WO2021146990A1 - 传输相位跟踪参考信号的方法和装置 - Google Patents
传输相位跟踪参考信号的方法和装置 Download PDFInfo
- Publication number
- WO2021146990A1 WO2021146990A1 PCT/CN2020/073746 CN2020073746W WO2021146990A1 WO 2021146990 A1 WO2021146990 A1 WO 2021146990A1 CN 2020073746 W CN2020073746 W CN 2020073746W WO 2021146990 A1 WO2021146990 A1 WO 2021146990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mcs index
- intervals
- mcs
- ptrs
- interval
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
Definitions
- This application relates to the communication field, and more specifically, to a method and device for transmitting a phase tracking reference signal in the communication field.
- the high frequency frequency band (greater than 6Ghz frequency band) has become the research hotspot for the industry to solve the increasing communication demand because of its rich frequency band resources.
- the high-frequency band has the advantages of large bandwidth and highly integrated antenna array, but it also has the problem of mid-range radio frequency distortion.
- phase error caused by phase noise PPN
- PPN phase noise
- CPE Common phase error
- ICI inter-carrier interference
- PTRS phase tracking reference signals
- the time-domain density of PTRS affects the accuracy of estimation and compensation caused by phase noise.
- the spectrum efficiency is affected, and the time domain density of different PTRS occupies different time-frequency resources. Therefore, how to balance the relationship between the spectrum efficiency and the time domain resources occupied by the PTRS is an urgent problem to be solved.
- the present application provides a method and device for transmitting PTRS, so that the determined PTRS time domain density can balance the relationship between the spectrum efficiency and the time domain resources occupied by the PTRS, which is beneficial to improving system performance.
- a method for transmitting a phase tracking reference signal PTRS including:
- the first device obtains the correspondence between the modulation and coding strategy (MCS) index interval and the PTRS time domain density, where at least one PTRS time domain density corresponds to a set of MCS index intervals, and the set of MCS index intervals At least include two non-contiguous MCS index intervals;
- MCS modulation and coding strategy
- the first device determines the target PTRS time domain density according to the currently scheduled MCS index and the corresponding relationship
- the first device transmits the PTRS according to the target PTRS time domain density.
- a plurality of discontinuous MCS index intervals included in a set of MCS index intervals correspond to at least one PTRS time domain density
- the first device may determine the target PTRS time domain according to the MCS index interval where the currently scheduled MCS index is located Density
- the spectral efficiency corresponding to different MCS index intervals in a group of MCS index intervals is basically similar, and different MCS index intervals of the currently scheduled MCS index in a group of MCS index intervals can determine the time domain density of the same PTRS.
- the determined PTRS time-domain density is higher when the spectral efficiency is higher, and the lower the PTRS time-domain density is determined when the spectral efficiency is low, so that the determined PTRS time-domain density can balance the spectral efficiency and the PTRS.
- the spectral efficiency corresponding to at least two discontinuous MCS index intervals included in a group of MCS index intervals is basically similar or similar.
- the MCS index interval 1 included in the first group of MCS index intervals corresponds to The first group of spectral efficiency values
- the MCS index interval 2 included in the first group of MCS index intervals corresponds to the second group of spectral efficiency values
- the magnitude of the first group of spectral efficiency is basically close to the magnitude of the second group of spectral efficiency, for example, the first group
- the difference between the largest spectrum efficiency in the spectrum efficiency and the largest spectrum efficiency in the second group of spectrum efficiency will not exceed the preset value 1, and the smallest spectrum efficiency in the first group of spectrum efficiency does not differ from the smallest spectrum efficiency in the second group of spectrum efficiency. Will exceed the default value of 2.
- the spectrum efficiency mentioned in this application may be the spectrum efficiency obtained by looking up the MCS table or the number of information bits carried by a single resource element (RE).
- the network device when transmitting the downlink PTRS, maps the PTRS according to the target PTRS time domain density.
- the above-mentioned first device is the network device; when transmitting the downlink PTRS, the terminal device demaps according to the target PTRS time domain density PTRS, at this time, the above-mentioned first device is a terminal device.
- the terminal device when transmitting the uplink PTRS, maps the PTRS according to the target PTRS time domain density.
- the above-mentioned first device is the terminal device; when transmitting the uplink PTRS, the network device demaps according to the target PTRS time domain density PTRS, at this time, the above-mentioned first device is a network device.
- multiple sets of MCS index intervals correspond to multiple PTRS time domain densities one-to-one, that is, one set of MCS index intervals corresponds to one PTRS time domain density.
- the MCS index intervals included in each group of MCS index intervals in the multiple sets of MCS index intervals do not overlap.
- the first device determines the target PTRS time domain density according to the currently scheduled MCS index and the corresponding relationship, including:
- the first device determines the first MCS index interval where the currently scheduled MCS index is located; the first device determines the PTRS time domain density corresponding to the first MCS index interval as the target PTRS time domain density.
- the first device receives multiple sets of MCS index thresholds corresponding to multiple sets of MCS index intervals from the second device; the first device is based on the multiple MCS index thresholds Determine the multiple sets of MCS index intervals.
- the network device receives multiple sets of MCS index thresholds corresponding to multiple sets of MCS index intervals from the terminal device.
- the multiple MCS index thresholds The limit value may be a suggested threshold value reported by the terminal device, and the network device obtains multiple MCS index threshold values corresponding to multiple sets of MCS index intervals after correction according to the multiple MCS index threshold values reported by the terminal device.
- the terminal device receives multiple sets of MCS index thresholds corresponding to multiple sets of MCS index intervals from the network device, and indexes the received multiple MCS indexes.
- the threshold is determined as the MCS index threshold of multiple sets of MCS index intervals.
- multiple sets of MCS index intervals correspond to multiple PTRS time domain densities, where a first set of MCS index intervals in the multiple sets of MCS index intervals corresponds to a first time domain density, and the method further includes :
- the first device receives a first MCS index threshold value from the second device, where the first MCS index threshold value belongs to a second MCS index interval in the first group of MCS index intervals;
- a device determines a second MCS index threshold value of a third MCS index interval in the first group of MCS index intervals according to the first MCS index threshold value.
- the second device is a terminal device.
- the network device may receive the first MCS index threshold value from the terminal device, and the network device may modify the received first MCS index threshold value and then derive the second MCS index threshold value.
- the network device may use the MCS index threshold value of one MCS index interval in a group of MCS index intervals to derive the MCS index threshold value of other MCS index intervals in the group of MCS index intervals after modification.
- the network device may receive the first MCS index threshold value from the terminal device, and the network device may derive the MCS index threshold values of other MCS index intervals in the group of MCS index intervals based on the received first MCS index threshold value Then, the MCS index threshold value of each MCS index interval in the group of MCS index intervals is corrected to obtain the MCS index threshold value of each MCS index interval in the group of MCS index intervals.
- the second device is a network device.
- the terminal device may receive the first MCS index threshold value from the network device, and the terminal device may derive the second MCS index threshold value from the received first MCS index threshold value.
- the terminal device may use The MCS index threshold value of one MCS index interval in a group of MCS index intervals derives the MCS index threshold value of other MCS index intervals in the group of MCS index intervals.
- the first device determining the second MCS index threshold value of the third MCS index interval in the first group of MCS index intervals according to the first MCS index threshold value includes:
- the first device determines the first spectral efficiency threshold corresponding to the second MCS index interval according to the first MCS index threshold and the MCS table:
- the first device determines a second spectral efficiency threshold value according to the first spectral efficiency threshold value and the MCS table, where the first spectral efficiency threshold value belongs to a first spectral efficiency monotonic interval, and The second spectral efficiency threshold value belongs to a second spectral efficiency monotonic interval, and there is at least an overlap part between the first spectral efficiency monotonic interval and the second spectral efficiency monotonic interval;
- the first device determines the second MCS index threshold value of the third MCS index interval according to the second spectral efficiency threshold value and the MCS table.
- the first spectral efficiency threshold and the second spectral efficiency threshold can be directly expressed by spectral efficiency, and the first spectral efficiency threshold and the second spectral efficiency threshold can also be expressed by the transport block size (transport block size).
- block size, TBS block size
- the first spectral efficiency threshold and the second spectral efficiency threshold can also be expressed by the product of the modulation order and the code rate; the first spectral efficiency threshold and the second spectral efficiency threshold
- the spectral efficiency index can also be used to indicate that the spectral efficiency index can be an index obtained by quantizing a limited range of spectral efficiency at a certain interval, and the quantization interval can be uniform or non-uniform.
- the method further includes: the first device sends to the second device the index threshold value corresponding to each group of MCS index intervals in the multiple groups of MCS index intervals.
- the network device sends the determined MCS index threshold value corresponding to each MCS index interval in each group of MCS index intervals to the terminal device,
- the terminal device determines the MCS index threshold values corresponding to each MCS index interval in each group of received MCS index intervals to determine multiple groups of MCS index intervals.
- the terminal device sends to the network device the MCS index threshold value corresponding to each MCS index interval in each group of MCS index intervals, and the network device according to After the MCS index threshold value corresponding to each MCS index interval in each group of MCS index intervals is corrected, multiple groups of MCS index intervals are obtained.
- the method further includes: the first device sends to the second device the MCS index threshold corresponding to one MCS index interval in each group of MCS index intervals in the multiple sets of MCS index intervals value.
- the network device sends to the terminal device one MCS index interval in each set of MCS index intervals determined (for example, a set of MCS index intervals corresponding to a set of MCS index intervals).
- One MCS index interval is the MCS index threshold value corresponding to the second MCS index interval in the aforementioned first group of MCS index intervals), and the terminal device derives the MCS index threshold value corresponding to one MCS index interval in each group of MCS index intervals
- Determine the MCS index thresholds corresponding to other MCS index intervals in each group of MCS index intervals for example, the other MCS index intervals corresponding to a group of MCS index intervals are the aforementioned third MCS index interval in the first group of MCS index intervals).
- the terminal device reports to the network device the recommended multiple sets of MCS index intervals in each set of MCS index intervals corresponding to one MCS index interval
- the network device may correct the received MCS index threshold value corresponding to the MCS index interval and then derive the MCS index threshold value of other MCS index intervals in the group of MCS index threshold values.
- the terminal device may send to the network device the MCS index threshold value corresponding to one MCS index interval in each group of MCS index intervals, and the network device may derive each MCS index threshold value corresponding to the received MCS index interval.
- the MCS index thresholds of other MCS index intervals in the group MCS index interval, and then the MCS index thresholds of each MCS index interval in each MCS index interval are corrected to obtain each MCS index in each MCS index interval The MCS index threshold of the interval.
- a method for transmitting a phase tracking reference signal PTRS which includes: a first device determines a correspondence between a plurality of intervals and a plurality of PTRS time domain densities; the first device determines the correspondence between multiple intervals and multiple PTRS time domain densities; The corresponding relationship determines a target time domain density; the first device transmits PTRS according to the target time domain density;
- the multiple thresholds of the multiple intervals are multiple spectral efficiencies, and the first parameter is the first spectral efficiency; or, the multiple thresholds of the multiple intervals are the transport block size TBS index, The first parameter is a TBS index; or, the multiple threshold values of the multiple intervals are the product of the modulation order and the code rate, and the first parameter is the product of the first modulation order and the first code rate .
- the TBS index can indicate spectral efficiency
- the product of modulation order and code rate can indicate spectral efficiency
- the correspondence between multiple intervals and multiple PTRS time-domain densities can be multiple intervals indicating spectral efficiency and Correspondence between multiple PTRS time-domain densities, in this way, the target PTRS time-domain density can be determined directly according to the interval indicating the spectrum efficiency where the first parameter is located, so that the determined PTRS time-domain density meets the demand for spectrum efficiency.
- each of the multiple intervals does not overlap.
- the control information sent by the network device to the terminal device may include the currently scheduled MCS index, and the network device and the terminal device may determine the first spectrum efficiency according to the currently scheduled MCS index. Further, the network device And the terminal device may determine the first spectrum efficiency according to the currently scheduled MCS index and MCS table.
- the first device in the above solution is a network device or a terminal device.
- the control information sent by the network device to the terminal device may include the currently scheduled MCS index.
- the network device and the terminal device may determine the first TBS index according to the currently scheduled MCS index. Further, the network device And the terminal device may determine the first TBS index according to the currently scheduled MCS index and MCS table.
- the first device in the above solution is a network device or a terminal device.
- the control information sent by the network device to the terminal device may include the currently scheduled MCS index, and the network device and the terminal device may determine the first The product of the modulation order and the first code rate. Further, the network device and the terminal device may determine the product of the first modulation order and the first code rate according to the MCS index and MCS table currently scheduled.
- the first device in the above solution is a network device or a terminal device.
- the method further includes: the first device receives multiple threshold values corresponding to the multiple intervals sent by the second device; the first device according to the multiple The threshold value determines the multiple intervals.
- the terminal device can report multiple thresholds corresponding to multiple suggested intervals, and the network device can report multiple thresholds corresponding to multiple intervals established by the terminal device After the correction, the threshold values of multiple intervals are determined.
- the network device sends multiple threshold values of multiple intervals to the terminal device, and the terminal device determines the multiple intervals according to the multiple threshold values.
- the method further includes: the first device sends multiple threshold values corresponding to the multiple intervals to the second device.
- the network device sends multiple threshold values of multiple intervals to the terminal device, and the terminal device determines the multiple intervals according to the multiple threshold values.
- the terminal device sends the suggested multiple thresholds of multiple intervals to the network device, and the network device modifies the multiple suggested thresholds of multiple intervals, Get multiple intervals.
- a device for transmitting PTRS is provided, and the device is configured to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
- the apparatus may include a module for executing the first aspect or the method in any possible implementation manner of the first aspect.
- a device for transmitting PTRS is provided, and the device is configured to execute the foregoing second aspect or any possible implementation of the second aspect.
- the device may include a module for executing the second aspect or the method in any possible implementation manner of the second aspect.
- a device for transmitting PTRS includes a processor, the processor is coupled with a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions stored in the memory, so that the first aspect The method in is executed.
- the processor is configured to execute a computer program or instruction stored in the memory, so that the apparatus executes the method in the first aspect.
- the device includes one or more processors.
- the device may further include a memory coupled with the processor.
- the device may include one or more memories.
- the memory can be integrated with the processor or provided separately.
- the device may also include a transceiver.
- a device for transmitting PTRS includes a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions stored in the memory, so that the second aspect The method in is executed.
- the processor is used to execute a computer program or instruction stored in the memory, so that the device executes the method in the second aspect.
- the device includes one or more processors.
- the device may further include a memory coupled with the processor.
- the device may include one or more memories.
- the memory can be integrated with the processor or provided separately.
- the device may also include a transceiver.
- this application provides a system for transmitting PTRS, which includes the device provided in the third aspect and the device provided in the fourth aspect; or
- the system includes the device provided in the fifth aspect and the device provided in the sixth aspect.
- a computer-readable storage medium on which a computer program (also referred to as an instruction or code) for implementing the method in the first aspect is stored.
- the computer when the computer program is executed by a computer, the computer can execute the method in the first aspect.
- the computer may be a communication device.
- a computer-readable storage medium on which a computer program (also referred to as an instruction or code) for implementing the method in the first aspect or the second aspect is stored.
- the computer when the computer program is executed by a computer, the computer can execute the method in the second aspect.
- the computer may be a communication device.
- this application provides a chip including a processor.
- the processor is used to read and execute the computer program stored in the memory to execute the method in the first aspect and any possible implementation manners thereof.
- the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
- the chip further includes a communication interface.
- the present application provides a chip including a processor.
- the processor is used to read and execute the computer program stored in the memory to execute the method in the second aspect and any possible implementation manners thereof.
- the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
- the chip further includes a communication interface.
- the present application provides a computer program product
- the computer program product includes a computer program (also referred to as instructions or code), when the computer program is executed by a computer, the computer realizes the method.
- the computer may be a communication device.
- the present application provides a computer program product
- the computer program product includes a computer program (also referred to as instructions or code), when the computer program is executed by a computer, the computer realizes the second aspect method.
- the computer may be a communication device.
- Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
- Fig. 2 is a schematic diagram of signal transmission provided by an embodiment of the present application.
- Figures 3 to 6 are schematic diagrams of methods for transmitting PTRS provided by embodiments of the present application.
- Figures 7-11 are schematic block diagrams of an apparatus for transmitting PTRS according to an embodiment of the present application.
- LTE long term evolution
- 5G fifth generation mobile communication
- M2M machine to machine communication
- 6G 6th Generation
- 5G wireless air interface technology is called a new radio (NR)
- NR new radio
- wireless broadband to the home wireless to the x, WTTx
- enhanced mobile broadband eMBB
- D2D device to device
- Fig. 1 is a schematic diagram of a communication system to which an embodiment of this application is applicable.
- the communication system includes a plurality of network devices, such as the network devices 110 and 120 shown in FIG. 1, and a plurality of terminal devices 130.
- the network device can be used to communicate with one or more terminal devices. As shown in FIG. 1, the network device 120 is used to communicate with the terminal device 130.
- the communication system between the network device 120 and the terminal device 130 may be an enhanced mobile broadband (eMBB) system.
- eMBB enhanced mobile broadband
- the network device can be used to communicate with one or more base stations with partial terminal device functions. As shown in FIG. 1, the network device 110 and the network device 120 can communicate with each other, and the network devices 120 can also communicate with each other. For example, the network devices 120, or the network device 120 and the network device 110 may communicate directly or indirectly through a non-ideal backhaul interface. For another example, the communication method between the network devices 120 or the communication method between the network device 120 and the network device 110 may be wireless broadband to the home (wireless to the x, WTTx).
- Terminal equipment can be distributed throughout the communication system.
- the terminal equipment can be stationary or mobile.
- Device-to-device (D2D) communication can be performed between terminal devices. As shown in FIG. 1, D2D communication can be performed between terminal devices 130.
- D2D Device-to-device
- Network equipment can be called a base station.
- the base station can have many forms, for example, a macro base station, a micro base station, a relay station, or an access point.
- the network equipment may be an evolved Node B (eNB) in an LTE system, or a gNB in a 5G system, or a transmission reception point (TRP).
- eNB evolved Node B
- TRP transmission reception point
- some network devices are eNBs
- some are gNBs some are TRPs
- the network device 110 is a central unit
- the network device 120 is a TRP.
- Terminal equipment can be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user agent Or user device.
- the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, wearable devices, in-vehicle devices, etc.
- Fig. 1 The communication system shown in Fig. 1 is only to illustrate the technical solution of the application more clearly, and does not constitute a limitation to the application. Those of ordinary skill in the art will know that with the evolution of the network architecture and the emergence of new business scenarios, the application The technical solutions provided in the embodiments are equally applicable to similar technical problems.
- High-frequency frequency bands (frequency bands above 6GHz, for example, 28GHz, 39GHz, 60GHz, 73GHz frequency bands) have become a research hotspot in the industry for solving the increasing communication demands due to their abundant frequency resources.
- the salient features of the high-frequency frequency band can achieve high throughput due to the large bandwidth and highly integrated antenna array, as well as mid-range radio frequency distortion.
- phase noise introduces phase error, which in turn causes frequency domain interference, leading to high-frequency communication systems The performance drops and even data cannot be transferred.
- s represents a frequency domain signal that is not affected by phase noise
- S represents a frequency domain signal that is affected by a noise signal
- E represents a conversion matrix between s and S. It should be understood that E reflects the influence of phase noise on the frequency domain signal.
- the expression of each element in E is
- the coefficient E 0 of the first term in the above formula can be called common phase error (CPE), and the summation formula of the second term in the above formula can be called inter sub-carrier interference (inter sub-carrier interference, ICI).
- CPE common phase error
- ICI inter sub-carrier interference
- E 0 s i means that the phase noise causes the original signal on the subcarrier to rotate or scale.
- E 0 has nothing to do with the sub-carrier number (i and j represent the sub-carrier number), that is, the rotation or scaling of the original signal on all the sub-carriers is the same. Therefore, the phase error caused by the phase noise represented by the first term E 0 s i in the above formula can be referred to as the common phase error (CPE).
- CPE common phase error
- phase error caused by the phase noise expressed by the second summation formula in the above formula is related to the subcarrier number. Therefore, the phase error caused by the phase noise expressed by the second summation formula in the above formula can be called Inter-subcarrier interference (ICI).
- ICI Inter-subcarrier interference
- phase noise will cause phase error, and this phase error will cause frequency domain interference.
- the frequency domain interference caused by phase noise will increase the difficulty of data demodulation, and cause the performance of the high-frequency communication system to decrease or even fail to work.
- the higher the phase noise power spectrum density the greater the impact on the received signal.
- phase tracking reference signal For the phase noise in the high frequency band, the phase tracking reference signal (PTRS) is usually used to estimate and compensate the phase error caused by the phase noise.
- the phase error estimation and compensation mainly include: CPE estimation and compensation, and ICI estimation and compensation.
- the reference signal is that the transmitting end adds a pre-known pilot symbol to the transmitted effective signal, and the receiving end can demodulate or decode the effective signal according to the known pilot symbol.
- Using PTRS to estimate and compensate the phase error refers to using the PTRS inserted into the effective signal to estimate and compensate the phase error.
- the above-mentioned precoded signal is sent to the receiving end through an antenna.
- the PTRS pattern demap the signal from the transmitting end to obtain the PTRS received signal after demapping, where the PTRS pattern is consistent with the PTRS pattern of the transmitting end;
- phase error for example, including CPE and/or ICI
- the PTRS pattern is composed of PTRS frequency domain density and PTRS time domain density.
- the PTRS sequence is mapped according to the PTRS time domain density and PTRS frequency domain density at the transmitting end of Fig. 2 to obtain the PTRS to be transmitted. Domain density.
- both the transmitting end and the receiving end need to determine the time domain density and frequency domain density of the PTRS.
- the embodiments of this application mainly involve the transmitting end and How does the receiving end determine the PTRS time domain density.
- the first device is a network device and the second device is a terminal device.
- the first device may also be a terminal device, and the second device is a network device.
- the network device obtains the correspondence between the MCS index interval and the PTRS time domain density.
- the correspondence relationship may be that multiple sets of MCS index intervals correspond to multiple PTRS time-domain densities, for example, at least one PTRS time-domain density among the multiple time-domain densities corresponds to a set of MCS index intervals, where a set of MCS index intervals The interval includes at least two MCS index intervals.
- the multiple PTRS time domain densities may include multiple specific values of the PTRS time domain density, or an element that indicates that the PTRS time domain density does not exist. In other words, the PTRS time domain density does not exist. Belongs to a PTRS time domain density.
- the value of the PTRS time domain density can be absent, 1, 2, 4.
- a set of MCS index intervals includes at least two discontinuous MCS index intervals, in other words, there is another MCS index interval with a non-zero length between the two discontinuous MCS index intervals.
- the acquisition of the foregoing correspondence relationship may be sent by other devices to the network device, or may be determined or configured by the network device, and the network device may store the correspondence relationship locally after acquiring the correspondence relationship.
- the following two situations describe how the network device determines the corresponding relationship.
- Case 1 The network device receives the MCS index threshold value of each MCS index interval in each group of MCS index intervals in the multiple sets of MCS index intervals from the terminal device, and the network device can correct the received MCS index threshold value. Obtain multiple sets of MCS index intervals. Specifically, the network device can be corrected according to the phase noise model, the phase noise power spectrum density, and the like of the network device.
- the upper limit of each MCS index interval in the group of MCS index intervals may be preset, and the lower limit of each MCS index interval in the group of MCS index intervals It can be reported by the terminal device.
- I MCS represents the currently scheduled MCS index
- each row represents a set of MCS index intervals
- the terminal device can report 1 In MCS 1,1 , MCS 2,1 , MCS 3,1 , MCS 1,2 , MCS 2,2 , MCS 3,2 .
- MCS 4,1 and MCS 4,2 in Table 1 can be preset.
- MCS index PTRS time domain density I MCS ⁇ [0,MCS 1,1 ) ⁇ [MCS 4,1 ,MCS 1,2 ) ⁇ ... PTRS does not exist I MCS ⁇ [MCS 1,1 ,MCS 2,1 ) ⁇ [MCS 1,2 ,MCS 2,2 ) ⁇ ... 4 I MCS ⁇ [MCS 2,1 ,MCS 3,1 ) ⁇ [MCS 2,2 ,MCS 3,2 ) ⁇ ... 2 I MCS ⁇ [MCS 3,1 ,MCS 4,1 ) ⁇ [MCS 3,2 ,MCS 4,2 ) ⁇ ... 1
- Case 2 The network device receives the threshold value of one MCS index interval in each group of MCS index intervals in the multiple sets of MCS index intervals from the terminal device, and the network device determines the threshold value of one MCS index interval in each group of MCS index intervals The threshold value of other MCS index intervals in each group of MCS index intervals.
- the network device may determine the threshold value of other MCS index intervals in each group of MCS index intervals according to the threshold value of one MCS index interval in each group of MCS index intervals received from the terminal device, and then modify the result to obtain the composition The threshold value of multiple MCS index intervals.
- the network device will correct the threshold value of one MCS index interval in each group of MCS index intervals received from the terminal device to obtain one MCS index interval in each group of MCS index intervals after the correction;
- One MCS index interval in each group of MCS index intervals determines the threshold value of other MCS index intervals in each group of MCS index intervals.
- the process of modifying the MCS index interval threshold value of the network device is omitted.
- the terminal device can report MCS 1,1 ', MCS 2,1 ', and MCS 3,1 'of report 1.
- Table 1 was obtained after the network device amended MCS 1,1, MCS 2,1, MCS 3,1 , corresponding to the terminal device may report 1 MCS 1,1, MCS 2,1, MCS 3,1 , wherein MCS 4,1 can be preset and determined by the MCS table; the network device can determine that the first MCS index interval in the first group of MCS index intervals is [0, MCS 1,1 ), and the second group of MCS index intervals is the first MCS index interval.
- An MCS index interval is [MCS 1,1 ,MCS 2,1 ), the first MCS index interval in the third group of MCS index intervals is [MCS 2,1 ,MCS 3,1 ), and the fourth group of MCS index intervals
- the first MCS index interval in the middle is [MCS 3,1 , MCS 4,1 ), and the network device can derive MCS 1,2 , MCS 2,2 , MCS 3 according to the first MCS index interval of each group of MCS index intervals ,2 , then the second MCS index interval of the first group of MCS index intervals is [MCS 4,1 ,MCS 1,2 ), and the second MCS index interval of the second group of MCS index intervals is [MCS 1,2 , MCS 2,2 ), the second MCS index interval of the third group of MCS index intervals is [MCS 2,2 ,MCS 3,2 ), and the second MCS index interval of the fourth group of MCS index intervals is [MCS 3, 2 , MCS 4 , 2), where M
- the network device determines the spectral efficiency threshold of each group of MCS index intervals according to the threshold of one MCS index interval in each group of MCS index intervals and the MCS table, and the network device determines the spectral efficiency threshold of each group of MCS index intervals according to the spectral efficiency threshold of each group of MCS index intervals.
- the value determines the spectrum efficiency values of other MCS index intervals in each group of MCS index intervals, and the network device determines the MCS index threshold values of other MCS index intervals according to the spectrum efficiency values of other MCS index intervals in each group of MCS index intervals.
- the spectral efficiency threshold can be directly expressed by the spectral efficiency value, or can be indicated by other parameters.
- the TBS index can be used to indicate the spectral efficiency threshold.
- the higher the value, for example, the product of the modulation order and the code rate can be used to express the spectral efficiency threshold.
- the higher the product of the modulation order and the code rate the higher the spectral efficiency threshold.
- the spectral efficiency can also be used The index represents the spectral efficiency threshold. The larger the spectral efficiency index, the higher the spectral efficiency threshold.
- the spectral efficiency index can be an index obtained by quantizing a limited range of spectral efficiency values at a certain interval, and the quantization interval can be uniform Or non-uniform.
- using the spectral efficiency value to indicate the spectral efficiency threshold is described in Example 1, and using the TBS index ( ITBS ) to indicate the spectral efficiency threshold is described in Example 2.
- the MCS table of 1024 quadrature amplitude modulation (quadrature amplitude modulation, QAM) is shown in Table 2.
- I MCS represents the MCS index
- Q m represents the modulation order
- R represents the target.
- Target code rate target code rate
- the code rate, spectral efficiency value and modulation order Q m do not increase monotonously.
- the value of I MCS is between 0 and 43 and the spectral efficiency value does not decrease monotonously.
- the spectrum efficiency value of I MCS between 44 and 58 is monotonous and non-decreasing, and the spectrum efficiency value of I MCS between 59 and 63 is reserved.
- the MCS index in Table 2 can be divided into three MCS index intervals based on the characteristic of monotonous non-decreasing spectral efficiency, or called the monotonic non-decreasing MCS index interval.
- the first two monotonous non-decreasing MCS indexes The interval corresponds to a specific spectral efficiency value.
- this application focuses on the PTRS time-domain density design of the first two MCS index intervals.
- the right threshold of each MCS index interval corresponding to the densest PTRS can be a monotonic non-decreasing spectral efficiency MCS
- the PTRS time domain density is 1 corresponding to MCS4
- the network equipment obtains MCS1,1 as 10, MCS2,1 as 20, and MCS3,1 as 30 after correction according to the MCS1,1',MCS2,1',MCS3,1' reported by the terminal device.
- the network equipment can determine the spectral efficiency value of 10 corresponding to 1.4766 according to MCS1, 1 to 10 and Table 2; the network equipment can determine the spectral efficiency value of 20 corresponding to 3.2988 according to MCS2, 1 to 20 and Table 2; network equipment can according to MCS3, 1 is 30 and Table 2 determines that the spectral efficiency value corresponding to 30 is 5.3320.
- ⁇ in Table 3 can be any non-zero positive value greater than ⁇ , where ⁇ can be the accuracy of the spectral efficiency, As shown in Table 2, the value of ⁇ is 0.0001, for example, ⁇ can also be any value greater than 0.01.
- the minimum value of spectrum efficiency is 1.8750, which is greater than or equal to 1.4766, and the minimum value of spectrum efficiency is greater than or equal to 3.2988. 3.3633, the minimum spectral efficiency value greater than or equal to 5.3320 is 5.6953, and the corresponding I MCS of 1.8750, 3.3633, and 5.6953 are 47, 50, and 54 respectively. Therefore, the second MCS index interval of each group of MCS index intervals can be derived, that is At this time, the specific values in Table 1 are shown in Table 4.
- MCS index PTRS time domain density (L PT-RS ) I MCS ⁇ [0,10) ⁇ [44,47) ⁇ ... PTRS does not exist I MCS ⁇ [10,20) ⁇ [47,50) ⁇ ... 4 I MCS ⁇ [20,30) ⁇ [50,54) ⁇ ... 2 I MCS ⁇ [30,44) ⁇ [54,59) ⁇ ... 1
- the threshold of each MCS index interval in Table 1 is left closed and right opened (that is, the lower limit of each MCS index interval includes the lower limit itself, and the upper limit does not include the upper limit).
- Table 1 can be transformed.
- the threshold of each MCS index interval in Table 1 is left open and right closed (that is, the lower limit of each MCS index interval does not include the lower limit itself, and the upper limit includes the upper limit itself),
- the table is shown in Table 5. According to the MCS table in Table 2, MCS 4,1 is 43 and MCS 4,2 is 58.
- the value of I MCS in Table 2 is between 44 and 58 Among the corresponding spectral efficiency values, the maximum spectral efficiency value less than or equal to 1.4766 is 1.3008, the maximum spectral efficiency value less than or equal to 3.2988 is 2.6484, and the maximum spectral efficiency value less than or equal to 5.3320 is 5.1953, 1.3008, 2.6484, and 5.1953.
- the corresponding I MCS are 46, 49, and 53, therefore, the second MCS index interval of each group of MCS index intervals can be derived, that is, the specific values in Table 5 are shown in Table 6 at this time.
- MCS index PTRS time domain density I MCS ⁇ (0,MCS 1,1 ] ⁇ (MCS 4,1 ,MCS 1,2 ] ⁇ ... PTRS does not exist I MCS ⁇ (MCS 1,1 ,MCS 2,1 ] ⁇ (MCS 1,2 ,MCS 2,2 ] ⁇ ... 4 I MCS ⁇ (MCS 2,1 ,MCS 3,1 ] ⁇ (MCS 2,2 ,MCS 3,2 ] ⁇ ... 2 I MCS ⁇ (MCS 3,1 ,MCS 4,1 ] ⁇ (MCS 3,2 ,MCS 4,2 ] ⁇ ... 1
- MCS index PTRS time domain density (L PT-RS ) I MCS ⁇ [0,10] ⁇ (43,46] ⁇ ... PTRS does not exist I MCS ⁇ (10,20] ⁇ (46,49] ⁇ ... 4 I MCS ⁇ (20,30] ⁇ (49,53] ⁇ ... 2 I MCS ⁇ (30,43] ⁇ (53,58] ⁇ ... 1
- MCS table indicates the MCS index I MCS (index), Q m and Q 'm denotes a modulation order (modulation using TBS index (the I TBS) order), with which a specific Q m and Q 'm a network device may be indicated to the terminal device.
- I MCS index
- Q m and Q 'm denotes a modulation order (modulation using TBS index (the I TBS) order), with which a specific Q m and Q 'm a network device may be indicated to the terminal device.
- I MCS increases, I TBS and modulation order Q m do not increase monotonically.
- the value of I MCS is between 0 and 43.
- I TBS does not decrease monotonically.
- the value of I MCS is The value of I TBS between 44 and 58 is monotonously increasing or monotonously not decreasing, and the value of I MCS is between 59 and 63. I TBS is reserved.
- the MCS index of Table 7 can be divided into three MCS index intervals, and the upper limit of the three MCS index intervals may be preset and determined by the MCS table. Assuming that there are four sets of MCS index intervals, the network equipment will obtain MCS 1,1 as 10, MCS 2,1 as 20, and MCS 1,1 ', MCS 2,1 ', and MCS 3,1 'reported by the terminal equipment. 3,1 is 30. The network equipment can determine that the I TBS corresponding to 10 is 9 according to MCS 1, 1 is 10 and Table 7 , and the value of I MCS is between 44 and 58. I TBS is 9 and the corresponding I MCS is 46, that is, MCS 1, at this time.
- the network equipment can determine that the I TBS corresponding to 20 is 18 according to MCS 2, 1 is 20 and Table 7 , and the value of I MCS is between 44 and 58 and the I MCS corresponding to I TBS of 18 does not exist.
- I TBS determination of 19 and 18 close to the corresponding I MCS 51, i.e., at this time MCS 2,2 to 51; a network device 30 according to MCS 3,1 and 30 in table 7 to determine the corresponding I TBS is 25, the I MCS If the value is between 44 and 58, I TBS of 25 corresponds to I MCS of 53, that is, at this time, MCS 3,2 is 53.
- the value of each threshold in Table 1 is obtained, that is, the specific values in Table 1 are shown in Table 8 at this time.
- MCS index interval PTRS time domain density (L PT-RS ) I MCS ⁇ [0,10) ⁇ [44,46) ⁇ ... PTRS does not exist I MCS ⁇ [10,20) ⁇ [46,51) ⁇ ... 4 I MCS ⁇ [20,30) ⁇ [51,53) ⁇ ... 2 I MCS ⁇ [30,44) ⁇ [53,59) ⁇ ... 1
- multiple monotonic MCS index intervals can be divided according to these parameters, for example, partial MCS index thresholds and multiple monotonic divisions of these parameters.
- the MCS index interval derives other MCS index thresholds.
- the above description is just taking the I TBS and spectral efficiency values as an example. It is also possible to derive the product of the modulation order and the code rate according to some MCS index thresholds, and then derive other MCS index gates according to the product of the modulation order and the code rate.
- the principle of the limit value is similar to the above example 1 and example 2. In order to avoid repeating the description of the embodiments of the present application, the examples are not given one by one.
- S320 The network device determines the target PTRS time domain density according to the currently scheduled MCS index and the corresponding relationship.
- control information sent by the network device to the terminal device may include the currently scheduled MCS index.
- S320 includes: the network device determines the first MCS index interval where the currently scheduled MCS index is located, and determines the PTRS time domain density corresponding to the first MCS index interval as the target PTRS time domain density of the mapped PTRS. For example, if the network device determines that the currently scheduled MCS index is [MCS 1,2 ,MCS 2,2 ) in Table 1, the network device can determine that the time domain density of the target PTRS is 4.
- the network device maps the PTRS according to the target PTRS time domain density.
- S330 can be understood as that the network device maps the PTRS sequence according to the target PTRS.
- the PTRS and PTRS sequences in this application can be equivalent.
- the network device may determine the index threshold value of each MCS index interval in each MCS index interval in the multiple sets of MCS index intervals to the terminal device, and the terminal device receives each group of MCS indexes in the multiple MCS index intervals.
- the index threshold of each MCS index interval in the interval may be determined.
- the network device sends the MCS index threshold value of one MCS index interval in each group of MCS index intervals in the multiple sets of MCS index intervals to the terminal device.
- S340a or S340b only needs to be after S310, and the order relationship with S320 and S330 is not limited.
- the terminal device determines the correspondence between the MCS index interval and the PTRS time domain density.
- S350 includes: the terminal device may determine the corresponding relationship according to the received MCS index threshold value of each MCS index interval in each MCS index interval of the multiple sets of MCS index intervals.
- the upper limit of each MCS index interval in the group of MCS index intervals may be preset, and the lower limit of each MCS index interval in the group of MCS index intervals It can be sent by a network device.
- the network device sends the determined values of MCS 1,1 , MCS 2,1 , MCS 3,1 , MCS 1,2 , MCS 2,2 , MCS 3,2 in Table 1 to the terminal device, terminal device According to these values and the MCS 4,1 and MCS 4,2 specified in the agreement or determined by the MCS table, the corresponding relationship is determined.
- S350 includes: the terminal device sends the MCS index threshold value of one MCS index interval in each group of MCS index intervals in the multiple sets of MCS index intervals, and the terminal device may according to one of each group of MCS index intervals
- the MCS index threshold value of the MCS index interval can derive the threshold value of other MCS index intervals. Specifically, for the derivation process, refer to the description of Case 2 in S310.
- the network device may receive some threshold values that constitute multiple sets of MCS index intervals suggested by the terminal device, and the network device may obtain other threshold values after correction according to the partial threshold values suggested by the terminal device, or the network device may Receiving all the threshold values established by the terminal device to form multiple sets of MCS index intervals, the network device corrects all the threshold values established by the terminal device to obtain the threshold values of the multiple sets of MCS index intervals.
- the network device can send all the threshold values that make up multiple sets of MCS index intervals to the terminal device, and the terminal device determines the corresponding relationship, or the network device can send part of the threshold values that make up multiple sets of MCS index intervals to the terminal device , The terminal device derives other thresholds according to some thresholds to determine the corresponding relationship.
- the threshold value of the partial MCS index interval reported by the terminal device or configured/determined by the network device may be the threshold of the MCS index interval corresponding to the monotonous non-decreasing spectral efficiency with the densest average spectral efficiency density. Limit.
- S360 The terminal device determines the target PTRS time domain density according to the currently scheduled MCS index.
- control information sent by the network device to the terminal device may include the currently scheduled MCS index.
- S360 includes: the terminal device determines the first MCS index interval where the currently scheduled MCS index is located, and determines the PTRS time domain density corresponding to the first MCS index interval as the target PTRS time domain density of the mapped PTRS. For example, if the terminal device determines that the currently scheduled MCS index is [MCS 1,2 ,MCS 2,2 ) in Table 1, the terminal device can determine that the time domain density of the target PTRS is 4.
- the target PTRS time domain density determined in S320 and S360 are consistent.
- the network device can precode the effective signal to be sent by the PTRS and the PTRS to be sent to obtain the precoded signal; the network device executes: S370, sends the precoded signal to the terminal device through the antenna signal of.
- the terminal device executes S380:
- S380 The terminal device demaps the PTRS according to the target PTRS time domain density.
- the terminal device should also determine the frequency domain density of the PTRS in order to confirm the pattern of the PTRS.
- the frequency domain density can be indicated by the scheduling bandwidth of the terminal device.
- the embodiments of the present application mainly focus on the determination of the time domain density, and the frequency domain density can be processed with reference to the prior art.
- the terminal device demaps the PTRS of the encoded signal in S370 according to the target PTRS time domain density.
- At least one PTRS time domain density corresponds to a set of MCS index intervals, and a set of MCS index intervals includes at least two discontinuous MCS index intervals.
- the currently scheduled MCS index may In any MCS index interval in a group of MCS index intervals, in this way, the target PTRS time domain density determined according to the currently scheduled MCS index can meet actual requirements.
- high spectral efficiency requires a higher time-domain density PTRS, so that more PTRS can be used for phase error estimation to improve the accuracy of the received data.
- the lower the spectral efficiency the lower the PTRS time-domain density required. .
- the MCS index interval and the PTRS time domain density are as shown in Table 9, if the currently scheduled MCS index is in a certain MCS index interval of Table 9, then the MCS index interval corresponds to a PTRS time domain density, and according to Table 2 or The MCS table in Table 7 determines the spectrum efficiency corresponding to the currently scheduled MCS index.
- the PTRS time domain density determined according to Table 9 consistent with the spectrum efficiency determined according to Table 2 or Table 7 (in Table 7 the larger the I TBS means The more the number of bits to be transmitted, in other words the more the number of bits to be transmitted, the higher the spectrum efficiency, and the larger the value of the spectrum efficiency in Table 2, the higher the spectrum efficiency).
- ptrs-MCS 1 10
- ptrs-MCS 2 20
- the currently scheduled MCS index is 44
- the field density is 1, which means that PTRS is mapped on each symbol.
- the modulation order corresponding to the MCS index of 44 is 2, the TBS is the smallest, and the code rate is the lowest. At this time, PTRS may not be needed.
- the redundant PTRS is configured.
- ptrs-MCS 1 46
- ptrs-MCS 2 51
- ptrs-MCS 3 55
- ptrs-MCS 4 63.
- the time domain density of PTRS is determined according to Table 7.
- the modulation order corresponding to an MCS index of 43 is 10
- the TBS is the largest
- the code rate is the largest.
- the correspondence between the MCS index interval and the PTRS time domain density in this application can be as shown in Table 1, Table 4, Table 5, and Table 8.
- Each group of MCS index intervals includes at least two discontinuous MCS index intervals, which can be
- the PTRS time domain density is determined according to the MCS index interval where the currently scheduled MCS index is located, so that the determined PTRS time domain density can meet actual requirements.
- MCS index PTRS time domain density (L PT-RS ) I MCS ⁇ ptrs-MCS 1 does not exist ptrs-MCS 1 ⁇ I MCS ⁇ ptrs-MCS 2 4 ptrs-MCS 2 ⁇ I MCS ⁇ ptrs-MCS 3 2 ptrs-MCS 3 ⁇ I MCS ⁇ ptrs-MCS 4 1
- Method 400 includes:
- S430a is the same as S340a
- S430b is the same as S340b.
- S430a or S440b only needs to be after S410, and the order relationship with S420 is not limited.
- S440-S450 same as S350-S360.
- S460 The terminal device maps the PTRS according to the target PTRS time domain density.
- S460 can be understood as that the terminal device maps the PTRS sequence according to the target PTRS.
- the PTRS and PTRS sequences in this application can be equivalent.
- the terminal device can precode the effective signal to be sent by the PTRS and the PTRS to be sent to obtain the precoded signal; the terminal device executes S470 and sends the precoded signal to the network device through the antenna.
- Network equipment implements S480:
- S480 The network device demaps the PTRS according to the target PTRS time domain density.
- the network device demaps the PTRS of the encoded signal in S470 according to the target PTRS time domain density.
- the method 300 describes the transmission of uplink PTRS
- the method 400 describes the transmission of downlink PTRS.
- the embodiment of this application can also be applied to transmit PTRS between any two devices, such as a terminal device and a terminal device transmitting PTRS, the principle Similar to the method 300 and the method 400, in order to avoid repetition, the embodiment of the present application will not describe in detail.
- the method 500 includes:
- the network device acquires the correspondence between multiple intervals and multiple PTRS time domain densities, and each of the multiple intervals does not overlap;
- S520 The network device determines the target PTRS time domain density according to the first parameter and the corresponding relationship.
- the network device may determine the first parameter according to the control information sent to the terminal device. Further, the network device may determine the first parameter according to the MCS table and the control information sent by the network device to the terminal device.
- the network device may determine the first spectral efficiency according to the currently scheduled MCS index.
- the threshold values of multiple spectrum efficiency intervals may be determined and/or configured by a network device.
- the terminal device can report the suggested thresholds of multiple spectrum efficiency intervals, and the network device obtains and/or configures multiple spectrum efficiency intervals after correction according to the thresholds of the suggested multiple spectrum efficiency intervals reported by the terminal device in S510
- the threshold value For example, it can be corrected according to the phase noise model and phase noise power spectral density of the network equipment.
- the control information may include the currently scheduled MCS index, and the network device may determine the first spectrum efficiency SE according to the currently scheduled MCS index, for example, it may be determined through Table 2.
- the control information may include the currently scheduled MCS index, and the network device may determine and/or configure the first TBS index according to the currently scheduled MCS index.
- the threshold values of multiple TBS index intervals may be determined by the network device, or the terminal device may report the suggested threshold values of multiple TBS index intervals, and the network device may report the multiple suggested threshold values reported by the terminal device in S510.
- the threshold value of the TBS index interval is modified to obtain and/or configure the threshold value of multiple TBS index intervals. For example, it can be corrected according to the phase noise model and phase noise power spectral density of the network equipment.
- the threshold value determined by the network device may be the same as the threshold value reported/recommended by the terminal device.
- the control information may include the currently scheduled MCS index
- the network device may determine the first TBS index ( ITBS ) according to the currently scheduled MCS index.
- ITBS the first TBS index
- the first TBS may be determined from Table 7. Index (I TBS ).
- I TBS Index
- the control information may include the currently scheduled MCS index, and the network device may be based on The currently scheduled MCS index determines the first modulation order and the first code rate.
- the thresholds of multiple modulation order and code rate product intervals may be determined and/or configured by the network device, or the terminal device may report suggested thresholds for multiple modulation order and code rate product intervals,
- the network device obtains and/or configures multiple thresholds of the modulation order and code rate product interval after correcting it according to the recommended multiple modulation order and code rate product interval threshold values reported by the terminal device. For example, it can be corrected according to the phase noise model and phase noise power spectral density of the network equipment.
- the control information may include the currently scheduled MCS index, and the network device may determine the first modulation order and the first code rate according to the currently scheduled MCS index.
- the first modulation order and the first bit rate may be determined from Table 2.
- the network device maps the PTRS according to the target PTRS time domain density.
- S540 The network device sends the threshold value of each interval in the multiple intervals to the terminal device, and the terminal device receives the threshold value of each interval in the multiple intervals.
- S540 is after S510, and there is no order restriction with S520 and S530.
- S550 The terminal device determines the correspondence between multiple intervals and multiple PTRS time domain densities.
- the terminal device determines the corresponding relationship according to the threshold value of each interval received in S540. For the description of the corresponding relationship, refer to S520.
- the terminal device determines the target PTRS time domain density according to the first parameter and the corresponding relationship.
- the terminal device may determine the first parameter according to the received control information sent by the network device. Further, the terminal device may determine the first parameter according to the MCS table and the control information received from the network device.
- the terminal device determining the target PTRS time domain density according to the first parameter and the corresponding relationship is similar to the network device first parameter and the corresponding relationship determining the target PTRS time domain density, which is not described in detail here to avoid redundancy.
- the network device can precode the effective signal to be sent by the PTRS and the PTRS to be sent to obtain the precoded signal; the network device executes: S570, sends the precoded signal to the terminal device through the antenna signal of.
- the terminal device executes S580:
- S580 The terminal device demaps the PTRS according to the target PTRS time domain density.
- the terminal device should also determine the frequency domain density of the PTRS in order to confirm the pattern of the PTRS.
- the frequency domain density can be indicated by the scheduling bandwidth of the terminal device.
- the embodiments of the present application mainly focus on the determination of the time domain density, and the frequency domain density can be processed with reference to the prior art.
- Method 600 includes:
- S630 is the same as S540.
- S630 only needs to be after S610, and the sequence relationship with S620 is not limited.
- S660 The terminal device maps the PTRS according to the target PTRS time domain density.
- S660 can be understood as that the terminal device maps the PTRS sequence according to the target PTRS.
- the PTRS and PTRS sequences in this application can be equivalent.
- the terminal device can precode the effective signal to be sent by the PTRS and the PTRS to be sent to obtain the precoded signal; the terminal device executes S670 and sends the precoded signal to the network device through the antenna.
- Network equipment implements S680:
- S680 The network device demaps the PTRS according to the target PTRS time domain density.
- the network device demaps the PTRS of the encoded signal in S670 according to the target PTRS time domain density.
- the method 500 describes the transmission of uplink PTRS
- the method 600 describes the transmission of downlink PTRS.
- the embodiment of this application can also be applied to transmit PTRS between any two devices, such as a terminal device and a terminal device transmitting PTRS.
- the device and the network device transmit PTRS, and the principle is similar to the method 500 and the method 600.
- the embodiment of the present application will not describe it in detail.
- the value P PT-RS of the PTSR time domain density in the table in the embodiment of the present application indicates that the PTRS is mapped to one OFDM symbol in every P PT-RS OFDM symbols, for example, P PT-RS is 4. It means that PTRS is mapped to one OFDM symbol in every 4 OFDM symbols. At this time, the time domain density of PTRS can be 1/4. P PT-RS is 2 means that PTRS is mapped to one OFDM symbol in every 2 OFDM symbols. At this time, the time domain density of the PTRS can be 1/2, and a P PT-RS of 1 means that each OFDM symbol is mapped to the PTRS. At this time, the time domain density of the PTRS can be 1.
- the more PTRS mapped on a fixed number of OFDM symbols the greater the time domain density of the PTRS; the more or less PTRS mapped on the fixed number of OFDM symbols, the smaller the time domain density of the PTRS.
- the larger the value of the PTRS time domain density in Table 1, Table 4, Table 5, and Table 8 can also be understood as the greater the time domain density of the PTRS, which is now related to the time domain density of the PTRS.
- the physical meaning is just the opposite.
- the PTRS time domain density in Table 1 is set to 4 to indicate that one OFDM symbol is mapped to PTRS on every 4 OFDM symbols.
- the physical meaning of the time domain density of PTRS means that the time domain density of PTRS is small
- Table 1 The medium PTRS time domain density is set to 1, which means that each OFDM symbol is mapped to PTRS on one OFDM symbol.
- the threshold values of the MCS intervals in the table are all described as integers.
- An interval of [A, B) can be equivalent to [A, B-1], or The equivalent is (A-1, B-1], and can also be equivalent to (A-1, B).
- the embodiment of the present application does not impose any limitation on the description of the interval.
- the spectrum efficiency mentioned in this application may be the spectrum efficiency obtained by looking up the MCS table or the number of information bits carried by a single RE.
- mapping PTRS it is described to determine the time domain density of PTRS.
- mapping PTRS it is also necessary to map according to the frequency domain density of PTRS.
- BW bandwidth
- the PTRS frequency domain density can be determined according to the bandwidth interval in which the currently scheduled bandwidth is located. For the specific method of determining the PTRS frequency domain density, refer to the description of the prior art.
- the methods and operations implemented by the terminal device in the foregoing method embodiments can also be implemented by components (such as chips or circuits) that can be used in the terminal device.
- the methods and operations implemented by the network device in the foregoing method embodiments may also be implemented by a network device. Operations can also be implemented by components (such as chips or circuits) that can be used in network devices.
- the methods and operations implemented by the first device in each of the above method embodiments can also be implemented by components (such as chips or circuits) that can be used in the first device. )accomplish.
- each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
- the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of protection of this application.
- the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules based on the foregoing method examples.
- each functional module can be divided corresponding to each function, or two or more functions can be integrated into one process.
- the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other feasible division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
- FIG. 7 is a schematic block diagram of an apparatus 700 for transmitting PTRS according to an embodiment of the application.
- the communication device 700 includes a processing unit 710 and a transceiving unit 720.
- the transceiving unit 720 can communicate with the outside, and the processing unit 710 is used for data processing.
- the transceiving unit 720 may also be referred to as a communication interface or a communication unit.
- the apparatus 700 may be used to perform the actions performed by the terminal equipment or network equipment in the above method embodiments.
- the communication apparatus 700 may be referred to as terminal equipment or network equipment, and the transceiver unit 710 is used to perform the above method embodiments.
- the processing unit 720 is configured to perform the processing related operations on the terminal device or the network device side in the above method embodiment.
- the processing unit 710 is configured to obtain the corresponding relationship between the modulation and coding strategy MCS index interval and the PTRS time domain density, where at least one PTRS time domain density corresponds to a group of MCS index intervals, and the group of MCS index intervals includes at least two
- the processing unit 710 is further configured to determine the target PTRS time domain density according to the currently scheduled MCS index and the corresponding relationship; the transceiver unit 720 is configured to transmit the PTRS according to the target PTRS time domain density.
- processing unit 710 is specifically configured to:
- the PTRS time domain density corresponding to the first MCS index interval is determined as the target PTRS time domain density.
- the transceiving unit 720 is further configured to:
- the multiple sets of MCS index intervals are determined according to the multiple MCS index threshold values.
- multiple sets of MCS index intervals correspond to multiple PTRS time domain densities
- the transceiver unit 720 is further configured to:
- the processing unit 710 is further configured to determine a second MCS index threshold value of a third MCS index interval in the first group of MCS index intervals according to the first MCS index threshold value.
- processing unit 710 is specifically configured to:
- the transceiving unit 720 is further configured to send the MCS index threshold value corresponding to each group of MCS index intervals in the multiple groups of MCS index intervals to the second device.
- the transceiving unit 720 is further configured to send to the second device the MCS index threshold value corresponding to one MCS index interval in each group of MCS index intervals in the multiple sets of MCS index intervals.
- FIG. 8 is a schematic block diagram of an apparatus 800 for transmitting PTRS according to an embodiment of the application.
- the communication device 800 includes a processing unit 810 and a transceiving unit 820.
- the transceiver unit 820 can communicate with the outside, and the processing unit 810 is used for data processing.
- the transceiving unit 820 may also be referred to as a communication interface or a communication unit.
- the device 800 can be used to perform the actions performed by the terminal device or network device in the above method embodiment.
- the communication device 800 can be called a terminal device or a network device, and the transceiver unit 810 is used to perform the above method embodiment.
- the processing unit 820 is configured to perform the processing related operations on the terminal device or the network device side in the above method embodiment.
- processing unit 810 is configured to determine the correspondence between multiple intervals and multiple PTRS time-domain densities, each of the multiple intervals does not overlap;
- the processing unit 810 is further configured to determine the target time domain density according to the first parameter and the corresponding relationship;
- the transceiver unit 820 is configured to transmit PTRS according to the target time domain density
- the multiple thresholds of the multiple intervals are multiple spectral efficiencies, and the first parameter is the first spectral efficiency; or, the multiple thresholds of the multiple intervals are the transport block size TBS index, The first parameter is a TBS index; or, the multiple threshold values of the multiple intervals are the product of the modulation order and the code rate, and the first parameter is the product of the first modulation order and the first code rate .
- the transceiving unit 820 is further configured to: receive multiple threshold values corresponding to the multiple intervals sent by the second device;
- the processing unit 810 is further configured to determine the multiple intervals according to the multiple threshold values.
- the transceiver unit 820 is further configured to send multiple threshold values corresponding to the multiple intervals to the second device.
- an embodiment of the present application also provides a communication device 900.
- the communication device 900 includes a processor 910, the processor 910 is coupled with a memory 920, the memory 920 is used to store computer programs or instructions, and the processor 910 is used to execute the computer programs or instructions stored in the memory 920, so that the The method is executed.
- the communication device 900 may further include a memory 920.
- the communication device 900 may further include a transceiver 930, and the transceiver 930 is used for signal reception and/or transmission.
- the processor 910 is configured to control the transceiver 930 to receive and/or send signals.
- the communication device 900 is used to implement the operations performed by the terminal device in the foregoing method embodiments.
- the processor 910 is configured to implement the processing-related operations performed by the terminal device in the foregoing method embodiment
- the transceiver 930 is configured to implement the transceiving-related operations performed by the terminal device in the foregoing method embodiment.
- the communication device 900 is used to implement the operations performed by the network device in the above method embodiments.
- the processor 910 is used to implement the processing-related operations performed by the network device in the above method embodiment
- the transceiver 930 is used to implement the transceiving-related operations performed by the network device in the above method embodiment.
- the embodiment of the present application also provides a communication device 1000, and the communication device 1000 may be a terminal device or a chip.
- the communication apparatus 1000 may be used to perform operations performed by the terminal device in the foregoing method embodiments.
- FIG. 10 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
- the terminal device uses a mobile phone as an example.
- the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
- the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
- the memory is mainly used to store software programs and data.
- the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
- the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
- the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
- FIG. 10 only one memory and processor are shown in FIG. 10. In an actual terminal device product, there may be one or more processors and one or more memories.
- the memory may also be referred to as a storage medium or storage device.
- the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
- the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
- the terminal device includes a transceiver unit 1010 and a processing unit 1020.
- the transceiving unit 1010 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
- the processing unit 1020 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
- the device for implementing the receiving function in the transceiving unit 1010 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1010 can be regarded as the sending unit, that is, the transceiving unit 1010 includes a receiving unit and a sending unit.
- the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
- the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
- the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
- the transceiver unit 1010 is used to perform the receiving operations in S340a, S340b, and S370 in FIG. 3.
- the transceiving unit 1010 is used for the transceiving operations in S430a, S440b, and S470 in FIG. 4.
- the transceiving unit 1010 is used for the transceiving operations in S540 and S570 in FIG. 5.
- the transceiving unit 1010 is used for the transceiving operations in S630 and S670 in FIG. 6.
- the processing unit 1020 is used to perform other processing-related steps performed by the terminal device in the embodiment of the present application.
- the processing unit 1020 is used to perform the processing operations in S350, S360, and S360 in FIG. 3 . In a possible implementation manner, the processing unit 1020 is used to perform the processing operations in S440-S460 in FIG. 4. In a possible implementation manner, the processing unit 1020 is configured to perform the processing operations in S550, S560, and S580 in FIG. 5. In a possible implementation manner, the processing unit 1020 is configured to perform the processing operations in S640-S660 in FIG. 4.
- FIG. 10 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 10.
- the chip When the communication device 1000 is a chip, the chip includes a transceiver unit and a processing unit.
- the transceiver unit may be an input/output circuit or a communication interface;
- the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
- the embodiment of the present application also provides a communication device 1100, and the communication device 1100 may be a network device or a chip.
- the communication device 1100 may be used to perform operations performed by a network device in the foregoing method embodiments.
- FIG. 11 shows a simplified schematic diagram of the base station structure.
- the base station includes 1110 parts and 1120 parts.
- the 1110 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1120 part is mainly used for baseband processing and control of network equipment.
- the 1110 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
- the 1120 part is usually the control center of the network device, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiment.
- the transceiver unit of part 1110 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
- the device used for implementing the receiving function in part 1110 can be regarded as the receiving unit, and the device used for implementing the sending function can be regarded as the sending unit, that is, the part 1110 includes the receiving unit and the sending unit.
- the receiving unit may also be called a receiver, a receiver, or a receiving circuit, and the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
- Part 1120 may include one or more single boards, and each single board may include one or more processors and one or more memories.
- the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
- part 1110 is used to perform the sending operations in S340a, S340b, and S370 in FIG. 3.
- part 1110 is used for the transceiving operations in S430a, S440b, and S470 in FIG. 4.
- part 1110 is used for the receiving and sending operations in S540 and S570 in FIG. 5.
- part 1110 is used for the receiving and sending operations in S630 and S670 in FIG. 6.
- the transceiver unit of part 1110 is also used to perform other transceiver-related steps performed by the network device in the embodiment of the present application.
- the 1120 part is used to perform steps S310-S330 in Figure 3, or used to perform S410-S420 in Figure 4, or used to perform S510-S530 in Figure 5, or used to perform S610-S620 and S680 in Figure 4 , And/or part 1120 is also used to perform processing-related steps performed by the network device in the embodiment of the present application.
- FIG. 11 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 11.
- the chip When the communication device 1100 is a chip, the chip includes a transceiver unit and a processing unit.
- the transceiver unit may be an input/output circuit or a communication interface;
- the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
- the embodiment of the present application also provides a communication system, including the network device and the terminal device in the above embodiment.
- the embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments.
- the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
- the embodiments of the present application also provide a computer program product containing instructions that, when executed by a computer, cause the computer to implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
- the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
- the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
- the operating system at the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
- the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
- the embodiment of this application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of this application, as long as it can run a program that records the code of the method provided in the embodiment of this application, according to the method provided in the embodiment of this application.
- the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
- Computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.), etc. ), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
- magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
- optical disks for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.
- smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
- the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
- the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
- processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
- CPU central processing unit
- DSP digital signal processors
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- the volatile memory may be random access memory (RAM).
- RAM can be used as an external cache.
- RAM may include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
- static random access memory static random access memory
- dynamic RAM dynamic random access memory
- DRAM synchronous dynamic random access memory
- SDRAM synchronous DRAM
- Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
- enhanced SDRAM enhanced synchronous dynamic random access memory
- SLDRAM Direct RAM Bus RAM
- the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
- the memory storage module
- memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the essence of the technical solution of this application, or the part that contributes to the existing technology, or the part of the technical solution, can be embodied in the form of a computer software product, and the computer software product is stored in a storage
- the computer software product includes several instructions, which are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media may include but are not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks, etc., which can store programs The medium of the code.
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种传输PTRS的方法和装置。该方法包括:一组MCS索引区间包括的多个不连续的MCS索引区间与至少一个PTRS时域密度对应,第一设备可以根据当前调度的MCS索引所在的MCS索引区间确定目标PTRS时域密度,一组MCS索引区间中的不同MCS索引区间对应的频谱效率基本相近,当前调度的MCS索引在一组MCS索引区间中的不同MCS索引区间可以确定同一个PTRS的时域密度。这样可以使得确定的PTRS时域密度能够平衡频谱效率与PTRS所占的时域资源之间的关系。
Description
本申请涉及通信领域,并且更具体地,涉及通信领域中传输相位跟踪参考信号的方法和装置。
高频频段(大于6Ghz频段)因其丰富的频段资源成为业界用于解决日益增长的通信需求成为研究的热点。高频频段具有大带宽、高集成天线阵列等优势,但也存在中射频失真问题,例如,相位噪声(phase noise,PHN)引起的相位误差会导致频域干扰,例如,载波内干扰(也称为公共相位误差(common phase error,CPE)与载波间干扰(inter sub-carrier interference,ICI)。频域干扰会增加数据解调的难度,导致高频通信系统的性能下降甚至无法工作。针对高频下的相位噪声,通常采用相位跟踪参考信号(phase tracking reference signal,PTRS)进行相位噪声引起的相位误差的估计与补偿。PTRS的时域密度影响着相位噪声引起的估计与补偿的准确性进而影响频谱效率,而且不同的PTRS的时域密度占用不同的时频资源,因此,如何平衡频谱效率与PTRS所占的时域资源之间的关系,是亟待解决的问题。
发明内容
本申请提供一种传输PTRS的方法和装置,使得确定的PTRS时域密度能够平衡频谱效率与PTRS所占的时域资源之间的关系,有利于提高系统性能。
第一方面,提供了一种传输相位跟踪参考信号PTRS的方法,包括:
第一设备获取调制编码策略(modulation and coding scheme,MCS)索引区间与PTRS时域密度之间的对应关系,其中,至少一个PTRS时域密度对应一组MCS索引区间,所述一组MCS索引区间至少包括两个不连续的MCS索引区间;
所述第一设备根据当前调度的MCS索引以及所述对应关系确定目标PTRS时域密度;
所述第一设备根据所述目标PTRS时域密度传输PTRS。
在上述技术方案中,一组MCS索引区间包括的多个不连续的MCS索引区间与至少一个PTRS时域密度对应,第一设备可以根据当前调度的MCS索引所在的MCS索引区间确定目标PTRS时域密度,一组MCS索引区间中的不同MCS索引区间对应的频谱效率基本相近,当前调度的MCS索引在一组MCS索引区间中的不同MCS索引区间可以确定同一个PTRS的时域密度。换句话说,在频谱效率较高时确定的PTRS时域密度较高,在频谱效率较低时确定的PTRS时域密度越低,这样可以使得确定的PTRS时域密度能够平衡频谱效率与PTRS所占的时域资源之间的关系。
在一些可能的实现方式中,一组MCS索引区间至少包括的两个不连续的MCS索引区间对应的频谱效率基本相似或相近,具体来说,第一组MCS索引区间包括的MCS索引区 间1对应第一组频谱效率值,第一组MCS索引区间包括的MCS索引区间2对应第二组频谱效率值,第一组频谱效率的大小与第二组频谱效率的大小基本接近,例如,第一组频谱效率中最大的频谱效率与第二组频谱效率中最大的频谱效率相差不会超过预设值1,第一组频谱效率中最小的频谱效率与第二组频谱效率中最小的频谱效率相差不会超过预设值2。
本申请中提到的频谱效率可以为查MCS表所得的频谱效率或者为单个资源单元(resource element,RE)所承载的信息比特数。
在一些可能的实现方式中,传输下行PTRS时,网络设备根据目标PTRS时域密度映射PTRS,此时上述的第一设备为网络设备;传输下行PTRS时,终端设备根据目标PTRS时域密度解映射PTRS,此时上述的第一设备为终端设备。
在一些可能的实现方式中,传输上行PTRS时,终端设备根据目标PTRS时域密度映射PTRS,此时上述的第一设备为终端设备;传输上行PTRS时,网络设备根据目标PTRS时域密度解映射PTRS,此时上述的第一设备为网络设备。
在一些可能的实现方式中,多组MCS索引区间与多个PTRS时域密度一一对应,即一组MCS索引区间对应一个PTRS时域密度。
在一些可能的实现方式中,多组MCS索引区间中每组MCS索引区间包括的MCS索引区间不重叠。
在一些可能的实现方式中,第一设备根据当前调度的MCS索引以及对应关系确定目标PTRS时域密度,包括:
第一设备确定当前调度的MCS索引所在的第一MCS索引区间;所述第一设备将所述第一MCS索引区间对应的PTRS时域密度确定为目标PTRS时域密度。
在一些可能的实现方式中,所述第一设备从所述第二设备接收多组MCS索引区间对应的多个MCS索引门限值;所述第一设备根据所述多个MCS索引门限值确定所述多组MCS索引区间。
在上述方案中,若第一设备为网络设备,第二设备为终端设备,则网络设备从终端设备接收多组MCS索引区间对应的多个MCS索引门限值,此时的多个MCS索引门限值可以为终端设备上报的建议的门限值,网络设备根据终端设备上报的多个MCS索引门限值修正之后得到多组MCS索引区间对应的多个MCS索引门限值。
在上述方案中,若第一设备为终端设备,第二设备为网络设备,则终端设备从网络设备接收多组MCS索引区间对应的多个MCS索引门限值,将接收到的多个MCS索引门限确定为多组MCS索引区间的MCS索引门限值。
在一些可能的实现方式中,多组MCS索引区间对应多个PTRS时域密度,其中,所述多组MCS索引区间中的第一组MCS索引区间对应第一时域密度,所述方法还包括:
所述第一设备从所述第二设备接收第一MCS索引门限值,其中,所述第一MCS索引门限值属于所述第一组MCS索引区间中第二MCS索引区间;所述第一设备根据所述第一MCS索引门限值确定所述第一组MCS索引区间中第三MCS索引区间的第二MCS索引门限值。
在上述方案中,如果第一设备为网络设备,第二设备为终端设备。可选地,网络设备可以从终端设备接收第一MCS索引门限值,网络设备可以将接收到的第一MCS索引门限值进行修正之后推导第二MCS索引门限值,换句话说,网络设备可以利用一组MCS索引 区间中的一个MCS索引区间的MCS索引门限值修正之后推导该组MCS索引区间中其他MCS索引区间的MCS索引门限值。可选地,网络设备可以从终端设备接收第一MCS索引门限值,网络设备可以将根据接收到的第一MCS索引门限值推导该组MCS索引区间中其他MCS索引区间的MCS索引门限值,然后对该组MCS索引区间中的每个MCS索引区间的MCS索引门限值进行修正之后得到该组MCS索引区间中每个MCS索引区间的MCS索引门限值。
在上述方案中,如果第一设备为终端设备,第二设备为网络设备。可选地,终端设备可以从网络设备接收第一MCS索引门限值,终端设备可以将接收到的第一MCS索引门限值推导第二MCS索引门限值,换句话说,终端设备可以利用一组MCS索引区间中的一个MCS索引区间的MCS索引门限值推导该组MCS索引区间中其他MCS索引区间的MCS索引门限值。
上述方案中只是以多组MCS索引区间中的第一组MCS索引区间描述,多组MCS索引区间中的其他组MCS索引区间与第一组MCS索引区间类似,为了避免赘述不再详细说明。
在一些可能的实现方式中,所述第一设备根据所述第一MCS索引门限值确定所述第一组MCS索引区间中第三MCS索引区间的第二MCS索引门限值,包括:
所述第一设备根据所述第一MCS索引门限值和MCS表格确定所述第二MCS索引区间对应的第一频谱效率门限值:
所述第一设备根据所述第一频谱效率门限值以及所述MCS表格确定第二频谱效率门限值,其中,所述第一频谱效率门限值属于第一频谱效率单调区间,所述第二频谱效率门限值属于第二频谱效率单调区间,所述第一频谱效率单调区间与所述第二频谱效率单调区间至少存在重叠部分;
所述第一设备根据所述第二频谱效率门限值以及所述MCS表格确定所述第三MCS索引区间的第二MCS索引门限值。
在上述方案中,第一频谱效率门限值和第二频谱效率门限值可以直接利用频谱效率表示,第一频谱效率门限值和第二频谱效率门限值也可以利用传输块大小(transport block size,TBS)表示;第一频谱效率门限值和第二频谱效率门限值也可以利用调制阶数与码率的乘积表示;第一频谱效率门限值和第二频谱效率门限值也可以利用频谱效率索引表示,频谱效率索引可以是把有限范围的频谱效率按一定间隔量化后得到的索引,量化间隔可以是均匀的或非均匀的。可选地,第一频谱效率单调区间也可以称为第一频谱效率单调不递减区间;第二频谱效率区间也可以称为第二频谱效率单调不递减区间。
在一些可能的实现方式中,所述方法还包括:所述第一设备向所述第二设备发送多组MCS索引区间中的每组MCS索引区间对应的索引门限值。
在上述方案中,若第一设备为网络设备,第二设备为终端设备,则网络设备向终端设备发送确定的中每组MCS索引区间中的每个MCS索引区间对应的MCS索引门限值,终端设备将接收到的每组MCS索引区间中的每个MCS索引区间对应的MCS索引门限值确定多组MCS索引区间。
在上述方案中,若第一设备为终端设备,第二设备为网络设备,则终端设备向网络设备发送每组MCS索引区间中的每个MCS索引区间对应的MCS索引门限值,网络设备根 据每组MCS索引区间中的每个MCS索引区间对应的MCS索引门限值修正之后得到多组MCS索引区间。
在一些可能的实现方式中,所述方法还包括:所述第一设备向所述第二设备发送多组MCS索引区间中的每组MCS索引区间中的一个MCS索引区间对应的MCS索引门限值。
在上述方案中,若第一设备为网络设备,第二设备为终端设备,则网络设备向终端设备发送确定的每组MCS索引区间中的一个MCS索引区间(例如为一组MCS索引区间对应的一个MCS索引区间为前述的第一组MCS索引区间中第二MCS索引区间)对应的MCS索引门限值,终端设备根据每组MCS索引区间中的一个MCS索引区间对应的MCS索引门限值推导确定每组MCS索引区间中的其他MCS索引区间(例如为一组MCS索引区间对应的其他MCS索引区间为前述的第一组MCS索引区间中第三MCS索引区间)对应的MCS索引门限值。
在上述方案中,若第一设备为终端设备,第二设备为网络设备,可选地,终端设备向网络设备上报建议的多组MCS索引区间中每组MCS索引区间中的一个MCS索引区间对应的MCS索引门限值,网络设备可以将接收到的该MCS索引区间对应的MCS索引门限值进行修正之后推导该组MCS索引门限值中其他MCS索引区间的MCS索引门限值。可选地,终端设备可以向网络设备发送每组MCS索引区间中的一个MCS索引区间对应的MCS索引门限值,网络设备可以将根据接收到的MCS索引区间对应的MCS索引门限值推导每组MCS索引区间中其他MCS索引区间的MCS索引门限值,然后对每组MCS索引区间中的每个MCS索引区间的MCS索引门限值进行修正之后得到每组MCS索引区间中每个MCS索引区间的MCS索引门限值。
第二方面,提供了一种传输相位跟踪参考信号PTRS的方法,包括:第一设备确定多个区间与多个PTRS时域密度之间的对应关系;所述第一设备根据第一参数以及所述对应关系确定目标时域密度;所述第一设备根据所述目标时域密度传输PTRS;
其中,所述多个区间的多个门限值为多个频谱效率,所述第一参数为第一频谱效率;或者,所述多个区间的多个门限值为传输块大小TBS索引,所述第一参数为TBS索引;或者,所述多个区间的多个门限值为调制阶数与码率的乘积,所述第一参数为第一调制阶数与第一码率的乘积。
在上述方案中,TBS索引可以指示频谱效率,调制阶数与码率的乘积可以指示频谱效率,多个区间与多个PTRS时域密度之间的对应关系可以为多个指示频谱效率的区间与多个PTRS时域密度之间的对应关系,这样,可以直接根据第一参数所在的指示频谱效率的区间确定目标PTRS时域密度,使得确定的PTRS时域密度满足频谱效率的需求。
在一些可能的实现方式中,所述多个区间中每个区间不重叠。
如果第一参数为第一频谱效率,网络设备向终端设备发送的控制信息可以包括当前调度的MCS索引,网络设备和终端设备可以根据当前调度的MCS索引确定第一频谱效率,进一步地,网络设备和终端设备可以根据当前调度的MCS索引和MCS表格确定第一频谱效率。此时,上述方案中的第一设备为网络设备或者终端设备。
如果第一参数为第一TBS索引,网络设备向终端设备发送的控制信息可以包括当前调度的MCS索引,网络设备和终端设备可以根据当前调度的MCS索引确定第一TBS索引,进一步地,网络设备和终端设备可以根据当前调度的MCS索引和MCS表格确定第一 TBS索引。此时,上述方案中的第一设备为网络设备或者终端设备。
如果第一参数为第一调制阶数与第一码率的乘积,网络设备向终端设备发送的控制信息可以包括当前调度的MCS索引,网络设备和终端设备可以根据当前调度的MCS索引确定第一调制阶数与第一码率的乘积,进一步地,网络设备和终端设备可以根据当前调度的MCS索引和MCS表格确定第一调制阶数与第一码率的乘积。此时,上述方案中的第一设备为网络设备或者终端设备。
在一些可能的实现方式中,所述方法还包括:所述第一设备接收所述第二设备发送的所述多个区间对应的多个门限值;所述第一设备根据所述多个门限值确定所述多个区间。
如果第一设备为网络设备,第二设备为终端设备,则终端设备可以上报建议的多个区间对应的多个门限值,网络设备根据终端设备建立的多个区间对应的多个门限值修正之后确定多个区间的门限值。
如果第一设备为终端设备,第二设备为网络设备,则网络设备向终端设备发送多个区间的多个门限值,终端设备根据多个门限值确定多个区间。
在一些可能的实现方式中,所述方法还包括:第一设备向第二设备发送所述多个区间对应的多个门限值。
如果第一设备为网络设备,第二设备为终端设备,网络设备向终端设备发送多个区间的多个门限值,终端设备根据多个门限值确定多个区间。
如果第一设备为终端设备,第二设备为网络设备,终端设备向网络设备发送建议的多个区间的多个门限值,网络设备将建议的多个区间的多个门限值修正之后,得到多个区间。
第三方面,提供一种传输PTRS的装置,所述装置用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块。
第四方面,提供一种传输PTRS的装置,所述装置用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块。
第五方面,提供一种传输PTRS的装置,所述装置包括处理器,处理器与存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器存储的计算机程序或指令,使得第一方面中的方法被执行。
例如,处理器用于执行存储器存储的计算机程序或指令,使得该装置执行第一方面中的方法。
可选地,该装置包括的处理器为一个或多个。
可选地,该装置中还可以包括与处理器耦合的存储器。
可选地,该装置包括的存储器可以为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者分离设置。
可选地,该装置中还可以包括收发器。
第六方面,提供一种传输PTRS的装置,所述装置包括处理器,处理器与存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行存储器存储的计算机程序或指令,使得第二方面中的方法被执行。
例如,处理器用于执行存储器存储的计算机程序或指令,使得该装置执行第二方面中 的方法。
可选地,该装置包括的处理器为一个或多个。
可选地,该装置中还可以包括与处理器耦合的存储器。
可选地,该装置包括的存储器可以为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者分离设置。
可选地,该装置中还可以包括收发器。
第七方面,本申请提供了一种传输PTRS的系统,该系统包括上述第三方面提供的装置以及第四方面提供的装置;或者
该系统包括上述第五方面提供的装置以及第六方面提供的装置。
第八方面,提供一种计算机可读存储介质,其上存储有用于实现第一方面中的方法的计算机程序(也可称为指令或代码)。
例如,该计算机程序被计算机执行时,使得该计算机可以执行第一方面中的方法。该计算机可以为通信装置。
第九方面,提供一种计算机可读存储介质,其上存储有用于实现第一方面或者第二方面中的方法的计算机程序(也可称为指令或代码)。
例如,该计算机程序被计算机执行时,使得该计算机可以执行第二方面中的方法。该计算机可以为通信装置。
第十方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面及其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十一方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第二方面及其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十二方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序(也可称为指令或代码),所述计算机程序被计算机执行时使得所述计算机实现第一方面中的方法。所述计算机可以为通信装置。
第十三方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序(也可称为指令或代码),所述计算机程序被计算机执行时使得所述计算机实现第二方面中的方法。所述计算机可以为通信装置。
图1是本申请实施例提供的应用场景示意图。
图2是本申请实施例提供的信号传输示意图。
图3-图6是本申请实施例提供的传输PTRS的方法示意图。
图7-图11是本申请实施例提供的传输PTRS的装置的示意性框图。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如,长期演进(long term evolution,LTE)系统、第五代移动通信(the 5th Generation,5G)系统、机器与机器通信(machine to machine,M2M)系统、或者未来演进的其它通信系统,如6G系统。其中,5G的无线空口技术称为新空口(new radio,NR),5G系统也可称为NR系统。
本申请实施例可以应用于的通信系统包括但不限于如下任一种或多种通信方式:
回传、无线宽带到户(wireless to the x,WTTx)、增强移动宽带(enhanced mobile broadband,eMBB)、设备到设备(device to device,D2D)。
图1为本申请实施例适用于的一种通信系统的示意图。如图1所示,该通信系统包括多个网络设备,如图1中所示的网络设备110与120,以及多个终端设备130。
网络设备可以用于与一个或多个终端设备进行通信。如图1所示,网络设备120用于与终端设备130进行通信。例如,网络设备120与终端设备130之间的通信系统可以是增强移动宽带(enhanced mobile broadband,eMBB)系统。
网络设备可以用于与一个或多个具有部分终端设备功能的基站进行通信。如图1中所示,网络设备110与网络设备120之间可以进行通信,网络设备120之间也可以进行通信。例如,网络设备120之间,或者网络设备120与网络设备110之间可以通过非理想回传(non-ideal backhaul)接口直接或间接地通信。再例如,网络设备120之间的通信方式,或者网络设备120与网络设备110之间的通信方式可以是无线宽带到户(wireless to the x,WTTx)。
终端设备可以分布在整个通信系统中。终端设备可以是静止的,也可以是移动的。终端设备之间可以进行设备到设备(device to device,D2D)通信。如图1所示,终端设备130之间可以进行D2D通信。
网络设备可以称为基站。基站可以有多种形式,例如,宏基站、微基站、中继站或接入点等。例如,网络设备可以是LTE系统中的演进型基站(evolved Node B,eNB),或5G系统的gNB,或者传输接收点(transmission reception point,TRP)。例如,在图2中,有些网络设备是eNB,有些是gNB,有些是TRP,有些是中心单元(central unit,CU)或其他网络实体。例如,网络设备110为中心单元,网络设备120为TRP。
终端设备可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴设备、车载设备等。
图1示出的通信系统仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
高频频段(6GHz以上的频段,例如,28GHz、39GHz、60GHz、73GHz的频段)因其丰 富的频段资源,成为业界用于解决日益增长的通信需求而研究的热点。高频频段的显著特点除了因为大带宽和高集成天线阵列而可以实现高吞吐量之外,还包括中射频失真问题,例如,相位噪声引入相位误差,进而引起频域干扰,导致高频通信系统的性能下降甚至无法传输数据。
下面给出相位噪声引起频域干扰的一个示例。
该相位噪声对频域信号的影响可表达为下列公式:
上述公式的另一种表达方式如下所示:
其中,上式中第一项的系数E
0可以称为公共相位误差(common phase error,CPE),上式中的第二项求和公式可以称为子载波间干扰(inter sub-carrier interference,ICI)。原因如下。
E
0s
i表示相位噪声导致子载波上原始信号发生旋转或缩放。可以理解到
即E
0与子载波编号无关(i和j表示子载波编号),也就是说,所有子载波上原始信号发生的旋转或缩放均相同。因此,上式中第一项E
0s
i表示的相位噪声引起的相位误差可以称为公共相位误差(CPE)。
可以理解到,上式中的第二项求和公式表示的相位噪声引起的相位误差与子载波编号有关,因此,上式中第二项求和公式表示的相位噪声引起的相位误差可以称为子载波间干扰(ICI)。
上式中第一项E
0s
i表示的相位噪声引起的相位误差可以视为是子载波i对子载波i(i=0,1,..,N
c-1)本身的干扰。
从上面示例可知,相位噪声会引起相位误差,该相位误差会产生频域干扰。相位噪声引起的频域干扰会增加数据解调的难度,导致高频通信系统的性能下降甚至无法工作。
例如,随着频段的增加,相位噪声功率谱密度越高,对接收信号的影响越大。
再例如,在6GHz以上的无线通信网络中,为满足日益增加的通信需求,对高阶调制,例如,256正交幅度调制(quadrature amplitude modulation,QAM)甚至1024QAM的需求也越来越高。在相位噪声功率谱密度达到一定水平的情况下,当调制阶数较高时,除了相位噪声引起的CPE,因相位噪声引起的ICI也不可忽略。例如,在同一相位噪声功率谱密度下,调制阶数越高或编码速率越高,相位噪声引起的ICI对数据解调的影响越大,会显著增加数据解调(或解码)的难度。
基于上述描述可知,需要对高频下的相位噪声进行估计与补偿,以降低数据解调的难度。
针对高频段下的相位噪声,通常采用相位跟踪参考信号(phase tracking reference signal,PTRS)进行相位噪声引起的相位误差的估计与补偿。相位误差的估计与补偿主要包括:CPE的估计与补偿,以及ICI的估计与补偿。
参考信号是发送端在发送的有效信号中加入预先已知的导频符号,接收端根据已知的导频符号可以解调或解码出有效信号。采用PTRS进行相位误差的估计与补偿指的是,利用插入有效信号中的PTRS来估计与补偿相位误差。
作为示例,采用PTRS进行相位误差的估计与补偿的流程如图2所示。
在发送端,执行如下操作:
对数据比特流进行编码、符号调制与映射,获得待发送的有效信号(图2未示出);
根据PTRS图样(pattern)将PTRS序列映射到OFDM符号,获得待发送的信号;
对待发送的有效信号与待发送的PTRS进行预编码,获得预编码后的信号;
通过天线向接收端发送上述预编码后的信号。
在接收端,执行如下操作:
根据PTRS图样,对来自于发送端的信号解映射,获得解映射之后的PTRS接收信号,其中,该PTRS图样与发送端的PTRS图样一致;
根据解映射之后的PTRS接收信号,进行相位误差(例如,包括CPE和/或ICI)的估计;
根据相位误差的估计结果进行相位误差的补偿;
基于相位误差补偿的结果,进行符号解调,然后进行符号译码,最终获得数据比特流。
PTRS图样由PTRS频域密度和PTRS时域密度组成,在图2的发送端根据PTRS时域密度和PTRS频域密度映射PTRS序列,获得待发送的PTRS,接收端根据PTRS时域密度和PTRS频域密度,对来自于发送端的信号解映射获得解映射之后的PTRS接收信号的过程中,发送端与接收端都需要确定PTRS的时域密度和频域密度,本申请实施例主要涉及发送端和接收端如何确定PTRS时域密度。
下面结合图3描述本申请实施例中传输PTRS的方法300。方法300中以第一设备为网络设备,第二设备为终端设备进行举例描述。当然地,所述第一设备也可以是终端设备,第二设备为网络设备。
S310,网络设备获取MCS索引区间与PTRS时域密度之间的对应关系。
具体地,对应关系可以为多组MCS索引区间与多个PTRS时域密度对应,例如,多个时域密度中的至少一个PTRS时域密度与一组MCS索引区间对应,其中,一组MCS索 引区间包括至少两个MCS索引区间。
可选地,多个PTRS时域密度中可以包括多个具体PTRS时域密度的取值,也可以包括一个元素为PTRS时域密度不存在,换句话说,PTRS时域密度不存在的情况也属于一个PTRS时域密度。
进一步地,PTRS时域密度的取值可以为不存在、1、2、4。
可选地,一组MCS索引区间至少包括两个不连续的MCS索引区间,换句话说两个不连续的MCS索引区间之间存在另外一个长度非零的MCS索引区间。
可以理解的是,获取上述对应关系可以是其他设备发送给网络设备的,也可以是网络设备确定的或配置的,网络设备获取到对应关系之后可以将该对应关系保存在本地。下面分两种情况描述网络设备如何确定对应关系。
情况一,网络设备从终端设备接收组成多组MCS索引区间中每组MCS索引区间中的每个MCS索引区间的MCS索引门限值,网络设备可以将接收到的MCS索引门限值进行修正之后得到多组MCS索引区间,具体地,网络设备可以根据网络设备的相噪模型、相噪功率谱密度等进行修正。
可选地,多组MCS索引区间中存在一组MCS索引区间,该组MCS索引区间中的每个MCS索引区间的上限可以是预设的,该组MCS索引区间中每个MCS索引区间的下限可以是终端设备上报的。例如,如表1所示为多组MCS索引区间与多个PTRS时域密度之间的对应关系,I
MCS表示当前调度的MCS索引,每一行表示一组MCS索引区间,终端设备可以上报表1中的MCS
1,1,MCS
2,1,MCS
3,1,MCS
1,2,MCS
2,2,MCS
3,2。表1中的MCS
4,1,MCS
4,2可以是预设的。
表1
MCS索引 | PTRS时域密度 |
I MCS∈[0,MCS 1,1)∪[MCS 4,1,MCS 1,2)∪… | PTRS不存在 |
I MCS∈[MCS 1,1,MCS 2,1)∪[MCS 1,2,MCS 2,2)∪… | 4 |
I MCS∈[MCS 2,1,MCS 3,1)∪[MCS 2,2,MCS 3,2)∪… | 2 |
I MCS∈[MCS 3,1,MCS 4,1)∪[MCS 3,2,MCS 4,2)∪… | 1 |
可选地,上述的门限一般满足MCS
1,1<MCS
2,1<MCS
3,1<MCS
4,1<MCS
1,2<MCS
2,2<MCS
3,2<MCS
4,2;若存在两个门限不满足上述关系,如MCS
i,j>=MCS
i+1,j,则对应PTRS时域密度的有效MCS索引区间数将减少。若该PTRS时域密度对应的有效MCS索引区间减少至0,则等效于该PTRS时域密度被无效了。具体地,若MCS
1,1>=MCS
2,1,且MCS
1,2<MCS
2,2,则PTRS时域密度为4对应的有效MCS索引区间数为1;若MCS
1,1>=MCS
2,1,且MCS
1,2>=MCS
2,2,则PTRS时域密度为4对应的有效MCS索引区间数为0,此时相当于该PTRS时域密度为4被无效,即终端设备和网络设备不会确定对应的终端设备的PTRS的时域密度为4。
情况二,网络设备从终端设备接收多组MCS索引区间中每组MCS索引区间中的一个MCS索引区间的门限值,网络设备根据每组MCS索引区间中的一个MCS索引区间的门限值确定每组MCS索引区间中其他的MCS索引区间的门限值。
可选地,网络设备可以根据从终端设备接收的每组MCS索引区间中的一个MCS索引 区间的门限值确定每组MCS索引区间中其他的MCS索引区间的门限值之后,再修正得到组成多组MCS索引区间的门限值。
可选地,网络设备将从终端设备接收到每组MCS索引区间中的一个MCS索引区间的门限值进行修正,得到修正后的每组MCS索引区间中的一个MCS索引区间;根据修正后的每组MCS索引区间中的一个MCS索引区间确定每组MCS索引区间中其他的MCS索引区间的门限值。
下面为了方便理解,省略了网络设备修正的MCS索引区间门限值的过程,例如,终端设备可以上报表1的MCS
1,1’,MCS
2,1’,MCS
3,1’。网络设备修正后得到表1中的MCS
1,1,MCS
2,1,MCS
3,1,相当于终端设备可以上报表1中的MCS
1,1,MCS
2,1,MCS
3,1,其中MCS
4,1可以是预设,由MCS表格确定;网络设备可以确定第一组MCS索引区间中的第一个MCS索引区间为[0,MCS
1,1),第二组MCS索引区间中第一个MCS索引区间为[MCS
1,1,MCS
2,1),第三组MCS索引区间中第一个MCS索引区间为[MCS
2,1,MCS
3,1),第四组MCS索引区间中第一个MCS索引区间为[MCS
3,1,MCS
4,1),网络设备可以根据每组MCS索引区间的第一个MCS索引区间推导得到MCS
1,2,MCS
2,2,MCS
3,2,则第一组MCS索引区间的第二个MCS索引区间为[MCS
4,1,MCS
1,2),第二组MCS索引区间的第二个MCS索引区间为[MCS
1,2,MCS
2,2),第三组MCS索引区间的第二个MCS索引区间为[MCS
2,2,MCS
3,2),第四组MCS索引区间的第二个MCS索引区间为[MCS
3,2,MCS
4,2),其中MCS
4,2也可以是预设,由MCS表格确定。
进一步地,网络设备根据每组MCS索引区间中的一个MCS索引区间的门限值以及MCS表格确定每组MCS索引区间的频谱效率门限值,网络设备根据每组MCS索引区间的频谱效率门限值确定每组MCS索引区间的其他MCS索引区间的频谱效率值,网络设备根据每组MCS索引区间的其他MCS索引区间的频谱效率值确定其他MCS索引区间的MCS索引门限值。
可以理解的是,频谱效率门限值可以直接利用频谱效率值表示,也可以用其他参数来指示,例如可以利用TBS索引表示频谱效率门限值,传输块大小索引越大表示频谱效率门限值越高,又例如,可以利用调制阶数与码率的乘积表示频谱效率门限值,调制阶数与码率的乘积越高表示频谱效率门限值越高,又例如,还可以利用频谱效率索引表示频谱效率门限值,频谱效率索引越大,频谱效率门限值越高,其中频谱效率索引可以是把有限范围的频谱效率值按一定间隔量化后得到的索引,量化间隔可以是均匀的或非均匀的。下面利用频谱效率值表示频谱效率门限值在例一进行举例描述,利用TBS索引(I
TBS)表示频谱效率门限值在例二进行描述。
例一
在NR中1024正交振幅调制(quadrature amplitude modulation,QAM)的MCS表格如表2所示,表2中I
MCS表示MCS索引(index),Q
m表示调制阶数(modulation order),R表示目标编码码率(target code rate)。由于随着I
MCS的增加,码率、频谱效率值和调制阶数Q
m不是单调递增的,如表2所示,I
MCS的取值在0~43之间频谱效率值是单调不递减的,I
MCS的取值在44~58之间频谱效率值是单调不递减的,I
MCS的取值在59~63之间频谱效率值是保留(reserved)。因此可以将表2的MCS索引以频谱效率单调不递减的特点划分为三个MCS索引区间,或称之为单调不递减频谱效率的MCS索引区间,其中前两个单 调不递减频谱效率的MCS索引区间对应具体的频谱效率值,在本例中,本申请重点考虑前两个MCS索引区间的PTRS时域密度设计。
若PTRS时域密度与MCS索引的关系如表1所示,即表1中的MCS索引区间的定义中右边为小于不等式(右边为开区间),则为了保证对应的频谱效率为非保留或对应的码率为非保留的每个MCS索引均能在表1中找到对应的PTRS时域密度,则最密集的PTRS对应的每个MCS索引区间的右门限可以为单调不递减的频谱效率的MCS索引区间的最大MCS索引+1,或下一个单调不递减的频谱效率的MCS索引区间的最小MCS索引,如表1中PTRS时域密度为1对应的MCS4,1为表2中频谱效率值9.2578对应的MCS索引为43+1=44,PTRS时域密度为1对应的MCS4,2为表2中频谱效率值8.6328对应的MCS索引58+1=59。
假设共有四组MCS索引区间,网络设备根据终端设备上报的MCS1,1’,MCS2,1’,MCS3,1’修正之后得到MCS1,1为10,MCS2,1为20,MCS3,1为30。网络设备可以根据MCS1,1为10以及表2确定10对应的频谱效率值为1.4766;网络设备可以根据MCS2,1为20以及表2确定20对应的频谱效率值为3.2988;网络设备可以根据MCS3,1为30以及表2确定30对应的频谱效率值为5.3320。换句话说,此时,频谱效率值与PTRS的时域密度的对应关系如表3所示,表3中的δ可以为任何大于β的非零正值,其中β可以为频谱效率的精度,如表2所示,β取值为0.0001,例如δ还可以为大于0.01的任意数值。
在表1的形式下,在表2中I
MCS的取值在44~58之间对应的频谱效率值中大于或等于1.4766最小的频谱效率值为1.8750,大于或等于3.2988最小的频谱效率值为3.3633,大于或等于5.3320最小的频谱效率值为5.6953,1.8750、3.3633和5.6953分别对应的I
MCS为47,50,54,因此,可以推导每组MCS索引区间的第二个MCS索引区间,也即此时表1中的具体取值如表4所示。
表2
表3
表4
MCS索引 | PTRS时域密度(L PT-RS) |
I MCS∈[0,10)∪[44,47)∪… | PTRS不存在 |
I MCS∈[10,20)∪[47,50)∪… | 4 |
I MCS∈[20,30)∪[50,54)∪… | 2 |
I MCS∈[30,44)∪[54,59)∪… | 1 |
可以理解的是,由于表1中每个MCS索引区间的门限值为左闭右开(即每个MCS索引区间的下限包括下限值本身,上限不包括上限值)。可以对表1进行变换,例如,表1中每个MCS索引区间的门限值为左开右闭(即每个MCS索引区间的下限不包括下限值本身,上限包括上限值本身),表为表5所示,根据表2的MCS表格可知,MCS
4,1为43,MCS
4,2为58,在这种情况下,在表2中I
MCS的取值在44~58之间对应的频谱效率值中小于或等于1.4766的最大的频谱效率值为1.3008,小于或等于3.2988的最大的频谱效率值为2.6484,小于或等于5.3320的最大的频谱效率值为5.1953,1.3008、2.6484和5.1953分别对应的I
MCS为46,49,53,因此,可以推导每组MCS索引区间的第二个MCS索引区间,也即此时表5中的具体取值如表6所示。
表5
MCS索引 | PTRS时域密度 |
I MCS∈(0,MCS 1,1]∪(MCS 4,1,MCS 1,2]∪… | PTRS不存在 |
I MCS∈(MCS 1,1,MCS 2,1]∪(MCS 1,2,MCS 2,2]∪… | 4 |
I MCS∈(MCS 2,1,MCS 3,1]∪(MCS 2,2,MCS 3,2]∪… | 2 |
I MCS∈(MCS 3,1,MCS 4,1]∪(MCS 3,2,MCS 4,2]∪… | 1 |
表6
MCS索引 | PTRS时域密度(L PT-RS) |
I MCS∈[0,10]∪(43,46]∪… | PTRS不存在 |
I MCS∈(10,20]∪(46,49]∪… | 4 |
I MCS∈(20,30]∪(49,53]∪… | 2 |
I MCS∈(30,43]∪(53,58]∪… | 1 |
例二
下面利用TBS索引(I
TBS)表示频谱效率门限值进行举例描述,MCS表格如表5所示,表7中I
MCS表示MCS索引(index),Q
m和Q'
m表示调制阶数(modulation order),具体用Q
m和Q'
m的哪一个可以是网络设备指示给终端设备的。由于随着I
MCS的增加,I
TBS和 调制阶数Q
m不是单调递增的,如表5所示,I
MCS的取值在0~43之间I
TBS是单调不递减的,I
MCS的取值在44~58之间I
TBS是单调递增或单调不递减的,I
MCS的取值在59~63之间I
TBS是保留(reserved)。因此可以将表7的MCS索引划分为三个MCS索引区间,其中三个MCS索引区间的上限值可以是预设的,由MCS表格确定。假设共有四组MCS索引区间,网络设备根据终端设备上报的MCS
1,1’,MCS
2,1’,MCS
3,1’修正之后得到MCS
1,1为10,MCS
2,1为20,MCS
3,1为30。网络设备可以根据MCS
1,1为10以及表7确定10对应的I
TBS为9,I
MCS的取值在44~58之间I
TBS为9对应的I
MCS为46,即此时MCS
1,2为46;网络设备可以根据MCS
2,1为20以及表7确定20对应的I
TBS为18,I
MCS的取值在44~58之间I
TBS为18对应的I
MCS不存在,则可以确定I
TBS与18接近的19对应的I
MCS为51,即此时MCS
2,2为51;网络设备可以根据MCS
3,1为30以及表7确定30对应的I
TBS为25,I
MCS的取值在44~58之间I
TBS为25对应的I
MCS为53,即此时MCS
3,2为53。依次类推得到表1中的每个门限值的取值,也即此时表1中的具体取值如表8所示。
表7
表8
MCS索引区间 | PTRS时域密度(L PT-RS) |
I MCS∈[0,10)∪[44,46)∪… | PTRS不存在 |
I MCS∈[10,20)∪[46,51)∪… | 4 |
I MCS∈[20,30)∪[51,53)∪… | 2 |
I MCS∈[30,44)∪[53,59)∪… | 1 |
在本申请中,如果随着I
MCS的增加,存在一些参数会下降或减少的,则可以根据这些参数划分多个单调MCS索引区间,例如部分MCS索引门限值以及这些参数划分的多个单调MCS索引区间推导其他MCS索引门限值。上述只是以I
TBS和频谱效率值为例进行描述,也可以根据部分MCS索引门限值推导得到调制阶数和码率的乘积,再根据调制阶数和码率的乘积推导得到其他MCS索引门限值,原理与上述例一和例二类似,为了避免赘述本申请实施例不再一一举例。
S320,网络设备根据当前调度的MCS索引以及对应关系确定目标PTRS时域密度。
可选地,网络设备向终端设备发送的控制信息中可以包括当前调度的MCS索引。
具体地,S320包括:网络设备确定当前调度的MCS索引所在的第一MCS索引区间,将第一MCS索引区间对应的PTRS时域密度确定为映射PTRS的目标PTRS时域密度。例如,网络设备确定当前调度的MCS索引在表1的[MCS
1,2,MCS
2,2),则网络设备可以确 定目标PTRS的时域密度为4。
S330,网络设备根据目标PTRS时域密度映射PTRS。
具体地,S330可以理解为,网络设备根据目标PTRS映射PTRS序列。换句话说,本申请中PTRS与PTRS序列可以等同。
S340a,网络设备可以将确定多组MCS索引区间中的每组MCS索引区间中的每个MCS索引区间的索引门限值发送给终端设备,终端设备接收多组MCS索引区间中的每组MCS索引区间中的每个MCS索引区间的索引门限值。
S340b,网络设备向终端设备发送所述多组MCS索引区间中的每组MCS索引区间中的一个MCS索引区间的MCS索引门限值。
需要说明的是,S340a和S340b只存在一个步骤。
也需要说明的是,S340a或S340b在S310之后即可,与S320和S330的顺序关系没有任何限定。
S350,终端设备确定MCS索引区间与PTRS时域密度的对应关系。
其中,S350中的对应关系的描述参见S310。
如果是S340a,则S350包括:终端设备可以根据接收到的多组MCS索引区间中每组MCS索引区间中的每个MCS索引区间的MCS索引门限值确定对应关系。
可选地,多组MCS索引区间中存在一组MCS索引区间,该组MCS索引区间中的每个MCS索引区间的上限可以是预设的,该组MCS索引区间中每个MCS索引区间的下限可以是网络设备发送的。
例如,网络设备将确定的表1中的MCS
1,1,MCS
2,1,MCS
3,1,MCS
1,2,MCS
2,2,MCS
3,2的取值发送给终端设备,终端设备根据这些值以及协议规定或可由MCS表格确定的MCS
4,1,MCS
4,2确定对应关系。
如果是S340b,则S350包括:终端设备发送所述多组MCS索引区间中的每组MCS索引区间中的一个MCS索引区间的MCS索引门限值,终端设备可以根据每组MCS索引区间中的一个MCS索引区间的MCS索引门限值能够推导出其他MCS索引区间的门限值。具体地,推导过程参见S310中的情况二的描述。
本申请实施例中,网络设备可以接收终端设备建议的组成多组MCS索引区间的部分门限值,网络设备可以根据终端设备建议的部分门限值修正之后得到其他门限值,或者网络设备可以接收终端设备建立的组成多组MCS索引区间的全部门限值,网络设备将终端设备建立的全部门限值修正之后得到多组MCS索引区间的门限值。在S340中,网络设备可以将组成多组MCS索引区间的门限值全部发送给终端设备,终端设备确定对应关系,或者网络设备可以将组成多组MCS索引区间的部分门限值发送给终端设备,终端设备根据部分门限值推导其他的门限值,从而确定对应关系。可选地,本申请实施例中,终端设备上报的或网络设备配置/确定的部分MCS索引区间的门限值可以为平均频谱效率密度最密的单调不递减频谱效率对应的MCS索引区间的门限值。
S360,终端设备根据当前调度的MCS索引确定目标PTRS时域密度。
可选地,网络设备向终端设备发送的控制信息中可以包括当前调度的MCS索引。
具体地,S360包括:终端设备确定当前调度的MCS索引所在的第一MCS索引区间,将第一MCS索引区间对应的PTRS时域密度确定为映射PTRS的目标PTRS时域密度。 例如,终端设备确定当前调度的MCS索引在表1的[MCS
1,2,MCS
2,2),则终端设备可以确定目标PTRS的时域密度为4。
理想情况下,S320与S360中确定的目标PTRS时域密度是一致的。
在S330之后,根据图2的描述网络设备可以将PTRS对待发送的有效信号与待发送的PTRS进行预编码,获得预编码后的信号;网络设备执行:S370,通过天线向终端设备发送预编码后的信号。终端设备执行S380:
S380,终端设备根据目标PTRS时域密度解映射PTRS。
应理解,终端设备还应该确定PTRS的频域密度,才能确认PTRS的图样。根据R15标准记载,频域密度可以通过终端设备的调度带宽指示。本申请实施例主要关注时域密度的确定,频域密度可以参考现有技术的方式来处理。
具体地,终端设备根据目标PTRS时域密度解映射S370中的编码后的信号的PTRS。
因此,本申请实施例提供的传输PTRS的方法,至少一个PTRS时域密度与一组MCS索引区间对应,并且一组MCS索引区间至少包括两个不连续的MCS索引区间,当前调度的MCS索引可能在一组MCS索引区间中的任何一个MCS索引区间,这样,能够使得根据当前调度的MCS索引确定的目标PTRS时域密度满足实际的需求。通常情况下,高频谱效率需要较高时域密度的PTRS,这样可以利用较多的PTRS进行相位误差估计以提高接收数据的准确性,相反地,频谱效率越低需要的PTRS时域密度越低。但是,假设MCS索引区间与PTRS时域密度如表9所示,如果当前调度的MCS索引在表9的某一个MCS索引区间,则该MCS索引区间对应一个PTRS时域密度,同时根据表2或表7中MCS表格确定当前调度的MCS索引对应的频谱效率,没办法使得根据表9确定PTRS时域密度与根据表2或表7确定的频谱效率保持一致(在表7中I
TBS越大表示待传输的比特数越多,换句话说待传输的比特数越多,表示频谱效率越高,表2中频谱效率值越大表示频谱效率越高)。例如,表9中,ptrs-MCS
1=10,ptrs-MCS
2=20,ptrs-MCS
3=30,ptrs-MCS
4=63,若当前调度的MCS索引为44,则根据表9确定PTRS时域密度为1,表示每个符号上都映射PTRS,根据表7所知,MCS索引为44对应的调制阶数为2,TBS最小,码率也最低,此时可能并不需要PTRS,这样导致配置了多余的PTRS。又例如,ptrs-MCS
1=46,ptrs-MCS
2=51,ptrs-MCS
3=55,ptrs-MCS
4=63,若当前调度的MCS索引为43,则根据表7确定PTRS时域密度不存在,根据表7所知,MCS索引为43对应的调制阶数为10,TBS最大,码率也最大,换句话说,若不配置PTRS,则数据解调性能显著下降导致频谱效率较低。因此,本申请中MCS索引区间与PTRS时域密度的对应关系可以如表1、表4、表5和表8所示,每组MCS索引区间包括的至少两个不连续的MCS索引区间,可以根据当前调度的MCS索引所在的MCS索引区间确定PTRS时域密度,能够使得确定的PTRS时域密度满足实际需求。
表9
MCS索引 | PTRS时域密度(L PT-RS) |
I MCS<ptrs-MCS 1 | 不存在 |
ptrs-MCS 1≤I MCS<ptrs-MCS 2 | 4 |
ptrs-MCS 2≤I MCS<ptrs-MCS 3 | 2 |
ptrs-MCS 3≤I MCS<ptrs-MCS 4 | 1 |
上面方法300中描述了传输上行PTRS的方法,下面结合图4描述传输下行PTRS的方法400。方法400包括:
S410-S420,同S310-S320。
S430a同S340a,S430b同S340b。
也需要说明的是,S430a或S440b在S410之后即可,与S420的顺序关系没有任何限定。
S440-S450,同S350-S360。S460,终端设备根据目标PTRS时域密度映射PTRS。
具体地,S460可以理解为,终端设备根据目标PTRS映射PTRS序列。换句话说,本申请中PTRS与PTRS序列可以等同。
在S460之后,根据图2的描述终端设备可以将PTRS对待发送的有效信号与待发送的PTRS进行预编码,获得预编码后的信号;终端设备执行S470,通过天线向网络设备发送预编码后的信号。网络设备执行S480:
S480,网络设备根据目标PTRS时域密度解映射PTRS。
具体地,网络设备根据目标PTRS时域密度解映射S470中的编码后的信号的PTRS。
需要说明的是,方法400中的其他步骤参考方法300的描述,为了避免赘述,本申请实施例不详细描述。
可以理解的是,方法300描述的是传输上行PTRS,方法400描述的是传输下行PTRS,本申请实施例还可以应用在任何两个设备之间传输PTRS,如终端设备与终端设备传输PTRS,原理与方法300和方法400类似,为了避免赘述,本申请实施例不详细描述。
下面结合图5描述本申请实施例提供的传输PTRS的方法500,方法500包括:
S510,网络设备获取多个区间与多个PTRS时域密度之间的对应关系,多个区间中每个区间不重叠;
S520,网络设备根据第一参数以及对应关系确定目标PTRS时域密度。
可选地,网络设备可以根据向终端设备发送的控制信息确定第一参数。进一步地,网络设备可以根据MCS表格以及网络设备向终端设备发送的控制信息确定第一参数。
若第一参数为第一频谱效率,多个区间为多个频谱效率区间,网络设备可以根据当前调度的MCS索引确定第一频谱效率。
可选地,多个频谱效率区间的门限值可以网络设备确定和/或配置的。或者终端设备可以上报建议的多个频谱效率区间的门限值,网络设备在S510中根据终端设备上报的建议的多个频谱效率区间的门限值修正之后得到和/或配置多个频谱效率区间的门限值。例如,可以根据网络设备的相噪模型、相噪功率谱密度等修正。
例如,对应关系如表10所示,则控制信息可以包括当前调度的MCS索引,网络设备可以根据当前调度的MCS索引确定第一频谱效率SE,例如,可以通过表2确定。其中,表10中ptrs-SE
i(i=1,2,3)可以是网络设备确定和/或配置的,ptrs-SE
4可以是协议规定的。
表10
若第一参数为第一TBS索引,多个区间为多个TBS索引区间,则控制信息可以包括当前调度的MCS索引,网络设备可以根据当前调度的MCS索引确定和/或配置第一TBS索引。
可选地,多个TBS索引区间的门限值可以网络设备确定的,或者终端设备可以上报建议的多个TBS索引区间的门限值,网络设备在S510中根据终端设备上报的建议的多个TBS索引区间门限值修正之后得到和/或配置多个TBS索引区间的门限值。例如,可以根据网络设备的相噪模型、相噪功率谱密度等修正。
可选地,网络设备确定的门限值可以和终端设备上报/建议的门限值相同。
例如,对应关系如表11所示,则控制信息可以包括当前调度的MCS索引,网络设备可以根据当前调度的MCS索引确定第一TBS索引(I
TBS),例如,可以通过表7确定第一TBS索引(I
TBS)。其中,表11中
可以是网络设备确定的,
可以是协议规定的。
表11
若第一参数为第一调制阶数与第一码率的乘积,多个区间为多个调制阶数与码率乘积组成的区间,则控制信息可以包括当前调度的MCS索引,网络设备可以根据当前调度的MCS索引确定第一调制阶数与第一码率。
可选地,多个调制阶数与码率乘积区间的门限值可以网络设备确定和/或配置的,或者终端设备可以上报建议的多个调制阶数与码率乘积区间的门限值,网络设备在S510中根据终端设备上报的建议的多个调制阶数与码率乘积区间的门限值修正之后得到和/或配置多个调制阶数与码率乘积区间的门限值。例如,可以根据网络设备的相噪模型、相噪功率谱密度等修正。
例如,对应关系如表12所示,则控制信息可以包括当前调度的MCS索引,网络设备可以根据当前调度的MCS索引确定第一调制阶数与第一码率,例如,可以通过表2确定第一调制阶数与第一码率P。其中,表12中P
l(l=1,2,3)可以是网络设备确定的,P
4可以是协议规定的。
表12
S530,网络设备根据目标PTRS时域密度映射PTRS。
S540,网络设备将多个区间中每个区间的门限值发送给终端设备,终端设备接收多个区间中每个区间的门限值。
可选地,S540在S510之后,与S520和S530没有任何顺序限制。
S550,终端设备确定多个区间与多个PTRS时域密度的对应关系。
终端设备根据S540中接收到的每个区间的门限值确定对应关系,对应关系的描述参见S520。
S560,终端设备根据第一参数和对应关系确定目标PTRS时域密度。
可选地,终端设备可以根据接收的网络设备发送的控制信息确定第一参数。进一步地,终端设备可以根据MCS表格以及从网络设备接收的控制信息确定第一参数。
具体地,确定第一参数参见S520的描述。并且终端设备根据第一参数和对应关系确定目标PTRS时域密度与网络设备第一参数和对应关系确定目标PTRS时域密度类似,为了避免赘述,在此不详细描述。
在S530之后,根据图2的描述网络设备可以将PTRS对待发送的有效信号与待发送的PTRS进行预编码,获得预编码后的信号;网络设备执行:S570,通过天线向终端设备发送预编码后的信号。终端设备执行S580:
S580,终端设备根据目标PTRS时域密度解映射PTRS。
应理解,终端设备还应该确定PTRS的频域密度,才能确认PTRS的图样。根据R15标准记载,频域密度可以通过终端设备的调度带宽指示。本申请实施例主要关注时域密度的确定,频域密度可以参考现有技术的方式来处理。
上面方法500中描述了传输上行PTRS的方法,下面结合图6描述传输下行PTRS的方法600。方法600包括:
S610-S620,同S510-S520。
S630同S540。
也需要说明的是,S630在S610之后即可,与S620的顺序关系没有任何限定。
S640-S650,同S550-S560。
S660,终端设备根据目标PTRS时域密度映射PTRS。
具体地,S660可以理解为,终端设备根据目标PTRS映射PTRS序列。换句话说,本申请中PTRS与PTRS序列可以等同。
在S660之后,根据图2的描述终端设备可以将PTRS对待发送的有效信号与待发送的PTRS进行预编码,获得预编码后的信号;终端设备执行S670,通过天线向网络设备发送预编码后的信号。网络设备执行S680:
S680,网络设备根据目标PTRS时域密度解映射PTRS。
具体地,网络设备根据目标PTRS时域密度解映射S670中的编码后的信号的PTRS。
需要说明的是,方法600中的其他步骤参考方法500的描述,为了避免赘述,本申请 实施例不详细描述。
可以理解的是,方法500描述的是传输上行PTRS,方法600描述的是传输下行PTRS,本申请实施例还可以应用在任何两个设备之间传输PTRS,如终端设备与终端设备传输PTRS,网络设备与网络设备传输PTRS,原理与方法500和方法600类似,为了避免赘述,本申请实施例不详细描述。
需要说的是,本申请实施例中表格的形式只是为了更好的理解进行举例说明,表格中的参数的取值也是举例描述,本申请实施例中的表格不应该造成对本申请实施例的任何限定。本领域技术人员可以根据本申请实施例提供的表格演变得到的其他的表格也在本申请实施例的的保护范围之内。
也需要说明的是,本申请实施例中表格中的PTSR时域密度的取值P
PT-RS表示每P
PT-RS个OFDM符号中一个OFDM符号上映射PTRS,例如,P
PT-RS为4表示每4个OFDM符号中的一个OFDM符号上映射PTRS,此时PTRS的时域密度可以为1/4,P
PT-RS为2表示每2个OFDM符号中的一个OFDM符号上映射、PTRS,此时PTRS的时域密度可以为1/2,P
PT-RS为1表示每个OFDM符号都映射PTRS,此时PTRS的时域密度可以为1。
在一种理解方式中,在固定数量的OFDM符号上映射的PTRS越多表示PTRS的时域密度越大;在固定数量上OFDM符号上映射的PTRS多少表示PTRS的时域密度越小。在另外一种理解方式中,表1、表4、表5和表8中PTRS时域密度的取值越大也可以理解为PTRS的时域密度越大,此时与PTRS的时域密度的物理含义刚好相反,例如,表1中PTRS时域密度取4表示每4个OFDM符号上一个OFDM符号映射PTRS,此时PTRS的时域密度的物理含义表示PTRS的时域密度较小,表1中PTRS时域密度取1表示每1个OFDM符号上一个OFDM符号映射PTRS。
也需要说明的是,本申请实施例中,表格中的MCS区间的门限值都以整数进行举例描述,一个区间为[A,B)可以等价为[A,B-1],也可以等价为(A-1,B-1],也可以等价为(A-1,B),本申请实施例对区间的描述不作任何的限制。
可以理解的是,本申请中提到的频谱效率可以为查MCS表所得的频谱效率或者为单个RE所承载的信息比特数。
在本申请实施例中描述的是确定PTRS时域密度,映射PTRS时还需要根据PTRS的频域密度映射,PTRS的频域密度与带宽(bandwidth,BW)区间存在对应关系,网络设备和终端设备可以根据当前调度的带宽所在的带宽区间确定PTRS频域密度,具体地确定PTRS频域密度的方式参见现有技术的描述。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,上述各个方法实施例中由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现,上述各个方法实施例中由第一设备实现的方法和操作,也可以由可用于第一设备的部件(例如芯片或者电路)实现。
上文描述了本申请提供的方法实施例,下文将描述本申请提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文 方法实施例,为了简洁,这里不再赘述。
上文主要从各个网元之间交互的角度对本申请实施例提供的方案进行了描述。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
本申请实施例可以根据上述方法示例,对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有其它可行的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图7为本申请实施例提供的传输PTRS的装置700的示意性框图。该通信装置700包括处理单元710和收发单元720。收发单元720可以与外部进行通信,处理单元710用于进行数据处理。收发单元720还可以称为通信接口或通信单元。
该装置700可以用于执行上文方法实施例中终端设备或者网络设备所执行的动作,这时,该通信装置700可以称为终端设备或者网络设备,收发单元710用于执行上文方法实施例中终端设备或者网络设备侧的收发相关的操作,处理单元720用于执行上文方法实施例中终端设备或者网络设备侧的处理相关的操作。
其中,处理单元710用于获取调制编码策略MCS索引区间与PTRS时域密度之间的对应关系,其中,至少一个PTRS时域密度对应一组MCS索引区间,所述一组MCS索引区间至少包括两个不连续的MCS索引区间;所述处理单元710还用于根据当前调度的MCS索引以及所述对应关系确定目标PTRS时域密度;收发单元720用于根据所述目标PTRS时域密度传输PTRS。
作为一个可选实施例,所述处理单元710具体用于:
确定所述当前调度的MCS索引所在的第一MCS索引区间;
将所述第一MCS索引区间对应的PTRS时域密度确定为所述目标PTRS时域密度。
作为一个可选实施例,所述收发单元720还用于:
从所述第二设备接收多组MCS索引区间对应的多个MCS索引门限值;
根据所述多个MCS索引门限值确定所述多组MCS索引区间。
作为一个可选实施例,多组MCS索引区间对应多个PTRS时域密度,所述收发单元720还用于:
从所述第二设备接收第一MCS索引门限值,其中,所述第一MCS索引门限值属于所述第一组MCS索引区间中第二MCS索引区间;
所述处理单元710还用于根据所述第一MCS索引门限值确定所述第一组MCS索引区间中第三MCS索引区间的第二MCS索引门限值。
作为一个可选实施例,所述处理单元710具体用于:
根据所述第一MCS索引门限值和MCS表格确定所述第二MCS索引区间对应的第一频谱效率门限值:
根据所述第一频谱效率门限值以及所述MCS表格确定第二频谱效率门限值,其中,所述第一频谱效率门限值属于第一频谱效率单调区间,所述第二频谱效率门限值属于第二频谱效率单调区间,所述第一频谱效率单调区间与所述第二频谱效率单调区间至少存在重叠部分;
根据所述第二频谱效率门限值以及所述MCS表格确定所述第三MCS索引区间的第二MCS索引门限值。
作为一个可选实施例,所述收发单元720还用于:向所述第二设备发送多组MCS索引区间中的每组MCS索引区间对应的MCS索引门限值。
作为一个可选实施例,所述收发单元720还用于:向所述第二设备发送多组MCS索引区间中的每组MCS索引区间中的一个MCS索引区间对应的MCS索引门限值。
图8为本申请实施例提供的传输PTRS的装置800的示意性框图。该通信装置800包括处理单元810和收发单元820。收发单元820可以与外部进行通信,处理单元810用于进行数据处理。收发单元820还可以称为通信接口或通信单元。
该装置800可以用于执行上文方法实施例中终端设备或者网络设备所执行的动作,这时,该通信装置800可以称为终端设备或者网络设备,收发单元810用于执行上文方法实施例中终端设备或者网络设备侧的收发相关的操作,处理单元820用于执行上文方法实施例中终端设备或者网络设备侧的处理相关的操作。
其中,处理单元810,用于确定多个区间与多个PTRS时域密度之间的对应关系,所述多个区间中每个区间不重叠;
所述处理单元810还用于根据第一参数以及所述对应关系确定目标时域密度;
收发单元820,用于根据所述目标时域密度传输PTRS;
其中,所述多个区间的多个门限值为多个频谱效率,所述第一参数为第一频谱效率;或者,所述多个区间的多个门限值为传输块大小TBS索引,所述第一参数为TBS索引;或者,所述多个区间的多个门限值为调制阶数与码率的乘积,所述第一参数为第一调制阶数与第一码率的乘积。
作为一个可选实施例,所述收发单元820还用于:接收所述第二设备发送的所述多个区间对应的多个门限值;
所述处理单元810还用于:根据所述多个门限值确定所述多个区间。
作为一个可选实施例,所述收发单元820还用于:向所述第二设备发送所述多个区间对应的多个门限值。
如图9所示,本申请实施例还提供一种通信装置900。该通信装置900包括处理器910,处理器910与存储器920耦合,存储器920用于存储计算机程序或指令,处理器910用于执行存储器920存储的计算机程序或指令,使得上文方法实施例中的方法被执行。
可选地,如图9所示,该通信装置900还可以包括存储器920。
可选地,如图9所示,该通信装置900还可以包括收发器930,收发器930用于信号的接收和/或发送。例如,处理器910用于控制收发器930进行信号的接收和/或发送。
作为一种方案,该通信装置900用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器910用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器930用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该通信装置900用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器910用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器930用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置1000,该通信装置1000可以是终端设备也可以是芯片。该通信装置1000可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置1000为终端设备时,图10示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元1010也可以称为收发器、收发机、收发装置等。处理单元1020也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元1010用于执行图3中S340a、S340b和S370中的接收操作。在一种实现方式中,收发单元1010用于图4中S430a、S440b和S470中的收发操作。在一种实现方式中,收发单元1010用于图5中S540和S570中的收发操作。在一种实现方式中,收发单元1010用于图6中S630和S670中的收发操作。处理单元1020用于执行本申请实施例中由终端设备执行的其他处理相关的步骤,在一种可能的实现方式中,处理单元1020用于执行图3中的S350,S360,S360中的处理操作。在一种可能的实 现方式中,处理单元1020用于执行图4中的S440-S460中的处理操作。在一种可能的实现方式中,处理单元1020用于执行图5中的S550,S560,S580中的处理操作。在一种可能的实现方式中,处理单元1020用于执行图4中的S640-S660中的处理操作。
应理解,图10仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图10所示的结构。
当该通信装置1000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1100,该通信装置1100可以是网络设备也可以是芯片。该通信装置1100可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置1100为网络设备时,例如为基站。图11示出了一种简化的基站结构示意图。基站包括1110部分以及1120部分。1110部分主要用于射频信号的收发以及射频信号与基带信号的转换;1120部分主要用于基带处理,对网络设备进行控制等。1110部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1120部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1110部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1110部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1110部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1120部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1110部分的用于执行图3中S340a、S340b和S370中的发送操作。在一种实现方式中,1110部分用于图4中S430a、S440b和S470中的收发操作。在一种实现方式中,1110部分用于图5中S540和S570中的收发操作。在一种实现方式中,1110部分用于图6中S630和S670中的收发操作。1110部分的收发单元还用于执行本申请实施例中由网络设备执行的其他收发相关的步骤。1120部分用于执行图3中步骤S310-S330,或者用于执行图4中的S410-S420,或者用于执行图5中的S510-S530,或者用于执行图4中的S610-S620和S680,和/或1120部分还用于执行本申请实施例中由网络设备执行的处理相关的步骤。
应理解,图11仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图11所示的结构。
当该通信装置1100为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,包括上文实施例中的网络设备与终端设备。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。 例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上,或者说对现有技术做出贡献的部分,或者该技术方案的部分,可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,该计算机软件产品包括若干指令,该指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。前述的存储介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的 实施例的目的,不是旨在于限制本申请。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (26)
- 一种传输相位跟踪参考信号PTRS的方法,其特征在于,包括:第一设备获取调制编码策略MCS索引区间与PTRS时域密度之间的对应关系,其中,至少一个PTRS时域密度对应一组MCS索引区间,所述一组MCS索引区间至少包括两个不连续的MCS索引区间;所述第一设备根据当前调度的MCS索引以及所述对应关系确定目标PTRS时域密度;所述第一设备根据所述目标PTRS时域密度传输PTRS。
- 根据权利要求1所述的方法,其特征在于,所述第一设备根据当前调度的MCS索引以及所述对应关系确定目标PTRS时域密度,包括:所述第一设备确定所述当前调度的MCS索引所在的第一MCS索引区间;所述第一设备将所述第一MCS索引区间对应的PTRS时域密度确定为所述目标PTRS时域密度。
- 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:所述第一设备从所述第二设备接收多组MCS索引区间对应的多个MCS索引门限值;所述第一设备根据所述多个MCS索引门限值确定所述多组MCS索引区间。
- 根据权利要求1或2所述的方法,其特征在于,多组MCS索引区间对应多个PTRS时域密度,所述方法还包括:所述第一设备从所述第二设备接收第一MCS索引门限值,其中,所述第一MCS索引门限值属于所述多组MCS索引区间中的第一组MCS索引区间中的第二MCS索引区间;所述第一设备根据所述第一MCS索引门限值确定所述第一组MCS索引区间中第三MCS索引区间的第二MCS索引门限值。
- 根据权利要求4所述的方法,其特征在于,所述第一设备根据所述第一MCS索引门限值确定所述第一组MCS索引区间中第三MCS索引区间的第二MCS索引门限值,包括:所述第一设备根据所述第一MCS索引门限值和MCS表格确定所述第二MCS索引区间对应的第一频谱效率门限值:所述第一设备根据所述第一频谱效率门限值以及所述MCS表格确定第二频谱效率门限值,其中,所述第一频谱效率门限值属于第一频谱效率单调区间,所述第二频谱效率门限值属于第二频谱效率单调区间,所述第一频谱效率单调区间与所述第二频谱效率单调区间至少存在重叠部分;所述第一设备根据所述第二频谱效率门限值以及所述MCS表格确定所述第三MCS索引区间的第二MCS索引门限值。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:所述第一设备向所述第二设备发送多组MCS索引区间中的每组MCS索引区间对应的MCS索引门限值。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:所述第一设备向所述第二设备发送多组MCS索引区间中的每组MCS索引区间中的一个 MCS索引区间对应的MCS索引门限值。
- 一种传输相位跟踪参考信号PTRS的方法,其特征在于,包括:第一设备确定多个区间与多个PTRS时域密度之间的对应关系,所述多个区间中每个区间不重叠;所述第一设备根据第一参数以及所述对应关系确定目标时域密度;所述第一设备根据所述目标时域密度传输PTRS;其中,所述多个区间的多个门限值为多个频谱效率,所述第一参数为第一频谱效率;或者,所述多个区间的多个门限值为传输块大小TBS索引,所述第一参数为TBS索引;或者,所述多个区间的多个门限值为调制阶数与码率的乘积,所述第一参数为第一调制阶数与第一码率的乘积。
- 根据权利要求8所述的方法,其特征在于,所述方法还包括:所述第一设备接收所述第二设备发送的所述多个区间对应的多个门限值;所述第一设备根据所述多个门限值确定所述多个区间。
- 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:所述第一设备向所述第二设备发送所述多个区间对应的多个门限值。
- 一种传输相位跟踪参考信号PTRS的装置,其特征在于,包括:处理单元,用于获取调制编码策略MCS索引区间与PTRS时域密度之间的对应关系,其中,至少一个PTRS时域密度对应一组MCS索引区间,所述一组MCS索引区间至少包括两个不连续的MCS索引区间;所述处理单元还用于根据当前调度的MCS索引以及所述对应关系确定目标PTRS时域密度;收发单元,用于根据所述目标PTRS时域密度传输PTRS。
- 根据权利要求11所述的装置,其特征在于,所述处理单元具体用于:确定所述当前调度的MCS索引所在的第一MCS索引区间;将所述第一MCS索引区间对应的PTRS时域密度确定为所述目标PTRS时域密度。
- 根据权利要求11或12所述的装置,其特征在于,所述收发单元还用于:从所述第二设备接收多组MCS索引区间对应的多个MCS索引门限值;根据所述多个MCS索引门限值确定所述多组MCS索引区间。
- 根据权利要求11或12所述的装置,其特征在于,多组MCS索引区间对应多个PTRS时域密度,所述收发单元还用于:从所述第二设备接收第一MCS索引门限值,其中,所述第一MCS索引门限值属于所述多组MCS索引区间中的所述第一组MCS索引区间中的第二MCS索引区间;所述处理单元还用于根据所述第一MCS索引门限值确定所述第一组MCS索引区间中第三MCS索引区间的第二MCS索引门限值。
- 根据权利要求14所述的装置,其特征在于,所述处理单元具体用于:根据所述第一MCS索引门限值和MCS表格确定所述第二MCS索引区间对应的第一频谱效率门限值:根据所述第一频谱效率门限值以及所述MCS表格确定第二频谱效率门限值,其中,所述第一频谱效率门限值属于第一频谱效率单调区间,所述第二频谱效率门限值属于第二 频谱效率单调区间,所述第一频谱效率单调区间与所述第二频谱效率单调区间至少存在重叠部分;根据所述第二频谱效率门限值以及所述MCS表格确定所述第三MCS索引区间的第二MCS索引门限值。
- 根据权利要求11至15中任一项所述的装置,其特征在于,所述收发单元还用于:向所述第二设备发送多组MCS索引区间中的每组MCS索引区间对应的MCS索引门限值。
- 根据权利要求11至15中任一项所述的装置,其特征在于,所述收发单元还用于:向所述第二设备发送多组MCS索引区间中的每组MCS索引区间中的一个MCS索引区间对应的MCS索引门限值。
- 一种传输相位跟踪参考信号PTRS的装置,其特征在于,包括:处理单元,用于确定多个区间与多个PTRS时域密度之间的对应关系,所述多个区间中每个区间不重叠;所述处理单元还用于根据第一参数以及所述对应关系确定目标时域密度;收发单元,用于根据所述目标时域密度传输PTRS;其中,所述多个区间的多个门限值为多个频谱效率,所述第一参数为第一频谱效率;或者,所述多个区间的多个门限值为传输块大小TBS索引,所述第一参数为TBS索引;或者,所述多个区间的多个门限值为调制阶数与码率的乘积,所述第一参数为第一调制阶数与第一码率的乘积。
- 根据权利要求18所述的装置,其特征在于,所述收发单元还用于:接收所述第二设备发送的所述多个区间对应的多个门限值;所述处理单元还用于:根据所述多个门限值确定所述多个区间。
- 根据权利要求18或19所述的装置,其特征在于,所述收发单元还用于:向所述第二设备发送所述多个区间对应的多个门限值。
- 一种通信装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至7中任一项所述的方法被执行。
- 一种通信装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求8至10中任一项所述的方法被执行。
- 一种计算机可读存储介质,其特征在于,存储有用于实现权利要求1至7中任一项所述的方法的程序或者指令。
- 一种计算机可读存储介质,其特征在于,存储有用于实现权利要求8至10中任一项所述的方法的程序或者指令。
- 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被计算机执行时使得权利要求1至7中任一项所述的方法被执行。
- 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被计算机执行时使得权利要求8至10中任一项所述的方法被执行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/073746 WO2021146990A1 (zh) | 2020-01-22 | 2020-01-22 | 传输相位跟踪参考信号的方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/073746 WO2021146990A1 (zh) | 2020-01-22 | 2020-01-22 | 传输相位跟踪参考信号的方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021146990A1 true WO2021146990A1 (zh) | 2021-07-29 |
Family
ID=76991955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073746 WO2021146990A1 (zh) | 2020-01-22 | 2020-01-22 | 传输相位跟踪参考信号的方法和装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021146990A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210329614A1 (en) * | 2020-04-10 | 2021-10-21 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving control information in communication system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108282281A (zh) * | 2017-01-05 | 2018-07-13 | 中国移动通信有限公司研究院 | 一种信号配置方法及装置 |
CN108809601A (zh) * | 2017-05-04 | 2018-11-13 | 华为技术有限公司 | 无线通信方法及装置 |
CN110149288A (zh) * | 2018-02-11 | 2019-08-20 | 维沃移动通信有限公司 | 相位跟踪参考信号的时域密度确定方法及设备 |
WO2019225685A1 (ja) * | 2018-05-23 | 2019-11-28 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
-
2020
- 2020-01-22 WO PCT/CN2020/073746 patent/WO2021146990A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108282281A (zh) * | 2017-01-05 | 2018-07-13 | 中国移动通信有限公司研究院 | 一种信号配置方法及装置 |
CN108809601A (zh) * | 2017-05-04 | 2018-11-13 | 华为技术有限公司 | 无线通信方法及装置 |
CN110149288A (zh) * | 2018-02-11 | 2019-08-20 | 维沃移动通信有限公司 | 相位跟踪参考信号的时域密度确定方法及设备 |
WO2019225685A1 (ja) * | 2018-05-23 | 2019-11-28 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
Non-Patent Citations (1)
Title |
---|
NOKIA: "Introduction of two-step RACH", 3GPP DRAFT; R1-1913628, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 6 December 2019 (2019-12-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051838407 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210329614A1 (en) * | 2020-04-10 | 2021-10-21 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving control information in communication system |
US11985664B2 (en) * | 2020-04-10 | 2024-05-14 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving control information in communication system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11764928B2 (en) | Reference signal configuration method, apparatus, and system | |
CN109245844B (zh) | 无线通信方法、装置及系统 | |
WO2019154185A1 (zh) | 下行控制信息dci的传输方法、装置及网络设备 | |
WO2020216130A1 (zh) | 一种通信方法及装置 | |
WO2020233420A1 (zh) | 时隙格式指示的方法和通信装置 | |
KR20170049548A (ko) | 준직교 다중 액세스를 위한 시스템 및 방법 | |
JP2018529294A (ja) | 超高信頼度(vhr)通信をサポートするためのワイヤレスデバイスアーキテクチャ | |
WO2021027898A1 (zh) | 信息确定方法和装置 | |
WO2019159568A1 (ja) | 送信機及び送信方法 | |
WO2021081831A1 (zh) | 符号处理的方法与装置 | |
WO2021128299A1 (zh) | 一种确定参考信号的方法及装置 | |
WO2022199607A1 (zh) | 数据传输方法及装置 | |
WO2020143366A1 (zh) | 发送、接收方法及装置 | |
WO2021147112A1 (zh) | 通信方法和通信装置 | |
WO2021146990A1 (zh) | 传输相位跟踪参考信号的方法和装置 | |
WO2019242738A1 (zh) | 发送调制符号的方法、接收调制符号的方法和通信设备 | |
WO2018145303A1 (zh) | 一种通信方法及设备 | |
WO2021000712A1 (zh) | 符号处理的方法与装置 | |
WO2021056227A1 (zh) | 用于传输参考信号的方法与装置 | |
WO2022228117A1 (zh) | 一种确定ptrs图案的方法和装置 | |
WO2017063193A1 (zh) | 一种确定传输块大小的方法用户设备和基站 | |
WO2018202106A1 (zh) | 无线通信方法及装置 | |
WO2023273857A1 (zh) | 信号传输的方法和通信装置 | |
WO2022140907A1 (zh) | 一种数据发送方法及装置 | |
WO2021128151A1 (zh) | 传输相位跟踪参考信号的方法与装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915614 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915614 Country of ref document: EP Kind code of ref document: A1 |