.2% by mass or less. And.
  • Ni it is preferably contained in an amount of more than 0% by mass, more preferably 0.01% by mass or more, still more preferably 0.05% by mass or more, still more preferably 0.08% by mass or more. However, if Ni is excessively contained, ductility and processability of the base material are lowered, so that the amount of Ni is 0.5% by mass or less, preferably 0.4% by mass or less, and more preferably 0.2% by mass or less. And.
  • Ti is an element effective for improving strength and toughness after quenching by refining ⁇ grains.
  • the amount of Ti is preferably more than 0% by mass.
  • the amount of Ti is more preferably 0.003% by mass or more, further preferably 0.020% by mass or more, still more preferably 0.045% by mass or more.
  • the amount of Ti is 0.20% by mass or less, more preferably 0.15% by mass or less.
  • the amount of N is set to 0.01% by mass or less.
  • the amount of N is preferably 0.008% by mass or less, more preferably 0.006% by mass or less. Considering the cost of steelmaking and the like, the amount of N is usually 0.001% by mass or more.
  • P More than 0% by mass, 0.02% by mass or less
  • P has an action of strengthening steel, but lowers toughness and ductility, so the content is 0.02% by mass or less.
  • the amount of P is preferably 0.01% by mass or less, and more preferably 0.006% by mass or less.
  • S More than 0% by mass, 0.01% by mass or less
  • S produces sulfide-based inclusions and deteriorates the workability and weldability of the base metal. Therefore, the smaller the amount of S, the better, and in the embodiment of the present invention, it is 0.01% by mass or less.
  • the amount of S is preferably 0.005% by mass or less, more preferably 0.003% by mass or less.
  • the balance is Fe and unavoidable impurities.
  • unavoidable impurities it is permissible to mix trace elements (for example, As, Sb, Sn, etc.) brought in depending on the conditions of raw materials, materials, manufacturing equipment, and the like.
  • trace elements for example, As, Sb, Sn, etc.
  • the steel sheet according to the embodiment of the present invention may have a component composition of the above elements and the balance of Fe and unavoidable impurities, and may not contain the selective elements described below. If the composition of the steel sheet contains the elements described below in addition to the above elements, the properties such as strength and corrosion resistance of the steel sheet can be further improved.
  • Cr more than 0% by mass, 1.0% by mass or less
  • Cr is an element effective for increasing the strength by improving the hardenability.
  • Cr is an element effective for increasing the temper softening resistance of martensite structure steel.
  • the amount of Cr is preferably more than 0% by mass, more preferably 0.01% by mass or more, and further preferably 0.05% by mass or more.
  • the upper limit of the amount of Cr is 1.0% by mass, and the preferable upper limit is 0.7% by mass.
  • V selected from the group consisting of more than 0% by mass, 0.1% by mass or less
  • Nb more than 0% by mass, 0.1% by mass or less
  • Mo more than 0% by mass, 0.5% by mass or less.
  • All of V, Nb and Mo are elements effective for improving the strength and improving the toughness after quenching by refining ⁇ grains.
  • any of V, Nb and Mo is preferably contained in an amount of more than 0% by mass, more preferably 0.003% by mass or more, still more preferably 0.020% by mass or more.
  • the amount of V and the amount of Nb are each preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and the amount of Mo is 0.5% by mass or less.
  • Ca binds to S instead of Mn, controls the form of MnS extending in the rolling direction, and further divides MnS at the end face of the steel sheet to suppress localization of the local corrosion origin, and at the local corrosion origin. It is an element that can suppress hydrogen generation and hydrogen invasion. Further, Mg is an element capable of suppressing a decrease in pH at the corrosion tip and suppressing hydrogen generation and hydrogen invasion by combining with O to form MgO.
  • the content of each of these elements is preferably 0.005% by mass or less, more preferably 0.003% by mass or less.
  • the steel sheet according to the embodiment of the present invention has other elements such as Se, As, Sb, Pb, Sn, Bi, Zn, Zr, W, Cs, Rb, Co, La, Tl, Nd, Y, and the like.
  • Be, Hf, Tc, Ta, O and the like may be contained in a total of 0.01% by mass or less for the purpose of further improving corrosion resistance and delayed fracture resistance.
  • the steel sheet according to the embodiment of the present invention exhibits excellent delayed fracture resistance, having a strength (TS) of 1700 MPa or more and a fracture time of more than 4 hours in the U-bending hydrochloric acid immersion test described later.
  • TS strength
  • the recommended manufacturing method of the high-strength steel sheet according to the embodiment of the present invention will be described.
  • the present inventors perform the above-mentioned desired desired rolling materials such as hot-rolled steel sheets or cold-rolled steel sheets having the above-mentioned composition by performing a heat treatment including annealing, quenching and tempering treatment described in detail below.
  • a high-strength steel sheet having a metallographic structure and exhibiting desired properties can be obtained.
  • the recommended manufacturing method will be described in detail.
  • the holding time t1 at the maximum heating temperature T1 may be appropriately determined according to the maximum heating temperature T1 and the like, but in order to complete the austenite transformation of the steel sheet in the temperature range of Ac3 to 950 ° C., 30 seconds or more as described above. And.
  • the maximum heating temperature T1 is less than 3 points of Ac, or when the holding time t1 in the temperature range is less than 30 seconds, the structure of the rolled material to be heat-treated, for example, a hot-rolled steel sheet (for example, ferrite-pearlite) remains. Even if the quenching step is carried out thereafter, a martensite-based structure cannot be obtained, and it becomes difficult to obtain a tensile strength of 1700 MPa or more.
  • the maximum heating temperature T1 exceeds 950 ° C., austenite grains grow and become a coarse structure, which adversely affects the mechanical properties and the delayed fracture resistance. Further, holding at an excessively high temperature is not preferable because the equipment load increases and the economy is also inferior. Therefore, the maximum heating temperature T1 is set to 950 ° C. or lower.
  • the Ac3 points are calculated by the following formula (1) (see p273- (VII-20) formula of Leslie Steel Materials Science (1985, William C. Leslie)).
  • Ac3 (° C.) 910-203 x [C] 1 / 2-15.2 x [Ni] +44.7 x [Si] +104 x [V] +31.5 x [Mo] +13.1 x [W]- 30 x [Mn] -11 x [Cr] -20 x [Cu] + 700 x [P] + 400 x [Al] + 120 x [As] + 400 x [Ti] ...
  • [element name] indicates the content of each element in the steel in mass%, and the elements not included are calculated as zero.
  • the quenching start temperature T2 is preferably 700 ° C. or higher, more preferably 800 ° C. or higher, and is the maximum heating temperature T1 or lower.
  • the average cooling rate CR2 is approximately 50 ° C / s or higher. For example, quenching is performed by water cooling. If the average cooling rate CR2 is slower than this, ferrite is precipitated during cooling, a martensite-based structure cannot be obtained, and a tensile strength of 1700 MPa or more cannot be secured. On the other hand, even if the average cooling rate CR2 is excessively increased, there is no problem in terms of the material, but since excessive capital investment is required, the average cooling rate CR2 is set to about 1000 ° C./s or less. Further, the cooling stop temperature T3 is approximately 100 ° C. or lower when the cooling method is water cooling.
  • the effect according to the embodiment of the present invention is exhibited even if the lower limit of the cooling stop temperature T3 is not particularly defined, since it is economically burdensome to set the cooling stop temperature T3 to room temperature or lower, the room temperature is substantially set to room temperature. It is the lower limit.
  • the average cooling rate CR1 from the maximum heating temperature T1 to the quenching start temperature T2 in [3] of FIG. 1 is 5 ° C./s or more.
  • the holding time t3 at the cooling stop temperature T3 is not important and may be held at the cooling stop temperature T3 as shown in [5] of FIG. 1 or may not be held at the cooling stop temperature T3.
  • a preferable holding time t3 is set to 1 to 600 seconds. Even if the holding time t3 is longer than 600 seconds, the characteristics of the obtained steel sheet are not so improved and the productivity of the steel sheet is lowered. Therefore, it is preferably 600 seconds or less.
  • tempering is performed as shown in [6] to [8] of FIG.
  • the tempering temperature and time it is possible to control the precipitation and growth of the Fe-based carbide, which is the transition carbide according to the embodiment of the present invention, and secure 0.8% by volume or more of the transition carbide.
  • tempering temperature T4 (Heating at a tempering temperature T4 where a predetermined tempering parameter satisfies 130 to 200, with a tempering time t4 of more than 100 seconds and less than 1000 seconds)
  • the tempering temperature T4 is set within a range in which the tempering parameter defined in the following formula (2) satisfies 130 to 200, and at this tempering temperature T4, the tempering time is maintained for more than 100 seconds and less than 1000 seconds (tempering time). do.
  • Tempering parameter -160 x [C] + T4 ... (2)
  • [C] indicates the amount of C (mass%) in the steel
  • T4 indicates the tempering temperature (° C.).
  • transition carbide which is a feature of the present disclosure
  • the present disclosure differs from the prior art which does not take such a point into consideration. That is, in the conventional technique, the transition carbide defined in the embodiment of the present invention is not precipitated in a predetermined amount, and it is considered difficult to achieve both high strength with a tensile strength of 1700 MPa or more and excellent delayed fracture resistance.
  • a predetermined amount of fine transition carbide can be precipitated. If the tempering parameter is less than 130, the diffusion of C is not sufficient, so that the amount of transition carbide is insufficient and the delayed fracture resistance is insufficient.
  • the tempering parameter is preferably 135 or more, more preferably 140 or more, still more preferably 145 or more. On the other hand, if the tempering parameter exceeds 200, the strength is lowered or a large amount of coarse cementite is generated, so that the delayed fracture resistance may be deteriorated.
  • the tempering parameter is preferably 190 or less.
  • the tempering time t4 is set to more than 100 seconds, preferably more than 240 seconds, and more preferably more than 360 seconds. Further, since holding for a long time at the tempering temperature T4 is economically disadvantageous, it is set to less than 1000 seconds, preferably less than 800 seconds, and more preferably less than 600 seconds.
  • the preferable average cooling rate CR3 at the time of cooling can be, for example, 20 ° C./sec or less, for example, 10 ° C./sec.
  • the steel sheet obtained by cooling to room temperature may be electrogalvanized according to a conventional method.
  • hot-dip galvanizing or alloyed zinc plating may be performed according to a conventional method. If the component composition, metallographic structure, and recommended manufacturing method of the above-described embodiment of the present invention are satisfied, even if these plating treatments are performed, the strength and the delayed fracture resistance required by the embodiment of the present invention are affected. Not.
  • the steel sheet obtained by the above heat treatment may be energized while being immersed in a zinc solution at 50 to 60 ° C. to perform electrogalvanization.
  • the amount of plating adhered is not particularly limited, and may be, for example, about 10 to 100 g / m 2 per side. Corrosion resistance of the steel sheet is improved by applying the electrogalvanizing treatment.
  • the “cooling method” in Table 2 is a cooling method from the quenching start temperature T2.
  • the heat treatment conditions other than those shown in Table 2 are as follows. Cooling was performed with a cooling stop temperature of T3 as a target of room temperature. The holding time t3 at the cooling stop temperature T3 is not controlled because it is not particularly important as described above.
  • the reheating rate HR1 was about 2 ° C./s. After tempering, it was allowed to cool to room temperature.
  • the ratio of the metal structure of the obtained steel sheet, the amount of transition carbide, and the tensile strength and delayed fracture resistance as characteristics were evaluated as shown below.
  • Subtract divide the number of intersections whose intersections are martensite structures or the number of intersections other than martensite structure (ferrite structure) by the total number of intersections, and divide the area ratio of martensite structure and martensite structure.
  • the area ratios of structures other than (ferrite structure) were determined respectively.
  • transitional carbides that are effective as hydrogen trap sites are ⁇ and ⁇ , but their structures are similar and it is not easy to distinguish them from the diffraction peaks.
  • the total area ratio of the metal structure and the amount of transition carbide may exceed 100%.
  • the tensile strength (TS) was measured by collecting JIS No. 5 tensile test pieces from the steel sheet so that the direction perpendicular to the rolling direction of the steel sheet was the longitudinal direction, and measuring according to the method specified in JIS Z 2241 (2011). Then, in this example, those having a tensile strength of 1700 MPa or more were evaluated as having high strength.
  • Table 3 shows the results of these measurements.
  • the underlined numerical values indicate that the values are outside the specified range and evaluation criteria of the embodiment of the present invention. Further, in Table 2, the underlined part indicates that the recommended manufacturing conditions are not met.
  • No. All of Nos. 4 to 6 satisfy the component composition specified in the embodiment of the present invention and are produced under the recommended conditions to obtain a desired metal structure, and thus exhibit high tensile strength and excellent delayed fracture resistance.
  • rice field On the other hand, No. 1 to 3, 7 and 8 are inferior in at least one of tensile strength and delayed fracture resistance because they do not satisfy the specified composition or are not manufactured under the recommended conditions and the specified metal structure cannot be obtained. rice field. Details are shown below.
  • the amount of C is No. Although it was more than 1 and 2, it was insufficient, and tempering was not performed so as to satisfy the tempering parameters. Therefore, a predetermined amount of transition carbide could not be secured, and as a result, the delayed fracture resistance was inferior.
  • No. No. 7 uses a steel sheet satisfying the specified composition, but since tempering was not performed under the recommended conditions, the tensile strength was low and the delayed fracture resistance was also inferior.
  • No. No. 8 was inferior in delayed fracture resistance because a steel sheet having an excessive amount of C was used and tempering was not performed under the recommended conditions.

Abstract

本開示の引張強度1700MPa以上の耐遅れ破壊特性に優れた高強度鋼板は、所定の成分組成を満たすと共に、全金属組織に占めるマルテンサイト組織の割合が95面積%以上、および全金属組織に占める遷移炭化物の割合が0.8体積%以上である。

Description

耐遅れ破壊特性に優れた高強度鋼板
 本開示は、耐遅れ破壊特性に優れた高強度鋼板に関する。
 自動車の軽量化と衝突安全性の両立のため、自動車構造材・補強材用の鋼板は更なる高強度化が求められている。しかしながら、鋼板の高強度化に伴い、鋼中への水素の侵入等を起因とする遅れ破壊発生の懸念がある。耐遅れ破壊特性の向上は、種々の観点から試みられており、例えば鋼中の析出物の形態、具体的にはMnSの微細化、炭化物密度の制御を行うことなどが提案されている。
 例えば特許文献1には、所定の成分、およびSとNの関係を示した式(1)を満たし、組織において、焼き戻しマルテンサイトおよびベイナイトの組織全体に対する面積率が合計で95%以上100%以下であり、圧延方向に伸展および/または点列状に分布した1個以上の長軸:0.3μm以上の介在物粒子により構成され、該介在物粒子が2個以上で構成される場合には該介在物粒子間の距離が30μm以下であり、圧延方向における全長が120μm超である介在物群が0.8個/mm以下であり、アスペクト比が2.5以下であり、長軸が0.20μm以上2μm以下である、Feを主成分とする炭化物が3500個/mm以下であり、前記焼き戻しマルテンサイト組織および/または前記ベイナイトの内部に分布する直径10~50nmの炭化物が0.7×10個/mm以上であり、旧γ粒の平均粒径が18μm以下である、冷延鋼板が示されている。
 また特許文献2には、所定の成分組成を満たし、鋼組織がマルテンサイト組織の単一組織であり、鋼板の表面から(板厚×0.1)深さまでの表層域において、介在物群の配置を定めた、曲げ加工性に優れた高強度冷延鋼板が開示されている。
特許第6112261号公報 特許第5466576号公報
 上記特許文献1、2では高強度鋼板の耐遅れ破壊特性の改善について検討されているが、より高強度の鋼板、特に引張強度が1700MPa以上のより強度の高い鋼板の耐遅れ破壊特性を向上させるには、更なる検討が必要であると考えられる。本開示は、該事情に鑑みてなされたものであって、引張強度が1700MPa以上の高強度と優れた耐遅れ破壊特性を両立できた鋼板の実現を課題とする。
 本発明の態様1は、
 C:0.280質量%以上、0.404質量%以下、
Si:0質量%以上、0.6質量%以下、
Mn:0質量%超、1.5質量%以下、
Al:0質量%超、0.15質量%以下、
B :0.01質量%以下
Cu:0.5質量%以下
Ni:0.5質量%以下
Ti:0.20質量%以下
N :0質量%超、0.01質量%以下、
P :0質量%超、0.02質量%以下、および
S :0質量%超、0.01質量%以下
を含有し、残部がFeおよび不可避不純物からなり、
 全金属組織に占めるマルテンサイト組織の割合が95面積%以上、および全金属組織に占める遷移炭化物の割合が0.8体積%以上である、引張強度1700MPa以上の耐遅れ破壊特性に優れた高強度鋼板である。
 本発明の態様2は、
 Cr:0質量%超、1.0質量%以下を更に含有する、態様1に記載の高強度鋼板である。
 本発明の態様3は、
 V:0質量%超、0.1質量%以下、
 Nb:0質量%超、0.1質量%以下、および
 Mo:0質量%超、0.5質量%以下よりなる群から選択される少なくとも1種を更に含有する、態様1または2に記載の高強度鋼板である。
 本発明の態様4は、
 Ca:0質量%超、0.005質量%以下、および
 Mg:0質量%超、0.005質量%以下のうちの1種または2種を更に含有する、態様1~3のいずれかに記載の高強度鋼板である。
 本発明の実施形態によれば、引張強度が1700MPa以上の高強度と優れた耐遅れ破壊特性を両立できた鋼板を提供することができる。
図1は、本発明の実施形態における熱処理プロセスを示す図である。
 本発明者らは、前記課題を解決するため、高強度、特には引張強度が1700MPa以上の超高強度を達成することのできるマルテンサイト組織主体の鋼板を対象に、耐遅れ破壊特性を改善すべく鋭意研究を重ねた。その結果、後述する遷移炭化物が水素トラップサイトとして有効に働くこと、および該遷移炭化物を全金属組織に占める割合で0.8体積%以上確保することによって、後述するU曲げ塩酸浸漬試験での破壊時間が4時間超の優れた耐遅れ破壊特性を実現できるとの知見を得た。
 以下、本発明の実施形態に係る鋼板の金属組織、成分組成、特性および該鋼板の製造方法について順に説明する。
1.金属組織
 本発明の実施形態に係る高強度鋼板の金属組織は、全金属組織に占めるマルテンサイト組織の割合が95面積%以上、および全金属組織に占める遷移炭化物の割合が0.8体積%以上であることを特徴とする。
(1)マルテンサイト組織の割合が95面積%以上
 本発明の実施形態では、1700MPa以上の引張強度を確保するため、全金属組織に占めるマルテンサイト組織の割合を95面積%以上とする。該マルテンサイト組織の割合は好ましくは97面積%以上であり、100面積%であってもよい。
 本発明の実施形態に係る高強度鋼板には、上記マルテンサイト組織以外に、製造工程で不可避的に含まれうる組織として、フェライト組織、ベイナイト組織、残留オーステナイト組織等も含みうる。
(2)遷移炭化物が0.8体積%以上
 本発明の実施形態では、上述の通り、引張強度が1700MPa以上の超高強度域において、水素トラップによる耐遅れ破壊特性の向上を図るため検討したところ、前述の通り、水素トラップサイトとして、鉄系の炭化物である遷移炭化物が有効に働くことをまず見出した。本発明の実施形態において「遷移炭化物」とは、Feを主体とした炭化物、すなわち金属元素のうちFeの含有量が最も高い炭化物であり、イプシロン炭化物(ε)とイータ炭化物(η)を意味し、セメンタイト(θ)は含まれない。すなわち本発明の実施形態における「遷移炭化物」は、イプシロン炭化物(ε)とイータ炭化物(η)をあわせた「遷移炭化物(ε、η)」とも表現することができる。なお、遷移炭化物は、炭化物を形成しうる元素(例えば、Cr、V等)を更に含んでいてもよい。
 そして該水素トラップサイトとしての効果を発揮させるには、該遷移炭化物を0.8体積%以上存在させる必要があることを見出した。前記遷移炭化物は、好ましくは0.9体積%以上、より好ましくは1.0体積%以上存在させる。本発明の実施形態では、イプシロン炭化物(ε)とイータ炭化物(η)の合計量が0.8体積%以上であればよく、イプシロン炭化物(ε)とイータ炭化物(η)のそれぞれの割合は影響しない。遷移炭化物量の上限は特に限定されないが、実質的に3.0体積%程度が上限である。
 なお特許文献1でも炭化物の形状を制御しているが、特許文献1に記載の炭化物と本発明の実施形態に係る炭化物とは異なる。特許文献1では炭化物をSEMで観察しており、10nm以上のサイズと規定している。しかし、これらの炭化物は比較的粗大であることから、セメンタイトと推定され、水素トラップ能は低い。一方、本発明の実施形態に係る遷移炭化物は、円相当径10nm以下の微細な遷移炭化物であり、SEMでは観察することができない。また本発明の実施形態に係る遷移炭化物は、セメンタイトよりも水素トラップ能が高いことが特徴であり、水素脆化をより有効に抑制することができる。
 また特許文献2には、介在物を制御したマルテンサイト組織鋼が記載されている。しかし特許文献2には、後述する焼戻しの制御により、水素トラップ能の高い遷移炭化物を微細析出させるという本発明の実施形態に係る思想はなく、特許文献2では焼戻し時間が100秒と短いため、十分な耐遅れ破壊特性を発揮できないと考える。
2.成分組成
 以下に本発明の実施形態に係る高強度鋼板の成分組成について説明する。
 [C:0.280質量%以上、0.404質量%以下]
 Cは、1700MPa以上の引張強度を得るために必要な元素である。そのため、C量を0.280質量%以上とする。C量は、好ましくは0.290質量%以上、より好ましくは0.300質量%以上である。一方、C量が多すぎると、マルテンサイト組織の強度が過度に上昇する、またはセメンタイトなどの粗大な炭化物が生成して耐遅れ破壊特性が劣化する。そのためC量は0.404質量%以下とする。C量は、好ましくは0.380質量%以下、より好ましくは0.360質量%以下である。
 [Si:0質量%以上、0.6質量%以下]
 Siは、焼戻し軟化抵抗性を向上させるのに有効な元素である。また、固溶強化による強度向上にも有効な元素である。Si量は0質量%でもよいが、上記効果を発揮させる場合には、Siを0.02質量%以上含有させることが好ましい。しかし、Siはフェライト生成元素であるため、多く含まれると、焼入れ性が損なわれて高強度を確保することが難しくなる。よって、Si量は0.6質量%以下とする。Si量は、好ましくは0.5質量%以下であり、より好ましくは0.2質量%以下であり、更に0.1質量%以下、より更には0.05質量%以下としてもよい。
 [Mn:0質量%超、1.5質量%以下]
 Mnは、焼入れ性を向上させて強度を高めるのに有効な元素である。こうした効果を発揮させるため、Mn量は0質量%超とする。Mn量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上、より更に好ましくは0.65質量%以上である。しかし、Mn量が過剰であると、耐遅れ破壊特性、溶接性が悪化し、また、電気亜鉛めっき処理等のめっき処理を施さない場合には耐食性も悪化する。よって、Mn量は1.5質量%以下とする。Mn量は、好ましくは1.2質量%以下、より好ましくは1.0質量%以下であり、更に0.8質量%以下としてもよい。
 [Al:0質量%超、0.15質量%以下]
 Alは、脱酸剤として作用し、また鋼の耐食性を向上させる効果もある。こうした効果を発揮させるために、Al量を0質量%超とする。上記効果を十分発揮させる観点からは、Al量を0.035質量%以上とすることが好ましく、更に0.040質量%以上としてもよい。しかし、Alが過剰に含まれていると、介在物が多量に生成して表面疵の原因となるので、その上限を0.15質量%とする。Al量は、好ましくは0.10質量%以下、より好ましくは0.07質量%以下であり、さらに好ましくは0.055質量%以下である。
 [B:0.01質量%以下]
 Bは焼入れ性を高めるのに有効な元素である。この様な効果を十分に発揮させるには、B量を0質量%超とすることが好ましく、より好ましくは0.0001質量%以上、更に好ましくは0.0005質量%以上、より更に好ましくは0.0010質量%以上である。しかし、Bが過剰に含まれると延性が低下するため、B量は、0.01質量%以下、好ましくは0.0080質量%以下、より好ましくは0.0065質量%以下、より更に好ましくは0.0040質量%以下とする。
 [Cu:0.5質量%以下]
 [Ni:0.5質量%以下]
 CuおよびNiは、鋼板の耐食性を向上させることで水素脆化に関与する水素の発生を抑制し、耐遅れ破壊特性を向上させるのに有効な元素である。該効果を十分発揮させるには、Cuの場合、好ましくは0質量%超、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上、より更に好ましくは0.08質量%以上含有させる。一方、Cuが過剰に含まれると酸洗性および化成処理性が劣化するため、Cu量は、0.5質量%以下、好ましくは0.4質量%以下、より好ましくは0.2質量%以下とする。また、Niの場合も、好ましくは0質量%超、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上、より更に好ましくは0.08質量%以上含有させる。しかし、Niが過剰に含まれると延性および母材の加工性が低下するため、Ni量は、0.5質量%以下、好ましくは0.4質量%以下、より好ましくは0.2質量%以下とする。
 [Ti:0.20質量%以下]
 Tiは、強度の向上、およびγ粒微細化による焼入れ後の靭性改善に有効な元素である。該効果を発揮させるには、Ti量を0質量%超とすることが好ましい。上記効果を十分発揮させるには、Ti量を、0.003質量%以上とすることがより好ましく、更に好ましくは0.020質量%以上、より更に好ましくは0.045質量%以上である。しかし、Tiが過剰に含まれると、炭窒化物などの析出が増大し、母材の加工性が低下する。よって、Ti量は0.20質量%以下、より好ましくは0.15質量%以下とする。
 [N:0質量%超、0.01質量%以下]
 N量が過剰であると、窒化物の析出量が増大し、靭性に悪影響を与える。よって、N量は0.01質量%以下とする。N量は、好ましくは0.008質量%以下、より好ましくは0.006質量%以下である。尚、製鋼上のコスト等を考慮すると、N量は通常0.001質量%以上となる。
 [P:0質量%超、0.02質量%以下]
 Pは、鋼を強化する作用を有するが、靭性を低下させ、また延性を低下させるので、0.02質量%以下とする。P量は、好ましくは0.01質量%以下であり、より好ましくは0.006質量%以下である。
 [S:0質量%超、0.01質量%以下]
 Sは、硫化物系の介在物を生成し、母材の加工性および溶接性を劣化させる。そのため、S量は少ないほどよく、本発明の実施形態では0.01質量%以下とする。S量は、好ましくは0.005質量%以下、より好ましくは0.003質量%以下である。
 [残部]
 残部は、Feおよび不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる微量元素(例えば、As、Sb、Snなど)の混入が許容される。なお、例えば、PおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
 本発明の実施形態に係る鋼板は、成分組成が、上記元素と、残部がFeおよび不可避不純物とからなればよく、下記に述べる選択元素は、含まれていなくてもよい。鋼板の成分組成が、上記元素と共に、必要に応じて下記に述べる元素を含むようにすれば、鋼板の強度、耐食性等の特性を更に向上させることができる。
 [Cr:0質量%超、1.0質量%以下]
 Crは焼入れ性向上により強度を高めるのに有効な元素である。また、Crはマルテンサイト組織鋼の焼戻し軟化抵抗を高めるのに有効な元素である。これらの効果を十分に発揮させるには、Cr量を0質量%超とすることが好ましく、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上である。しかし、過剰に含まれると、耐遅れ破壊特性を劣化させるため、Cr量の上限は1.0質量%、好ましい上限は0.7質量%とする。
 [V:0質量%超、0.1質量%以下、Nb:0質量%超、0.1質量%以下、およびMo:0質量%超、0.5質量%以下よりなる群から選択される少なくとも1種]
 V、NbおよびMoはいずれも、強度の向上、およびγ粒微細化による焼入れ後の靭性改善に有効な元素である。該効果を十分発揮させるには、V、NbおよびMoのいずれにおいても、好ましくは0質量%超、より好ましくは0.003質量%以上、更に好ましくは0.020質量%以上含有させる。しかし、上記元素が過剰に含まれると、炭窒化物などの析出が増大し、母材の加工性が低下する。よって、V量およびNb量はそれぞれ、0.1質量%以下とすることが好ましく、より好ましくは0.05質量%以下であり、Mo量は0.5質量%以下とすることが好ましい。
 [Ca:0質量%超、0.005質量%以下、およびMg:0質量%超、0.005質量%以下のうちの1種または2種]
 Caは、Mnに代わってSと結合し、圧延方向に延伸するMnSの形態を制御し、さらに鋼板端面においてはMnSを分断することにより局部腐食起点の局在化を抑制でき、局部腐食起点での水素発生および水素侵入を抑制できる元素である。またMgは、Oと結合しMgOを形成することで、腐食先端でのpH低下を抑制でき、水素発生および水素侵入を抑制することができる元素である。これらの効果を十分発揮させるため、CaおよびMgのいずれを含有させる場合にも、好ましくは0質量%超、より好ましくは0.0010質量%以上、更に好ましくは0.0015質量%以上含有させる。しかし、上記元素が過剰に含まれると、加工性が劣化するため、これらの元素の含有量はそれぞれ、好ましくは0.005質量%以下、より好ましくは0.003質量%以下とする。
 本発明の実施形態に係る鋼板は、更に他の元素として、例えば、Se、As、Sb、Pb、Sn、Bi、Zn、Zr、W、Cs、Rb、Co、La、Tl、Nd、Y、In、Be、Hf、Tc、Ta、O等を、耐食性や耐遅れ破壊特性をより改善する目的で、合計0.01質量%以下含有させてもよい。
 本発明の実施形態に係る鋼板は、強度(TS)が1700MPa以上を満たすとともに、後述するU曲げ塩酸浸漬試験での破壊時間が4時間超の、優れた耐遅れ破壊特性を示す。
3.製造方法
 次に本発明の実施形態に係る高強度鋼板の推奨される製造方法について説明する。
 本発明者らは、上記の成分組成を有する、熱延鋼板または冷延鋼板等の圧延材に対し、下記に詳述する焼鈍、焼入れおよび焼戻し処理を含む熱処理を行うことにより、上述の所望の金属組織を有して所望の特性を発揮する高強度鋼板を得ることができる。以下、推奨される製造方法について詳細を説明する。
 上記焼鈍、焼入れおよび焼戻し処理以外は、一般的な条件を採用することができる。よって熱処理に供する鋼板として、例えば冷延鋼板を用いる場合、該冷延鋼板は、常法に従って溶製し、連続鋳造によりスラブ等の鋼片を得た後、1100℃~1250℃程度に加熱し、次いで熱間圧延を行い、巻き取った後に酸洗し、冷間圧延して得ることができる。次いで行う熱処理について、本実施形態の鋼板の製造に係る熱処理プロセスの一例として示す図1を用い、以下に詳述する。
 [焼鈍:Ac3点以上、950℃以下の最高加熱温度T1で、30秒以上の保持時間t1加熱]
 図1の[1]および[2]に示すように、Ac3点~950℃の最高加熱温度T1にまで鋼板を加熱し、当該温度域での保持時間t1を30秒以上とする。該温度域で加熱し、圧延材の組織を完全に逆変態させることによって、後工程の焼入れ処理で、マルテンサイト組織の割合が95面積%以上の組織を確実に得ることができる。最高加熱温度T1での保持時間t1は、最高加熱温度T1などに応じて適宜決定すればよいが、Ac3点~950℃の温度域で鋼板のオーステナイト変態を完了させるため、上述の通り30秒以上とする。上記最高加熱温度T1がAc3点未満である場合、または当該温度域における保持時間t1が30秒未満である場合、熱処理に供する圧延材、例えば熱延鋼板の組織(例えばフェライト-パーライト)が残存したままとなり、その後に焼入れ工程を行ってもマルテンサイト主体の組織が得られず、1700MPa以上の引張強度を得るのが困難になる。一方、上記最高加熱温度T1が950℃を超えると、オーステナイト粒が成長し粗大な組織になり、機械的特性および耐遅れ破壊特性に悪影響を与える。また、過剰な高温での保持は、設備負荷が増大し、更に経済性にも劣るので好ましくない。そのため、上記最高加熱温度T1は950℃以下とする。
 なおAc3点は、下記式(1)(レスリー鉄鋼材料学(1985年、William C.Leslie)のp273-(VII-20)式を参照)により計算する。
Ac3(℃)=910-203×[C]1/2-15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]-30×[Mn]-11×[Cr]-20×[Cu]+700×[P]+400×[Al]+120×[As]+400×[Ti]・・・(1)
 式(1)において、[元素名]は鋼中の各元素の質量%での含有量を示し、含まれない元素はゼロとして算出する。
 [焼入れ処理:600℃以上の焼入れ開始温度から50℃/s(秒)以上で冷却]
 図1の[3]および[4]に示す通り、最高加熱温度T1から焼入れ加熱温度(急冷開始温度)T2まで冷却した後、焼入れ開始温度T2から急冷することで焼入れを行い、マルテンサイト主体の組織、すなわちマルテンサイト組織の割合が95面積%以上の金属組織を得る。焼入れ開始温度T2は600℃以上とする。この焼入れ開始温度T2が600℃未満であると、マルテンサイト組織素地にフェライトが過剰に生成され、強度および耐遅れ破壊特性を高めることが難しい。焼入れ開始温度T2は、好ましくは700℃以上、より好ましくは800℃以上であって、上記最高加熱温度T1以下である。
 平均冷却速度CR2は概ね50℃/s以上とする。例えば水冷を行うことにより焼入れを行う。平均冷却速度CR2がこれよりも遅いと、冷却途中にフェライトが析出してしまい、マルテンサイト主体の組織が得られず、引張強度1700MPa以上を確保することができない。一方、平均冷却速度CR2を過度に速めても、材質上何ら問題は生じないが、過剰な設備投資が必要になるので、平均冷却速度CR2は概ね1000℃/s以下とする。また、冷却停止温度T3は、冷却方法が水冷である場合、概ね100℃以下である。冷却停止温度T3の下限は、特に定めなくても本発明の実施形態に係る効果は発現するが、冷却停止温度T3を室温以下にすることは経済上負荷が大きいため、実質的には室温が下限である。
 図1の[3]における最高加熱温度T1から焼入れ開始温度T2までの平均冷却速度CR1は5℃/s以上とする。この平均冷却速度CR1は大きいほど好ましく、焼入れ時の平均冷却速度CR2と同じであってもよい。つまり、図1の[3]の冷却工程を設けず、例えば、最高加熱温度T1(=焼入れ開始温度T2)から、平均冷却速度CR2、すなわち50℃/s以上で冷却停止温度T3まで冷却して焼入れてもよい。
 冷却停止温度T3での保持時間t3は重要でなく、図1の[5]に示すように冷却停止温度T3で保持してもよいし、または、冷却停止温度T3で保持しなくてもよい。冷却停止温度T3で保持する場合は、好ましい保持時間t3として1~600秒とすることが挙げられる。保持時間t3が600秒よりも長くなっても、得られる鋼板の特性はそれほど向上せず、鋼板の生産性が低下するため、600秒以下とするのが好ましい。
 [焼戻し処理]
 次いで、図1の[6]~[8]に示すように焼戻しを行う。焼戻し温度と時間を適切に制御することによって、本発明の実施形態に係る遷移炭化物であるFe系炭化物の析出および成長を制御し、該遷移炭化物を0.8体積%以上確保することができる。
 (冷却停止温度T3から焼戻し温度T4まで、1.0℃/s以上の再加熱速度HR1で加熱)
 図1の[6]に示すように、上述の冷却停止温度T3から焼戻し温度T4までを、1.0℃/s以上の再加熱速度HR1で加熱する。再加熱速度HR1が遅い場合、焼戻し中に析出する炭化物が粗大化するため、上記速度で加熱する。再加熱速度HR1は、好ましくは5.0℃/s以上である。再加熱速度を上げることにより、炭化物が微細化するため耐遅れ破壊特性は改善する。そのため再加熱速度の上限は特に設けないが、再加熱速度の上限を、例えば250℃/sとすることができる。
 (所定の焼戻しパラメータが130~200を満たす焼戻し温度T4にて、100秒超、1000秒未満の焼戻し時間t4で加熱)
 焼戻しは、焼戻し温度T4を、下記式(2)に定義する焼戻しパラメータが130~200を満たす範囲内で設定し、この焼戻し温度T4で、100秒超、1000秒未満の時間(焼戻し時間)保持する。
 焼戻しパラメータ=-160×[C]+T4・・・(2)
式(2)において、[C]は鋼中のC量(質量%)、T4は焼戻し温度(℃)を示す。
 本開示の特徴である所定量の遷移炭化物を析出させるためには、C量をふまえた焼戻し温度の制御が必要となる。本開示はこのような点を考慮していない従来技術と異なる。すなわち、従来の技術では、本発明の実施形態で規定する遷移炭化物が所定量析出しておらず、引張強度が1700MPa以上の高強度と優れた耐遅れ破壊特性の両立が難しいと考える。
 本発明の実施形態では上述の通り、焼戻しを適切に行うことで、微細な遷移炭化物を所定量析出させることができる。焼戻しパラメータが130未満では、Cの拡散が十分でないために、遷移炭化物の量が不足し、耐遅れ破壊特性が不足する。焼戻しパラメータは、好ましくは135以上、より好ましくは140以上、更に好ましくは145以上である。また、焼戻しパラメータが200を超えると、強度が低下するか、粗大なセメンタイトが多量に生成するため、耐遅れ破壊特性が劣化する場合がある。焼戻しパラメータは、好ましくは190以下である。
 焼戻し時間t4は、100秒以下ではCの拡散が不十分となるため、上記焼戻しパラメータの条件を満たしていても優れた耐遅れ破壊特性が得られない。よって焼戻し時間t4は、100秒超、好ましくは240秒超、より好ましくは360秒超とする。また焼戻し温度T4での長時間保持は経済的に不利になるため、1000秒未満、好ましくは800秒未満、より好ましくは600秒未満とする。
 次いで、図1の[8]に示すように、焼戻し後は、例えば室温のような100℃未満の温度まで、例えば放冷等により冷却すればよい。該冷却時の好ましい平均冷却速度CR3として、例えば20℃/秒以下、例えば10℃/秒とすることができる。
 [めっき処理]
 上記の熱処理後、室温まで冷却して得られた鋼板に、常法に従って電気亜鉛めっきを施してもよい。または、常法に従って溶融亜鉛めっきや合金化亜鉛めっき処理を施してもよい。上述した本発明の実施形態の成分組成、金属組織、推奨される製造方法を満たせば、これらのめっき処理を行っても、本発明の実施形態で求める強度および耐遅れ破壊特性に影響を及ぼすものでない。
 電気亜鉛めっきを施す場合、例えば、上記熱処理して得られた鋼板を、50~60℃の亜鉛溶液に浸漬しつつ通電し、電気亜鉛めっき処理を行えばよい。めっき付着量は特に限定されず、例えば、片面あたり10~100g/m程度であればよい。電気亜鉛めっき処理が施されることにより、鋼板の耐食性が向上する。
 以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
 表1に示す各成分組成を有する鋼をラボにてVIF(vacuum induction furnace)溶製した。表1において「Tr」は定量限界以下の痕跡量(trace)を示す。その後、熱間で粗圧延を施し、更に1200~1250℃で30分間加熱した後、仕上げ圧延を施し、500~650℃の大気炉に30分間保持(巻取りを模擬)した後に室温まで冷却することで、板厚2~3mmの熱延鋼板を作製した。その後、酸洗を行ってから冷間圧延を更に施し、厚さ1.0mmの冷延鋼板を得た。
 上記冷延鋼板を用い、表2に示す熱処理条件で、焼鈍、水焼入れおよび焼戻しを行って、鋼板を得た。表2の「冷却方法」は焼入れ開始温度T2からの冷却方法である。表2に示す以外の熱処理条件は次の通りである。冷却停止温度T3として室温を目標に冷却を行った。冷却停止温度T3での保持時間t3は、前述のとおり特に重要ではないため管理していない。再加熱速度HR1は、約2℃/sとした。焼戻し後は室温まで放冷した。
 得られた鋼板の金属組織の割合および遷移炭化物量、ならびに特性として引張強度と耐遅れ破壊特性を、下記に示す通り評価した。
 [金属組織の割合(面積率)の測定]
 1.0mm×10mm×5mmの試験片の圧延方向と平行な断面を研磨し、ナイタール腐食を行った後に、(1/4)t部(tは板厚)を、走査型電子顕微鏡(SEM)で倍率2000倍にて観察を行った。そして、白く観察される領域をマルテンサイト組織、黒く観察される領域をフェライト組織と定義し、任意の1視野(1視野のサイズは90μm×120μm)において、縦横それぞれ等間隔に10本の線を引き、その交点が、マルテンサイト組織である交点の数またはマルテンサイト組織以外の組織(フェライト組織)である交点の数を、それぞれ全交点の数で割り、マルテンサイト組織の面積率、マルテンサイト組織以外の組織(フェライト組織)の面積率をそれぞれ求めた。
 [遷移炭化物量の測定]
 上記鋼板から、放電加工にて、直径0.5mmで長さが25~30mmのロッド形状の鋼片を採取した後、電解研磨にて直径約0.2mmで長さが25~30mmの試験片に仕上げた。該試験片を用いてX線回折測定を行った。該X線回折測定は、SPring-8の産業用ビームラインBL19B2のX線回折装置を用い、エネルギー25keVの条件で行った。得られた回折ピークからRietveld法によって遷移炭化物量を求めた。水素トラップサイトとして有効な遷移炭化物はη、εであるが、これらの構造は類似しており回折ピークからの判別は容易ではない。今回の解析では、ηとεの区別がつかなかった回折ピークは全てη炭化物であると仮定して、Rietveld法により遷移炭化物量を定量した。
 金属組織の面積率の測定方法と遷移炭化物量の測定方法とは、上記の通り異なることから、上記金属組織の面積率と遷移炭化物量とを合計すると、100%を超えることがある。
 [引張特性の評価]
 引張強度(TS)は、鋼板の圧延方向に垂直な方向が長手方向となるようにJIS5号引張試験片を鋼板から採取し、JIS Z 2241(2011年)に規定の方法に従って測定した。そして本実施例では、引張強度が1700MPa以上のものを高強度であると評価した。
 [耐遅れ破壊特性の評価(U曲げ塩酸浸漬試験)]
 得られた鋼板を150mmW×30mmLに切断した試験片を2つ準備した。そして、各試験片に対して、切断端面をフライス加工した後にポンチ/ダイにより曲げ半径10mmにU曲げ加工を行い、曲げ頭頂部に1500MPaの応力を付与したU曲げ試験片を2つ用意した。このU曲げ試験片のそれぞれを0.1N-HClに浸漬し、割れ発生までの時間を測定した。なお、目視で割れが観察された場合を「割れ発生」と判断した。2つのU曲げ試験片の試験結果が異なる場合は、割れ発生までの時間が短い方の試験結果を採用した。本実施例では、割れ発生までの時間が4時間を超えるものを耐遅れ破壊特性に優れると評価した。
 これらの測定結果を表3に示す。なお、表1、表3において、下線を付した数値は、本発明の実施形態の規定範囲と評価基準を外れていることを示している。また表2において、下線を付した部分は、推奨される製造条件を外れていることを示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3の結果から以下のことがわかる。No.4~6は、いずれも本発明の実施形態で規定する成分組成を満たし、かつ推奨される条件で製造して所望の金属組織が得られたため、高い引張強度と優れた耐遅れ破壊特性を示した。これに対してNo.1~3、7および8は、規定する成分組成を満たさないか、推奨される条件で製造せず、規定する金属組織が得られなかったため、引張強度と耐遅れ破壊特性の少なくともいずれかが劣った。詳細を以下に示す。
 No.1は、C量の不足した鋼板を用い、かつ熱処理工程において焼戻しを行わなかったため、所定量の遷移炭化物を確保できず、結果として耐遅れ破壊特性に劣る結果となった。
 No.2は、C量の不足した鋼板を用い、かつ焼戻しパラメータを満たすように焼戻しを行わなかったため、所定量の遷移炭化物を確保できず、結果として耐遅れ破壊特性に劣る結果となった。
 No.3は、C量がNo.1、2よりは多いものの不足しており、かつ焼戻しパラメータを満たすように焼戻しを行わなかったため、所定量の遷移炭化物を確保できず、結果として耐遅れ破壊特性に劣る結果となった。
 No.7は、規定する成分組成を満たす鋼板を用いているが、推奨される条件で焼戻しを行わなかったため、引張強度が低く、更に耐遅れ破壊特性にも劣った。
 No.8は、C量が過剰の鋼板を用い、かつ推奨される条件で焼戻しを行わなかったため、耐遅れ破壊特性に劣る結果となった。
 本出願は、出願日が2020年1月21日である日本国特許出願、特願第2020-007808号を基礎出願とする優先権主張を伴う。特願第2020-007808号は参照することにより本明細書に取り込まれる。

Claims (2)

  1.  C:0.280質量%以上、0.404質量%以下、
    Si:0質量%以上、0.6質量%以下、
    Mn:0質量%超、1.5質量%以下、
    Al:0質量%超、0.15質量%以下、
    B :0質量%超、0.01質量%以下
    Cu:0質量%超、0.5質量%以下
    Ni:0質量%超、0.5質量%以下
    Ti:0質量%超、0.20質量%以下
    N :0質量%超、0.01質量%以下、
    P :0質量%超、0.02質量%以下、および
    S :0質量%超、0.01質量%以下
    を含有し、残部がFeおよび不可避不純物からなり、
     全金属組織に占めるマルテンサイト組織の割合が95面積%以上、および全金属組織に占める遷移炭化物の割合が0.8体積%以上である、引張強度1700MPa以上の耐遅れ破壊特性に優れた高強度鋼板。
  2.  以下の(a)~(c)のいずれか1つ以上を満足する請求項1に記載の高強度鋼板。
    (a)Cr:0質量%超、1.0質量%以下を更に含有する
    (b)V:0質量%超、0.1質量%以下、
     Nb:0質量%超、0.1質量%以下、および
     Mo:0質量%超、0.5質量%以下よりなる群から選択される少なくとも1種を更に含有する
    (c)Ca:0質量%超、0.005質量%以下、および
     Mg:0質量%超、0.005質量%以下のうちの1種または2種を更に含有する
PCT/JP2020/049182 2020-01-21 2020-12-28 耐遅れ破壊特性に優れた高強度鋼板 WO2021149463A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2022008956A MX2022008956A (es) 2020-01-21 2020-12-28 Chapa de acero de alta resistencia que tiene excelente resistencia a la fractura retardada.
EP20915995.3A EP4071260A4 (en) 2020-01-21 2020-12-28 HIGH-STRENGTH STEEL SHEET WITH EXCELLENT RESISTANCE TO DELAYED RUPTURE
KR1020227023693A KR20220111699A (ko) 2020-01-21 2020-12-28 내지연파괴 특성이 우수한 고강도 강판
CN202080093566.7A CN115003834B (zh) 2020-01-21 2020-12-28 耐延迟断裂特性优异的高强度钢板
US17/790,890 US20230040459A1 (en) 2020-01-21 2020-12-28 High-strength steel sheet having excellent delayed fracture resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007808A JP7425610B2 (ja) 2020-01-21 2020-01-21 耐遅れ破壊特性に優れた高強度鋼板
JP2020-007808 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021149463A1 true WO2021149463A1 (ja) 2021-07-29

Family

ID=76993332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049182 WO2021149463A1 (ja) 2020-01-21 2020-12-28 耐遅れ破壊特性に優れた高強度鋼板

Country Status (7)

Country Link
US (1) US20230040459A1 (ja)
EP (1) EP4071260A4 (ja)
JP (1) JP7425610B2 (ja)
KR (1) KR20220111699A (ja)
CN (1) CN115003834B (ja)
MX (1) MX2022008956A (ja)
WO (1) WO2021149463A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248565A (ja) * 2009-04-15 2010-11-04 Jfe Steel Corp 伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP5466576B2 (ja) 2010-05-24 2014-04-09 株式会社神戸製鋼所 曲げ加工性に優れた高強度冷延鋼板
JP2014118613A (ja) * 2012-12-18 2014-06-30 Nippon Steel & Sumitomo Metal 強度と耐水素脆性に優れたホットスタンプ成形体及びその製造方法
JP6112261B2 (ja) 2015-03-25 2017-04-12 Jfeスチール株式会社 冷延鋼板およびその製造方法
JP2018109222A (ja) * 2016-12-28 2018-07-12 株式会社神戸製鋼所 高強度鋼板および高強度電気亜鉛めっき鋼板
JP2020007808A (ja) 2018-07-10 2020-01-16 三正通商株式会社 複層型下敷きテープ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956108A4 (en) * 2005-10-31 2015-03-11 Jfe Steel Corp HIGH-RESISTANCE STEEL WITH EXCELLENT RESISTANCE TO DELAYED FRACTURE AND METAL BOLTS
JP4621123B2 (ja) * 2005-12-08 2011-01-26 新日本製鐵株式会社 引張強度1700MPa以上の遅れ破壊特性に優れた高耐衝撃性鋼管の製造方法
JP5704721B2 (ja) * 2011-08-10 2015-04-22 株式会社神戸製鋼所 シーム溶接性に優れた高強度鋼板
JP5906154B2 (ja) * 2012-07-20 2016-04-20 株式会社神戸製鋼所 耐遅れ破壊性に優れた高強度鋼板およびその製造方法
BR112016012424B1 (pt) * 2013-12-11 2019-08-27 Arcelormittal folha de aço martensítico, diretamente obtida após laminação a frio, recozimento e resfriamento e método para produzir uma folha de aço martensítico laminada a frio e recozida
WO2015107863A1 (ja) * 2014-01-14 2015-07-23 株式会社神戸製鋼所 高強度鋼板およびその製造方法
KR101797316B1 (ko) * 2015-12-21 2017-11-14 주식회사 포스코 고강도 및 우수한 내구성을 가지는 자동차용 부품 및 그 제조방법
KR101917472B1 (ko) * 2016-12-23 2018-11-09 주식회사 포스코 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
WO2018123356A1 (ja) * 2016-12-28 2018-07-05 株式会社神戸製鋼所 高強度鋼板および高強度電気亜鉛めっき鋼板
KR102031460B1 (ko) * 2017-12-26 2019-10-11 주식회사 포스코 내충격성이 우수한 열연강판, 강관, 부재 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248565A (ja) * 2009-04-15 2010-11-04 Jfe Steel Corp 伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP5466576B2 (ja) 2010-05-24 2014-04-09 株式会社神戸製鋼所 曲げ加工性に優れた高強度冷延鋼板
JP2014118613A (ja) * 2012-12-18 2014-06-30 Nippon Steel & Sumitomo Metal 強度と耐水素脆性に優れたホットスタンプ成形体及びその製造方法
JP6112261B2 (ja) 2015-03-25 2017-04-12 Jfeスチール株式会社 冷延鋼板およびその製造方法
JP2018109222A (ja) * 2016-12-28 2018-07-12 株式会社神戸製鋼所 高強度鋼板および高強度電気亜鉛めっき鋼板
JP2020007808A (ja) 2018-07-10 2020-01-16 三正通商株式会社 複層型下敷きテープ

Also Published As

Publication number Publication date
KR20220111699A (ko) 2022-08-09
EP4071260A1 (en) 2022-10-12
CN115003834A (zh) 2022-09-02
EP4071260A4 (en) 2024-05-01
MX2022008956A (es) 2022-08-15
JP7425610B2 (ja) 2024-01-31
JP2021113353A (ja) 2021-08-05
CN115003834B (zh) 2023-10-31
US20230040459A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP6245386B2 (ja) 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法
JP5352793B2 (ja) 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101218448B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
KR101528080B1 (ko) 성형성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
CN106133173B (zh) 材质均匀性优异的高强度冷轧钢板及其制造方法
JP2022160585A (ja) 冷間圧延鋼板及びその製造方法
JP6354268B2 (ja) 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
CN108699660B (zh) 高强度钢板及其制造方法
KR20180124075A (ko) 고강도 강판 및 그의 제조 방법
KR102276055B1 (ko) 도금 강판, 용융 아연 도금 강판의 제조 방법 및 합금화 용융 아연 도금 강판의 제조 방법
JP2021502484A (ja) 冷間圧延熱処理鋼板及びその製造方法
KR102477508B1 (ko) 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판
KR20180031751A (ko) 고강도 박강판 및 그 제조 방법
CN108713066B (zh) 高强度钢板及其制造方法
CN107250406A (zh) 高强度冷轧钢板及其制造方法
JPWO2020075394A1 (ja) 高強度鋼板およびその製造方法
WO2017009938A1 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6460238B2 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP7134106B2 (ja) 高強度鋼板および高強度亜鉛めっき鋼板
JP6434348B2 (ja) 加工性に優れた高強度鋼板
CN113544299A (zh) 高强度钢板及其制造方法
JP7006849B1 (ja) 鋼板、部材及びそれらの製造方法
WO2021149463A1 (ja) 耐遅れ破壊特性に優れた高強度鋼板
JP2023554449A (ja) 加工性に優れた高強度鋼板及びその製造方法
JP7006848B1 (ja) 鋼板、部材及びそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227023693

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020915995

Country of ref document: EP

Effective date: 20220707

NENP Non-entry into the national phase

Ref country code: DE