WO2021147186A1 - 稀释方法及稀释装置 - Google Patents

稀释方法及稀释装置 Download PDF

Info

Publication number
WO2021147186A1
WO2021147186A1 PCT/CN2020/084945 CN2020084945W WO2021147186A1 WO 2021147186 A1 WO2021147186 A1 WO 2021147186A1 CN 2020084945 W CN2020084945 W CN 2020084945W WO 2021147186 A1 WO2021147186 A1 WO 2021147186A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
transfer
reagent
station
dilution
Prior art date
Application number
PCT/CN2020/084945
Other languages
English (en)
French (fr)
Inventor
张震
于怀博
何太云
姚言义
刘奇林
Original Assignee
深圳迎凯生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迎凯生物科技有限公司 filed Critical 深圳迎凯生物科技有限公司
Priority to EP20915753.6A priority Critical patent/EP4083631A4/en
Priority to US17/793,660 priority patent/US20230046531A1/en
Publication of WO2021147186A1 publication Critical patent/WO2021147186A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical or biological applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00524Mixing by agitating sample carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N2035/0094Scheduling optimisation; experiment design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0437Cleaning cuvettes or reaction vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control

Definitions

  • the invention relates to the technical field of analysis and testing, in particular to a dilution method and a dilution device.
  • the chemiluminescence immunoassay system uses the principles of chemiluminescence and immune reaction to correlate the light signal with the concentration of the test substance, and analyze the content of the test substance in the sample. Due to its high sensitivity, specificity, and wide linear range, it is gaining more and more attention. application. With the increase in the amount of test specimens, clinical laboratories have higher and higher requirements for the volume and test throughput of the chemiluminescence immunoassay system. The chemiluminescence immunoassay system needs to realize the functions of sample transportation, reagent storage, sample reagents and other analytical liquid absorption and discharge, reactor transfer, cleaning and separation, etc., which has extremely high requirements for automatic control.
  • the sample needs to be diluted before the sample and reagents are mixed.
  • the dilution process takes a long time, which makes the flow of the reactor in the dilution stage low, which becomes an impact
  • the bottleneck of work efficiency makes it difficult for the immune analysis system to meet the higher test throughput requirements.
  • a method of dilution includes:
  • the mixture in the second reactor is mixed uniformly.
  • the supply unit includes a supply tray, and a temporary storage tank for accommodating the reactor is provided on the supply tray.
  • the rotation of the supply tray drives the temporary storage tank to circulate in the first station and The second station moves.
  • the transfer device includes a transfer disk on which a temporary storage location for accommodating the reactor is provided, and the transfer disk drives the temporary storage location to cycle between the fourth station and the fourth station. Five-station rotation.
  • the reactor receives the diluent at the fifth station, and performs a mixing operation at the fifth station.
  • the intermediate turntable drives the temporary storage position to rotate in the fourth station, the fifth station, and the sixth station.
  • the reactor receives the diluent at the fifth station, and performs a mixing operation at the sixth station.
  • the method further includes the step of discarding the first reactor after transferring a part of the diluted sample in the first reactor to the second reactor.
  • a dilution device includes:
  • a supply unit the supply unit includes a supply tray, the supply tray is provided with a temporary storage tank for accommodating the reactor, the supply tray can rotate to drive the temporary storage tank to circulate between the first station and the second station Work station movement;
  • a transfer device includes a transfer disk, the transfer disk is provided with a temporary storage location for accommodating the reactor, the transfer disk can rotate to drive the temporary storage location to cycle between the fourth station and the fifth station Work station movement;
  • Dilution transport device for transporting the diluted reactor
  • the sample supply device is used to transfer the diluted sample in the reactor on the dilution transport device to the reactor on the supply unit.
  • it further includes a transfer device for transferring the reactor between the supply unit and the transfer device.
  • it further includes a reagent supply device for adding diluent to the reactor.
  • the transfer device includes a guide rail and a grab unit moving along the guide rail.
  • there is one guide rail at least two sets of grabbing units are provided, and the two sets of grabbing units are arranged in sequence along the extending direction of the guide rail.
  • it further includes a reaction device, and the dilution transportation device is independently arranged between the reaction device and the transfer device, and can move in a straight line between the transfer device and the sample supply device .
  • At least two carrying positions for carrying the reactor containing the diluted sample are provided on the dilution transportation device.
  • the dilution process is completed by adding a sample to the first reactor, adding a diluent, and transferring a part of it to the second reactor after mixing, and then injecting the diluent into the second reactor.
  • the second reactor can be provided to the transfer device during the process of injecting the diluent into the first reactor, and the second reactor does not need to be provided after the first dilution process is completed, which shortens the dilution time and improves Improve work efficiency.
  • the dilution process can be completed by the cooperation of the dilution transportation device and the transfer device of the dilution device, the dilution efficiency is high, the dilution device is simple, and the production cost is reduced.
  • Figure 1 is a schematic structural diagram of an analysis device in an embodiment of the application
  • Figure 2 is a step diagram of immunoassay in an embodiment of the application
  • FIG. 3 is a schematic structural diagram of a relay device included in the analysis device in an embodiment of the application.
  • Figure 5 is a schematic structural diagram of a transfer device in an embodiment of the application.
  • FIG. 6 is a diagram of the transfer trajectory of the transfer device in an embodiment of the application.
  • Fig. 7 is a cycle length diagram of the analysis device in an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a dilution device in an embodiment of the application.
  • FIG. 9 is a diagram of the execution action of the grab unit in an embodiment of the application in a certain cycle
  • FIG. 10 is a diagram of the execution action of the grab unit of the transfer device in an embodiment of the application in a certain cycle
  • FIG. 11 is a diagram of the execution action of the embodiment shown in FIG. 10 in the case of multiple test items.
  • Measuring component 500, transfer device; 510, transfer driver; 520, transfer disk; 530, temporary storage location; 600, transfer device; 611, first grabbing unit; 612, second grabbing unit; 621, The first grabbing drive member; 622, the second grabbing drive member; 630, the guide rail; 631, the cleaning separation alignment; 632, the incubation alignment; 633, the measurement alignment; 634, the discard alignment; 635, the relay alignment 636.
  • Transfer alignment 700, supply unit; 710, supply tray; 720, temporary storage tank; 800, mixing unit; 810, vibration part; 820, vibration hole; 830, mixing drive part; 900, dilution transportation Device.
  • the analysis device includes a reagent supply device 100, a sample supply device 200, a reactor supply device 300, and a reaction device 400.
  • the sample provided by the sample supply device 200 is added to the reactor provided by the reactor supply device 300, and the reagent provided by the reagent supply device 100 is also added to the reactor provided by the reactor supply device 300.
  • the reactor contains After removing the sample and reagent mixture, the sample and reagent mixture is subsequently transferred to the reaction device 400 for reaction. Since the function and structure are similar, the liquid is sucked and added to the reactor.
  • the sample supply device 200 and the reagent supply device 100 can be combined into a supply device or collectively referred to as a supply device, that is, the supply device includes a sample supply device 200 and a reagent supply device. 100.
  • the sample supply device 200, the reagent supply device 100, and the reaction device 400 are arranged around the transfer device 500, that is, the transfer device 500 is set in the middle position, which functions as a transfer reactor, and the transfer device 500 is set in the middle.
  • the location of the transfer device 500 is relatively close to other structures, which can shorten the transfer time of the entire reactor and improve work efficiency.
  • the sample supply device 200, the reagent supply device 100, and the reaction device 400 are arranged in a counterclockwise direction on the outer circumference of the transfer device 500, which can make each mechanism work in an orderly manner and reduce spatial interference. Improve work efficiency.
  • the reactor supply device 300 may provide a clean and empty reactor, and the sample supply device 200 may add samples to an empty reactor.
  • the analysis device in an embodiment further includes a supply unit 700 for receiving the reactor provided by the reactor supply device 300, and the sample supply device 200 adds samples to the empty reactor on the supply unit 700.
  • the analysis device in an embodiment further includes a transfer device 500 and a transfer device 600, and the working path of the transfer device 600 covers at least the supply unit 700, the transfer device 500 and the reaction device 400.
  • the transfer device 600 transfers the sample-added reactor from the supply unit 700 to the transfer device 500, and receives the reagent provided by the reagent supply device 100 in the transfer device 500, that is, the reagent supply device 100 can be the sample-added reactor on the transfer device 500.
  • Reagents are added to the reactor.
  • the reactor contains a mixture of sample and reagent.
  • the transfer device 600 is also used to transfer the reactor containing the sample and reagent mixture to the reaction device 400 for reaction.
  • the reaction process may include one or more of incubation, washing, and measurement.
  • the aforementioned analysis device may be an immunoassay device, which is a device for quantitative or qualitative determination of target substances to be tested, such as antigens and antibodies contained in blood samples. Take the one-step method as an example to illustrate the overall work of the immunoassay device.
  • Figure 2 is a step diagram of the immunoassay in an embodiment. As shown in Figure 2, the immunoassay as a whole completes the following steps:
  • the reactor is first provided by the reactor supply device 300.
  • reagents and samples are added to the reactor through the reagent supply device 100 and the sample supply device 200, respectively.
  • the order of adding reagents and samples may not be limited, and reagents and samples may be added sequentially, or samples and reagents may be added sequentially.
  • the device shown in FIG. 1 may first provide a sample through the sample supply device 200, add the sample to the reactor, and then provide the reagent through the reagent supply device 100, and then add the reagent to the reactor.
  • the sample may be a blood sample.
  • reagents usually include multiple components, such as magnetic particles, enzyme labels, diluents, and dissociation agents.
  • multiple reagent components required for an analysis project can be added to the reactor at one time, or added to the reactor in multiple steps.
  • the reactor is shaken to mix the reagents and samples in the reactor.
  • the mixing step is not required, and the S3 step can be skipped at this time.
  • the sample and reagent mixture in the reactor is incubated, and the incubation time is usually 5 to 60 minutes.
  • Incubation refers to the process of antigen-antibody binding reaction in a constant temperature environment, or the process of biotin avidin binding reaction in a constant temperature environment.
  • washing and separation refers to the process of using magnetic force to capture the magnetic particles after the binding reaction, while removing the unbound labeled antibody and other unreacted or bound components.
  • step S6 After washing and separating, continue to add signal reagents to the reactor for signal incubation for 1 to 6 minutes.
  • Signal incubation refers to the process of adding signal reagents to the reactor after washing and separating, and reacting for a period of time in a constant temperature environment to increase the signal. Due to the different types of signal reagents, some luminescence systems do not require signal incubation.
  • the measurement in step S7 can be performed directly. There may be one or more signal reagents. Some signal reagents may also include a first component reagent and a second component reagent.
  • the signal reagent reacts with the original mixture in the reactor to produce the luminescence of the reactant.
  • the signal reagent is usually a kind of general reagent, and the general reagent refers to a signal reagent that can be used in different analysis items.
  • step S1 is completed by the reactor supply device 300.
  • Step S2 is completed by the reagent supply device 100, the sample supply device 200, the supply unit 700, and the relay device 500.
  • Step S3 is completed by the mixing unit 800.
  • Steps S4-S6 are completed by the reaction device 400. Cleaning the separation components
  • the reactor supply device 300 is used to store and provide the reactor.
  • the reactor supply device 300 may include a tray structure or a silo structure 310.
  • the tray structure is that the reactors are arranged on the trays neatly;
  • the silo structure 310 is that the reactors are randomly placed in the silo. Since the reactors in the tray structure are neatly arranged in the trays, the tray structure occupies a large space volume.
  • the silo structure 310 is preferably adopted.
  • the reactor supply device 300 includes a silo structure 310, a sorting structure, and a supply slide 320.
  • the reactor is randomly placed in the silo structure 310, and the silo is arranged in a random manner through the sorting structure.
  • the scattered reactors inside are sorted so that the reactors are discharged to the supply unit 700 through the supply chute 320 one by one.
  • the supply unit 700 is used for buffering the reactor.
  • the supply unit 700 includes a supply disk 710 and a supply driving member that drives the supply disk 710 to rotate around the central axis of the supply disk 710.
  • a number of temporary storage tanks 720 for temporarily storing the reactor are provided on the outer periphery of the supply tray 710 at intervals in the circumferential direction.
  • the supply driver drives the supply tray 710 to rotate so that an empty temporary storage tank 720 is aligned with the supply chute 320 of the reactor supply device 300. After the reactor is transferred from the supply chute 320 to the temporary storage tank 720, the drive is supplied.
  • the supply tray 710 is driven to rotate so that the next empty temporary storage tank 720 is aligned with the supply chute 320 of the reactor supply device 300.
  • At least three temporary storage tanks 720 there are at least three temporary storage tanks 720. At a certain moment, at least one temporary storage tank 720 is used to receive the reactor provided by the reactor supply device 300, and at least one reactor in the temporary storage tank 720 receives the sample supply device. The sample provided by 200 and the reactor in at least one temporary storage tank 720 are transferred to the transfer device 500 by the transfer device 600.
  • the analysis device includes a supply unit 700, and a reactor supply device 300, a sample supply device 200, and a transfer device 500 arranged in the supply unit 700 in the circumferential direction of the supply tray 710.
  • the device also includes a transfer device 600 capable of transferring the reactor between the supply unit 700 and the transfer device 500.
  • the supply disk 710 rotates an angle and receives the sample provided by the sample supply device 200 so that the sample is added to the reactor; then the supply disk 710 continues to rotate, when After the supply tray 710 rotates to a certain angle, the transfer device 600 transfers the reactor containing the sample to the transfer device 500.
  • the transfer device 500 is used to carry and transfer a reactor that needs to discharge reagents. Further, the transfer device 500 is also used for a reactor that needs to be mixed after carrying and transferring the discharged reagent.
  • FIG. 3 shows at least a schematic structural diagram of a transfer device 500 included in the analysis device. As shown in FIG. 3, the transfer device 500 includes a transfer driver 510 and a transfer disk 520 connected to the transfer driver 510. The transfer disk 520 is used to carry the reactor, and the transfer driver 510 drives the transfer disk 520 to rotate around the central axis of the transfer disk 520. , In order to move the reactor on the middle turntable 520 to different positions.
  • the temporary storage positions 530 for temporarily storing the reactor are arranged on the outer periphery of the middle turntable 520.
  • the temporary storage positions 530 here can be understood as a slot structure opened on the middle turntable 520, or it can be understood as a fixed installation in the middle.
  • the clamp on the turntable 520 is used to clamp the reactor.
  • a number of temporary storage positions 530 are arranged in a ring on the turntable 520.
  • At least four temporary storage locations 530 there are at least four temporary storage locations 530. At a certain moment, at least one temporary storage location 530 is used to receive the reactor transferred by the transfer device 600 from the supply unit 700, and at least one temporary storage location 530 is The reactor of is used to receive reagents provided by the reagent supply device 100, at least one reactor in the temporary storage position 530 is used to mix reagents and samples, and at least one reactor in the temporary storage position 530 is transferred to the reaction device 400 by the transfer device 600 . In one of the embodiments, as shown in FIG.
  • the analysis device includes a transfer device 500, and a supply unit 700, a reagent supply device 100, and a mixing unit 800 arranged in the circumferential direction of the transfer disk 520 of the transfer device 500; the analysis device also It includes a reaction device 400 arranged on the outer periphery of the transfer device 500 and a transfer device 600 capable of transferring the reactor between the transfer device 500 and the reaction device 400.
  • the transfer disk 520 rotates an angle and continues to receive the reagent provided by the reagent supply device 100 so that the reagent is added to the sample-containing reactor Then the middle turntable 520 continues to rotate, and the reagents and samples in the reactor are mixed uniformly through the mixing unit 800; then the middle turntable 520 continues to rotate, and the transfer device 600 transfers the mixed reactor to the reaction device 400.
  • the number of temporary storage positions 530 on the turntable 520 can be more than four, and at the same time, to prevent the large volume of the turntable 520 from causing the overall
  • the volume of the equipment is relatively large, and there are at most eight temporary storage positions 530 on the turntable 520.
  • the number of temporary storage positions 530 on the turntable 520 is 3-8. If in one embodiment, the number of temporary storage positions 530 on the middle carousel 520 is less than 3, it is difficult to process multiple tasks in parallel, such as parallel processing of receiving reactors entering and exiting the middle carousel 520, receiving reagents and countermeasures provided by the reagent supply device 100 Mix the reagents and samples in the reactor. If in one embodiment, the number of temporary storage positions 530 in the middle turntable 520 is too large, for example, more than 8, the middle turntable 520 occupies a larger space volume, and the reactor stays on the middle turntable 520 for a longer time, which reduces Test efficiency.
  • the mixing unit 800 is arranged under the middle turntable 520, and the rotation of the middle turntable 520 can make the reactors in the temporary storage position 530 on the middle turntable 520 correspond to the mixing unit 800 in turn.
  • the mixing unit 800 can vibrate the reactor to mix the reagents and samples in the reactor uniformly.
  • the mixing assembly may include a vibrating member 810, a mixing driving member 830 for driving the vibrating member 810 to vibrate, and a lifting driving member, and a vibrating hole 820 may be provided on the vibrating member 810.
  • the lifting driving member drives the vibrating member 810 and the driving vibrating member 810 to move up and down, so that the reactor can be inserted into the vibrating hole 820, and the mixing driving member 830 drives the vibrating member 810 to eccentrically oscillate, so that the reagents and samples in the reactor are mixed due to vibration Evenly.
  • Position c and position d when the middle turntable 520 rotates, the temporary storage positions 530 on the middle turntable 520 move synchronously with the middle turntable 520, and each temporary storage position 530 can sequentially move to position a and position b. , Position c and position d.
  • the position a may be a middle index position, and the reactor enters and exits the middle turntable 520 at the middle index position.
  • the position d can be a mixing position, where the reactor mixes the samples and reagents in the reactor.
  • Position b can be a reagent row position, and the reactor receives reagents at the reagent row position.
  • the position c can also be a reagent row position.
  • the position a, the position b, the position c, and the position d are arranged in a clockwise direction.
  • the reactor enters and exits the middle turntable 520 at position a.
  • the reagent supply device 100 is at position c to align the reactor on the turntable 520 to discharge reagents, and the mixing unit 800 mixes the reagents and samples in the reactor at position d. uniform.
  • the multiple reactors on the middle carousel 520 can be removed from the middle carousel 520 by the transfer device 600 when they move to the position a in sequence, that is, the transfer device 600 only takes the reactors in the position a, which can shorten the length of the transfer track of the transfer device 600. In addition, only one transfer device 600 is needed to take in and place the reactor, so the number of transfer devices 600 can also be reduced.
  • the transfer trajectory of the transfer device 600 passes through a position a.
  • the center of the center of the turntable 520 and the position c are on the same side of the transfer track of the transfer device 600.
  • This layout can reduce the volume of space occupied by the turntable 520 and avoid the space interference between the transfer device 600 and the reagent supply device 100.
  • the middle turntable 520 can receive the reagents provided by the two reagent supply devices 100 at positions b and c respectively; in some embodiments, the middle turntable 520 It is also possible to receive the reagents provided by the two reagent supply devices 100 successively at the position c. Preferably, the middle turntable 520 can also receive the reagents provided by the two reagent supply devices 100 successively at position c, which can further reduce the size of the middle turntable 520 and the space occupied by the reagent supply device 100, and improve the efficiency of the reagent supply device 100. The flexibility and efficiency increase the processing task capacity per unit area of the transfer device 500 and the reagent supply device 100.
  • the reaction device 400 and the intermediate turntable 520 of the intermediate device 500 are independently arranged. Specifically, the intermediate device 500 is arranged outside the reaction device 400, and the rotation center of the intermediate device 500 is arranged outside the reaction device 400. In other words, there is no spatial overlap between the transfer device 500 and the reaction device 400 in the top view direction. Further, the diameter of the middle turntable 520 is smaller than the diameter of the reagent disk.
  • the nesting arrangement of the middle turntable 520 and the reaction device 400 refers to that the middle turntable 520 and the reaction device 400 are coaxially arranged, and the reaction device 400 is nested in the middle turntable 520. In one of the embodiments, as shown in FIG.
  • the reagent supply device 100 includes a reagent storage unit 110 and a reagent discharge unit 120; the reagent storage unit 110 is used to store reagents, and the reagent discharge unit 120 is used to store the reagent storage unit 110.
  • the reagent is sucked and discharged to the reactor on the transfer device 500.
  • the reagent storage unit 110 may have a cartridge structure, that is, a fixed reagent cartridge, or a disc structure as shown in FIG. 1, that is, a rotatable reagent disk, which is used to store reagents. . Since the turntable 520 is used to temporarily dump reactors, and each reactor stays on the turntable for a short time, but the reagent disk stores some reagents for a long time, in order to meet the requirements of reagent storage, it is necessary to ensure that the size of the whole machine is relatively small. Small, the diameter of the middle turntable 520 is set to be smaller than the diameter of the reagent disk.
  • the following introduces the reagent storage unit 110 shown in FIG. 1 in a disk structure.
  • the reagent storage unit 110 is provided with a number of reagent positions for placing reagent containers.
  • the disk-type reagent storage unit 110 can be driven by a drive unit under the control of the control center to rotate around the central axis of the reagent storage unit 110, thereby making the reagent storage unit
  • the reagent positions on 110 can be rotated to positions that can be acquired by the reagent ejection unit 120 in turn.
  • the reagent storage unit 110 may include a mixing structure, and the mixing structure can make the magnetic particle reagent component container of the reagent position Rotate or shake to mix the magnetic particle reagent components in the reagent container evenly.
  • the reagent storage unit 110 may include a refrigerator.
  • the refrigerator can provide a stable low-temperature environment for the reagent in the reagent container, thereby prolonging the storage time of the reagent.
  • the reagent storage unit 110 may include a barcode scanner, and the barcode scanner is used to identify barcode information on the reagent container to identify and distinguish reagents of different analysis items.
  • the barcode scanner can adopt a fixed design, such as a fixed setting relative to the whole machine.
  • a reagent storage unit 110 is usually provided in a traditional analysis device. In order to increase the number of reagent containers contained in the reagent storage unit 110, that is, the number of reagent positions, it is necessary to increase the size of the reagent storage unit 110.
  • this large-sized reagent storage unit 110 not only occupies a large space area, is inconvenient for the layout of the whole machine, and is not conducive to manufacturing, but also has high requirements for motion control, that is, it requires any reagent position to be in a short time. It is positioned to a position that can be acquired by the reagent discharging unit 120, so high-speed operation of the whole machine cannot be realized.
  • the analysis device includes at least two independently driven reagent supply devices 100.
  • the reagent storage units 110 in the two reagent supply devices 100 are the first reagent disk 111 and the second reagent disk 112 respectively, and the first reagent disk 111 and the second reagent disk 112 are driven to rotate by independent driving units.
  • independent driving units By independently setting and driving the two reagent supply devices 100, not only the size of each reagent tray is small, it is conducive to the layout of the whole machine and the movement control of the reagent tray, but also the reagent storage quantity of the whole machine is effectively expanded. In addition, the reliability of the operation of the whole machine is improved. When one of the reagent supply devices 100 fails, the other reagent supply device 100 can continue to be used.
  • TSH (thyroid stimulating hormone) reagent containers each containing 100 tests need to be loaded. All three TSH reagent containers can be loaded on the first reagent tray 111; or three TSH reagent containers can be loaded on the first reagent tray 111. All TSH reagent containers are loaded on the second reagent tray 112; one TSH reagent container can also be loaded on the first reagent tray 111, and the other two TSH reagent containers can be loaded on the second reagent tray 112; or one TSH reagent container can be loaded on the second reagent tray 112. The reagent container is loaded on the second reagent tray 112, and the other two TSH reagent containers are loaded on the first reagent tray 111.
  • the first reagent tray 111 and the second reagent tray 112 can respectively store reagent components required for a test item.
  • the two reagent trays can alternately output reagents, which shortens the time taken to fetch reagents and improves work efficiency.
  • each reagent tray is provided with 15-50 reagent positions.
  • the first reagent tray 111 and the second reagent tray 112 are each provided with 25 reagents. Bit.
  • the reagent discharging unit 120 is used for sucking and discharging reagents.
  • the reagent discharging unit 120 sucks reagents from the reagent container in the reagent storage unit 110, and then discharges the reagents to the transfer station.
  • the reactor in the device 500 As shown in Figure 1, when the test throughput is high, in order to improve the efficiency of reagent absorption and discharge, the reagent discharging unit 120 corresponds to the reagent storage unit 110 one-to-one, and the two reagent discharging units 120 are also independently controlled.
  • a reagent discharge unit 120 may also be provided.
  • the reagent discharge unit 120 includes a metal needle, a pipetting drive mechanism, a syringe or a liquid injection pump, a valve, a fluid pipeline, and the like.
  • the reagent discharging unit 120 may perform horizontal movement and vertical movement. Horizontal motion usually has several motion forms such as rotation, X-direction, Y-direction, or a combination of several motion forms.
  • the reagent row unit 120 can perform horizontal linear movement and vertical movement, and the horizontal linear movement track is on the line connecting the center of the reagent storage unit 110 and the position c of the middle turntable 520.
  • two reagent row units 120 and two reagent storage units 110 are provided, and the reagent row units 120 correspond to the reagent storage units 110 one-to-one.
  • the horizontal linear motion trajectories of the two rows of reagent units 120 intersect at the position c of the middle turntable 520 along the radius direction of the respective reagent storage unit 110.
  • the two reagent discharging units 120 independently discharge reagents alternately into the reactor in the position c of the transfer device 500. This not only minimizes the movement stroke of the reagent discharging unit 120, improves the efficiency of processing tasks, but also makes the layout of the whole machine more reasonable and compact, and reduces the space interference of various moving components.
  • the reaction device 400 is used to incubate, clean, separate, and measure the reactants in the reactor.
  • the reaction device 400 includes a reaction disk 410 and a reaction driving member that drives the reaction disk 410 to rotate around its central axis.
  • a number of reaction positions 420 are provided on the reaction plate 410, and the reaction positions 420 may be structures such as holes, grooves, brackets, or bases to fix the reactor.
  • FIG. 4 is a schematic structural diagram of the reaction positions 420 on the reaction device 400 in an embodiment.
  • the reaction positions 420 at least include a cleaning separation position 421, an incubation position 422 and a measurement position 423. These reaction positions 420 are arranged on the reaction plate 410 in a ring shape.
  • the inner circle is the cleaning separation position 421; the outer circle is the measuring position 423; between the inner circle and the outer circle is the incubation position 422, and the incubation position 422 is provided with several circles.
  • the reactor set at the incubation position 422 performs the incubation process, the reactor set at the cleaning separation position 421 performs the cleaning and separation process, and the reactor set at the measurement position 423 performs the measurement process or prepares for measurement.
  • the reaction positions 420 on the reaction disk 410 are arranged in a group along the radius of the reaction disk 410, and each group includes a cleaning separation position 421, an incubation position 422 and The measurement positions 423 are arranged in several groups along the circumference of the reaction disk 410.
  • the transfer track of the transfer device 600 extends along a radius of the reaction disk 410, and at least covers all reaction sites on the reaction disk 410 along the radius. Further, when the reaction disk 410 is rotated in the circumferential direction, all the reaction positions 420 on the reaction disk 410 can be covered by the transfer track of the transfer device 600, which realizes the problem of taking and placing the reactors on the reaction positions 420 in different circles, and makes the overall layout It is compact and occupies a small space.
  • the transfer device 500 includes a transfer disk 520 that can rotate, and the center of the transfer disk 520 and the center of the supply disk 710 are located on both sides of the transfer track of the transfer device 600 respectively.
  • the intermediate turntable 520 and the supply plate 710 occupy the space on both sides of the transfer device 600, which not only shortens the movement stroke of the transfer device 600, but also makes the overall layout compact and occupy a small space.
  • the reaction device 400 includes a temperature control component, and the temperature control component includes components such as a heat preservation pot, a heat insulation device, a heater, a temperature sensor, a temperature control circuit, etc., to provide a constant temperature for the reaction device 400 Incubate the environment and reduce heat loss.
  • the temperature control component includes components such as a heat preservation pot, a heat insulation device, a heater, a temperature sensor, a temperature control circuit, etc., to provide a constant temperature for the reaction device 400 Incubate the environment and reduce heat loss.
  • the reaction device 400 further includes a cleaning and separating component.
  • the cleaning separation component includes a magnetic component and a flushing component.
  • the magnetic component provides magnetic force, so that the magnetic particles in the reactor are collected on the inner wall of the reactor. Due to factors such as response time, moving distance and resistance in the magnetic force, it takes a certain time for the magnetic particles to collect on the inner wall of the reactor, usually ranging from a few seconds to tens of seconds. ) Before the reactor needs to go through the magnetic force for a period of time.
  • the magnetic component can be directly installed or fixed near the cleaning separation position 421 to bring the magnetic component closer to the reaction position 420, reducing the collection time of magnetic particles and improving the cleaning separation efficiency.
  • the flushing component is arranged above the cleaning separation position 421.
  • the flushing component includes a liquid suction needle and a suction tube connected to the liquid suction needle.
  • the suction needle is driven into and out of the reactor located at the cleaning separation position 421 by the suction driving member, and the inside of the reactor is sucked. Of unbound components.
  • the flushing assembly further includes a liquid injection needle and a liquid injection tube connected to the liquid injection needle, and the liquid injection needle is used to inject the cleaning buffer into the reactor.
  • each cleaning and separation step includes a process of sucking liquid and injecting cleaning buffer once; generally, three to four cleaning and separation steps are completed.
  • a mixer can be set at the cleaning separation position 421.
  • the mixer is used to inject the cleaning buffer After liquid, the magnetic particles are uniformly distributed in the reactor again.
  • the flushing component is arranged above the cleaning separation position 421, and the reactor in the cleaning separation position 421 can be directly cleaned and separated, so there is no need to set up an independent cleaning and separation rotating device to avoid the reactor being between the independent cleaning and separation component and the reaction device 400 Transfer. It has the advantages of streamlined overall structure and efficient operation.
  • the reaction device 400 further includes a measuring component 430 which is arranged on the heat preservation pot and measures the signal in the reactor at the measuring position 423.
  • the signal is an electrical signal, a fluorescent signal or a weak chemiluminescence signal, etc. generated after adding a signal reagent in the reactor.
  • the measurement component 430 includes a weak light detector photomultiplier tube (PMT) or other sensitive photoelectric sensing devices, which can convert the measured optical signal into an electrical signal and transmit it to the control center.
  • the measurement component 430 may further include optical structures such as optical signal collection and calibration.
  • the measuring component 430 is connected or installed to the reaction device 400 in a universal manner, such as directly installed and fixed on the reaction device 400 or installed on the reaction device 400 through an optical fiber connection, so that it can be directly connected to the reactor on the outermost reaction position 420
  • the internal signal is measured, avoiding setting up an independent measuring unit, eliminating the need for the transfer of the reactor between the reaction device 400 and the measuring component 430, making the whole machine more compact, lower cost, simpler and more efficient, and more efficient in processing. And higher reliability.
  • an analysis device includes a transfer device 600 that moves the reactor from a first position to a second position in a first direction, where the first position is the supply unit 700. At least one of the transfer device 500 and the reaction device 400, and the second position is at least one of the supply unit 700, the transfer device 500, and the reaction device 400.
  • the first position may also be a supply unit 700. Structures other than the transfer device 500 and the reaction device 400, and the second position may also be a structure other than the supply unit 700, the transfer device 500 and the reaction device 400.
  • the transfer device 600 includes a guide rail 630 and a gripping unit moving along the guide rail 630.
  • the spatial path that the gripping unit moves along the guide rail 630 is the transfer of the transfer device 600. Trajectory.
  • the number of grasping units can be selected according to actual conditions. In order to improve the comprehensive working capability of the transfer device 600, preferably, there are at least two grasping units, namely the first grasping unit 611 and the second grasping unit 612, respectively. As shown in FIG.
  • one guide rail 630 of the transfer device 600 is provided, and the guide rail 630 of the transfer device 600 is provided with a first grabbing unit 611 and a first grabbing driving member that drives the first grabbing unit 611 to slide along the guide rail 630. 621, and a second grabbing unit 612 and a second grabbing drive 622 that drives the second grabbing unit 612 to slide along the guide rail 630.
  • the first driving member and the second driving member are arranged independently, therefore, the movement of the first grasping unit 611 and the second grasping unit 612 are independent of each other.
  • the guide rail 630 may extend along a first direction, and the first direction extends substantially along a horizontal direction.
  • the first grasping unit 611 and the second grasping unit 612 are sequentially arranged along the extending direction of the guide rail 630.
  • only one guide rail 630 can be provided for the movement of the two grasping units, and the transfer track of the transfer device 600 is in a straight line, which not only reduces the number of guide rails, but also facilitates the spatial layout of the whole machine and prevents multiple transfer devices.
  • Space interference solves the problem of avoiding interference and takes up large space, thereby reducing the volume of the device and making the device more compact while increasing the throughput of the device.
  • the transfer operation of the grab unit is completed on the straight line, which shortens the total stroke of the transfer operation and improves the transfer operation efficiency of the transfer device.
  • a corresponding transfer device is usually set for each transfer operation, or one transfer device is shared between 1 or 2 transfer operations. Since the transfer operations are usually more and not on the same track, these setting methods are increased. In order to realize the high-throughput test, more than 3 transfer devices in a distributed layout are required, which not only makes the whole machine complicated in structure, large in size, and inconvenient to control. In the embodiment of the present application, all the transfer operations can be completed by only setting one transfer device, which greatly saves the cost of the device, and makes the device structure compact, convenient to control, and will not interfere with different transfer devices in time and space.
  • the first grabbing unit 611 and the second grabbing unit 612 of the grabbing unit have the same structure, and both include a frame body, a lifting block and a clamping jaw, and the frame body is slidably connected to the guide rail. 630.
  • the frame body can slide in a horizontal direction relative to the guide rail 630
  • the lifting block is slidably connected to the frame body in the vertical direction
  • the clamping jaws are arranged on the lifting block, and the clamping jaws can lift with the lifting block to clamp the reactor.
  • FIG. 6 is a diagram of the transfer trajectory of the transfer device 600 in an embodiment.
  • An analysis device includes a transfer device 600, which includes a first grab unit 611 and a second grab unit 612. The straight lines on which the movement tracks of the first grab unit (611) and the second grab unit (612) are located coincide.
  • the gripping unit of the transfer device 600 moves along the guide rail 630 to pick and place the reactor in the cleaning separation alignment 631, the incubation alignment 632, the measurement alignment 633, the discard alignment 634, the relay alignment 635, and the transfer alignment 636.
  • the reaction position 420 on the reaction device 400 at least includes a cleaning separation position 421, an incubation position 422 and a measurement position 423.
  • the grasping unit can pick and place the reactor of the cleaning separation position 421.
  • the incubation position 422 corresponds to the incubation position 632 of the transfer device 600
  • the grasping unit can take and place the reactor of the incubation position 422.
  • the measurement position 423 corresponds to the measurement alignment 633 of the transfer device 600
  • the grasping unit can pick and place the reactor of the measurement position 423.
  • the temporary storage position 530 on the transfer device 500 can at least move to the position a, and the position a can be a transfer position.
  • the transfer position corresponds to the transfer alignment 636, the grab unit can be picked up and transferred. Bit reactor.
  • a relay position can be set between the transfer device 500 and the reaction device 400.
  • the relay position can correspond to the relay alignment 635.
  • the first grasping unit 611 can grasp the reactor at the cleaning separation alignment 631.
  • the alignment 635 places the reactor on the relay position, and then the second grabbing unit 612 grabs the reactor on the relay position 635 at the relay alignment position 635, and then moves the reactor to the transfer alignment position 636.
  • the temporary storage position 530 on the transfer device 500 can be moved to position b, position c, and position d.
  • Position d can be a mixing position
  • position b can be a reagent discharge position
  • position c can also be To discharge the reagent position.
  • a discarding position can be set between the reaction device 400 and the transfer device 500.
  • the grasping unit can fetch and release the reactor at the discarded position, or grab The unit is able to discard the reactor to the discard position.
  • the straight lines on which the movement trajectories of the first grasping unit (611) and the second grasping unit (612) are located coincide, and the transfer trajectory of the first grasping unit 611 and the second grasping unit 611 coincide with each other.
  • the transfer trajectory of the fetching unit 612 has at least one overlap. For example, in FIG.
  • the sorting of cleaning separation alignment 631, incubation alignment 632, measurement alignment 633, discard alignment 634, relay alignment 635 and transfer alignment 636 is not necessarily arranged in the order shown in Figure 6, and can be arranged according to Need to be rearranged.
  • each sub-device works in an orderly manner according to the working cycle.
  • the work cycle, or cycle for short is the shortest time interval that the execution object can reproduce in the working process. It usually has a fixed length of time, for example, the suction and discharge step, the mixing step, the cleaning separation step, the measurement step is in execution All time takes time and executes serially or in parallel in a controlled order.
  • the specific meaning of parallelism is that multiple task operations can be performed at the same time; it can also be that the subsequent task operation is started when the previous task operation has started and has not ended. Since the same component usually can only perform one task at a time, the same component usually acts or tasks serially in a cycle; different components can usually perform tasks at the same time, so different components can usually be executed in parallel in the same cycle Action or task.
  • two reagent disks are provided, namely a first reagent disk 111 and a second reagent disk 112.
  • it can also be achieved by extending the working cycle of the device.
  • the length of the working cycle required for one reagent disk may be twice the length of the cycle of two reagent disks working together.
  • the analysis device includes two sets of reagent supply devices 100, a transfer device 500 and a transfer device 600.
  • One set of reagent supply devices 100 includes a first reagent tray 111 and a first row of reagent elements 121
  • the other set of reagent supply devices 100 includes a second reagent tray 112 and a second row of reagent elements 122, wherein the first row of reagent elements 121 and The second row of reagent elements 122 are all row reagent units 120.
  • Figure 7 is a cycle length diagram of the analysis device in an embodiment.
  • the transfer device 500 and the transfer device 600 work in the first cycle T1, and the first row of reagent elements 121 and the second row of reagent elements 122 work in In the second period T2, the time length of the second period T2 is twice the time length of the first period T1.
  • the first row of reagent elements 121 and the second row of reagent elements 122 working in the second period T2 are staggered by the time length of the first period T1 to alternately discharge reagents to the reactor at the same temporary storage position 530 of the transfer device 500.
  • the transfer device 600 moves to the transfer device 500 into a reactor every first period T1.
  • the transfer device 500 drives the reactor to rotate and advance one position every first period T1.
  • the first row of reagent elements 121 sucks reagents from the first reagent tray 111 and discharges the reagents to the reactor on the transfer device 500 every second period T2.
  • the sucked reagents correspond to the discharge in section A of the second period T2.
  • the reagent corresponds to segment B of the second cycle T2.
  • the second row of reagent elements 122 sucks reagents from the second reagent tray 112 and discharges the reagents to the reactor on the transfer device 500 every second period T2.
  • sucking reagent corresponds to section A of the second cycle T2
  • discharging reagent corresponds to section B of the second cycle T2.
  • the same sequence of actions of the first row of reagent elements 121 and the second row of reagent elements 122 are staggered by a first period T1, that is, when the first row of reagent elements 121 absorb reagents, the second row of reagent elements 122 discharge reagents; the first row of reagent elements 121 When the reagent is discharged, the reagent element 122 in the second row sucks the reagent.
  • the first row of reagent elements 121 and the second row of reagent elements 122 can discharge reagents to the reactor at the same position of the transfer device 500. That is, the transfer device 500 transfers one of the reactors to a specific position in the Nth first cycle to receive the reagent discharged from the first row of reagent elements 121, and the transfer device 500 transfers the other one in the N+1 first cycle.
  • the reactor is transferred to the specific location and receives the reagent discharged from the second row of reagent elements 122. As shown in Fig. 1, the specific position may be position c. In FIG.
  • the movement trajectories of the first row of reagent elements 121 and the second row of reagent elements 122 can cover position c, that is, they overlap or intersect at position c.
  • This arrangement makes the first row of reagent elements 121 and the second row of reagent elements 121 and the second row of The area covered by the reagent element 122 is small, which makes the structure of the whole machine more compact.
  • the working cycle of the reagent storage unit 110 is the same as the working cycle of the first row of reagent elements 121 and the second row of reagent elements 122, which is twice the working cycle of the transfer device 500 and the transfer device 600.
  • the two sets of reagent storage units The sequence of actions between 110 are staggered and parallel, separated by a first period T1.
  • the analysis device only includes two sets of reagent storage units 110, one set of transfer devices 500 and one set of transfer devices 600, which not only reduces the occupied space of the device, but also effectively improves the working efficiency of the analysis device.
  • FIG. 8 is a schematic structural diagram of the dilution device in an embodiment.
  • the dilution device includes a reagent supply device 100, a sample supply device 200, and a reactor supply device 300.
  • the reagent supply device 100, the sample supply device 200, the reactor supply device 300, the transfer device 500, the transfer device 600, and the supply unit 700 have the same structures as in the foregoing embodiment.
  • the dilution transportation device 900 is provided between the reaction device 400 and the transfer device 500. The transport distance of the reactor containing the diluted sample can be reduced.
  • At least one carrying position is provided on the dilution transportation device 900 for carrying the reactor containing the diluted sample, and can move linearly back and forth between the movement tracks of the transfer device 600 and the sample supply device 200.
  • at least two bearing positions are provided on the dilution transport device 900 for carrying the reactor containing the diluted sample, which can be used alternately to improve the efficiency of automatic dilution of the sample.
  • the supply unit 700 of the dilution device is provided with a first station 11 and a second station 12.
  • the first station 11 is used for the first reactor to receive samples and the second reactor to receive the diluted samples.
  • the second station 12 is used for the transfer device 600 to transfer the first reactor and the second reactor out of the supply unit 700.
  • the transfer device 500 is provided with a fourth station 14, a fifth station 15 and a sixth station 16.
  • the fourth station 14 is used for the transfer device 600 to move the first reactor and the second reactor into and out of the transfer device 500
  • the fifth station 15 is used for the first reactor to receive the diluent
  • the sixth Station 16 is used to mix the reactants in the first reactor and the second reactor respectively.
  • the supply unit 700 includes a supply tray 710.
  • the supply tray 710 is provided with a temporary storage tank 720 for accommodating the reactor.
  • the supply tray 710 can rotate to drive the temporary storage tank 720 to circulate in the first station. 11 and the second station 12 move;
  • the transfer device 500 includes a middle turntable 520, the middle turntable 520 is provided with a temporary storage position 530 for accommodating the reactor, the middle turntable 520 can rotate to drive the temporary storage position 530 to circulate in the first The fourth station 14, the fifth station 15, and the sixth station 16 move.
  • the transfer device 600 is used to transfer the reactor between the supply unit 700 and the transfer device 500, and the transfer device 600 can also transfer the reactor between the transfer device 500 and the dilution transport device 900.
  • the reagent supply device 100 is used for adding diluent to the reactor.
  • the sample supply device 200 is not only used to discharge the sample, but also used to transfer the diluted sample between different reactors.
  • the sample supply device 200 includes a movable suction needle, through which the sample can be sucked and discharged, and The diluted sample can be sucked and discharged.
  • the diluent of a certain project can be a component of the reagent of the project, or it can be a kind of general diluent.
  • the diluent is stored in the reagent supply device 100.
  • a dilution method can be completed by the dilution device, and also by the analysis device in the above-mentioned embodiment.
  • the dilution method includes the following steps:
  • the first reactor may be provided to the supply unit 700 through the reactor supply device 300 first, and then the first reactor may be moved to the first station 11 of the supply unit 700.
  • the sample can be added to the first reactor of the first station 11 through the sample supply device 200.
  • the supply unit 700 rotates to turn the first reactor out of the first station 11, and when the supply unit 700 rotates, it drives the second reactor into the first station 11.
  • the reactor on the supply unit 700 can be transferred to the transfer device 500 through the transfer device 600, and the transfer device 500 rotates to transfer the first reactor to the fifth station 15.
  • a diluted sample can be obtained by adding a diluent to the first reactor of the fifth station 15 through the reagent supply device 100.
  • a mixing unit 800 may be provided to mix the diluted sample in the first reactor at the fifth station 15 evenly. It is also possible to rotate the transfer device 500 and move the first reactor to another station for mixing.
  • the first reactor can be transferred from the transfer device 500 to the dilution transportation device 900 through the transfer device 600.
  • a part of the diluted sample in the first reactor on the dilution transportation device 900 is sucked by the sample supply device 200 and then discharged to the second reactor on the transfer device 500.
  • the second reactor can be transferred to the fifth station 15 of the transfer device 500 through the transfer device 600, and reagents can be added to the second reactor.
  • the mixture in the second reactor at the fifth station 15 can be mixed uniformly. It is also possible to rotate the transfer device 500 and move the second reactor to another station for mixing.
  • the diluted reactor is temporarily stored in the dilution transport device 900, and then the mixture in the reactor located on the dilution transport device 900 is transferred to the reactor on the supply unit 700 through the sample supply device 200 . Therefore, there is no need to temporarily store the diluted reactor back into the supply unit 700, which can effectively reduce the workload of the supply unit 700 and improve the operating efficiency and stability of the entire device.
  • the dilution transportation device 900 is independently arranged between the reaction device 400 and the transfer device 500, and only carries the transportation of the reactor containing the diluted sample, and is linear between the trajectories of the transfer device 600 and the sample supply device 200. Movement is not restricted by other dilution processes and operations such as sample addition, reagent addition, mixing, etc., and can maximize the efficiency of the dilution device to achieve automatic sample dilution.
  • the rotation of the supply tray 710 drives the temporary storage tank 720 to cyclically move between the first station 11 and the second station 12.
  • the intermediate turntable 520 drives the temporary storage position 530 to rotate in the fourth station 14 and the fifth station 15 cyclically.
  • the supply disk 710 and the intermediate turntable 520 rotate in cooperation to transfer the reactor in an orderly manner, which improves work efficiency.
  • the reactor may receive the diluent or reagent at the fifth station 15 and perform the mixing operation at the fifth station 15. In one embodiment, the reactor receives the diluent or reagent at the fifth station 15 and performs a mixing operation at the sixth station 16.
  • the method further includes the step of discarding the first reactor after transferring a part of the diluted sample in the first reactor to the second reactor.
  • a sample analysis method including the following steps:
  • S220 Incubate the reactor containing the sample and the first reagent at the incubation position 422 of the reaction plate 410 for the first time.
  • it further includes the step of transferring the measured reactor to the discarding position to discard the reactor.
  • step S210 the following steps are further included:
  • step S220 the following steps are further included:
  • the reactor containing the sample and the first reagent rotates with the reaction plate 410 and performs the first incubation.
  • the incubation time can be set according to specific test items, and generally ranges from 3 minutes to 60 minutes.
  • step S230 the reactor rotates with the reaction disk 410, and the reactor is cleaned and separated for the first time by cleaning and separating components.
  • a sample analysis device which can complete the above-mentioned sample analysis method.
  • the sample analysis device at least includes a supply device, a mixing unit 800, a reaction device 400, a transfer device 600, and a cleaning device. Separate components and signal reagent addition components.
  • the supply device includes a sample supply device 200 and a reagent supply device 100, wherein the sample supply device 200 in the supply device is used to add samples to the reactor, and the reagent supply device 100 is used to add reagents to the reactor.
  • the following embodiment introduces the steps of completing the sample analysis method by the sample analysis device.
  • the reactor supply device 300 provides a reactor to the supply tray 710.
  • the supply tray 710 can rotate around the center of the supply tray 710.
  • the sample supply device 200 A sample is provided in the reactor, and when the supply tray 710 rotates the reactor to the working range of the transfer device 600, the transfer device 600 transfers the reactor from the supply tray 710 to the intermediate turntable 520.
  • the intermediate turntable 520 is provided with a temporary storage position 530 for carrying the reactor, and the intermediate turntable 520 can also rotate around the central axis of the intermediate turntable 520.
  • the middle turntable 520 rotates the reactor to the position corresponding to the reagent supply device 100, and the first reagent is supplied into the reactor through the reagent supply device 100.
  • the middle turntable 520 rotates the reactor to the position of the mixing unit 800, and the mixing unit 800 pairs The sample in the reactor is mixed with the first reagent.
  • the middle turntable 520 rotates the reactor to the working range of the transfer device 600, and the reactor is transferred to the reaction device 400 through the transfer device 600.
  • the reaction device 400 includes a reaction disk 410, and the reaction disk 410 is provided with a reaction position 420 for supporting the reactor.
  • the reaction position 420 is arranged on the reaction disk 410 in a ring shape. According to the different function of the reaction position 420, The reaction position 420 is divided into an incubation position 422 for incubation, a cleaning separation position 421 for cleaning and separation, and a measurement position 423 for measurement.
  • the transfer device 600 can transfer the reactor between the incubation position 422, the cleaning separation position 421 and the measurement position 423. During the first incubation, the reactor performs the first incubation at the incubation position 422.
  • step S230 the reaction device 400 includes a cleaning separation component.
  • the reactor is transferred from the incubation position 422 to the cleaning separation position 421 by the transfer device 600, and the cleaning separation component is used to clean the reactor of the separation position 421. Perform the first cleaning and separation.
  • step S240 the transfer device 600 transfers the reactor to the intermediate turntable 520, and the intermediate turntable 520 rotates the reactor to a station corresponding to the reagent supply device 100, and the second reagent is added to the reactor through the reagent supply device 100.
  • the middle turntable 520 continues to rotate the reactor to a position corresponding to the mixing unit 800, and the mixing unit 800 mixes the mixture in the reactor uniformly.
  • the middle turntable 520 continues to rotate the reactor to the working range of the transfer device 600.
  • step S250 the transfer device 600 transfers the reactor added with the second reagent to the incubation position 422 of the reactor for the second incubation.
  • step S260 the transfer device 600 transfers the reactor after the second incubation is completed to the cleaning separation position 421 of the reaction tray 410 to perform the second cleaning and separation by cleaning and separating the components.
  • the reaction device 400 includes a signal reagent adding component, and the signal reagent is added to the reactor through the signal reagent adding component.
  • step S280 the reactor is transferred to the measurement position 423 by the transfer device 600 for measurement.
  • the reactor after the measurement is transferred to the discarding position by the transfer device 600 to discard the reactor.
  • the reactor needs to be transferred multiple times.
  • the above sample analysis method can be implemented in a sample analysis device. When the sample analysis device performs sample analysis, multiple sets of tests are usually performed. All need to carry out the transfer of the reactor. In order to improve work efficiency and make full use of working time for the sample analysis device, a method of reactor transfer is provided:
  • the transfer device completes at least 5 transfer operations, and each transfer operation transfers a reactor between two different operating stations. There are at least two mutually exclusive transfer operations in the transfer operation. It does not exist at the same time in the same work cycle, and the beats in different work cycles overlap.
  • the tempo is the time period occupied by each transfer operation in the work cycle.
  • the length of each beat may be the same or different. Multiple beats in a cycle may be continuous or spaced. The sequence between multiple beats is fixed. If the transfer operation corresponding to a certain beat does not exist in a certain working period, the beat is idle.
  • Cycle overlap means that the time periods in the cycle occupied by the transfer operation in different work cycles are at least partially overlapped, and it can be the overlap of part of the execution time period, or it can be completely overlapped.
  • the operating station includes at least a supply alignment, used to remove an empty reactor or a reactor that has finished adding samples, and a transfer alignment, used to move into a reactor that needs to be added with reagents or remove a reactor that has finished adding reagents, and incubate Alignment is used to move into the reactor that needs to be incubated or to remove the reactor that has been incubated for a period of time or the incubation is completed, and the cleaning alignment is used to move into the reactor that needs to be cleaned and separated or the reactor that has been separated.
  • the first transfer operation move the empty reactor or the reactor after the sample has been discharged from the supply tray 710 to the transfer tray 520;
  • the second transfer operation move the reactor to be incubated from the turntable 520 to the incubation position 422 of the reaction plate 410;
  • the third transfer operation move the reactor to be cleaned and separated from the incubation position 422 of the reaction plate 410 to the cleaning separation position 421 of the reaction plate 410;
  • Fourth transfer operation move the reactor to which the second reagent needs to be added from the incubation position 422 of the reaction tray 410 to the intermediate turntable 520;
  • the sixth transfer operation move the reactor to be measured from the cleaning separation position 421 of the reaction disk 410 to the measurement position 423 of the reaction disk 410;
  • the seventh transfer operation move the reactor containing the diluted sample from the turntable 520 to the dilution transport device 900;
  • the eighth transfer operation move the measured reactor from the measurement position 423 of the reaction disk 410 to the discard position.
  • a transfer device 600 including a first grasping unit 611 and a second grasping unit 612 is provided.
  • the fifth transfer operation transfers the reactor to which the second reagent needs to be added from the cleaning separation position 421 of the reaction disk 410 to the transfer disk 520. If it is only completed by the first gripping unit 611, not only the movement stroke is large, but the first gripping unit When performing operation 611, the second grabbing unit 612 also needs to avoid. The two cannot work in parallel, which affects the work efficiency of the transfer device 600. Therefore, the fifth transfer operation is decomposed into two sub-operations that can be relayed: the fifth A transfer operation and Fifth B transfer operation.
  • the fifth A transfer operation requires the first grasping unit 611 to transfer the reactor to the relay alignment 635 and place the reactor in the relay position.
  • the fifth B transfer operation is performed by the second grasping unit 612 Grab the reactor from the relay position to the transfer position 636.
  • the second grasping unit 612 is responsible for the first transfer operation, the second transfer operation, the fourth transfer operation, the fifth B transfer operation, the seventh transfer operation, and the eighth transfer operation.
  • the first grasping unit 611 responsible for the third transfer operation, the fifth A transfer operation and the sixth transfer operation.
  • the first transfer operation, the second transfer operation, the third transfer operation, the fifth transfer operation, the second transfer operation, the third transfer operation, the sixth transfer operation, and the eighth transfer operation are sequentially completed by the following grabbing units:
  • FIG. 9 shows the execution action diagram of the grab unit in one embodiment in a certain cycle. In other embodiments, the execution action may be different from the state shown in FIG. 9.
  • the first transfer operation move the empty reactor or the reactor after the sample has been discharged from the supply tray 710 to the transfer tray 520;
  • the fourth transfer operation move the reactor to which the second reagent needs to be added from the reaction tray 410 Move the incubation position 422 to the turntable 520;
  • the fifth transfer operation B the second grabbing unit 612 grabs the reactor from the relay position to the turntable 520. Since the three are all moved from other positions to the turntable 520, and the turntable 520 can only receive the reactor moved into one position at a time, the first transfer operation, the fourth transfer operation, and the fifth transfer operation B are mutually exclusive. .
  • the second transfer operation move the reactor to be incubated from the middle turntable 520 to the incubation position 422 of the reaction disk 410;
  • the seventh transfer operation move the reactor containing the diluted sample from the middle turntable 520 to the incubation position 422 Dilution transport device 900. Since both are moved out of the reactor from the middle carousel 520 to other positions, and the middle carousel 520 can only be moved out of the reactor to one other position at a time, the second transfer operation and the seventh transfer operation are mutually exclusive.
  • the sixth transfer operation transfer the reactor to be measured from the cleaning separation position 421 of the reaction disk 410 to the measurement position 423 of the reaction disk 410;
  • the fifth transfer operation A the second transfer operation will be required
  • the reactor of the reagent is transferred from the cleaning separation position 421 of the reaction disk 410 to the relay position. Since both are to transfer the reactor from the cleaning separation position 421 of the reaction disk 410 to other positions (including different positions of the reaction disk 410 itself), the cleaning separation position 421 of the reaction disk 410 can only be moved out of the reactor to another position at a time , So the sixth transfer operation and the fifth A transfer operation are also mutually exclusive.
  • the specific work content of the transfer operation in FIG. 9 is only an example. In other embodiments, the specific work corresponding to the transfer operation may not be the content listed in the foregoing embodiment.
  • FIG. 10 is a diagram of the execution action of the grasping unit in an embodiment in a certain cycle when the transfer device 600 has only one grasping unit.
  • Fig. 11 is an execution action diagram of the embodiment shown in Fig. 10 when multiple tests are performed in parallel.
  • the first transfer operation, the fourth transfer operation, and the fifth transfer operation in FIG. 10 are mutually exclusive.
  • the same transfer operation is also mutually exclusive.
  • the first transfer operation and the first transfer operation are mutually exclusive.
  • Mutually exclusive transfer operations cannot be executed simultaneously in the same cycle.
  • the first transfer operation, the second transfer operation, the third transfer operation, the fourth transfer operation, and the fifth transfer operation in FIG. 10 are just a definition in name, and the specific operation content is not limited by the foregoing embodiment.
  • each cycle T includes three consecutive beats, namely beat 1, beat 2, and beat 3.
  • the first transfer operation, the fourth transfer operation, and the fifth transfer operation can only be completed in beat 1 in a certain cycle, respectively.
  • the third transfer operation can only be completed in beat 2 in each cycle.
  • the second transfer operation can only be completed in beat 3 in each cycle.
  • the first to eighth test items in the M-Nth cycle are taken as an example to illustrate the method of multi-test parallel reactor transfer. It should be noted that the first to eighth test items are only the identification of the test items, and do not necessarily represent the start sequence of the actual test. These items may be the same test item, or different test items or part of the same test item. .
  • the reactor transfer method includes parallel first test item, second test item, third test item, fourth test item, fifth test item, sixth test item, seventh test item, and eighth test item. Each test item includes three consecutive beats in each cycle. Each test item includes several consecutive transfer operations, including:
  • the first test item includes at least the first transfer operation, the second transfer operation, and the third transfer operation that are continuously performed.
  • the first transfer operation can only be completed in beat 1 of a certain cycle, and the second transfer operation can only be completed in each cycle. It is completed in beat 3 in the cycle, and the third transfer operation can only be completed in beat 2 in each cycle;
  • the second test item includes at least the continuous fifth transfer operation and the second transfer operation.
  • the fifth transfer operation can only be completed in beat 1 in a certain cycle, and the second transfer operation can only be completed in beat 3 in each cycle. Completed in;
  • the third test item includes at least the fourth transfer operation and the second transfer operation that are continuously performed, and the fourth transfer operation can only be completed in beat 1 in each cycle;
  • the fourth test item includes at least the third transfer operation, which can only be completed in beat 2 in each cycle;
  • the fifth test item includes at least the second transfer operation, and the second transfer operation can only be completed in beat 3 in each cycle;
  • the sixth test item includes at least the third transfer operation, which can only be completed in beat 2 in each cycle;
  • the seventh test item includes at least the third transfer operation, which can only be completed in beat 2 in each cycle;
  • the eighth test item includes at least the first transfer operation, and the first transfer operation can only be completed in beat 1 in a certain cycle.
  • the first branch operation, the fourth branch operation, and the fifth branch operation are mutually exclusive.
  • Test items are mutually exclusive transfer operations. If there is no mutually exclusive transfer operation in the corresponding cycle, the first test item and the second test item will be executed at the same time. If there are mutually exclusive transfer operations in the corresponding cycle, they will be executed in the first test item It is judged in turn to start executing the second test item every one cycle after the delay, until the second test item does not have a transfer operation that is mutually exclusive with the first test item in each cycle of the first test item, then the second test item is executed project.
  • the second test item has a fifth transfer operation
  • the first test item has a first transfer operation
  • the first test item has a first transfer operation
  • the first test item has a first transfer operation.
  • the fifth transfer operation and the first transfer operation are mutually exclusive.
  • the second test item will be executed in the first period.
  • the first situation is: when judging that the Xth test item and the Yth test item are executed at the same time, in each cycle of the Xth test item, whether the Yth test item has a transfer operation that is mutually exclusive with the Xth test item, if corresponding If there is no mutually exclusive transfer operation in the cycle, the Xth test item and the Yth test item are executed in parallel;
  • the second situation is: if there are mutually exclusive transfer operations in the corresponding cycle, when the X-th test item is executed, it is judged in turn to start executing the Y-th test item after each delay, until in each cycle of the X-th test item.
  • the Y-th test item does not have a transfer operation that is mutually exclusive with the X-th test item, the Y-th test item is started to be executed.
  • mutually exclusive transfer operations can share the same beat in different cycles, and they do not exist at the same time in the same cycle.
  • mutually exclusive transfer operations can be implemented in different cycles. Therefore, once each test item is executed, it will not be interrupted due to mutually exclusive transfer operations. , So it can be executed consistently.
  • the first test item, the second test item, and the third test item can also be set in sequence.
  • the method for transferring the reactor at this time includes at least the first test item and the A second test item, the first test item includes at least three transfer operations, the second test item includes at least three transfer operations, and the first test item and the second test item include at least mutually exclusive transfer operations ,
  • the reactor transfer method includes the following steps:
  • the beats of the transfer operation of the first test item are sorted according to the execution order, and the beats are the time period required for each transfer operation;
  • each execution cycle of the first test item determine in turn whether the first test item and the second test item exist in each beat of the first test item when the second test item starts to be executed after each execution cycle.
  • Mutually exclusive transfer operation if there is no mutually exclusive transfer operation in the first test item and the second test item in the same beat, start to execute the second test item.
  • the beats of the mutually exclusive transfer operations partially overlap, and the beat is a period of time required for each transfer operation.
  • the beat of the first transfer operation starts in the first second and finishes in the fifth second; the beat of the fourth transfer operation starts in the second second and is executed in the first second. The execution is completed in seven seconds. Then this set of mutually exclusive transfer operations overlap between the second and fifth seconds.
  • the beats of the mutually exclusive transfer operations completely overlap, and the beats are the time period required for each transfer operation.
  • the beat of the first transfer operation starts in the first second and is executed in the fifth second; the beat of the fourth transfer operation starts in the first second, and the beat in the fifth second. Finished. Then the beats of this set of mutually exclusive transfer operations completely overlap.
  • mutually exclusive transfer operations have at least the same operating station. For example, for the transfer operation of the reactor of the same functional station, one of the transfer operations is to move one reactor into the station through the grab unit, and the mutually exclusive transfer operation is to move the other reactor into the station through the grab unit.
  • the workstation Since the station can only receive the move in from one reactor at the same time, the two transfer operations are mutually exclusive.
  • the transfer operation described above can be completed by a transfer device.
  • the transfer device 600 may include a first grasping unit 611 and a second grasping unit 612; in some embodiments, the transfer device 600 may also include a grasping unit. unit.
  • the transfer device 600 includes the first grasping unit 611 and the second grasping unit 612, the transfer trajectories of the first grasping unit 611 and the second grasping unit 612 at least partially overlap.
  • the overlapping transfer track covers at least two stations. For example, as shown in FIG.
  • the incubation alignment 632, the measurement alignment 633, the discard alignment 634, and the relay alignment 635 are overlapped, and the transfer trajectories of the corresponding overlapping portions cover the incubation site 422, the measurement site 423, the discard site and the Relay position.
  • the covered station includes at least a relay position.
  • the first grabbing unit 611 grabs the reactor to the relay position, and then the second grabbing unit 612 transfers the reactor from the relay position to other positions. , So as to realize the transfer of the reactor on both sides of the relay position.
  • the covered workstation further includes an incubation position 422 and a measurement position 423. In one of the embodiments, the covered workstation further includes an incubation position 422 or a measurement position 423.

Landscapes

  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种稀释方法和稀释装置,稀释方法包括:向供给单元(700)的第一工位(11)的第一反应器添加样本;将第一反应器转移至中转装置(500)的第五工位(15),供给单元(700)的第一工位(11)接收第二反应器;向第五工位(15)的第一反应器添加稀释液得到稀释样本;对第一反应器内的稀释样本混匀;将第一反应器从中转装置(500)转移至稀释运输装置(900);将第一反应器内的稀释样本中的一部分转移至第二反应器;将第二反应器转移至中转装置(500)的第五工位(15),并继续向第二反应器添加稀释液;对第二反应器内的物质进行混匀。稀释装置包括供给单元(700)和中转装置(500)。

Description

稀释方法及稀释装置 技术领域
本发明涉及分析测试技术领域,特别是涉及一种稀释方法及稀释装置。
背景技术
化学发光免疫分析系统利用化学发光和免疫反应原理,将光信号与待测物质浓度关联,分析样本中的待测物质含量,由于其高灵敏度和特异性、宽线性范围等特性正获得日益广泛的应用。随着检测标本量的增加,临床实验室对化学发光免疫分析系统的体积和测试通量的要求越来越高。而化学发光免疫分析系统需要实现样本的输送、试剂的存储、样本试剂等分析用液体的吸取和排放、反应器的转送、清洗分离等功能,对自动控制要求极高。
通常对于某些特定的测试分析,在样本和试剂混匀之前,需要先对样本进行稀释,但是,该稀释过程占用的时间较长,使得反应器在该稀释环节的流量较低,从而成为影响工作效率的瓶颈,导致免疫分析系统难以满足较高的测试通量要求。
发明内容
基于此,有必要针对上述技术问题,提供一种稀释方法及稀释装置。
一种稀释方法,包括:
向供给单元的第一工位的第一反应器添加样本;
将所述第一反应器转移至中转装置的第五工位,所述供给单元的第一工位接收第二反应器;
向所述第五工位的第一反应器添加稀释液得到稀释样本;
对所述第一反应器内的稀释样本混匀;
将所述第一反应器从所述中转装置转移至稀释运输装置;
将稀释运输装置上的第一反应内的稀释样本中的一部分转移至供给单元上的第二反应器;
将所述第二反应器转移至所述中转装置的第五工位,并继续向所述第二反应器添加试剂;
对所述第二反应器内的混合物进行混匀。
在其中一个实施例中,所述供给单元包括供给盘,所述供给盘上设置有用于容置反应器的暂存槽,所述供给盘转动带动所述暂存槽循环在第一工位和第二工位移动。
在其中一个实施例中,所述中转装置包括中转盘,所述中转盘上设置有用于容置反应器的暂存位,所述中转盘带动所述暂存位循环在第四工位和第五工位转动。
在其中一个实施例中,所述反应器在所述第五工位接收稀释液,且在所述第五工位进行混匀操作。
在其中一个实施例中,所述中转盘带动所述暂存位循环在第四工位、第五工位和第六工位转动。
在其中一个实施例中,所述反应器在所述第五工位接收稀释液,且在所述第六工位进行混匀操作。
在其中一个实施例中,还包括在将所述第一反应器内的稀释样本中的一部分转移至所述第二反应器之后,丢弃所述第一反应器的步骤。
一种稀释装置,包括:
供给单元,所述供给单元包括供给盘,所述供给盘上设置有用于容置反应器的暂存槽,所述供给盘能够旋转以带动所述暂存槽循环在第一工位和第二工位移动;
中转装置,所述中转装置包括中转盘,所述中转盘上设置有用于容置反应器的暂存位,所述中转盘能够旋转以带动所述暂存位循环在第四工位和第五工位移动;
稀释运输装置,用于运输稀释后的反应器;以及
样本供给装置,用于将所述稀释运输装置上的反应器内的稀释后的样本向所述供给单元上的反应器转移。
在其中一个实施例中,还包括用于在所述供给单元和所述中转装置之间转移反应器的转移装置。
在其中一个实施例中,还包括用于向所述反应器添加稀释液的试剂供给装置。
在其中一个实施例中,所述转移装置包括导轨和沿所述导轨运动的抓取单元。
在其中一个实施例中,所述导轨设置有一条,所述抓取单元至少设置有两组,两组所述抓取单元沿着所述导轨的延伸方向依次设置。
在其中一个实施例中,还包括反应装置,所述稀释运输装置独立设置在所述反应装置和所述中转装置之间,且可在所述转移装置和所述样本供给装置之间沿直线运动。
在其中一个实施例中,所述稀释运输装置上设置至少两个用于承载含有稀释样本的反应器的承载位。
有益效果:通过在第一反应器添加样本,添加稀释液,混匀后一部分转移至第二反应器,再向第二反应器注入稀释液,从而完成稀释过程。其中,在向第一反应器中注入稀释液的过程中就可以向中转装置提供第二反应器,而不需要等第一次稀释过程完毕后才提供第二反应器,缩短了稀释时间,提高了工作效率。且通过稀释装置的稀释运输装置和中转装置相互配合就能够完成稀释过程,稀释效率高,稀释装置简单,降低了生产成本。
附图说明
图1为本申请一个实施例中的分析装置的结构示意图;
图2为本申请一个实施例中的免疫分析的步骤图;
图3为本申请一个实施例中的分析装置包含的中转装置的结构示意图;
图4为本申请一个实施例中的反应装置上的反应位的结构示意图;
图5为本申请一个实施例中的转移装置的结构示意图;
图6为本申请一个实施例中的转移装置的转移轨迹图;
图7为本申请一个实施例中的分析装置的周期长度图;
图8为本申请一个实施例中的稀释装置的结构示意图;
图9为本申请一个实施例中的抓取单元在某一个周期内的执行动作图;
图10为本申请一个实施例中的转移装置的抓取单元在某一个周期内的执行动作图;
图11为图10所示实施例在多个测试项目时的执行动作图。
附图标记:11、第一工位;12、第二工位;13、第三工位;14、第四工位;15、第五工位;16、第六工位;100、试剂供给装置;110、试剂存储单元;111、第一试剂盘;112、第二试剂盘;120、排试剂单元;121、第一排试剂元件;122、第二排试剂元件;200、样本供给装置;300、反应器供给装置;310、料仓结构;320、供给滑道;400、反应装置;410、反应盘;420、反应位;421、清洗分离位;422、孵育位;423、测量位;430、测量组件;500、中转装置;510、中转驱动件;520、中转盘;530、暂存位;600、转移装置;611、第一抓取单元;612、第二抓取单元;621、第一抓取驱动件;622、第二抓取驱动件;630、导轨;631、清洗分离对位;632、孵育对位;633、测量对位;634、抛弃对位;635、接力对位;636、中转对位;700、供给单元;710、供给盘;720、暂存槽;800、混匀单元;810、震动件;820、震动孔;830、混匀驱动件;900、稀释运输装置。
具体实施方式
为了便于理解本发明,下面参照相关附图对本发明进行更全面的描述。附图中给出了本发明较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本发明公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称为“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
图1为本申请一个实施例中的分析装置的结构示意图,分析装置包括试剂供给装置100、样本供给装置200、反应器供给装置300以及反应装置400。工作时,样本供给装置200提供的样本添加到反应器供给装置300提供的反应器中,试剂供给装置100提供的试剂也添加到反应器供给装置300提供的反应器中, 此时反应器中包含了样本和试剂的混合物,后续将样本和试剂的混合物转移到反应装置400中进行反应。由于功能和结构类似,都是将液体吸取并添加到反应器中,样本供给装置200和试剂供给装置100可以合并为供给装置或统称为供给装置,即供给装置包括样本供给装置200和试剂供给装置100。如图1所示,样本供给装置200、试剂供给装置100和反应装置400围绕着中转装置500设置,即中转装置500设置在中间位置,起到中转反应器的作用,将中转装置500设置在中间位置,中转装置500距离其他结构均比较近,能够缩短反应器整体的转移时间,提高工作效率。进一步地,在俯视方向上,样本供给装置200、试剂供给装置100和反应装置400在中转装置500外周沿逆时针方向排布,这样能够使各个机构工作时有序进行,减少空间上的干涉,提高工作效率。
具体地,反应器供给装置300可以提供清洁且空置的反应器,样本供给装置200可以为空置的反应器加入样本。一个实施例中的分析装置还包括供给单元700,供给单元700用于承接反应器供给装置300提供的反应器,且样本供给装置200为供给单元700上的空置的反应器加入样本。一个实施例中的分析装置还包括中转装置500和转移装置600,转移装置600的工作路径至少覆盖供给单元700、中转装置500和反应装置400。转移装置600将添加了样本的反应器从供给单元700转移到中转装置500,并在中转装置500接收试剂供给装置100提供的试剂,即试剂供给装置100可以为中转装置500上的添加有样本的反应器再添加试剂,此时反应器中包含了样本和试剂的混合物。转移装置600还用于将包含有样本和试剂混合物的反应器转移到反应装置400中进行反应,反应的过程可以包括孵育、清洗和测量的一个或多个。
例如,上述的分析装置可以为免疫分析装置,免疫分析装置是对待测目标物质,如血液样本中所含抗原和抗体等物质进行定量或定性测定的装置。以一步法为例,对免疫分析装置的整体工作进行说明。图2为一个实施例中的免疫分析的步骤图,如图2所示,免疫分析整体上完成以下步骤:
S1、提供反应器;
S2、在反应器中添加样本和试剂;
S3、对反应器内的样本和试剂进行混匀;
S4、将混匀后的样本和试剂进行孵育;
S5、对孵育后的样本和试剂进行清洗分离;
S6、向反应器中添加信号试剂,进行信号孵育;
S7、测量发光量。
具体地,在S1中,先通过反应器供给装置300提供反应器。
在S2中,通过试剂供给装置100和样本供给装置200分别向反应器添加试剂和样本,添加试剂和样本的顺序可以不受限制,可以依次添加试剂和样本,也可以依次添加样本和试剂。例如,可以通过图1所示装置首先通过样本供给装置200提供样本,将样本添加到反应器中,然后通过试剂供给装置100提供试剂,然后将试剂添加到反应器中。样本可以为血液样本。根据具体分析的项目不同,试剂通常包括多个组分,例如包括磁微粒、酶标、稀释液和解离剂等。根据反应模式不同,一个分析项目所需的多个试剂组分可以一次性添加到反应器中,也可以分多个步骤分别添加到反应器中。
在S3中,对反应器进行震荡,以对反应器内的试剂和样本进行混匀。当然,在一些测试中,不需要混匀步骤,此时S3步骤可以跳过。
在S4中,对反应器内的样本和试剂的混合物进行孵育,孵育时间通常为5~60分钟。其中孵育指的是在恒温环境下抗原抗体结合反应的过程,或在恒温环境下生物素亲和素结合反应的过程。
在S5中,清洗分离是指用磁力捕捉结合反应后的磁微粒,同时去除未结合的标记抗体以及其他未反应或结合成分的过程。
在S6中,清洗分离后,继续向反应器中添加信号试剂,进行1~6分钟的信号孵育。信号孵育是指清洗分离之后,向反应器中加入信号试剂,并在恒温环境下反应一段时间,使信号增强的过程。由于信号试剂的种类不同,有些发光体系不需要信号孵育,在添加信号试剂后可以直接进行S7步骤的测量。信号试剂可以有一种或多种。有些信号试剂也可以包括第一成分试剂和第二成分试剂。
在S7中,信号试剂与反应器内原有混合物反应后产生反应物的发光量。其中,信号试剂通常为通用试剂的一种,通用试剂指的是,在不同的分析项目中,可以通用一种信号试剂。经过上述步骤,定量或定性测定样本中所含分析物的含量。
以图1所示实施例为例,步骤S1由反应器供给装置300完成。步骤S2由试剂供给装置100、样本供给装置200、供给单元700和中转装置500完成。步骤S3由混匀单元800完成。步骤S4-S6由反应装置400完成。清洗分离组件
反应器供给装置300用于储存和提供反应器。反应器供给装置300可以包括托盘结构或料仓结构310。其中,托盘结构为反应器整齐的排列的托盘上;料仓结构310为反应器散乱的放置在料仓内。由于托盘结构中反应器整齐的排列的托盘内,导致托盘结构占用空间体积较大,为了减小反应器供给装置300的占用体积且使整体结构紧凑,优选地采用料仓结构310。在其中一个实施例中,如图1所示,反应器供给装置300包括料仓结构310、排序结构和供给滑道320,反应器散乱的放置在料仓结构310内,通过排序结构对料仓内的散乱放置的反应器进行排序以使反应器逐个的经过供给滑道320排出至供给单元700。供给单元700用于缓存反应器。
如图1所示,在其中一个实施例中,供给单元700包括供给盘710和驱动供给盘710绕供给盘710的中心轴旋转的供给驱动件。供给盘710的外周设置若干周向间隔分布的用于暂存反应器的暂存槽720。供给驱动件驱动供给盘710旋转,以使一个空置的暂存槽720对准反应器供给装置300的供给滑道320,反应器从供给滑道320中转移到暂存槽720后,供给驱动件驱动供给盘710转动,以使下一个空置的暂存槽720对准反应器供给装置300的供给滑道320。其中,暂存槽720至少设置有三个,在某一时刻,至少有一个暂存槽720用于接收反应器供给装置300提供的反应器,至少一个暂存槽720内的反应器接收样本供给装置200提供的样本,且至少一个暂存槽720内的反应器被转移装置600转移至中转装置500。
在其中一个实施例中,如图1所示,分析装置包括供给单元700,以及设置在供给单元700中的供给盘710周向的反应器供给装置300、样本供给装置200和中转装置500,分析装置还包括能够在供给单元700和中转装置500之间转移反应器的转移装置600。其中,供给单元700接收反应器供给装置300提供的反应器之后,供给盘710转动一个角度并接受样本供给装置200提供的样本,以使样本添加到反应器中;然后供给盘710继续转动,当供给盘710转动一定角度之后,转移装置600将装有样本的反应器转移到中转装置500中。
中转装置500用于承载和转运需要排放试剂的反应器。进一步地,中转装置500还用于承载和转运排放试剂后需要混匀的反应器。图3至少示出了分析装置包含的中转装置500的结构示意图。如图3所示,中转装置500包括中转驱动件510和连接中转驱动件510的中转盘520,中转盘520用于承载反应器,中转驱动件510驱动中转盘520绕中转盘520的中心轴旋转,以使中转盘520上的反应器运动至不同位置。中转盘520外周设置若干周向间隔分布的用于暂存反应器的暂存位530,这里的暂存位530可以理解为开设在中转盘520上的槽结构,也可以理解为固定安装在中转盘520上的用于装夹反应器的夹具。在其中一个实施例中,若干暂存位530在中转盘520上呈环形排布。
在其中一个实施例中,暂存位530至少设置有四个,在某一时刻,至少一个暂存位530用于接收转移装置600从供给单元700转移的反应器,至少一个暂存位530内的反应器用于接收试剂供给装置100提供的试剂,至少一个暂存位530内的反应器用于混匀试剂和样本,且至少一个暂存位530内的反应器被转移装置600转移至反应装置400。在其中一个实施例中,如图1所示,分析装置包括中转装置500,以及设置在中转装置500的中转盘520周向的供给单元700、试剂供给装置100和混匀单元800;分析装置还包括设置在中转装置500外周的反应装置400,以及能够在中转装置500和反应装置400之间转移反应器的转移装置600。中转装置500接收转移装置600从供给单元700转移的盛有样本的反应器之后,中转盘520转动一个角度,并继续接受试剂供给装置100提供的试剂,以使试剂添加到盛有样本的反应器中;然后中转盘520继续转动,并通过混匀单元800对反应器中的试剂和样本进行混匀;然后中转盘520继续转动,转移装置600将混匀后反应器转移到反应装置400中。为了提高中转盘520的工作效率,以使中转盘520上可以暂存多个反应器,中转盘520上的暂存位530数量可以多于四个,同时为了防止中转盘520体积较大导致整体设备体积较大,中转盘520上的暂存位530至多设置八个。
在其中一个实施例中,中转盘520上的暂存位530的数量为3~8个。如果在一个实施例中,中转盘520上的暂存位530的数量小于3个,难以并行处理多个任务,如并行处理接收反应器进出中转盘520、接受试剂供给装置100提供的试剂和对反应器内的试剂和样本混匀。如果在一个实施例中,中转盘520中的暂存位530数量太多,比如超过8个,导致中转盘520占据较大空间体积,还会导致反应器在中转盘520 停留时间较长,降低测试效率。
在其中一个实施例中,如图3所示,混匀单元800设置在中转盘520下方,中转盘520旋转能够使中转盘520上暂存位530内的反应器依次与混匀单元800对应,混匀单元800能够对反应器进行震动,以使反应器内的试剂和样本混匀。例如,混匀组件可以包括震动件810、驱动震动件810震动的混匀驱动件830以及升降驱动件,震动件810上可以设置震动孔820。升降驱动件驱动震动件810和驱动震动件810升降,以使反应器能够插入震动孔820内,混匀驱动件830驱动震动件810偏心震荡,从而使反应器中的试剂和样本因震荡而混合均匀。
在其中一个实施例中,如图3所示,中转盘520旋转时,中转盘520上的暂存位530随中转盘520同步运动,每一个暂存位530能够依次运动到位置a、位置b、位置c和位置d。位置a可以为中转位,反应器在中转位进出中转盘520。位置d可以为混匀位,反应器在混匀位混匀反应器内的样本和试剂。位置b可以为排试剂位,反应器在排试剂位接收试剂。位置c也可以为排试剂位。俯视中转盘520时,沿顺时针方向,位置a、位置b、位置c和位置d依次布置。其中,反应器在位置a进出中转盘520,结合图1,试剂供给装置100在位置c对中转盘520上的反应器排放试剂,混匀单元800在位置d对反应器内的试剂和样本混匀。中转盘520上的多个反应器依次运动到位置a才能够从中转盘520上被转移装置600取走,即转移装置600只在位置a取放反应器,可以缩短转移装置600转移轨迹的长度,且只需要一个转移装置600就可以实现对反应器的取放,因此还可以减小转移装置600的数量。
如图1所示,转移装置600的转移轨迹经过位置a。且中转盘520的圆心以及位置c在转移装置600转移轨迹的同一侧。这种布局可以减小中转盘520占用的空间体积,且避免转移装置600和试剂供给装置100的空间干涉。
如图1所示,当分析装置包括两个试剂供给装置100时,中转盘520可以分别在位置b和位置c分别接收两个试剂供给装置100提供的试剂;在一些实施例中,中转盘520也可以均在位置c先后接收两个试剂供给装置100提供的试剂。作为优选,中转盘520也可以均在位置c先后接收两个试剂供给装置100提供的试剂,这样进一步可以减小中转盘520的尺寸和试剂供给装置100占用的空间,提高了试剂供给装置100的灵活性和效率,增大了中转装置500和试剂供给装置100的单位面积处理任务能力。
如图1所示,反应装置400和中转装置500的中转盘520独立设置,具体地,中转装置500设置在反应装置400外侧,且中转装置500的转动中心设置在反应装置400外侧。也就是说,中转装置500与反应装置400在俯视方向上没有空间上的重叠。进一步地,中转盘520的直径小于所述试剂盘直径。不仅避免了中转盘520和反应装置400嵌套设置导致结构复杂、成本高、占据面积大等问题,也解决了反应装置400的反应盘410对中转盘520结构、尺寸以及空间位置和暂存位分布的限制,可以更加灵活、高效、合理布局中转盘520的位置和其上的暂存位。其中,中转盘520和反应装置400嵌套设置指的是,中转盘520与反应装置400同轴设置,反应装置400嵌套在中转盘520内。在其中一个实施例中,如图1所示,试剂供给装置100包括试剂存储单元110和排试剂单元120;试剂存储单元110用于存储试剂,排试剂单元120用于将试剂存储单元110存储的试剂吸取并排放到中转装置500上的反应器。
在一些实施例中,试剂存储单元110可以为仓式结构,即固定不动的试剂仓,也可以为如图1所示的盘式结构,即可以旋转的试剂盘,试剂盘用于存储试剂。由于中转盘520用于临时转存反应器,且每个反应器在中转盘停留的时间较短,但是试剂盘长时间存储一些试剂,为了满足试剂存储的要求,又要保证整机的尺寸较小,将中转盘520的直径设置为小于试剂盘的直径。
以下以盘式结构介绍图1所示的试剂存储单元110。试剂存储单元110上设置若干用于放置试剂容器的试剂位,盘式的试剂存储单元110可以在控制中心的控制下由驱动单元驱动以绕试剂存储单元110的中心轴旋转,从而使试剂存储单元110上的试剂位能够依次旋转至能够被排试剂单元120获取的位置。
在一个实施例中,若试剂包括磁粒试剂组分时,由于磁粒试剂组分会自然沉降,因此试剂存储单元110可以包括混匀结构,混匀结构能够使试剂位的磁粒试剂组分容器旋转或震荡,从而使试剂容器中的磁粒试剂组分混匀。
在一个实施例中,试剂存储单元110可以包括制冷器,当需要长期保存试剂时,制冷器能够为试剂容器内的试剂提供稳定的低温环境,从而延长试剂的保存时间。
在一个实施例中,试剂存储单元110可以包括条码扫描器,条码扫描器用于识别试剂容器上的条码信 息,以识别和区别不同分析项目的试剂。为了使整机结构紧凑并降低成本,条码扫描器可以采用固定式设计,例如相对整机固定设置。
在传统的分析装置中通常设置一个试剂存储单元110,为了增加试剂存储单元110容纳试剂容器的个数,即试剂位的个数,需要通过增大试剂存储单元110的尺寸来实现。但是这种大尺寸的试剂存储单元110不仅占用很大的空间面积,不方便整机的布局,也不利于生产制造,而且对运动控制的要求很高,即要求任意一个试剂位在很短时间内定位到能够被排试剂单元120获取的位置,因此无法实现整机高速运转。
为此,本申请的一个实施例中,如图1所示,分析装置至少包括两个独立驱动的试剂供给装置100。两个试剂供给装置100中的试剂存储单元110分别为第一试剂盘111和第二试剂盘112,且第一试剂盘111和第二试剂盘112各自由独立的驱动单元驱动旋转。通过两个试剂供给装置100独立设置且驱动,不仅每个试剂盘尺寸小,利于整机布局和试剂盘的运动控制,也有效扩充了整机的试剂存储数量。此外,还提高了整机运行的可靠性,当其中一个试剂供给装置100出现故障时,另一个试剂供给装置100可以继续使用。
在一个应用场景中,需要装载3个每个含100个测试的TSH(thyroid stimulating hormone,促甲状腺素)试剂容器,可以将3个TSH试剂容器都装载在第一试剂盘111;也可以将3个TSH试剂容器都装载在第二试剂盘112;也可以将1个TSH试剂容器装载在第一试剂盘111,将另2个TSH试剂容器装载在第二试剂盘112;也可以将1个TSH试剂容器装载在第二试剂盘112,将另2个TSH试剂容器装载在第一试剂盘111。也就是说,第一试剂盘111和第二试剂盘112可以分别存储一个测试项目所需的试剂组分。这样两个试剂盘可以交替输出试剂,缩短了取试剂所占用的时间,提高了工作效率。
在其中一个实施例中,为了充分考虑到使用需求、成本和布局,每个试剂盘上设置15-50个试剂位,例如,第一试剂盘111和第二试剂盘112均设置有25个试剂位。
在其中一个实施例中,如图1所示,排试剂单元120用于试剂的吸取和排放,例如,排试剂单元120从试剂存储单元110中的试剂容器中吸取试剂,然后将试剂排放到中转装置500内的反应器。如图1所示,当测试通量较高时,为了提高试剂的吸取和排放效率,排试剂单元120与试剂存储单元110一一对应,且两个排试剂单元120也是独立控制的,独立地交替向中转装置500内的反应器中排放试剂;当测试通量不高时,也可以设置一个排试剂单元120。通常,排试剂单元120包括金属针、移液驱动机构、注射器或注液泵、阀、流体管路等。为了完成试剂吸取及其排放动作,排试剂单元120可以进行水平移动和竖直运动。水平运动通常有旋转、X向、Y向等几种运动形式或者几种运动形式的组合。作为优选实施例,排试剂单元120可以进行水平直线移动和竖直运动,水平直线运动轨迹在试剂存储单元110的中心与中转盘520的位置c的连线上。特别地,设置两个排试剂单元120和两个试剂存储单元110,排试剂单元120与试剂存储单元110一一对应。两个排试剂单元120的水平直线运动轨迹沿着各自对应的试剂存储单元110的半径方向相交于中转盘520的位置c。两个排试剂单元120独立地交替向中转装置500位置c内的反应器中排放试剂。这样不仅最大程度减少排试剂单元120的运动行程,提高处理任务的效率,还可以使整机布局更加合理紧凑,减少各种运动组件的空间干涉。
如图1所示,反应装置400用于对反应器内的反应物进行孵育、清洗分离和测量。反应装置400包括反应盘410和驱动反应盘410绕其中心轴旋转的反应驱动件。反应盘410上设置若干反应位420,反应位420可以为孔、槽、托架或底座等固定反应器的结构。如图4所示,图4为一个实施例中的反应装置400上的反应位420的结构示意图,这些反应位420至少包括清洗分离位421、孵育位422和测量位423。这些反应位420呈环形设置在反应盘410上,内圈为清洗分离位421;外圈为测量位423;内圈和外圈之间为孵育位422,孵育位422设置有若干圈。设置在孵育位422的反应器进行孵育过程,设置在清洗分离位421的反应器进行清洗分离过程,设置在测量位423的反应器进行测量过程或者为测量做准备。
在其中一个实施例中,如图4所示,在反应盘410上的反应位420,沿着反应盘410的半径方向呈一组,每一组中均包括清洗分离位421、孵育位422和测量位423,且沿着反应盘410的周向设置若干组。
在其中一个实施例中,结合图1,转移装置600的转移轨迹沿着反应盘410的一条半径延伸,至少覆盖反应盘410上沿着该半径方向的所有反应位。进而使反应盘410周向旋转时,反应盘410上的所有反应位420均能够被转移装置600的转移轨迹覆盖,实现了不同圈反应位420上的反应器的取放问题,使得整机布局紧凑,占用空间体积小。
在其中一个实施例中,如图1所示,中转装置500包括能够旋转的中转盘520,中转盘520的圆心和 供给盘710的圆心分别位于转移装置600的转移轨迹两侧。这种设置下,中转盘520和供给盘710分别占用转移装置600两侧的空间,不仅缩短了转移装置600的运动行程,还使整机布局紧凑,占用空间体积小。
在其中一个实施例中,如图1所示,反应装置400包括温控组件,温控组件包括保温锅、隔热装置、加热器、温度传感器、温度控制电路等元件,为反应装置400提供恒温孵育环境,并减少热量散失。
在其中一个实施例中,反应装置400还包括清洗分离组件。如图4所示,清洗分离位421的反应器转移到清洗分离组件所在位置时,清洗分离组件开始对反应器进行清洗分离,以去除反应物中未结合的成分。清洗分离组件包括磁力组件和冲洗组件。其中,磁力组件提供磁力,使反应器内的磁微粒收集到反应器内壁。由于在磁力中的响应时间、移动距离和阻力等因素,磁粒收集到反应器内壁需要一定的时间,通常为几秒到几十秒不等,这样在每次吸取废液(包括未结合成分)前,反应器需要经过磁力一段时间。本实施例中,磁力组件可直接安装或固定在清洗分离位421附近,使磁力组件更靠近反应位420,减少磁粒的收集时间,提高清洗分离效率。冲洗组件布置在清洗分离位421上方,冲洗组件包括吸液针和连接吸液针的吸液管,通过吸液驱动件带动吸液针进出位于清洗分离位421的反应器,抽吸反应器内的未结合成分。在其中一个实施例中,冲洗组件还包括注液针和连接注液针的注液管,注液针用于向反应器内注入清洗缓冲液。
通常,每次清洗分离步骤包括一次吸液和一次注入清洗缓冲液的过程;一般完成三至四次清洗分离步骤。在其中一个实施例中,为了提高对反应器进行清洗分离的效果,减少反应器内的反应残留物,结合图4,可以在清洗分离位421设置混匀器,混匀器用于在注入清洗缓冲液后使磁颗粒重新均匀分在在反应器内。冲洗组件设置在清洗分离位421上方,可以直接对清洗分离位421的反应器进行清洗分离,这样不需要设置独立的清洗分离旋转装置,避免反应器在独立的清洗分离组件和反应装置400之间转移。具有整体结构精简,运行高效的优点。
在其中一个实施例中,反应装置400还包括测量组件430,测量组件430设置在保温锅上,对测量位423的反应器内的信号进行测量。信号为反应器内加入信号试剂后产生的电信号、荧光信号或微弱化学发光信号等。在其中一个实施例中,测量组件430包括微弱光探测器光电倍增管(PMT)或其他灵敏的光电感应器件,可把测量的光信号转换为电信号,传送至控制中心。此外,为了提高测量效率和保证测量一致性,测量组件430还可进一步包括光信号收集和校准等光学结构。测量组件430通过通用方式连接或安装到反应装置400上,比如直接安装固定在反应装置400上或通过光纤连接安装到反应装置400上,这样可以直接对最外圈的反应位420上的反应器内的信号进行测量,避免设置独立的测量单元,省去反应器在反应装置400和测量组件430之间的转移,可使整机机构更紧凑、成本更低、控制流程更简单高效、处理效率和可靠性更高。
在其中一个实施例中,如图1所示,一种分析装置,包括转移装置600,转移装置600将反应器从第一位置沿第一方向移动到第二位置,其中第一位置为供给单元700、中转装置500和反应装置400中的至少一个,所述第二位置为供给单元700、中转装置500和反应装置400中的至少一个,在其他实施例中,第一位置还可以为供给单元700、中转装置500和反应装置400之外的结构,第二位置还可以为供给单元700、中转装置500和反应装置400之外的结构。
图5为一个实施例中的转移装置600的结构示意图,转移装置600包括导轨630和沿导轨630运动的抓取单元,其中抓取单元沿着导轨630移动经过的空间路径就是转移装置600的转移轨迹。抓取单元的数量可以根据实际情况选配,为了提高转移装置600的综合工作能力,优选地,抓取单元至少设置有两个,分别为第一抓取单元611和第二抓取单元612。如图5所示,转移装置600的导轨630设置有一个,转移装置600的导轨630上设置有第一抓取单元611和驱动第一抓取单元611沿导轨630滑动的第一抓取驱动件621,以及设置有第二抓取单元612和驱动第二抓取单元612沿导轨630滑动的第二抓取驱动件622。第一驱动件和第二驱动件独立设置,因此,第一抓取单元611和第二抓取单元612运动相互独立。其中,导轨630可以沿第一方向延伸,第一方向大致沿水平方向延伸。第一抓取单元611和第二抓取单元612沿着导轨630的延伸方向依次设置。这样只需要设置一条导轨630就能够供两个抓取单元活动,而且转移装置600的转移轨迹在一条直线上,不仅缩减了导轨的数量,而且有利于整机的空间布局,防止多个转移装置空间干涉,解决了为了避免干涉占用空间大的问题,从而在提高设备通量的情况下,也减小了设备的体积,使设备更加小型化。进一步地,由于转移装置的运行轨迹在一条直线上,抓取单元的转移操作都在该 直线轨迹上完成,缩短了转移操作的总行程,提高了转移装置的转移操作效率。在传统的实施方式中,通常对每一个转移操作均设置对应的转移装置,或者在1~2个转移操作共用一个转移装置,由于转移操作通常较多且不在同一条轨迹上,这些设置方式增加了转移装置的数量和空间分散分布,比如为了实现高通量测试,需要3个以上分散布局的转移装置,不但使得整机结构复杂,尺寸较大,且不方便控制。本申请实施例中,只通过设置一个转移装置就能够完成所有的转移操作,大大节省了装置的成本,且使装置结构紧凑,方便控制,不会出现不同转移装置在时间和空间的干涉情况。
在其中一个实施例中,如图5所示,抓取单元的第一抓取单元611和第二抓取单元612结构相同,均包括架体、升降块和夹爪,架体滑动连接于导轨630,例如架体可以沿着水平方向相对于导轨630滑动,升降块沿竖向滑动连接于架体,夹爪设置在升降块上,夹爪能够随升降块升降以夹持反应器。
图6为一个实施例中的转移装置600的转移轨迹图。一种分析装置包括转移装置600,转移装置600包括第一抓取单元611和第二抓取单元612。第一抓取单元(611)和第二抓取单元(612)的移动轨迹所在的直线重合。转移装置600的抓取单元沿导轨630运动能够在清洗分离对位631、孵育对位632、测量对位633、抛弃对位634、接力对位635和中转对位636取放反应器。结合图1所示的实施例,反应装置400上的反应位420至少包括清洗分离位421、孵育位422和测量位423。清洗分离位421与转移装置600的清洗分离对位631对应时,抓取单元能够取放清洗分离位421的反应器。孵育位422与转移装置600的孵育对位632相对应时,抓取单元能够取放孵育位422的反应器。测量位423与转移装置600的测量对位633相对应时,抓取单元能够取放测量位423的反应器。结合图3所示的实施例,中转装置500上的暂存位530至少能够运动到位置a,位置a可以为中转位,中转位与中转对位636相对应时,抓取单元能够取放中转位的反应器。如图1所示,中转装置500和反应装置400之间可以设置接力位,接力位可以与接力对位635对应,第一抓取单元611可以在清洗分离对位631抓取反应器,在接力对位635将反应器放在接力位上,然后第二抓取单元612在接力对位635抓取接力位上的反应器,然后将反应器移动至中转对位636。结合图3所示的实施例,中转装置500上的暂存位530能够运动到位置b、位置c和位置d,位置d可以为混匀位,位置b可以为排放试剂位,位置c也可以为排放试剂位。结合图1所示的实施例,在反应装置400和中转装置500之间可以设置抛弃位,当抛弃位与抛弃对位634对应时,抓取单元能够取放抛弃位的反应器,或抓取单元能够将反应器抛弃至抛弃位。
在其中一个实施例中,结合图6,第一抓取单元(611)和第二抓取单元(612)的移动轨迹所在的直线重合,且第一抓取单元611的转移轨迹和第二抓取单元612的转移轨迹至少有一段重叠。例如在图6中,第一抓取单元611和第二抓取单元612的移动轨迹在孵育对位632、测量对位633、抛弃对位634和接力对位635重叠,例如第一抓取单元611可以将反应器从清洗分离对位631抓取,然后将反应器放置到接力对位635,第二抓取单元612可以将放置到接力对位635的反应器移动到中转对位636。结合图6,清洗分离对位631、孵育对位632、测量对位633、抛弃对位634、接力对位635和中转对位636的排序并不一定按照图6所示的顺序排列,可以根据需要进行重新组合排列。
如图1所示,分析装置工作时,各个子装置按照工作周期有序的工作。工作周期,或者简称周期,是执行对象在工作过程中可循环重现的最短时间间隔,其通常具有固定的时间长度,例如,吸取和排放步骤、混匀步骤、清洗分离步骤、测量步骤在执行时均要占用时间,按照受控的顺序串行或并行执行。并行的具体含义是,多个任务操作可以同时进行;也可以是在先的任务操作已经开始且未结束的时候,开始在后的任务操作。由于同一个部件通常一次只能执行一个任务,因此同一个部件在一个周期内,通常串行动作或任务;不同的部件通常可以同时执行任务,因此不同部件在同一个周期内,通常可以并行执行动作或任务。
为了提高工作效率,对于存在速度瓶颈的装置,可以通过增加装置的数量来实现,例如图1中,设置有两个试剂盘,分别为第一试剂盘111和第二试剂盘112。又如,也可以通过延长装置的工作周期来实现,当只有一个试剂盘时,一个试剂盘需要的工作周期长度可能是两个试剂盘配合工作的周期长度的两倍。
在其中一个实施例中,如图1所示,分析装置包括两组试剂供给装置100,一个中转装置500和一个转移装置600。其中一组试剂供给装置100包括第一试剂盘111和第一排试剂元件121,另一组试剂供给装置100包括第二试剂盘112和第二排试剂元件122,其中第一排试剂元件121和第二排试剂元件122均为排试剂单元120。
如图7所示,图7为一个实施例中的分析装置的周期长度图,中转装置500和转移装置600工作在第 一周期T1,第一排试剂元件121和第二排试剂元件122工作在第二周期T2,第二周期T2的时间长度是第一周期T1的时间长度的2倍。工作在第二周期T2的第一排试剂元件121和第二排试剂元件122错开一个第一周期T1的时间长度交替向中转装置500的同一个暂存位530的反应器排放试剂。如图7所示,开始连续工作时,转移装置600每个第一周期T1向中转装置500移入一个反应器。中转装置500每个第一周期T1带动反应器旋转并前进一个位置。第一排试剂元件121每第二周期T2从第一试剂盘111吸取试剂并向中转装置500上的反应器排放试剂,例如,为了方便理解,吸取试剂对应在第二周期T2的A段,排放试剂对应在第二周期T2的B段。第二排试剂元件122每第二周期T2从第二试剂盘112吸取试剂并向中转装置500上的反应器排放试剂。同样的,吸取试剂对应在第二周期T2的A段,排放试剂对应在第二周期T2的B段。第一排试剂元件121和第二排试剂元件122的相同动作序列错开一个第一周期T1,即第一排试剂元件121吸取试剂时,第二排试剂元件122排放试剂;第一排试剂元件121排放试剂时,第二排试剂元件122吸取试剂。具体地,第一排试剂元件121和第二排试剂元件122可以向中转装置500的同一个位置的反应器排放试剂。也就是说,中转装置500在第N个第一周期将其中一个反应器转移到特定位置以接收第一排试剂元件121排放的试剂,中转装置500在第N+1个第一周期将另一个反应器转移到该特定位置并接收第二排试剂元件122排放的试剂。如图1所示,该特定位置可以为位置c。在图1中,第一排试剂元件121和第二排试剂元件122的移动轨迹均能够覆盖位置c,即他们在位置c处重合或相交,如此设置使得第一排试剂元件121和第二排试剂元件122覆盖的面积小,使整机结构更加紧凑。以上实施例中,试剂存储单元110的工作周期与第一排试剂元件121、第二排试剂元件122工作周期相同,是中转装置500和转移装置600的工作周期的2倍,两组试剂存储单元110之间的动作序列错开并行,相隔一个第一周期T1。这样,分析装置只包括两组试剂存储单元110,一组中转装置500和一组转移装置600,不仅减少了装置的占用空间,且有效提高了分析装置的工作效率。
本申请一个实施例还提供一种稀释装置,如图8所示,图8为一个实施例中的稀释装置的结构示意图,稀释装置包括试剂供给装置100、样本供给装置200、反应器供给装置300、中转装置500、转移装置600、供给单元700和稀释运输装置900。其中,试剂供给装置100、样本供给装置200、反应器供给装置300、中转装置500、转移装置600和供给单元700与上述实施例中的结构相同。稀释运输装置900设置在所述反应装置400和所述中转装置500之间。可以减少含有稀释样本的反应器的运输距离。稀释运输装置900上设置至少一个承载位,用于承载含有稀释样本的反应器,可在转移装置600和样本供给装置200的运动轨迹之间直线往复运动。优先地,稀释运输装置900上设置至少两个承载位,用于承载含有稀释样本的反应器,可以交替使用,提高样本自动稀释的效率。
如图8所示,稀释装置的供给单元700上设置有第一工位11和第二工位12,第一工位11用于第一反应器接收样本和第二反应器接收稀释样本,第二工位12用于转移装置600将第一反应器、第二反应器转移出供给单元700。中转装置500上设置有第四工位14、第五工位15和第六工位16。第四工位14用于转移装置600将第一反应器、第二反应器移入移出中转装置500、第五工位15用于第一反应器接收稀释液、第二反应器接收试剂,第六工位16分别用于对第一反应器、第二反应器内的反应物混匀。
如图8所示,供给单元700包括供给盘710,供给盘710上设置有用于容置反应器的暂存槽720,供给盘710能够旋转以带动所述暂存槽720循环在第一工位11和第二工位12移动;中转装置500包括中转盘520,中转盘520上设置有用于容置反应器的暂存位530,中转盘520能够旋转以带动所述暂存位530循环在第四工位14、第五工位15和第六工位16移动。具体地,转移装置600用于在所述供给单元700和所述中转装置500之间转移反应器,转移装置600还能够在中转装置500和稀释运输装置900之间转移反应器。试剂供给装置100用于向所述反应器添加稀释液。样本供给装置200不仅用于排放样本,还用于将稀释后的样本在不同反应器之间转移,例如样本供给装置200包括可以移动的吸针,通过该吸针既可以吸取和排放样本,又可以吸取和排放稀释后的样本。某个项目的稀释液可以是该项目试剂的一个组分,也可以是一类通用稀释液。稀释液存放在试剂供给装置100中。
一种稀释方法,可以通过稀释装置完成,也是通过上述实施例中的分析装置完成。稀释方法包括以下步骤:
S101、向供给单元700的第一工位11的第一反应器添加样本。
可以先通过反应器供给装置300向供给单元700提供第一反应器,然后将第一反应器移动到供给单元 700的第一工位11。可以通过样本供给装置200向第一工位11的第一反应器添加样本。
S102、将所述第一反应器转移至中转装置500的第五工位15,所述供给单元700的第一工位11接收第二反应器。
供给单元700转动,将第一反应器转出第一工位11,供给单元700转动时带动第二反应器进入第一工位11。可以通过转移装置600将供给单元700上的反应器转移到中转装置500,中转装置500转动,将第一反应器转移到第五工位15。
S103、向所述第五工位15的第一反应器添加稀释液得到稀释样本。
可以通过试剂供给装置100向第五工位15的第一反应器添加稀释液得到稀释样本。
S104、对所述第一反应器内的稀释样本混匀。
可以设置混匀单元800,将位于第五工位15的第一反应器内的稀释样本进行混匀。也可以使中转装置500旋转,将第一反应器移动到其他工位进行混匀。
S105、将所述第一反应器从所述中转装置500转移至稀释运输装置900。
可以通过转移装置600将第一反应器从中转装置500转移至稀释运输装置900。
S106、将所述第一反应器内的稀释样本中的一部分转移至所述第二反应器。
通过样本供给装置200吸取稀释运输装置900上的第一反应器内的一部分稀释样本后排放到中转装置500上的第二反应器。
S107、将所述第二反应器转移至所述中转装置500的第五工位15,并继续向所述第二反应器添加试剂。
可以通过转移装置600将第二反应器转移到中转装置500的第五工位15,继续向第二反应器添加试剂。
S108、对所述第二反应器内的混合物进行混匀。
可以将位于第五工位15的第二反应器内的混合物进行混匀。也可以使中转装置500旋转,将第二反应器移动到其他工位进行混匀。
上述实施例中,通过将含有稀释后的反应器暂存至稀释运输装置900,然后通过样本供给装置200将位于稀释运输装置900上的反应器内的混合物转移到供给单元700上的反应器内。因此,不需要将稀释后的反应器暂存回供给单元700,可以有效减少供给单元700的工作负担,提高整个装置的运行效率和运行稳定性。进一步地,稀释运输装置900独立设置在所述反应装置400和所述中转装置500之间,只承载含有稀释样本的反应器的运输,且在转移装置600和样本供给装置200的轨迹之间直线运动,不受样本添加、试剂添加、混匀等其他稀释过程和操作的限制,可以最大限度地提高稀释装置实现样本自动稀释的效率。
在一些实施例中,供给盘710转动带动暂存槽720循环在第一工位11和第二工位12移动。中转盘520带动暂存位530循环在第四工位14和第五工位15转动。供给盘710和中转盘520配合转动,有序的转移反应器,提高了工作效率。
在一个实施例中,反应器可以在第五工位15接收稀释液或试剂,且在第五工位15进行混匀操作。在一个实施例中,反应器在所述第五工位15接收稀释液或试剂,且在所述第六工位16进行混匀操作。
在其中一个实施例中,还包括在将所述第一反应器内的稀释样本中的一部分转移至所述第二反应器之后,丢弃所述第一反应器的步骤。
在其中一个实施例中,提供一种样本分析方法,包括以下步骤:
S210、向反应器添加样本和第一试剂并混匀。
S220、将含有样本和第一试剂的反应器在反应盘410的孵育位422进行第一次孵育。
S230、将第一次孵育完成后的反应器转移到反应盘410的清洗分离位421进行第一次清洗分离。
S240、将反应器转移至中转盘520,添加第二试剂并混匀。
S250、将添加了第二试剂的反应器转移至反应盘410的孵育位422进行第二次孵育。
S260、将第二次孵育完成后的反应器转移到反应盘410的清洗分离位421进行第二次清洗分离。
S270、向反应器添加信号试剂。
S280、将添加了信号试剂的反应器转移至反应盘410的测量位423进行测量。
在一个实施例中,还包括对测量后的反应器转移到抛弃位以抛弃反应器的步骤。
具体地,在S210步骤中,还包括以下步骤:
S211、提供反应器,并向反应器中添加样本。
S212、将装有样本的反应器转移至中转盘520并添加第一试剂;
S213、对反应器进行震荡以使反应器内的样本和第一试剂混匀。
具体地,在S220步骤中,还包括以下步骤:
S221、将混匀后的含有样本和第一试剂的反应器从中转盘520转移至反应盘410的孵育位422;
S222、含有样本和第一试剂的反应器随反应盘410旋转并进行第一次孵育,孵育的时间可以根据具体测试项目设定,一般为3分钟~60分钟。
在步骤S230中,反应器随反应盘410旋转,通过清洗分离组件对反应器进行第一次清洗分离。
在其中一个实施例中,提供一种样本分析装置,能够完成上述的样本分析方法,如图1所示,样本分析装置至少包括供给装置、混匀单元800、反应装置400、转移装置600、清洗分离组件和信号试剂添加组件。供给装置包括样本供给装置200和试剂供给装置100,其中供给装置中的样本供给装置200用于向反应器添加样本,试剂供给装置100用于向反应器添加试剂。以下实施例介绍通过样本分析装置完成样本分析方法的步骤。
在步骤S210中,通过反应器供给装置300向供给盘710提供反应器,供给盘710能够绕供给盘710的中心转动,反应器转动至对应样本供给装置200的工位时,样本供给装置200向反应器内提供样本,供给盘710将反应器转动至转移装置600的工作范围时,转移装置600将反应器从供给盘710转移至中转盘520。中转盘520上设置有用于承载反应器的暂存位530,中转盘520也能够绕中转盘520的中心轴旋转。中转盘520将反应器转动至试剂供给装置100对应的位置,通过试剂供给装置100向反应器内供给第一试剂,中转盘520将反应器转动至混匀单元800的位置,混匀单元800对反应器内的样本和第一试剂进行混匀。然后中转盘520将反应器转动至转移装置600的工作范围,通过转移装置600将反应器转移至反应装置400。
在步骤S220中,反应装置400包括反应盘410,反应盘410上设置有用于承载反应器的反应位420,反应位420呈环形布置在反应盘410上,根据反应位420功能的不同,可以将反应位420分为用于孵育的孵育位422,用于清洗分离的清洗分离位421和用于测量的测量位423。转移装置600能够将反应器在孵育位422、清洗分离位421和测量位423之间转移。第一次孵育时,反应器在孵育位422进行第一次孵育。
在步骤S230中,反应装置400包括清洗分离组件,第一次孵育完成之后,通过转移装置600将反应器从孵育位422转移到清洗分离位421,通过清洗分离组件对清洗分离位421的反应器进行第一次清洗分离。
在步骤S240中,转移装置600将反应器转移至中转盘520,中转盘520将反应器转动至对应试剂供给装置100的工位,通过试剂供给装置100向反应器添加第二试剂。中转盘520继续将反应器转动至对应混匀单元800的位置,通过混匀单元800对反应器内的混合物进行混匀。中转盘520继续将反应器转动至转移装置600的工作范围内。
在步骤S250中,转移装置600将添加了第二试剂的反应器转移至反应器的孵育位422进行第二次孵育。
在步骤S260中,转移装置600将第二次孵育完成后的反应器转移至反应盘410的清洗分离位421通过清洗分离组件进行第二次清洗分离。
在步骤S270中,反应装置400包括信号试剂添加组件,通过信号试剂添加组件对反应器添加信号试剂。
在步骤S280中,通过转移装置600将反应器转移至测量位423进行测量。
在一些实施例中,通过转移装置600将测量完毕后的反应器转移至抛弃位以抛弃反应器。
在上述实施例中的样本分析方法中,需要多次对反应器进行转移,上述样本分析方法可以在样本分析装置中实现,样本分析装置在进行样本分析时,通常进行多组测试,多组测试均需要进行反应器的转移。为了提高工作效率,使样本分析装置充分利用工作时间,提供一种反应器转移方法:
转移装置至少完成5次转移操作,每次转移操作将一个反应器在两个不同操作工位之间转移,所述转移操作存在至少两个互斥的转移操作,所述的互斥转移操作在同一工作周期内不同时存在,且在不同工作周期内的节拍重叠。
节拍为工作周期内每次转移操作执行时所占用的时间段。每个节拍的长度可能相同也可能不同,一个 周期中的多个节拍之间可以是连续的,也可以是间隔的,多个节拍之间的顺序是固定不变的。若某个节拍对应的转移操作在某个工作周期内不存在,则该节拍空闲。节拍重叠指不同工作周期内转移操作执行时所占用的周期内的时间段至少部分重合,可以是部分执行时间段的重合,也可以是完全重合
所述的操作工位至少包括供给对位,用于移出空置的反应器或者加完样本的反应器,中转对位,用于移入需要加试剂的反应器或者移出加完试剂的反应器,孵育对位,用于移入需要孵育的反应器或者移出孵育一段时间或孵育完成的反应器,清洗对位,用于移入需要清洗分离的反应器或者清洗分离完成的反应器。
在一些实施例中,多组测试并行进行时,可能需要如下转移操作:
第一转移操作:将空置的或者排完样本后的反应器从供给盘710移动至中转盘520;
第二转移操作:将需要孵育的反应器从中转盘520移动至反应盘410的孵育位422;
第三转移操作:将需要清洗分离的反应器从反应盘410的孵育位422移动至反应盘410的清洗分离位421;
第四转移操作:将需要加入第二试剂的反应器从反应盘410的孵育位422移动至中转盘520;
第五转移操作:将需要加入第二试剂的反应器从反应盘410的清洗分离位421移动至中转盘520;
第六转移操作:将需要测量的反应器从反应盘410的清洗分离位421移动至反应盘410的测量位423;
第七转移操作:将含有稀释样本的反应器从中转盘520移动至稀释运输装置900;
第八转移操作:将测量完成的反应器从反应盘410的测量位423移动至抛弃位。
在上述实施例中,提供了一种包括第一抓取单元611和第二抓取单元612的转移装置600。第五转移操作将需要加入第二试剂的反应器从反应盘410的清洗分离位421转移至中转盘520,如果只由第一抓取单元611完成,不仅运动行程大,在第一抓取单元611执行操作时,第二抓取单元612还需要避让,两者不能并行工作,影响转移装置600的工作效率,因此将第五转移操作分解成可接力的两个子操作:第五A转移操作和第五B转移操作.第五A转移操作需要先通过第一抓取单元611将反应器转移到接力对位635并将反应器放置在接力位,第五B转移操作由第二抓取单元612从接力位将反应器抓取至中转对位636。如图6所示,第二抓取单元612负责第一转移操作、第二转移操作、第四转移操作、第五B转移操作、第七转移操作和第八转移操作,第一抓取单元611负责第三转移操作、第五A转移操作和第六转移操作。
在其中一个实施例中,在一个两步法测试中,需要依次进行如下转移操作:
第一转移操作、第二转移操作、第三转移操作、第五转移操作、第二转移操作、第三转移操作、第六转移操作和第八转移操作。因此第一转移操作、第二转移操作、第三转移操作、第五转移操作、第二转移操作、第三转移操作、第六转移操作和第八转移操作依次由如下抓取单元依次完成:第二抓取单元612、第二抓取单元612、第一抓取单元611、第一抓取单元611和第二抓取单元612、第二抓取单元612、第一抓取单元611、第一抓取单元611、第二抓取单元612。
对于同一功能工位的反应器转移操作,抓取单元先将该工位内的反应器移出,再移入另一个反应器。这样可以提高功能工位的使用效率。图9示出了一个实施例中的抓取单元在某一个周期内的执行动作图,在其他实施例中,执行动作可以与图9所示的状态不同。如图9所示,第一转移操作:将空置的或者排完样本后的反应器从供给盘710移动至中转盘520;第四转移操作:将需要加入第二试剂的反应器从反应盘410的孵育位422移动至中转盘520;第五B转移操作:第二抓取单元612从接力位将反应器抓取至中转盘520。由于三者均是从其他位置移动至中转盘520,而中转盘520一次只能接收一个位置移入的反应器,因此,第一转移操作、第四转移操作和第五B转移操作是互斥的。
又如,如图9所示,第二转移操作:将需要孵育的反应器从中转盘520移动至反应盘410的孵育位422;第七转移操作:将含有稀释样本的反应器从中转盘520移动至稀释运输装置900。由于两者均是从中转盘520向其他位置移出反应器,而中转盘520一次只能向其他一个位置移出反应器,因此第二转移操作和第七转移操作是互斥的。
又如,如图9所示,第六转移操作:将需要测量的反应器从反应盘410的清洗分离位421转移至反应盘410的测量位423;第五A转移操作:将需要加入第二试剂的反应器从反应盘410的清洗分离位421转移到接力位。由于两者均是从反应盘410的清洗分离位421向其他位置(包括反应盘410自身的不同位置)转移反应器,而反应盘410的清洗分离位421一次只能向其他一个位置移出反应器,因此第六转移操作和第五A转移操作也是互斥的。
上述互斥的转移操作中有一个相同的工位。
其中,上述图9中的转移操作的具体工作内容只是一个举例说明,其他实施例中,转移操作对应的具体工作可以不是上述实施例中列举的内容。
又如,图10为转移装置600只有一个抓取单元时,一个实施例中的抓取单元在某一个周期内的执行动作图。图11为图10所示实施例在多个测试并行进行时的执行动作图。图10中第一转移操作、第四转移操作和第五转移操作是互斥的,当然同一种转移操作也是互斥的,例如,第一转移操作和第一转移操作是互斥的。互斥的转移操作在同一个周期内不能同时执行。其中,图10中的第一转移操作、第二转移操作、第三转移操作、第四转移操作和第五转移操作只是一种名称上的定义,具体的操作内容不受上述实施例限定。
现在以图10和图11所示的实施例介绍反应器转移方法的具体步骤:
如图10所示,每个周期T均包括三个连续进行的节拍,分别为节拍1、节拍2和节拍3。第一转移操作、第四转移操作和第五转移操作分别只能在某一个周期中的节拍1中完成。第三转移操作只能在每一个周期中的节拍2中完成。第二转移操作只能在每一个周期中的节拍3中完成。
在其中一个实施例中,如图11所示,以第M~N周期的第一~第八测试项目为例说明多测试并行的反应器转移方法。需要说明的是,第一~第八测试项目仅是测试项目的标识,不必须代表实际测试的启动顺序,这些项目可能是同一个检测项目,也可以是不同的检测项目或者部分相同的检测项目。反应器转移方法包括并行的第一测试项目、第二测试项目、第三测试项目、第四测试项目、第五测试项目、第六测试项目、第七测试项目和第八测试项目。每个测试项目在每个周期中均包括三个连续进行的节拍。每个测试项目均包括连续进行的若干转移操作,其中:
第一测试项目至少包括连续进行的第一转移操作、第二转移操作和第三转移操作,第一转移操作只能在某一个周期中的节拍1中完成,第二转移操作只能在每一个周期中的节拍3中完成,第三转移操作只能在每一个周期中的节拍2中完成;
第二测试项目至少包括连续进行的第五转移操作和第二转移操作,第五转移操作只能在某一个周期中的节拍1中完成,第二转移操作只能在每一个周期中的节拍3中完成;
第三测试项目至少包括连续进行的第四转移操作和第二转移操作,第四转移操作只能在每一个周期中的节拍1中完成;
第四测试项目至少包括第三转移操作,第三转移操作只能在每一个周期中的节拍2中完成;
第五测试项目至少包括第二转移操作,第二转移操作只能在每一个周期中的节拍3中完成;
第六测试项目至少包括第三转移操作,第三转移操作只能在每一个周期中的节拍2中完成;
第七测试项目至少包括第三转移操作,第三转移操作只能在每一个周期中的节拍2中完成;
第八测试项目至少包括第一转移操作,第一转移操作只能在某一个周期中的节拍1中完成。
如图10所示,第一转移操作、第四转移操作和第五转移操作是互斥的。
下面以第一测试项目和第二测试项目为例进行说明,判断第一测试项目和第二测试项目同时执行时,在第一测试项目的每个周期中,第二测试项目是否存在与第一测试项目互斥的转移操作,若对应周期中不存在互斥的转移操作,则第一测试项目和第二测试项目同时执行,若对应周期中存在互斥的转移操作,在第一测试项目执行时,依次判断每延后一个周期开始执行第二测试项目,直至在第一测试项目的每个周期中第二测试项目不存在与第一测试项目互斥的转移操作时,开始执行第二测试项目。具体地,第一测试项目和第二测试项目同时执行时,在第一测试项目的第M周期中,第二测试项目存在第五转移操作,第一测试项目存在第一转移操作,又由于第五转移操作和第一转移操作是互斥的,此时判断延后一个周期开始执行第二测试项目的情况,如图11所示,当延后一个周期开始执行第二测试项目时,在第一测试项目的第M周期、第M+1周期、第M+2周期……第N周期中,第二测试项目均不存在与第一测试项目在对应周期中互斥的转移操作,因此,可以相对第一测试项目在延后一个周期时执行第二测试项目。
同理的后续测试项目也是按照这样的方式执行。也就是说,所述的反应器转移方法最终要实现这些测试项目中的互斥的转移操作在同一个工作周期中不同时存在,其中,不同的工作周期内的节拍重叠。而这些测试项目中的互斥的转移操作在同一个工作周期中不同时存在又存在以下两种情形:
第一种情形是:判断第X测试项目和第Y测试项目同时执行时,在第X测试项目的每个周期中,第Y 测试项目是否存在与第X测试项目互斥的转移操作,若对应周期中不存在互斥的转移操作,则第X测试项目和第Y测试项目并行执行;
第二种情形是:若对应周期中存在互斥的转移操作,在第X测试项目执行时,依次判断每延后一个周期开始执行第Y测试项目,直至在第X测试项目的每个周期中第Y测试项目不存在与所述第X测试项目互斥的转移操作时,开始执行第Y测试项目。根据上述实施例,互斥的转移操作在不同周期内可以共用同一个节拍,在同一个周期内不同时存在,一方面不必在同一个周期内为互斥转移操作分别设置节拍,缩短了周期时间,提高了测试通量,另一方面,对于互斥的转移操作,可以通过设置在不同的周期内实现,因此每个测试项目一旦开始执行,中间不会因为遇到互斥的转移操作而中断,因此能够连贯的执行。
根据上述实施例,在其他实施例中也可以设置依次进行的第一测试项目、第二测试项目和第三测试项目等,此时的反应器转移方法,至少包括先后进行的第一测试项目和第二测试项目,所述第一测试项目至少包括三个转移操作,所述第二测试项目至少包括三个转移操作,所述第一测试项目和第二测试项目中至少包括互斥的转移操作,所述反应器转移方法包括如下步骤:
在第一测试项目的每个执行周期内,对第一测试项目的转移操作的节拍按照执行顺序进行排序,所述节拍为每个转移操作所需要的时间段;
在第一测试项目的每个执行周期内,依次判断每延后一个执行周期开始执行第二测试项目时,在第一测试项目的每个节拍中,第一测试项目和第二测试项目是否存在互斥的转移操作,若在同一个节拍中第一测试项目和第二测试项目中不存在互斥的转移操作,开始执行第二测试项目。
在其中一个实施例中,所述互斥的转移操作的节拍部分重叠,节拍为每个转移操作所需要的时间的段。例如,在其中一个实施例中,如图10所示,第一转移操作的节拍在第一秒开始执行,在第五秒执行完毕;第四转移操作的节拍在第二秒开始执行,在第七秒执行完毕。那么这组互斥的转移操作在第二秒和第五秒之间是重叠的。
在其中一个实施例中,所述互斥的转移操作的节拍完全重叠,节拍为每个转移操作所需要的时间段。例如,在其中一个实施例中,如图10所示,第一转移操作的节拍在第一秒开始执行,第五秒执行完毕;第四转移操作的节拍在第一秒开始执行,第五秒执行完毕。那么这组互斥的转移操作的节拍是完全重叠的。
在其中一个实施例中,互斥的转移操作至少存在相同的操作工位。例如,对于同一功能工位的反应器转移操作,其中一个转移操作是通过抓取单元将一个反应器移入该工位内,与之互斥的转移操作是通过抓取单元将另一个反应器移入该工位。由于该工位同时只能接收一个反应器的移入,因此这两个转移操作是互斥的。
在一些实施例中,可以通过转移装置完成上述的转移操作,转移装置600可以包括第一抓取单元611和第二抓取单元612;在一些实施例中,转移装置600也是可以包括一个抓取单元。当转移装置600包括第一抓取单元611和第二抓取单元612时,第一抓取单元611和第二抓取单元612的转移轨迹至少有一部分重叠。其中,重叠的转移轨迹至少覆盖两个工位。例如,如图6所示,孵育对位632、测量对位633、抛弃对位634和接力对位635是重叠的,对应的重叠部分的转移轨迹覆盖孵育位422、测量位423、抛弃位和接力位。
在其中一个实施例中,覆盖的工位至少包括接力位,通过第一抓取单元611将反应器抓取至接力位,然后通过第二抓取单元612将反应器从接力位转移至其他位置,从而实现了对接力位两侧进行转移反应器。
在其中一个实施例中,覆盖的工位还包括孵育位422和测量位423。在其中一个实施例中,覆盖的工位还包括孵育位422或测量位423。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种稀释方法,其特征在于,包括:
    向供给单元(700)的第一工位(11)的第一反应器添加样本;
    将所述第一反应器转移至中转装置(500)的第五工位(15),所述供给单元(700)的第一工位(11)接收第二反应器;
    向所述第五工位(15)的第一反应器添加稀释液得到稀释样本;
    对所述第一反应器内的稀释样本混匀;
    将所述第一反应器从所述中转装置(500)转移至稀释运输装置(900);
    将稀释运输装置(900)上的第一反应内的稀释样本中的一部分转移至供给单元(700)上的第二反应器;
    将所述第二反应器转移至所述中转装置(500)的第五工位(15),并继续向所述第二反应器添加试剂;
    对所述第二反应器内的混合物进行混匀。
  2. 根据权利要求1所述的稀释方法,其特征在于,所述供给单元(700)包括供给盘(710),所述供给盘(710)上设置有用于容置反应器的暂存槽(720),所述供给盘(710)转动带动所述暂存槽(720)循环在第一工位(11)和第二工位(12)移动。
  3. 根据权利要求1所述的稀释方法,其特征在于,所述中转装置(500)包括中转盘(520),所述中转盘(520)上设置有用于容置反应器的暂存位(530),所述中转盘(520)带动所述暂存位(530)循环在第四工位(14)和第五工位(15)转动。
  4. 根据权利要求3所述的稀释方法,其特征在于,所述反应器在所述第五工位(15)接收稀释液,且在所述第五工位(15)进行混匀操作。
  5. 根据权利要求3所述的稀释方法,其特征在于,所述中转盘(520)带动所述暂存位(530)循环在第四工位(14)、第五工位(15)和第六工位(16)转动。
  6. 根据权利要求5所述的稀释方法,其特征在于,所述反应器在所述第五工位(15)接收稀释液,且在所述第六工位(16)进行混匀操作。
  7. 根据权利要求1所述的稀释方法,其特征在于,还包括在将所述第一反应器内的稀释样本中的一部分转移至所述第二反应器之后,丢弃所述第一反应器的步骤。
  8. 一种稀释装置,其特征在于,包括:
    供给单元(700),所述供给单元(700)包括供给盘(710),所述供给盘(710)上设置有用于容置反应器的暂存槽(720),所述供给盘(710)能够旋转以带动所述暂存槽(720)循环在第一工位(11)和第二工位(12)移动;
    中转装置(500),所述中转装置(500)包括中转盘(520),所述中转盘(520)上设置有用于容置反应器的暂存位(530),所述中转盘(520)能够旋转以带动所述暂存位(530)循环在第四工位(14)和第五工位(15)移动;
    稀释运输装置(900),用于运输稀释后的反应器;以及
    样本供给装置(200),用于将所述稀释运输装置(900)上的反应器内的稀释后的样本向所述供给单元(700)上的反应器转移。
  9. 根据权利要求8所述的稀释装置,其特征在于,还包括用于在所述供给单元(700)和所述中转装置(500)之间转移反应器的转移装置(600)。
  10. 根据权利要求8所述的稀释装置,其特征在于,还包括用于向所述反应器添加稀释液的试剂供给装置(100)。
  11. 根据权利要求9所述的稀释装置,其特征在于,所述转移装置(600)包括导轨(630)和沿所述导轨(630)运动的抓取单元。
  12. 根据权利要求11所述的稀释装置,其特征在于,所述导轨(630)设置有一条,所述抓取单元至少设置有两组,两组所述抓取单元沿着所述导轨(630)的延伸方向依次设置。
  13. 根据权利要求9所述的稀释装置,其特征在于,还包括反应装置(400),所述稀释运输装置(900)独立设置在所述反应装置(400)和所述中转装置(500)之间,且可在所述转移装置(600)和所述样本供给装置(200)之间沿直线运动。
  14. 根据权利要求13所述的稀释装置,其特征在于,所述稀释运输装置(900)上设置至少两个用于承载含有稀释样本的反应器的承载位。
PCT/CN2020/084945 2020-01-21 2020-04-15 稀释方法及稀释装置 WO2021147186A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20915753.6A EP4083631A4 (en) 2020-01-21 2020-04-15 DILUTION PROCESS AND DILUTION DEVICE
US17/793,660 US20230046531A1 (en) 2020-01-21 2020-04-15 Dilution Method and Dilution Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010069793.8 2020-01-21
CN202010069793.8A CN113219185B (zh) 2020-01-21 2020-01-21 稀释方法及稀释装置

Publications (1)

Publication Number Publication Date
WO2021147186A1 true WO2021147186A1 (zh) 2021-07-29

Family

ID=76992861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084945 WO2021147186A1 (zh) 2020-01-21 2020-04-15 稀释方法及稀释装置

Country Status (4)

Country Link
US (1) US20230046531A1 (zh)
EP (1) EP4083631A4 (zh)
CN (1) CN113219185B (zh)
WO (1) WO2021147186A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965886B (zh) * 2022-05-18 2023-11-03 深圳无疆生命科学有限公司 加样盘装置以及样本分析仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062432A (ja) * 1996-06-14 1998-03-06 Tosoh Corp 自動検体前処理装置および自動検体前処理方法
CN1621846A (zh) * 2003-11-25 2005-06-01 株式会社日立高新技术 自动分析装置
US20080206097A1 (en) * 2003-11-25 2008-08-28 Katsuaki Takahashi Automatic analyzer
CN103890589A (zh) * 2011-10-18 2014-06-25 株式会社日立高新技术 自动分析装置
CN107942085A (zh) * 2017-10-19 2018-04-20 深圳迎凯生物科技有限公司 自动分析装置及其样本分析方法
CN109061210A (zh) * 2018-09-07 2018-12-21 四川沃文特生物技术有限公司 一种全自动发光化学免疫分析仪
CN109142768A (zh) * 2017-01-06 2019-01-04 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
CN109709347A (zh) * 2018-12-26 2019-05-03 迪瑞医疗科技股份有限公司 一种孵育系统及其孵育方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487721B2 (ja) * 1996-08-21 2004-01-19 日本電子株式会社 生化学自動分析装置における撹拌装置
CN102998473B (zh) * 2012-12-19 2014-06-11 北京利德曼生化股份有限公司 全自动化学发光免疫分析仪
CN104111343B (zh) * 2013-04-16 2018-01-23 深圳迈瑞生物医疗电子股份有限公司 一种样本试剂分注装置、免疫分析仪及其方法
CN104345158A (zh) * 2013-07-30 2015-02-11 苏州浩欧博生物医药有限公司 自动分析装置及自动分析方法
CN207816996U (zh) * 2017-09-20 2018-09-04 深圳迈瑞生物医疗电子股份有限公司 一种自动分析装置
CN109975562B (zh) * 2017-12-28 2024-07-05 深圳市新产业生物医学工程股份有限公司 化学发光检测仪及其检测方法
JP7017942B2 (ja) * 2018-01-31 2022-02-09 シスメックス株式会社 試料測定システムおよび試料測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062432A (ja) * 1996-06-14 1998-03-06 Tosoh Corp 自動検体前処理装置および自動検体前処理方法
CN1621846A (zh) * 2003-11-25 2005-06-01 株式会社日立高新技术 自动分析装置
US20080206097A1 (en) * 2003-11-25 2008-08-28 Katsuaki Takahashi Automatic analyzer
CN103890589A (zh) * 2011-10-18 2014-06-25 株式会社日立高新技术 自动分析装置
CN109142768A (zh) * 2017-01-06 2019-01-04 深圳迎凯生物科技有限公司 自动分析装置及样本分析方法
CN107942085A (zh) * 2017-10-19 2018-04-20 深圳迎凯生物科技有限公司 自动分析装置及其样本分析方法
CN109061210A (zh) * 2018-09-07 2018-12-21 四川沃文特生物技术有限公司 一种全自动发光化学免疫分析仪
CN109709347A (zh) * 2018-12-26 2019-05-03 迪瑞医疗科技股份有限公司 一种孵育系统及其孵育方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083631A4 *

Also Published As

Publication number Publication date
CN113219185A (zh) 2021-08-06
EP4083631A1 (en) 2022-11-02
US20230046531A1 (en) 2023-02-16
CN113219185B (zh) 2023-08-08
EP4083631A4 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
WO2021147187A1 (zh) 样本分析方法和样本分析装置
US11162962B2 (en) Automatic analysis device and sample analysis method
CN109142768B (zh) 自动分析装置及样本分析方法
US20050220670A1 (en) Multipath access system for use in an automated immunoassay analyzer
EP0889328A1 (en) Automatic immunological analyzer
WO2021147183A1 (zh) 分析装置
WO2021147184A1 (zh) 分析装置
WO2021147185A1 (zh) 分析装置
CN211697837U (zh) 分析装置
WO2021147186A1 (zh) 稀释方法及稀释装置
WO2021147188A1 (zh) 反应器转移方法
WO2020087238A1 (zh) 反应装置和免疫分析仪
CN113567691A (zh) 孵育装置和自动分析装置
US20220120772A1 (en) Sample dilution method and immunoassay method
WO2021217443A1 (zh) 孵育装置和自动分析装置
CN218546775U (zh) 自动分析装置
WO2020087251A1 (zh) 免疫分析仪
WO2020087245A1 (zh) 免疫分析方法
WO2020087256A1 (zh) 试剂吸取方法、试剂供给装置及免疫分析仪
WO2020087240A1 (zh) 混匀方法、混匀装置及免疫分析仪
WO2020087244A1 (zh) 混匀方法、混匀装置及免疫分析仪
WO2020087252A1 (zh) 反应装置和免疫分析仪
WO2020087255A1 (zh) 稀释方法、稀释装置及免疫分析仪
JPH0682461A (ja) 免疫分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020915753

Country of ref document: EP

Effective date: 20220726

NENP Non-entry into the national phase

Ref country code: DE