WO2021149410A1 - Positive photosensitive resin composition, cured film, multilayer body, substrate with conductive pattern, method for producing multilayer body, touch panel and organic el display device - Google Patents

Positive photosensitive resin composition, cured film, multilayer body, substrate with conductive pattern, method for producing multilayer body, touch panel and organic el display device Download PDF

Info

Publication number
WO2021149410A1
WO2021149410A1 PCT/JP2020/046911 JP2020046911W WO2021149410A1 WO 2021149410 A1 WO2021149410 A1 WO 2021149410A1 JP 2020046911 W JP2020046911 W JP 2020046911W WO 2021149410 A1 WO2021149410 A1 WO 2021149410A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
positive photosensitive
cured film
group
Prior art date
Application number
PCT/JP2020/046911
Other languages
French (fr)
Japanese (ja)
Inventor
此島陽平
三井博子
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020227015827A priority Critical patent/KR102624811B1/en
Priority to JP2020570579A priority patent/JP7081696B2/en
Priority to CN202080093425.5A priority patent/CN114945867B/en
Publication of WO2021149410A1 publication Critical patent/WO2021149410A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a positive photosensitive resin composition, a cured film, a laminate, a substrate with a conductive pattern, a method for manufacturing a laminate, a touch panel, and an organic EL display device.
  • the touch panel is composed of a display unit such as a liquid crystal panel and a touch panel sensor or the like that detects information input at a specific position.
  • the touch panel method is roughly classified into a resistive film method, a capacitance method, an optical method, an electromagnetic induction method, an ultrasonic method, and the like, depending on the input position detection method.
  • a capacitance type touch panel is widely used because of its optical brightness, excellent design, simple structure, and excellent functionality.
  • the capacitance type touch panel sensor has a second electrode that is orthogonal to the first electrode via an insulating layer, and when a voltage is applied to the electrode on the touch panel surface, the capacitance when a conductor such as a finger touches it.
  • the contact position obtained by detecting the change is output as a signal.
  • the touch panel sensor used in the capacitance method includes, for example, a structure in which electrodes and external connection terminals are formed on a pair of opposing transparent substrates, and electrodes and external connection terminals are formed on both sides of one transparent substrate, respectively.
  • the structure is known.
  • As the wiring electrode used for the touch panel sensor a transparent wiring electrode is generally used from the viewpoint of making the wiring electrode difficult to see, but in recent years, a metal material is used due to higher sensitivity and larger screen. The opaque wiring electrode that was there is widespread.
  • a touch panel sensor having an opaque wiring electrode made of a metal material has a problem that the opaque wiring electrode is visually recognized due to the metallic luster of the opaque wiring electrode.
  • There is a method of forming a light-shielding layer to make it difficult to see. (For example, Patent Document 1)
  • a residue derived from the colorant is likely to be generated on a substrate, particularly on a film containing an organic component, when a pattern is formed, resulting in poor appearance and the like. Transparency was sometimes impaired. Further, when the development time is lengthened in order to suppress the residue, it is difficult to form a fine pattern. Further, when silver electrodes are used as the first electrode and the second electrode, there is also a problem that the components in the light-shielding layer formed on the electrodes diffuse into the insulating layer and become impurities, and silver migration is likely to occur. ..
  • the present invention has low reflectance and can be applied as a light-shielding layer of an opaque wiring electrode, and achieves both fine pattern resolution, ensuring transparency of a base material by suppressing residues on a substrate, and migration resistance. It is an object of the present invention to provide a positive photosensitive resin composition capable of providing a positive photosensitive resin composition.
  • the present inventors have found that the object of the present invention is achieved by combining an alkali-soluble resin having a polymerizable group in the side chain with a photosensitizer and a colorant.
  • the positive photosensitive resin composition of the present invention contains an alkali-soluble resin (A), a photosensitive agent (B) and a colorant (C) having a polymerizable group in the side chain, and the polymerizable group is acrylic. It is characterized by being a group and / or a methacrylic group.
  • the positive photosensitive resin composition of the present invention has low reflectance and can be applied as a light-shielding layer for opaque wiring electrodes, ensuring fine pattern resolution and transparency of the substrate by suppressing residues on the substrate. And migration resistance can be compatible.
  • the positive photosensitive resin composition of the present invention contains an alkali-soluble resin (A), a photosensitive agent (B) and a colorant (C) having a polymerizable group in the side chain, and the polymerizable group is an acrylic group and / Or it is a methacrylic group.
  • the positive photosensitive resin composition of the present invention contains an alkali-soluble resin (A) having a polymerizable group in the side chain.
  • an alkali-soluble resin (A) having a polymerizable group in the side chain By containing the alkali-soluble resin (A) having a polymerizable group in the side chain, it is possible to promote dissolution during development, suppress residues, ensure the transparency of the base material, and form a fine pattern. Can be formed. Further, the polymerizable group is crosslinked by the heat treatment after the pattern formation, and the solvent resistance of the obtained cured film is improved.
  • alkali-soluble refers to the property of being soluble in an aqueous alkali solution or an organic alkali.
  • the alkali-soluble resin (A) having a polymerizable group in the side chain preferably has an acidic group in the structural unit of the resin and / or at the end of the main chain thereof in order to impart alkali solubility.
  • the acidic group include a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, a thiol group and the like.
  • a carboxyl group is preferable because of its high solubility in an alkaline developer.
  • the polymerizable group is an acrylic group and / or a methacrylic group. Since the polymerizable group is an acrylic group and / or a methacrylic group, the cross-linking reaction by light and / or heat efficiently proceeds and the degree of curing is improved, and as a result, in the light-shielding layer formed on the opaque wiring electrode. It is possible to suppress the diffusion of the component into the insulating layer and improve the migration resistance.
  • alkali-soluble resin examples include, but are not limited to, acrylic polymers, epoxy resins, phenol resins, cardo resins, polysiloxanes, polyimides, polyamides, and polybenzoxazoles. Two or more of these resins may be contained. Among them, acrylic polymers, cardo-based resins, and polysiloxanes are preferable from the viewpoint of ease of introduction of unsaturated double bonds, acrylic polymers and polysiloxanes are more preferable from the viewpoint of weather resistance, and acrylic polymers are preferable from the viewpoint of ease of synthesis. Is even more preferable.
  • the alkali-soluble resin (A) having a polymerizable group in the side chain preferably has an organic group represented by the following general formula (1).
  • an organic group represented by the following general formula (1) in the alkali-soluble resin (A) having a polymerizable group in the side chain the residue is further suppressed during pattern formation to improve the transparency of the base material. It can be secured, and the solvent resistance of the cured film obtained by the subsequent heating step can be further improved.
  • the organic group can be identified by IR analysis, 1 HNMR, GC-MS and MALDI-MS analysis on the alkali-soluble resin (A) having a polymerizable group in the side chain.
  • X represents a hydrocarbon group having 1 to 4 carbon atoms
  • s represents 0 or 1
  • R 1 represents a hydrogen atom or a methyl group.
  • the alkali-soluble resin (A) having a polymerizable group in the side chain has a repeating unit represented by the following general formula (2).
  • R 2 and R 3 represent a hydrogen atom or a methyl group.
  • R 2 and R 3 may be the same or different, respectively.
  • the alkali-soluble resin (A) having a polymerizable group in the side chain preferably has 5 to 50 mol% of the repeating units represented by the general formula (2) in all the repeating units.
  • the repeating unit represented by the general formula (2) is more preferably 10 mol% or more, further preferably 15 mol% or more.
  • the repeating unit represented by the general formula (2) is more preferably 40 mol% or less, and further preferably 35 mol% or less.
  • the alkali-soluble resin (A) having a polymerizable group in the side chain may have a repeating unit other than the repeating unit represented by the general formula (2).
  • a repeating unit other than the repeating unit represented by the general formula (2) a carboxyl group and / or an acid anhydride group-containing (meth) acrylic compound, a (meth) acrylic acid ester, and a (meth) acrylic acid ester are radically copolymerized.
  • the repeating unit contains a compound obtained by an addition reaction of an epoxy compound having an ethylenically unsaturated double bond group.
  • the acrylic polymer is obtained by radical polymerization of a monomer having an ethylenically unsaturated double bond.
  • the repeating unit represented by the general formula (2) is obtained by subjecting an acrylic polymer containing the repeating unit represented by the general formula (3) to an addition reaction of glycidyl (meth) acrylate.
  • the catalyst for radical copolymerization is not particularly limited, and azo compounds such as azobisisobutyronitrile and organic peroxides such as benzoyl peroxide are generally used.
  • the catalyst used for the addition reaction of glycidyl (meth) acrylate is not particularly limited, and known catalysts can be used.
  • dimethylaniline, 2,4,6-tris (dimethylaminomethyl) phenol dimethyl.
  • Amino catalysts such as benzylamine, tin catalysts such as tin 2-ethylhexanoate (II) and dibutyltin laurate, titanium catalysts such as titanium 2-ethylhexanoate (IV), and phosphorus catalysts such as triphenylphosphine.
  • a catalyst and a chromium-based catalyst such as acetylacetonate chromium and chromium chloride are used.
  • R 4 represents a hydrogen atom or a methyl group.
  • the catalyst used for radical copolymerization of a repeating unit other than the repeating unit represented by the general formula (2) and the catalyst using an epoxy compound having an ethylenically unsaturated double bond group for the addition reaction are also described above. The same is true.
  • Examples of the (meth) acrylic compound containing a carboxyl group and / or an acid anhydride group include (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, monosuccinate (2-acryloyloxyethyl), and monophthalate (meth).
  • 2-Acryloyloxyethyl mono (2-acryloyloxyethyl), 2-vinylacetic acid, 2-vinylcyclohexanecarboxylic acid, 3-vinylcyclohexanecarboxylic acid, 4-vinylcyclohexanecarboxylic acid, 2-vinylbenzoic acid , 3-Vinyl benzoic acid, 4-Vinyl benzoic acid, 4-Hydroxyphenyl (meth) acrylate, 2-Hydroxyphenyl (meth) acrylate, (meth) acrylic acid anhydride, itaconic acid, itaconic acid anhydride, amber Examples thereof include acid mono (2-acryloyloxyethyl), phthalate mono (2-acryloyloxyethyl) or tetrahydrophthalate mono (2-acryloyloxyethyl).
  • (meth) acrylic acid ester for example, methyl (meth) acrylate, tricyclodecanyl (meth) acrylate, benzyl (meth) acrylate and the like are used. Further, styrene may be copolymerized with the above-mentioned (meth) acrylic acid or (meth) acrylic acid ester.
  • Examples of the epoxy compound having an ethylenically unsaturated double bond group include glycidyl (meth) acrylate.
  • acrylic polymer a polyfunctional (meth) acrylate compound and a polyvalent mercapto compound polymerized by Michael addition ( ⁇ -position with respect to the carbonyl group) can also be used.
  • the weight average molecular weight (Mw) of the alkali-soluble resin (A) having a polymerizable group in the side chain shall be 1,000 or more and 15,000 or less in terms of polystyrene measured by gel permeation chromatography (GPC). Is preferable.
  • GPC gel permeation chromatography
  • the weight average molecular weight (Mw) is more preferably 5,000 or more, still more preferably 7,000 or more.
  • the weight average molecular weight (Mw) is 15,000 or less, a finer pattern can be formed. In addition, dissolution at the time of development can be further promoted, residue can be further suppressed, and transparency of the base material can be ensured.
  • the weight average molecular weight (Mw) is more preferably 12,000 or less.
  • the content of the alkali-soluble resin (A) having a polymerizable group in the side chain is not particularly limited and can be arbitrarily selected depending on the desired film thickness and application.
  • the solid content is 100% by mass, it is generally 10% by mass or more and 70% by mass or less.
  • the positive photosensitive resin composition of the present invention contains a photosensitive agent (B).
  • the photosensitizer (B) has a property of increasing the alkali solubility of the light-irradiated portion of the alkali-soluble resin (A) having a polymerizable group in the side chain by generating an acid when irradiated with light.
  • Alkali-soluble contrast can be obtained, fine patterns can be formed, and residues can be suppressed to ensure the transparency of the base material.
  • the photosensitizer include a quinone diazide compound, a sulfonium salt, a phosphonium salt, a diazonium salt, and an iodonium salt. Of these, a quinonediazide compound is preferable because a finer pattern can be obtained.
  • the quinone diazide preferably contains a 4-naphthoquinone diazidosulfonyl group and a 5-naphthoquinone diazidosulfonyl group.
  • the 4-naphthoquinone diazidosulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinone diazidosulfonyl ester compound has absorption in the g-line region of a mercury lamp and is suitable for g-line exposure.
  • the content of the photosensitive agent (B) is not particularly limited, but is preferably 0.01 to 50% by mass with respect to 100% by mass of the solid content.
  • the content of the photosensitizer (B) is 0.01% by mass or more, a finer pattern can be formed. Further, since the alkali solubility of the exposed portion is promoted, the residue can be further suppressed and the transparency of the base material can be ensured.
  • the content of the photosensitizer (B) is more preferably 10% by mass or more. Further, when the content of the photosensitizer (B) is 50% by mass or less, light can be transmitted to the bottom of the film, and a pattern can be obtained with high exposure sensitivity.
  • the content of the photosensitizer (B) is more preferably 40% by mass or less.
  • the above polyhydroxy compound or polyamino compound may be used as it is without being esterified with quinonediazide sulfonic acid.
  • the amount of the hydroxy compound or polyamino compound added is preferably 1 to 50% by mass with respect to 100% by mass of the solid content.
  • the positive resin composition obtained by adding 1% by mass or more of an unesterified hydroxy compound or polyamino compound hardly dissolves in an alkaline developer before exposure, and easily becomes an alkaline developer when exposed. Since it dissolves, there is little film loss due to development, and development becomes easy in a short time.
  • the amount of the hydroxy compound or polyamino compound added is more preferably 3% by mass or more.
  • the solubility in the alkaline developer can be further improved, and a finer pattern can be formed.
  • the amount of the hydroxy compound or polyamino compound added is more preferably 40% by mass or less.
  • the positive photosensitive resin composition of the present invention contains a colorant (C).
  • the colorant (C) refers to a compound that colors by absorbing light in the entire range or a part of the wavelength of visible light (380 to 780 nm).
  • the positive photosensitive resin composition of the present invention when the positive photosensitive resin composition of the present invention is formed on the conductive layer, the light reflected by the conductive layer is shielded, so that the conductive layer becomes difficult to see. ..
  • Examples of the colorant (C) include compounds that absorb light having a wavelength of visible light and color black, red, orange, yellow, green, blue, or purple. By combining these colorants alone or in combination of two or more colors, the light reflected by the conductive layer can be shielded.
  • the colorant (C) preferably has an aromatic group.
  • an aromatic group By having an aromatic group, it interacts with the polymerizable group of the alkali-soluble resin (A) having a polymerizable group in the side chain, increases the solubility in an alkaline developer, and further suppresses the residue of the base material. Transparency can be ensured.
  • Examples of the colorant (C) include a black agent (Ca) and / or a colorant other than black (Cb).
  • the blackening agent (Ca) is a compound that is colored black by absorbing light in the entire wavelength range of visible light. By containing the blackening agent (Ca), the light blocking property can be improved by blocking the light reflected by the conductive layer.
  • the colorant (Cb) other than black refers to a compound that colors red, orange, yellow, green, blue, or purple by absorbing light having a partial wavelength of visible light. By combining two or more colors of these colorants (Cb), it is possible to color the color in a pseudo-black color, and it is possible to improve the light-shielding property. From the viewpoint of light-shielding property, it is preferable to use a blackening agent (Ca) because it has excellent hiding power.
  • the colorant (C) preferably contains one or more selected from organic pigments (C1), inorganic pigments (C2) and dyes (C3), which will be described later.
  • organic pigments (C1) is preferable, and the black organic pigment is more preferable, from the viewpoint of heat resistance and light-shielding property.
  • the colorant (C) contains an organic pigment (C1).
  • the organic pigment (C1) it is possible to impart a light-shielding property to the cured film of the positive photosensitive resin composition, and it has a high hiding property and is less likely to fade due to ultraviolet rays or the like.
  • the black agent (Ca) and / or the colorant (Cb) other than black may be the organic pigment (C1).
  • the number average particle size of the organic pigment (C1) is preferably 1 to 1,000 nm, more preferably 5 to 500 nm, and even more preferably 10 to 200 nm. When the number average particle size of the organic pigment (C1) is within the above range, the light-shielding property of the cured film of the positive photosensitive resin composition and the dispersion stability of the organic pigment (C1) can be improved.
  • the number average particle size of the organic pigment (C1) is determined by a submicron particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter Co., Ltd.) or a zeta potential / particle size / molecular weight measuring device (Zetasizer Nano ZS). It can be obtained by measuring the laser scattering of the organic pigment (C1) in the solution due to Brownian motion (dynamic light scattering method) using Sysmex Co., Ltd. Further, the number average particle size of the organic pigment (C1) in the cured film obtained from the resin composition can be determined by measuring using SEM and TEM. The number average particle size of the organic pigment (C1) is directly measured with a magnification of 50,000 to 200,000 times.
  • the number average particle size can be calculated by the average value of the particle sizes of 100 randomly selected primary particles.
  • the organic pigment (C1) is a true sphere
  • the diameter of the true sphere is measured and used as the number average particle size.
  • the organic pigment (C1) is not a true sphere
  • the longest diameter (hereinafter, "major axis diameter”) and the longest diameter in the direction orthogonal to the major axis diameter (hereinafter, “minor axis diameter”) are measured, and the major axis is measured.
  • the biaxial average diameter which is the average of the diameter and the minor axis diameter, is defined as the number average particle diameter.
  • organic pigment (C1) examples include phthalocyanine pigments, anthraquinone pigments, quinacridone pigments, pyranthron pigments, dioxazine pigments, thioindigo pigments, diketopyrrolopyrrole pigments, quinophthalone pigments, slene pigments, and indolin.
  • anthraquinone pigments from the viewpoint of heat resistance, anthraquinone pigments, quinacridone pigments, pyranthron pigments, diketopyrrolopyrrole pigments, benzofuranone pigments, perylene pigments, condensed azo pigments and carbon black are preferable.
  • carbon black is more preferable from the viewpoint of dispersion stability and ensuring transparency of the base material by suppressing residues by having an aromatic group.
  • phthalocyanine pigment examples include a copper phthalocyanine compound, a halogenated copper phthalocyanine compound, and a metal-free phthalocyanine compound.
  • anthraquinone-based pigment examples include aminoanthraquinone-based compounds, diaminoanthraquinone-based compounds, anthrapyrimidine-based compounds, flavantron-based compounds, antoanthron-based compounds, indantron-based compounds, pyranthron-based compounds, and biolantron-based compounds.
  • Examples of the azo pigment include a disazo compound or a polyazo compound.
  • Examples of carbon black include channel black, furnace black, thermal black, acetylene black and lamp black.
  • the content ratio of the organic pigment (C1) is preferably 5 to 50% by mass with respect to 100% by mass of the solid content.
  • the content ratio of the organic pigment (C1) is 5% by mass or more, the light-shielding property can be further improved.
  • the content ratio of the organic pigment (C1) is more preferably 10% by mass or more.
  • the content ratio of the organic pigment (C1) is 50% by mass or less, the development residue can be further reduced and the transparency of the base material can be ensured.
  • the content ratio of the organic pigment (C1) is more preferably 40% by mass or less than the beam.
  • the colorant (C) contains an inorganic pigment (C2).
  • the inorganic pigment (C2) it is possible to impart light-shielding properties to the film of the positive photosensitive resin composition, and since it is an inorganic substance and is superior in heat resistance and weather resistance, the film of the resin composition Heat resistance and weather resistance can be improved.
  • the black agent (Ca) and / or the colorant (Cb) other than black may be the inorganic pigment (C2).
  • Examples of the inorganic pigment (C2) include metals such as titanium, barium, zirconium, lead, silicon, aluminum, magnesium, molybdenum, cadonium, tin, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium or silver. Fine particles, oxides of the above metal elements, composite oxides, sulfides, sulfates, nitrates, carbonates, nitrides, carbides or oxynitrides. Of these, metal nitride particles are preferable from the viewpoint of further improving pattern processability and light-shielding property.
  • fine particles of titanium, zirconium or silver, oxides, composite oxides, sulfides, nitrides, carbides or oxynitrides are preferable, and zirconium nitride particles are particularly preferable.
  • the content ratio of the inorganic pigment (C2) is preferably 5 to 50% by mass with respect to 100% by mass of the solid content.
  • the content ratio of the inorganic pigment (C2) is more preferably 10% by mass or more.
  • the content ratio of the inorganic pigment (C2) is 50% by mass or less, the development residue can be further reduced and the transparency of the base material can be ensured.
  • the content ratio of the inorganic pigment (C2) is more preferably 40% by mass or less.
  • the colorant (C) contains a dye (C3).
  • the black agent (Ca) and / or the colorant (Cb) other than black may be the dye (C3).
  • Dye (C3) is a compound that colors an object by chemically adsorbing or strongly interacting with a substituent such as an ionic group or a hydroxy group in the dye (C3) on the surface structure of the object. Generally, it is soluble in a solvent or the like. Further, in the coloring with the dye (C3), since each molecule is adsorbed on the object, the coloring power is high and the coloring efficiency is high.
  • Examples of the dye (C3) include anthraquinone dyes, azo dyes, azine dyes, phthalocyanine dyes, methine dyes, oxazine dyes, quinoline dyes, indigo dyes, indigoid dyes, carbonium dyes, and slene.
  • Examples thereof include based dyes, perinone dyes, perylene dyes, triarylmethane dyes and xanthene dyes. From the viewpoint of solubility in a solvent and heat resistance, anthraquinone dyes, azo dyes, azine dyes, methine dyes, triarylmethane dyes, and xanthene dyes are preferable.
  • Examples of the dye that colors black include solvent black 3, 5, 7, 22, 27, 29 or 34, modern black 1, 11 or 17, acid black 2 or 52, or direct black 19 or 154. (All numerical values are CI numbers).
  • "NUBIAN” registered trademark
  • Examples of the dye that colors red include Direct Red 9, 28, 81, or 83 (all numerical values are CI numbers).
  • Examples of the dye that colors orange include Basic Orange 21 or 23 (all numerical values are CI numbers).
  • Examples of the dye that colors yellow include Direct Yellow 8, 9, 11, 27 or 44, or Basic Yellow 1, 28 or 40 (all numerical values are CI numbers).
  • Examples of the dye that colors green include acid green 16 (all numerical values are CI numbers).
  • Examples of the dye that colors blue include acid blue 9, 45, 80, 83, 90 or 185 (all numerical values are CI numbers).
  • Examples of the dye that colors purple include Direct Violet 51 or 66, or Basic Violet 1, 2, or 3 (all numerical values are CI numbers).
  • the content ratio of the dye (C3) is preferably 0.01 to 50% by mass with respect to 100% by mass of the solid content.
  • the content ratio of the dye (C3) is 0.01% by mass or more, the light-shielding property can be further improved.
  • the content ratio of the dye (C3) is more preferably 0.05% by mass or more.
  • the content ratio of the dye (C3) is 50% by mass or less, the development residue can be further reduced and the transparency of the base material can be ensured.
  • the content ratio of the dye (C3) is more preferably 40% by mass or less than the beam.
  • the positive photosensitive resin composition of the present invention preferably further contains a dispersant.
  • the dispersant refers to a compound having a surface affinity group that interacts with the surface such as the above-mentioned colorant (C) and a dispersion stabilizing structure that improves the dispersion stability of the colorant (C).
  • the dispersion-stabilizing structure of the dispersant include a polymer chain and / or a substituent having an electrostatic charge.
  • Examples of the dispersant having a surface affinity group include a dispersant having an amine value and / or an acid value, and a dispersant having neither an amine value nor an acid value. From the viewpoint of improving the dispersion stability of the colorant (C), a dispersant having only an amine value and a dispersant having an amine value and an acid value are preferable.
  • the amino group and / or the acidic group, which are the surface affinity groups have a structure in which a salt is formed with an acid and / or a base.
  • Examples of the dispersant having only an amine value include "DISPERBYK” (registered trademark) -161, -167, -2000, -2008, -2009, -2022, -2050, and -2055. -2150, -2155, -2163, -2164, or -2061, "BYK” (registered trademark) -9075, -9077, -LP-N6919, -LP-N21116 or -LP -N21324 (all of which are manufactured by Big Chemie Japan Co., Ltd.) can be mentioned.
  • Dispersants having an amine value and an acid value include, for example, "DISPERBYK” (registered trademark) -2001, -2013, -2020, -2025, -187 or -191, "BYK” (registered trademark). ) -9076 (Made by Big Chemie Japan Co., Ltd.).
  • Dispersants having only an acid value include, for example, "DISPERBYK” (registered trademark) -102, -110, -111, -118, -170, -171, -174, -2060 or The same -2096 can be mentioned.
  • Examples of the dispersant having neither an amine value nor an acid value include "DISPERBYK” (registered trademark) -103, -2152, -2200 or -192 (all of which are manufactured by Big Chemie Japan Co., Ltd.). ).
  • the amine value of the dispersant is preferably 1 mgKOH / g or more. When the amine value is within the above range, the dispersion stability of the colorant (C) can be further improved. On the other hand, the amine value is preferably 150 mgKOH / g or less. When the amine value is within the above range, the storage stability of the resin composition can be improved.
  • the amine value here refers to the weight of the acid equivalent to potassium hydroxide that reacts with 1 g of the dispersant, and the unit is mgKOH / g. It can be obtained by neutralizing 1 g of the dispersant with an acid and then titrating with an aqueous solution of potassium hydroxide. From the value of the amine value, the amine equivalent (unit: g / mol), which is the weight of the resin per 1 mol of amino groups, can be calculated, and the number of amino groups in the dispersant can be determined.
  • the acid value of the dispersant is preferably 1 mgKOH / g or more. When the acid value is within the above range, the dispersion stability of the colorant (C) can be further improved. On the other hand, the acid value is preferably 200 mgKOH / g or less. When the acid value is within the above range, the storage stability of the resin composition can be improved.
  • the acid value here means the weight of potassium hydroxide that reacts with 1 g of the dispersant, and the unit is mgKOH / g. It can be obtained by titrating 1 g of the dispersant with an aqueous solution of potassium hydroxide. From the value of the acid value, the acid equivalent (unit: g / mol), which is the weight of the resin per 1 mol of the acidic group, can be calculated, and the number of acidic groups in the dispersant can be obtained.
  • Dispersants whose dispersion-stabilized structure is a substituent having a polymer chain include acrylic resin-based dispersants, polyoxyalkylene ether-based dispersants, polyester-based dispersants, polyurethane-based dispersants, polyol-based dispersants, and polyethyleneimine-based dispersants. Dispersants or polyallylamine-based dispersants can be mentioned. From the viewpoint of pattern processability with an alkaline developer, an acrylic resin-based dispersant, a polyoxyalkylene ether-based dispersant, a polyester-based dispersant, a polyurethane-based dispersant, or a polyol-based dispersant is preferable.
  • the content ratio of the dispersant in the positive photosensitive resin composition of the present invention is preferably 1 to 60% by mass when the colorant (C) is 100% by mass.
  • the content ratio of the dispersant is more preferably 5% by mass or more.
  • the content ratio of the dispersant is 60% by mass or less, the heat resistance of the cured film can be improved.
  • the content ratio of the dispersant is more preferably 50% by mass or less.
  • the resin composition of the present invention may further contain a thermal cross-linking agent.
  • the thermal cross-linking agent refers to a compound having at least two thermally reactive functional groups in the molecule, such as an alkoxymethyl group, a methylol group, an epoxy group, and an oxetanyl group.
  • HMOM-TPPHBA HMOMTPHAP (trade name, manufactured by Honshu Kagaku Kogyo Co., Ltd.), "NIKALAC” (registered trademark) MX-290, " NIKALAC "MX-280,” NIKALAC “MX-270,” NIKALAC “MX-279,” NIKALAC “MW-100LM,” NIKALAC “MX-750LM (trade name, manufactured by Sanwa Chemical Co., Ltd.), DCL- 2001 (trade name, manufactured by Daito Chemix Co., Ltd.) can be mentioned.
  • Preferred examples of compounds having at least two epoxy groups are “Epolite” (registered trademark) 40E, "Epolite” 100E, “Epolite” 200E, “Epolite” 400E, "Epolite” 70P, “Epolite” 200P, “Epolite”.
  • Preferred examples of the compound having at least two oxetanyl groups include, for example, Ethanacole EHO, Ethanacole OXBP, Ethanacole OXTP, Ethanacole OXMA (all manufactured by Ube Industries, Ltd.), oxetaneated phenol novolac, and the like.
  • the thermal cross-linking agent may be contained in combination of two or more types.
  • NIKALAC MX-290 "NIKALAC” MX-280, “NIKALAC” MX-270, “NIKALAC” MX-279, from the viewpoint of heat resistance of the cured film obtained after curing by heat. It is preferably a compound selected from any of "NIKALAC” MW-100LM, “NIKALAC” MX-750LM, and DCL-2001.
  • the content of the thermal cross-linking agent is preferably 0.1 to 50% by mass with respect to 100% by mass of the solid content.
  • the content of the thermal cross-linking agent is more preferably 1% by mass or more.
  • the content of the thermal cross-linking agent is 50% by mass or less, the amount of outgas from the cured film can be reduced.
  • the content of the thermal cross-linking agent is more preferably 30% by mass or less.
  • the positive photosensitive resin composition of the present invention preferably further contains a silane coupling agent.
  • the silane coupling agent refers to a compound having a hydrolyzable silyl group or silanol group.
  • silane coupling agent trifunctional organosilane or tetrafunctional organosilane is preferable.
  • trifunctional organosilane examples include vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 2- (3,4-epoxy).
  • tetrafunctional organosilane examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, and tetraacetoxysilane.
  • silane coupling agent vinyl trimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-glycid from the viewpoint of improving the adhesion to the underlying conductive layer or insulating layer.
  • the content of the silane coupling agent is preferably 0.1 to 15% by mass with respect to 100% by mass of the solid content.
  • the content of the silane coupling agent is more preferably 0.5% by mass or more.
  • the resolution after development can be further improved.
  • the content of the silane coupling agent is more preferably 10% by mass or less.
  • the positive photosensitive resin composition of the present invention may contain various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve the flowability at the time of coating.
  • the type of surfactant is not particularly limited, and for example, fluorine-based surfactants such as "Megafuck” (registered trademark) "F477 (trade name)” (all manufactured by Dainippon Ink and Chemicals Co., Ltd.), " BYK-333 (trade name) ”, (manufactured by Big Chemie Japan Co., Ltd.) and other silicone-based surfactants, polyalkylene oxide-based surfactants, poly (meth) acrylate-based surfactants and the like can be used. Two or more of these may be used.
  • the positive photosensitive resin composition of the present invention may contain an ultraviolet absorber.
  • an ultraviolet absorber By containing the ultraviolet absorber, the light resistance of the obtained cured film is improved, and the resolution after development is further improved.
  • the ultraviolet absorber is not particularly limited and known ones can be used, but benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are preferable from the viewpoint of transparency and non-coloring property.
  • the photosensitive resin composition of the present invention may contain a polymerization inhibitor.
  • a polymerization inhibitor By containing an appropriate amount of the polymerization inhibitor, the resolution after development is further improved.
  • the polymerization inhibitor is not particularly limited and known ones can be used. Examples thereof include di-t-butylhydroxytoluene, hydroquinone, p-methoxyphenol, 1,4-benzoquinone and t-butylcatechol.
  • Examples of commercially available polymerization inhibitors include "IRGANOX 1010", “IRGANOX 245", "IRGANOX 3114", and "IRGANOX 565" (all manufactured by BASF).
  • the photosensitive resin composition of the present invention may contain a solvent.
  • the solvent contained in the photosensitive resin composition of the present invention preferably has a boiling point of 110 to 250 ° C. under atmospheric pressure, and more preferably 200 ° C. or lower. In addition, you may use a plurality of kinds of these solvents. If the boiling point is higher than 200 ° C., the amount of residual solvent in the film increases, the film shrinkage during curing becomes large, and good flatness cannot be obtained. On the other hand, if the boiling point is lower than 110 ° C., the coating film is dried too quickly and the film surface is roughened, resulting in poor coating film properties. Therefore, it is preferable that the solvent having a boiling point of 200 ° C. or lower under atmospheric pressure is 50% by mass or more of the total amount of the solvent in the photosensitive resin composition.
  • the solvent include, for example, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, 1-methoxypropyl-2-acetate, and dipropylene glycol.
  • examples thereof include methyl ether and diacetone alcohol.
  • the content of the solvent is not particularly limited, and any amount can be used depending on the coating method and the like.
  • the film is formed by spin coating, it is generally 50% by mass or more and 95% by mass or less of the entire photosensitive resin composition.
  • the positive photosensitive resin composition of the present invention may contain additives such as a dissolution inhibitor, a stabilizer, and an antifoaming agent, if necessary.
  • the solid content concentration of the positive photosensitive resin composition of the present invention is not particularly limited, and an arbitrary amount of solvent or solute can be used depending on the coating method and the like.
  • the solid content concentration is generally 5% by mass or more and 50% by mass or less.
  • the solid content is a photosensitive resin composition obtained by removing the solvent.
  • a typical method for producing the positive photosensitive resin composition of the present invention will be described.
  • an alkali-soluble resin (A) having a polymerizable group in the side chain, a photosensitizer (B), a colorant (C) and, if necessary, other additives are added to an arbitrary solvent, stirred and dissolved, and then dissolved.
  • the obtained solution is filtered to obtain a positive photosensitive resin composition.
  • a disperser such as a ball mill, sand grinder, 3-roll mill, mild disperser, medialess disperser, etc., and use the dispersant and the colorant (C) in advance in an organic solvent.
  • the cured film of the present invention is obtained by curing the positive photosensitive resin composition.
  • the positive photosensitive resin composition can be cured by a method described later.
  • the film thickness of the cured film of the present invention is not particularly limited, but is preferably 0.1 to 10 ⁇ m. When the film thickness of the cured film is 0.1 ⁇ m or more, the light-shielding property can be further improved.
  • the film thickness of the cured film is more preferably 0.3 ⁇ m or more. On the other hand, when the film thickness of the cured film is 10 ⁇ m or less, light reaches a deep part at the time of exposure, and a finer pattern can be formed.
  • the film thickness of the cured film is more preferably 7 ⁇ m or less, still more preferably 5 ⁇ m or less.
  • the reflectance of the cured film of the present invention at a wavelength of 550 nm is preferably 0.01 to 20%. By setting the reflectance to 0.01% or more, the conductive layer can be made difficult to see. On the other hand, when the reflectance is 20% or less, the light reaches a deep part at the time of exposure, and a finer pattern can be formed. The reflectance is more preferably 15% or less, still more preferably 10% or less. The reflectance refers to the reflectance at a film thickness of 1.0 ⁇ m. The reflectance can be adjusted by selecting the exposure amount, the developing time, and the thermosetting temperature. The reflectance of the cured film of the present invention can be measured with a reflectance meter for a cured film having a size of 0.1 mm square or more on a transparent substrate.
  • the cured film of the present invention can be used as a light-shielding layer for an opaque wiring electrode for a touch panel, a light-shielding film such as a black matrix for a color filter or a black column spacer for a liquid crystal display, a pixel division layer for an organic EL display device, or a TFT flattening layer. It can be preferably used. Among these, since it is possible to form a fine pattern and has a low reflectance, it can be particularly preferably used as a light-shielding layer of an opaque electrode for a touch panel, a pixel dividing layer of an organic EL display device, or a TFT flattening layer.
  • the positive photosensitive resin composition of the present invention is applied onto a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating and the like.
  • Prebak the above coating film with a heating device such as a hot plate or oven is preferably carried out in the range of 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after prebaking is preferably 0.1 to 15 ⁇ m.
  • the coating film is exposed using an exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA).
  • the exposure intensity is about 10 to 4000 J / m2 (wavelength 365 nm exposure amount conversion), and this light is irradiated with or without a desired mask.
  • the exposure light source is not limited, and ultraviolet rays such as g-line, h-line, and i-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the developing solution includes inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH), triethanolamine, diethanolamine, and monoethanol.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH), triethanolamine, diethanolamine, and monoethanol.
  • organic alkalis such as alcohol amines such as amines, dimethylaminoethanol and diethylaminoethanol.
  • a water-soluble organic solvent such as ethanol, ⁇ -butyrolactone, dimethylformamide or N-methyl-2-pyrrolidone may be appropriately added to these alkaline developers.
  • a surfactant such as a nonionic surfactant to these alkaline developers.
  • the coating film After development, it is preferable to rinse the coating film with water, and then the coating film can be dried and baked in the range of 50 to 130 ° C.
  • the method for producing a cured film of the present invention preferably includes a step of heating the coating film at 150 to 250 ° C.
  • the laminate of the present invention has a conductive layer and a cured film of the present invention.
  • the cured film of the present invention can form a fine pattern while ensuring low reflectance and transparency of the base material without residue, for example, a light-shielding layer of an opaque wiring electrode which is a conductive layer of a touch panel. Can be suitably used as.
  • the ratio of the film thickness of the cured film to the film thickness of the conductive layer is preferably 1/2 to 5.
  • the film thickness ratio is preferably 1/2 to 5.
  • the laminate of the present invention preferably has an insulating layer in addition to the conductive layer and the cured film of the present invention.
  • an insulating layer By having the insulating layer, defects such as short circuits occurring between the conductive layers can be suppressed, and a highly reliable laminated body can be formed. Further, by protecting the light-shielding layer, it is possible to suppress scratches and prevent poor visibility.
  • the insulating material contained in the above-mentioned insulating layer is not particularly limited, and examples thereof include acrylic polymers, epoxy resins, phenol resins, cardo resins, polysiloxanes, polyimides, polyamides, and polybenzoxazoles. Two or more of these may be contained.
  • Examples of the conductive material contained in the above-mentioned conductive layer include copper, silver, gold, aluminum, chromium, molybdenum, and titanium. In addition to the above, it may be combined with a conductive material forming a transparent electrode, for example, ITO, IZO (indium zinc oxide), AZO (aluminum-added zinc oxide), ZnO 2, or the like. Among these, silver having the lowest specific resistance value is preferable. When the specific resistance value is low, a highly sensitive touch panel can be manufactured. Further, since a finer wiring pattern can be formed, it is preferable that the average primary particle size of silver is 10 to 200 nm.
  • the average primary particle size of silver can be calculated from the average value of the particle sizes of 100 primary particles randomly selected using a scanning electron microscope.
  • the particle size of each primary particle can be calculated from the average value obtained by measuring the major axis and the minor axis of the primary particle.
  • the conductive layer contains 5 to 35% by mass of an organic component having an alkali-soluble group.
  • the content ratio of the organic component having an alkali-soluble group is 5% by mass or more, the photosensitive characteristics can be improved and a finer pattern can be formed.
  • the specific resistance value can be reduced and a highly sensitive touch panel can be formed.
  • the alkali-soluble group is not particularly limited, and examples thereof include a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, and a thiol group.
  • the organic component having an alkali-soluble group the organic component described in the positive photosensitive resin composition can be used.
  • FIG. 1 is a schematic view of a laminated body having an opaque wiring electrode 2 on a transparent substrate 1 and a light-shielding layer 3 made of the cured film of the present invention on the opaque wiring electrode 2.
  • the laminate shown in FIG. 1 can be obtained through a step of exposing from the opposite surface side of the opaque wiring electrode forming surface of the transparent substrate in the method for manufacturing the laminate described later.
  • FIG. 2 has an opaque wiring electrode 2 (first opaque wiring electrode) and an insulating layer 4 on a transparent substrate 1, and an opaque wiring electrode 2 (second opaque wiring electrode) on the insulating layer 4. Further, it is a schematic view of a laminated body having a light-shielding layer 3 made of the cured film of the present invention at a portion corresponding to the opaque wiring electrode 2 (the first opaque wiring electrode and the second opaque wiring electrode).
  • the first opaque wiring electrode, the insulating layer, and the second opaque wiring electrode are formed on one side of the transparent substrate in the method for manufacturing the laminate described later, and the positive photosensitive resin of the present invention is formed. It can be obtained through a step of applying the composition and exposing it from the opposite surface side of the opaque wiring electrode forming surface of the transparent substrate.
  • the method for producing a laminate of the present invention includes a step of forming an opaque wiring electrode on one surface of a transparent substrate and a step of applying the positive photosensitive resin composition of the present invention to the opaque wiring electrode forming surface of the transparent substrate.
  • FIG. 3 shows a schematic view of an example of the method for producing a laminated body of the present invention.
  • the opaque wiring electrode 2 is formed on one side of the transparent substrate 1.
  • the step of forming the opaque wiring electrode on one side of the transparent substrate is the step of forming the first opaque wiring electrode on one side of the transparent substrate, the step of forming the insulating layer on the first opaque wiring electrode, and the insulation. It may have a step of forming a second opaque wiring electrode on the layer.
  • Examples of the method for forming the opaque wiring electrode include a method of forming a pattern by a photolithography method using a photosensitive conductive composition, and a pattern by screen printing, gravure printing, inkjet, etc. using a conductive composition (conductive paste). Examples thereof include a method of forming, a method of forming a film of a metal, a metal composite, a composite of a metal and a metal compound, a metal alloy, and the like, and forming the film by a photolithography method using a resist. Among these, since fine wiring can be formed, a method of forming by a photolithography method using a photosensitive conductive composition is preferable. When two or more opaque wiring electrodes are formed via the insulating layer, each opaque wiring electrode may be formed by the same method, or different methods may be combined. An insulating layer may be formed on the opaque wiring electrode of the obtained laminate with the opaque wiring electrode.
  • Examples of the method for forming the insulating layer include a method of forming a pattern by a photolithography method using a photosensitive insulating composition, a method of applying the insulating composition and drying it, and an adhesive on the opaque wiring electrode forming surface side.
  • a method of sticking a transparent substrate through the above can be mentioned.
  • a method of forming by a photolithography method using a photosensitive insulating composition is preferable.
  • the adhesive may be formed on the base material with the opaque wiring electrode and the transparent substrate may be attached, or the transparent substrate with the adhesive may be attached. May be good.
  • the positive photosensitive resin composition 5 of the present invention is applied to the opaque wiring electrode forming surface of the transparent substrate 1.
  • the laminate of the present invention When the laminate of the present invention is used as a touch panel sensor, it is not necessary to apply the positive photosensitive resin composition of the present invention to the connection portion with the flexographic substrate, if necessary.
  • the positive photosensitive resin composition 5 of the present invention is exposed from the opposite side of the opaque wiring electrode forming surface of the transparent substrate and developed to obtain an opaque wiring electrode.
  • a light-shielding layer is formed on the corresponding portion.
  • the step of forming the opaque wiring electrode on one side of the transparent substrate is the step of forming the first opaque wiring electrode on one side of the transparent substrate, the step of forming the insulating layer on the first opaque wiring electrode, and the step of forming the insulating layer.
  • the step of forming the second opaque wiring electrode on the insulating layer it is preferable to form a light-shielding layer at a portion corresponding to the first opaque wiring electrode and the second opaque wiring electrode.
  • the substrate with a conductive pattern of the present invention is a substrate with a conductive pattern having a substrate, a conductive pattern formed on the substrate, and a cured film of the present invention, and has the cured film on at least a part of the conductive pattern forming region. However, it does not have the cured film on the non-conducting pattern region. With such a configuration, it is possible to suppress the reflection of the conductive pattern while ensuring the transparency of the base material.
  • the substrate with a conductive pattern includes a connecting portion
  • Synthesis Example 2 Acrylic polymer (a1-2) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 3 Acrylic polymer (a1-3) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 4 Acrylic polymer (a1-4) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 5 Acrylic polymer (a1-5) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 6 Acrylic polymer (a1-6) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 51.7 g of methacrylic acid, 52.9 g of benzyl methacrylate, and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, and the mixture was stirred at room temperature for a while, and the flask was stirred. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 7 Acrylic polymer (a1-7) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 8 Acrylic polymer (a1-8) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 60.3 g of methacrylic acid, 35.2 g of benzyl methacrylate, and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 9 Acrylic polymer (a1-9) 0.5 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 2 hours.
  • Synthesis Example 10 Acrylic polymer (a1-10) 0.5 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 4 hours.
  • Synthesis Example 11 Acrylic polymer (a1-11) 1.5 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 12 Acrylic polymer (a1-12) 2.0 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 13 Acrylic polymer (a1-13) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 14 Acrylic polymer (a1-14) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • Synthesis Example 15 Acrylic polymer (a1'-1) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours.
  • allylglycidyl ether 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the acrylic.
  • PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1'-1).
  • the polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 10,000.
  • Synthesis Example 16 Acrylic polymer (a1'-2) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. After that, 34.4 g of methacrylic acid, 61.7 g of benzyl methacrylate, 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate, and 21.3 g of glycidyl methacrylate were charged. , Stir for a while at room temperature, sufficiently replace the inside of the flask with nitrogen by bubbling, heat and stir at 70 ° C. for 5 hours, add PGMEA to the obtained acrylic polymer solution so that the solid content concentration becomes 40 wt%, and add acrylic acid. A solution of the polymer (a1'-2) was obtained. The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 12,000.
  • Synthesis Example 17 Acrylic polymer (a1'-3) 1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, PGMEA was added to the obtained acrylic polymer solution so that the solid content concentration was 40 wt% to obtain a solution of the acrylic polymer (a1'-3). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
  • conductive fine particles manufactured by Nisshin Engineering Co., Ltd.
  • a carbon compound 80.0 g
  • BYK-21116 4.06 g
  • PGMEA 196.14 g
  • the mixed solution was further dispersed using a mill-type disperser filled with zirconia beads to obtain a silver fine particle dispersion.
  • Photosensitive insulating material The method for producing the photosensitive insulating material is shown below.
  • ⁇ Silver ink material ( ⁇ ) pattern production> After drying the silver ink material ( ⁇ ) on the substrate or on the substrate with an opaque wiring electrode having an insulating layer using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.), the film thickness becomes 1 ⁇ m. After spin coating at a predetermined rotation speed as described above, a prebaked film was prepared by prebaking at 100 ° C. for 2 minutes using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.).
  • SCW-636 trade name
  • a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) was used as a light source, and an exposure amount of 500 mJ / cm 2 (wavelength) was passed through a desired mask. It was exposed at (365 nm conversion) to prepare a mesh-shaped pattern having a pitch of 300 ⁇ m shown in FIG. After that, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.07 wt% TMAH aqueous solution for 60 seconds, then rinsed with water for 30 seconds, and pattern processing was performed. Was done.
  • AD-2000 automatic developing device
  • the patterned substrate was post-baked at 230 ° C. for 60 minutes (in the air) using an oven (“IHPS-222 (trade name)” manufactured by ESPEC CORPORATION) to prepare a substrate with an opaque wiring electrode.
  • IHPS-222 trade name
  • ESPEC CORPORATION an oven
  • ⁇ Pattern production of photosensitive insulating material ( ⁇ )> The photosensitive insulating material ( ⁇ ) is spin-coated on the obtained substrate with an opaque wiring electrode using a spin coater at a predetermined rotation speed so that the film thickness becomes 2.5 ⁇ m after drying, and then a hot plate is used. Prebaked at 100 ° C. for 2 minutes to prepare a prebaked film.
  • the prebake film was exposed to an exposure amount of 200 mJ / cm 2 (wavelength 365 nm conversion) through an exposure mask having a desired pattern using an ultrahigh pressure mercury lamp as a light source using a parallel light mask aligner. Then, using an automatic developing apparatus, shower development was performed with 0.07 wt% TMAH aqueous solution for 60 seconds, and then rinse with water for 30 seconds to perform pattern processing.
  • the patterned substrate was post-baked at 230 ° C. for 60 minutes (in air) using an oven to prepare a substrate with an opaque wiring electrode having an insulating layer.
  • ⁇ Preparation of cured film of positive photosensitive resin composition The positive photosensitive resin composition is dried on the opaque wiring electrode forming surface of the obtained substrate with opaque wiring electrodes or the substrate with opaque wiring electrodes having an insulating layer using a spin coater, and the thickness becomes 1.0 ⁇ m. After spin coating at a predetermined number of revolutions as described above, a prebaked film was prepared by prebaking at 100 ° C. for 2 minutes using a hot plate. The prebake film is exposed to an exposure amount of 500 mJ / cm 2 (wavelength 365 nm conversion) from the opposite side of the opaque wiring electrode forming surface using an ultra-high pressure mercury lamp as a light source and an opaque wiring electrode as a mask using a parallel light mask aligner. did. Then, using an automatic developing apparatus, shower development was performed with 0.07 wt% TMAH aqueous solution for 60 seconds, and then rinse with water for 30 seconds to perform pattern processing.
  • the patterned substrate was post-baked at 230 ° C. for 60 minutes (in air) using an oven to prepare a cured film of a positive photosensitive resin composition.
  • the laminated substrate (A) shown in FIG. 1 was prepared using the positive photosensitive resin composition and the silver ink material ( ⁇ ).
  • the base material 1 is a glass substrate obtained by sputtering SiO 2 on the surface
  • the opaque wiring electrode layer 2 is a conductive pattern layer made of a silver ink material ( ⁇ )
  • the light shielding layer 3 is a cured film made of a positive photosensitive resin composition. Is.
  • the portion of the laminated substrate (A) corresponding to the pad portion 6 was immersed in PGMEA at 100 ° C. for 10 minutes, washed with water for 1 minute, and then the image magnified 50 times was observed with an optical microscope. The appearance of the cured film before and after immersion was observed to evaluate the solvent resistance. 2: No change in appearance. 1: Cracks occur in the light-shielding layer.
  • the laminated substrate (B) shown in FIGS. 2 and 5 was prepared using the positive photosensitive resin composition, the silver ink material ( ⁇ ), and the photosensitive insulating material ( ⁇ ).
  • the base material 1 is a glass substrate obtained by sputtering SiO 2 on the surface
  • the opaque wiring electrode layer 2 is a conductive pattern layer made of a silver ink material ( ⁇ )
  • the light shielding layer 3 is a cured film made of a positive photosensitive resin composition.
  • the insulating layer 4 is an insulating layer made of a photosensitive insulating material ( ⁇ ).
  • the residue on the substrate was evaluated by the transmittance evaluation of the exposed portion of the positive photosensitive resin composition on the insulating layer 4 of the laminated substrate shown in FIG. ..
  • the transmittance at 400 nm before and after the formation of the light-shielding film is measured by the ultraviolet-visible spectrophotometer Shimadzu Corporation. The measurement was carried out using "MultiSpec-1500 (trade name)" manufactured by Mfg. Co., Ltd.
  • the laminated substrate (B) was evaluated for migration resistance under high temperature and high humidity.
  • the insulation deterioration characteristic evaluation system "ETAC SIR13" manufactured by Kusumoto Kasei Co., Ltd. was used for the measurement. Electrodes were attached to the connection portions of the opaque wiring electrodes 2, and the samples were placed in a high-temperature and high-humidity tank set to 85 ° C. and 85% RH conditions. After 5 minutes had passed since the environment in the tank became stable, a voltage was applied between the electrodes of the opaque wiring electrode 2 and the change with time of the insulation resistance was measured.
  • a voltage of 5 V was applied with the opaque wiring electrode of the first layer as the positive electrode and the opaque wiring electrode of the second layer as the negative electrode, and the resistance value was measured at 5-minute intervals for 1000 hours.
  • the measured resistance value reached 10 to the 5th power ⁇ or less, it was judged as a short circuit due to poor insulation, and the printing pressure was stopped, and the test time up to that point was defined as the short circuit time.
  • Migration resistance was evaluated according to the following evaluation criteria. 2 or more was passed. 3: Short circuit time is 1000 hours or more 2: Short circuit time is 280 hours or more and less than 1000 hours 1: Short circuit time is less than 280 hours.
  • Example 1 First, MA-100: 3.00 g as the colorant (C), BYK-21116: 1.00 g as the dispersant, PGMEA: 40.00 g, DPM: 20.00 g with a homogenizer at 1200 rpm for 30 minutes. The mixture was mixed and further dispersed using a high-pressure wet medialess atomizer Nanomizer (Namizer Co., Ltd.) to obtain a dispersion. With respect to 64.00 g of this dispersion, under a yellow lamp, the photosensitizer (b-1) was 3.00 g, the cross-linking agent was MX-270: 0.69 g, and the solvent was PGMEA: 14.
  • Examples 2 to 29, Comparative Examples 1 to 5 Positive photosensitive resin compositions having the compositions shown in Tables 1 to 4 were obtained by the same method as in Example 1, and each positive photosensitive resin composition was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 5-8.
  • the application of the cured film obtained by curing the photosensitive resin composition of the present invention is not particularly limited, but for example, light-shielding such as a light-shielding layer of an opaque electrode for a touch panel, a black matrix of a color filter, or a black column spacer of a liquid crystal display. It is suitably used as a film, a pixel dividing layer of an organic EL display device, a TFT flattening layer, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention addresses the problem of providing a photosensitive resin composition which is applicable as a light blocking layer of an opaque wiring electrode, while having a low reflectance, and which enables the achievement of a good balance among resolution of a fine pattern, assurance of transparency of a base material by means of suppression of residues on a substrate, and migration resistance. A positive photosensitive resin composition which contains (A) an alkali-soluble resin that has a polymerizable group in a side chain, (B) a sensitizer and (C) a coloring agent, wherein the polymerizable group is an acrylic group and/or a methacrylic group.

Description

ポジ型感光性樹脂組成物、硬化膜、積層体、導電パターン付き基板、積層体の製造方法、タッチパネル及び有機EL表示装置Positive type photosensitive resin composition, cured film, laminate, substrate with conductive pattern, manufacturing method of laminate, touch panel and organic EL display device
 本発明は、ポジ型感光性樹脂組成物、硬化膜、積層体、導電パターン付き基板、積層体の製造方法、タッチパネル及び有機EL表示装置に関する。 The present invention relates to a positive photosensitive resin composition, a cured film, a laminate, a substrate with a conductive pattern, a method for manufacturing a laminate, a touch panel, and an organic EL display device.
 近年、入力手段としてタッチパネルが広く用いられている。タッチパネルは、液晶パネルなどの表示部と、特定の位置に入力された情報を検出するタッチパネルセンサー等から構成される。タッチパネルの方式は、入力位置の検出方法により、抵抗膜方式、静電容量方式、光学方式、電磁誘導方式、超音波方式などに大別される。中でも、光学的に明るいこと、意匠性に優れること、構造が簡易であることおよび機能的に優れること等の理由により、静電容量方式のタッチパネルが広く用いられている。 In recent years, a touch panel has been widely used as an input means. The touch panel is composed of a display unit such as a liquid crystal panel and a touch panel sensor or the like that detects information input at a specific position. The touch panel method is roughly classified into a resistive film method, a capacitance method, an optical method, an electromagnetic induction method, an ultrasonic method, and the like, depending on the input position detection method. Among them, a capacitance type touch panel is widely used because of its optical brightness, excellent design, simple structure, and excellent functionality.
 静電容量方式のタッチパネルセンサーは、第一電極と絶縁層を介して直交する第二電極を有し、タッチパネル面の電極に電圧をかけて、指などの導電体が触れた際の静電容量変化を検知することにより得られた接触位置を信号として出力する。静電容量方式に用いられるタッチパネルセンサーとしては、例えば、一対の対向する透明基板上に電極および外部接続端子を形成した構造や、一枚の透明基板の両面に電極および外部接続端子をそれぞれ形成した構造などが知られている。タッチパネルセンサーに用いられる配線電極としては、配線電極を視認されにくくする観点から透明配線電極が用いられることが一般的であったが、近年、高感度化や画面の大型化により、金属材料を用いた不透明配線電極が広まっている。 The capacitance type touch panel sensor has a second electrode that is orthogonal to the first electrode via an insulating layer, and when a voltage is applied to the electrode on the touch panel surface, the capacitance when a conductor such as a finger touches it. The contact position obtained by detecting the change is output as a signal. The touch panel sensor used in the capacitance method includes, for example, a structure in which electrodes and external connection terminals are formed on a pair of opposing transparent substrates, and electrodes and external connection terminals are formed on both sides of one transparent substrate, respectively. The structure is known. As the wiring electrode used for the touch panel sensor, a transparent wiring electrode is generally used from the viewpoint of making the wiring electrode difficult to see, but in recent years, a metal material is used due to higher sensitivity and larger screen. The opaque wiring electrode that was there is widespread.
 金属材料を用いた不透明配線電極を有するタッチパネルセンサーは、不透明配線電極の金属光沢により不透明配線電極が視認される課題があったが、不透明配線電極上に着色剤を含有する感光性樹脂組成物を用い、遮光層を形成して視認されにくくする手法がある。(例えば特許文献1) A touch panel sensor having an opaque wiring electrode made of a metal material has a problem that the opaque wiring electrode is visually recognized due to the metallic luster of the opaque wiring electrode. There is a method of forming a light-shielding layer to make it difficult to see. (For example, Patent Document 1)
国際公開2018/168325号International Publication No. 2018/168325
 しかしながら、着色剤を用いた感光性樹脂組成物においては、パターン形成の際に基板上、特に有機成分を含む膜上で着色剤由来の残渣が生じやすいため、外観不良等が生じ、基材の透明性が損なわれることがあった。また、残渣を抑制させるため、現像時間を長くすると、微細なパターンを形成することが困難であった。さらに、第一電極及び第二電極として銀電極を用いた場合、電極上に形成された遮光層中の成分が絶縁層に拡散して不純物となり、銀のマイグレーションが発生しやすいという課題もあった。 However, in a photosensitive resin composition using a colorant, a residue derived from the colorant is likely to be generated on a substrate, particularly on a film containing an organic component, when a pattern is formed, resulting in poor appearance and the like. Transparency was sometimes impaired. Further, when the development time is lengthened in order to suppress the residue, it is difficult to form a fine pattern. Further, when silver electrodes are used as the first electrode and the second electrode, there is also a problem that the components in the light-shielding layer formed on the electrodes diffuse into the insulating layer and become impurities, and silver migration is likely to occur. ..
 本発明は、低反射率であるとともに、不透明配線電極の遮光層として適用可能で、微細パターンの解像性と、基板上の残渣抑制による基材の透明性確保と、マイグレーション耐性とを両立させることが可能な、ポジ型感光性樹脂組成物を提供することを目的とする。 The present invention has low reflectance and can be applied as a light-shielding layer of an opaque wiring electrode, and achieves both fine pattern resolution, ensuring transparency of a base material by suppressing residues on a substrate, and migration resistance. It is an object of the present invention to provide a positive photosensitive resin composition capable of providing a positive photosensitive resin composition.
 本発明者らは、本発明の目的は、側鎖に重合性基を有するアルカリ可溶性樹脂と、感光剤及び着色剤とを組み合わせることによって達成されることを見出した。 The present inventors have found that the object of the present invention is achieved by combining an alkali-soluble resin having a polymerizable group in the side chain with a photosensitizer and a colorant.
 即ち、本発明のポジ型感光性樹脂組成物は、側鎖に重合性基を有するアルカリ可溶性樹脂(A)、感光剤(B)及び着色剤(C)を含有し、前記重合性基がアクリル基および/またはメタクリル基であることを特徴とする。 That is, the positive photosensitive resin composition of the present invention contains an alkali-soluble resin (A), a photosensitive agent (B) and a colorant (C) having a polymerizable group in the side chain, and the polymerizable group is acrylic. It is characterized by being a group and / or a methacrylic group.
 本発明のポジ型感光性樹脂組成物は、低反射率であるとともに、不透明配線電極の遮光層として適用可能で、微細パターンの解像性と、基板上の残渣抑制による基材の透明性確保と、マイグレーション耐性とを両立させることができる。 The positive photosensitive resin composition of the present invention has low reflectance and can be applied as a light-shielding layer for opaque wiring electrodes, ensuring fine pattern resolution and transparency of the substrate by suppressing residues on the substrate. And migration resistance can be compatible.
本発明の積層体の構成の一例を示す概略図である。It is the schematic which shows an example of the structure of the laminated body of this invention. 本発明の積層体の構成の別の一例を示す概略図である。It is the schematic which shows another example of the structure of the laminated body of this invention. 本発明の積層体の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the laminated body of this invention. 実施例および比較例における評価用電極パターンを示す概略図である。It is the schematic which shows the electrode pattern for evaluation in an Example and a comparative example. 実施例および比較例における基板上残渣評価用積層基板の上面図である。It is a top view of the laminated substrate for evaluation of residue on the substrate in Examples and Comparative Examples.
 本発明のポジ型感光性樹脂組成物は、側鎖に重合性基を有するアルカリ可溶性樹脂(A)、感光剤(B)及び着色剤(C)を含有し、前記重合性基がアクリル基および/またはメタクリル基であることを特徴とする。 The positive photosensitive resin composition of the present invention contains an alkali-soluble resin (A), a photosensitive agent (B) and a colorant (C) having a polymerizable group in the side chain, and the polymerizable group is an acrylic group and / Or it is a methacrylic group.
 [側鎖に重合性基を有するアルカリ可溶性樹脂(A)]
 本発明のポジ型感光性樹脂組成物は、側鎖に重合性基を有するアルカリ可溶性樹脂(A)を含有する。側鎖に重合性基を有するアルカリ可溶性樹脂(A)を含有することにより、現像時における溶解を促進し、残渣を抑制して基材の透明性を確保することができるとともに、微細なパターンを形成することができる。また、パターン形成後の熱処理で重合性基が架橋し、得られた硬化膜の耐溶剤性が向上する。ここで、「アルカリ可溶性」とは、アルカリ水溶液や有機アルカリに溶解する性質を指す。
[Alkali-soluble resin (A) having a polymerizable group in the side chain]
The positive photosensitive resin composition of the present invention contains an alkali-soluble resin (A) having a polymerizable group in the side chain. By containing the alkali-soluble resin (A) having a polymerizable group in the side chain, it is possible to promote dissolution during development, suppress residues, ensure the transparency of the base material, and form a fine pattern. Can be formed. Further, the polymerizable group is crosslinked by the heat treatment after the pattern formation, and the solvent resistance of the obtained cured film is improved. Here, "alkali-soluble" refers to the property of being soluble in an aqueous alkali solution or an organic alkali.
 側鎖に重合性基を有するアルカリ可溶性樹脂(A)は、アルカリ可溶性を付与するため、樹脂の構造単位中および/またはその主鎖末端に酸性基を有することが好ましい。酸性基としては、例えば、カルボキシル基、フェノール性水酸基、スルホン酸基、チオール基などが挙げられる。これらの中でも、アルカリ現像液に対する溶解性の高さから、カルボキシル基が好ましい。 The alkali-soluble resin (A) having a polymerizable group in the side chain preferably has an acidic group in the structural unit of the resin and / or at the end of the main chain thereof in order to impart alkali solubility. Examples of the acidic group include a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, a thiol group and the like. Among these, a carboxyl group is preferable because of its high solubility in an alkaline developer.
 本発明において、前記重合性基は、アクリル基および/またはメタクリル基である。重合性基がアクリル基および/またはメタクリル基であることにより、光及び/または熱による架橋反応が効率的に進行して硬化度が向上する結果、不透明配線電極上に形成された遮光層中の成分が絶縁層に拡散するのを抑制し、マイグレーション耐性を向上させることができる。 In the present invention, the polymerizable group is an acrylic group and / or a methacrylic group. Since the polymerizable group is an acrylic group and / or a methacrylic group, the cross-linking reaction by light and / or heat efficiently proceeds and the degree of curing is improved, and as a result, in the light-shielding layer formed on the opaque wiring electrode. It is possible to suppress the diffusion of the component into the insulating layer and improve the migration resistance.
 アルカリ可溶性樹脂としては、例えば、アクリルポリマー、エポキシ樹脂、フェノール樹脂、カルド系樹脂、ポリシロキサン、ポリイミド、ポリアミド、ポリベンゾオキサゾールなどが挙げられるが、これらに限定されない。これらの樹脂を2種以上含有してもよい。中でも、不飽和二重結合の導入の容易さから、アクリルポリマー、カルド系樹脂、ポリシロキサンが好ましく、耐候性の観点から、アクリルポリマー、ポリシロキサンがより好ましく、合成の容易性の観点からアクリルポリマーがさらに好ましい。 Examples of the alkali-soluble resin include, but are not limited to, acrylic polymers, epoxy resins, phenol resins, cardo resins, polysiloxanes, polyimides, polyamides, and polybenzoxazoles. Two or more of these resins may be contained. Among them, acrylic polymers, cardo-based resins, and polysiloxanes are preferable from the viewpoint of ease of introduction of unsaturated double bonds, acrylic polymers and polysiloxanes are more preferable from the viewpoint of weather resistance, and acrylic polymers are preferable from the viewpoint of ease of synthesis. Is even more preferable.
 前記側鎖に重合性基を有するアルカリ可溶性樹脂(A)は、下記一般式(1)で表される有機基を有することが好ましい。側鎖に重合性基を有するアルカリ可溶性樹脂(A)中に、下記一般式(1)で表される有機基を有することにより、パターン形成時に、残渣をより抑制して基材の透明性を確保することが可能であり、後の加熱工程により得られた硬化膜の耐溶剤性をより向上させることができる。有機基は、側鎖に重合性基を有するアルカリ可溶性樹脂(A)に対してIR分析、HNMR、GC-MS及びMALDI-MS分析により、同定することができる。 The alkali-soluble resin (A) having a polymerizable group in the side chain preferably has an organic group represented by the following general formula (1). By having an organic group represented by the following general formula (1) in the alkali-soluble resin (A) having a polymerizable group in the side chain, the residue is further suppressed during pattern formation to improve the transparency of the base material. It can be secured, and the solvent resistance of the cured film obtained by the subsequent heating step can be further improved. The organic group can be identified by IR analysis, 1 HNMR, GC-MS and MALDI-MS analysis on the alkali-soluble resin (A) having a polymerizable group in the side chain.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
一般式(1)中、Xは炭素数1~4の炭化水素基を表し、sは0または1を表し、Rは水素原子又はメチル基を示す。 In the general formula (1), X represents a hydrocarbon group having 1 to 4 carbon atoms, s represents 0 or 1, and R 1 represents a hydrogen atom or a methyl group.
 前記側鎖に重合性基を有するアルカリ可溶性樹脂(A)は、下記一般式(2)で表される繰り返し単位を有することがより好ましい。 It is more preferable that the alkali-soluble resin (A) having a polymerizable group in the side chain has a repeating unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
一般式(2)中、R及びRは水素原子又はメチル基を示す。R及びRはそれぞれ同じであっても異なっていてもよい。 In the general formula (2), R 2 and R 3 represent a hydrogen atom or a methyl group. R 2 and R 3 may be the same or different, respectively.
 側鎖に重合性基を有するアルカリ可溶性樹脂(A)は、全繰り返し単位中、一般式(2)で表される繰り返し単位を5~50モル%有することが好ましい。一般式(2)で表される繰り返し単位の含有量を5モル%以上有することにより、残渣抑制による基材の透明性確保の効果がより向上する。また、マイグレーション耐性がより向上する。一般式(2)で表される繰り返し単位は、10モル%以上であることがより好ましく、15モル%以上であることがさらに好ましい。一方、一般式(2)で表される繰り返し単位が50モル%以下であることにより、より微細なパターンを形成することができる。一般式(2)で表される繰り返し単位は40モル%以下であることがより好ましく、35モル%以下であることがさらに好ましい。 The alkali-soluble resin (A) having a polymerizable group in the side chain preferably has 5 to 50 mol% of the repeating units represented by the general formula (2) in all the repeating units. By having the content of the repeating unit represented by the general formula (2) of 5 mol% or more, the effect of ensuring the transparency of the base material by suppressing the residue is further improved. In addition, migration resistance is further improved. The repeating unit represented by the general formula (2) is more preferably 10 mol% or more, further preferably 15 mol% or more. On the other hand, when the repeating unit represented by the general formula (2) is 50 mol% or less, a finer pattern can be formed. The repeating unit represented by the general formula (2) is more preferably 40 mol% or less, and further preferably 35 mol% or less.
 前記側鎖に重合性基を有するアルカリ可溶性樹脂(A)は、前記一般式(2)で表される繰り返し単位以外の繰り返し単位を有してもよい。一般式(2)で表される繰り返し単位以外の繰り返し単位として、カルボキシル基及び/または酸無水物基含有(メタ)アクリル化合物、(メタ)アクリル酸エステル、(メタ)アクリル酸エステルをラジカル共重合したのち、エチレン性不飽和二重結合基を有するエポキシ化合物を付加反応して得られるものを含む繰り返し単位であることが好ましい。 The alkali-soluble resin (A) having a polymerizable group in the side chain may have a repeating unit other than the repeating unit represented by the general formula (2). As a repeating unit other than the repeating unit represented by the general formula (2), a carboxyl group and / or an acid anhydride group-containing (meth) acrylic compound, a (meth) acrylic acid ester, and a (meth) acrylic acid ester are radically copolymerized. After that, it is preferable that the repeating unit contains a compound obtained by an addition reaction of an epoxy compound having an ethylenically unsaturated double bond group.
 前記アクリルポリマーは、エチレン性不飽和二重結合を有する単量体をラジカル重合させることにより得られる。一般式(2)で表される繰り返し単位は、一般式(3)で表される繰り返し単位を含むアクリルポリマーに対し、(メタ)アクリル酸グリシジルを付加反応させることにより得られる。ラジカル共重合の触媒に特に制限はなく、アゾビスイソブチロニトリル等のアゾ化合物や過酸化ベンゾイル等の有機過酸化物等が一般的に用いられる。また、(メタ)アクリル酸グリシジルの付加反応に用いる触媒に特に制限はなく、公知の触媒を用いることが出来るが、例えば、ジメチルアニリン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン等のアミノ系触媒、2-エチルヘキサン酸錫(II)、ラウリン酸ジブチル錫等の錫系触媒、2-エチルヘキサン酸チタン(IV)等のチタン系触媒、トリフェニルホスフィン等のリン系触媒及びアセチルアセトネートクロム、塩化クロム等のクロム系触媒等が用いられる。 The acrylic polymer is obtained by radical polymerization of a monomer having an ethylenically unsaturated double bond. The repeating unit represented by the general formula (2) is obtained by subjecting an acrylic polymer containing the repeating unit represented by the general formula (3) to an addition reaction of glycidyl (meth) acrylate. The catalyst for radical copolymerization is not particularly limited, and azo compounds such as azobisisobutyronitrile and organic peroxides such as benzoyl peroxide are generally used. The catalyst used for the addition reaction of glycidyl (meth) acrylate is not particularly limited, and known catalysts can be used. For example, dimethylaniline, 2,4,6-tris (dimethylaminomethyl) phenol, dimethyl. Amino catalysts such as benzylamine, tin catalysts such as tin 2-ethylhexanoate (II) and dibutyltin laurate, titanium catalysts such as titanium 2-ethylhexanoate (IV), and phosphorus catalysts such as triphenylphosphine. A catalyst and a chromium-based catalyst such as acetylacetonate chromium and chromium chloride are used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
一般式(3)中、Rは水素原子又はメチル基を示す。 In the general formula (3), R 4 represents a hydrogen atom or a methyl group.
 また、前記一般式(2)で表される繰り返し単位以外の繰り返し単位のラジカル共重合に用いられる触媒、およびエチレン性不飽和二重結合基を有するエポキシ化合物を付加反応に用いる触媒についても上記と同様である。 Further, the catalyst used for radical copolymerization of a repeating unit other than the repeating unit represented by the general formula (2) and the catalyst using an epoxy compound having an ethylenically unsaturated double bond group for the addition reaction are also described above. The same is true.
 カルボキシル基及び/または酸無水物基含有(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、コハク酸モノ(2-アクリロキシエチル)、フタル酸モノ(2-アクリロキシエチル)、テトラヒドロフタル酸モノ(2-アクリロキシエチル)、2-ビニル酢酸、2-ビニルシクロヘキサンカルボン酸、3-ビニルシクロヘキサンカルボン酸、4-ビニルシクロヘキサンカルボン酸、2-ビニル安息香酸、3-ビニル安息香酸、4-ビニル安息香酸、(メタ)アクリル酸4-ヒドロキシフェニル、(メタ)アクリル酸2-ヒドロキシフェニル、(メタ)アクリル酸無水物、イタコン酸、イタコン酸無水物、こはく酸モノ(2-アクリロイルオキシエチル)、フタル酸モノ(2-アクリロイルオキシエチル)又はテトラヒドロフタル酸モノ(2-アクリロイルオキシエチル)が挙げられる。 Examples of the (meth) acrylic compound containing a carboxyl group and / or an acid anhydride group include (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, monosuccinate (2-acryloyloxyethyl), and monophthalate (meth). 2-Acryloyloxyethyl), mono (2-acryloyloxyethyl), 2-vinylacetic acid, 2-vinylcyclohexanecarboxylic acid, 3-vinylcyclohexanecarboxylic acid, 4-vinylcyclohexanecarboxylic acid, 2-vinylbenzoic acid , 3-Vinyl benzoic acid, 4-Vinyl benzoic acid, 4-Hydroxyphenyl (meth) acrylate, 2-Hydroxyphenyl (meth) acrylate, (meth) acrylic acid anhydride, itaconic acid, itaconic acid anhydride, amber Examples thereof include acid mono (2-acryloyloxyethyl), phthalate mono (2-acryloyloxyethyl) or tetrahydrophthalate mono (2-acryloyloxyethyl).
 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ベンジル等が用いられる。また、スチレンを、上記の(メタ)アクリル酸や(メタ)アクリル酸エステルと共重合してもよい。 As the (meth) acrylic acid ester, for example, methyl (meth) acrylate, tricyclodecanyl (meth) acrylate, benzyl (meth) acrylate and the like are used. Further, styrene may be copolymerized with the above-mentioned (meth) acrylic acid or (meth) acrylic acid ester.
 エチレン性不飽和二重結合基を有するエポキシ化合物としては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。 Examples of the epoxy compound having an ethylenically unsaturated double bond group include glycidyl (meth) acrylate.
 アクリルポリマーは、多官能(メタ)アクリレート化合物と多価メルカプト化合物とを、マイケル付加(カルボニル基に関しβ位)により重合したものを用いることもできる。 As the acrylic polymer, a polyfunctional (meth) acrylate compound and a polyvalent mercapto compound polymerized by Michael addition (β-position with respect to the carbonyl group) can also be used.
 側鎖に重合性基を有するアルカリ可溶性樹脂(A)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算で、1,000以上15,000以下であることが好ましい。重量平均分子量(Mw)が1,000以上であることにより、後述する積層体を形成した場合、パターニング時に硬化膜が過度に溶解して導電層が露出するのを抑制することができる。重量平均分子量(Mw)はより好ましくは5,000以上、さらに好ましくは7,000以上である。一方、重量平均分子量(Mw)が15,000以下であることにより、より微細なパターンを形成することができる。また、現像時における溶解をより促進し、残渣をより抑制して基材の透明性を確保することができる。重量平均分子量(Mw)はより好ましくは12,000以下である。 The weight average molecular weight (Mw) of the alkali-soluble resin (A) having a polymerizable group in the side chain shall be 1,000 or more and 15,000 or less in terms of polystyrene measured by gel permeation chromatography (GPC). Is preferable. When the weight average molecular weight (Mw) is 1,000 or more, it is possible to prevent the cured film from being excessively dissolved and the conductive layer from being exposed during patterning when the laminate described later is formed. The weight average molecular weight (Mw) is more preferably 5,000 or more, still more preferably 7,000 or more. On the other hand, when the weight average molecular weight (Mw) is 15,000 or less, a finer pattern can be formed. In addition, dissolution at the time of development can be further promoted, residue can be further suppressed, and transparency of the base material can be ensured. The weight average molecular weight (Mw) is more preferably 12,000 or less.
 本発明のポジ型感光性樹脂組成物において、側鎖に重合性基を有するアルカリ可溶性樹脂(A)の含有量に特に制限はなく、所望の膜厚や用途により任意に選ぶことができるが、固形分100質量%とした場合に、10質量%以上70質量%以下とすることが一般的である。 In the positive photosensitive resin composition of the present invention, the content of the alkali-soluble resin (A) having a polymerizable group in the side chain is not particularly limited and can be arbitrarily selected depending on the desired film thickness and application. When the solid content is 100% by mass, it is generally 10% by mass or more and 70% by mass or less.
 [感光剤(B)]
 本発明のポジ型感光性樹脂組成物は、感光剤(B)を含有する。
[Photosensitizer (B)]
The positive photosensitive resin composition of the present invention contains a photosensitive agent (B).
 感光剤(B)は、光照射されることにより酸が発生し、側鎖に重合性基を有するアルカリ可溶性樹脂(A)の光照射部のアルカリ可溶性を増大させる特性を持ち、未露光部とのアルカリ可溶性のコントラストが得られ、微細パターン形成が可能であるとともに、残渣を抑制して基材の透明性を確保することができる。感光剤としてはキノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などがある。なかでも、より微細なパターンが得られることから、キノンジアジド化合物が好ましい。 The photosensitizer (B) has a property of increasing the alkali solubility of the light-irradiated portion of the alkali-soluble resin (A) having a polymerizable group in the side chain by generating an acid when irradiated with light. Alkali-soluble contrast can be obtained, fine patterns can be formed, and residues can be suppressed to ensure the transparency of the base material. Examples of the photosensitizer include a quinone diazide compound, a sulfonium salt, a phosphonium salt, a diazonium salt, and an iodonium salt. Of these, a quinonediazide compound is preferable because a finer pattern can be obtained.
 キノンジアジドは4-ナフトキノンジアジドスルホニル基、5-ナフトキノンジアジドスルホニル基を含有することが好ましい。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収があり、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域に吸収があり、g線露光に適している。 The quinone diazide preferably contains a 4-naphthoquinone diazidosulfonyl group and a 5-naphthoquinone diazidosulfonyl group. The 4-naphthoquinone diazidosulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure. The 5-naphthoquinone diazidosulfonyl ester compound has absorption in the g-line region of a mercury lamp and is suitable for g-line exposure.
 本発明のポジ型感光性樹脂組成物において、感光剤(B)の含有量に特に制限はないが、固形分100質量%に対し、0.01~50質量%が好ましい。感光剤(B)の含有量が0.01質量%以上であることにより、より微細なパターンを形成することができる。また、露光部のアルカリ可溶性を促進するため、残渣をより抑制して基材の透明性を確保することができる。感光剤(B)の含有量はより好ましくは10質量%以上である。また、感光剤(B)の含有量が50質量%以下であることにより、膜の底部まで光を透過させることができ、高い露光感度でパターンが得られる。感光剤(B)の含有量はより好ましくは40質量%以下である。 In the positive photosensitive resin composition of the present invention, the content of the photosensitive agent (B) is not particularly limited, but is preferably 0.01 to 50% by mass with respect to 100% by mass of the solid content. When the content of the photosensitizer (B) is 0.01% by mass or more, a finer pattern can be formed. Further, since the alkali solubility of the exposed portion is promoted, the residue can be further suppressed and the transparency of the base material can be ensured. The content of the photosensitizer (B) is more preferably 10% by mass or more. Further, when the content of the photosensitizer (B) is 50% by mass or less, light can be transmitted to the bottom of the film, and a pattern can be obtained with high exposure sensitivity. The content of the photosensitizer (B) is more preferably 40% by mass or less.
 また、必要に応じて、上記ポリヒドロキシ化合物やポリアミノ化合物をキノンジアジドのスルホン酸でエステル化せずそのまま用いても構わない。この場合、ヒドロキシ化合物やポリアミノ化合物の添加量としては、固形分100質量%に対し、1~50質量%が好ましい。エステル化をしていないヒドロキシ化合物やポリアミノ化合物を1質量%以上添加することにより、得られるポジ型樹脂組成物は、露光前はアルカリ現像液にほとんど溶解せず、露光すると容易にアルカリ現像液に溶解するために、現像による膜減りが少なく、かつ短時間で現像が容易になる。ヒドロキシ化合物やポリアミノ化合物の添加量は3質量%以上がより好ましい。また、ヒドロキシ化合物やポリアミノ化合物の添加量を50質量%以下とすることにより、アルカリ現像液に対する溶解性をより向上させ、より微細なパターンの形成が可能となる。ヒドロキシ化合物やポリアミノ化合物の添加量は40質量%以下がより好ましい。 If necessary, the above polyhydroxy compound or polyamino compound may be used as it is without being esterified with quinonediazide sulfonic acid. In this case, the amount of the hydroxy compound or polyamino compound added is preferably 1 to 50% by mass with respect to 100% by mass of the solid content. The positive resin composition obtained by adding 1% by mass or more of an unesterified hydroxy compound or polyamino compound hardly dissolves in an alkaline developer before exposure, and easily becomes an alkaline developer when exposed. Since it dissolves, there is little film loss due to development, and development becomes easy in a short time. The amount of the hydroxy compound or polyamino compound added is more preferably 3% by mass or more. Further, by setting the addition amount of the hydroxy compound or the polyamino compound to 50% by mass or less, the solubility in the alkaline developer can be further improved, and a finer pattern can be formed. The amount of the hydroxy compound or polyamino compound added is more preferably 40% by mass or less.
 [着色剤(C)]
 本発明のポジ型感光性樹脂組成物は、着色剤(C)を含有する。着色剤(C)とは、可視光線の波長(380~780nm)の全域又は一部の光を吸収することで、着色する化合物をいう。
[Colorant (C)]
The positive photosensitive resin composition of the present invention contains a colorant (C). The colorant (C) refers to a compound that colors by absorbing light in the entire range or a part of the wavelength of visible light (380 to 780 nm).
 着色剤(C)を含有させることにより、本発明のポジ型感光性樹脂組成物を導電層上に形成した際に、導電層で反射する光を遮光することにより、導電層が視認されにくくなる。 By containing the colorant (C), when the positive photosensitive resin composition of the present invention is formed on the conductive layer, the light reflected by the conductive layer is shielded, so that the conductive layer becomes difficult to see. ..
 着色剤(C)としては、可視光線の波長の光を吸収し、黒、赤、橙、黄、緑、青又は紫色に着色する化合物が挙げられる。これらの着色剤を単独または二色以上組み合わせることにより、導電層で反射する光を遮光することができる。 Examples of the colorant (C) include compounds that absorb light having a wavelength of visible light and color black, red, orange, yellow, green, blue, or purple. By combining these colorants alone or in combination of two or more colors, the light reflected by the conductive layer can be shielded.
 前記着色剤(C)としては、芳香族基を有することが好ましい。芳香族基を有することにより、側鎖に重合性基を有するアルカリ可溶性樹脂(A)の重合性基と相互作用し、アルカリ現像液に対する溶解性を増大させ、残渣をより抑制して基材の透明性を確保することができる。 The colorant (C) preferably has an aromatic group. By having an aromatic group, it interacts with the polymerizable group of the alkali-soluble resin (A) having a polymerizable group in the side chain, increases the solubility in an alkaline developer, and further suppresses the residue of the base material. Transparency can be ensured.
 前記着色剤(C)としては、黒色剤(Ca)及び/又は黒色以外の着色剤(Cb)が挙げられる。黒色剤(Ca)とは、可視光線の波長全域の光を吸収することで、黒色に着色する化合物をいう。黒色剤(Ca)を含有させることで、導電層で反射する光を遮光することにより、遮光性を向上させることができる。また、黒色以外の着色剤(Cb)とは、可視光線の一部波長の光を吸収することで、赤、橙、黄、緑、青又は紫色に着色する化合物をいう。これらの着色剤(Cb)を二色以上組み合わせることで、擬似的に黒色に着色することができ、遮光性を向上させることができる。遮光性の観点から、隠蔽性に優れるため、黒色剤(Ca)であることが好ましい。 Examples of the colorant (C) include a black agent (Ca) and / or a colorant other than black (Cb). The blackening agent (Ca) is a compound that is colored black by absorbing light in the entire wavelength range of visible light. By containing the blackening agent (Ca), the light blocking property can be improved by blocking the light reflected by the conductive layer. The colorant (Cb) other than black refers to a compound that colors red, orange, yellow, green, blue, or purple by absorbing light having a partial wavelength of visible light. By combining two or more colors of these colorants (Cb), it is possible to color the color in a pseudo-black color, and it is possible to improve the light-shielding property. From the viewpoint of light-shielding property, it is preferable to use a blackening agent (Ca) because it has excellent hiding power.
 前記着色剤(C)としては、後述する有機顔料(C1)、無機顔料(C2)及び染料(C3)から選ばれる一種類以上を含有することが好ましい。その中でも、耐熱性及び遮光性の観点から、有機顔料(C1)であることが好ましく、黒色の有機顔料であることがより好ましい。 The colorant (C) preferably contains one or more selected from organic pigments (C1), inorganic pigments (C2) and dyes (C3), which will be described later. Among them, the organic pigment (C1) is preferable, and the black organic pigment is more preferable, from the viewpoint of heat resistance and light-shielding property.
 [有機顔料(C1)]
 本発明のポジ型感光性樹脂組成物としては、前記着色剤(C)が、有機顔料(C1)を含有することが好ましい。有機顔料(C1)を含有させることにより、ポジ型感光性樹脂組成物の硬化膜に遮光性を付与することができるとともに、隠蔽性が高く、紫外線等による色褪せがしにくい。前記着色剤(C)が、有機顔料(C1)を含有する態様としては、前記黒色剤(Ca)及び/又は黒色以外の着色剤(Cb)が有機顔料(C1)であることが挙げられる。
[Organic pigment (C1)]
In the positive photosensitive resin composition of the present invention, it is preferable that the colorant (C) contains an organic pigment (C1). By containing the organic pigment (C1), it is possible to impart a light-shielding property to the cured film of the positive photosensitive resin composition, and it has a high hiding property and is less likely to fade due to ultraviolet rays or the like. As an embodiment in which the colorant (C) contains the organic pigment (C1), the black agent (Ca) and / or the colorant (Cb) other than black may be the organic pigment (C1).
 有機顔料(C1)の数平均粒子径は、1~1,000nmが好ましく、5~500nmがより好ましく、10~200nmがさらに好ましい。有機顔料(C1)の数平均粒子径が上記範囲内であると、ポジ型感光性樹脂組成物の硬化膜の遮光性及び有機顔料(C1)の分散安定性を向上させることができる。 The number average particle size of the organic pigment (C1) is preferably 1 to 1,000 nm, more preferably 5 to 500 nm, and even more preferably 10 to 200 nm. When the number average particle size of the organic pigment (C1) is within the above range, the light-shielding property of the cured film of the positive photosensitive resin composition and the dispersion stability of the organic pigment (C1) can be improved.
 ここで、有機顔料(C1)の数平均粒子径は、サブミクロン粒度分布測定装置(N4-PLUS;べックマン・コールター(株)製)又はゼータ電位・粒子径・分子量測定装置(ゼータサイザーナノZS;シスメックス(株)製)を用いて、溶液中の有機顔料(C1)のブラウン運動によるレーザー散乱を測定する(動的光散乱法)ことで求めることができる。また、樹脂組成物から得られる硬化膜中の有機顔料(C1)の数平均粒子径は、SEM及びTEMを用いて測定することで求めることができる。拡大倍率を50,000~200,000倍として、有機顔料(C1)の数平均粒子径を直接測定する。ここで数平均粒子径は、無作為に選択した100個の一次粒子の粒子径の平均値により算出することができる。有機顔料(C1)が真球の場合、真球の直径を測定し、数平均粒子径とする。有機顔料(C1)が真球でない場合、最も長い径(以下、「長軸径」)及び長軸径と直交する方向において最も長い径(以下、「短軸径」)を測定し、長軸径と短軸径を平均した、二軸平均径を数平均粒子径とする。 Here, the number average particle size of the organic pigment (C1) is determined by a submicron particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter Co., Ltd.) or a zeta potential / particle size / molecular weight measuring device (Zetasizer Nano ZS). It can be obtained by measuring the laser scattering of the organic pigment (C1) in the solution due to Brownian motion (dynamic light scattering method) using Sysmex Co., Ltd. Further, the number average particle size of the organic pigment (C1) in the cured film obtained from the resin composition can be determined by measuring using SEM and TEM. The number average particle size of the organic pigment (C1) is directly measured with a magnification of 50,000 to 200,000 times. Here, the number average particle size can be calculated by the average value of the particle sizes of 100 randomly selected primary particles. When the organic pigment (C1) is a true sphere, the diameter of the true sphere is measured and used as the number average particle size. When the organic pigment (C1) is not a true sphere, the longest diameter (hereinafter, "major axis diameter") and the longest diameter in the direction orthogonal to the major axis diameter (hereinafter, "minor axis diameter") are measured, and the major axis is measured. The biaxial average diameter, which is the average of the diameter and the minor axis diameter, is defined as the number average particle diameter.
 有機顔料(C1)としては、例えば、フタロシアニン系顔料、アントラキノン系顔料、キナクリドン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、ジケトピロロピロール系顔料、キノフタロン系顔料、スレン系顔料、インドリン系顔料、イソインドリン系顔料、イソインドリノン系顔料、ベンゾフラノン系顔料、ペリレン系顔料、アニリン系顔料、アゾ系顔料、アゾメチン系顔料、縮合アゾ系顔料、カーボンブラック、金属錯体系顔料、レーキ顔料、トナー顔料又は蛍光顔料が挙げられる。耐熱性の観点から、アントラキノン系顔料、キナクリドン系顔料、ピランスロン系顔料、ジケトピロロピロール系顔料、ベンゾフラノン系顔料、ペリレン系顔料、縮合アゾ系顔料及びカーボンブラックが好ましい。なかでも、分散安定性及び芳香族基を有することによる残渣抑制による基材の透明性確保の観点からカーボンブラックであることがより好ましい。 Examples of the organic pigment (C1) include phthalocyanine pigments, anthraquinone pigments, quinacridone pigments, pyranthron pigments, dioxazine pigments, thioindigo pigments, diketopyrrolopyrrole pigments, quinophthalone pigments, slene pigments, and indolin. Color pigments, isoindolin pigments, isoindolinone pigments, benzofuranone pigments, perylene pigments, aniline pigments, azo pigments, azomethine pigments, condensed azo pigments, carbon black, metal complex pigments, lake pigments, Examples include toner pigments and fluorescent pigments. From the viewpoint of heat resistance, anthraquinone pigments, quinacridone pigments, pyranthron pigments, diketopyrrolopyrrole pigments, benzofuranone pigments, perylene pigments, condensed azo pigments and carbon black are preferable. Of these, carbon black is more preferable from the viewpoint of dispersion stability and ensuring transparency of the base material by suppressing residues by having an aromatic group.
 フタロシアニン系顔料としては、例えば、銅フタロシアニン系化合物、ハロゲン化銅フ
タロシアニン系化合物又は無金属フタロシアニン系化合物が挙げられる。
Examples of the phthalocyanine pigment include a copper phthalocyanine compound, a halogenated copper phthalocyanine compound, and a metal-free phthalocyanine compound.
 アントラキノン系顔料としては、例えば、アミノアントラキノン系化合物、ジアミノアントラキノン系化合物、アントラピリミジン系化合物、フラバントロン系化合物、アント
アントロン系化合物、インダントロン系化合物、ピラントロン系化合物又はビオラントロ
ン系化合物が挙げられる。
Examples of the anthraquinone-based pigment include aminoanthraquinone-based compounds, diaminoanthraquinone-based compounds, anthrapyrimidine-based compounds, flavantron-based compounds, antoanthron-based compounds, indantron-based compounds, pyranthron-based compounds, and biolantron-based compounds.
 アゾ系顔料としては、例えば、ジスアゾ系化合物又はポリアゾ系化合物が挙げられる。 Examples of the azo pigment include a disazo compound or a polyazo compound.
 カーボンブラックとしては、例えば、チャンネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラック及びランプブラックが挙げられる。 Examples of carbon black include channel black, furnace black, thermal black, acetylene black and lamp black.
 本発明のポジ型感光性樹脂組成物において、固形分100質量%に対し、有機顔料(C1)の含有比率は、5~50質量%が好ましい。有機顔料(C1)の含有比率が5質量%以上であると、遮光性をより向上させることができる。有機顔料(C1)の含有比率はより好ましくは10質量%以上である。一方、有機顔料(C1)の含有比率が50質量%以下であると、現像残渣をより低減して基材の透明性を確保することができる。有機顔料(C1)の含有比率はりより好ましくは40質量%以下である。 In the positive photosensitive resin composition of the present invention, the content ratio of the organic pigment (C1) is preferably 5 to 50% by mass with respect to 100% by mass of the solid content. When the content ratio of the organic pigment (C1) is 5% by mass or more, the light-shielding property can be further improved. The content ratio of the organic pigment (C1) is more preferably 10% by mass or more. On the other hand, when the content ratio of the organic pigment (C1) is 50% by mass or less, the development residue can be further reduced and the transparency of the base material can be ensured. The content ratio of the organic pigment (C1) is more preferably 40% by mass or less than the beam.
 [無機顔料(C2)]
 本発明のポジ型感光性樹脂組成物としては、前記着色剤(C)が、無機顔料(C2)を含有することが好ましい。無機顔料(C2)を含有させることで、ポジ型感光性樹脂組成物の膜に遮光性を付与することができるとともに、無機物であり、耐熱性及び耐候性により優れるため、樹脂組成物の膜の耐熱性及び耐候性を向上させることができる。前記着色剤(C)が、無機顔料(C2)を含有する態様としては、前記黒色剤(Ca)及び/又は黒色以外の着色剤(Cb)が無機顔料(C2)であることが挙げられる。
[Inorganic pigment (C2)]
In the positive photosensitive resin composition of the present invention, it is preferable that the colorant (C) contains an inorganic pigment (C2). By containing the inorganic pigment (C2), it is possible to impart light-shielding properties to the film of the positive photosensitive resin composition, and since it is an inorganic substance and is superior in heat resistance and weather resistance, the film of the resin composition Heat resistance and weather resistance can be improved. As an embodiment in which the colorant (C) contains the inorganic pigment (C2), the black agent (Ca) and / or the colorant (Cb) other than black may be the inorganic pigment (C2).
 無機顔料(C2)としては、例えば、チタン、バリウム、ジルコニウム、鉛、ケイ素、アルミニウム、マグネシウム、モリブデン、カドニウム、スズ、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム若しくは銀などの金属の微粒子、上記金属元素の酸化物、複合酸化物、硫化物、硫酸塩、硝酸塩、炭酸塩、窒化物、炭化物又は酸窒化物が挙げられる。なかでも、パターン加工性と遮光性をより向上させる観点から、金属窒化物粒子が好ましい。また、遮光性をより向上させる観点から、チタン、ジルコニウム、若しくは銀の微粒子、酸化物、複合酸化物、硫化物、窒化物、炭化物又は酸窒化物が好ましく、窒化ジルコニウム粒子が特に好ましい。 Examples of the inorganic pigment (C2) include metals such as titanium, barium, zirconium, lead, silicon, aluminum, magnesium, molybdenum, cadonium, tin, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium or silver. Fine particles, oxides of the above metal elements, composite oxides, sulfides, sulfates, nitrates, carbonates, nitrides, carbides or oxynitrides. Of these, metal nitride particles are preferable from the viewpoint of further improving pattern processability and light-shielding property. Further, from the viewpoint of further improving the light-shielding property, fine particles of titanium, zirconium or silver, oxides, composite oxides, sulfides, nitrides, carbides or oxynitrides are preferable, and zirconium nitride particles are particularly preferable.
 本発明のポジ型感光性樹脂組成物において、固形分100質量%に対し、無機顔料(C2)の含有比率は、5~50質量%が好ましい。無機顔料(C2)の含有比率が5質量%以上であると、遮光性をより向上させることができる。無機顔料(C2)の含有比率はより好ましくは10質量%以上である。一方、無機顔料(C2)の含有比率が50質量%以下であると、現像残渣をより低減して基材の透明性を確保することができる。無機顔料(C2)の含有比率はより好ましくは40質量%以下である。 In the positive photosensitive resin composition of the present invention, the content ratio of the inorganic pigment (C2) is preferably 5 to 50% by mass with respect to 100% by mass of the solid content. When the content ratio of the inorganic pigment (C2) is 5% by mass or more, the light-shielding property can be further improved. The content ratio of the inorganic pigment (C2) is more preferably 10% by mass or more. On the other hand, when the content ratio of the inorganic pigment (C2) is 50% by mass or less, the development residue can be further reduced and the transparency of the base material can be ensured. The content ratio of the inorganic pigment (C2) is more preferably 40% by mass or less.
 [染料(C3)]
 本発明のポジ型感光性樹脂組成物としては、前記着色剤(C)が、染料(C3)を含有することが好ましい。前記着色剤(C)が、染料(C3)を含有する態様としては、前記黒色剤(Ca)及び/又は黒色以外の着色剤(Cb)が染料(C3)であることが挙げられる。
[Dye (C3)]
In the positive photosensitive resin composition of the present invention, it is preferable that the colorant (C) contains a dye (C3). As an embodiment in which the colorant (C) contains the dye (C3), the black agent (Ca) and / or the colorant (Cb) other than black may be the dye (C3).
 染料(C3)とは、対象物の表面構造に、染料(C3)中のイオン性基又はヒドロキシ基などの置換基が、化学吸着又は強く相互作用などをすることで、対象物を着色させる化合物をいい、一般的に溶剤等に可溶である。また、染料(C3)による着色は、分子一つ一つが対象物と吸着するため、着色力が高く、発色効率が高い。 Dye (C3) is a compound that colors an object by chemically adsorbing or strongly interacting with a substituent such as an ionic group or a hydroxy group in the dye (C3) on the surface structure of the object. Generally, it is soluble in a solvent or the like. Further, in the coloring with the dye (C3), since each molecule is adsorbed on the object, the coloring power is high and the coloring efficiency is high.
 染料(C3)としては、例えば、アントラキノン系染料、アゾ系染料、アジン系染料、フタロシアニン系染料、メチン系染料、オキサジン系染料、キノリン系染料、インジゴ系染料、インジゴイド系染料、カルボニウム系染料、スレン系染料、ペリノン系染料、ペリレン系染料、トリアリールメタン系染料又はキサンテン系染料が挙げられる。溶剤への溶解性及び耐熱性の観点から、アントラキノン系染料、アゾ系染料、アジン系染料、メチン系染料、トリアリールメタン系染料、キサンテン系染料が好ましい。 Examples of the dye (C3) include anthraquinone dyes, azo dyes, azine dyes, phthalocyanine dyes, methine dyes, oxazine dyes, quinoline dyes, indigo dyes, indigoid dyes, carbonium dyes, and slene. Examples thereof include based dyes, perinone dyes, perylene dyes, triarylmethane dyes and xanthene dyes. From the viewpoint of solubility in a solvent and heat resistance, anthraquinone dyes, azo dyes, azine dyes, methine dyes, triarylmethane dyes, and xanthene dyes are preferable.
 黒色に着色する染料としては、例えば、ソルベントブラック3、5、7、22、27、29若しくは34、モーダントブラック1、11若しくは17、アシッドブラック2若しくは52、又は、ダイレクトブラック19若しくは154が挙げられる(数値は何れもC.I.ナンバー)。上記以外に、“NUBIAN”(登録商標) BLACK TH-807、同 TH-827、同 TH-827K、同 TN-870、同 PC-0855、同 PC-5856、同 PC-5857、同 PC-5877、同 PC-8550、同 TN-873、同 TN-877若しくは同 AH-807、OIL BLACK HBB若しくは同 860、“VALIFAST”(登録商標) BLACK 1807、同 3904、同 3810、同 3820、同 3830、同 3840、同 3866若しくは同 3870又はWATER BLACK 100-L、同 191-L、同 256-L、同 R-510若しくは同 187-LM(以上、何れもオリエント化学工業(株)製)が挙げられる。 Examples of the dye that colors black include solvent black 3, 5, 7, 22, 27, 29 or 34, modern black 1, 11 or 17, acid black 2 or 52, or direct black 19 or 154. (All numerical values are CI numbers). In addition to the above, "NUBIAN" (registered trademark) BLACK TH-807, TH-827, TH-827K, TN-870, PC-0855, PC-5856, PC-5857, PC-5877. , PC-8550, TN-873, TN-877 or AH-807, OIL BLACK HBB or 860, "VALIFAST" (registered trademark) BLACK 1807, 3904, 3810, 3820, 3830, 3840, 3866 or 3870 or WATER BLACK 100-L, 191-L, 256-L, R-510 or 187-LM (all manufactured by Orient Chemical Industry Co., Ltd.) can be mentioned. ..
 赤色に着色する染料としては、例えば、ダイレクトレッド9、28、81、もしくは83が挙げられる(数値は何れもC.I.ナンバー)。 Examples of the dye that colors red include Direct Red 9, 28, 81, or 83 (all numerical values are CI numbers).
 橙色に着色する染料としては、例えば、ベーシックオレンジ21又は23が挙げられる(数値は何れもC.I.ナンバー)。 Examples of the dye that colors orange include Basic Orange 21 or 23 (all numerical values are CI numbers).
 黄色に着色する染料としては、例えば、ダイレクトイエロー8、9、11、27若しくは44、又は、ベーシックイエロー1、28若しくは40が挙げられる(数値は何れもC.I.ナンバー)。 Examples of the dye that colors yellow include Direct Yellow 8, 9, 11, 27 or 44, or Basic Yellow 1, 28 or 40 (all numerical values are CI numbers).
 緑色に着色する染料としては、例えば、アシッドグリーン16が挙げられる(数値は何れもC.I.ナンバー)。 Examples of the dye that colors green include acid green 16 (all numerical values are CI numbers).
 青色に着色する染料としては、例えば、アシッドブルー9、45、80、83、90又は185が挙げられる(数値は何れもC.I.ナンバー)。 Examples of the dye that colors blue include acid blue 9, 45, 80, 83, 90 or 185 (all numerical values are CI numbers).
 紫色に着色する染料としては、例えば、ダイレクトバイオレット51、若しくは66、又は、ベーシックバイオレット1、2、若しくは3が挙げられる(数値は何れもC.I.ナンバー)。 Examples of the dye that colors purple include Direct Violet 51 or 66, or Basic Violet 1, 2, or 3 (all numerical values are CI numbers).
 本発明のポジ型感光性樹脂組成物において、固形分100質量%に対し、染料(C3)の含有比率は、0.01~50質量%が好ましい。染料(C3)の含有比率が0.01質量%以上であると、遮光性をより向上させることができる。染料(C3)の含有比率はより好ましくは0.05質量%以上である。一方、染料(C3)の含有比率が50質量%以下であると、現像残渣をより低減して基材の透明性を確保することができる。染料(C3)の含有比率はりより好ましくは40質量%以下である。 In the positive photosensitive resin composition of the present invention, the content ratio of the dye (C3) is preferably 0.01 to 50% by mass with respect to 100% by mass of the solid content. When the content ratio of the dye (C3) is 0.01% by mass or more, the light-shielding property can be further improved. The content ratio of the dye (C3) is more preferably 0.05% by mass or more. On the other hand, when the content ratio of the dye (C3) is 50% by mass or less, the development residue can be further reduced and the transparency of the base material can be ensured. The content ratio of the dye (C3) is more preferably 40% by mass or less than the beam.
 [分散剤]
 本発明のポジ型感光性樹脂組成物は、さらに、分散剤を含有することが好ましい。
[Dispersant]
The positive photosensitive resin composition of the present invention preferably further contains a dispersant.
 分散剤とは、前述した着色剤(C)などの表面と相互作用する表面親和性基及び着色剤(C)の分散安定性を向上させる分散安定化構造を有する化合物をいう。分散剤の分散安定化構造としては、ポリマー鎖及び/又は静電荷を有する置換基などが挙げられる。分散剤を含有させることにより、着色剤(C)の分散安定性を向上させることができ、現像後の解像度をより向上させることができる。 The dispersant refers to a compound having a surface affinity group that interacts with the surface such as the above-mentioned colorant (C) and a dispersion stabilizing structure that improves the dispersion stability of the colorant (C). Examples of the dispersion-stabilizing structure of the dispersant include a polymer chain and / or a substituent having an electrostatic charge. By containing the dispersant, the dispersion stability of the colorant (C) can be improved, and the resolution after development can be further improved.
 表面親和性基を有する分散剤としては、例えば、アミン価及び/または酸価を有する分散剤、アミン価及び酸価のいずれも有しない分散剤が挙げられる。着色剤(C)の分散安定性向上の観点から、アミン価のみを有する分散剤、アミン価及び酸価を有する分散剤が好ましい。 Examples of the dispersant having a surface affinity group include a dispersant having an amine value and / or an acid value, and a dispersant having neither an amine value nor an acid value. From the viewpoint of improving the dispersion stability of the colorant (C), a dispersant having only an amine value and a dispersant having an amine value and an acid value are preferable.
 表面親和性基を有する分散剤としては、表面親和性基であるアミノ基及び/又は酸性基が、酸及び/又は塩基と塩形成した構造を有することが好ましい。 As the dispersant having a surface affinity group, it is preferable that the amino group and / or the acidic group, which are the surface affinity groups, have a structure in which a salt is formed with an acid and / or a base.
 アミン価のみを有する分散剤としては、例えば、“DISPERBYK”(登録商標)-161、同-167、同-2000、同-2008、同-2009、同-2022、同-2050、同-2055、同-2150、同-2155、同-2163、同-2164、若しくは同-2061、“BYK”(登録商標)-9075、同-9077、同-LP-N6919、同-LP-N21116若しくは同-LP-N21324(以上、何れもビックケミー・ジャパン(株)製)が挙げられる。 Examples of the dispersant having only an amine value include "DISPERBYK" (registered trademark) -161, -167, -2000, -2008, -2009, -2022, -2050, and -2055. -2150, -2155, -2163, -2164, or -2061, "BYK" (registered trademark) -9075, -9077, -LP-N6919, -LP-N21116 or -LP -N21324 (all of which are manufactured by Big Chemie Japan Co., Ltd.) can be mentioned.
 アミン価及び酸価を有する分散剤としては、例えば、 “DISPERBYK”(登録商標)-2001、同-2013、同-2020、同-2025、同-187若しくは同-191、“BYK”(登録商標)-9076(ビックケミー・ジャパン(株)製が挙げられる。 Dispersants having an amine value and an acid value include, for example, "DISPERBYK" (registered trademark) -2001, -2013, -2020, -2025, -187 or -191, "BYK" (registered trademark). ) -9076 (Made by Big Chemie Japan Co., Ltd.).
 酸価のみを有する分散剤としては、例えば、“DISPERBYK”(登録商標)-102、同-110、同-111、同-118、同-170、同-171、同-174、同-2060若しくは同-2096が挙げられる。 Dispersants having only an acid value include, for example, "DISPERBYK" (registered trademark) -102, -110, -111, -118, -170, -171, -174, -2060 or The same -2096 can be mentioned.
 アミン価及び酸価のいずれも有しない分散剤としては、例えば、“DISPERBYK”(登録商標)-103、同-2152、同-2200若しくは同-192(以上、何れもビックケミー・ジャパン(株)製)が挙げられる。 Examples of the dispersant having neither an amine value nor an acid value include "DISPERBYK" (registered trademark) -103, -2152, -2200 or -192 (all of which are manufactured by Big Chemie Japan Co., Ltd.). ).
 分散剤のアミン価としては、1mgKOH/g以上が好ましい。アミン価が上記範囲内であると、着色剤(C)の分散安定性をより向上させることができる。一方、アミン価としては、150mgKOH/g以下が好ましい。アミン価が上記範囲内であると、樹脂組成物の保管安定性を向上させることができる。 The amine value of the dispersant is preferably 1 mgKOH / g or more. When the amine value is within the above range, the dispersion stability of the colorant (C) can be further improved. On the other hand, the amine value is preferably 150 mgKOH / g or less. When the amine value is within the above range, the storage stability of the resin composition can be improved.
 ここでいうアミン価とは、分散剤1g当たりと反応する酸と当量の水酸化カリウムの重量をいい、単位はmgKOH/gである。分散剤1gを酸で中和させた後、水酸化カリウム水溶液で滴定することで求めることができる。アミン価の値から、アミノ基1mol当たりの樹脂重量であるアミン当量(単位はg/mol)を算出することができ、分散剤中のアミノ基の数を求めることができる。 The amine value here refers to the weight of the acid equivalent to potassium hydroxide that reacts with 1 g of the dispersant, and the unit is mgKOH / g. It can be obtained by neutralizing 1 g of the dispersant with an acid and then titrating with an aqueous solution of potassium hydroxide. From the value of the amine value, the amine equivalent (unit: g / mol), which is the weight of the resin per 1 mol of amino groups, can be calculated, and the number of amino groups in the dispersant can be determined.
 分散剤の酸価としては、1mgKOH/g以上が好ましい。酸価が上記範囲内であると、着色剤(C)の分散安定性をより向上させることができる。一方、酸価としては、200mgKOH/g以下が好ましい。酸価が上記範囲内であると、樹脂組成物の保管安定性を向上させることができる。 The acid value of the dispersant is preferably 1 mgKOH / g or more. When the acid value is within the above range, the dispersion stability of the colorant (C) can be further improved. On the other hand, the acid value is preferably 200 mgKOH / g or less. When the acid value is within the above range, the storage stability of the resin composition can be improved.
 ここでいう酸価とは、分散剤1g当たりと反応する水酸化カリウムの重量をいい、単位はmgKOH/gである。分散剤1gを水酸化カリウム水溶液で滴定することで求めることができる。酸価の値から、酸性基1mol当たりの樹脂重量である酸当量(単位はg/mol)を算出することができ、分散剤中の酸性基の数を求めることができる。 The acid value here means the weight of potassium hydroxide that reacts with 1 g of the dispersant, and the unit is mgKOH / g. It can be obtained by titrating 1 g of the dispersant with an aqueous solution of potassium hydroxide. From the value of the acid value, the acid equivalent (unit: g / mol), which is the weight of the resin per 1 mol of the acidic group, can be calculated, and the number of acidic groups in the dispersant can be obtained.
 分散安定化構造がポリマー鎖を有する置換基である分散剤としては、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤、ポリオール系分散剤、ポリエチレンイミン系分散剤又はポリアリルアミン系分散剤が挙げられる。アルカリ現像液でのパターン加工性の観点から、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤又はポリオール系分散剤が好ましい。 Dispersants whose dispersion-stabilized structure is a substituent having a polymer chain include acrylic resin-based dispersants, polyoxyalkylene ether-based dispersants, polyester-based dispersants, polyurethane-based dispersants, polyol-based dispersants, and polyethyleneimine-based dispersants. Dispersants or polyallylamine-based dispersants can be mentioned. From the viewpoint of pattern processability with an alkaline developer, an acrylic resin-based dispersant, a polyoxyalkylene ether-based dispersant, a polyester-based dispersant, a polyurethane-based dispersant, or a polyol-based dispersant is preferable.
 本発明のポジ型感光性樹脂組成物に占める分散剤の含有比率は、着色剤(C)を100質量%とした場合において、1~60質量%が好ましい。分散剤の含有比率が1質量%以上であることにより、着色剤(C)の分散安定性をより向上させることができ、現像後の解像度をより向上させることができる。分散剤の含有比率は5質量%以上がより好ましい。一方、分散剤の含有比率を60質量%以下であることにより、硬化膜の耐熱性を向上させることができる。分散剤の含有比率は50質量%以下がより好ましい。 The content ratio of the dispersant in the positive photosensitive resin composition of the present invention is preferably 1 to 60% by mass when the colorant (C) is 100% by mass. When the content ratio of the dispersant is 1% by mass or more, the dispersion stability of the colorant (C) can be further improved, and the resolution after development can be further improved. The content ratio of the dispersant is more preferably 5% by mass or more. On the other hand, when the content ratio of the dispersant is 60% by mass or less, the heat resistance of the cured film can be improved. The content ratio of the dispersant is more preferably 50% by mass or less.
 [熱架橋剤]
 本発明の樹脂組成物は、さらに、熱架橋剤を含有してもよい。熱架橋剤とは、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基などの熱反応性の官能基を分子内に少なくとも2つ有する化合物を指す。熱架橋剤を含有することにより側鎖に重合性基を有するアルカリ可溶性樹脂(A)またはその他添加成分を架橋し、熱硬化後の膜の耐熱性及び耐溶剤性を向上させることができる。
[Thermal crosslinker]
The resin composition of the present invention may further contain a thermal cross-linking agent. The thermal cross-linking agent refers to a compound having at least two thermally reactive functional groups in the molecule, such as an alkoxymethyl group, a methylol group, an epoxy group, and an oxetanyl group. By containing the thermosetting agent, the alkali-soluble resin (A) having a polymerizable group in the side chain or other additive components can be crosslinked, and the heat resistance and solvent resistance of the film after thermosetting can be improved.
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物の好ましい例としては、HMOM-TPPHBA、HMOMTPHAP(以上、商品名、本州化学工業(株)製)、“NIKALAC”(登録商標)MX-290、“NIKALAC”MX-280、“NIKALAC”MX-270、“NIKALAC”MX-279、“NIKALAC”MW-100LM、“NIKALAC”MX-750LM(以上、商品名、(株)三和ケミカル製)、DCL-2001(商品名、ダイトーケミックス(株)製)が挙げられる。 Preferred examples of the compound having at least two alkoxymethyl groups or methylol groups include HMOM-TPPHBA, HMOMTPHAP (trade name, manufactured by Honshu Kagaku Kogyo Co., Ltd.), "NIKALAC" (registered trademark) MX-290, " NIKALAC "MX-280," NIKALAC "MX-270," NIKALAC "MX-279," NIKALAC "MW-100LM," NIKALAC "MX-750LM (trade name, manufactured by Sanwa Chemical Co., Ltd.), DCL- 2001 (trade name, manufactured by Daito Chemix Co., Ltd.) can be mentioned.
 エポキシ基を少なくとも2つ有する化合物の好ましい例としては、“エポライト”(登録商標)40E、“エポライト”100E、“エポライト”200E、“エポライト”400E、“エポライト”70P、“エポライト”200P、“エポライト”400P、“エポライト”1500NP、“エポライト”80MF 、“エポライト”4000、“エポライト”3002(以上、共栄社化学(株)製)、VG3101(三井化学(株)製)、“テピック”(登録商標)S、“テピック”G、“テピック”P、“テピック”L、“テピック”PAS、“テピック”VL、“テピック”UC、“テピック”FL、(以上、日産化学工業(株)製)、などが挙げられる。 Preferred examples of compounds having at least two epoxy groups are "Epolite" (registered trademark) 40E, "Epolite" 100E, "Epolite" 200E, "Epolite" 400E, "Epolite" 70P, "Epolite" 200P, "Epolite". "400P," Epolite "1500NP," Epolite "80MF," Epolite "4000," Epolite "3002 (all manufactured by Kyoeisha Chemical Co., Ltd.), VG3101 (manufactured by Mitsui Chemicals Co., Ltd.)," Tepic "(registered trademark) S, "Tepic" G, "Tepic" P, "Tepic" L, "Tepic" PAS, "Tepic" VL, "Tepic" UC, "Tepic" FL, (all manufactured by Nissan Chemical Industry Co., Ltd.), etc. Can be mentioned.
 オキセタニル基を少なくとも2つ有する化合物の好ましい例としては、例えば、エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上、宇部興産(株)製)、オキセタン化フェノールノボラックなどが挙げられる。 Preferred examples of the compound having at least two oxetanyl groups include, for example, Ethanacole EHO, Ethanacole OXBP, Ethanacole OXTP, Ethanacole OXMA (all manufactured by Ube Industries, Ltd.), oxetaneated phenol novolac, and the like.
 熱架橋剤は2種類以上を組み合わせて含有してもよい。 The thermal cross-linking agent may be contained in combination of two or more types.
 これらの化合物の中でも、熱による硬化後に得られた硬化膜の耐熱性の点から、“NIKALAC”MX-290、“NIKALAC”MX-280、“NIKALAC”MX-270、“NIKALAC”MX-279、“NIKALAC”MW-100LM、“NIKALAC”MX-750LM、DCL-2001のいずれかから選ばれる化合物であることが好ましい。 Among these compounds, "NIKALAC" MX-290, "NIKALAC" MX-280, "NIKALAC" MX-270, "NIKALAC" MX-279, from the viewpoint of heat resistance of the cured film obtained after curing by heat. It is preferably a compound selected from any of "NIKALAC" MW-100LM, "NIKALAC" MX-750LM, and DCL-2001.
 熱架橋剤の含有量は、固形分100質量%に対し、0.1~50質量%が好ましい。熱架橋剤の含有量はが0.1質量%以上であると、硬化膜の耐溶剤性を高めることができる。熱架橋剤の含有は1質量%以上がより好ましい。一方、熱架橋剤の含有量が50質量%以下であると、硬化膜からのアウトガス量を低減することができる。熱架橋剤の含有量は30質量%以下がより好ましい。 The content of the thermal cross-linking agent is preferably 0.1 to 50% by mass with respect to 100% by mass of the solid content. When the content of the thermal cross-linking agent is 0.1% by mass or more, the solvent resistance of the cured film can be enhanced. The content of the thermal cross-linking agent is more preferably 1% by mass or more. On the other hand, when the content of the thermal cross-linking agent is 50% by mass or less, the amount of outgas from the cured film can be reduced. The content of the thermal cross-linking agent is more preferably 30% by mass or less.
 [シランカップリング剤]
 本発明のポジ型感光性樹脂組成物としては、さらに、シランカップリング剤を含有することが好ましい。
[Silane coupling agent]
The positive photosensitive resin composition of the present invention preferably further contains a silane coupling agent.
 シランカップリング剤とは、加水分解性のシリル基又はシラノール基を有する化合物をいう。シランカップリング剤を含有することにより、樹脂組成物の硬化膜と下地の導電層又は後述する絶縁層における相互作用が増大し、下地の導電層又は絶縁層との密着性を向上させることができる。 The silane coupling agent refers to a compound having a hydrolyzable silyl group or silanol group. By containing the silane coupling agent, the interaction between the cured film of the resin composition and the underlying conductive layer or the insulating layer described later is increased, and the adhesion to the underlying conductive layer or insulating layer can be improved. ..
 シランカップリング剤としては、三官能オルガノシラン又は四官能オルガノシランが好ましい。 As the silane coupling agent, trifunctional organosilane or tetrafunctional organosilane is preferable.
 三官能オルガノシランとしては、例えば、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸、3-トリメトキシシリルプロピルコハク酸無水物、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-(4-アミノフェニル)プロピルトリメトキシシラン、1-[4-(3-トリメトキシシリルプロピル)フェニル]尿素、1-(3-トリメトキシシリルプロピル)尿素、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌル酸、N-t-ブチル-2-(3-トリメトキシシリルプロピル)コハク酸イミド又はN-t-ブチル-2-(3-トリエトキシシリルプロピル)コハク酸イミドが挙げられる。 Examples of the trifunctional organosilane include vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 2- (3,4-epoxy). Cyclohexyl) ethyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic acid, 3-trimethoxysilylpropylsuccinic anhydride, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxy Silane, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3- (4-aminophenyl) propyltrimethoxysilane, 1 -[4- (3-Trimethoxysilylpropyl) phenyl] urea, 1- (3-trimethoxysilylpropyl) urea, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, 3- Mercaptopropyltrimethoxysilane, 3-isocyanuspropyltriethoxysilane, 1,3,5-tris (3-trimethoxysilylpropyl) isocyanuric acid, Nt-butyl-2- (3-trimethoxysilylpropyl) succinic acid Examples thereof include imide or imide of Nt-butyl-2- (3-triethoxysilylpropyl) succinate.
 四官能オルガノシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン若しくはテトラアセトキシシランなどが挙げられる。 Examples of the tetrafunctional organosilane include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, and tetraacetoxysilane.
 シランカップリング剤としては、下地の導電層又は絶縁層との密着性向上の観点から、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-(4-アミノフェニル)プロピルトリメトキシシラン、1-[4-(3-トリメトキシシリルプロピル)フェニル]尿素、1-(3-トリメトキシシリルプロピル)尿素、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、3-イソシアネートプロピルトリエトキシシラン、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌル酸、N-t-ブチル-2-(3-トリメトキシシリルプロピル)コハク酸イミド若しくはN-t-ブチル-2-(3-トリエトキシシリルプロピル)コハク酸イミドなどの三官能オルガノシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン若しくはテトラアセトキシシランなどの四官能オルガノシランが好ましい。 As the silane coupling agent, vinyl trimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-glycid from the viewpoint of improving the adhesion to the underlying conductive layer or insulating layer. Xipropyltrimethoxysilane, 2- (3,4-epylcyclohexyl) ethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3- (4-aminophenyl) propyl Trimethoxysilane, 1- [4- (3-trimethoxysilylpropyl) phenyl] urea, 1- (3-trimethoxysilylpropyl) urea, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) Propylamine, 3-Ixionpropyltriethoxysilane, 1,3,5-tris (3-trimethoxysilylpropyl) isocyanuric acid, Nt-butyl-2- (3-trimethoxysilylpropyl) succinateimide or N Trifunctional organosilanes such as -t-butyl-2- (3-triethoxysilylpropyl) succinateimide, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxy A tetrafunctional organosilane such as silane or tetraacetoxysilane is preferred.
 シランカップリング剤の含有量は、固形分100質量%に対し、0.1~15質量%が好ましい。シランカップリング剤の含有量が0.1質量%以上であると、下地の導電層又は有機膜との密着性をより向上させることができる。シランカップリング剤の含有量は0.5質量%以上がより好ましい。一方、シランカップリング剤の含有量が15質量%以下であると、現像後の解像度をより向上させることができる。シランカップリング剤の含有量は10質量%以下がより好ましい。 The content of the silane coupling agent is preferably 0.1 to 15% by mass with respect to 100% by mass of the solid content. When the content of the silane coupling agent is 0.1% by mass or more, the adhesion to the underlying conductive layer or organic film can be further improved. The content of the silane coupling agent is more preferably 0.5% by mass or more. On the other hand, when the content of the silane coupling agent is 15% by mass or less, the resolution after development can be further improved. The content of the silane coupling agent is more preferably 10% by mass or less.
 [界面活性剤]
 本発明のポジ型感光性樹脂組成物は、塗布時のフロー性向上のために、各種のフッ素系界面活性剤、シリコーン系界面活性剤等の各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、“メガファック”(登録商標)「F477(商品名)」(以上、大日本インキ化学工業(株)製)等のフッ素系界面活性剤、「BYK-333(商品名)」、(ビックケミー・ジャパン(株)製)等のシリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤等を用いることができる。これらを2種以上用いてもよい。
[Surfactant]
The positive photosensitive resin composition of the present invention may contain various surfactants such as various fluorine-based surfactants and silicone-based surfactants in order to improve the flowability at the time of coating. The type of surfactant is not particularly limited, and for example, fluorine-based surfactants such as "Megafuck" (registered trademark) "F477 (trade name)" (all manufactured by Dainippon Ink and Chemicals Co., Ltd.), " BYK-333 (trade name) ”, (manufactured by Big Chemie Japan Co., Ltd.) and other silicone-based surfactants, polyalkylene oxide-based surfactants, poly (meth) acrylate-based surfactants and the like can be used. Two or more of these may be used.
 [紫外線吸収剤]
 本発明のポジ型感光性樹脂組成物は、紫外線吸収剤を含有してもよい。紫外線吸収剤を含有することで、得られる硬化膜の耐光性が向上し、現像後の解像度がより向上する。紫外線吸収剤としては特に限定はなく公知のものが使用できるが、透明性、非着色性の面から、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物が好ましい。
[UV absorber]
The positive photosensitive resin composition of the present invention may contain an ultraviolet absorber. By containing the ultraviolet absorber, the light resistance of the obtained cured film is improved, and the resolution after development is further improved. The ultraviolet absorber is not particularly limited and known ones can be used, but benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are preferable from the viewpoint of transparency and non-coloring property.
 [重合禁止剤]
 本発明の感光性樹脂組成物は、重合禁止剤を含有してもよい。重合禁止剤を適量含有することで、現像後の解像度がより向上する。重合禁止剤としては特に限定はなく公知のものが使用でき、たとえば、ジ-t-ブチルヒドロキシトルエン、ハイドロキノン、p-メトキシフェノール、1,4-ベンゾキノン、t-ブチルカテコールが挙げられる。また、市販の重合禁止剤としては、「IRGANOX 1010」、「IRGANOX 245」、「IRGANOX 3114」、「IRGANOX 565」(以上、BASF製)等が挙げられる。
[Polymerization inhibitor]
The photosensitive resin composition of the present invention may contain a polymerization inhibitor. By containing an appropriate amount of the polymerization inhibitor, the resolution after development is further improved. The polymerization inhibitor is not particularly limited and known ones can be used. Examples thereof include di-t-butylhydroxytoluene, hydroquinone, p-methoxyphenol, 1,4-benzoquinone and t-butylcatechol. Examples of commercially available polymerization inhibitors include "IRGANOX 1010", "IRGANOX 245", "IRGANOX 3114", and "IRGANOX 565" (all manufactured by BASF).
 [溶剤]
 本発明の感光性樹脂組成物は、溶剤を含有してもよい。本発明の感光性樹脂組成物に含有される溶剤は、好ましくは大気圧下の沸点が110~250℃であり、更に好ましくは200℃以下である。なお、これらの溶剤を複数種類用いてもよい。沸点が200℃より高いと膜中の残存溶剤量が多くなりキュア時の膜収縮が大きくなり、良好な平坦性が得られなくなる。一方、沸点が110℃より低いと、塗膜時の乾燥が速すぎて膜表面が荒れる等塗膜性が悪くなる。そのため、大気圧下の沸点が200℃以下の溶剤が感光性樹脂組成物中における、溶剤全体の50質量%以上であることが好ましい。
[solvent]
The photosensitive resin composition of the present invention may contain a solvent. The solvent contained in the photosensitive resin composition of the present invention preferably has a boiling point of 110 to 250 ° C. under atmospheric pressure, and more preferably 200 ° C. or lower. In addition, you may use a plurality of kinds of these solvents. If the boiling point is higher than 200 ° C., the amount of residual solvent in the film increases, the film shrinkage during curing becomes large, and good flatness cannot be obtained. On the other hand, if the boiling point is lower than 110 ° C., the coating film is dried too quickly and the film surface is roughened, resulting in poor coating film properties. Therefore, it is preferable that the solvent having a boiling point of 200 ° C. or lower under atmospheric pressure is 50% by mass or more of the total amount of the solvent in the photosensitive resin composition.
 溶剤の具体例としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセテート、1-メトキシプロピル-2-アセテート、ジプロピレングリコールメチルエーテル、ジアセトンアルコール、が挙げられる。 Specific examples of the solvent include, for example, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, 1-methoxypropyl-2-acetate, and dipropylene glycol. Examples thereof include methyl ether and diacetone alcohol.
 溶剤の含有量に特に制限はなく、塗布方法等に応じて任意の量用いることができる。例えば、スピンコーティングにより膜形成を行う場合には、感光性樹脂組成物全体の50質量%以上、95質量%以下とすることが一般的である。 The content of the solvent is not particularly limited, and any amount can be used depending on the coating method and the like. For example, when the film is formed by spin coating, it is generally 50% by mass or more and 95% by mass or less of the entire photosensitive resin composition.
 本発明のポジ型感光性樹脂組成物には、必要に応じて、溶解抑止剤、安定剤、消泡剤等の添加剤を含有することもできる。 The positive photosensitive resin composition of the present invention may contain additives such as a dissolution inhibitor, a stabilizer, and an antifoaming agent, if necessary.
 本発明のポジ型感光性樹脂組成物の固形分濃度に特に制限はなく、塗布方法等に応じて任意の量の溶媒や溶質を用いることができる。例えば、後述のようにスピンコーティングにより膜形成を行う場合には、固形分濃度を5質量%以上、50質量%以下とすることが一般的である。ここで、固形分とは、感光性樹脂組成物から溶剤を除いたものである。 The solid content concentration of the positive photosensitive resin composition of the present invention is not particularly limited, and an arbitrary amount of solvent or solute can be used depending on the coating method and the like. For example, when the film is formed by spin coating as described later, the solid content concentration is generally 5% by mass or more and 50% by mass or less. Here, the solid content is a photosensitive resin composition obtained by removing the solvent.
 本発明のポジ型感光性樹脂組成物の代表的な製造方法について説明する。例えば、側鎖に重合性基を有するアルカリ可溶性樹脂(A)、感光剤(B)、着色剤(C)及び必要によりその他の添加剤を任意の溶剤に加え、撹拌して溶解させた後、得られた溶液を濾過し、ポジ型感光性樹脂組成物が得られる。着色剤(C)を均一に分散したい場合は、ボールミルや、サンドグラインダー、3本ロールミル、マイルド分散機、メディアレス分散機等の分散機を用い、分散剤と予め有機溶剤中に着色剤(C)を分散させた分散液を調製し、製造しても良い。 A typical method for producing the positive photosensitive resin composition of the present invention will be described. For example, an alkali-soluble resin (A) having a polymerizable group in the side chain, a photosensitizer (B), a colorant (C) and, if necessary, other additives are added to an arbitrary solvent, stirred and dissolved, and then dissolved. The obtained solution is filtered to obtain a positive photosensitive resin composition. If you want to disperse the colorant (C) uniformly, use a disperser such as a ball mill, sand grinder, 3-roll mill, mild disperser, medialess disperser, etc., and use the dispersant and the colorant (C) in advance in an organic solvent. ) May be prepared and manufactured.
 [硬化膜]
 本発明の硬化膜は、上記ポジ型感光性樹脂組成物を硬化させてなる。上記ポジ型感光性樹脂組成物は後述する方法により硬化させることができる。
[Cured film]
The cured film of the present invention is obtained by curing the positive photosensitive resin composition. The positive photosensitive resin composition can be cured by a method described later.
 本発明の硬化膜の膜厚は、特に制限はないが、0.1~10μmが好ましい。硬化膜の膜厚が0.1μm以上であることにより、遮光性をより向上させることができる。硬化膜の膜厚はより好ましくは0.3μm以上である。一方、硬化膜の膜厚を10μm以下であることにより、露光時に、深部まで光が届き、より微細なパターンを形成することができる。硬化膜の膜厚はより好ましくは7μm以下、さらに好ましくは5μm以下である。 The film thickness of the cured film of the present invention is not particularly limited, but is preferably 0.1 to 10 μm. When the film thickness of the cured film is 0.1 μm or more, the light-shielding property can be further improved. The film thickness of the cured film is more preferably 0.3 μm or more. On the other hand, when the film thickness of the cured film is 10 μm or less, light reaches a deep part at the time of exposure, and a finer pattern can be formed. The film thickness of the cured film is more preferably 7 μm or less, still more preferably 5 μm or less.
 本発明の硬化膜の波長550nmにおける反射率は0.01~20%であることが好ましい。反射率を0.01%以上とすることにより、導電層を視認しにくくすることができる。一方、反射率を20%以下とすることにより、露光時に、深部まで光が届き、より微細なパターンを形成することができる。反射率はより好ましくは15%以下、さらに好ましくは10%以下である。なお、反射率は膜厚1.0μmにおける反射率を指す。反射率は、露光量、現像時間、熱硬化温度の選択によって調整することができる。なお、本発明の硬化膜の反射率は、透明基板上の0.1mm角以上の硬化膜について、反射率計により測定することができる。 The reflectance of the cured film of the present invention at a wavelength of 550 nm is preferably 0.01 to 20%. By setting the reflectance to 0.01% or more, the conductive layer can be made difficult to see. On the other hand, when the reflectance is 20% or less, the light reaches a deep part at the time of exposure, and a finer pattern can be formed. The reflectance is more preferably 15% or less, still more preferably 10% or less. The reflectance refers to the reflectance at a film thickness of 1.0 μm. The reflectance can be adjusted by selecting the exposure amount, the developing time, and the thermosetting temperature. The reflectance of the cured film of the present invention can be measured with a reflectance meter for a cured film having a size of 0.1 mm square or more on a transparent substrate.
 本発明の硬化膜は、タッチパネル用不透明配線電極の遮光層や、カラーフィルターのブラックマトリックス又は液晶ディスプレイのブラックカラムスペーサーなどの遮光膜、有機EL表示装置の画素分割層又はTFT平坦化層などとして、好適に用いることができる。これらの中でも微細パターン形成可能かつ、低反射率であることからタッチパネル用不透明電極の遮光層や、有機EL表示装置の画素分割層又はTFT平坦化層として特に好適に用いることができる。 The cured film of the present invention can be used as a light-shielding layer for an opaque wiring electrode for a touch panel, a light-shielding film such as a black matrix for a color filter or a black column spacer for a liquid crystal display, a pixel division layer for an organic EL display device, or a TFT flattening layer. It can be preferably used. Among these, since it is possible to form a fine pattern and has a low reflectance, it can be particularly preferably used as a light-shielding layer of an opaque electrode for a touch panel, a pixel dividing layer of an organic EL display device, or a TFT flattening layer.
 本発明のポジ型感光性樹脂組成物を用いた硬化膜の製造方法について、例を挙げて説明する。 The method for producing a cured film using the positive photosensitive resin composition of the present invention will be described with an example.
 本発明のポジ型感光性樹脂組成物を、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティング等の公知の方法によって下地基板上に塗布する。 The positive photosensitive resin composition of the present invention is applied onto a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating and the like.
 上記塗布膜をホットプレート、オーブン等の加熱装置でプリベークする。プリベークは、50~150℃の範囲で30秒~30分間行い、プリベーク後の膜厚は、0.1~15μmとすることが好ましい。 Prebak the above coating film with a heating device such as a hot plate or oven. The prebaking is preferably carried out in the range of 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after prebaking is preferably 0.1 to 15 μm.
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)等の露光機を用いて塗布膜を露光する。露光強度は10~4000J/m2程度(波長365nm露光量換算)で、この光を所望のマスクを介してあるいは介さずに照射する。露光光源に制限はなく、g線、h線、i線等の紫外線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザー等を用いることができる。 After prebaking, the coating film is exposed using an exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA). The exposure intensity is about 10 to 4000 J / m2 (wavelength 365 nm exposure amount conversion), and this light is irradiated with or without a desired mask. The exposure light source is not limited, and ultraviolet rays such as g-line, h-line, and i-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次に、現像により塗布膜の露光部を溶解させ、ポジ型のパターンを得ることができる。現像方法としては、シャワー、ディッピング、パドル等の方法で現像液に塗布膜を5秒~10分間浸漬することが好ましい。現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム若しくは炭酸カリウム、等の無機アルカリ類、テトラメチルアンモニウムヒドロキシド(TMAH)等のテトラアルキルアンモニウムヒドロキシド類、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、ジメチルアミノエタノール若しくはジエチルアミノエタノール等のアルコールアミン類等の有機アルカリ類が挙げられる。これらのアルカリ性現像液にエタノール、γーブチロラクトン、ジメチルホルムアミド又はN-メチル-2-ピロリドン等の水溶性有機溶剤を適宜加えても構わない。 Next, the exposed part of the coating film can be melted by development to obtain a positive pattern. As a developing method, it is preferable to immerse the coating film in the developing solution for 5 seconds to 10 minutes by a method such as showering, dipping, or paddle. The developing solution includes inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH), triethanolamine, diethanolamine, and monoethanol. Examples thereof include organic alkalis such as alcohol amines such as amines, dimethylaminoethanol and diethylaminoethanol. A water-soluble organic solvent such as ethanol, γ-butyrolactone, dimethylformamide or N-methyl-2-pyrrolidone may be appropriately added to these alkaline developers.
 また、より良好なパターンを得るため、これらのアルカリ性現像液にさらに非イオン系界面活性剤等の界面活性剤を0.01~1質量%添加することも好ましい。 Further, in order to obtain a better pattern, it is also preferable to add 0.01 to 1% by mass of a surfactant such as a nonionic surfactant to these alkaline developers.
 現像後、塗布膜を水でリンスすることが好ましく、つづいて50~130℃の範囲で塗布膜を乾燥ベークすることもできる。 After development, it is preferable to rinse the coating film with water, and then the coating film can be dried and baked in the range of 50 to 130 ° C.
 その後、この塗布膜をホットプレート、オーブン等の加熱装置で100~300℃の範囲で5分~120分程度加熱する。本発明の硬化膜の製造方法は、塗布膜を150~250℃で加熱する工程を含むことが好ましい。 After that, the coating film is heated in a heating device such as a hot plate or an oven at 100 to 300 ° C. for about 5 to 120 minutes. The method for producing a cured film of the present invention preferably includes a step of heating the coating film at 150 to 250 ° C.
 [積層体]
 本発明の積層体は導電層および本発明の硬化膜を有する。前述の通り、本発明の硬化膜は、低反射率かつ残渣なく基材の透明性を確保しつつ微細なパターンを形成可能であることから、例えばタッチパネルの導電層である不透明配線電極の遮光層として好適に用いることができる。
[Laminate]
The laminate of the present invention has a conductive layer and a cured film of the present invention. As described above, since the cured film of the present invention can form a fine pattern while ensuring low reflectance and transparency of the base material without residue, for example, a light-shielding layer of an opaque wiring electrode which is a conductive layer of a touch panel. Can be suitably used as.
 本発明の積層体において、導電層の膜厚に対する前記硬化膜の膜厚の比が1/2~5であることが好ましい。膜厚の比を1/2以上とすることで遮光性をより向上させることができ、5以下とすることで配線厚みを抑制でき、配線デザインの自由度とフレキシブル性を向上できる。 In the laminate of the present invention, the ratio of the film thickness of the cured film to the film thickness of the conductive layer is preferably 1/2 to 5. By setting the film thickness ratio to 1/2 or more, the light-shielding property can be further improved, and by setting it to 5 or less, the wiring thickness can be suppressed, and the degree of freedom and flexibility of wiring design can be improved.
 また、本発明の積層体は導電層と本発明の硬化膜に加え、絶縁層を有することが好ましい。絶縁層を有することにより、導電層間で発生するショートなどの不具合を抑制し、信頼性の高い積層体を形成することができる。また、遮光層を保護することにより、キズなどを抑制し、視認性不良などを防ぐことが可能である。 Further, the laminate of the present invention preferably has an insulating layer in addition to the conductive layer and the cured film of the present invention. By having the insulating layer, defects such as short circuits occurring between the conductive layers can be suppressed, and a highly reliable laminated body can be formed. Further, by protecting the light-shielding layer, it is possible to suppress scratches and prevent poor visibility.
 前述の絶縁層に含まれる絶縁材料に特に制限はないが、アクリルポリマー、エポキシ樹脂、フェノール樹脂、カルド系樹脂、ポリシロキサン、ポリイミド、ポリアミド、ポリベンゾオキサゾールなどが挙げられる。これらを2種以上含有してもよい。 The insulating material contained in the above-mentioned insulating layer is not particularly limited, and examples thereof include acrylic polymers, epoxy resins, phenol resins, cardo resins, polysiloxanes, polyimides, polyamides, and polybenzoxazoles. Two or more of these may be contained.
 前述の導電層に含まれる導電材料はたとえば、銅、銀、金、アルミニウム、クロム、モリブデン、チタン等が挙げられる。上記に加え、透明電極を形成する導電材料、たとえば、ITO、IZO(酸化インジウム亜鉛)、AZO(アルミニウム添加酸化亜鉛)、ZnO等と組み合わせていてもよい。この中でも、比抵抗値が最も低い銀が好ましい。比抵抗値が低いと、高感度なタッチパネルを作製することができる。また、より精細な配線パターンを形成することができるため、銀の平均一次粒子径が10~200nmであることが好ましい。ここで銀の平均一次粒子径とは、走査型電子顕微鏡を用いて無作為に選択した100個の一次粒子の粒子径の平均値により算出することができる。それぞれの一次粒子の粒子径は、一次粒子における長径と短径を測定し、その平均値から算出することができる。 Examples of the conductive material contained in the above-mentioned conductive layer include copper, silver, gold, aluminum, chromium, molybdenum, and titanium. In addition to the above, it may be combined with a conductive material forming a transparent electrode, for example, ITO, IZO (indium zinc oxide), AZO (aluminum-added zinc oxide), ZnO 2, or the like. Among these, silver having the lowest specific resistance value is preferable. When the specific resistance value is low, a highly sensitive touch panel can be manufactured. Further, since a finer wiring pattern can be formed, it is preferable that the average primary particle size of silver is 10 to 200 nm. Here, the average primary particle size of silver can be calculated from the average value of the particle sizes of 100 primary particles randomly selected using a scanning electron microscope. The particle size of each primary particle can be calculated from the average value obtained by measuring the major axis and the minor axis of the primary particle.
 また、導電層中に、アルカリ可溶性基を有する有機成分を5~35質量%含有することが好ましい。アルカリ可溶性基を有する有機成分の含有比率が5質量%以上であると、感光特性を向上させることができ、より微細なパターンを形成することができる。一方、アルカリ可溶性基を有する有機成分の含有比率を、35質量%以下とすることにより、比抵抗値を低減させ、高感度なタッチパネルを形成することができる。アルカリ可溶性基を有する有機成分を含有することにより、配線パターンにフレキシブル性を付与することが可能となり、フレキシブルタッチパネルを作製することができる。アルカリ可溶性基に特に制限はないが、たとえば、カルボキシル基、フェノール性水酸基、スルホン酸基、チオール基が挙げられる。アルカリ可溶性基を有する有機成分としては、ポジ型感光性樹脂組成物にて説明した有機成分を用いることができる。 Further, it is preferable that the conductive layer contains 5 to 35% by mass of an organic component having an alkali-soluble group. When the content ratio of the organic component having an alkali-soluble group is 5% by mass or more, the photosensitive characteristics can be improved and a finer pattern can be formed. On the other hand, by setting the content ratio of the organic component having an alkali-soluble group to 35% by mass or less, the specific resistance value can be reduced and a highly sensitive touch panel can be formed. By containing an organic component having an alkali-soluble group, it is possible to impart flexibility to the wiring pattern, and a flexible touch panel can be manufactured. The alkali-soluble group is not particularly limited, and examples thereof include a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, and a thiol group. As the organic component having an alkali-soluble group, the organic component described in the positive photosensitive resin composition can be used.
 図1および図2に、本発明の積層体の構成の一例の概略図を示す。図1は、透明基板1上に不透明配線電極2を有し、不透明配線電極2上に本発明の硬化膜からなる遮光層3を有する積層体の概略図である。図1に示す積層体は、後述する積層体の製造方法において、透明基板の不透明配線電極形成面の反対面側から露光する工程を通して得ることができる。 1 and 2 show a schematic view of an example of the configuration of the laminated body of the present invention. FIG. 1 is a schematic view of a laminated body having an opaque wiring electrode 2 on a transparent substrate 1 and a light-shielding layer 3 made of the cured film of the present invention on the opaque wiring electrode 2. The laminate shown in FIG. 1 can be obtained through a step of exposing from the opposite surface side of the opaque wiring electrode forming surface of the transparent substrate in the method for manufacturing the laminate described later.
 図2は、透明基板1上に不透明配線電極2(第1の不透明配線電極)および絶縁層4を有し、絶縁層4上に不透明配線電極2(第2の不透明配線電極)を有し、さらに、不透明配線電極2(第1の不透明配線電極および第2の不透明配線電極)に対応する部位に本発明の硬化膜からなる遮光層3を有する積層体の概略図である。図2に示す積層体は、後述する積層体の製造方法において、透明基板の片面に第1の不透明配線電極、絶縁層および第2の不透明配線電極を形成し、本発明のポジ型感光性樹脂組成物を塗布し、透明基板の不透明配線電極形成面の反対面側から露光する工程を通して得ることができる。 FIG. 2 has an opaque wiring electrode 2 (first opaque wiring electrode) and an insulating layer 4 on a transparent substrate 1, and an opaque wiring electrode 2 (second opaque wiring electrode) on the insulating layer 4. Further, it is a schematic view of a laminated body having a light-shielding layer 3 made of the cured film of the present invention at a portion corresponding to the opaque wiring electrode 2 (the first opaque wiring electrode and the second opaque wiring electrode). In the laminate shown in FIG. 2, the first opaque wiring electrode, the insulating layer, and the second opaque wiring electrode are formed on one side of the transparent substrate in the method for manufacturing the laminate described later, and the positive photosensitive resin of the present invention is formed. It can be obtained through a step of applying the composition and exposing it from the opposite surface side of the opaque wiring electrode forming surface of the transparent substrate.
 次に、本発明の積層体の製造方法における各工程について詳しく説明する。すなわち、本発明の積層体の製造方法は、透明基板の片面に不透明配線電極を形成する工程と、前記透明基板の不透明配線電極形成面に本発明のポジ型感光性樹脂組成物を塗布する工程と、前記透明基板の不透明配線電極形成面の反対面側から露光し、現像することにより、不透明配線電極に対応する部位に遮光層を形成する工程を有する。図3に、本発明の積層体の製造方法の一例の概略図を示す。 Next, each step in the method for producing the laminate of the present invention will be described in detail. That is, the method for producing a laminate of the present invention includes a step of forming an opaque wiring electrode on one surface of a transparent substrate and a step of applying the positive photosensitive resin composition of the present invention to the opaque wiring electrode forming surface of the transparent substrate. A step of forming a light-shielding layer on a portion corresponding to the opaque wiring electrode by exposing and developing from the side opposite to the opaque wiring electrode forming surface of the transparent substrate. FIG. 3 shows a schematic view of an example of the method for producing a laminated body of the present invention.
 まず、透明基板1の片面に不透明配線電極2を形成する。透明基板の片面に不透明配線電極を形成する工程が、透明基板の片面に第1の不透明配線電極を形成する工程、前記第1の不透明配線電極上に絶縁層を形成する工程、および、前記絶縁層上に第2の不透明配線電極を形成する工程を有してもよい。 First, the opaque wiring electrode 2 is formed on one side of the transparent substrate 1. The step of forming the opaque wiring electrode on one side of the transparent substrate is the step of forming the first opaque wiring electrode on one side of the transparent substrate, the step of forming the insulating layer on the first opaque wiring electrode, and the insulation. It may have a step of forming a second opaque wiring electrode on the layer.
 不透明配線電極の形成方法としては、例えば、感光性導電性組成物を用いてフォトリソグラフィー法によりパターン形成する方法、導電性組成物(導電ペースト)を用いてスクリーン印刷、グラビア印刷、インクジェット等によりパターン形成する方法、金属、金属複合体、金属と金属化合物との複合体、金属合金等の膜を形成し、レジストを用いてフォトリソグラフィー法により形成する方法等が挙げられる。これらの中でも、微細配線が形成可能であることから、感光性導電性組成物を用いてフォトリソグラフィー法により形成する方法が好ましい。なお、絶縁層を介して不透明配線電極を2層以上形成する場合は、各不透明配線電極を同じ方法により形成してもよいし、異なる方法を組み合わせてもよい。得られた不透明配線電極付き積層体の不透明配線電極上に、絶縁層を形成してもよい。 Examples of the method for forming the opaque wiring electrode include a method of forming a pattern by a photolithography method using a photosensitive conductive composition, and a pattern by screen printing, gravure printing, inkjet, etc. using a conductive composition (conductive paste). Examples thereof include a method of forming, a method of forming a film of a metal, a metal composite, a composite of a metal and a metal compound, a metal alloy, and the like, and forming the film by a photolithography method using a resist. Among these, since fine wiring can be formed, a method of forming by a photolithography method using a photosensitive conductive composition is preferable. When two or more opaque wiring electrodes are formed via the insulating layer, each opaque wiring electrode may be formed by the same method, or different methods may be combined. An insulating layer may be formed on the opaque wiring electrode of the obtained laminate with the opaque wiring electrode.
 絶縁層の形成方法としては、例えば、感光性絶縁性組成物を用いてフォトリソグラフィー法によりパターン形成する方法、絶縁性組成物を塗布し、乾燥する方法や、不透明配線電極形成面側に粘着剤を介して透明基板を貼り合わせる方法などが挙げられる。これらの中でも、微細パターンが形成可能であることから、感光性絶縁性組成物を用いてフォトリソグラフィー法により形成する方法が好ましい。粘着剤を介して透明基板を貼り合わせる方法としては、例えば、粘着剤を不透明配線電極付き基材上に形成し、透明基板を貼り合わせてもよいし、粘着剤付き透明基材を貼り合わせてもよい。 Examples of the method for forming the insulating layer include a method of forming a pattern by a photolithography method using a photosensitive insulating composition, a method of applying the insulating composition and drying it, and an adhesive on the opaque wiring electrode forming surface side. A method of sticking a transparent substrate through the above can be mentioned. Among these, since a fine pattern can be formed, a method of forming by a photolithography method using a photosensitive insulating composition is preferable. As a method of adhering the transparent substrate via the adhesive, for example, the adhesive may be formed on the base material with the opaque wiring electrode and the transparent substrate may be attached, or the transparent substrate with the adhesive may be attached. May be good.
 次に、前記透明基板1の不透明配線電極形成面に本発明のポジ型感光性樹脂組成物5を塗布する。 Next, the positive photosensitive resin composition 5 of the present invention is applied to the opaque wiring electrode forming surface of the transparent substrate 1.
 なお、本発明の積層体をタッチパネルセンサーとして用いる場合、必要に応じてフレキソ基板との接続部には、本発明のポジ型感光性樹脂組成物を塗布しなくてもよい。 When the laminate of the present invention is used as a touch panel sensor, it is not necessary to apply the positive photosensitive resin composition of the present invention to the connection portion with the flexographic substrate, if necessary.
 次に、前記不透明配線電極2をマスクとして、本発明のポジ型感光性樹脂組成物5を、透明基板の不透明配線電極形成面の反対面側から露光し、現像することにより、不透明配線電極に対応する部位に遮光層を形成する。不透明配線電極をマスクとして露光することにより、別途の露光マスクを必要とすることなく、不透明配線電極に対応する部位に対応する遮光層を形成することができる。前述の透明基板の片面に不透明配線電極を形成する工程が、透明基板の片面に第1の不透明配線電極を形成する工程、前記第1の不透明配線電極上に絶縁層を形成する工程、および、前記絶縁層上に第2の不透明配線電極を形成する工程を有する場合、第1の不透明配線電極および第2の不透明配線電極に対応する部位に遮光層を形成することが好ましい。 Next, using the opaque wiring electrode 2 as a mask, the positive photosensitive resin composition 5 of the present invention is exposed from the opposite side of the opaque wiring electrode forming surface of the transparent substrate and developed to obtain an opaque wiring electrode. A light-shielding layer is formed on the corresponding portion. By exposing the opaque wiring electrode as a mask, it is possible to form a light-shielding layer corresponding to a portion corresponding to the opaque wiring electrode without requiring a separate exposure mask. The step of forming the opaque wiring electrode on one side of the transparent substrate is the step of forming the first opaque wiring electrode on one side of the transparent substrate, the step of forming the insulating layer on the first opaque wiring electrode, and the step of forming the insulating layer. When the step of forming the second opaque wiring electrode on the insulating layer is provided, it is preferable to form a light-shielding layer at a portion corresponding to the first opaque wiring electrode and the second opaque wiring electrode.
 得られた積層体の遮光層上に絶縁層を形成する工程、絶縁層上に第2の不透明配線電極を形成する工程、ポジ型感光性組成物を、第2の不透明配線電極形成面に塗布し、透明基板の第2の不透明配線電極形成面の反対面側から露光し、現像することにより、少なくとも第2の不透明配線電極に対応する部位に遮光層を形成する工程を有してもよい。 A step of forming an insulating layer on the light-shielding layer of the obtained laminate, a step of forming a second opaque wiring electrode on the insulating layer, and applying a positive photosensitive composition to the second opaque wiring electrode forming surface. Then, there may be a step of forming a light-shielding layer at least in a portion corresponding to the second opaque wiring electrode by exposing and developing from the side opposite to the second opaque wiring electrode forming surface of the transparent substrate. ..
 [導電パターン付き基板]
 本発明の導電パターン付き基板は、基板、基板上に形成された導電パターンおよび本発明の硬化膜を有する導電パターン付き基板であって、少なくとも一部の導電パターン形成領域上に前記硬化膜を有し、導電パターン非形成領域上に前記硬化膜を有しない。このような構成とすることで、基材の透明性を確保しつつ導電パターンの反射を抑制できる。
[Substrate with conductive pattern]
The substrate with a conductive pattern of the present invention is a substrate with a conductive pattern having a substrate, a conductive pattern formed on the substrate, and a cured film of the present invention, and has the cured film on at least a part of the conductive pattern forming region. However, it does not have the cured film on the non-conducting pattern region. With such a configuration, it is possible to suppress the reflection of the conductive pattern while ensuring the transparency of the base material.
 導電パターン付き基板が接続部を含む場合、接続部上に前記硬化膜を有しないことが好ましい。接続部上に硬化膜を有しないことで、安定した電気接続が可能となる。 When the substrate with a conductive pattern includes a connecting portion, it is preferable not to have the cured film on the connecting portion. By not having a cured film on the connecting portion, stable electrical connection is possible.
 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。合成例及び実施例に用いた化合物のうち、略語を使用しているものについて、以下に示す。
AIBN:2,2’-アゾビス(イソブチロニトリル)
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ジアセトンアルコール
TMAH:テトラメチルアンモニウムヒドロキサイド
DPHA:ジペンタエリスリトールヘキサアクリレート
 まず、実施例及び比較例で用いた材料について説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Among the compounds used in the synthesis examples and examples, those using abbreviations are shown below.
AIBN: 2,2'-azobis (isobutyronitrile)
PGMEA: Propylene Glycol Monomethyl Ether Acetate DAA: Diacetone Alcohol TMAH: Tetramethylammonium Hydroxide DPHA: Dipentaerythritol Hexaacrylate First, the materials used in Examples and Comparative Examples will be described.
 [側鎖に重合性基を有するアルカリ可溶性樹脂(A)]
 合成例1:アクリルポリマー(a1-1)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを7.1g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-1)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
[Alkali-soluble resin (A) having a polymerizable group in the side chain]
Synthesis Example 1: Acrylic polymer (a1-1)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 7.1 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol, and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-1). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 合成例2:アクリルポリマー(a1-2)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを14.2g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-2)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
Synthesis Example 2: Acrylic polymer (a1-2)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 14.2 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-2). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 合成例3:アクリルポリマー(a1-3)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを21.3g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-3)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
Synthesis Example 3: Acrylic polymer (a1-3)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 21.3 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-3). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 合成例4:アクリルポリマー(a1-4)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを49.8g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-4)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
Synthesis Example 4: Acrylic polymer (a1-4)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 49.8 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-4). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 合成例5:アクリルポリマー(a1-5)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを56.9g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-5)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
Synthesis Example 5: Acrylic polymer (a1-5)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 56.9 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-5). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 合成例6:アクリルポリマー(a1-6)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を51.7g、ベンジルメタクリレートを52.9g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを71.1g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-6)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
Synthesis Example 6: Acrylic polymer (a1-6)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 51.7 g of methacrylic acid, 52.9 g of benzyl methacrylate, and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, and the mixture was stirred at room temperature for a while, and the flask was stirred. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 71.1 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-6). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 合成例7:アクリルポリマー(a1-7)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを2.8g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-7)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
Synthesis Example 7: Acrylic polymer (a1-7)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 2.8 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-7). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 合成例8:アクリルポリマー(a1-8)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を60.3g、ベンジルメタクリレートを35.2g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを85.3g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-8)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
Synthesis Example 8: Acrylic polymer (a1-8)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 60.3 g of methacrylic acid, 35.2 g of benzyl methacrylate, and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 85.3 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-8). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 合成例9:アクリルポリマー(a1-9)
 500mlのフラスコにAIBNを0.5g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で2時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを21.3g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-9)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは3,000であった。
Synthesis Example 9: Acrylic polymer (a1-9)
0.5 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 2 hours. Next, 21.3 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-9). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 3,000.
 合成例10:アクリルポリマー(a1-10)
 500mlのフラスコにAIBNを0.5g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で4時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを21.3g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-10)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは6,000であった。
Synthesis Example 10: Acrylic polymer (a1-10)
0.5 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 4 hours. Next, 21.3 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-10). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 6,000.
 合成例11:アクリルポリマー(a1-11)
 500mlのフラスコにAIBNを1.5g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを21.3g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-11)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは14,000であった。
Synthesis Example 11: Acrylic polymer (a1-11)
1.5 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 21.3 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-11). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 14,000.
 合成例12:アクリルポリマー(a1-12)
 500mlのフラスコにAIBNを2.0g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを21.3g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-12)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは20,000であった。
Synthesis Example 12: Acrylic polymer (a1-12)
2.0 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 21.3 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-12). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 20,000.
 合成例13:アクリルポリマー(a1-13)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸[(3,4-エポキシシクロヘキサン)-1-イル]メチルを29.4g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-13)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,500であった。
Synthesis Example 13: Acrylic polymer (a1-13)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 29.4 g of methyl methacrylate [(3,4-epoxycyclohexane) -1-yl] methyl, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol, and 100 g of PGMEA were added to the obtained solution. , 90 ° C. for 4 hours, and PGMEA was added to the obtained acrylic polymer solution so that the solid content concentration became 40 wt% to obtain a solution of the acrylic polymer (a1-13). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,500.
 合成例14:アクリルポリマー(a1-14)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にアクリル酸グリシジルを19.2g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1-14)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは10,500であった。
Synthesis Example 14: Acrylic polymer (a1-14)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 19.2 g of glycidyl acrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the obtained acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1-14). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 10,500.
 合成例15:アクリルポリマー(a1’-1)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にアリルグリシジルエーテルを17.1g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1’-1)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは10,000であった。
Synthesis Example 15: Acrylic polymer (a1'-1)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, 17.1 g of allylglycidyl ether, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the obtained solution, and the mixture was heated and stirred at 90 ° C. for 4 hours to obtain the acrylic. PGMEA was added to the polymer solution so that the solid content concentration became 40 wt% to obtain a solution of acrylic polymer (a1'-1). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 10,000.
 合成例16:アクリルポリマー(a1’-2)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を34.4g、ベンジルメタクリレートを61.7g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g、メタクリル酸グリシジルを21.3g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌し、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1’-2)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは12,000であった。
Synthesis Example 16: Acrylic polymer (a1'-2)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. After that, 34.4 g of methacrylic acid, 61.7 g of benzyl methacrylate, 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate, and 21.3 g of glycidyl methacrylate were charged. , Stir for a while at room temperature, sufficiently replace the inside of the flask with nitrogen by bubbling, heat and stir at 70 ° C. for 5 hours, add PGMEA to the obtained acrylic polymer solution so that the solid content concentration becomes 40 wt%, and add acrylic acid. A solution of the polymer (a1'-2) was obtained. The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 12,000.
 合成例17:アクリルポリマー(a1’-3)
 500mlのフラスコにAIBNを1g、PGMEAを50g仕込んだ。その後、メタクリル酸を43.0g、ベンジルメタクリレートを70.5g、トリシクロ[5.2.1.0(2,6)]デカン-8-イルメタクリレートを22.0g仕込み、室温でしばらく撹拌し、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間加熱撹拌した。次に、得られたアクリルポリマー溶液に固形分濃度が40wt%になるようにPGMEAを加え、アクリルポリマー(a1’-3)の溶液を得た。GPC法により測定されるポリスチレン換算での重量平均分子量Mwは11,000であった。
Synthesis Example 17: Acrylic polymer (a1'-3)
1 g of AIBN and 50 g of PGMEA were placed in a 500 ml flask. Then, 43.0 g of methacrylic acid, 70.5 g of benzyl methacrylate and 22.0 g of tricyclo [5.2.1.0 (2,6)] decane-8-yl methacrylate were charged, stirred at room temperature for a while, and flasked. After sufficiently replacing the inside with nitrogen by bubbling, the mixture was heated and stirred at 70 ° C. for 5 hours. Next, PGMEA was added to the obtained acrylic polymer solution so that the solid content concentration was 40 wt% to obtain a solution of the acrylic polymer (a1'-3). The polystyrene-equivalent weight average molecular weight Mw measured by the GPC method was 11,000.
 [感光剤(B)]
 合成例18:感光剤(b-1)
 乾燥窒素気流下、TrisP-HAP(本州化学工業(株)製)、15.3gと5-ナフトキノンジアジドスルホニル酸クロリド40.3gを1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン15.2gを系内が35℃以上にならないように滴下した。滴下後、30℃で2時間攪拌した。トリエチルアミン塩をろ過し、濾液を水に投入させた。その後析出した沈殿を真空乾燥機で乾燥し、下記式で表されるキノンジアジド化合物(b-1)を得た。
[Photosensitizer (B)]
Synthesis Example 18: Photosensitizer (b-1)
Under a dry nitrogen stream, 15.3 g of TrisP-HAP (manufactured by Honshu Chemical Industry Co., Ltd.) and 40.3 g of 5-naphthoquinonediazide sulfonyl acid chloride were dissolved in 450 g of 1,4-dioxane to bring the temperature to room temperature. Here, 15.2 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system did not rise above 35 ° C. After the dropping, the mixture was stirred at 30 ° C. for 2 hours. The triethylamine salt was filtered and the filtrate was added to water. Then, the precipitated precipitate was dried in a vacuum dryer to obtain a quinonediazide compound (b-1) represented by the following formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 [着色剤(C)]
 カーボンブラック(三菱ケミカル(株)製「MA-100(商品名)」、以下「MA-100」という。)
 ベンゾフラノン系黒色顔料(BASF製「“IRGAPHOR”(登録商標) BLACK S0100CF」(一次粒子径40~80nm)、以下「Bk-S0100CF」という。)
 黒色無機顔料(日清エンジニアリング(株)製「チタン窒化物粒子」)
 黒色染料(オリエント化学工業(株)製「“NUBIAN”(登録商標) BLACK TN-870」、以下「TN-870」という。)
 [分散剤]
 アミン価を有する分散剤(ビックケミー・ジャパン(株)製「“BYK”(登録商標)-LP-N21116、以下「BYK-21116」という。)
 [架橋剤]
 メチロール化合物((株)三和ケミカル製「“NIKALAC”MX-270」、「MX-270」という。)
 エポキシ化合物((三井化学(株)製「VG3101」)
 [シランカップリング剤]
 3-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製「KBM-403(商品名)」、以下「KBM-403」という。)
 [界面活性剤]
 シリコーン系界面活性剤(ビックケミー・ジャパン(株)製「BYK-333(商品名)」、以下「BYK-333」という。)
 [溶剤]
 PGMEA(クラレトレーディング(株)製「PGM-AC(商品名)」)
 DAA(三菱化学(株)製「DAA」)。
[Colorant (C)]
Carbon black ("MA-100 (trade name)" manufactured by Mitsubishi Chemical Corporation, hereinafter referred to as "MA-100")
Benzofuran-based black pigment (BASF's "IRGAPHOR" (registered trademark) BLACK S0100CF "(primary particle size 40-80 nm), hereinafter referred to as" Bk-S0100CF ")
Black inorganic pigment ("Titanium nitride particles" manufactured by Nisshin Engineering Co., Ltd.)
Black dye ("NUBIAN" (registered trademark) BLACK TN-870 "manufactured by Orient Chemical Industry Co., Ltd., hereinafter referred to as" TN-870 ")
[Dispersant]
Dispersant having an amine value ("BYK" (registered trademark) -LP-N21116, hereinafter referred to as "BYK-21116" manufactured by Big Chemie Japan Co., Ltd.)
[Crosslinking agent]
Methylol compound (referred to as "NIKALAC" MX-270 "and" MX-270 "manufactured by Sanwa Chemical Co., Ltd.)
Epoxy compound ((“VG3101” manufactured by Mitsui Chemicals, Inc.))
[Silane coupling agent]
3-glycidoxypropyltrimethoxysilane ("KBM-403 (trade name)" manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter referred to as "KBM-403")
[Surfactant]
Silicone-based surfactant ("BYK-333 (trade name)" manufactured by Big Chemie Japan Co., Ltd., hereinafter referred to as "BYK-333")
[solvent]
PGMEA ("PGM-AC (trade name)" manufactured by Kuraray Trading Co., Ltd.)
DAA ("DAA" manufactured by Mitsubishi Chemical Corporation).
 次に、実施例及び比較例に用いた感光性銀インク材料と感光性絶縁材料について説明する。 Next, the photosensitive silver ink material and the photosensitive insulating material used in Examples and Comparative Examples will be described.
 [感光性銀インク材料]
 感光性銀インク材料の製造方法について、下記に示す。
[Photosensitive silver ink material]
The method for producing the photosensitive silver ink material is shown below.
 <感光性銀インク材料の作製>
 まず、炭素化合物で表面被覆された導電性微粒子(日清エンジニアリング(株)製):80.0g、BYK-21116:4.06g、PGMEA:196.14gに対し、ホモジナイザーにて、1200rpm、30分の混合処理を施し、さらに、その混合液を、ジルコニアビーズが充填されたミル型分散機を用いて分散し、銀微粒子分散体を得た。この銀微粒子分散体63.28gに対し、黄色灯下にて、アクリルポリマー(a1-10):4.40g、OXE-02(BASF製):0.41g、DPHA(日本化薬(株)製):1.30g混合したものに、PGMEA:7.31g、DAA:23.25gを添加し撹拌することにより、感光性銀インク(α)を作製した。
<Preparation of photosensitive silver ink material>
First, conductive fine particles (manufactured by Nisshin Engineering Co., Ltd.) surface-coated with a carbon compound: 80.0 g, BYK-21116: 4.06 g, and PGMEA: 196.14 g with a homogenizer at 1200 rpm for 30 minutes. The mixed solution was further dispersed using a mill-type disperser filled with zirconia beads to obtain a silver fine particle dispersion. Acrylic polymer (a1-10): 4.40 g, OXE-02 (manufactured by BASF): 0.41 g, DPHA (manufactured by Nippon Kayaku Co., Ltd.) with respect to 63.28 g of this silver fine particle dispersion under a yellow light. ): 1.30 g of PGMEA: 7.31 g and DAA: 23.25 g were added to the mixture and stirred to prepare a photosensitive silver ink (α).
 [感光性絶縁材料]
 感光性絶縁材料の製造方法について、下記に示す。
[Photosensitive insulating material]
The method for producing the photosensitive insulating material is shown below.
 <感光性絶縁材料の作製>
 黄色灯下にて、光重合開始剤としてOXE-02(BASF製):0.50g、PGMEA:20.70g、DAA:37.50gに溶解させ、SIRIUS-501(大阪有機化学工業(株)製):1.25g、M-315(共栄社(株)製):2.90g、アクリルポリマー(a1-3):28.00gを加え、撹拌することにより、感光性絶縁材料(β)を作製した。
<Manufacturing of photosensitive insulating material>
Under a yellow light, it was dissolved in OXE-02 (manufactured by BASF): 0.50 g, PGMEA: 20.70 g, DAA: 37.50 g as a photopolymerization initiator, and SIRIUS-501 (manufactured by Osaka Organic Chemical Industry Co., Ltd.). ): 1.25 g, M-315 (manufactured by Kyoeisha Co., Ltd.): 2.90 g, acrylic polymer (a1-3): 28.00 g was added and stirred to prepare a photosensitive insulating material (β). ..
 次に、実施例及び比較例で行った硬化膜/積層基板の作製及び各評価方法について説明する。 Next, the production of the cured film / laminated substrate and each evaluation method performed in Examples and Comparative Examples will be described.
 <銀インク材料(α)のパターン作製>
 銀インク材料(α)を、基板上又は絶縁層を有する不透明配線電極付き基板にスピンコーター(ミカサ(株)製「1H-360S(商品名)」)を用いて乾燥後膜厚が1μmとなるように所定の回転数でスピンコートした後、ホットプレート(大日本スクリーン製造(株)製「SCW-636(商品名)」)を用いて100℃で2分間プリベークし、プリベーク膜を作製した。プリベーク膜に対して、パラレルライトマスクアライナー(キヤノン(株)製「PLA-501F(商品名)」)を用いて超高圧水銀灯を光源とし、所望のマスクを介して露光量500mJ/cm(波長365nm換算)で露光し、図4に示すピッチ300μmのメッシュ形状のパターンを作製した。この後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.07wt%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。
<Silver ink material (α) pattern production>
After drying the silver ink material (α) on the substrate or on the substrate with an opaque wiring electrode having an insulating layer using a spin coater (“1H-360S (trade name)” manufactured by Mikasa Co., Ltd.), the film thickness becomes 1 μm. After spin coating at a predetermined rotation speed as described above, a prebaked film was prepared by prebaking at 100 ° C. for 2 minutes using a hot plate (“SCW-636 (trade name)” manufactured by Dainippon Screen Mfg. Co., Ltd.). For the pre-baked film, a parallel light mask aligner (“PLA-501F (trade name)” manufactured by Canon Inc.) was used as a light source, and an exposure amount of 500 mJ / cm 2 (wavelength) was passed through a desired mask. It was exposed at (365 nm conversion) to prepare a mesh-shaped pattern having a pitch of 300 μm shown in FIG. After that, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.07 wt% TMAH aqueous solution for 60 seconds, then rinsed with water for 30 seconds, and pattern processing was performed. Was done.
 パターン加工した基板を、オーブン(エスペック(株)製「IHPS-222(商品名)」)を用いて、230℃で60分間(空気中)ポストベークし、不透明配線電極付き基板を作製した。不透明配線電極メッシュ部の線幅を光学顕微鏡で測定した結果、4.0μmであった。 The patterned substrate was post-baked at 230 ° C. for 60 minutes (in the air) using an oven (“IHPS-222 (trade name)” manufactured by ESPEC CORPORATION) to prepare a substrate with an opaque wiring electrode. As a result of measuring the line width of the opaque wiring electrode mesh portion with an optical microscope, it was 4.0 μm.
 <感光性絶縁材料(β)のパターン作製>
 感光性絶縁材料(β)を、得られた不透明配線電極付き基板上にスピンコーターを用いて乾燥後膜厚が2.5μmとなるように所定の回転数でスピンコートした後、ホットプレートを用いて100℃で2分間プリベークし、プリベーク膜を作製した。プリベーク膜に対して、パラレルライトマスクアライナーを用いて超高圧水銀灯を光源とし、所望のパターンを有する露光マスクを介して、露光量200mJ/cm(波長365nm換算)で露光した。この後、自動現像装置を用いて、0.07wt%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。
<Pattern production of photosensitive insulating material (β)>
The photosensitive insulating material (β) is spin-coated on the obtained substrate with an opaque wiring electrode using a spin coater at a predetermined rotation speed so that the film thickness becomes 2.5 μm after drying, and then a hot plate is used. Prebaked at 100 ° C. for 2 minutes to prepare a prebaked film. The prebake film was exposed to an exposure amount of 200 mJ / cm 2 (wavelength 365 nm conversion) through an exposure mask having a desired pattern using an ultrahigh pressure mercury lamp as a light source using a parallel light mask aligner. Then, using an automatic developing apparatus, shower development was performed with 0.07 wt% TMAH aqueous solution for 60 seconds, and then rinse with water for 30 seconds to perform pattern processing.
 パターン加工した基板を、オーブンを用いて、230℃で60分間(空気中)ポストベークし、絶縁層を有する不透明配線電極付き基板を作製した。 The patterned substrate was post-baked at 230 ° C. for 60 minutes (in air) using an oven to prepare a substrate with an opaque wiring electrode having an insulating layer.
 <ポジ型感光性樹脂組成物の硬化膜作製>
 ポジ型感光性樹脂組成物を、得られた不透明配線電極付き基板または絶縁層を有する不透明配線電極付き基板の不透明配線電極形成面に、スピンコーターを用いて乾燥後膜厚が1.0μmとなるように所定の回転数でスピンコートした後、ホットプレートを用いて100℃で2分間プリベークし、プリベーク膜を作製した。プリベーク膜に対して、パラレルライトマスクアライナーを用いて超高圧水銀灯を光源とし、不透明配線電極をマスクとして、不透明配線電極形成面の反対面側から露光量500mJ/cm(波長365nm換算)で露光した。この後、自動現像装置を用いて、0.07wt%TMAH水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、パターン加工を行った。
<Preparation of cured film of positive photosensitive resin composition>
The positive photosensitive resin composition is dried on the opaque wiring electrode forming surface of the obtained substrate with opaque wiring electrodes or the substrate with opaque wiring electrodes having an insulating layer using a spin coater, and the thickness becomes 1.0 μm. After spin coating at a predetermined number of revolutions as described above, a prebaked film was prepared by prebaking at 100 ° C. for 2 minutes using a hot plate. The prebake film is exposed to an exposure amount of 500 mJ / cm 2 (wavelength 365 nm conversion) from the opposite side of the opaque wiring electrode forming surface using an ultra-high pressure mercury lamp as a light source and an opaque wiring electrode as a mask using a parallel light mask aligner. did. Then, using an automatic developing apparatus, shower development was performed with 0.07 wt% TMAH aqueous solution for 60 seconds, and then rinse with water for 30 seconds to perform pattern processing.
 パターン加工した基板を、オーブンを用いて、230℃で60分間(空気中)ポストベークし、ポジ型感光性樹脂組成物の硬化膜を作製した。 The patterned substrate was post-baked at 230 ° C. for 60 minutes (in air) using an oven to prepare a cured film of a positive photosensitive resin composition.
 <積層基板(A)の作製>
 ポジ型感光性樹脂組成物及び銀インク材料(α)を用いて、図1に示す積層基板(A)を作製した。基材1は、表面にSiOをスパッタリングしたガラス基板であり、不透明配線電極層2は銀インク材料(α)による導電パターン層であり、遮光層3はポジ型感光性樹脂組成物による硬化膜である。
<Manufacturing of laminated substrate (A)>
The laminated substrate (A) shown in FIG. 1 was prepared using the positive photosensitive resin composition and the silver ink material (α). The base material 1 is a glass substrate obtained by sputtering SiO 2 on the surface, the opaque wiring electrode layer 2 is a conductive pattern layer made of a silver ink material (α), and the light shielding layer 3 is a cured film made of a positive photosensitive resin composition. Is.
 (1)パターン加工性評価
 積層基板(A)のメッシュ部の遮光層を光学顕微鏡により観察し、無作為に選択した10点の線幅を測定し、その平均値を算出した。遮光層の線幅の値が不透明配線電極の線幅4.0μmに近いほどパターン加工性が良好であることを示す。
(1) Evaluation of pattern processability The light-shielding layer of the mesh portion of the laminated substrate (A) was observed with an optical microscope, the line widths of 10 randomly selected points were measured, and the average value was calculated. The closer the line width value of the light-shielding layer is to the line width of the opaque wiring electrode of 4.0 μm, the better the pattern processability.
 (2)硬化膜特性評価
 積層基板(A)のパッド部6に対応する箇所について、反射率計(VSR400:日本電色工業(株)製)を用いて、波長550nmにおける反射率を測定した。
(2) Evaluation of Hardened Film Characteristics The reflectance at a wavelength of 550 nm was measured using a reflectance meter (VSR400: manufactured by Nippon Denshoku Kogyo Co., Ltd.) at a portion of the laminated substrate (A) corresponding to the pad portion 6.
 また、積層基板(A)のパッド部6に対応する箇所について、PGMEAに10分間100℃で浸漬し、1分間水で洗浄してから、光学顕微鏡にて50倍に拡大した画像を観察し、浸漬前後での硬化膜外観を観察し、耐溶剤性を評価した。
2     : 外観変化無し。
1     : 遮光層にクラック発生。
Further, the portion of the laminated substrate (A) corresponding to the pad portion 6 was immersed in PGMEA at 100 ° C. for 10 minutes, washed with water for 1 minute, and then the image magnified 50 times was observed with an optical microscope. The appearance of the cured film before and after immersion was observed to evaluate the solvent resistance.
2: No change in appearance.
1: Cracks occur in the light-shielding layer.
 <積層基板(B)の作製>
 ポジ型感光性樹脂組成物、銀インク材料(α)及び感光性絶縁材料(β)を用いて、図2及び図5に示す積層基板(B)を作製した。基材1は、表面にSiOをスパッタリングしたガラス基板であり、不透明配線電極層2は銀インク材料(α)による導電パターン層であり、遮光層3はポジ型感光性樹脂組成物による硬化膜、絶縁層4は感光性絶縁材料(β)による絶縁層である。
<Manufacturing of laminated substrate (B)>
The laminated substrate (B) shown in FIGS. 2 and 5 was prepared using the positive photosensitive resin composition, the silver ink material (α), and the photosensitive insulating material (β). The base material 1 is a glass substrate obtained by sputtering SiO 2 on the surface, the opaque wiring electrode layer 2 is a conductive pattern layer made of a silver ink material (α), and the light shielding layer 3 is a cured film made of a positive photosensitive resin composition. , The insulating layer 4 is an insulating layer made of a photosensitive insulating material (β).
 (3)基板上残渣評価
 積層基板(B)において、図2に示す積層基板の絶縁層4上におけるポジ型感光性樹脂組成物の露光部分について、透過率評価により、基板上の残渣を評価した。具体的には、図5に示す積層基板における絶縁層4上のポジ型感光性樹脂組成物の露光部分について、遮光膜形成前後の400nmにおける透過率を、紫外可視分光光度計((株)島津製作所製「MultiSpec-1500(商品名)」)を用いて、測定した。そして、遮光膜形成前の透過率をT0、遮光膜形成後の透過率をTとしたときに、式(T0-T)/T0×100で表される透過率変化を算出した。
(3) Evaluation of Residue on Substrate In the laminated substrate (B), the residue on the substrate was evaluated by the transmittance evaluation of the exposed portion of the positive photosensitive resin composition on the insulating layer 4 of the laminated substrate shown in FIG. .. Specifically, with respect to the exposed portion of the positive photosensitive resin composition on the insulating layer 4 in the laminated substrate shown in FIG. 5, the transmittance at 400 nm before and after the formation of the light-shielding film is measured by the ultraviolet-visible spectrophotometer Shimadzu Corporation. The measurement was carried out using "MultiSpec-1500 (trade name)" manufactured by Mfg. Co., Ltd. Then, when the transmittance before forming the light-shielding film was T0 and the transmittance after forming the light-shielding film was T, the change in transmittance represented by the formula (T0-T) / T0 × 100 was calculated.
 (4)マイグレーション耐性評価
 積層基板(B)において、高温高湿下でのマイグレーション耐性を評価した。測定には絶縁劣化特性評価システム“ETAC SIR13”(楠本化成(株)製)を用いた。不透明配線電極2の接続部分にそれぞれ電極を取り付け、85℃85%RH条件に設定された高温高湿槽内にサンプルを入れた。槽内環境が安定してから5分間経過後、不透明配線電極2の電極間に電圧を印加し、絶縁抵抗の経時変化を測定した。なお、一層目の不透明配線電極を正極、二層目の不透明配線電極を負極として、5Vの電圧を印加し、抵抗値を5分間隔で1000時間測定した。測定した抵抗値が10の5乗Ω以下に達したとき絶縁不良のため短絡と判断して印圧を停止し、それまでの試験時間を短絡時間とした。以下の評価基準に従ってマイグレーション耐性を評価した。2以上を合格とした。
3:短絡時間が1000時間以上
2:短絡時間が280時間以上1000時間未満
1:短絡時間が280時間未満。
(4) Evaluation of migration resistance The laminated substrate (B) was evaluated for migration resistance under high temperature and high humidity. The insulation deterioration characteristic evaluation system "ETAC SIR13" (manufactured by Kusumoto Kasei Co., Ltd.) was used for the measurement. Electrodes were attached to the connection portions of the opaque wiring electrodes 2, and the samples were placed in a high-temperature and high-humidity tank set to 85 ° C. and 85% RH conditions. After 5 minutes had passed since the environment in the tank became stable, a voltage was applied between the electrodes of the opaque wiring electrode 2 and the change with time of the insulation resistance was measured. A voltage of 5 V was applied with the opaque wiring electrode of the first layer as the positive electrode and the opaque wiring electrode of the second layer as the negative electrode, and the resistance value was measured at 5-minute intervals for 1000 hours. When the measured resistance value reached 10 to the 5th power Ω or less, it was judged as a short circuit due to poor insulation, and the printing pressure was stopped, and the test time up to that point was defined as the short circuit time. Migration resistance was evaluated according to the following evaluation criteria. 2 or more was passed.
3: Short circuit time is 1000 hours or more 2: Short circuit time is 280 hours or more and less than 1000 hours 1: Short circuit time is less than 280 hours.
 (実施例1)
 まず、着色剤(C)としてMA-100:3.00g、分散剤としてBYK-21116:1.00g、PGMEA:40.00g、DPM:20.00gに対し、ホモジナイザーにて、1200rpm、30分の混合処理を施し、さらに、高圧湿式メディアレス微粒化装置ナノマイザー(ナノマイザー(株))を用いて分散して、分散体を得た。この分散体64.00gに対し、黄色灯下にて、感光剤(B)として感光剤(b-1):3.00g、架橋剤としてMX-270:0.69g、溶剤としてPGMEA:14.50gを加え、溶解させ、シランカップリング剤としてKBM-403:0.30g、界面活性剤としてBYK-333:0.01gを加え、攪拌した。そこへ側鎖に重合性基を有するアルカリ可溶性樹脂(A)として40wt%PGMEA溶液(a1-1):17.50gを加え、撹拌した。次いで0.20μmのフィルターでろ過を行い、ポジ型感光性樹脂組成物を得た。得られたポジ型感光性樹脂組成物について、(1)パターン加工性、(2)硬化膜特性、(3)基板上残渣、(4)マイグレーション耐性を評価した。組成と結果を表1、5に記載した。
(Example 1)
First, MA-100: 3.00 g as the colorant (C), BYK-21116: 1.00 g as the dispersant, PGMEA: 40.00 g, DPM: 20.00 g with a homogenizer at 1200 rpm for 30 minutes. The mixture was mixed and further dispersed using a high-pressure wet medialess atomizer Nanomizer (Namizer Co., Ltd.) to obtain a dispersion. With respect to 64.00 g of this dispersion, under a yellow lamp, the photosensitizer (b-1) was 3.00 g, the cross-linking agent was MX-270: 0.69 g, and the solvent was PGMEA: 14. 50 g was added and dissolved, KBM-403: 0.30 g as a silane coupling agent and BYK-333: 0.01 g as a surfactant were added, and the mixture was stirred. A 40 wt% PGMEA solution (a1-1): 17.50 g as an alkali-soluble resin (A) having a polymerizable group in the side chain was added thereto, and the mixture was stirred. Then, filtration was performed with a 0.20 μm filter to obtain a positive photosensitive resin composition. The obtained positive photosensitive resin composition was evaluated for (1) pattern processability, (2) cured film characteristics, (3) residue on the substrate, and (4) migration resistance. The compositions and results are shown in Tables 1 and 5.
 (実施例2~29、比較例1~5)
 実施例1と同様の方法で、表1~4記載の組成のポジ型感光性樹脂組成物を得て、それぞれのポジ型感光性樹脂組成物について実施例1と同様の評価をした。評価結果を、表5~8に示す。
(Examples 2 to 29, Comparative Examples 1 to 5)
Positive photosensitive resin compositions having the compositions shown in Tables 1 to 4 were obtained by the same method as in Example 1, and each positive photosensitive resin composition was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 5-8.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明の感光性樹脂組成物を硬化して得られる硬化膜の用途は特に限定されないが、例えば、タッチパネル用不透明電極の遮光層や、カラーフィルターのブラックマトリックス又は液晶ディスプレイのブラックカラムスペーサーなどの遮光膜、有機EL表示装置の画素分割層又はTFT平坦化層などとして好適に用いられる。 The application of the cured film obtained by curing the photosensitive resin composition of the present invention is not particularly limited, but for example, light-shielding such as a light-shielding layer of an opaque electrode for a touch panel, a black matrix of a color filter, or a black column spacer of a liquid crystal display. It is suitably used as a film, a pixel dividing layer of an organic EL display device, a TFT flattening layer, or the like.
1:透明基板
2:不透明配線電極
3:遮光層
4:絶縁層
5:ポジ型感光性樹脂組成物
6:パッド部
1: Transparent substrate 2: Opaque wiring electrode 3: Light-shielding layer 4: Insulating layer 5: Positive photosensitive resin composition 6: Pad portion

Claims (26)

  1. 側鎖に重合性基を有するアルカリ可溶性樹脂(A)、感光剤(B)及び着色剤(C)を含有し、前記重合性基がアクリル基および/またはメタクリル基であるポジ型感光性樹脂組成物。 A positive photosensitive resin composition containing an alkali-soluble resin (A), a photosensitizer (B) and a colorant (C) having a polymerizable group in the side chain, wherein the polymerizable group is an acrylic group and / or a methacrylic group. thing.
  2. 前記側鎖に重合性基を有するアルカリ可溶性樹脂(A)の重量平均分子量Mwが1,000以上15,000以下である請求項1記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 1, wherein the alkali-soluble resin (A) having a polymerizable group in the side chain has a weight average molecular weight Mw of 1,000 or more and 15,000 or less.
  3. 前記側鎖に重合性基を有するアルカリ可溶性樹脂(A)が、下記一般式(1)で表される有機基を有する請求項1または2に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Xは炭素数1~4の炭化水素基を表し、sは0または1を表し、Rは水素原子又はメチル基を示す。)
    The positive photosensitive resin composition according to claim 1 or 2, wherein the alkali-soluble resin (A) having a polymerizable group in the side chain has an organic group represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), X represents a hydrocarbon group having 1 to 4 carbon atoms, s represents 0 or 1, and R 1 represents a hydrogen atom or a methyl group.)
  4. 前記側鎖に重合性基を有するアルカリ可溶性樹脂(A)が、下記一般式(2)で表される繰り返し単位を有する請求項1~3いずれか一項記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R及びRは水素原子又はメチル基を示す。R及びRはそれぞれ同じであっても異なっていてもよい。)
    The positive photosensitive resin composition according to any one of claims 1 to 3, wherein the alkali-soluble resin (A) having a polymerizable group in the side chain has a repeating unit represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In general formula (2), R 2 and R 3 represent a hydrogen atom or a methyl group. R 2 and R 3 may be the same or different, respectively.)
  5. 前記側鎖に重合性基を有するアルカリ可溶性樹脂(A)が、全繰り返し単位中、前記一般式(2)で表される繰り返し単位を5~50モル%含有する請求項4記載のポジ型感光性樹脂組成物。 The positive photosensitive resin (A) according to claim 4, wherein the alkali-soluble resin (A) having a polymerizable group in the side chain contains 5 to 50 mol% of the repeating unit represented by the general formula (2) in all the repeating units. Sex resin composition.
  6. 前記感光剤(B)がキノンジアジド化合物を含有する請求項1~5いずれか一項記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 5, wherein the photosensitive agent (B) contains a quinonediazide compound.
  7. 前記着色剤(C)が芳香族基を有する請求項1~6いずれか一項記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 6, wherein the colorant (C) has an aromatic group.
  8. 前記着色剤(C)が黒色の有機顔料である請求項1~7いずれか一項記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 7, wherein the colorant (C) is a black organic pigment.
  9. 前記黒色の有機顔料がカーボンブラックを含有する請求項8記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 8, wherein the black organic pigment contains carbon black.
  10. 前記着色剤(C)が金属窒化物粒子を含む請求項1~6いずれか一項記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 6, wherein the colorant (C) contains metal nitride particles.
  11. 前記金属窒化物粒子が、窒化ジルコニウム粒子を含有する請求項10に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 10, wherein the metal nitride particles contain zirconium nitride particles.
  12. 前記着色剤(C)の含有割合が固形分中、10~50質量%である、請求項1~11いずれか一項記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to any one of claims 1 to 11, wherein the content ratio of the colorant (C) is 10 to 50% by mass in the solid content.
  13. 請求項1~12いずれか一項記載のポジ型感光性樹脂組成物を硬化させてなる硬化膜。 A cured film obtained by curing the positive photosensitive resin composition according to any one of claims 1 to 12.
  14. 波長550nmにおける反射率が、0.01~20%である請求項13記載の硬化膜。 The cured film according to claim 13, wherein the reflectance at a wavelength of 550 nm is 0.01 to 20%.
  15. 膜厚が0.3~7μmである請求項13または14記載の硬化膜。 The cured film according to claim 13 or 14, which has a film thickness of 0.3 to 7 μm.
  16. 導電層および請求項13~15いずれか一項記載の硬化膜を有する積層体。 A laminate having a conductive layer and a cured film according to any one of claims 13 to 15.
  17. 前記導電層の膜厚に対する前記硬化膜の膜厚の比が1/2~5である請求項16記載の積層体。 The laminate according to claim 16, wherein the ratio of the film thickness of the cured film to the film thickness of the conductive layer is 1/2 to 5.
  18. さらに絶縁層を有する請求項16または17に記載の積層体。 The laminate according to claim 16 or 17, further comprising an insulating layer.
  19. 前記導電層が銀を含有する請求項16~18いずれか一項記載の積層体。 The laminate according to any one of claims 16 to 18, wherein the conductive layer contains silver.
  20. 前記銀の平均一次粒子径が10~200nmである請求項19記載の積層体。 The laminate according to claim 19, wherein the average primary particle size of silver is 10 to 200 nm.
  21. 前記導電層中に、アルカリ可溶性基を有する有機成分を5~35質量%含有する請求項16~20いずれか一項記載の積層体。 The laminate according to any one of claims 16 to 20, wherein the conductive layer contains 5 to 35% by mass of an organic component having an alkali-soluble group.
  22. 基板、基板上に形成された導電パターンおよび請求項13~15いずれか一項記載の硬化膜を有する導電パターン付き基板であって、導電パターン形成領域上に前記硬化膜を有し、導電パターン非形成領域上に前記硬化膜を有しない導電パターン付き基板。 A substrate with a conductive pattern having a substrate, a conductive pattern formed on the substrate, and a cured film according to any one of claims 13 to 15, wherein the cured film is provided on a conductive pattern forming region, and the conductive pattern is not formed. A substrate with a conductive pattern that does not have the cured film on the formation region.
  23. 前記導電パターンが接続部を含み、接続部上に前記硬化膜を有しない請求項22記載の導電パターン付き基板。 The substrate with a conductive pattern according to claim 22, wherein the conductive pattern includes a connecting portion and does not have the cured film on the connecting portion.
  24. 透明基板の片面に不透明配線電極を形成する工程と、
    前記透明基板上の不透明配線電極形成面に請求項1~12のいずれか一項に記載のポジ型感光性樹脂組成物を塗布する工程と、
    透明基板の不透明配線電極形成面の反対面側から露光し、現像することにより、不透明配線電極に対応する部位に遮光層を形成する工程を有する積層体の製造方法。
    The process of forming an opaque wiring electrode on one side of a transparent substrate,
    The step of applying the positive photosensitive resin composition according to any one of claims 1 to 12 to the opaque wiring electrode forming surface on the transparent substrate.
    A method for producing a laminate, which comprises a step of forming a light-shielding layer on a portion corresponding to an opaque wiring electrode by exposing and developing from the side opposite to the opaque wiring electrode forming surface of the transparent substrate.
  25. 請求項13~15いずれか一項記載の硬化膜を具備する、タッチパネル。 A touch panel comprising the cured film according to any one of claims 13 to 15.
  26. 請求項13~15いずれか一項記載の硬化膜を具備する、有機EL表示装置。 An organic EL display device comprising the cured film according to any one of claims 13 to 15.
PCT/JP2020/046911 2020-01-21 2020-12-16 Positive photosensitive resin composition, cured film, multilayer body, substrate with conductive pattern, method for producing multilayer body, touch panel and organic el display device WO2021149410A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227015827A KR102624811B1 (en) 2020-01-21 2020-12-16 Positive photosensitive resin composition, cured film, laminate, substrate with conductive pattern, method for manufacturing laminate, touch panel, and organic EL display device
JP2020570579A JP7081696B2 (en) 2020-01-21 2020-12-16 Positive photosensitive resin composition, cured film, laminate, substrate with conductive pattern, manufacturing method of laminate, touch panel and organic EL display device
CN202080093425.5A CN114945867B (en) 2020-01-21 2020-12-16 Positive photosensitive resin composition, cured film, laminate, substrate with conductive pattern, method for producing laminate, touch panel, and organic EL display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-007333 2020-01-21
JP2020007333 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021149410A1 true WO2021149410A1 (en) 2021-07-29

Family

ID=76992186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046911 WO2021149410A1 (en) 2020-01-21 2020-12-16 Positive photosensitive resin composition, cured film, multilayer body, substrate with conductive pattern, method for producing multilayer body, touch panel and organic el display device

Country Status (5)

Country Link
JP (1) JP7081696B2 (en)
KR (1) KR102624811B1 (en)
CN (1) CN114945867B (en)
TW (1) TWI826761B (en)
WO (1) WO2021149410A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185692A (en) * 2007-01-29 2008-08-14 Adeka Corp Positive photosensitive resin composition
WO2016158863A1 (en) * 2015-04-01 2016-10-06 東レ株式会社 Photosensitive colored resin composition
WO2018180548A1 (en) * 2017-03-29 2018-10-04 東レ株式会社 Photosensitive composition, cured film and organic el display device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020246A (en) * 2007-07-11 2009-01-29 Toray Ind Inc Photosensitive resin composition, and manufacturing method for insulating resin pattern and organic electroluminescence element using it
JP5181968B2 (en) * 2007-09-28 2013-04-10 東レ株式会社 Positive photosensitive composition, method for producing cured film, cured film, and element having cured film
JP5233526B2 (en) * 2008-09-05 2013-07-10 東レ株式会社 Photosensitive composition, cured film formed therefrom, and device having cured film
JP5441542B2 (en) * 2009-07-22 2014-03-12 富士フイルム株式会社 Positive photosensitive resin composition, cured film, interlayer insulating film, organic EL display device, and liquid crystal display device
JP5821481B2 (en) * 2011-09-30 2015-11-24 東レ株式会社 Negative photosensitive resin composition and protective film and touch panel member using the same
JP2014048607A (en) * 2012-09-04 2014-03-17 Sumitomo Chemical Co Ltd Photosensitive resin composition
JP2014052401A (en) * 2012-09-05 2014-03-20 Sumitomo Chemical Co Ltd Photosensitive resin composition
JP2014091790A (en) * 2012-11-05 2014-05-19 Toyo Ink Sc Holdings Co Ltd Resin composition
JP6417669B2 (en) * 2013-03-05 2018-11-07 東レ株式会社 Photosensitive resin composition, protective film, insulating film, and method of manufacturing touch panel
JP2015193758A (en) * 2014-03-31 2015-11-05 東洋インキScホールディングス株式会社 Photosensitive resin composition for overcoat and coating film using the same
CN107079560B (en) * 2014-09-26 2018-09-25 东丽株式会社 Organic el display device
KR102399270B1 (en) * 2014-11-27 2022-05-19 도레이 카부시키가이샤 Resin and photosensitive resin composition
KR101611836B1 (en) * 2015-01-13 2016-04-12 동우 화인켐 주식회사 Photosensitive resin comopsition, photocurable pattern formed from the same and image display comprising the pattern
KR101609234B1 (en) * 2015-01-13 2016-04-05 동우 화인켐 주식회사 Photosensitive resin comopsition, photocurable pattern formed from the same and image display comprising the pattern
JPWO2016143580A1 (en) * 2015-03-06 2017-12-14 東レ株式会社 Photosensitive resin composition and electronic component
CN108475012B (en) * 2015-12-24 2022-07-15 三菱化学株式会社 Photosensitive coloring composition, cured product, coloring spacer and image display device
KR102341566B1 (en) * 2016-03-15 2021-12-21 도레이 카부시키가이샤 A photosensitive resin composition, a cured film, a laminated body, the member for touch panels, and the manufacturing method of a cured film
KR101979980B1 (en) * 2016-03-23 2019-05-17 동우 화인켐 주식회사 Photosensitive Resin Composition
JP6939564B2 (en) * 2016-07-27 2021-09-22 東レ株式会社 Resin composition
EP3505545B1 (en) * 2016-08-25 2021-05-26 FUJIFILM Corporation Curable composition and production process therefor, cured film and production process therefor, color filter, solid-state imaging element, solid-state imaging device, and infrared sensor
JP6866387B2 (en) * 2016-10-04 2021-04-28 富士フイルム株式会社 Dispersion composition, curable composition, cured film, color filter, solid-state image sensor, solid-state image sensor, infrared sensor, method for producing dispersion composition, method for producing curable composition, and method for producing cured film.
JPWO2019059359A1 (en) 2017-09-25 2020-09-03 東レ株式会社 Colored resin composition, colored film, color filter and liquid crystal display device
WO2019065128A1 (en) * 2017-09-29 2019-04-04 富士フイルム株式会社 Photocurable composition, laminate, and solid-state imaging element
KR102379844B1 (en) * 2017-10-06 2022-03-29 후지필름 가부시키가이샤 The manufacturing method of a cured film, the manufacturing method of a solid-state image sensor, and the manufacturing method of an image display device
JP2019172975A (en) * 2018-03-26 2019-10-10 東レ株式会社 Resin composition, resin sheet and cured film
JP2019185034A (en) * 2018-03-30 2019-10-24 Jsr株式会社 Coloring composition, cured coloring film, color filter, display element, photosensitive element, and light-emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185692A (en) * 2007-01-29 2008-08-14 Adeka Corp Positive photosensitive resin composition
WO2016158863A1 (en) * 2015-04-01 2016-10-06 東レ株式会社 Photosensitive colored resin composition
WO2018180548A1 (en) * 2017-03-29 2018-10-04 東レ株式会社 Photosensitive composition, cured film and organic el display device

Also Published As

Publication number Publication date
JPWO2021149410A1 (en) 2021-07-29
KR102624811B1 (en) 2024-01-16
TW202132922A (en) 2021-09-01
JP7081696B2 (en) 2022-06-07
CN114945867B (en) 2023-05-16
CN114945867A (en) 2022-08-26
TWI826761B (en) 2023-12-21
KR20220131512A (en) 2022-09-28

Similar Documents

Publication Publication Date Title
JP2011048064A (en) Photosensitive resin composition and laminate, and electromagnetic wave shield and transparent conductive substrate using the same
JP6365298B2 (en) Resin black matrix substrate and touch panel
CN104216220A (en) Photosensitive resin composition, black spacer prepared by using the composition, and color filter having the black spacer
KR20200135312A (en) Cured film manufacturing method and organic EL display manufacturing method
TWI733001B (en) Method for manufacturing substrate with wiring electrode
CN103901723A (en) Photosensitive resin composition for light blocking layer and light blocking layer using the same
JP4075243B2 (en) Radiation sensitive composition for color filter and color filter
JP7081696B2 (en) Positive photosensitive resin composition, cured film, laminate, substrate with conductive pattern, manufacturing method of laminate, touch panel and organic EL display device
JP7095803B2 (en) Method for manufacturing resin composition, wiring board and conductive pattern
JP4004826B2 (en) Colored photosensitive resin composition and color filter
JP7472601B2 (en) Method for manufacturing substrate with wiring electrodes
JPH10260310A (en) Coloring composition for color filter
TW201418880A (en) Light-shielding composition for touch panel and touch panel
JP2006133460A (en) Photosensitive resin composition for color filter
JP2000131519A (en) Radiation sensitive composition for color filter
KR20200074039A (en) Substrate for display device, method for producing the same, and resin composition solution for making the antireflection layer of that substrate
JP6773258B1 (en) Base material with conductive layer and touch panel
TWI805927B (en) Substrate with conductive layer and member for touch panel
JP3735984B2 (en) Protective film composition for color filter and color filter
JP7322753B2 (en) Photosensitive resin composition, light shielding layer and touch sensor panel
WO2022130803A1 (en) Wiring board
JP2017185762A (en) Transfer film, decorative material, touch panel and manufacturing method of decorative material
JP2023123957A (en) Photosensitive resin composition, wiring board, and wiring board production method
TW571177B (en) Coloring composition and color filter, electrode substrate, and liquid crystal display device using the same
KR20230126967A (en) A colored curable resin composition, a color filter and a display device using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020570579

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916151

Country of ref document: EP

Kind code of ref document: A1