WO2021148373A1 - Système de surveillance uwb - Google Patents

Système de surveillance uwb Download PDF

Info

Publication number
WO2021148373A1
WO2021148373A1 PCT/EP2021/051003 EP2021051003W WO2021148373A1 WO 2021148373 A1 WO2021148373 A1 WO 2021148373A1 EP 2021051003 W EP2021051003 W EP 2021051003W WO 2021148373 A1 WO2021148373 A1 WO 2021148373A1
Authority
WO
WIPO (PCT)
Prior art keywords
uwb
sensor data
monitoring system
sensors
personal
Prior art date
Application number
PCT/EP2021/051003
Other languages
German (de)
English (en)
Inventor
Olaf Dressel
Sandra Schmidt
Steffen KUNAHT
Michael WINDISCH
Original Assignee
Bundesdruckerei Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesdruckerei Gmbh filed Critical Bundesdruckerei Gmbh
Priority to EP21701105.5A priority Critical patent/EP4094235A1/fr
Publication of WO2021148373A1 publication Critical patent/WO2021148373A1/fr

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19678User interface
    • G08B13/19686Interfaces masking personal details for privacy, e.g. blurring faces, vehicle license plates

Definitions

  • the invention relates to a UWB monitoring system and a method for controlling a UWB monitoring system.
  • Modern sensor technology enables detailed, diverse and extensive monitoring, for example of spatial areas. However, with the scope and quality of the recorded sensor data, so do the requirements for processing and securing the recorded data, especially if they include personal sensor data.
  • the invention is based on the object of creating a UWB monitoring system with improved data security.
  • Embodiments include a UWB monitoring system for monitoring a spatial area.
  • the UWB monitoring system comprises a plurality of UWB sensors which are arranged spatially distributed in the area.
  • the UWB sensors are configured to acquire sensor data and to transmit the acquired sensor data by means of UWB.
  • the UWB monitoring system is configured for
  • Embodiments can have the advantage that it can be ensured that person-related sensor data, insofar as they are recorded by the UWB sensors, are not made available as a result of the anonymization or are only made available in such a form that no conclusions can be drawn about the identity of the persons to which the personal data are related.
  • the anonymization includes, in particular, changing personal sensor data in such a way that individual information about personal or factual circumstances can no longer be assigned to a specific or identifiable natural person or can only be assigned a disproportionately large amount of time, costs and manpower.
  • the change includes, for example, a content-related redesign of recorded personal sensor data up to the deletion of the same.
  • deletion denotes, for example, making personal sensor data unrecognizable through to complete removal of the corresponding personal sensor data from a memory for storing acquired sensor data.
  • the memory can be, for example, a local or a central memory of the UWB monitoring system.
  • the spatial area is, for example, a restricted-access spatial area, for example a restricted-access security area.
  • the accessible The restricted spatial area is, for example, delimited from the surroundings and can only be entered via one or more entrances or exits as intended.
  • the restricted-access spatial area is an indoor area.
  • UWB Ultra Wideband
  • UWB refers to the wireless transmission of electromagnetic pulse-shaped signals over a plurality of parallel radio channels with low transmission powers, e.g. up to a maximum of 1 mW.
  • UWB is based on the generation of pulses with the shortest possible pulse duration, which is why the spectrum emitted or received via the UWB antenna is larger or wider, the shorter the pulse duration, according to the Ge set of the Fourier transformation.
  • the product of the temporal and spectral width of the pulse is constant.
  • the total transmission power of a few milliwatts or less is distributed over such a large frequency range that no interference is to be expected for the radio operation of narrowband transmission methods. It is therefore difficult or impossible to see that a transmission with UWB is taking place at all.
  • a UWB signal appears much more like noise. This enables communication that can hardly be located and which can be used in the same frequency range as conventional transmission methods.
  • UWB does not use a fixed carrier frequency which is modulated. Rather, data transmission takes place, for example, based on pulse phase modulation or pulse position modulation ("Pulse-Position Modulation" / PPM) using a plurality of individual pulses. Another possibility for data transmission using UWB is modulation of the polarity and / or amplitude of the pulses. If the times of the individual pulses differ sufficiently, several UWB transmission channels can be operated in the same spatial area without mutual interference.
  • UWB systems can provide useful bit rates up to the Gbit / s range, for example.
  • the ranges of UWB transmissions can range from a few meters to a hundred meters, for example.
  • the UWB technology also enables a radar method to be implemented using UWB radar sensors.
  • a Generates an alternating electromagnetic field with a large bandwidth, the field strengths of which are small. Depending on the nature of objects in the range of the electromagnetic alternating field, this will deform the alternating field.
  • the resulting field can be detected by a UWB sensor. With knowledge of both the output field and the resulting field, conclusions can be drawn about the cause of the detected deformation and also about the type and geometry of the object or objects in the range of the electromagnetic alternating field.
  • UWB radar sensors work, for example, on frequencies between BO MHz and 12.4 GHz. Depending on the application, resolutions from centimeters to a few millimeters can be achieved with working bandwidths of 5 GHz.
  • short pulses are sent out and compared with the pulse patterns reflected by the object or objects. This allows geometric parameters such as distance, thickness, length, position, body shape, movement and / or speed to be determined. Objects can also be detected through clothing and walls. The properties of the propagation medium for the electromagnetic fields are assumed to be known.
  • UWB can prevent tracking of mobile devices, since devices communicating via UWB, such as UWB tokens, cannot be localized without knowledge of the UWB coding used. Furthermore, the relatively short range of UWB ensures that remote tracking and / or eavesdropping can be effectively prevented.
  • the UWB coding offers independent, instantaneous encryption of the transmitted data, which is thus protected against eavesdropping.
  • UWB has a high resistance to interference signals ("jamming"). Due to these special technical properties that are advantageous for safety applications, a monitoring system can be implemented using UWB, which provides a high level of process protection can also guarantee the sensor data located or used therein, but in particular also in connection with person-related sensor data of participants. In particular, a high level of security of the data transmission by means of UWB can be ensured.
  • a UWB sensor is understood to mean a sensor or anchor which is configured to transmit recorded data, for example sensor data, by means of UWB.
  • a UWB- Sensor such as a UWB radar sensor or a UWB localization sensor, configured to acquire sensor data using UWB.
  • a UWB sensor can configure the sensor data by means of a UWB-independent method, for example an optical, acoustic, chemical, thermal, electromagnetic and / or vibration-based method.
  • the UWB sensors are configured for data transmission exclusively by means of UWB.
  • one or more of the UWB sensors can additionally be configured to transmit captured data by means of a wired data connection.
  • some of the UWB sensors of the UWB monitoring system are configured to transmit captured data by means of a wired data connection.
  • all of the UWB sensors of the UWB monitoring system are configured for the transmission of recorded data by means of a wired data connection.
  • Sensor data is understood to mean data recorded by means of one of the UWB sensors, i.e. for example optical, acoustic, chemical, thermal, electromagnetic and / or vibration-based data.
  • the sensor data are transmitted from the capturing UWB sensors within the UWB monitoring system by means of UWB.
  • one or more of the UWB sensors can also be configured to transmit captured data by means of a wired data connection.
  • the sensor data can also be data that were recorded by the UWB sensors by means of UWB.
  • the sensor data is sensor data from a UWB radar sensor or a UWB localization sensor.
  • Personal sensor data denote sensor data which enable a person to be identified or can be assigned to a person to whom the personal sensor data are related.
  • personal sensor data are, for example, individual items of information about personal or factual circumstances of a specific or identifiable natural person recorded by means of one of the UWB sensors.
  • the person-related sensor data include visual sensor data, such as video and / or photo data, on the basis of which a person can be recognized. This is particularly the case when a person's face can be recognized on the basis of the video and / or photo data.
  • An anonymization filter is configured to selectively anonymize personal data.
  • the anonymization filter can be configured to anonymize sensor data which are recorded by certain UWB sensors or a certain type of UWB sensors of the UWB monitoring system. These are, for example, video and / or image data that are recorded using a surveillance camera and on which individual persons can be identified.
  • An exception event denotes an anomaly in the recorded sensor data, ie a data constellation which is not to be expected under predefined operating conditions.
  • the anomaly can be an emergency situation, such as a fire or unauthorized entry into and / or movement within the spatial area.
  • a UWB token is understood to be a hardware token in the form of a mobile portable electronic device which is configured for wireless communication by means of UWB.
  • a UWB token can also be configured to determine position data on the basis of a transit time measurement and triangulation of UWB signals, which it receives from localization sensors of the UWB monitoring system.
  • the UWB token can be designed as a document, in particular a value or security document.
  • a "document” is understood to mean paper-based and / or plastic-based documents, such as electronic identification documents, in particular passports, ID cards, visas and driver's licenses, vehicle documents, vehicle documents, company ID cards, health cards or other ID documents as well as chip cards, means of payment , in particular bank notes, bank cards and credit cards, waybills or other credentials.
  • electronic identification documents in particular passports, ID cards, visas and driver's licenses
  • vehicle documents vehicle documents, company ID cards, health cards or other ID documents as well as chip cards
  • means of payment in particular bank notes, bank cards and credit cards, waybills or other credentials.
  • a memory of such a document for example, one or more attributes of a user or object assigned to the document are stored.
  • the suspension of anonymization is limited to person-related sensor data that are recorded by UWB sensors that have a predefined reference to the detected exception event. For example, there is a predefined reference that the UWB sensors, for whose personal sensor data anonymization is suspended, are assigned to the same spatial section of the spatial area as the UWB sensor or sensors in whose recorded sensor data the exceptional event is detected .
  • Embodiments can have the advantage that the suspension of anonymization is not only limited in time, but also spatially. As a result, unnecessary suspension of anonymization, for example for personal data that has nothing to do with the exceptional event, can be avoided.
  • the predefined reference additionally or alternatively consists in the fact that UWB sensors, for whose personal sensor data anonymization is suspended, are assigned to predefined spatial sections of the spatial area.
  • the corresponding spatial sections are, for example, entrances and exits to an area with restricted access.
  • a possible unauthorized intrusion into the restricted area or in the event of a possible emergency, such as a fire alarm, it can be advantageous to record who Enters and / or leaves the restricted-access spatial area or who tries to enter and / or leave the restricted-access spatial area.
  • the anonymization of all person-related sensor data recorded by the UWB monitoring system is temporarily suspended.
  • Embodiments can have the advantage that it can be ensured that no personal sensor data relevant and / or necessary for handling and / or rectification of the exceptional event are missing due to the anonymization.
  • the anonymization by the anonymization filter includes deleting at least part of the personal sensor data.
  • the temporary suspension of anonymization includes storing the personal sensor data, which are recorded within a limited time window.
  • Embodiments can have the advantage that in the event of deletion, i.e. complete removal of personal sensor data from local and / or central memories of the UWB monitoring system, it can be ensured that no one can gain access to this data.
  • personal sensor data such as video and / or image data
  • the stored data are provided for the purpose of data analysis, in particular for the purpose of identifying persons to whom the stored personal sensor data are related.
  • the storage is a time-limited storage.
  • the stored personal sensor data are deleted again after their evaluation and / or upon termination of the exceptional situation.
  • the storage is permanent storage.
  • the limited time window begins with the detection of the exceptional event. According to embodiments, the limited time window ends when a predetermined period of time has elapsed or the detection of the exceptional event ends.
  • Embodiments can have the advantage that the storage of the personal sensor data remains limited in time to a time window which is related to the detected exception event. It can be assumed, for example, that le- only personal sensor data recorded in this time window are relevant in the context of the detected exceptional event.
  • the limited time window ends, for example, when the exceptional event is no longer detected or can no longer be detected.
  • the exceptional event can be detected, for example, in the form of a detection of smoke by a UWB sensor of the monitoring system designed as a smoke alarm. If the exceptional event is no longer detected, ie no more smoke is detected, the suspension of anonymization, for example, is ended.
  • Further prerequisites include, for example, logging a confirmation in the UWB monitoring system that the exceptional event has been checked and that no further measures are necessary or that all necessary measures have been taken. Alternatively or additionally, the further prerequisites can include, for example, logging a confirmation in the UWB monitoring system that the suspension of anonymization is not and / or no longer necessary.
  • the predetermined period of time can have a length of seconds and / or minutes, for example.
  • the deletion of the personal sensor data takes place in each case by the UWB sensor that detects the personal sensor data to be deleted.
  • the storage of the person-related sensor data in each case comprises a transmission of the person-related sensor data by the UWB sensor detecting the person-related sensor data to be stored, at least partially and / or completely by means of UWB to a storage module of the UWB monitoring system.
  • the storage of the person-related sensor data each includes a transmission of the person-related sensor data by the UWB sensor, which detects the person-related sensor data to be saved, at least partially and / or completely by means of a wired data connection to a memory module of the UWB monitoring system.
  • Embodiments can have the advantage that, in the event of direct deletion by the capturing UWB sensor, it can be ensured that the person-related sensor data to be deleted within the monitoring system do not go beyond the capturing UWB sensor. As a result, it can be effectively prevented that someone can gain access to the personal sensor data in an unauthorized manner.
  • Embodiments can also have the advantage that the stored in the memory module If necessary, secured personal sensor data can be used to handle and / or remedy the exceptional event. For example, the stored personal sensor data can be analyzed in order to determine which people are and / or could be involved in the exceptional event.
  • the memory module can be a local memory module of a plurality of memory modules distributed decentrally via the UWB monitoring system or a central memory module of the UWB monitoring system.
  • the anonymization by the anonymization filter comprises an encryption of at least part of the personal sensor data.
  • the time-limited suspension of anonymization includes a time-limited provision of the corresponding person-related sensor data in unencrypted form.
  • Embodiments can have the advantage that, by encrypting the person-related sensor data, access to the person-related sensor data can be effectively prevented.
  • access to already recorded personal sensor data can be made possible by means of decryption.
  • the personal sensor data is only made available for a limited time in decrypted form.
  • the encryption of the personal sensor data takes place in each case by the UWB sensor that records the personal sensor data to be encrypted.
  • Embodiments can have the advantage that the personal sensor data are encrypted directly when they are recorded and are only further processed in the UWB monitoring system in encrypted form. Encryption can take place, for example, with a public cryptographic key of an asymmetric key pair, so that it can be decrypted by an owner of the associated secret cryptographic key of the corresponding asymmetric key pair.
  • the corresponding owner is, for example, a central or decentralized control module of the UWB monitoring system.
  • the secret cryptographic keys are stored, for example, in a protected memory area of a memory module which is assigned to the corresponding control module.
  • the control module provides all UWB sensors or at least all UWB sensors configured for capturing personal sensor data with a uniform public cryptographic key for encryption.
  • the control module provides all UWB sensors or at least all of the sen personal sensor data configured UWB sensors each have an individual public cryptographic key assigned to the corresponding UWB sensors for encryption.
  • the control module provides the UWB sensors or at least the UWB sensors configured for capturing personal sensor data in groups with an individual public cryptographic key assigned to the corresponding group for encryption.
  • the groups can be divided so that they each include UWB sensors which are assigned to the same spatial section of the spatial area, which are the same type of UWB sensor or which are configured to record the same type of person-related sensor data .
  • the provision of the person-related sensor data in unencrypted form comprises a suspension of the encryption of the person-related sensor data that are recorded within a limited time window.
  • Embodiments can have the advantage that the effort for decrypting the corresponding person-related sensor data can be avoided and these person-related sensor data also remain unencrypted.
  • providing the person-related sensor data in unencrypted form includes decrypting encrypted person-related sensor data that are recorded within the limited time window.
  • Embodiments can have the advantage that the person-related sensor data are stored exclusively in encrypted form even in the event of an exceptional event. A provision of the personal sensor data in unencrypted form can thus be effectively limited in time.
  • the limited time window begins a predetermined period of time before the detection of the exception event or with the detection of the exception event. According to embodiments, the limited time window ends when a predetermined period of time has elapsed after the detection of the exceptional event or when the detection of the exceptional event ends.
  • Embodiments can have the advantage that the provision of the person-related sensor data in unencrypted form remains limited in time to a time window which is related to the detected exception event. For example, it can be assumed that only personal sensor data recorded in this time window are relevant in the context of the detected exceptional event.
  • the limited time window ends, for example, when the exceptional event is no longer detected or can no longer be detected.
  • the exceptional event can, for example, in the form of a smoke detection by a UWB sensor designed as a smoke detector of the surveillance system can be detected. If the exceptional event is no longer detected, that is to say no more smoke is detected, the suspension of encryption is ended, for example.
  • the suspension of the encryption is ended. Otherwise, the suspension is repeated or continued again for the predetermined period of time.
  • Further prerequisites include, for example, logging a confirmation in the UWB monitoring system that the exceptional event has been checked and that no further measures are necessary or that all necessary measures have been taken.
  • the further prerequisites can include, for example, logging a confirmation in the UWB monitoring system that the suspension of the encryption is not and / or no longer necessary.
  • the predetermined period of time can have a length of seconds and / or minutes, for example.
  • a start of the limited time window a predetermined period of time before the detection of the exceptional event can have the advantage that relevant personal sensor data that were recorded in advance of the exceptional event can also be provided in unencrypted form.
  • the UWB monitoring system is further configured for
  • Embodiments can have the advantage that recorded sensor data, in particular personal sensor data, are only made available to persons who are authorized to do so.
  • a release of sensor data takes place, for example, according to an authorization profile of the inquirer.
  • an effective data protection layer can be integrated into the UWB monitoring system.
  • Proof of authorization can be provided, for example, in the form of an authorization certificate.
  • the request is received and checked, for example, by a decentralized or central control module of the UWB monitoring system. In the event of a successful check, for example, the release is also carried out by the corresponding control module.
  • the requested sensor data are sent in response to the request to the sender of the request or displayed on a display device of the UWB monitoring system.
  • the transmission of the requested sensor Or data takes place, for example, in encrypted form; in particular, it can take place using end-to-end encryption.
  • the recorded sensor data are divided into categories and the checking of the authorization verification includes checking whether the authorization verification authorizes access to sensor data of the category to which the requested sensor data is assigned.
  • Embodiments can have the advantage that authorizations can be granted by category so that proof of authorization can be restricted to one or more of the categories.
  • the recorded personal sensor data are divided into categories and the anonymization is suspended, for example depending on the type of the detected exceptional event, selectively only for one or more selected categories.
  • the access authorization of the credentials is extended for a limited time to the detection of the exception event.
  • An extension of the credentials means that, with a given credential, more categories may be viewed in the event that an exceptional event is detected than if no exceptional event is detected.
  • the scope of the expansion depends on the type of exception event detected.
  • the access authorization for all valid credentials for access to at least one category of sensor data is extended to all categories of sensor data for a limited period of time.
  • Embodiments can have the advantage that, for example, depending on the sensitivity of the sensor data, different credentials are required for access to the corresponding sensor data and it is thus possible to control who is granted access rights to the recorded sensor data of the UWB monitoring system and to what extent. In this way, the data release can be adapted to the current risk situation, for example through the authorization profile of the inquirer.
  • the acquired sensor data are each assigned original IDs.
  • a prerequisite for the successful verification of the credentials is a valid confirmation of the credential for access to the requested Sensor data by one or more instances assigned to the original IDs of the requested sensor data.
  • Embodiments can have the advantage that an authorization by one or more entities assigned to the origin IDs, i.e. the origin, of the requested sensor data is necessary for access to the acquired sensor data.
  • the original IDs each identify the UWB sensor that recorded the corresponding sensor data and / or the UWB token that was sensed by the corresponding sensor data.
  • the corresponding entities are each the corresponding UWB sensors, UWB tokens or users or administrators who are assigned to the corresponding UWB sensors or UWB tokens.
  • each localized position i.e. recorded sensor data for the localization of UWB tokens
  • UWB token secure information from the UWB token, so that the origin and owner of the corresponding sensor data are always known.
  • inquiries regarding a position or data of a UWB token must first always be approved by the UWB token concerned or a carrier and / or representative of the same.
  • the type, time, location, recipient and / or use of the released sensor data are logged.
  • Embodiments can have the advantage that, on the basis of the corresponding protocols, it is possible to precisely understand what is happening with the recorded sensor data, in particular who has access to them.
  • the logging takes place in a blockchain.
  • a blockchain can have the advantage that it provides a forgery-proof storage structure for storing the data to be logged.
  • the UWB monitoring system comprises one or more pre-trained machine learning modules, which are each trained to recognize exceptional events on the basis of anomalies in the recorded sensor data.
  • Embodiments can have the advantage that an automated detection of exception events is made possible.
  • the plurality of UWB sensors comprises a plurality of localization sensors which are configured to determine the position of UWB tokens within the spatial area. The position is determined using fertilization of transit time measurements of UWB signals between UWB tokens and / or localization sensors.
  • Embodiments can have the advantage that the UWB tokens can be used to effectively monitor where authorized persons are within the spatial area. For example, every person who enters the spatial area, e.g. a restricted-access spatial area, receives a corresponding UWB token. If data relating to an assignment of a token ID to a specific person is not saved or is saved cryptographically, e.g. in encrypted form, the monitoring of the UWB token enables anonymous monitoring of the carriers of the UWB tokens. For example, a necessary prerequisite for decrypting the data for assignment is the detection of an exception event.
  • UWB tokens are localized, for example, by means of triangulation using at least two or three localization sensors in the form of UWB antennas.
  • the triangulation signals can be sent by the UWB token and / or by the UWB antennas.
  • the triangulation signals can be evaluated by the UWB token and / or the UWB antennas and / or an evaluation module of the monitoring system.
  • the UWB monitoring system sends an activation code.
  • the UWB tokens are activated when entering a transmission range of the UWB monitoring system upon receipt of the activation code and deactivated upon receipt of the activation code when the transmission range of the UWB monitoring system is not received.
  • Embodiments can have the advantage that the UWB token only actively sends signals using UWB within the spatial area or within the transmission range of the UWB monitoring system and is therefore detectable at all.
  • activating the UWB tokens includes activating the sending of UWB signals by the respective UWB token, in particular activating the sending of UWB signals to the monitoring system. Activation makes the corresponding UWB token visible to the surveillance system.
  • deactivating the UWB tokens includes deactivating the sending of UWB signals by the respective UWB token, in particular deactivating the sending of UWB signals to the monitoring system. Deactivating this makes the corresponding UWB token invisible to the surveillance system.
  • access authorizations to and / or residence permits in a spatial area, which is an access-restricted spatial area, are verified using the UWB tokens.
  • Embodiments can have the advantage that by means of the UWB tokens not only movements of the carriers within a restricted access spatial area can be tracked, but it can also be checked whether an access authorization and / or residence authorization to or in the restricted access spatial area and / or certain spatial sections of the same is present. Based on this, it can be recognized whether a carrier of a UWB token is legitimately staying in the restricted-access spatial area and / or a spatial section thereof.
  • access barriers such as doors to the restricted-access spatial area and / or a spatial section thereof, can automatically open when a carrier of a UWB token with valid access authorizations approaches the access barrier.
  • different access authorizations may be necessary for different spatial sections of the restricted-access spatial area.
  • access authorizations and / or residence authorizations are evidenced by possession of the UWB token.
  • access authorizations and / or residence authorizations are evidenced by authorization certificates.
  • An authorization certificate is a digital certificate which assigns an access authorization and / or residence authorization to a UWB token and / or a user of the corresponding UWB token.
  • an authorization certificate defines access authorizations and / or residence authorizations, comprises a public cryptographic key of an asymmetric cryptographic key pair assigned to the UWB token, a token ID, information on the issuer of the authorization certificate and / or a digital signature of an issuer.
  • the issuer can be, for example, an external instance, a decentralized or centralized control module of the UWB monitoring system or another UWB token which itself has the granted access authorizations and / or residence authorizations.
  • Access authorizations and / or residence authorizations can be established, for example, using the authorization certificate in conjunction with a signature of the UWB token using a private cryptographic key of the asymmetric cryptographic key pair assigned to the UWB token. Using the public cryptographic key provided by the authorization certificate, the signature can be checked and consequently the possession of the private cryptographic key on the part of the UWB token can be verified.
  • the authorization certificate is defined, for example, for the owner of the private cryptographic key by the issuer of the Authorization certificate granted access authorizations and / or residence authorizations.
  • the access authorizations and / or residence authorizations are limited in time. For example, a time limit is defined by an expiration date and / or an expiration time of the authorization certificate.
  • the detection of the exception event comprises detecting a number of people in the spatial area, for example an access-restricted spatial area, using the UWB sensors, which are at least locally based on the number of the number detected using the UWB tokens in the spatial area differs from authorized persons.
  • Embodiments can have the advantage that attempts to gain access to the restricted-access spatial area or sections thereof without access authorization and / or attempts to monitor movement by the UWB monitoring system within the restricted-access spatial area can be effectively detected.
  • each of the UWB tokens is assigned to a user.
  • one or more reference values for person-related sensor data for authenticating the assigned user i.e. authentication data
  • Evidence of access authorization and / or residence authorization using one of the UWB tokens includes, for example, a confirmation of authentication of the user assigned to the corresponding UWB token by the UWB token.
  • the authentication by the UWB token includes, for example, a local validation of authentication data by the UWB token using the one or more reference values stored in the UWB token.
  • the UWB tokens each include, for example, a sensor for detecting the authentication data.
  • the authentication data of the user are recorded, for example, in each case by a sensor of the UWB tokens.
  • the authentication data is recorded, for example, by a local sensor of the UWB monitoring system and sent to the UWB token for validation.
  • the authentication data recorded is sent in encrypted form.
  • the reference values are stored in encrypted form and the local validation of the authentication data recorded takes place in encrypted form.
  • the authentication data comprise biometric data of the user, which are recorded using a biometric sensor.
  • Biometric See data can include, for example: DNA data, fingerprint data, body geometry data / anthropometric data, such as face, hand, ear geometry data, hand line structure data, vein structure data, such as hand vein structure data, iris data, retina data, voice recognition data, nail bed pattern, tooth pattern data.
  • the authentication data comprise behavior-based data of the user.
  • Behavior-based data are data that are based on an intrinsic behavior of the user and can include, for example: movement patterns, gait patterns, arm, hand, finger movement patterns, lip movement patterns.
  • Using behavior-based data to authenticate the user can have the advantage that the user can continue his usual, characteristic behavior for the purpose of authentication without requiring additional actions that are atypical for him. In particular, the user does not have to interrupt his usual behavior.
  • the behavior-based data is, for example, movement data that is recorded using an authentication sensor configured as a movement sensor.
  • the motion sensor can for example comprise an acceleration sensor.
  • a movement can be calculated, for example, by integration using measured acceleration values that are recorded by the acceleration sensor.
  • the motion sensor can, for example, also detect its position in space and / or changes in the position.
  • the motion sensor includes a gyroscope.
  • the movement data detected by the movement sensor are, for example, acceleration, inclination and / or position data.
  • the recorded movement data is, for example, data on movements of the UWB token, which are caused by the fact that the user carries the UWB token with him, for example on his body. Due to the characteristic movements of the user, the UWB token is moved along in a way that is characteristic of the user. This is the case even if the user is not actively interacting with the UWB token, e.g. not using a user interface of the UWB token, such as a key, a keyboard, a touch screen, a microphone.
  • a user interface of the UWB token such as a key, a keyboard, a touch screen, a microphone.
  • the UWB token comprises a classification module which is configured to recognize one or more generic movement patterns using movement data.
  • the movement patterns can be, for example, gross and / or fine motor movements of the UWB token, as are characteristic of an individual user using the UWB token, such as being carried along and / or on the body.
  • the classification module is for Recognition of the generic movement patterns using training data sets pre-trained with movement data from a user cohort.
  • the user is registered as a user of the UWB token in the course of a learning phase.
  • the learning phase includes the acquisition of movement data of the user by an authentication sensor in the form of a movement sensor of the UWB token and extraction of one or more reference values characteristic of the user to be registered.
  • behavior-based authentication of a user using the UWB token comprises the following steps:
  • the test criterion can include, for example, that there is a sufficiently high level of correspondence between the recorded movement data and one or more reference values stored for the registered user. Furthermore, the test criterion can include that the recorded movement data and / or the one or more reference values used do not exceed a maximum age.
  • the aforementioned steps of acquiring the movement data, entering the movement data and generating the classification result are carried out repeatedly one after the other. Furthermore, in addition to the step of generating the classification results, the following step is carried out:
  • the generation of an authentication signal includes, for example: in response to an authentication request, accessing the memory of the UWB token to read out the stored classification result, for example the most recently saved classification result,
  • captured movement data can be used in the event of a successful authentication of the user to adapt and / or improve the reference values stored for the corresponding user.
  • the authentication is knowledge-based.
  • the authentication data include a personal password of the user.
  • the password can be, for example, an alphanumeric string.
  • the authentication is possession-based.
  • the authentication data comprise signed data of one or more further electronic devices assigned to the user, in particular mobile portable electronic devices.
  • the corresponding electronic devices are, for example, smart devices that the user carries with them, such as smartphones, smartwatches, smart glasses, phablets, tablets, smart bands, smart key chains, smart cards, etc. These electronic devices send a range-limited signal, which signals their presence.
  • the signal includes an ID of the corresponding electronic device.
  • the signal is signed with a cryptographic signature key of the corresponding electronic device.
  • the signal can be, for example, a Bluetooth or a UWB signal. If a UWB signal is used, the plurality of electronic devices is a plurality of UWB tokens.
  • UWB sensors such as impact sound sensors, motion detectors, light barriers or gas detectors, detect the presence of a person in a spatial section of the spatial area in which no UWB token is detected, this is an indication of an attempt at unauthorized entry.
  • differences in the movement patterns of UWB tokens and detected persons can indicate unauthorized activities, for example if a UWB token is resting in one place while the recorded sensor data is used to detect movements of a person.
  • an exception event includes, for example, the detection of a number of persons who at least locally exceeds the number of persons with authorized access or the recorded ID tokens.
  • the detection of the exception event comprises detecting a UWB token in a spatial section of the spatial area, for example an access-restricted spatial area for which the corresponding UWB token has no access authorization.
  • the detection of the exceptional event comprises the acquisition of non-personal sensor data which exceed a predefined threshold value.
  • Embodiments can have the advantage in particular that emergency situations can be effectively recognized, such as a fire using a UWB sensor configured as a smoke alarm or a break-in using a UWB sensor configured as a broken glass.
  • emergency situations such as a fire using a UWB sensor configured as a smoke alarm or a break-in using a UWB sensor configured as a broken glass.
  • increased physical activity and a simultaneous rise in temperature can initially be interpreted as an unclear exceptional event that can lead to a dangerous situation.
  • the plurality of UWB sensors comprises sensors for acquiring optical, acoustic, chemical, thermal, electromagnetic and / or vibration-based sensor data.
  • Embodiments can have the advantage that, using the corresponding sensors, a large number of different sensor data can be recorded and thus a large number of different situations or circumstances within the spatial area can be recognized.
  • the UWB sensors include, for example, one or more UWB radar sensors, glass break sensors, impact sound sensors, gas sensors, motion detectors, video sensors, infrared sensors, temperature sensors and / or smoke sensors.
  • Position data of the UWB tokens are recorded, for example, by means of the localization sensors.
  • Sensor data which are indicative of the presence of a person can be recorded using UWB radar, high frequency radiation, microwave radiation, Doppler radar, laser, ultrasound, infrasound, infrared radiation, vibration measurements or gas concentration measurements, for example. If a person is in the detection area of a sensor, it reflects, scatters or interrupts the radiation or waves emitted by the sensor, such as UWB radar, high-frequency radiation, microwave radiation, Doppler radar, laser beams, ultrasound, or generates measurable radiation, waves or other influences, such as infrared radiation, vibrations, e.g. impact sound, infrasound or changes in gas concentration, e.g. an increase in the carbon dioxide concentration.
  • the UWB monitoring system comprises a digital radio network with a mesh topology, which is configured to transmit the detected sensor data using UWB.
  • Embodiments can have the advantage that captured sensor data can be effectively transmitted via the UWB monitoring system. Furthermore, a mesh topology offers a high level of failure safety, since data transmission via alternative routes is still possible if individual components of the mesh topology fail. In addition, if a partial area of the mesh topology fails, operation with the remaining part of the mesh topology can be maintained.
  • Position data can be determined, for example, using a triangulation method based on transit time measurements of UWB signals.
  • the position data can be relative and / or absolute position data. In order to determine absolute position data, position data for at least one or more stationary reference points must be known.
  • Embodiments can have the advantage that a position-based routing method can be used for targeted forwarding of data in the UWB-based radio network with mesh topology in order to use the position data determined by UWB to find a shortest or otherwise best path between a source node and a To determine target nodes within the radio network.
  • one or more of the UWB sensors are configured as UWB transceivers for forwarding UWB transmission signals.
  • the UWB monitoring system comprises, in addition to the UWB sensors, one or more UWB transceivers which are configured to forward the UWB transmission signals.
  • Embodiments can have the advantage that forwarding of data by means of UWB can be implemented in an effective manner using the UWB sensors and / or additional UWB transceivers.
  • Embodiments also include a method for controlling a UWB monitoring system for monitoring a spatial area.
  • the UWB monitoring system comprises a plurality of UWB sensors which are arranged spatially distributed in the spatial area.
  • the UWB sensors are for sensing of sensor data and configured for transmission of the recorded sensor data via UWB.
  • the procedure includes:
  • the method for controlling the UWB monitoring system is configured to control each of the previously described embodiments of the UWB monitoring system.
  • Figure 1 is a schematic diagram of an exemplary UWB monitoring system
  • Figure 2 is a schematic diagram of an exemplary UWB sensor
  • Figure 3 is a schematic diagram of an exemplary UWB token
  • FIG. 4 shows a flow diagram of an exemplary method for controlling a UWB monitoring system
  • FIG. 5 shows a flow diagram of an exemplary method for controlling a UWB monitoring system.
  • FIG. 1 shows an exemplary UWB monitoring system 100 for monitoring a spatial area 102, for example a restricted-access spatial area.
  • the spatial area 102 is a restricted-access spatial area
  • this restricted-access spatial area is, for example, delimited from the surroundings and can only be accessed via one or more entrances or exits 104 as intended.
  • the spatial area is an indoor area or interior area within a building.
  • the spatial area can also include an outdoor area or outside area outside a building.
  • this outdoor area can be a restricted area that is fenced off.
  • a fence can for example comprise a fence, a wall and / or a hedge.
  • a restricted-access spatial area 102 can, for example, be subdivided into a plurality of spatial sections 106, which themselves can only be operated via one or more entrances or exits 108 as intended.
  • the UWB monitoring system 100 comprises a plurality of UWB sensors 110 distributed over the spatial area 102.
  • the UWB sensors 110 are used to acquire sensor data, such as position data, movement data, image data, sound data, vibration data, temperature data, structural data, Gas concentration data, particle concentration data etc. configured.
  • the UWB sensors 110 are configured to transmit the detected sensor data by means of UWB, i.e. via a UWB network provided by the UWB monitoring system 100.
  • the UWB sensors 110 can be configured as UWB transceivers for forwarding UWB transmission signals within the monitoring system 100.
  • the UWB monitoring system 100 can comprise one or more UWB transceivers 111, which are configured to forward the UWB transmission signals.
  • the UWB network implemented by the monitoring system 100 is, for example, a digital radio network with a mesh topology which is configured to transmit the sensed sensor data using UWB.
  • a transmission of sensor data takes place within the UWB-based radio network with mesh topology using a position-based routing method.
  • data transmission from the UWB sensors 110 takes place exclusively by means of UWB.
  • one or more of the UWB sensors 110 are additionally configured for an at least partially and / or completely wired transmission of the sensed sensor data.
  • all UWB sensors 110 are additionally configured for an at least partially and / or completely wired transmission of the sensed sensor data.
  • UWB radar functionality can also be integrated and / or implemented for the detection of people who do not carry a UWB token.
  • the UWB sensors 110 include, for example, anonymization filters that are configured to filter the sensed sensor data. In the course of the filtering, personal pulled sensor data anonymized. Personal sensor data include, for example, image data on which people can be identified.
  • the filtered sensor data are transmitted to a control module 116 via the UWB network, for example.
  • the control module 116 can be a central control module or a decentralized control module.
  • the control module 116 is configured, for example, to evaluate the sensor data captured by the UWB sensors 110 in order to detect exceptional events, such as a dangerous situation or unauthorized access to the spatial area 102 the personal sensor data is temporarily suspended.
  • the control module 116 is further configured, for example, to receive requests for captured sensor data, to check credentials for access to the corresponding sensor data and, in the event of a successful check, to grant access to the requested sensor data.
  • access to personal sensor data is also granted, for example, the anonymization of which is temporarily suspended.
  • the credentials can be based, for example, on authorization certificates and / or authorization profiles of the inquirers, which define the access authorizations of the inquirers.
  • an authorization profile assigned to a user and / or UWB token for example, all access authorizations assigned to a and / or UWB token are stored.
  • the scope of the granted access authorization can depend, for example, on whether an exceptional situation is detected.
  • the monitoring system 100 can furthermore be configured to locate UWB tokens 112 within the spatial area 102 using UWB sensors.
  • UBW localization signals 107 are used, for example, which are sent from the UWB antennas 110 to the corresponding UWB tokens 112 and vice versa.
  • the relative positions of the UBW tokens 112 to the permanently installed UWB antennas 110 and thus the positions of the UBW tokens 112 in the spatial area 102 can be precisely determined by means of triangulation, for example.
  • the UWB tokens 112 identify, for example, users or carriers with access authorization to the spatial area 102 if this is an access-restricted spatial area. Furthermore, the UWB tokens 112 can contain carrier-specific access Define authorizations if different access authorizations are necessary for individual spatial sections of the spatial area 102. The UWB token 112 can thus be used to determine where persons with access authorization are located. If people are detected to whom no UWB token 112 can be assigned, this is an indication of an attempt at unauthorized intrusion, which is detected, for example, as an exceptional event.
  • FIG. 2 shows an exemplary UBW sensor 110.
  • This UBW sensor 110 includes a processor 120 which executes program instructions that are stored, for example, in a memory 124 of the UBW sensor 110, and controls the UBW sensor 110 according to the program instructions .
  • the UBW sensor 110 further comprises a sensor element 122 which is configured, for example, to acquire optical, acoustic, chemical, thermal, electromagnetic and / or vibration-based sensor data.
  • the sensed sensor data can include person-related sensor data, for example, depending on the sensor element 122 used. If the UWB sensor 110 is configured to capture person-related sensor data, the UWB sensor 110 furthermore comprises an anonymization filter for anonymizing the person-related sensor data, otherwise not.
  • the anonymization can include, for example, deleting the recorded personal sensor data from the memory 124. Furthermore, the anonymization can include, for example, an encryption of the recorded personal sensor data. Finally, the UWB sensor 110 comprises a UWB antenna 126 for sending and receiving data by means of UWB. According to embodiments, the UWB sensor 110 can, for example, additionally include a communication interface for wired data transmission.
  • FIG. 3 shows an exemplary UBW token 112, which comprises a processor 130, a memory 132 and a UWB antenna 134.
  • the processor 130 is configured to control the UBW token 112 by executing program instructions which are stored in the memory 132, for example.
  • a token ID can also be stored in the memory 132.
  • the UBW token 112 is configured to send and receive UWB signals via the UWB antenna 134.
  • the UBW token 112 sends UWB signals which include a time stamp and / or the token ID.
  • UWB signals from UBW token 112 or UWB signals from UWB antennas or UWB sensors 110 of UWB monitoring system 100 UBW token 112 can be localized and / or identified by UWB monitoring system 100.
  • FIG. 4 shows an exemplary method for controlling a UWB monitoring system.
  • sensor data are recorded in a spatial area by UWB sensors of the UWB monitoring system.
  • the recorded sensor data can be personal Include sensor data.
  • the acquired sensor data is filtered using anonymization filters of the UWB sensors.
  • Personal sensor data are anonymized. Such an anonymization includes, for example, deleting or encrypting the sensor data to be anonymized.
  • the captured and filtered sensor data are evaluated to detect an exceptional event. This is done, for example, by a central or decentralized control module of the UWB monitoring system.
  • a time-limited suspension of the anonymization of the person-related sensor data for example by the control module.
  • FIG. 5 shows an exemplary method for controlling a UWB monitoring system.
  • the UWB monitoring system for example a control module of the UWB monitoring system, receives a request for the release of detected sensor data.
  • a verification of authorization for access to the requested sensor data is checked.
  • the proof of authorization can be, for example, an authorization certificate or an identifier of a stored authorization profile of the inquirer.
  • access to the requested sensor data is enabled. For example, the requested sensor data are sent to the inquirer or are displayed on a local display device of the monitoring system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)

Abstract

La présente invention concerne un système de surveillance UWB (100) pour la surveillance d'une région spatiale (102). Le système de surveillance UWB comprend une pluralité de capteurs UWB (110) répartis dans la région spatiale. Les capteurs UWB sont configurés pour capturer des données de capteur et pour transmettre les données de capteur capturées par l'intermédiaire de l'UWB. Le système de surveillance UWB est configuré pour capturer des données de capteur comprenant des données de capteur personnelles dans le domaine spatial à l'aide des capteurs UWB, pour filtrer les données de capteur capturées à l'aide d'un filtre d'anonymisation (123), le filtre d'anonymisation étant configuré pour rendre anonyme les données de capteur personnelles, pour analyser les données de capteur capturées pour détecter un événement d'exception, et, lors de la détection de l'événement d'exception, pour suspendre temporairement l'anonymisation des données de capteur personnelles.
PCT/EP2021/051003 2020-01-24 2021-01-19 Système de surveillance uwb WO2021148373A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21701105.5A EP4094235A1 (fr) 2020-01-24 2021-01-19 Système de surveillance uwb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020101725.1 2020-01-24
DE102020101725.1A DE102020101725A1 (de) 2020-01-24 2020-01-24 UWB-Überwachungssystem

Publications (1)

Publication Number Publication Date
WO2021148373A1 true WO2021148373A1 (fr) 2021-07-29

Family

ID=74194737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/051003 WO2021148373A1 (fr) 2020-01-24 2021-01-19 Système de surveillance uwb

Country Status (3)

Country Link
EP (1) EP4094235A1 (fr)
DE (1) DE102020101725A1 (fr)
WO (1) WO2021148373A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080165046A1 (en) * 1999-06-14 2008-07-10 Time Domain Corporation System and method for intrusion detection using a time domain radar array
DE202012000328U1 (de) * 2012-01-13 2012-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Überwachungssystem mit einer Mehrzahl von Kameras
DE102015222794A1 (de) * 2015-11-18 2017-05-18 Siemens Aktiengesellschaft Schutzvorrichtung zum Schutz der Privatsphäre einer Person
DE102015122990A1 (de) * 2015-12-30 2017-07-06 Deutsche Telekom Ag Verfahren und Vorrichtungen zum Schutz von vertraulichen elektronischen Daten
DE102016200003A1 (de) * 2016-01-04 2017-07-06 Bundesdruckerei Gmbh Zugriffskontrolle mittels Authentisierungsserver
WO2018136402A2 (fr) * 2017-01-18 2018-07-26 Riot Solutions Inc. Système de surveillance de personnes âgées intelligent et non intrusif
EP3471068A1 (fr) * 2017-10-13 2019-04-17 Bundesdruckerei GmbH Système distribué de génération des données à caractère personnel, procédé et produit programme informatique

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567200B1 (en) 2006-04-27 2009-07-28 Josef Osterweil Method and apparatus for body position monitor and fall detect ion using radar
US10394946B2 (en) 2012-09-07 2019-08-27 Splunk Inc. Refining extraction rules based on selected text within events
DE102018211421A1 (de) 2018-07-10 2020-01-16 Zf Friedrichshafen Ag Aufzeichnungssystem mit unabhängiger Versorgung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080165046A1 (en) * 1999-06-14 2008-07-10 Time Domain Corporation System and method for intrusion detection using a time domain radar array
DE202012000328U1 (de) * 2012-01-13 2012-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Überwachungssystem mit einer Mehrzahl von Kameras
DE102015222794A1 (de) * 2015-11-18 2017-05-18 Siemens Aktiengesellschaft Schutzvorrichtung zum Schutz der Privatsphäre einer Person
DE102015122990A1 (de) * 2015-12-30 2017-07-06 Deutsche Telekom Ag Verfahren und Vorrichtungen zum Schutz von vertraulichen elektronischen Daten
DE102016200003A1 (de) * 2016-01-04 2017-07-06 Bundesdruckerei Gmbh Zugriffskontrolle mittels Authentisierungsserver
WO2018136402A2 (fr) * 2017-01-18 2018-07-26 Riot Solutions Inc. Système de surveillance de personnes âgées intelligent et non intrusif
EP3471068A1 (fr) * 2017-10-13 2019-04-17 Bundesdruckerei GmbH Système distribué de génération des données à caractère personnel, procédé et produit programme informatique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUKE VAGTS ET AL: "Privacy-Aware Object Representation for Surveillance Systems", ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2010 SEVENTH IEEE INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, 29 August 2010 (2010-08-29), pages 601 - 608, XP031772026, ISBN: 978-1-4244-8310-5 *

Also Published As

Publication number Publication date
DE102020101725A1 (de) 2021-07-29
EP4094235A1 (fr) 2022-11-30

Similar Documents

Publication Publication Date Title
CA2729193C (fr) Systeme de controle de l'acces fonde sur le comportement
AT506619B1 (de) Verfahren zur zeitweisen personalisierung einer kommunikationseinrichtung
EP3602992B1 (fr) Authentification d'allure de zone physique
DE112018000759T5 (de) Systeme und verfahren zur verwaltung des zugangs zu einem fahrzeug oder einem anderen objekt unter verwendung von umgebungsdaten
DE60306627T2 (de) Dynamisches sicherheitssystem
EP3855403B1 (fr) Système de surveillance uwb permettant de surveiller la présence d'un utilisateur
WO2021148373A1 (fr) Système de surveillance uwb
WO2021148375A1 (fr) Système de surveillance à protection contre les pannes
DE102020101734A1 (de) Detektieren einer Anwesenheit eines unbekannten UWB-Tokens
EP4094462A1 (fr) Sécurité contre la manipulation à l'aide de tolérances spécifiques au dispositif
EP3404569B1 (fr) Procédé et système d'authentification comportementale
EP4094464A1 (fr) Gestion d'autorisation au moyen de jetons à bande ultra large
DE19822206A1 (de) Vorrichtung zur Erkennung von Lebewesen oder Gegenständen
EP3855779A1 (fr) Communication uwb avec une pluralité de schémas d'encodage de données uwb
WO2021148381A1 (fr) Jeton à bande ultra-large
DE112014002576T5 (de) Verbessertes Sicherheitssystem
DE102017115669A1 (de) Mobiles Kommunikationsgerät zum Kommunizieren mit einer Zutrittskontrollvorrichtung
EP3487200A1 (fr) Authentification basée sur le comportement à l'aide de la position de retour
CN115424378B (zh) 智能密码锁的安全防护方法、装置及相关设备
US20170243419A1 (en) System for authorization control and breath testing
CN115468678A (zh) 员工体温检测系统及方法
DE102016225357A1 (de) Hilfs-ID-Token zur Multi-Faktor-Authentifizierung
WO2001074008A1 (fr) Procede pour produire des signatures electroniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21701105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021701105

Country of ref document: EP

Effective date: 20220824