WO2021147137A1 - 一种显示面板及其制备方法、显示装置 - Google Patents

一种显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021147137A1
WO2021147137A1 PCT/CN2020/077207 CN2020077207W WO2021147137A1 WO 2021147137 A1 WO2021147137 A1 WO 2021147137A1 CN 2020077207 W CN2020077207 W CN 2020077207W WO 2021147137 A1 WO2021147137 A1 WO 2021147137A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermoelectric
display panel
substrate
nanoparticle
Prior art date
Application number
PCT/CN2020/077207
Other languages
English (en)
French (fr)
Inventor
陈亚妮
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/753,776 priority Critical patent/US11404677B2/en
Publication of WO2021147137A1 publication Critical patent/WO2021147137A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • This application relates to the technical field of display panels, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • OLED Organic Light-Emitting Diode
  • FIG. 1 shows a schematic diagram of the structure of an OLED display panel 100 in the prior art.
  • the display panel 100 includes a substrate layer 110, an anode layer 120 provided on the substrate layer 110, and an empty space provided on the anode layer 120.
  • EML organic light emitting layer
  • the light-emitting process of an OLED display panel can be divided into: injection of electrons and holes, transport of electrons and holes, recombination of electrons and holes, and de-excitation of excitons.
  • the external driving voltage is applied to the cathode and anode, electrons and holes are injected from the cathode and anode to the electron transport layer and hole transport layer, and then to the light-emitting layer to recombine into excitons, and then emit visible light after radiation.
  • the above-mentioned light-emitting process has the following two problems: (1) The heat dissipation problem of the OLED display panel, the heat is mainly radiated by the TFT array substrate close to the substrate side. Therefore, the direction of the temperature gradient is that the anode and the cathode correspond to the hot end and the cold end, respectively. If the heat cannot be dissipated in time, it will cause the organic light-emitting layer material to crystallize, thereby reducing the luminous efficiency and lifetime; (2) The potential barriers of electrons and holes in the migration process will cause undesirable carrier recombination and reduce The total number of carriers to the light-emitting layer reduces the luminous efficiency.
  • An object of the present invention is to provide a display panel, which can solve the problem of poor heat dissipation of the display panel in the prior art.
  • the present invention provides a display panel including a substrate layer; an anode layer provided on the substrate layer; a hole transport layer provided on the anode layer; a thermoelectric nanoparticle layer provided on the On the hole transport layer; the organic light-emitting layer is provided on the thermoelectric nanoparticle layer; the electron transport layer is provided on the organic light-emitting layer; the cathode layer is provided on the electron transport layer.
  • thermoelectric nanoparticle layer will absorb heat from the direction of the substrate to achieve the purpose of spontaneous heat dissipation; on the other hand, the holes in the thermoelectric nanoparticle layer will diffuse from the hot end to the cold end to form The built-in electric field, the direction of the built-in electric field is consistent with the direction of the electric field when the display panel is working, helps the holes from the hole transport layer to cross the barrier to diffuse to the organic light-emitting layer, thereby improving the luminous efficiency.
  • thermoelectric nanoparticle layer adopts P-type thermoelectric nanoparticles.
  • the P-type thermoelectric nanoparticles include bismuth telluride and silicon germanium alloy.
  • the direction of the built-in electric field of the thermoelectric nanoparticle layer is the same as the direction of the electric field of the display panel.
  • the thickness of the thermoelectric nanoparticle layer is 10 nm-500 nm.
  • thermoelectric nanoparticle layer is 2.4 W/MK to 3.3 W/MK.
  • the substrate layer further includes an array substrate on the side of the substrate layer away from the anode layer, and the array substrate includes a substrate layer; an active layer provided on the substrate layer; and a gate electrode.
  • the insulating layer is arranged on the active layer; the gate layer is arranged on the gate insulating layer; the interlayer dielectric layer is arranged on the gate layer; the source and drain layer is arranged on the layer On the intermediary layer; the pixel definition layer is set on the source and drain layer.
  • the present invention also provides a manufacturing method for manufacturing the display panel related to the present invention.
  • the manufacturing method includes the following steps: providing a substrate layer; preparing an anode layer on the substrate layer; preparing A hole transport layer on the anode layer; preparing a thermoelectric nanoparticle layer on the hole transport layer; preparing an organic light-emitting layer on the thermoelectric nanoparticle layer; preparing an electron transport layer on the organic light-emitting layer; A cathode layer is prepared on the electron transport layer.
  • thermoelectric nanoparticle layer is prepared by spin coating or thermal evaporation.
  • the present invention also provides a display device including the display panel related to the present invention.
  • the present invention provides a display panel, a preparation method thereof, and a display device.
  • a layer of thermoelectric nanoparticles is provided between the hole transport layer and the organic light emitting layer.
  • the layer adopts P-type thermoelectric nanoparticles, such as bismuth telluride or silicon germanium alloy.
  • the thermoelectric nanoparticle layer absorbs heat from the direction of the substrate to achieve the purpose of spontaneous heat dissipation; on the other hand, the inside of the thermoelectric nanoparticle layer
  • the holes will diffuse from the hot end to the cold end to form a built-in electric field.
  • the direction of the built-in electric field is consistent with the direction of the electric field when the display panel is working. This helps the holes from the hole transport layer to cross the barrier to diffuse into the organic
  • the light-emitting layer improves the hole injection efficiency, thereby improving the luminous efficiency of the display panel.
  • FIG. 1 is a schematic diagram of the structure of a display panel provided in the prior art.
  • FIG. 2 is a schematic structural diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of a manufacturing method of a display panel provided by an embodiment of the present invention.
  • Electron transport layer -160
  • Electron transport layer -160
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relation.
  • an intermediate medium it can be the internal communication of two components or the interaction of two components relation.
  • FIG. 2 is a schematic structural diagram of the display panel 100 provided by this embodiment.
  • the display panel 100 includes a substrate layer 110, an anode layer 120, a hole transport layer 130, a thermoelectric nanoparticle layer 140, and an organic
  • the light emitting layer 150, the electron transport layer 160, and the cathode layer 170 is a schematic structural diagram of the display panel 100 provided by this embodiment.
  • the display panel 100 includes a substrate layer 110, an anode layer 120, a hole transport layer 130, a thermoelectric nanoparticle layer 140, and an organic The light emitting layer 150, the electron transport layer 160, and the cathode layer 170.
  • the anode layer 120 is provided on the substrate layer 110, the hole transport layer 130 is provided on the anode layer 120; the thermoelectric nanoparticle layer 140 is provided on the hole transport layer 130; the organic light emitting layer 150 is provided on the thermoelectric nanoparticle layer 140; The electron transport layer 160 is provided on the organic light emitting layer 150; the cathode layer 170 is provided on the electron transport layer 160.
  • the side of the substrate layer 110 away from the anode layer 120 also includes an array substrate.
  • the array substrate includes a substrate layer; an active layer provided on the substrate layer; a gate insulating layer provided on the active layer; and a gate layer provided on the On the gate insulating layer; the interlayer dielectric layer is arranged on the gate layer; the source and drain layer is arranged on the interlayer dielectric layer; the pixel definition layer is arranged on the source and drain layer. Since the improvement of the present invention lies in the thermoelectric nano-particle layer 140, the array substrate will not be repeated one by one.
  • the light-emitting process of the display panel can be divided into: injection of electrons and holes, transport of electrons and holes, recombination of electrons and holes, and de-excitation of excitons.
  • the external driving voltage is applied to the cathode and anode, electrons and holes are injected from the cathode and anode to the electron transport layer and hole transport layer, and then to the light-emitting layer to recombine into excitons, and then emit visible light after radiation.
  • the heat generated during the above light-emitting process is mainly radiated by the array substrate close to the substrate layer. Therefore, the direction of the temperature gradient is that the anode and the cathode correspond to the hot end and the cold end, respectively. If the heat cannot be dissipated in time, it will cause the organic light-emitting layer material to crystallize, thereby reducing the luminous efficiency and lifetime.
  • thermoelectric nanoparticle layer 140 in this embodiment absorbs heat from the direction of the substrate to achieve the purpose of spontaneous heat dissipation.
  • thermoelectric nanoparticle layer 140 adopts P-type thermoelectric nanoparticles.
  • the P-type thermoelectric nanoparticles include bismuth telluride and silicon germanium alloy.
  • the thickness of the thermoelectric nanoparticle layer 140 is 10nm-500nm.
  • the thermoelectric nanoparticle layer 140 The thermal conductivity is 2.4W/MK ⁇ 3.3W/MK.
  • the potential barriers of electrons and holes in the migration process will cause undesirable carrier recombination, reduce the total number of carriers to the light-emitting layer, and reduce light-emitting efficiency.
  • the direction of the built-in electric field of the thermoelectric nanoparticle layer 140 provided in this embodiment is the same as the direction of the electric field of the display panel 100. Holes in the thermoelectric nanoparticle layer 140 will diffuse from the hot end to the cold end to form a built-in electric field.
  • the direction of the built-in electric field is consistent with the direction of the electric field during operation of the display panel 100, which helps the holes from the hole transport layer 130 The holes cross the barrier to diffuse to the organic light emitting layer 150, thereby improving light emitting efficiency.
  • thermoelectric nanoparticle layer 140 is provided between the hole transport layer 130 and the organic light-emitting layer 150.
  • the thermoelectric nanoparticle layer 140 uses P-type thermoelectric nanoparticles, such as bismuth telluride or germanium. Silicon alloy, on the one hand, the thermoelectric nanoparticle layer 140 will absorb heat from the direction of the substrate to achieve the purpose of spontaneous heat dissipation; on the other hand, the holes in the thermoelectric nanoparticle layer 140 will diffuse from the hot end to the cold end to form The built-in electric field.
  • the direction of the built-in electric field is consistent with the direction of the electric field during operation of the display panel 100, which helps the holes from the hole transport layer 130 to cross the barrier to diffuse to the organic light-emitting layer 150, thereby improving the hole injection efficiency, thereby The luminous efficiency of the display panel 100 is improved.
  • This embodiment also provides a preparation method for preparing the display panel 100 involved in this embodiment.
  • the preparation method includes steps S1 to S7. Please refer to FIG. 3.
  • FIG. 3 is a flowchart of a manufacturing method of the display panel 100 provided in this embodiment.
  • Step S1 Provide a substrate layer 110.
  • Step S2 preparing an anode layer 120 on the substrate layer 110.
  • Step S3 preparing a hole transport layer 130 on the anode layer 120.
  • Step S4 preparing a thermoelectric nanoparticle layer 140 on the hole transport layer 130; wherein the thermoelectric nanoparticle layer 140 is prepared by a spin coating method or a thermal evaporation method.
  • thermoelectric nanoparticle layer 140 adopts P-type thermoelectric nanoparticles.
  • the P-type thermoelectric nanoparticles include bismuth telluride and germanium silicon alloy.
  • the thickness of the thermoelectric nanoparticle layer 140 is 10nm-500nm, and the thermal conductivity of the thermoelectric nanoparticle layer 140 is 2.4W/MK ⁇ 3.3W/MK.
  • Step S5 preparing an organic light emitting layer 150 on the thermoelectric nanoparticle layer 140.
  • Step S6 preparing the electron transport layer 160 on the organic light emitting layer 150.
  • Step S7 preparing a cathode layer 170 on the electron transport layer 160.
  • the present invention also provides a display device, including the display panel 100 related to the present invention.
  • thermoelectric nanoparticle layer 140 is provided between the hole transport layer 130 and the organic light emitting layer 150.
  • the thermoelectric nanoparticle layer 140 Using P-type thermoelectric nanoparticles, such as bismuth telluride or silicon germanium alloy, on the one hand, the thermoelectric nanoparticle layer 140 absorbs heat from the direction of the substrate to achieve the purpose of spontaneous heat dissipation; on the other hand, the thermoelectric nanoparticle layer 140 The holes inside will diffuse from the hot end to the cold end to form a built-in electric field.
  • the direction of the built-in electric field is consistent with the direction of the electric field during operation of the display panel 100, which helps the holes from the hole transport layer 130 to cross the barrier to Diffused into the organic light emitting layer 150 to improve hole injection efficiency, thereby improving the light emitting efficiency of the display panel 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100)及其制备方法、显示装置,显示面板(100)包括衬底层(110);阳极层(120),设于衬底层(110)上;空穴传输层(130),设于阳极层(120)上;热电纳米颗粒层(140),设于空穴传输层(130)上;有机发光层(150),设于热电纳米颗粒层(140)上;电子传输层(160),设于有机发光层(150)上;阴极层(170),设于电子传输层(160)上。

Description

一种显示面板及其制备方法、显示装置 技术领域
本申请涉及显示面板技术领域,尤其涉及一种显示面板及其制备方法、显示装置。
背景技术
目前现有的有机发光二极管(OrganicLight-Emitting Diode,OLED)结构具有自发光、广视角、高对比、低耗电、极高反应 速率等优点。
请参阅图1,图1所示为现有技术中的OLED显示面板100的结构示意图,显示面板100包括衬底层110、设于衬底层110上的阳极层120、设于阳极层120上的空穴传输层(HTL)130、设于空穴传输层(HTL)130上的有机发光层(EML)150、设于有机发光层150上的电子传输层(ETL)160、设于电子传输层(ETL)160上的阴极170。
OLED显示面板的发光过程可分为:电子和空穴的注入、电子和空穴的传输、电子和空穴的再结合、激子的退激发。具体表现为对阴极和阳极施加外驱动电压,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,然后到发光层复合成激子,再经过辐射后发出可见光。
然而上述发光过程存在着以下两个问题:(1)OLED显示面板的散热问题,热量主要是由靠近衬底侧的TFT阵列基板辐射的。因此,温度梯度的方向是阳极和阴极分别对应热端和冷端。如果热量不能得到及时散发,将会导致有机发光层材料晶化,进而降低发光效率和寿命;(2)电子、空穴在迁移过程中的势垒,会造成不理想的载流子复合,减少到发光层的载流子总数目,降低发光效率。
因此,确有必要来开发一种新型的显示面板,以克服现有技术的缺陷。
技术问题
本发明的一个目的是提供一种显示面板,其能够解决现有技术中显示面板存在的散热不良的问题。
技术解决方案
为实现上述目的,本发明提供一种显示面板,包括衬底层;阳极层,设于所述衬底层上;空穴传输层,设于所述阳极层上;热电纳米颗粒层,设于所述空穴传输层上;有机发光层,设于所述热电纳米颗粒层上;电子传输层,设于所述有机发光层上;阴极层,设于所述电子传输层上。
其中,所述热电纳米颗粒层会吸收来自所述衬底方向的热量,以达到自发散热的目的;另一方面,所述热电纳米颗粒层内部的空穴会从热端向冷端扩散,形成内建电场,内建电场的方向与所述显示面板工作时的电场方向一致,有助于来自所述空穴传输层的空穴跨越势垒以扩散到有机发光层,从而提高发光效率。
进一步的,在其他实施方式中,其中所述热电纳米颗粒层采用P型的热电纳米颗粒。
进一步的,在其他实施方式中,其中所述P型的热电纳米颗粒包括碲化铋、锗硅合金。
进一步的,在其他实施方式中,其中所述热电纳米颗粒层内建电场的方向与所述显示面板的电场方向相同。
进一步的,在其他实施方式中,其中所述热电纳米颗粒层的厚度为10nm-500nm。
进一步的,在其他实施方式中,其中所述热电纳米颗粒层的导热率为2.4W/MK~3.3W/MK。
进一步的,在其他实施方式中,其中在所述衬底层远离所述阳极层的一侧还包括阵列基板,所述阵列基板包括基板层;有源层,设于所述基板层上;栅极绝缘层,设于所述有源层上;栅极层,设于所述栅极绝缘层上;层间介质层,设于所述栅极层上;源漏极层,设于所述层间介质层上;像素定义层,设于所述源漏极层上。
为实现上述目的,本发明还提供一种制备方法,用以制备本发明涉及的所述显示面板,所述制备方法包括以下步骤:提供一衬底层;制备阳极层于所述衬底层上;制备空穴传输层于所述阳极层上;制备热电纳米颗粒层于所述空穴传输层上;制备有机发光层于所述热电纳米颗粒层上;制备电子传输层于所述有机发光层上;制备阴极层于所述电子传输层上。
进一步的,在其他实施方式中,其中所述热电纳米颗粒层是通过旋涂方式或热蒸镀方式制备的。
为实现上述目的,本发明还提供一种显示装置,包括本发明涉及的所述显示面板。
有益效果
相对于现有技术,本发明的有益效果在于:本发明提供一种显示面板及其制备方法、显示装置,在空穴传输层和有机发光层之间设置一层热电纳米颗粒层,热电纳米颗粒层采用P型的热电纳米颗粒,如碲化铋或锗硅合金,一方面,热电纳米颗粒层会吸收来自衬底方向的热量,以达到自发散热的目的;另一方面,热电纳米颗粒层内部的空穴会从热端向冷端扩散,形成内建电场,内建电场的方向与显示面板工作时的电场方向一致,有助于来自空穴传输层的空穴跨越势垒以扩散到有机发光层,提高空穴注入效率,从而改善显示面板的发光效率。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为现有技术中提供的显示面板的结构示意图。
图2为本发明实施例提供的显示面板的结构示意图;
图3为本发明实施例提供的显示面板的制备方法的流程图。
背景技术中的附图说明:
显示面板-100;衬底层-110;
阳极层-120;空穴传输层-130;
有机发光层-150;
电子传输层-160;
阴极层-170。
具体实施方式中的附图说明:
显示面板-100;衬底层-110;
阳极层-120;空穴传输层-130;
热电纳米颗粒层-140;有机发光层-150;
电子传输层-160;
阴极层-170。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
具体的,请参阅图2所示,图2为本实施例提供的显示面板100的结构示意图,显示面板100包括衬底层110、阳极层120、空穴传输层130、热电纳米颗粒层140、有机发光层150、电子传输层160和阴极层170。
其中阳极层120设于衬底层110上,空穴传输层130设于阳极层120上;热电纳米颗粒层140设于空穴传输层130上;有机发光层150设于热电纳米颗粒层140上;电子传输层160设于有机发光层150上;阴极层170设于电子传输层160上。
在衬底层110远离阳极层120的一侧还包括阵列基板,阵列基板包括基板层;有源层,设于基板层上;栅极绝缘层,设于有源层上;栅极层,设于栅极绝缘层上;层间介质层,设于栅极层上;源漏极层,设于层间介质层上;像素定义层,设于源漏极层上。由于本发明的改进点在于热电纳米颗粒层140,因此对阵列基板便不再一一赘述。
显示面板的发光过程可分为:电子和空穴的注入、电子和空穴的传输、电子和空穴的再结合、激子的退激发。具体表现为对阴极和阳极施加外驱动电压,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,然后到发光层复合成激子,再经过辐射后发出可见光。
上述发光过程产生热量主要是由靠近衬底层的阵列基板辐射的。因此,温度梯度的方向是阳极和阴极分别对应热端和冷端。如果热量不能得到及时散发,将会导致有机发光层材料晶化,进而降低发光效率和寿命。
本实施例中的热电纳米颗粒层140会吸收来自衬底方向的热量,以达到自发散热的目的。
本实施例中,热电纳米颗粒层140采用P型的热电纳米颗粒,P型的热电纳米颗粒包括碲化铋、锗硅合金,热电纳米颗粒层140的厚度为10nm-500nm,热电纳米颗粒层140的导热率为2.4W/MK~3.3W/MK。
另外,上述发光过程中,电子、空穴在迁移过程中的势垒,会造成不理想的载流子复合,减少到发光层的载流子总数目,降低发光效率。
本实施例提供的热电纳米颗粒层140内建电场的方向与显示面板100的电场方向相同。热电纳米颗粒层140内部的空穴会从热端向冷端扩散,形成内建电场,内建电场的方向与显示面板100工作时的电场方向一致,有助于来自空穴传输层130的空穴跨越势垒以扩散到有机发光层150,从而提高发光效率。
本实施例提供的显示面板100,在空穴传输层130和有机发光层150之间设置一层热电纳米颗粒层140,热电纳米颗粒层140采用P型的热电纳米颗粒,如碲化铋或锗硅合金,一方面,热电纳米颗粒层140会吸收来自衬底方向的热量,以达到自发散热的目的;另一方面,热电纳米颗粒层140内部的空穴会从热端向冷端扩散,形成内建电场,内建电场的方向与显示面板100工作时的电场方向一致,有助于来自空穴传输层130的空穴跨越势垒以扩散到有机发光层150,提高空穴注入效率,从而改善显示面板100的发光效率。
本实施例还提供一种制备方法,用以制备本实施例涉及的显示面板100,制备方法包括步骤S1-步骤S7。请参阅图3,图3为本实施例提供的显示面板100的制备方法的流程图。
步骤S1:提供一衬底层110。
步骤S2:制备阳极层120于衬底层110上。
步骤S3:制备空穴传输层130于阳极层120上。
步骤S4:制备热电纳米颗粒层140于空穴传输层130上;其中热电纳米颗粒层140是通过旋涂方式或热蒸镀方式制备的。
其中热电纳米颗粒层140采用P型的热电纳米颗粒,P型的热电纳米颗粒包括碲化铋、锗硅合金,热电纳米颗粒层140的厚度为10nm-500nm,热电纳米颗粒层140的导热率为2.4W/MK~3.3W/MK。
步骤S5:制备有机发光层150于热电纳米颗粒层140上。
步骤S6:制备电子传输层160于有机发光层150上。
步骤S7:制备阴极层170于电子传输层160上。
为实现上述目的,本发明还提供一种显示装置,包括本发明涉及的显示面板100。
本发明的有益效果在于:本发明提供一种显示面板100及其制备方法、显示装置,在空穴传输层130和有机发光层150之间设置一层热电纳米颗粒层140,热电纳米颗粒层140采用P型的热电纳米颗粒,如碲化铋或锗硅合金,一方面,热电纳米颗粒层140会吸收来自衬底方向的热量,以达到自发散热的目的;另一方面,热电纳米颗粒层140内部的空穴会从热端向冷端扩散,形成内建电场,内建电场的方向与显示面板100工作时的电场方向一致,有助于来自空穴传输层130的空穴跨越势垒以扩散到有机发光层150,提高空穴注入效率,从而改善显示面板100的发光效率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种显示面板及其制备方法、显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板,其中,包括:
    衬底层;
    阳极层,设于所述衬底层上;
    空穴传输层,设于所述阳极层上;
    热电纳米颗粒层,设于所述空穴传输层上;
    有机发光层,设于所述热电纳米颗粒层上;
    电子传输层,设于所述有机发光层上;
    阴极层,设于所述电子传输层上。
  2. 如权利要求1所述的显示面板,其中,所述热电纳米颗粒层采用P型的热电纳米颗粒。
  3. 如权利要求2所述的显示面板,其中,所述P型的热电纳米颗粒包括碲化铋、锗硅合金。
  4. 如权利要求1所述的显示面板,其中,所述热电纳米颗粒层内建电场的方向与所述显示面板的电场方向相同。
  5. 如权利要求1所述的显示面板,其中,所述热电纳米颗粒层的厚度为10nm-500nm。
  6. 如权利要求1所述的显示面板,其中,所述热电纳米颗粒层的导热率为2.4W/MK~3.3W/MK。
  7. 如权利要求1所述的显示面板,其中,在所述衬底层远离所述阳极层的一侧还包括阵列基板,所述阵列基板包括
    基板层;
    有源层,设于所述基板层上;
    栅极绝缘层,设于所述有源层上;
    栅极层,设于所述栅极绝缘层上;
    层间介质层,设于所述栅极层上;
    源漏极层,设于所述层间介质层上;
    像素定义层,设于所述源漏极层上。
  8. 一种制备方法,用以制备如权利要求1所述的显示面板,其中,所述制备方法包括以下步骤:
    提供一衬底层;
    制备阳极层于所述衬底层上;
    制备空穴传输层于所述阳极层上;
    制备热电纳米颗粒层于所述空穴传输层上;
    制备有机发光层于所述热电纳米颗粒层上;
    制备电子传输层于所述有机发光层上;
    制备阴极层于所述电子传输层上。
  9. 如权利要求8所述的制备方法,其中,所述热电纳米颗粒层是通过旋涂方式或热蒸镀方式制备的。
  10. 如权利要求8所述的制备方法,其中,所述热电纳米颗粒层采用P型的热电纳米颗粒。
  11. 如权利要求8所述的制备方法,其中,所述热电纳米颗粒层内建电场的方向与所述显示面板的电场方向相同。
  12. 如权利要求8所述的制备方法,其中,所述热电纳米颗粒层的厚度为10nm-500nm。
  13. 如权利要求8所述的制备方法,其中,所述热电纳米颗粒层的导热率为2.4W/MK~3.3W/MK。
  14. 一种显示装置,其中,包括如权利要求1所述的显示面板。
  15. 如权利要求14所述的显示装置,其中,所述热电纳米颗粒层采用P型的热电纳米颗粒。
  16. 如权利要求15所述的显示装置,其中,所述P型的热电纳米颗粒包括碲化铋、锗硅合金。
  17. 如权利要求14所述的显示装置,其中,所述热电纳米颗粒层内建电场的方向与所述显示面板的电场方向相同。
  18. 如权利要求14所述的显示装置,其中,所述热电纳米颗粒层的厚度为10nm-500nm。
  19. 如权利要求14所述的显示装置,其中,所述热电纳米颗粒层的导热率为2.4W/MK~3.3W/MK。
  20. 如权利要求14所述的显示装置,其中,在所述衬底层远离所述阳极层的一侧还包括阵列基板,所述阵列基板包括
    基板层;
    有源层,设于所述基板层上;
    栅极绝缘层,设于所述有源层上;
    栅极层,设于所述栅极绝缘层上;
    层间介质层,设于所述栅极层上;
    源漏极层,设于所述层间介质层上;
    像素定义层,设于所述源漏极层上。
PCT/CN2020/077207 2020-01-20 2020-02-28 一种显示面板及其制备方法、显示装置 WO2021147137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/753,776 US11404677B2 (en) 2020-01-20 2020-02-28 Display panel comprising thermoelectric nanoparticles, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010067351.X 2020-01-20
CN202010067351.XA CN111261793B (zh) 2020-01-20 2020-01-20 一种显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021147137A1 true WO2021147137A1 (zh) 2021-07-29

Family

ID=70950851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077207 WO2021147137A1 (zh) 2020-01-20 2020-02-28 一种显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US11404677B2 (zh)
CN (1) CN111261793B (zh)
WO (1) WO2021147137A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635692B (zh) * 2021-01-05 2022-07-12 Tcl华星光电技术有限公司 一种显示面板及其制备方法
CN116156923A (zh) * 2021-11-12 2023-05-23 Tcl科技集团股份有限公司 一种发光二极管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274944A1 (en) * 2004-06-09 2005-12-15 Samsung Electronics Co., Ltd. Nanocrystal electroluminescence device and fabrication method thereof
CN107275497A (zh) * 2017-05-15 2017-10-20 南京邮电大学 一种基于银纳米立方等离子体共振增强的蓝光有机发光二极管及其制备方法
CN107706296A (zh) * 2017-09-19 2018-02-16 中国科学院上海硅酸盐研究所 一体化封装结构热电器件及其制备方法
CN109103340A (zh) * 2017-06-21 2018-12-28 三星显示有限公司 发光二极管和包括其的显示器件
CN109949711A (zh) * 2019-03-29 2019-06-28 上海天马微电子有限公司 显示面板、显示装置和显示面板的制作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3206646B2 (ja) * 1998-01-22 2001-09-10 日本電気株式会社 多色発光有機elパネルおよびその製造方法
KR100673765B1 (ko) * 2006-01-20 2007-01-24 삼성에스디아이 주식회사 유기전계발광 표시장치 및 그 제조방법
WO2011146915A1 (en) * 2010-05-21 2011-11-24 The Board Of Regents Of The University Of Texas System Monolithic parallel multijunction oled with independent tunable color emission
CN104538432B (zh) * 2015-01-05 2019-03-15 昆山工研院新型平板显示技术中心有限公司 显示装置
KR101752573B1 (ko) * 2015-12-10 2017-06-30 성균관대학교산학협력단 지연형광-양자점 전계발광다이오드
CN106229423B (zh) * 2016-07-01 2018-07-17 京东方科技集团股份有限公司 量子点电致发光器件、其制备方法及显示器件
JP6849224B2 (ja) * 2016-10-10 2021-03-24 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 照明光源及びその製造方法
JP7104684B2 (ja) * 2017-03-03 2022-07-21 浩明 中弥 光熱変換基板を備えた熱電変換モジュール
CN107104192B (zh) * 2017-04-14 2019-02-26 深圳市华星光电半导体显示技术有限公司 量子点显示器件及其制造方法
CN109427983B (zh) * 2017-08-30 2020-08-11 清华大学 有机发光二极管
CN108011029A (zh) * 2017-11-30 2018-05-08 大连智讯科技有限公司 Cu2Se基热电材料及其制备方法
US10515579B2 (en) * 2018-04-05 2019-12-24 Samsung Display Co., Ltd. Display device
KR102649565B1 (ko) * 2018-06-01 2024-03-19 삼성전자주식회사 열전 재료, 및 이를 포함하는 열전 소자 및 전자 소자
CN108899430A (zh) * 2018-07-03 2018-11-27 京东方科技集团股份有限公司 一种量子点发光二极管及其制备方法、显示面板
CN109524438B (zh) * 2018-11-13 2021-01-15 武汉华星光电半导体显示技术有限公司 一种电致发光显示器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274944A1 (en) * 2004-06-09 2005-12-15 Samsung Electronics Co., Ltd. Nanocrystal electroluminescence device and fabrication method thereof
CN107275497A (zh) * 2017-05-15 2017-10-20 南京邮电大学 一种基于银纳米立方等离子体共振增强的蓝光有机发光二极管及其制备方法
CN109103340A (zh) * 2017-06-21 2018-12-28 三星显示有限公司 发光二极管和包括其的显示器件
CN107706296A (zh) * 2017-09-19 2018-02-16 中国科学院上海硅酸盐研究所 一体化封装结构热电器件及其制备方法
CN109949711A (zh) * 2019-03-29 2019-06-28 上海天马微电子有限公司 显示面板、显示装置和显示面板的制作方法

Also Published As

Publication number Publication date
US20210408434A1 (en) 2021-12-30
US11404677B2 (en) 2022-08-02
CN111261793B (zh) 2021-11-02
CN111261793A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
JP6141808B2 (ja) 光のアウトカップリングが改良されたoled
WO2022042037A1 (zh) 有机电致发光器件、显示面板及显示装置
US9508957B2 (en) OLED with improved light outcoupling
US9660209B2 (en) Method for manufacturing OLED device and OLED device manufactured therewith
US20080238310A1 (en) OLED with improved light outcoupling
US10763449B2 (en) Organic light-emitting diode (OLED) display panel, fabrication method and electronic device thereof
TW200306129A (en) Organic electroluminescent display device and method of fabricating the same
WO2016155475A1 (zh) 有机发光二极管器件及显示面板、显示装置
US8952362B2 (en) High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion
US10454074B2 (en) Organic light emitting display
WO2020118853A1 (zh) 柔性显示器的散热结构
WO2016173135A1 (zh) 有机发光二极管器件及其制备方法
WO2021147137A1 (zh) 一种显示面板及其制备方法、显示装置
CN113555510B (zh) 有机电致发光器件、显示面板及显示装置
JP2020021075A (ja) 高解像度amoledディスプレイ
US20060102911A1 (en) Organic light emitting display and method of fabricating the same
TW201409794A (zh) 倒置型有機發光二極體顯示裝置及其製備方法
Han et al. 15‐in. RGBW panel using two‐stacked white OLED and color filters for large‐sized display applications
US7897270B2 (en) Organic light emitting diode display and manufacturing method thereof
Yadav et al. Recent advancements over a decade for organic light-emitting diodes: from structural diversity, role of layers, colour emission, material classification, performance improvement, fabrication to applications
WO2021088118A1 (zh) Oled 显示面板和 oled 显示装置
KR20150080153A (ko) 유기발광다이오드 및 이를 포함하는 유기발광다이오드 표시장치
WO2022061938A1 (zh) 有机电致发光器件和显示装置
Liu et al. Inverted Tandem Phosphorescence Organic Light-Emitting Diodes Based on $\hbox {MoO} _ {3}/\hbox {Al/Cs} _ {2}\hbox {CO} _ {3} $ Charge Generation Unit
WO2022061939A1 (zh) 有机电致发光器件和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915661

Country of ref document: EP

Kind code of ref document: A1