EP3855403B1 - Système de surveillance uwb permettant de surveiller la présence d'un utilisateur - Google Patents

Système de surveillance uwb permettant de surveiller la présence d'un utilisateur Download PDF

Info

Publication number
EP3855403B1
EP3855403B1 EP21152247.9A EP21152247A EP3855403B1 EP 3855403 B1 EP3855403 B1 EP 3855403B1 EP 21152247 A EP21152247 A EP 21152247A EP 3855403 B1 EP3855403 B1 EP 3855403B1
Authority
EP
European Patent Office
Prior art keywords
uwb
data
authentication
token
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21152247.9A
Other languages
German (de)
English (en)
Other versions
EP3855403A1 (fr
Inventor
Olaf Dressel
Sandra Schmidt
Steffen KUNAHT
Michael WINDISCH
Ilya Komarov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesdruckerei GmbH
Original Assignee
Bundesdruckerei GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesdruckerei GmbH filed Critical Bundesdruckerei GmbH
Publication of EP3855403A1 publication Critical patent/EP3855403A1/fr
Application granted granted Critical
Publication of EP3855403B1 publication Critical patent/EP3855403B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/28Individual registration on entry or exit involving the use of a pass the pass enabling tracking or indicating presence
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/22Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/29Individual registration on entry or exit involving the use of a pass the pass containing active electronic elements, e.g. smartcards

Definitions

  • the invention relates to a UWB monitoring system and a method for controlling a UWB monitoring system.
  • Surveillance systems use modern sensor technology to collect detailed, diverse and extensive data for monitoring purposes, for example of spatial areas.
  • access cards or key cards are used to monitor access to buildings.
  • these access cards or key cards can be assigned to individual users, their use can lead to problems if they are, for example, substituted or stolen for purposes of deception.
  • the US 2006/185005 A1 describes a procedure for managing a session with a hospital information system (HIS).
  • the method includes receiving data regarding a wirelessly detectable tag associated with a first terminal, determining whether the first terminal is positioned relative to a second terminal such that a terminal proximity condition is based at least in part on the data regarding the wirelessly detectable tag is met, wherein either the first terminal or the second terminal supports a session with the KIS, in response to the terminal proximity condition being met, providing an opportunity to signal an intention to transfer at least a portion of the session from one of the terminals to the other of the terminal devices and, in response to detecting the intention to transmit at least a part of the session, transmitting the at least part of the session, thereby causing the at least part of the session to be supported by the other terminal.
  • HIS hospital information system
  • the EP 3 471 068 A1 describes a system for managing personal data.
  • the system has a first security device and a second security device.
  • the security devices are arranged spatially separately and are each set up to record personal data and to assign the recorded personal data to identities.
  • the system also has a management system that is set up to manage authorizations for the identities.
  • the first security device and the second security device each anonymize the collected personal data and allow access to the personal data if there is an authorization to access personal data that is assigned to the identity that is assigned to the personal data.
  • the invention further relates to a method and a computer program product.
  • the invention is based on the object of creating a UWB surveillance system for improved monitoring of people within a spatial area.
  • Embodiments include a UWB surveillance system for monitoring a spatial area.
  • the UWB monitoring system includes a plurality of UWB sensors distributed throughout the spatial area.
  • the UWB sensors are configured for communication via UWB.
  • the communication includes transmitting the captured sensor data.
  • the plurality of UWB sensors includes a plurality of location sensors for determining position data of a mobile wearable UWB token within the spatial area. Determining the position data is done using a transit time measurement of UWB signals between the localization sensors and the UWB token.
  • the UWB monitoring system is configured to monitor the presence of the UWB token on a user associated with the UWB token.
  • the UWB monitoring system includes an authentication device with an authentication sensor for locally collecting authentication data to authenticate the user of the UWB token.
  • the authentication device has access to a reference value for the user's authentication data to validate the acquired authentication data. Successful validation of the captured authentication data indicates the presence of the UWB token on the user.
  • Embodiments may have the advantage that it can be ensured that the mobile portable UWB token is actually carried by the assigned user. This can prevent a user from separating from their UWB token for purposes of deception, i.e., for example, swapping it, leaving it lying around or handing it over to another person.
  • monitoring the position of UWB tokens enables monitoring of the whereabouts of the assigned users without the user's personal data having to be centrally processed and/or stored.
  • such indirect monitoring of the whereabouts requires the UWB tokens used to be present at the respective assigned user, so that the position of the assigned user can be equated with the position of the UWB token within the spatial area.
  • This match can be ensured by means of authentication, during which the position data of the UWB token is within a detection range of the authentication data relative to the known position data of the authentication device during authentication. If, during successful authentication, the UWB token is in a detection area from which the authentication data is collected, it follows that the UWB token is in the detection area together with the successfully authenticated user. In other words, the presence of the UWB token on the assigned user can be checked.
  • the spatial area is, for example, an access-restricted spatial area, such as an access-restricted security area.
  • the access-restricted spatial area is, for example, separated from the surroundings and can only be accessed via one or more entrances or exits.
  • the access-restricted spatial area is an indoor area or indoor area.
  • UWB Ultra Wideband
  • UWB refers to a wireless transmission of electromagnetic pulse-shaped signals over a number of parallel radio channels with low transmission powers, for example up to a maximum of 1 mW.
  • frequency ranges with a bandwidth of at least 500 MHz and/or at least 20% of the arithmetic mean of the lower and upper limit frequencies of the frequency band used.
  • UWB is based on the generation of pulses with the shortest possible pulse duration, which is why the shorter the pulse duration, the larger or wider the spectrum emitted or received via the UWB antenna is, in accordance with the laws of Fourier transformation.
  • the product of the temporal and spectral width of the pulse is constant.
  • the total transmission power of a few milliwatts or less is distributed over such a large frequency range that no interference is to be expected for the radio operation of narrow-band transmission methods. It is therefore difficult or impossible to recognize that a transmission using UWB is taking place at all.
  • a UWB signal appears more like noise. This enables barely detectable communication, which can be used in the same frequency range as conventional transmission methods.
  • UWB does not use a fixed carrier frequency, which is modulated. Rather, data transmission takes place, for example, based on pulse phase modulation or pulse position modulation (“Pulse-Position Modulation”/PPM) using a plurality of individual pulses.
  • PPM pulse position modulation
  • Another option for data transmission using UWB is to modulate the polarity and/or amplitude of the pulses. If the times of the individual pulses differ sufficiently, several UWB transmission channels can be operated in the same spatial area without mutual interference.
  • UWB systems can, for example, provide useful bit rates up to the GBit/s range.
  • UWB transmission ranges can range from a few meters to a few hundred meters.
  • UWB technology also allows implementing a radar method using UWB radar sensors.
  • an alternating electromagnetic field with a wide bandwidth is generated whose field strengths are small. Depending on the nature of objects in the propagation area of the alternating electromagnetic field, this will deform the alternating field.
  • the resulting field can be detected by a UWB sensor. If both the initial field and the resulting field are known, the cause of the detected deformation and therefore the type and geometry of the object or objects in the propagation area of the alternating electromagnetic field can be concluded.
  • UWB radar sensors for example, operate at frequencies between 30 MHz and 12.4 GHz. Depending on the application, resolutions ranging from centimeters to a few millimeters can be achieved with working bandwidths of 5 GHz.
  • short pulses are emitted and compared with the pulse curves reflected by the object or objects. This allows geometric variables such as distance, thickness, length, position, body shape, movement and/or speed to be determined. Objects can also be detected through clothing and walls. The properties of the propagation medium for the electromagnetic fields are assumed to be known.
  • UWB can prevent tracking of mobile devices because devices communicating via UWB, such as UWB tokens, cannot be located without knowledge of the UWB encoding used. Furthermore, the relatively short range of UWB ensures that tracking and/or eavesdropping from a distance can be effectively prevented.
  • UWB coding offers independent, instantaneous encryption of the transmitted data, which is thus protected against eavesdropping.
  • UWB has a high resistance to interference signals (“jamming”). Due to these special technical properties, which are advantageous for security applications, a monitoring system can be implemented using UWB, which can ensure a high level of protection of the processes as well as the sensor data located or used therein, but especially in connection with personal sensor data of those involved. In particular, a high level of security for data transmission can be ensured using UWB.
  • a UWB token is a hardware token in the form of a mobile, portable electronic device that is configured for wireless communication using UWB.
  • a UWB token can also be configured to determine position data based on a transit time measurement and triangulation of UWB signals that it receives from location sensors of the UWB monitoring system.
  • the UWB token can be designed as a document, in particular a value or security document.
  • a “document” is understood to mean paper-based and/or plastic-based documents, such as electronic identification documents, in particular passports, identity cards, visas as well as driving licenses, vehicle registration documents, vehicle registration documents, company ID cards, health cards or other ID documents also chip cards, means of payment, in particular banknotes, bank cards and credit cards, consignment notes or other proof of authorization.
  • one or more attributes of a user or object assigned to the document are stored in a memory of such a document.
  • a UWB sensor is a sensor or anchor that is configured to transmit recorded data, e.g. sensor data, using UWB.
  • a UWB sensor such as a UWB radar sensor or a UWB localization sensor, may be configured to capture sensor data using UWB.
  • a UWB sensor may configure the sensor data using a UWB-independent method, such as an optical, acoustic, chemical, thermal, electromagnetic and/or vibration-based method.
  • the UWB sensors are configured for data transmission exclusively via UWB.
  • one or more of the UWB sensors may additionally be configured to transmit captured data via a wired data connection.
  • a portion of the UWB sensors of the UWB monitoring system are configured to transmit captured data using a wired data connection.
  • all of the UWB sensors of the UWB monitoring system are configured to transmit sensed data using a wired data connection.
  • Sensor data is understood to mean data recorded using one of the UWB sensors, i.e., for example, optical, acoustic, chemical, thermal, electromagnetic and/or vibration-based data.
  • the sensor data is transmitted from the detecting UWB sensors within the UWB monitoring system via UWB.
  • one or more of the UWB sensors may additionally be configured to transmit captured data via a wired data connection.
  • the sensor data can also be data that was recorded by the UWB sensors using UWB.
  • the sensor data is sensor data from a UWB radar sensor or a UWB localization sensor.
  • monitoring the presence of the UWB token on the associated user further includes, upon receiving the authentication confirmation, identifying the location of the UWB token as the location of the user associated with the UWB token.
  • Embodiments can have the advantage that the position of the user assigned to the UWB token can be reliably determined via the UWB token in the event of successful validation.
  • the predefined detection area is a predefined distance range from the known position data of the authentication device.
  • the user To enter authentication data or to capture certain biometric data, such as fingerprint data, retina data, iris data, vein data, nail bed pattern data, the user must be within a predefined distance range from the authentication device.
  • a predefined distance range can, for example, be a distance range which is less than or equal to the length of the user's arm or which corresponds to a predefined distance range within which the user must be in order to record the biometric data.
  • the predefined detection area is a detection area of the authentication data determined using the acquired authentication data. For example, a relative position of the authenticated person to the authentication device and thus a detection area of the authentication data can be determined from image data.
  • the authentication device to which the authentication request is sent is selected from a plurality of authentication devices of the UWB monitoring system.
  • Embodiments can have the advantage that authentication devices can be distributed at strategically advantageous positions within the spatial area and the presence of the UWB token on the assigned user can be checked at these locations.
  • the selection of the authentication device is based on one or more of the following criteria: a distance between the position data of the UWB token and the position data of the selected authentication device falls below a predefined first maximum distance, the selected authentication device has one of all authentication devices of the plurality of authentication devices the smallest distance to the position data of the UWB token, the selected authentication device has, of all the authentication devices of the plurality of authentication devices, the smallest distance to a future path of the UWB token through the spatial area extrapolated from the previously determined position data of the UWB token.
  • Embodiments can have the advantage that an authentication device that is currently close to the UWB token and thus its user or the future path of the UWB token can be used for authentication. This means that little or no detours are necessary for the user of the UWB token for authentication.
  • an authentication challenge is sent to the UWB token.
  • the UWB token includes a display device on which the authentication request is displayed.
  • the authentication request includes data identifying the selected authentication device.
  • the UWB token can, for example, emit a message, such as a light or sound signal, which informs the user of the need for authentication.
  • an indication signal is issued as an authentication request from the selected authentication device.
  • This information signal can be, for example, a light or sound signal.
  • Embodiments can have the advantage that the user of the UWB token can be made aware of the need for authentication by the authentication device. In addition, the information signal can make it easier for the user to identify the selected authentication device.
  • the authentication device is a stationary authentication device arranged in the spatial area.
  • Embodiments can have the advantage that authentication devices can be distributed at strategically advantageous positions within the spatial area and the presence of the UWB token on the assigned user can be checked at these locations.
  • mobile authentication devices may also be used. Their position can be determined, for example, using a UWB transit time measurement. Mobile authentication devices can have the advantage that their distribution can be more easily adapted to changing authentication requirements.
  • an authentication request is sent to the authentication device if a distance between the position data of the UWB token and the position data of the authentication device falls below a predefined second maximum distance.
  • Embodiments can have the advantage that authentication is initiated automatically as soon as the user approaches an authentication device, in particular a stationary authentication device, with the UWB token.
  • a stationary authentication device is arranged on an access control device, such as a door, barrier, lock or the like, within the spatial area.
  • granting access by the access control device such as opening the door, barrier, lock, may require receipt of the authentication confirmation by the UWB monitoring system.
  • an authentication request is sent to the authentication device at predefined fixed intervals, at random intervals, randomly, upon detecting an exception event, when the UWB token reaches certain positions within the spatial area, upon detecting unusual behavior of the user of the UWB token.
  • an authentication request is sent depending on the position of the UWB token within the spatial area.
  • the spatial area can be divided into a plurality of spatial sections to which different security levels are assigned. For example, if the location of the UWB token is in a spatial section with a higher security level, more authentications can be imitated than in a spatial section with a lower security level.
  • Increasing the number of authentications can be implemented, for example, by shortening the intervals between sending authentication requests, increasing the probability of randomly sending authentication requests and / or shortening the distances between positions within the spatial area when reached by the UWB token an authentication request is sent.
  • a movement pattern of the UWB token can be determined. If there are any abnormalities in this movement pattern, an authentication request can be sent.
  • the movement patterns of a plurality of UWB tokens can be used as input data for a movement pattern classification module with a machine learning algorithm. For this training data, it can be determined that these are normal movement patterns without any abnormalities. If movement patterns are entered as input data into the movement pattern classification module trained in this way, the movement pattern classification module recognizes if there are any abnormalities compared to training movement patterns.
  • the trained movement pattern classification module outputs, for example, a binary classification result: there are no abnormalities or there is one abnormality. For example, if the classification result indicates the presence of anomalies, an authentication request is sent; if, for example, the classification result does not indicate the presence of anomalies, no authentication request is sent.
  • the UWB token includes the authentication device.
  • the authentication sensor is, for example, a sensor of the UWB token.
  • the known position data of the authentication device is involved for example, the specific position data of the UWB token.
  • Embodiments can have the advantage that no additional stationary authentication devices are necessary, the acquired authentication data is only processed locally by the UWB token, ie remains at the disposal of the assigned user, and authentication is enabled anywhere and always within the monitored spatial area.
  • the reference value is stored in a memory of the UWB token.
  • Embodiments can have the advantage that the reference value is only stored locally on the UWB token and thus remains at the disposal of the assigned user.
  • the reference value is stored in a protected memory area of the memory of the mobile portable UWB token.
  • a “protected memory area” here is understood to mean an area of an electronic memory to which access, for example read access or write access, is only possible via a processor coupled to the memory.
  • the processor coupled to the memory only allows access to protected memory areas, for example, if a necessary condition is met.
  • This condition can be, for example, a cryptographic condition, in particular a successful authentication and/or a successful authorization check. For example, access to certain cryptographic programs and/or service applications is restricted.
  • the reference value is stored in encrypted form in the memory of the UWB token.
  • the encrypted reference value is decrypted to validate the captured authentication data.
  • the captured authentication data is encrypted for validation using the encrypted reference value.
  • the reference value is stored in a memory of the UWB monitoring system.
  • the reference value is stored in a protected memory area of the memory of the UWB monitoring system, e.g. a control module of the UWB monitoring system.
  • the reference value is stored in encrypted form in the memory of the UWB monitoring system.
  • the encrypted reference value is decrypted to validate the captured authentication data.
  • the captured authentication data is encrypted for validation using the encrypted reference value.
  • the transit time measurement of UWB signals between the location sensors and the UWB token is performed by the UWB token and determining the position data includes receiving the position data from the UWB token.
  • determining the position data includes acquiring sensor data in the spatial area using the localization sensors in the course of the transit time measurement. The sensor data collected by the localization sensors is used to determine the position data. Embodiments may have the advantage that the localization sensors can efficiently determine the position data.
  • monitoring the presence of the UWB token on the assigned user further includes issuing an alarm signal upon unsuccessful validation of the authentication data.
  • Embodiments can have the advantage that a possible attempt at deception can be effectively pointed out.
  • unsuccessful validation of the authentication data is indicated by the absence of authentication confirmation.
  • unsuccessful validation of the authentication data is indicated by receiving an error message from the authentication device.
  • the authentication data includes biometric data of the user, which is captured using a biometric sensor.
  • Biometric data may include, for example: DNA data, fingerprint data, body geometry data/anthropometry data, such as facial, hand, ear geometry data, hand line structure data, vein structure data, such as palm vein structure data, iris data, retina data, voice recognition data, nail bed patterns, tooth pattern data.
  • the authentication data includes behavior-based data of the user.
  • Behavioral data is data that is based on an intrinsic behavior of the user and can include, for example: movement patterns, gait patterns, arm, hand, finger movement patterns, lip movement patterns.
  • Using behavior-based data to authenticate the user can have the advantage that the user can continue their usual, characteristic behavior for the purpose of authentication without the need for additional actions that are untypical for them. In particular, the user does not have to interrupt his usual behavior.
  • the behavior-based data is, for example, movement data that is recorded using an authentication sensor configured as a motion sensor.
  • the motion sensor can include, for example, an acceleration sensor.
  • a movement can be calculated, for example, by integrating the acceleration measurements recorded by the acceleration sensor.
  • the motion sensor can, for example, also change its position in space and/or Detect changes in the situation.
  • the motion sensor includes a gyroscope.
  • the movement data recorded by the motion sensor is, for example, acceleration, inclination and/or position data.
  • Collected movement data is, for example, data from movements of the UWB token, which are caused by the user carrying the UWB token with them, for example wearing it on their body. Due to the user's characteristic movements, the UWB token moves in a way that is characteristic of the user. This is the case even if the user does not actively interact with the UWB token, e.g. does not use a user interface of the UWB token, such as a button, a keyboard, a touchscreen, a microphone.
  • a user interface of the UWB token such as a button, a keyboard, a touchscreen, a microphone.
  • the UWB token includes a classification module configured to recognize one or more generic movement patterns using movement data.
  • the movement patterns can be, for example, gross and/or fine motor movements of the UWB token, as are characteristic of an individual user using the UWB token, such as carrying it along and/or carrying it on the body.
  • the classification module is pre-trained to recognize the generic movement patterns using training data sets with movement data from a user cohort.
  • the user is registered as a user of the UWB token during a training phase.
  • the learning phase includes recording movement data of the user by an authentication sensor in the form of a movement sensor of the UWB token and extracting one or more reference values characteristic of the user to be registered.
  • the test criterion can include, for example, that there is a sufficiently high level of correspondence between the recorded movement data and one or more reference values stored for the registered user. Furthermore, the test criterion can include that the recorded movement data and/or the one or more reference values used do not exceed a maximum age.
  • recorded movement data can be used to adjust and/or improve the reference values stored for the corresponding user in the event of successful authentication of the user.
  • a visual sensor such as a camera, of a stationary authentication device is used for behavior-based authentication of the user.
  • This visual sensor may be configured to capture visual data from user movements.
  • the stationary authentication device includes, for example, a classification module that is configured to recognize one or more generic movement patterns using the captured visual data.
  • the classification module is pre-trained to recognize the generic movement patterns using training data sets with visual data from movements of a user cohort. Authentication by the classification module of the authentication device using the captured visual data can be carried out in the same way as previously described for the case of authentication by the classification module of the UWB token using movement data.
  • Learning can take place in the course of a learning phase when a user to be registered enters the monitored spatial area or a spatial entrance area upstream of the monitored spatial area.
  • the teaching includes, for example, recording the user's movement data using an authentication sensor in the form of a visual sensor of an authentication device of the UWB monitoring system and extracting one or more reference values characteristic of the user to be registered.
  • the user can, for example, be assigned a user ID, such as a synonym.
  • the authentication data includes a personal password of the user.
  • the password can be, for example, an alphanumeric character string.
  • the authentication data includes signed data from one or more other electronic devices assigned to the user, in particular mobile portable electronic devices.
  • the corresponding electronic devices are, for example, smart devices that the user carries with him, such as smartphones, smart watches, smart glasses, phablets, tablets, smart bands, smart keychains, smart cards, etc. These electronic devices send a signal with a limited range signals their presence.
  • the signal includes an ID of the corresponding electronic device.
  • the signal is signed with a cryptographic signature key of the corresponding electronic device.
  • the signal can be, for example, a Bluetooth or a UWB signal. If a UWB signal is used, the majority of electronic devices have a plurality of UWB tokens.
  • the UWB token proves access authorizations to and/or residence authorizations in the spatial area of the user assigned to the UWB token. According to the invention, successful proof of access authorizations and/or residence authorizations requires receipt of the authentication confirmation.
  • the invention has the advantage that the UWB tokens can be used not only to track the movements of the wearer within an access-restricted spatial area, but also to check whether access authorizations and/or residence authorizations to or in the access-restricted spatial area and/or certain ones spatial sections of the same are present. Based on this, it can be recognized whether a bearer of a UWB token is authorized to enter the restricted access area spatial area and/or a spatial section thereof. For example, access barriers, such as doors to the restricted access spatial area and/or a spatial section thereof, can open automatically when a bearer of a UWB token with valid access authorizations approaches the access barrier. According to embodiments, different access authorizations may be necessary for different spatial sections of the access-restricted spatial area.
  • access authorizations and/or residence authorizations are proven by possession of the UWB token.
  • access authorizations and/or residence authorizations are proven by authorization certificates.
  • An authorization certificate is a digital certificate that assigns access authorization and/or residence authorization to a UWB token and/or a user of the corresponding UWB token.
  • an authorization certificate defines access authorizations and/or residence authorizations, includes a public cryptographic key of an asymmetric cryptographic key pair assigned to the UWB token, a token ID, information about the issuer of the authorization certificate and/or a digital signature of an issuer.
  • the issuer can be, for example, an external entity, a decentralized or central control module of the UWB monitoring system or another UWB token, which itself has the granted access authorizations and/or residence authorizations.
  • Access authorizations and/or residence authorizations can be obtained, for example, using the authorization certificate in conjunction with a signature of the UWB token using a private cryptographic key of the asymmetric cryptographic key pair assigned to the UWB token. Using the public cryptographic key provided by the authorization certificate, the signature can be checked and the ownership of the private cryptographic key by the UWB token can be verified.
  • the authorization certificate defines, for example, access authorizations and/or residence authorizations granted by the issuer of the authorization certificate for the owner of the private cryptographic key.
  • the access authorizations and/or residence authorizations are limited in time. For example, a time limit is defined by an expiration date and/or an expiration time of the authorization certificate.
  • the plurality of UWB sensors includes, in addition to the localization sensors, one or more additional UWB sensors which are configured to acquire sensor data.
  • the one or more additional UWB sensors include sensors for acquiring optical, acoustic, chemical, thermal, electromagnetic and/or vibration-based sensor data.
  • Embodiments can have the advantage that a large number of different sensor data can be recorded using the corresponding sensors and thus a large number of different situations or circumstances can be recognized within the spatial area.
  • the UWB sensors include, for example, one or more UWB radar sensors, glass break sensors, impact sound sensors, gas sensors, motion detectors, video sensors, infrared sensors, temperature sensors and/or smoke sensors.
  • the invention has the advantage that the UWB monitoring system can be used to detect whether a person who is not carrying a UWB token is staying and/or moving within the monitored spatial area. If a person or evidence of a person without a UWB token is detected, an alarm signal is issued. If position data of a UWB token can be determined within the detection range of the sensor, i.e. the person is carrying a UWB token, the person can be authenticated according to one of the preceding embodiments and/or, for example, it can be checked whether the UWB token is a Can prove access authorization to and/or a residence permit in the spatial area.
  • the position data of the UWB tokens are recorded, for example, using the localization sensors.
  • Sensor data that is indicative of a person's presence can be recorded, for example, using UWB radar, high-frequency radiation, microwave radiation, Doppler radar, laser, ultrasound, infrasound, infrared radiation, vibration measurements or gas concentration measurements. If a person is in the detection range of a sensor, this reflects, scatters or interrupts, for example, radiation or waves emitted by the sensor, such as UWB radar, high-frequency radiation, microwave radiation, Doppler radar, laser beams, ultrasound, or generates measurable radiation, waves or other influences, such as infrared radiation, vibrations, e.g. impact sound, infrasound or gas concentration changes, e.g. an increase in carbon dioxide concentration.
  • Embodiments can have the advantage that it can be ensured that personal sensor data, to the extent that it is recorded by the UWB sensors, is not made available as a result of anonymization or is only made available in such a form that no conclusions can be drawn about the identity of the persons to which the personal data relates.
  • anonymizing in particular includes changing personal sensor data in such a way that individual information about personal or factual circumstances can no longer be assigned to a specific or identifiable natural person or can only be assigned to a specific or identifiable natural person with a disproportionate amount of time, cost and manpower.
  • Changing includes, for example, redesigning the content of recorded personal sensor data up to and including deleting it. Deletion refers, for example, to making personal sensor data unrecognizable or even to completely removing the corresponding personal sensor data from a memory for storing recorded sensor data.
  • the memory can be, for example, a local or a central memory of the UWB monitoring system.
  • the authentication data is personal sensor data.
  • Personal sensor data refers to sensor data that enables the identification of a person or can be assigned to a person to whom the personal sensor data relates.
  • personal sensor data is, for example, individual information about the personal or factual circumstances of a specific or identifiable natural person recorded using one of the UWB sensors.
  • the personal sensor data includes visual sensor data, such as video and/or photo data, from which a person can be recognized. This is particularly the case if a person's face can be recognized based on the video and/or photo data.
  • An anonymization filter is configured to selectively anonymize personal data.
  • the anonymization filter can be configured to receive sensor data from specific UWB sensors or a specific type of UWB sensors recorded by the UWB monitoring system. This is, for example, video and/or image data, which is captured using a surveillance camera and on which individual people can be identified.
  • An exception event refers to an anomaly in the recorded sensor data, i.e. a data constellation that is not to be expected under predefined operating conditions.
  • the anomaly may be an emergency situation, such as a fire or unauthorized entry into and/or movement within the spatial area.
  • an exception event includes an unsuccessful authentication.
  • An unsuccessful authentication indicates that a UWB token is not carried by the user assigned to it. For example, the assigned user tries to move within the spatial area without the UWB token or the UWB token is carried by an unassigned user who has gained or wants to gain unauthorized access to the spatial area. By suspending anonymization, it is possible to record who is actually carrying the UWB token and/or where the assigned user is located.
  • suspending anonymization is limited to personal sensor data captured by UWB sensors that have a predefined relationship to the detected exception event.
  • a predefined reference is that the UWB sensors for whose personal sensor data the anonymization is suspended are assigned to the same spatial section of the spatial area as the UWB sensor or sensors in whose recorded sensor data the exception event is detected.
  • Embodiments can have the advantage that the suspension of anonymization is limited not only in time but also in space. This means that an unnecessary suspension of anonymization, for example for personal data that has nothing to do with the exceptional event, can be avoided.
  • the predefined reference additionally or alternatively consists in the fact that UWB sensors, for whose personal sensor data the anonymization is suspended, are assigned to a predefined spatial section of the spatial area.
  • the corresponding spatial sections are, for example, entrances and exits to a restricted area.
  • a possible emergency such as a fire alarm
  • the anonymization of all personal sensor data collected by the UWB monitoring system is suspended for a limited time.
  • Embodiments can have the advantage that it can be ensured that no personal sensor data relevant and/or necessary for handling and/or resolving the exception event is missing due to the anonymization.
  • anonymizing through the anonymization filter includes deleting at least some of the personal sensor data.
  • the temporary suspension of anonymization includes storing the personal sensor data, which is collected within a limited time window.
  • Embodiments may have the advantage that in the event of deletion, i.e. complete removal of personal sensor data from local and/or central storage of the UWB monitoring system, it can be ensured that no one can gain access to this data. However, if an exceptional event occurs, personal sensor data, such as video and/or image data, will only be stored for a limited time for this specific case. According to embodiments, the stored data is provided for the purpose of data analysis, in particular for the purpose of identifying persons to whom the stored personal sensor data relates.
  • the storage is a time-limited storage.
  • the stored personal sensor data is deleted again after it has been evaluated and/or when the exceptional situation has ended.
  • the storage is permanent storage.
  • the limited time window begins with detecting the exception event. According to embodiments, the limited time window ends when a predetermined period of time has elapsed or when the detection of the exception event ends.
  • Embodiments can have the advantage that the storage of the personal sensor data remains limited to a time window that is related to the detected exceptional event. For example, it can be assumed that only personal sensor data recorded in this time window is relevant in the context of the detected exceptional event.
  • the limited time window ends, for example, when the exception event is no longer detected or is no longer detectable.
  • the exceptional event can be detected, for example, in the form of detecting smoke by a UWB sensor of the monitoring system designed as a smoke detector. If the exception event is no longer detected, ie smoke is no longer detected, the suspension of anonymization, for example, is ended.
  • the suspension of anonymization is ended. Otherwise, the suspension is repeated or continued again for the predetermined period of time.
  • Further requirements include, for example, logging a confirmation in the UWB monitoring system that the exception event has been checked and no further action is necessary or that all necessary measures have been taken.
  • the further requirements may include, for example, logging a confirmation in the UWB monitoring system that suspending anonymization is not and/or no longer necessary.
  • the predetermined period of time can, for example, have a length of seconds and/or minutes.
  • the deletion of the personal sensor data is carried out by the UWB sensor that detects the personal sensor data to be deleted.
  • storing the personal sensor data includes transmitting the personal sensor data by the UWB sensor that detects the personal sensor data to be stored at least partially and/or completely by means of UWB to a storage module of the UWB monitoring system.
  • storing the personal sensor data includes transmitting the personal sensor data through the UWB sensor that detects the personal sensor data to be stored at least partially and/or completely by means of a wired data connection to a storage module of the UWB monitoring system.
  • Embodiments can have the advantage that in the case of a direct deletion by the detecting UWB sensor it can be ensured that the personal sensor data to be deleted within the monitoring system does not go beyond the detecting UWB sensor. This makes it possible to effectively prevent anyone from gaining unauthorized access to personal sensor data.
  • Embodiments may further have the advantage that the personal sensor data stored in the memory module can be used to handle and/or resolve the exception event if necessary. For example, the stored personal sensor data can be analyzed to determine which People are and/or could be involved in the exceptional event.
  • the memory module can be a local memory module of a plurality of memory modules distributed decentrally across the UWB monitoring system or a central memory module of the UWB monitoring system.
  • anonymizing through the anonymization filter includes encrypting at least part of the personal sensor data.
  • the temporary suspension of anonymization includes a temporary provision of the corresponding personal sensor data in unencrypted form.
  • Embodiments can have the advantage that access to the personal sensor data can be effectively prevented by encrypting the personal sensor data.
  • access to personal sensor data that has already been recorded can be made possible by means of decryption.
  • the personal sensor data is only made available in decrypted form for a limited time.
  • the personal sensor data is encrypted by the UWB sensor that detects the personal sensor data to be encrypted.
  • Embodiments can have the advantage that the personal sensor data is encrypted directly when it is collected and is only further processed in encrypted form by the UWB monitoring system. Encryption can be carried out, for example, with a public cryptographic key of an asymmetric key pair, so that it can be decrypted by an owner of the associated secret cryptographic key of the corresponding asymmetric key pair.
  • the corresponding owner is, for example, a central or decentralized control module of the UWB monitoring system.
  • the secret cryptographic keys are stored, for example, in a protected memory area of a memory module which is assigned to the corresponding control module.
  • the control module provides all UWB sensors or at least all UWB sensors configured to capture personal sensor data with a uniform public cryptographic key for encryption.
  • the control module provides all UWB sensors or at least all UWB sensors configured to capture personal sensor data with an individual public cryptographic key assigned to the corresponding UWB sensor for encryption.
  • the control module provides The UWB sensors or at least the UWB sensors configured to capture personal sensor data are each provided with an individual, uniform public cryptographic key assigned to the corresponding group for encryption in groups.
  • the groups can be divided in such a way that they each include UWB sensors which are assigned to the same spatial section of the spatial area, which are the same type of UWB sensor or which are configured to record the same type of personal sensor data.
  • providing the personal sensor data in unencrypted form includes suspending the encrypting of the personal sensor data that is captured within a limited time window.
  • Embodiments can have the advantage that the effort required to decrypt the corresponding personal sensor data can be avoided and this personal sensor data also remains unencrypted.
  • providing the personal sensor data in unencrypted form includes decrypting encrypted personal sensor data that is captured within the limited time window.
  • Embodiments can have the advantage that the personal sensor data is stored exclusively in encrypted form, even in the event of an exceptional event. Providing the personal sensor data in unencrypted form can therefore effectively be limited in time.
  • the limited time window begins a predetermined period of time before the exception event is detected or with the exception event being detected. According to embodiments, the limited time window ends with the expiration of a predetermined period of time after the detection of the exception event or with the end of the detection of the exception event.
  • Embodiments can have the advantage that the provision of the personal sensor data in unencrypted form remains limited to a time window that is related to the detected exceptional event. For example, it can be assumed that only personal sensor data recorded in this time window is relevant in the context of the detected exceptional event. According to embodiments, the limited time window ends, for example, when the exception event is no longer detected or can no longer be detected. In the event of a possible fire as an exceptional event, the exceptional event can be detected, for example, in the form of detecting smoke by a UWB sensor of the monitoring system designed as a smoke detector. If the exception event is no longer detected, ie no more smoke is detected, the suspension of the encryption is ended, for example.
  • the suspension of the encryption is ended. Otherwise, the suspension is repeated or continued again for the predetermined period of time.
  • Further requirements include, for example, logging a confirmation in the UWB monitoring system that the exception event has been checked and no further action is necessary or that all necessary measures have been taken.
  • the further requirements may include, for example, logging a confirmation in the UWB monitoring system that suspending encryption is not and/or no longer necessary.
  • the predetermined period of time can, for example, have a length of seconds and/or minutes. Starting the limited time window a predetermined period of time before the exception event is detected can have the advantage that relevant personal sensor data that was recorded in advance of the exception event can also be provided in unencrypted form.
  • Embodiments can have the advantage that recorded sensor data, in particular personal sensor data, is only made available to authorized persons.
  • a release of sensor data such as position data and/or other data, takes place, for example, according to an authorization profile of the requester.
  • an effective data protection layer can be integrated into the UWB monitoring system.
  • Proof of authorization can be provided, for example, in the form of a certificate of authorization.
  • the request is received and checked, for example, by a decentralized or central control module of the UWB monitoring system. If the test is successful, the release is also carried out by the corresponding control module.
  • the requested sensor data is sent in response to the request to the sender of the request or displayed on a display device of the UWB monitoring system.
  • the requested sensor data is transmitted, for example, in encrypted form; in particular, it can take place using end-to-end encryption.
  • the captured sensor data is divided into categories and checking the credentials includes checking whether the credentials authorize access to sensor data of the category to which the requested sensor data is assigned.
  • Embodiments may have the advantage that permissions can be granted on a category-by-category basis, such that credentials can be limited to one or more of the categories.
  • the recorded personal sensor data is divided into categories and the suspension of anonymization occurs, for example depending on the type of detected exceptional event, selectively only for one or more selected categories.
  • the access authorization of the credential is extended for a limited time to detect the exception event.
  • An extension of the credential means that with a given credential, more categories can be viewed if an exception event is detected than if no exception event is detected.
  • the scope of the extension depends on the type of exception event detected.
  • the access authorization for all valid credentials for accessing at least one category of sensor data is extended to all categories of sensor data for a limited time.
  • Embodiments can have the advantage that, for example, depending on the sensitivity of the sensor data, different proofs of authorization are necessary for access to the corresponding sensor data and it can therefore be controlled who is granted access rights to the recorded sensor data of the UWB monitoring system and to what extent. This means that the data release can be adapted to the current dangerous situation, for example through the requester's authorization profile.
  • origin IDs are assigned to the captured sensor data.
  • a prerequisite for the successful verification of the credentials includes a valid confirmation of the credentials to access the requested sensor data by one or more instances assigned to the origin IDs of the requested sensor data.
  • Embodiments can have the advantage that in order to access the captured sensor data, a release is necessary by one or more instances assigned to the origin IDs, i.e. the origin, of the requested sensor data.
  • the origin IDs each identify the UWB sensor that captured the corresponding sensor data and/or the UWB token that was sensed by the corresponding sensor data.
  • the corresponding instances are the corresponding UWB sensors, UWB tokens or users or administrators, which are assigned to the corresponding UWB sensors or UWB tokens.
  • each localized position i.e. recorded sensor data for locating UWB tokens
  • requests regarding a position or data of a UWB token must, for example, always first be approved by the UWB token in question or a bearer and/or representative thereof.
  • the type, time, location, recipient and/or use of the released sensor data are logged.
  • Embodiments can have the advantage that the corresponding protocols make it possible to understand exactly what happens to the recorded sensor data, in particular who gets access to it.
  • the logging takes place in a blockchain.
  • a blockchain can have the advantage of providing a tamper-proof storage structure for storing the data to be logged.
  • the UWB monitoring system includes one or more pre-trained machine learning modules, each of which is trained to recognize exception events based on anomalies in the captured sensor data.
  • Embodiments may have the advantage of enabling automated detection of exception events.
  • the plurality of UWB sensors includes a plurality of location sensors configured to determine the position of UWB tokens within the spatial area. Positioning is determined using transit time measurements of UWB signals between UWB tokens and/or location sensors.
  • Embodiments may have the advantage that where authorized persons are within the spatial area can be effectively monitored using the UWB tokens. For example, every person who enters the spatial area, such as an access-restricted spatial area, receives a corresponding UWB token. If data relating to the assignment of a token ID to a specific person is not stored or is stored cryptographically secured, e.g. in encrypted form, the monitoring of the UWB tokens enables anonymized monitoring of the bearers of the UWB tokens. For example, a necessary prerequisite for decrypting the data for assignment is detecting an exception event.
  • UWB tokens are localized, for example, by means of triangulation using at least two or three localization sensors in the form of UWB antennas.
  • the triangulation signals can be sent by the UWB token and/or by the UWB antennas.
  • the triangulation signals can be evaluated by the UWB token and/or the UWB antennas and/or an evaluation module of the monitoring system.
  • the UWB monitoring system sends an activation code.
  • the UWB tokens are activated upon entry into a transmission range of the UWB monitoring system upon receipt of the activation code and are deactivated upon leaving the transmission range of the UWB monitoring system upon failure to receive the activation code.
  • Embodiments can have the advantage that the UWB token only actively sends signals using UWB within the spatial area or within the transmission range of the UWB monitoring system and is therefore detectable at all.
  • activating the UWB tokens each includes activating the sending of UWB signals by the respective UWB token, in particular activating the sending of UWB signals to the monitoring system. Enabling makes the corresponding UWB token visible to the monitoring system.
  • deactivating the UWB tokens each includes deactivating the sending of UWB signals by the respective UWB token, in particular deactivating the sending of UWB signals to the monitoring system. Disabling it will make the corresponding UWB token invisible to the monitoring system.
  • detecting the exception event includes detecting a number of people in the spatial area, such as an access-restricted spatial area, using the UWB sensors, which are at least locally controlled by the The number of authorized access persons recorded in the spatial area using the UWB token differs.
  • Embodiments can have the advantage that attempts to gain access to the restricted-access spatial area or sections thereof without access authorization and/or attempts to monitor movement can be effectively detected by the UWB monitoring system within the restricted-access spatial area.
  • each of the UWB tokens is assigned to a user.
  • One or more reference values for personal sensor data for authenticating the assigned user are stored in the UWB tokens.
  • Proof of an access authorization and/or residence authorization using one of the UWB tokens includes confirming that the user assigned to the corresponding UWB token has been authenticated by the UWB token.
  • Authenticating by the UWB token includes locally validating personal sensor data by the UWB token using the one or more reference values stored in the UWB token.
  • UWB sensors such as impact sound sensors, motion detectors, light barriers or gas detectors, detect the presence of a person in a spatial section of the spatial area in which no UWB token is detected, this is an indication of an attempt at unauthorized intrusion.
  • differences in movement patterns between UWB tokens and detected people can indicate unauthorized activities, for example if a UWB token rests in one place while a person's movements are detected based on the captured sensor data.
  • an exception event includes, for example, detecting a number of people that at least locally exceeds the number of detected authorized access people or detected UWB tokens.
  • detecting the exception event includes detecting a UWB token in a spatial section of the spatial area, such as an access-restricted spatial area, for which the corresponding UWB token does not have access authorization.
  • detecting the exception event includes acquiring non-personal sensor data that exceeds a predefined threshold.
  • Embodiments may have the advantage, in particular, that emergency situations can be effectively detected, such as a fire using a UWB sensor configured as a smoke detector or a break-in using a UWB sensor configured as a glass break.
  • emergency situations such as a fire using a UWB sensor configured as a smoke detector or a break-in using a UWB sensor configured as a glass break.
  • increased physical activity and a simultaneous rise in temperature can initially be interpreted as an unclear exceptional event or even a dangerous situation.
  • the UWB monitoring system includes a digital radio network with a mesh topology configured to transmit the captured sensor data using UWB.
  • Embodiments may have the advantage that captured sensor data can be effectively transmitted via the UWB monitoring system. Furthermore, a mesh topology offers a high level of reliability because if individual components of the mesh topology fail, data transmission via alternative routes is still possible. In addition, if a portion of the mesh topology fails, operation can be maintained with the remaining portion of the mesh topology.
  • the advantage may be that position data for several and/or all network nodes, i.e. UWB sensors and/or UWB tokens, are provided or can be determined in the UWB-based radio network with a mesh topology.
  • Position data can be determined, for example, using a triangulation method based on transit time measurements of UWB signals.
  • the position data can be relative and/or absolute position data. In order to determine absolute position data, at least one or more stationary reference points must be known.
  • Embodiments can have the advantage that a position-based routing method can be used for targeted forwarding of data in the UWB-based radio network with mesh topology in order to create a shortest or otherwise best path between a source node and a source node using the position data determined using UWB Determine target nodes within the radio network.
  • one or more of the UWB sensors are configured as UWB transceivers for forwarding UWB transmission signals.
  • the UWB monitoring system includes, in addition to the UWB sensors, one or more UWB transceivers configured to forward the UWB transmission signals.
  • Embodiments may have the advantage that UWB data forwarding can be effectively implemented using the UWB sensors and/or additional UWB transceivers.
  • the invention further comprises a method for controlling a UWB monitoring system for monitoring a spatial area according to claim.
  • the UWB monitoring system comprises a plurality of UWB sensors which are arranged distributed in the spatial area.
  • the UWB sensors are configured for communication via UWB.
  • the communication includes transmitting the captured sensor data.
  • the plurality of UWB sensors includes a plurality of location sensors for determining position data of a mobile wearable UWB token within the spatial area. Determining the position data is done using a transit time measurement of UWB signals between the localization sensors and the UWB token.
  • the UWB monitoring system is configured to monitor the presence of the UWB token on a user associated with the UWB token.
  • the UWB monitoring system includes an authentication device with an authentication sensor for locally collecting authentication data to authenticate the user of the UWB token.
  • the authentication device has access to a reference value for the user's authentication data to validate the acquired authentication data. Successful validation of the captured authentication data indicates the presence of the UWB token on the user.
  • the method for controlling the UWB monitoring system is configured to control each of the previously described embodiments of the UWB monitoring system.
  • Figure 1 shows an exemplary UWB monitoring system 100 for monitoring a spatial area 102, such as an access-restricted spatial area.
  • the spatial area 102 is an access-restricted spatial area
  • this access-restricted spatial area is, for example, delimited from the surroundings and can only be entered via one or more entrances or exits 104 as intended.
  • the spatial area is an indoor area or interior area within a building.
  • the spatial area can also include an outdoor area or outdoor area outside of a building.
  • this outdoor area can be a restricted area that is fenced in.
  • An enclosure can include, for example, a fence, a wall and/or a hedge.
  • An access-restricted spatial area 102 can, for example, be divided into a plurality of spatial sections 106, which themselves can only be accessed via one or more entrances or exits 108 as intended.
  • the UWB monitoring system 100 includes a plurality of UWB sensors 110 distributed over the spatial area 102.
  • the UWB sensors 110 are for detecting sensor data, such as position data, movement data, image data, sound data, vibration data, temperature data, structure data, gas concentration data, Particle concentration data etc. configured.
  • the UWB sensors 110 are for transmitting the captured sensor data using UWB, ie via one provided by the UWB monitoring system 100 UWB network, configured.
  • the UWB sensors 110 can be configured as UWB transceivers for forwarding UWB transmission signals within the monitoring system 100.
  • the UWB monitoring system 100 may include one or more UWB transceivers 111 configured to relay the UWB transmission signals.
  • the UWB network implemented by the monitoring system 100 is, for example, a digital radio network with a mesh topology, which is configured to transmit the acquired sensor data using UWB.
  • sensor data is transmitted within the UWB-based wireless network with mesh topology using a position-based routing method.
  • data transmission from the UWB sensors 110 takes place exclusively via UWB.
  • one or more of the UWB sensors 110 are additionally configured for at least partially and/or completely wired transmission of the captured sensor data.
  • all UWB sensors 110 are additionally configured for at least partially and/or completely wired transmission of the captured sensor data.
  • a UWB radar functionality can also be integrated and/or implemented for the detection of people who do not carry a UWB token.
  • the UWB sensors 110 include, for example, anonymization filters that are configured to filter the captured sensor data. During the filtering process, personal sensor data is anonymized. Personal sensor data includes, for example, image data that can be used to identify people. The filtered sensor data is transmitted to a control module 116, for example via the UWB network.
  • the control module 116 can be a central control module or a decentralized control module.
  • the control module 116 is configured, for example, to evaluate the sensor data recorded by the UWB sensors 110 in order to detect exceptional events, such as a dangerous situation or unauthorized access to the spatial area 102. When an exceptional event is detected, the personal sensor data is anonymized in time limited exposure.
  • the control module 116 is, for example, further configured to receive requests for captured sensor data, to check credentials for access to the corresponding sensor data and, in the event of a successful check, to grant access to the requested sensor data. In the event of a detected exception event, for example, access to personal sensor data is also granted, the anonymization of which is temporarily suspended.
  • the credentials can, for example, be based on the requester's authorization certificates and/or authorization profiles, which define the requester's access authorizations. For example, in an authorization profile assigned to a user and/or UWB token, all of them are one and/or UWB token associated access permissions are stored. According to embodiments, the scope of the access authorization granted can depend, for example, on whether an exceptional situation is detected.
  • the monitoring system 100 is further configured to locate UWB tokens 112′ within the spatial area 102 using UWB sensors.
  • UWB sensors For this purpose, for example, UBW localization signals 107 are used, which are sent from the UWB antennas 110 to the corresponding UWB tokens 112 'and vice versa. Based on transit time differences in the transmitted signals, the relative positions of the UBW tokens 112' to the permanently installed UWB antennas 110 and thus the positions of the UBW tokens 112' in the spatial area 102 can be precisely determined, for example by means of triangulation.
  • the transmitted UBW localization signals 107 can hardly be distinguished from background noise without knowledge of the UWB coding used and are therefore effectively obfuscated, attempts at unauthorized localization of the UWB tokens 112 'in the course of unauthorized spying attempts can be effectively prevented. This is further supported by the relatively short range of UWB signals, which effectively counters spying attempts from a distance.
  • the UWB tokens 112' identify, for example, users or carriers with access authorization to the spatial area 102 if this is an access-restricted spatial area. Furthermore, the UWB tokens 112' can define carrier-specific access authorizations if different access authorizations are necessary for individual spatial sections of the spatial area 102.
  • UWB token 112' it can be determined where people with authorized access are located. If people are detected to whom no UWB token 112' can be assigned, this is an indication of an attempt at unauthorized intrusion, which is detected, for example, as an exceptional event.
  • the UWB tokens 112' are further configured as authentication devices and include an authentication sensor for detecting authentication data of the user of the UWB token 112'.
  • the user of the UWB token 112' can be authenticated based on the acquired authentication data.
  • the user of the UWB token 112' is the user assigned to the UWB token 112'.
  • the position data of the UWB token 112' can therefore be used as position data of the corresponding user.
  • the user of the UWB token 112' is not the assigned user. There is therefore an attempt at manipulation, which can be effectively detected in this way.
  • FIG 2 shows an alternative embodiment of the monitoring system 100 Figure 1 , which additionally includes stationary authentication devices 140.
  • the stationary authentication devices 140 are, for example, arranged across the spatial area 102 at strategically relevant and/or advantageous positions.
  • the stationary authentication devices 140 are arranged at entrances and exits 108, via which the individual and/or safety-critical spatial sections 106 of the spatial area 102 can be entered or left.
  • the UWB tokens include 112, as opposed to the UWB tokens 112' Figure 1 no authentication devices.
  • FIG 3 shows an exemplary UWB monitoring system 100 for monitoring a spatial area 102.
  • the UWB monitoring system shown largely corresponds to this Figure 1 UWB monitoring system shown, but communication within the UWB monitoring system 100 takes place via wire using a LAN network.
  • the use of UWB and LAN can also be combined with each other. For example, both are used simultaneously or UWB communication is implemented as failover protection in the event of a LAN network failure.
  • the UWB monitoring system 100 includes a plurality of UWB sensors 110 distributed over the spatial area 102.
  • the UWB sensors 110 are for detecting sensor data, such as position data, motion data, image data, sound data, vibration data, temperature data, structural data, gas concentration data, particle concentration data etc. configured.
  • the UWB sensors 110 are connected via LAN connections 115 for transmitting captured sensor data to a local wired network with a control module 116 for controlling the operation of the UWB monitoring system 100.
  • the control module 116 is configured to control the UWB monitoring system 100.
  • Some UWB sensors of the plurality of UWB sensors 110 include a control module with an emergency function.
  • the emergency function includes control functions for at least locally operating a part of the UWB monitoring system 100 using a UWB mesh network.
  • only the UWB sensors 110 with control module can be connected to the local wired network via LAN connections 115.
  • the further UWB sensors 110 can be connected to the control module 116, for example by means of UWB connections via the UWB sensors 110 with a control module.
  • the monitoring system 100 may be further configured to locate UWB tokens 112' within the spatial area 102 using the UWB sensors 110.
  • UWB sensors 110 For this purpose, for example, UBW localization signals 107 are used, which are sent from UWB sensors 110 configured as localization sensors to the corresponding UWB tokens 112' and vice versa. Based on transit time differences in the transmitted signals, the relative positions of the UBW tokens 112' to the UWB antennas of the permanently installed UWB sensors 110 and thus the positions of the UBW tokens 112' in the spatial area 102 can be precisely determined, for example by means of triangulation.
  • the local wired network can have any network topology.
  • the UWB tokens 112' may be configured as authentication devices. Alternatively and/or additionally, stationary authentication devices may be provided, such as in the case of the UWB monitoring system 110 of Figure 2 .
  • FIG. 4 shows an exemplary UBW sensor 110.
  • This UBW sensor 110 includes a processor 120, which executes program instructions stored, for example, in a memory 124 of the UBW sensor 110, and controls the UBW sensor 110 according to the program instructions.
  • the UBW sensor 110 further includes a sensor element 122, which is configured, for example, to detect optical, acoustic, chemical, thermal, electromagnetic and/or vibration-based sensor data.
  • the captured sensor data can, for example, include personal sensor data depending on the sensor element 122 used. If the UWB sensor 110 is configured to collect personal sensor data, the UWB sensor 110 further includes an anonymization filter for anonymizing the personal sensor data, otherwise not. Anonymizing may, for example, include deleting the collected personal sensor data from the memory 124.
  • the UWB sensor 110 includes a UWB antenna 126 for sending and receiving data using UWB.
  • the UWB sensor 110 may, for example, additionally comprise a communication interface for wired data transmission.
  • Figure 5 shows an exemplary UBW token 112, which includes a processor 130, a memory 132 and a UWB antenna 134.
  • the processor 130 is configured to control the UBW token 112 by executing program instructions stored, for example, in the memory 132.
  • a token ID may also be stored in memory 132.
  • the UBW token 112 is configured to send and receive UWB signals via the UWB antenna 134. For example, the UBW token 112 sends UWB signals that include a timestamp and/or the token ID.
  • the UBW token 112 can be located and/or identified by the UWB monitoring system 100.
  • Figure 6 shows an exemplary UBW token 112 ', which corresponds to the UBW token 112 of FIG. 5.
  • the UBW token 112' includes a user interface 136 by means of which the user can interact with the UBW token 112'.
  • the user interface 136 includes, for example, an input device and an output device, such as a keyboard and a display or a touch display.
  • the UBW token 112' includes an authentication device 138, which includes a sensor element 139 for detecting the user's authentication data.
  • FIG. 7 shows an exemplary stationary authentication device 140, which includes a processor 142 and a memory 144.
  • Program instructions are stored in the memory 144, the execution of which causes the processor 142 to authenticate a user.
  • the stationary authentication device 140 includes, for example, a user interface 146 by means of which the user can interact with the stationary authentication device 140.
  • the user interface 146 includes, for example, an input device and an output device, such as a keyboard and a display or a touch display.
  • the stationary authentication device 140 includes a sensor element 147 for detecting the user's authentication data. In the event of successful validation of the authentication data recorded using the sensor element 147, the authentication device 140 creates an authentication confirmation and sends it via a communication interface 148.
  • Figure 8 shows an example method for controlling a UWB monitoring system.
  • position data of the UWB token within the spatial area is determined using the location sensors.
  • a transit time measurement of UWB signals between the localization sensors and the UWB token is carried out, from which a current position of the UWB token can be determined, for example by means of triangulation and knowledge of the positions of the localization sensors.
  • This determination of the position data of the UWB token can be done repeatedly, for example continuously, and movements of the UWB token through the spatial area 102 can be tracked.
  • an authentication request is sent to the authentication device to check the presence of the UWB token on the associated user.
  • the UWB token includes the authentication device and the authentication request is sent to the UWB token.
  • an authentication confirmation is received from the authentication device. This authentication confirmation confirms successful validation of the user's captured authentication data, which confirms the presence of the UWB token displayed to the user. Successful validation requires that there is sufficient agreement between the recorded authentication data and the reference value.
  • Figure 9 shows an example method for controlling a UWB monitoring system.
  • position data of the UWB token within the spatial area is determined using the location sensors.
  • a stationary authentication device is selected to authenticate the user of the UWB token.
  • the selected authentication device is, for example, an authentication device in the vicinity of the UWB token or on a path of the UWB token extrapolated from the position data of the UWB token.
  • the selection of the authentication device is based, for example, on one or more of the following criteria: a distance between the position data of the UWB token and the position data of the selected authentication device falls below a predefined first maximum distance, the selected authentication device has the smallest distance of all authentication devices of the plurality of authentication devices to the position data of the UWB token, the selected authentication device has the shortest distance of all authentication devices of the plurality of authentication devices to a future path of the UWB token through the spatial area extrapolated from the previously determined position data of the UWB token.
  • an authentication request is sent to the UWB token to authenticate.
  • the authentication request identifies the selected authentication device at which the user of the UWB token is to authenticate.
  • an authentication request is sent to the selected authentication device to verify the presence of the UWB token on the associated user.
  • the UWB token includes the authentication device and the authentication request is sent to the UWB token.
  • an authentication confirmation is received from the authentication device. This authentication confirmation confirms successful validation of the user's captured authentication data, which indicates the presence of the UWB token on the user.
  • Successful validation requires that the position data of the UWB token during authentication is within a detection range relative to the known position data of the authentication device and that there is sufficient agreement between the captured authentication data and the reference value.
  • Figure 10 shows an example method for controlling a UWB monitoring system.
  • sensor data is collected in a spatial area by UWB sensors of the UWB monitoring system.
  • the sensor data collected may include personal sensor data.
  • the captured sensor data is filtered using anonymization filters of the UWB sensors.
  • Personal sensor data is anonymized. Such anonymization includes, for example, deleting or encrypting the sensor data to be anonymized.
  • the captured and filtered sensor data is evaluated to detect an exception event. This is done, for example, by a central or decentralized control module of the UWB monitoring system.
  • a temporary suspension of the anonymization of the personal sensor data is initiated, for example by the control module.
  • Figure 11 shows an example method for controlling a UWB monitoring system.
  • the UWB monitoring system such as a control module of the UWB monitoring system, receives a request to release captured sensor data.
  • a proof of authorization included in the request to access the requested sensor data is checked, for example by the control module.
  • the proof of authorization can be, for example, an authorization certificate or an identifier of a stored authorization profile of the requester.
  • access to the requested sensor data is enabled following a successful check of the proof of authorization. For example, the requested sensor data is sent to the requester or displayed on a local display device of the monitoring system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)

Claims (12)

  1. Système de surveillance UWB (100) permettant la surveillance d'une zone d'un espace (102), où le système de surveillance UWB (100) comprend une multiplicité de capteurs UWB (110) qui sont disposés distribués dans la zone d'espace (102), les capteurs UWB (110) étant conçus pour une communication au moyen de bandes ultra larges, UWB, où la communication comprend une transmission des données de capteur détectées,
    dans lequel la multiplicité des capteurs UWB (110) comprend une multiplicité de capteurs de localisation permettant la détermination de données de position d'un jeton UWB (112, 112') mobile portable à l'intérieur de la zone d'espace (102), où la détermination des données de position a lieu moyennant l'utilisation d'une mesure de temps de vol de signaux UWB (107) entre les capteurs de localisation et le jeton UWB (112, 112'),
    où le système de surveillance UWB (100) est conçu pour la surveillance de la présence du jeton UWB (112, 112') sur un utilisateur associé au jeton UWB (112, 112'), où le système de surveillance UWB (100) comprend un dispositif d'authentification (138, 140) avec un capteur d'authentification (139, 147) pour la détection locale de données d'authentification permettant l'authentification de l'utilisateur du jeton UWB (112, 112'), où le dispositif d'authentification (138, 140) possède un accès à une valeur de référence pour les données d'authentification de l'utilisateur pour la validation des données d'authentification détectées, où une validation réussie des données d'authentification détectées indique la présence du jeton UWB (112, 112') sur l'utilisateur,
    dans lequel la surveillance de la présence du jeton UWB (112, 112') sur l'utilisateur associé comprend :
    • la détermination répétée des données de position du jeton UWB (112, 112') à l'intérieur de la zone d'espace (102) moyennant l'emploi des capteurs de localisation,
    • la réception d'une demande d'authentification par le dispositif d'authentification (138, 140) permettant la vérification de la présence du jeton UWB (112, 112') sur l'utilisateur associé, où les données de position du dispositif d'authentification (138, 140) sont connues à l'intérieur de la zone d'espace (102),
    • l'envoi d'une confirmation d'authentification de l'authentification de l'utilisateur par le dispositif d'authentification (138, 140), où la confirmation d'authentification confirme une validation réussie des données d'authentification détectées de l'utilisateur, laquelle indique la présence du jeton UWB (112, 112') sur l'utilisateur, où la validation réussie suppose que les données de position du jeton UWB (112, 112') se trouvent pendant l'authentification à l'intérieur d'une zone de détection prédéfinie par rapport aux données de position connues du dispositif d'authentification (138, 140) et qu'il y a une concordance suffisante des données d'authentification détectées avec la valeur de référence,
    caractérisé en ce que
    des autorisations d'accès vers et/ou des autorisations de séjour dans la zone d'espace (102) sont indiquées à l'utilisateur associé au jeton UWB (112, 112') par le jeton UWB (112, 112'),
    où une indication d'autorisations d'accès et/ou d'autorisations de séjour réussie est conditionnée à la réception d'une confirmation d'authentification,
    où la multiplicité de capteurs UWB (110) comprend en plus, outre les capteurs de localisation, un ou plusieurs capteurs UWB complémentaires, lesquels sont conçus pour la détection de données de capteurs,
    où les capteurs UWB complémentaires comportent des capteurs (122) pour la détection de données de capteurs optiques, acoustiques, chimiques, thermiques, électromagnétiques et/ou basés sur des vibrations, et
    où le système de surveillance UWB (100) est en outre conçu pour :
    • suite à une détection de données de capteur par un capteur (122) d'un des capteurs UWB complémentaires, lesquels sont indicateurs d'une présence d'une personne dans une zone de détection du capteur (122), la vérification si des données de position du jeton UWB (112, 112') peuvent être déterminées à l'intérieur de la zone de détection du capteur (122),
    • dans le cas où aucune donnée de position d'un jeton UWB (112, 112') ne peut être déterminée à l'intérieur de la zone de détection du capteur (122), l'émission d'un signal d'alarme.
  2. Système de surveillance UWB (100) selon l'une des revendications précédentes, dans lequel, dans le cas de la zone de détection prédéfinie, il s'agit d'une zone à distance prédéfinie par rapport aux données de position connues du dispositif d'authentification (138, 140), ou dans lequel, dans le cas de la zone de détection prédéfinie, il s'agit d'une zone de détection des données d'authentification déterminée moyennant l'emploi des données d'authentification détectées.
  3. Système de surveillance UWB (100) selon l'une des revendications précédentes, dans lequel le dispositif d'authentification (138), lequel réceptionne la demande d'authentification, est choisi dans une multiplicité de dispositifs d'authentification du système de surveillance UWB (100).
  4. Système de surveillance UWB (100) selon la revendication 3, dans lequel le choix du dispositif d'authentification (138) repose sur un ou plusieurs des critères suivants :
    un écart entre les données de position du jeton UWB (112) et les données de position du dispositif d'authentification (138) choisi diminué d'un premier écart maximal prédéfini, le dispositif d'authentification (138) choisi présente, parmi tous les dispositifs d'authentification de la multiplicité des dispositifs d'authentification, un écart minimal par rapport aux données de position du jeton UWB (112), le dispositif d'authentification (138) choisi présente, parmi tous les dispositifs d'authentification de la multiplicité des dispositifs d'authentification, un écart minimal par rapport un chemin du jeton UWB (112) ultérieur extrapolé à partir des données de position du jeton UWB (112) précédemment déterminées à travers la zone d'espace (102), et/ou
    dans lequel une incitation d'authentification est envoyée au jeton UWB (112, 112') ou dans lequel un signal d'avertissement est émis en tant qu'incitation d'authentification par le dispositif d'authentification (140) choisi.
  5. Système de surveillance UWB (100) selon l'une des revendications précédentes, dans lequel, dans le cas du dispositif d'authentification (140), il s'agit d'un dispositif d'authentification stationnaire disposé dans la zone d'espace (102), où la réception de la demande d'authentification par le dispositif d'authentification (140) a lieu en particulier dans le cas où un écart entre les données de position du jeton UWB (112) et les données de position du dispositif d'authentification (140) est inférieur à un deuxième écart maximal prédéfini, ou
    dans lequel le jeton UWB (112') comprend le dispositif d'authentification (138), où, dans le cas du capteur d'authentification (147) il s'agit d'un capteur du jeton UWB (112'), où dans le cas des données de position connues du dispositif d'authentification (138), il s'agit des données de position déterminées du jeton UWB (112').
  6. Système de surveillance UWB (100) selon l'une des revendications précédentes, dans lequel la valeur de référence est enregistrée dans une mémoire du jeton UWB (112').
  7. Système de surveillance UWB (100) selon l'une des revendications précédentes, dans lequel la mesure du temps de vol de signaux UWB (107) entre les capteurs de localisation et le jeton UWB (112, 112') est effectuée par le jeton UWB (112, 112') et la détermination des données de position comprend une réception des données de position par le jeton UWB (112, 112'), ou
    dans lequel la détermination des données de position comprend une détection de données de capteurs dans la zone d'espace (102) moyennant l'emploi des capteurs de localisation dans le cadre de la mesure du temps de vol, où les données de capteurs détectées par les capteurs de localisation sont employées pour la détermination des données de position.
  8. Système de surveillance UWB (100) selon l'une des revendications précédentes, dans lequel la surveillance de la présence du jeton UWB (112, 112') sur l'utilisateur associé comprend en outre : suite à une validation non réussie des données d'authentification, l'émission d'un signal d'alarme, et/ou
    dans lequel une validation non réussie des données d'authentification est indiquée par l'absence de la confirmation d'authentification et/ou est par une réception d'un message d'erreur du dispositif d'authentification (138, 140), et/ou
    dans lequel les données d'authentification comprennent une ou plusieurs des données suivantes : des données biométriques de l'utilisateur, des données basées sur le comportement de l'utilisateur, un mot de passe personnel de l'utilisateur, des données signées d'un ou de plusieurs autres appareils électroniques associés à l'utilisateur.
  9. Système de surveillance UWB (100) selon l'une des revendications précédentes, dans lequel les données de capteurs détectées comprennent des données de capteurs relatives à la personne et le système de surveillance UWB (100) est conçu pour
    • le filtrage des données de capteurs détectées moyennant l'emploi d'un filtre d'anonymisation (123), où le filtre d'anonymisation (123) est conçu pour rendre les données de capteurs relatives à la personne anonymes,
    • l'évaluation des données de capteurs détectées pour la détection d'un évènement exceptionnel,
    • suite à la détection de l'évènement exceptionnel, la suspension limitée dans le temps de l'anonymisation des données de capteurs relatives à la personne.
  10. Système de surveillance UWB (100) selon la revendication 9, dans lequel, dans le cas des données d'authentification, il s'agit de données de capteurs relatives à la personne et/ou dans lequel l'anonymisation par le filtre d'anonymisation (123) comprend l'effacement d'au moins une partie des données de capteurs relatives à la personne, où la suspension limitée dans le temps de l'anonymisation comprend un enregistrement des données de capteurs relatives à la personne, lesquelles sont détectées dans une fenêtre temporelle limitée,
    dans lequel la fenêtre temporelle limitée commence en particulier avec la détection de l'évènement exceptionnel et avec l'écoulement d'un intervalle de temps prédéterminé ou une fin de la détection de l'évènement exceptionnel,
    dans lequel l'effacement des données de capteurs relatives à la personne a lieu en particulier respectivement par le capteur UWB détectant les données de capteurs relatives à la personne à effacer, où l'enregistrement des données de capteur relatives à la personne comprend respectivement une transmission des données de capteur relatives à la personne par le capteur UWB détectant les données de capteurs relatives à la personne à enregistrer au moyen de l'UWB vers un module de mémoire du système de surveillance UWB (100).
  11. Système de surveillance UWB (100) selon l'une des revendications 9 à 10, dans lequel l'anonymisation par le filtre d'anonymisation (123) comprend un chiffrement d'au moins une partie des données de capteurs relatives à la personne, où la suspension temporelle limitée de l'anonymisation comprend la fourniture limitée dans le temps des données de capteurs relatives à la personne sous forme chiffrée, et/ou
    le système de surveillance UWB (100) étant en outre conçu pour
    • la réception d'une demande pour la libération de données de capteurs détectées,
    • la vérification d'une preuve d'autorisation comprise dans la demande pour l'accès aux données de capteurs demandées,
    • suite à une vérification réussie de la preuve d'autorisation, la libération de l'accès aux données de capteur demandées.
  12. Procédé de commande d'un système de surveillance UWB (100) permettant la surveillance d'une zone d'espace (102), où le système de surveillance UWB (100) comprend une multiplicité de capteurs UWB (110) qui sont disposés distribués dans la zone d'espace (102), les capteurs UWB (110) étant conçus pour une communication au moyen de bandes ultra larges, UWB, où la communication comprend une transmission des données de capteur détectées,
    dans lequel la multiplicité des capteurs UWB (110) comprend une multiplicité de capteurs de localisation permettant la détermination de données de position d'un jeton UWB (112, 112') mobile portable à l'intérieur de la zone d'espace (102), où la détermination des données de position a lieu moyennant l'utilisation d'une mesure de temps de vol de signaux UWB (107) entre les capteurs de localisation et le jeton UWB (112, 112'),
    dans lequel le système de surveillance UWB (100) est conçu pour la surveillance de la présence du jeton UWB (112, 112') sur un utilisateur associé au jeton UWB (112, 112'), où le système de surveillance UWB (100) comprend un dispositif d'authentification (138, 140) avec un capteur d'authentification (139, 147) pour la détection locale de données d'authentification permettant l'authentification de l'utilisateur du jeton UWB (112, 112'), où le dispositif d'authentification (138, 140) possède un accès à une valeur de référence pour les données d'authentification de l'utilisateur pour la validation des données d'authentification détectées, où une validation réussie des données d'authentification détectées indique la présence du jeton UWB (112, 112') sur l'utilisateur,
    le procédé de commande du système de surveillance UWB (100) pour la surveillance de la présence du jeton UWB (112, 112') sur l'utilisateur associé comprend :
    • la détermination répétée des données de position du jeton UWB (112, 112') à l'intérieur de la zone d'espace (102) moyennant l'emploi des capteurs de localisation,
    • la réception d'une demande d'authentification par le dispositif d'authentification (138, 140) permettant la vérification de la présence du jeton UWB (112, 112') sur l'utilisateur associé, où les données de position du dispositif d'authentification (138, 140) sont connues à l'intérieur de la zone d'espace (102),
    • l'envoi d'une confirmation d'authentification de l'authentification de l'utilisateur par le dispositif d'authentification (138, 140), où la confirmation d'authentification confirme une validation réussie des données d'authentification détectées de l'utilisateur, laquelle indique la présence du jeton UWB (112, 112') sur l'utilisateur, où la validation réussie suppose que les données de position du jeton UWB (112, 112') se trouvent pendant l'authentification à l'intérieur d'une zone de détection prédéfinie par rapport aux données de position connues du dispositif d'authentification (138, 140) et qu'une concordance suffisante des données d'authentification détectées avec la valeur de référence est présente,
    caractérisé en ce que
    des autorisations d'accès vers et/ou des autorisations de séjour dans la zone d'espace (102) sont indiquées à l'utilisateur associé au jeton UWB (112, 112') par le jeton UWB (112, 112'),
    dans lequel une indication d'autorisations d'accès et/ou d'autorisations de séjour réussie est conditionnée à la réception d'une confirmation d'authentification,
    dans lequel la multiplicité de capteurs UWB (110) comprend en plus, outre les capteurs de localisation, un ou plusieurs capteurs UWB complémentaires, lesquels sont conçus pour la détection de données de capteurs,
    dans lequel les capteurs UWB complémentaires comportent des capteurs (122) pour la détection de données de capteurs optiques, acoustiques, chimiques, thermiques, électromagnétiques et/ou basés sur des vibrations, et
    dans lequel le système de surveillance UWB (100) est en outre conçu pour :
    • suite à une détection de données de capteur par un capteur (122) d'un des capteurs UWB supplémentaires, lesquels sont indicateurs d'une présence d'une personne dans une zone de détection du capteur (122), la vérification si des données de position du jeton UWB (112, 112') peuvent être déterminées à l'intérieur de la zone de détection du capteur (122),
    • dans le cas où aucune donnée de position d'un jeton UWB (112, 112') ne peut être déterminée à l'intérieur de la zone de détection du capteur (122), l'émission d'un signal d'alarme.
EP21152247.9A 2020-01-24 2021-01-19 Système de surveillance uwb permettant de surveiller la présence d'un utilisateur Active EP3855403B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020101730.8A DE102020101730A1 (de) 2020-01-24 2020-01-24 UWB-Überwachungssystem zur Überwachen der Anwesenheit eines Nutzers

Publications (2)

Publication Number Publication Date
EP3855403A1 EP3855403A1 (fr) 2021-07-28
EP3855403B1 true EP3855403B1 (fr) 2024-03-06

Family

ID=74191564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21152247.9A Active EP3855403B1 (fr) 2020-01-24 2021-01-19 Système de surveillance uwb permettant de surveiller la présence d'un utilisateur

Country Status (4)

Country Link
EP (1) EP3855403B1 (fr)
DE (1) DE102020101730A1 (fr)
DK (1) DK3855403T3 (fr)
FI (1) FI3855403T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993083A (zh) * 2021-09-09 2022-01-28 中用科技有限公司 一种区域人员管理系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707044B2 (en) * 2005-02-11 2010-04-27 Avaya Inc. Use of location awareness to transfer communications sessions between terminals in a healthcare environment
US7868760B2 (en) * 2006-06-05 2011-01-11 Bp Corporation North America Inc. Method for accounting for people in emergencies in industrial settings
US8531523B2 (en) 2009-12-08 2013-09-10 Trueposition, Inc. Multi-sensor location and identification
US8818424B2 (en) 2013-01-03 2014-08-26 Qualcomm Incorporated Inter-AP distance estimation using crowd sourcing
US20150208207A1 (en) 2014-01-22 2015-07-23 Lear Corporation Wireless device localization
US20190051073A1 (en) * 2016-02-11 2019-02-14 Carrier Corporation Soft badge-in system
DE102017123931A1 (de) * 2017-10-13 2019-04-18 Bundesdruckerei Gmbh Verteiltes System zum Verwalten von personenbezogenen Daten, Verfahren und Computerprogrammprodukt
DE102018207862B4 (de) 2018-05-18 2023-09-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zur Lokalisierung eines ID-Gebers

Also Published As

Publication number Publication date
EP3855403A1 (fr) 2021-07-28
DK3855403T3 (da) 2024-04-08
DE102020101730A1 (de) 2021-07-29
FI3855403T3 (fi) 2024-04-16

Similar Documents

Publication Publication Date Title
CA2729193C (fr) Systeme de controle de l'acces fonde sur le comportement
AT506619B1 (de) Verfahren zur zeitweisen personalisierung einer kommunikationseinrichtung
DE60306627T2 (de) Dynamisches sicherheitssystem
Popescu Controlling mobility: Embodying borders
EP3729385A1 (fr) Système de contrôle d'accès avec authentification radio et acquisition de mot de passe
EP3855403B1 (fr) Système de surveillance uwb permettant de surveiller la présence d'un utilisateur
EP2145287B1 (fr) Procédé pour authentifier une personne
EP3404570B1 (fr) Procédé et système d'authentification comportementale
DE102020101725A1 (de) UWB-Überwachungssystem
DE19822206A1 (de) Vorrichtung zur Erkennung von Lebewesen oder Gegenständen
DE102020101733A1 (de) Berechtigungsmanagement mittels UWB-Tokens
DE102020101734A1 (de) Detektieren einer Anwesenheit eines unbekannten UWB-Tokens
DE102020101732A1 (de) Manipulationssicherung anhand von gerätspezifischen Toleranzen
DE102020101728A1 (de) Überwachungssystem mit Ausfallsicherung
EP3855779A1 (fr) Communication uwb avec une pluralité de schémas d'encodage de données uwb
EP2137705B1 (fr) Procédé pour transmettre les données concernant une personne à un dispositif de contrôle
EP2996299A1 (fr) Procédé et système d'autorisation d'une action sur un système auto-commandé
EP3336736B1 (fr) Jeton auxiliaire id destiné à l'authentification mulifacteur
DE102020101731A1 (de) UWB-Token
EP3487200A1 (fr) Authentification basée sur le comportement à l'aide de la position de retour
EP4047872A1 (fr) Système biométrique à distance pour la surveillance et l'autorisation d'assistance sur un ordinateur
EP2956890B1 (fr) Procédé et système de mise à disposition d'une fonction d'un support d'identité
Saharedan Prototype Security Door Access System
EP1269682A1 (fr) Procede pour produire des signatures electroniques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220128

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230907

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002852

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20240405

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E024142

Country of ref document: EE

Effective date: 20240320