WO2021148884A1 - Anticorps anti-coronavirus du wuhan - Google Patents
Anticorps anti-coronavirus du wuhan Download PDFInfo
- Publication number
- WO2021148884A1 WO2021148884A1 PCT/IB2021/000031 IB2021000031W WO2021148884A1 WO 2021148884 A1 WO2021148884 A1 WO 2021148884A1 IB 2021000031 W IB2021000031 W IB 2021000031W WO 2021148884 A1 WO2021148884 A1 WO 2021148884A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- antigen
- binding fragment
- antibodies
- cov
- Prior art date
Links
- 241000711573 Coronaviridae Species 0.000 title description 7
- 239000000427 antigen Substances 0.000 claims abstract description 57
- 102000036639 antigens Human genes 0.000 claims abstract description 57
- 108091007433 antigens Proteins 0.000 claims abstract description 57
- 230000027455 binding Effects 0.000 claims abstract description 57
- 239000012634 fragment Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 19
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 19
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 19
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 19
- 208000015181 infectious disease Diseases 0.000 claims abstract description 18
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 5
- 210000004027 cell Anatomy 0.000 claims description 23
- 241001678559 COVID-19 virus Species 0.000 claims description 21
- 239000013598 vector Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 4
- 102000005962 receptors Human genes 0.000 claims description 3
- 108020003175 receptors Proteins 0.000 claims description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 2
- 238000012258 culturing Methods 0.000 claims 1
- 238000009472 formulation Methods 0.000 claims 1
- 210000005260 human cell Anatomy 0.000 claims 1
- 235000001014 amino acid Nutrition 0.000 description 25
- 229940024606 amino acid Drugs 0.000 description 23
- 150000001413 amino acids Chemical class 0.000 description 23
- 125000003275 alpha amino acid group Chemical group 0.000 description 16
- 238000006467 substitution reaction Methods 0.000 description 14
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 108060003951 Immunoglobulin Proteins 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 102000018358 immunoglobulin Human genes 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 238000012217 deletion Methods 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 7
- 239000012636 effector Substances 0.000 description 7
- 238000013459 approach Methods 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- 108091005634 SARS-CoV-2 receptor-binding domains Proteins 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 229940096437 Protein S Drugs 0.000 description 3
- 101710198474 Spike protein Proteins 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000004154 complement system Effects 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000007502 viral entry Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 108091006020 Fc-tagged proteins Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000127282 Middle East respiratory syndrome-related coronavirus Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 241000315672 SARS coronavirus Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000006334 disulfide bridging Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VKQFCGNPDRICFG-UHFFFAOYSA-N methyl 2-methylpropyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCC(C)C)C1C1=CC=CC=C1[N+]([O-])=O VKQFCGNPDRICFG-UHFFFAOYSA-N 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 230000005257 nucleotidylation Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940035718 sular Drugs 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1002—Coronaviridae
- C07K16/1003—Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the Wuhan coronavirus is a novel coronavirus that belongs to the member of the coronavirus family, which also includes the SARS-CoV, MERS-CoV and others. Viruses belonging to this family are known to primarily infect the upper respiratory and gastrointestinal tract of mammals and birds. First reported in the Wuhan seafood market in later part of 2019, Wu-CoV has now caused 517 cases of human infection and 17 deaths in China alone, with recent evidence confirming human-to-human transmission. Other countries such as Singapore, US, Japan, Taiwan, South Korea, and Thailand have also confirmed cases of Wu-CoV infection. There are no approved vaccines or therapies against the virus.
- coronaviruses As disclosed herein, the overall structure of coronaviruses is governed by four key proteins: spike (S), envelope (E), membrane (M) and nucleocapsid (N).
- S spike
- E envelope
- M membrane
- N nucleocapsid
- the spike protein attaches to the host receptor and mediates viral entry through fusion. Binding to spike protein to prevent viral entry is an effective mechanism for antibody-based neutralization of Co Vs.
- provided herein are antibodies and antigen binding fragments thereof against the RBD of Wu-CoV. In some aspects, provided herein are methods of treating or preventing Wu-CoV infection using the antibodies provided herien. In certain aspects, provided herein are nucleic acid molecules encoding the antibodies provided herein, as well as host cells comprising such nucleic acids, and methods of making the antibodies provided herein using such host cells. In some aspects, also provided herein are pharmaceutical compositions comprising the antibodies provided herein. DETAILED DESCRIPTION
- isolated antibodies particularly monoclonal antibodies, which specifically bind to the RBD of Wu-CoV. Accordingly, provided herein are isolated antibodies, methods of making such antibodies, method of diagnosing for Wu-CoV infection, preventing Wu-CoV infection, treating Wu-CoV infection, and pharmaceutical compositions formulated to contain the antibodies.
- the antibodies provided herein comprise a heavy chain variable region sequence listed in Table 1 (SEQ ID NOS: 1-77).
- the antibodies provided herein have an amino acid sequence that is at least 90% identical ⁇ e-g ⁇ , at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, and/or 100% identical) to an amino acid sequence listed in Table 1.
- the antibodies provided herein comprise a light chain variable region sequence listed in Table 2 (SEQ ID NOS: 78-122).
- the antibodies provided herein have an amino acid sequence that is at least 90% identical (e.g., at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, and/or 100% identical) to an amino acid sequence listed in Table 2.
- the antibodies provided herein comprise a IgGl heavy chain constant region sequence listed in Table 3 (SEQ ID NO: 123).
- the antibodies provided herein have an amino acid sequence that is at least 90% identical (e.g, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, and/or 100% identical) to an amino acid sequence listed in Table 3.
- the antibodies provided herein comprise a IgGl heavy chain constant region sequence with Met-252-Tyr, Ser-254-Thr and Thr-256-Glu substitutions (substitutions at residues corresponding to methionine 252, serine 254 and threonine 256, each in EU numbering) listed in Table 4 (SEQ ID NO: 124).
- the antibodies provided herein have an amino acid sequence that is at least 90% identical (e.g, at least 91% identical, at least 92% identical, at least 93% identical, at least 94% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, and/or 100% identical) to an amino acid sequence listed in Table 4.
- the antibodies provided herein exhibit an enhanced half-life
- antibody as used to herein includes whole antibodies and any antigen binding fragments (i.e., “antigen-binding portions”) or single chains thereof.
- An “antibody” refers, in one embodiment, to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, or an antigen binding portion thereof.
- Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region.
- VH heavy chain variable region
- L light chain constant region
- each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region.
- the light chain constant region is comprised of one domain, CL.
- the VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
- CDR complementarity determining regions
- FR framework regions
- Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
- the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
- the constant regions of the antibodies may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g ., effector cells) and the first component (Clq) of the classical complement system.
- Antibodies typically bind specifically to their cognate antigen with high affinity, reflected by a dissociation constant (KD) of 10 5 to 10 11 M or less. Any KD greater than about 10 4 M is generally considered to indicate nonspecific binding.
- KD dissociation constant
- an antibody that "binds specifically" to an antigen refers to an antibody that binds to the antigen and substantially identical antigens with high affinity, which means having a KD of 10 7 M or less, preferably 10 8 M or less, even more preferably 5 x 10 9 M or less, and most preferably between 10 8 M and 10 10 M or less, but does not bind with high affinity to unrelated antigens.
- An antigen is "substantially identical" to a given antigen if it exhibits a high degree of sequence identity to the given antigen, for example, if it exhibits at least 80%, at least 90%, preferably at least 95%, more preferably at least 97%, or even more preferably at least 99% sequence identity to the sequence of the given antigen.
- the antibodies provided herein may be from any of the commonly known isotypes, including but not limited to IgA, secretory IgA, IgG and IgM.
- the IgG isotype is divided in subclasses in certain species: IgGl, IgG2, IgG3 and IgG4 in humans, and IgGl, IgG2a, IgG2b and IgG3 in mice.
- Immunoglobulins, e.g. , IgGl exist in several allotypes, which differ from each other in at most a few amino acids.
- Antibody includes, by way of example, both naturally occurring and non-naturally occurring antibodies; monoclonal and polyclonal antibodies; chimeric and humanized antibodies; human and nonhuman antibodies; wholly synthetic antibodies; and single chain antibodies.
- antigen-binding portions of antibodies disclosed herein are antigen-binding portions of antibodies disclosed herein.
- the term “antigen-binding portion” of an antibody refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., the RBD of Wu-CoV).
- fragments are, for example between about 8 and about 1500 amino acids in length, suitably between about 8 and about 745 amino acids in length, suitably about 8 to about 300, for example about 8 to about 200 amino acids, or about 10 to about 50 or 100 amino acids in length. It has been shown that the antigen binding function of an antibody can be performed by fragments of a full-length antibody.
- binding fragments encompassed within the term “antigen-binding portion” of an antibody, described herein, include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al.
- Antigen-binding portions can be produced by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact immunoglobulins.
- the antibodies provided herein comprise one or more CDRs of antibodies provided herein (e.g, antibodies with heavy and light chain variable regions provided in Tables 1 and 2, respectively)
- CDRs are amino acid residues within the hypervariable region that are identified in accordance with the definitions of the Rabat, Chothia, AbM, contact, and/or conformational definitions or any method of CDR determination well known in the art.
- Antibody CDRs may be identified as the hypervariable regions originally defined by Rabat et al. See, e.g. , Rabat et al., 1992, Sequences of Proteins of Immunological Interest, 5th ed., Public Health Service, NIH, Washington D.C.
- the positions of the CDRs may also be identified as the structural loop structures originally described by Chothia and others. See, e.g, Chothia et al., 1989, Nature 342:877-883.
- Other approaches to CDR identification include the “AbM definition,” which is a compromise between Rabat and Chothia and is derived using Oxford Molecular's AbM antibody modeling software (now Accelrys®), or the “contact definition” of CDRs based on observed antigen contacts, set forth in MacCallum et al., 1996, J. Mol. Biol., 262:732-745.
- CDRs In another approach, referred to herein as the “conformational definition” of CDRs, the positions of the CDRs may be identified as the residues that make enthalpic contributions to antigen binding. See, e.g ., Makabe et al., 2008, Journal of Biological Chemistry, 283:1156- 1166. Still other CDR boundary definitions may not strictly follow one of the above approaches, but will nonetheless overlap with at least a portion of the Rabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. As used herein, a CDR may refer to CDRs defined by any approach known in the art, including combinations of approaches.
- CDRs defined according to any of these approaches.
- the CDRs may be defined in accordance with any of Rabat, Chothia, extended, AbM, contact, and/or conformational definitions.
- the antibodies provided herein are monoclonal antibodies.
- the term “monoclonal antibody,” as used herein, refers to an antibody that displays a single binding specificity and affinity for a particular epitope or a composition of antibodies in which all antibodies display a single binding specificity and affinity for a particular epitope.
- the term “human monoclonal antibody” refers to an antibody or antibody composition that display(s) a single binding specificity and which has variable and optional constant regions derived from human germline immunoglobulin sequences.
- human monoclonal antibodies are produced by a hybridoma which includes a B cell obtained from a transgenic non-human animal, e.g. , a transgenic mouse, having a genome comprising a human heavy chain transgene and a light chain transgene fused to an immortalized cell.
- the antibodies provided herein are humanized antibodies.
- a “humanized” antibody refers to an antibody in which some, most or all of the amino acids outside the CDR domains of a non-human antibody are replaced with corresponding amino acids derived from human immunoglobulins. In one embodiment of a humanized form of an antibody, some, most or all of the amino acids outside the CDR domains have been replaced with amino acids from human immunoglobulins, whereas some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they do not abrogate the ability of the antibody to bind to a particular antigen.
- a “humanized” antibody retains an antigenic specificity similar to that of the original antibody.
- the antibodies provided herein are chimeric antibodies.
- a “chimeric antibody” refers to an antibody in which the variable regions are derived from one species and the constant regions are derived from another species, such as an antibody in which the variable regions are derived from a mouse antibody and the constant regions are derived from a human antibody.
- the antibodies provided herein can be of any isotype.
- isotype refers to the antibody class (e.g ., IgGl, IgG2, IgG3, IgG4, IgM,
- the antibodies provided herein are IgGl, IgG2, IgG3, IgG4, IgM, IgAl, IgA2, IgD, or IgE isotype antibodies.
- an “Fc region” fragment crystallizable region or “Fc domain” or “Fc” refers to the C -terminal region of the heavy chain of an antibody that mediates the binding of the immunoglobulin to host tissues or factors, including binding to Fc receptors located on various cells of the immune system (e.g., effector cells) or to the first component (Clq) of the classical complement system.
- an Fc region comprises the constant region of an antibody excluding the first constant region immunoglobulin domain (e.g, CHI or CL).
- the Fc region comprises two identical protein fragments, derived from the second (Cm) and third (Cm) constant domains of the antibody’s two heavy chains; IgM and IgE Fc regions comprise three heavy chain constant domains (CH domains 2-4) in each polypeptide chain.
- the Fc region comprises immunoglobulin domains Cy2 and Cy3 and the hinge between Cyl and Cy2.
- the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position C226 or P230 (or amino acid between these two amino acids) to the carboxy -terminus of the heavy chain, wherein the numbering is according to the EU index as in Kabat.
- the Cm domain of a human IgG Fc region extends from about amino acid 231 to about amino acid 340, whereas the Cm domain is positioned on C-terminal side of a Cm domain in an Fc region, i.e., it extends from about amino acid 341 to about amino acid 447 of an IgG.
- the Fc region may be a native sequence Fc, including any allotypic variant, or a variant Fc (e.g, a non-naturally occurring Fc).
- Fc may also refer to this region in isolation or in the context of an Fc-comprising protein polypeptide such as a “binding protein comprising an Fc region,” also referred to as an “Fc fusion protein” (e.g., an antibody or immunoadhesin).
- a “native sequence Fc region” or “native sequence Fc” comprises an amino acid sequence that is identical to the amino acid sequence of an Fc region found in nature.
- Native sequence human Fc regions include a native sequence human IgGl Fc region; native sequence human IgG2 Fc region; native sequence human IgG3 Fc region; and native sequence human IgG4 Fc region as well as naturally occurring variants thereof.
- Native sequence Fc include the various allotypes of Fes (see, e.g. , Jefferis et al. (2009) mAbs 1:1).
- a “hinge”, “hinge domain” or V’hinge region” or “antibody hinge region” refers to the domain of a heavy chain constant region that joins the CHI domain to the CH2 domain and includes the upper, middle, and lower portions of the hinge (Roux et al. J. Immunol. 1998 161 :4083).
- the hinge provides varying levels of flexibility between the binding and effector regions of an antibody and also provides sites for intermolecular disulfide bonding between the two heavy chain constant regions.
- a hinge starts at Glu216 and ends at Gly237 for all IgG isotypes (Roux et al., 1998 J Immunol 161:4083).
- hinge includes wildtype hinges as well as variants thereof (e.g, non- naturally-occurring hinges or modified hinges).
- IgG2 hinge includes wildtype IgG2 hinge and variants having 1, 2, 3, 4, 5, 1-3, 1-5, 3-5 and/or at most 5, 4, 3, 2, or 1 mutations, e.g, substitutions, deletions or additions.
- Exemplary IgG2 hinge variants include IgG2 hinges in which 1, 2, 3 or all 4 cysteines (C219, C220, C226 and C229) are changed to another amino acid.
- an IgG2 comprises a C219S substitution.
- a hinge is a hybrid hinge that comprises sequences from at least two isotypes.
- a hinge may comprise the upper, middle or lower hinge from one isotype and the remainder of the hinge from one or more other isotypes.
- a hinge can be an IgG2/IgGl hinge, and may comprise, e.g, the upper and middle hinges of IgG2 and the lower hinge of IgGl.
- a hinge may have effector function or be deprived of effector function.
- the lower hinge of wildtype IgGl provides effector function.
- CHI domain refers to the heavy chain constant region linking the variable domain to the hinge in a heavy chain constant domain.
- a CHI domain starts at Al 18 and ends at V215.
- the term “CHI domain” includes wildtype CHI domains as well as variants thereof (e.g, non-naturally-occurring CHI domains or modified CHI domains).
- the term “CHI domain” includes wildtype CHI domains and variants having 1, 2, 3, 4, 5, 1-3, 1-5, 3-5 and/or at most 5, 4, 3, 2, or 1 mutations, e.g, substitutions, deletions or additions.
- Exemplary CHI domains include CHI domains with mutations that modify a biological activity of an antibody, such as ADCC, CDC or half-life. Modifications to the CHI domain that affect a biological activity of an antibody are provided herein.
- CH2 domain refers to the heavy chain constant region linking the hinge to the CH3 domain in a heavy chain constant domain. As used herein, a CH2 domain starts at P238 and ends at K340.
- CH2 domain includes wildtype CH2 domains, as well as variants thereof (e.g, non-naturally-occurring CH2 domains or modified CH2 domains).
- CH2 domain includes wildtype CH2 domains and variants having 1, 2, 3, 4, 5, 1-3, 1-5, 3-5 and/or at most 5, 4, 3, 2, or 1 mutations, e.g, substitutions, deletions or additions.
- CH2 domains include CH2 domains with mutations that modify a biological activity of an antibody, such as ADCC, CDC or half-life.
- a CH2 domain comprises the substitutions A330S/P331S that reduce effector function.
- Other modifications to the CH2 domain that affect a biological activity of an antibody are provided herein.
- CH3 domain refers to the heavy chain constant region that is C-terminal to the CH2 domain in a heavy chain constant domain. As used herein, a CH3 domain starts at G341 and ends at K447.
- the term “CH3 domain” includes wildtype CH3 domains, as well as variants thereof (e.g, non-naturally-occurring CH3 domains or modified CH3 domains).
- the term “CH3 domain” includes wildtype CH3 domains and variants having 1, 2, 3, 4, 5, 1-3, 1-5, 3-5 and/or at most 5, 4, 3, 2, or 1 mutations, e.g, substitutions, deletions or additions.
- Exemplary CH3 domains include CH3 domains with mutations that modify a biological activity of an antibody, such as ADCC, CDC or half-life. Modifications to the CH3 domain that affect a biological activity of an antibody are provided herein.
- the terms “specific binding,” “selective binding,” “selectively binds,” and “specifically binds,” refer to antibody binding to an epitope on a predetermined antigen.
- the antibody binds with an equilibrium dissociation constant (K D ) of approximately less than 10 7 M, such as approximately less than 10 8 M, 10 9 M or 10 10 M or even lower when determined by, e.g, surface plasmon resonance (SPR) technology in a BIACORE 2000 instrument using the predetermined antigen, as the analyte and the antibody as the ligand, or Scatchard analysis of binding of the antibody to antigen positive cells, and (ii) binds to the predetermined antigen with an affinity that is at least two-fold greater than its affinity for binding to a non-specific antigen (e.g ., BSA, casein) other than the predetermined antigen or a closely-related antigen.
- K D equilibrium dissociation constant
- nucleic acid molecules encoding an antibody provided herein.
- the term “nucleic acid molecule,” as used herein, is intended to include DNA molecules and RNA molecules.
- a nucleic acid molecule may be single-stranded or double-stranded, and may be cDNA.
- conservative sequence modifications of the sequences set forth herein, e.g., in Table 1-2, i.e., amino acid sequence modifications which do not abrogate the binding of the antibody encoded by the nucleotide sequence or containing the amino acid sequence, to the antigen.
- conservative sequence modifications include conservative nucleotide and amino acid substitutions, as well as, nucleotide and amino acid additions and deletions.
- modifications can be introduced into a sequence by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis.
- Conservative amino acid substitutions include ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
- Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g, lysine, arginine, histidine), acidic side chains (e.g, aspartic acid, glutamic acid), uncharged polar side chains (e.g, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta- branched side chains (e.g, threonine, valine, isoleucine) and aromatic side chains (e.g, tyrosine, phenylalanine, tryptophan, histidine).
- basic side chains e.g, lysine, arginine, histidine
- acidic side chains e.g, aspartic acid, glut
- a predicted nonessential amino acid residue in an anti-idiotype antibody is preferably replaced with another amino acid residue from the same side chain family.
- Methods of identifying nucleotide and amino acid conservative substitutions which do not eliminate antigen binding are well-known in the art (see, e.g, Brummell et al., Biochem. 32: 1180-1187 (1993); Kobayashi et al. Protein Eng. 12(10):879-884 (1999); and Burks etal. Proc. Natl. Acad. Sci. USA 94:412-417 (1997)).
- nucleic acid molecules encoding the heavy and/or light chain variable regions of the antibodies provided herein (e.g, as set forth in Tables 1 and 2).
- nucleic acid molecules having substantial homology to a sequence provided herein are provided herein.
- substantially homology indicates that two nucleic acids, or designated sequences thereof, when optimally aligned and compared, are identical, with appropriate nucleotide insertions or deletions, in at least about 80% of the nucleotides, usually at least about 90% to 95%, and more preferably at least about 98% to 99.5% of the nucleotides.
- substantial homology exists when the segments will hybridize under selective hybridization conditions, to the complement of the strand.
- antibodies having heavy and/or light chains with substantial homology to a sequence provided herein.
- substantial homology indicates that two polypeptides, or designated sequences thereof, when optimally aligned and compared, are identical, with appropriate amino acid insertions or deletions, in at least about 80% of the amino acids, usually at least about 90% to 95%, and more preferably at least about 98% to 99.5% of the amino acids.
- the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm, as described in the non-limiting examples below.
- the percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package (available on the World Wide Web at gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
- the percent identity between two nucleotide or amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
- the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (J.
- vectors encoding the heavy and/or light chain of an antibody provided herein.
- the term “vector,” as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid refers to a circular double stranded DNA loop into which additional DNA segments may be ligated.
- viral vector Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome.
- Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g ., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
- vectors e.g., non-episomal mammalian vectors
- vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
- certain vectors are capable of directing the expression of genes to which they are operatively linked.
- Such vectors are referred to herein as “recombinant expression vectors” (or simply, “expression vectors”).
- expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
- plasmid and vector may be used interchangeably as the plasmid is the most commonly used form of vector.
- viral vectors e.g, replication defective retroviruses, adenoviruses and adeno-associated viruses
- a host cell comprising a nucleic acid molecule disclosed herein.
- the term “recombinant host cell” (or simply “host cell”), as used herein, is intended to refer to a cell that comprises a nucleic acid that is not naturally present in the cell, and maybe a cell into which a recombinant expression vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term “host cell” as used herein.
- kits for treating or preventing Wu-CoV infection are provided herein.
- administering refers to the physical introduction of a composition comprising a therapeutic agent to a subject, using any of the various methods and delivery systems known to those skilled in the art.
- Preferred routes of administration for antibodies described herein include intravenous, intraperitoneal, intramuscular, subcutaneous, spinal or other parenteral routes of administration, for example by injection or infusion.
- parenteral administration means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intraperitoneal, intramuscular, intraarterial, intrathecal, intralymphatic, intralesional, intracap sular, intraorbital, intracardiac, intradermal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion, as well as in vivo electroporation.
- an antibody described herein can be administered via a non- parenteral route, such as a topical, epidermal or mucosal route of administration, for example, intranasally, orally, vaginally, rectally, sublingually or topically.
- Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
- the methods provided herein treat Wu-CoV infection in a subject.
- the terms “treat,” “treating,” and “treatment,” as used herein, refer to any type of intervention or process performed on, or administering an active agent to, the subject with the objective of reversing, alleviating, ameliorating, inhibiting, or slowing down or preventing the progression, development, severity or recurrence of a symptom, complication, condition or biochemical indicia associated with a disease and/or infection.
- Treatment can be of a subject having a disease or a subject who does not have a disease and/or infection (e.g ., for prophylaxis).
- the subject being treated is administered an effective dose of an antibody provided herein.
- effective dose or “effective dosage” is defined as an amount sufficient to achieve or at least partially achieve a desired effect.
- a “therapeutically effective amount” or “therapeutically effective dosage” of a drug or therapeutic agent is any amount of the drug that, when used alone or in combination with another therapeutic agent, promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction.
- a therapeutically effective amount or dosage of a drug includes a “prophylactically effective amount” or a “prophylactically effective dosage,” which is any amount of the drug that, when administered alone or in combination with another therapeutic agent to a subject at risk of developing a disease and/or infection or of suffering a recurrence of disease and/or infection, inhibits the development or recurrence of the disease and/or infection.
- a therapeutic agent to promote disease and/or infection regression or inhibit the development or recurrence of the disease and/or infection can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.
- the term “subject” includes any human or non-human animal. In certain embodiments provided herein the subject is a human.
- non-human animal includes all vertebrates, e.g ., mammals and non-mammals, such as non-human primates, sheep, dog, cow, chickens, amphibians, reptiles, etc.
- Antibody binding affinity to SARS-CoV-2 RBD was determined by ELISA assay. Representative KD values are shown in Table 5, including antibodies that show no binding to SARS-CoV-2 RBD. Results show KD values of between 0.027 and 75.31 pg/ml as determined by ELISA.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oncology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pulmonology (AREA)
- Communicable Diseases (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
Abstract
Dans certains aspects, la présente invention concerne des anticorps et des fragments de liaison à l'antigène de ceux-ci spécifiques pour Wu-CoV. Dans certains aspects, la présente invention concerne des méthodes de traitement d'une infection par le Wu-CoV à l'aide des anticorps selon l'invention. Dans certains aspects, l'invention concerne des molécules d'acide nucléique codant pour les anticorps de l'invention, des cellules hôtes comprenant de tels acides nucléiques, et des procédés de fabrication des anticorps selon l'invention utilisant de telles cellules hôtes. Dans certains aspects, l'invention concerne également des compositions pharmaceutiques comprenant lesdits anticorps.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062965390P | 2020-01-24 | 2020-01-24 | |
US62/965,390 | 2020-01-24 | ||
US202062968316P | 2020-01-31 | 2020-01-31 | |
US62/968,316 | 2020-01-31 | ||
US202062984638P | 2020-03-03 | 2020-03-03 | |
US62/984,638 | 2020-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021148884A1 true WO2021148884A1 (fr) | 2021-07-29 |
Family
ID=74873779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2021/000031 WO2021148884A1 (fr) | 2020-01-24 | 2021-01-22 | Anticorps anti-coronavirus du wuhan |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021148884A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11192940B2 (en) | 2020-04-10 | 2021-12-07 | Adagio Therapeutics, Inc. | Compounds specific to coronavirus S protein and uses thereof |
US11732030B2 (en) | 2020-04-02 | 2023-08-22 | Regeneron Pharmaceuticals, Inc. | Anti-SARS-CoV-2-spike glycoprotein antibodies and antigen-binding fragments |
WO2024067810A1 (fr) * | 2022-09-29 | 2024-04-04 | Nanjing Immunophage Biotech Co., Ltd | Anticorps anti-gpr183 et leurs utilisations |
US11999777B2 (en) | 2020-06-03 | 2024-06-04 | Regeneron Pharmaceuticals, Inc. | Methods for treating or preventing SARS-CoV-2 infections and COVID-19 with anti-SARS-CoV-2 spike glycoprotein antibodies |
WO2024102700A3 (fr) * | 2022-11-09 | 2024-06-20 | IgGenix, Inc. | Compositions et procédés pour le traitement et la suppression de réactions allergiques |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006051091A1 (fr) * | 2004-11-11 | 2006-05-18 | Crucell Holland B.V. | Compositions contre le coronavirus du sras et utilisations de ces compositions |
WO2009128963A2 (fr) * | 2008-01-17 | 2009-10-22 | Humab, Llc | Anticorps monoclonaux humains à neutralisation croisée dirigés contre sars-cov et procédés d'utilisation de ces derniers |
WO2016020502A1 (fr) * | 2014-08-06 | 2016-02-11 | Cantargia Ab | Nouveaux anticorps et utilisations desdits anticorps |
-
2021
- 2021-01-22 WO PCT/IB2021/000031 patent/WO2021148884A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006051091A1 (fr) * | 2004-11-11 | 2006-05-18 | Crucell Holland B.V. | Compositions contre le coronavirus du sras et utilisations de ces compositions |
WO2009128963A2 (fr) * | 2008-01-17 | 2009-10-22 | Humab, Llc | Anticorps monoclonaux humains à neutralisation croisée dirigés contre sars-cov et procédés d'utilisation de ces derniers |
WO2016020502A1 (fr) * | 2014-08-06 | 2016-02-11 | Cantargia Ab | Nouveaux anticorps et utilisations desdits anticorps |
Non-Patent Citations (16)
Title |
---|
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426 |
BRUMMELL ET AL., BIOCHEM, vol. 32, 1993, pages 1180 - 1187 |
BURKS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 94, 1997, pages 412 - 417 |
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877 - 883 |
DONG NING ET AL: "Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China", BIORXIV, 21 January 2020 (2020-01-21), XP055809875, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.01.20.913368v2.full.pdf> [retrieved on 20210602], DOI: 10.1101/2020.01.20.913368 * |
E. MEYERSW. MILLER, CABIOS, vol. 4, 1989, pages 11 - 17 |
HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883 |
JEFFERIS ET AL., MABS, vol. 1, 2009, pages 1 |
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1992, PUBLIC HEALTH SERVICE |
KOBAYASHI ET AL., PROTEIN ENG, vol. 12, no. 10, 1999, pages 879 - 884 |
MACCALLUM ET AL., J. MOL. BIOL., vol. 262, 1996, pages 732 - 745 |
MAKABE ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, 2008, pages 1156 - 1166 |
NEEDLEMANWUNSCH, J. MOL. BIOL., no. 48, 1970, pages 444 - 453 |
ROUX ET AL., J IMMUNOL, vol. 161, 1998, pages 4083 |
ROUX ET AL., J. IMMUNOL., vol. 161, 1998, pages 4083 |
XIAOLONG TIAN ET AL: "Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody", EMERGING MICROBES & INFECTIONS, vol. 9, no. 1, 17 February 2020 (2020-02-17), pages 382 - 385, XP055736759, DOI: 10.1080/22221751.2020.1729069 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11732030B2 (en) | 2020-04-02 | 2023-08-22 | Regeneron Pharmaceuticals, Inc. | Anti-SARS-CoV-2-spike glycoprotein antibodies and antigen-binding fragments |
US11192940B2 (en) | 2020-04-10 | 2021-12-07 | Adagio Therapeutics, Inc. | Compounds specific to coronavirus S protein and uses thereof |
US11220536B1 (en) | 2020-04-10 | 2022-01-11 | Adagio Therapeutics, Inc. | Compounds specific to coronavirus S protein and uses thereof |
US11414479B2 (en) | 2020-04-10 | 2022-08-16 | Adagio Therapeutics, Inc. | Compounds specific to coronavirus S protein and uses thereof |
US11999777B2 (en) | 2020-06-03 | 2024-06-04 | Regeneron Pharmaceuticals, Inc. | Methods for treating or preventing SARS-CoV-2 infections and COVID-19 with anti-SARS-CoV-2 spike glycoprotein antibodies |
WO2024067810A1 (fr) * | 2022-09-29 | 2024-04-04 | Nanjing Immunophage Biotech Co., Ltd | Anticorps anti-gpr183 et leurs utilisations |
WO2024102700A3 (fr) * | 2022-11-09 | 2024-06-20 | IgGenix, Inc. | Compositions et procédés pour le traitement et la suppression de réactions allergiques |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021148884A1 (fr) | Anticorps anti-coronavirus du wuhan | |
WO2021196268A1 (fr) | Anticorps ayant une activité neutralisante contre le coronavirus, et utilisation associée | |
JP6797111B2 (ja) | イヌpd−l1と結合するpd−l1抗体 | |
CN106029697B (zh) | 具有经修饰的ch2-ch3序列的犬抗体 | |
WO2019062832A1 (fr) | Anticorps tigit, fragment de liaison à l'antigène de celui-ci, et son utilisation médicale | |
WO2019091449A1 (fr) | Anticorps cd96, fragment de liaison à l'antigène de celui-ci et utilisation pharmaceutique associée | |
WO2021139758A1 (fr) | Nouveau complexe polypeptidique | |
US11248046B2 (en) | Claudin 6 antibodies and uses thereof | |
WO2021143914A1 (fr) | Anticorps anti-ox40, son procédé de production et son application | |
JP2023534922A (ja) | SARS-CoV-2を標的とする抗原結合分子 | |
CN113583116A (zh) | 针对SARS-CoV-1或SARS-CoV-2的抗体及其用途 | |
WO2022228183A1 (fr) | Anticorps anti-siglec 15, son procédé de préparation et son utilisation | |
JP2021525071A (ja) | B型肝炎抗体 | |
CN118388641A (zh) | 针对SARS-CoV-2的抗体及其用途 | |
WO2021262791A1 (fr) | Anticorps à haute affinité ciblant la protéine tau phosphorylée à la position 413 de sérine | |
CN113549147B (zh) | 抗柯萨奇a6型病毒的单克隆抗体及其应用 | |
CN113583115A (zh) | 针对SARS-CoV-2的抗体及其用途 | |
KR20230145542A (ko) | Tgf-베타-rii 결합 단백질 | |
US11359007B2 (en) | Anti-SARS-CoV-2 neutralizing antibodies | |
CN116496389A (zh) | 用于治疗hbv感染及相关疾病的表位肽及抗体 | |
JP2007527703A (ja) | 肺炎球菌表面付着因子Aタンパク質(PsaA)に関する結合メンバー | |
CN116368229A (zh) | 针对冠状病毒刺突蛋白的单克隆抗体及其用途 | |
TW202204395A (zh) | 抗sars-cov-2之抗體及使用其之方法 | |
US11834512B2 (en) | Inhibiting anti-ENPP1 antibodies | |
CN113549146B (zh) | 针对柯萨奇病毒b1型的单克隆抗体及其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21711949 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21711949 Country of ref document: EP Kind code of ref document: A1 |