WO2021128151A1 - 传输相位跟踪参考信号的方法与装置 - Google Patents

传输相位跟踪参考信号的方法与装置 Download PDF

Info

Publication number
WO2021128151A1
WO2021128151A1 PCT/CN2019/128610 CN2019128610W WO2021128151A1 WO 2021128151 A1 WO2021128151 A1 WO 2021128151A1 CN 2019128610 W CN2019128610 W CN 2019128610W WO 2021128151 A1 WO2021128151 A1 WO 2021128151A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptrs
pattern
ptrs pattern
scene
zero
Prior art date
Application number
PCT/CN2019/128610
Other languages
English (en)
French (fr)
Inventor
徐明慧
刘凤威
黄博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/128610 priority Critical patent/WO2021128151A1/zh
Publication of WO2021128151A1 publication Critical patent/WO2021128151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of communications, and in particular to a method and device for transmitting a phase tracking reference signal (PTRS).
  • PTRS phase tracking reference signal
  • High-frequency frequency bands (frequency bands above 6 GHz, for example, 28 GHz, 39 GHz, 60 GHz, and 73 GHz frequency bands) have become a research and development hotspot for the industry to solve the increasing communication needs due to its rich frequency band resources.
  • the high-frequency band has the advantages of large bandwidth and highly integrated antenna array, but it also has the problem of mid-range radio frequency distortion.
  • phase error caused by phase noise (PHN) can cause frequency-domain interference, such as intra-carrier interference (also called intra-carrier interference). It is common phase error (CPE) and inter-carrier interference (ICI). Frequency domain interference will increase the difficulty of data demodulation, resulting in performance degradation or even failure of high-frequency communication systems.
  • PPN phase noise
  • CPE common phase error
  • ICI inter-carrier interference
  • phase tracking reference signals For phase noise at high frequencies, phase tracking reference signals (PTRS) are usually used to estimate and compensate phase errors caused by phase noise.
  • the current technology adopts PTRS to estimate the phase noise, and it cannot be guaranteed to be applicable to all scenarios. For example, the estimation accuracy of phase noise is low in some scenarios.
  • the current technology proposes a phase noise estimation scheme based on a discrete PTRS pattern, which reduces the estimation accuracy of inter-carrier interference caused by phase noise when the power of the reference signal needs to be increased.
  • the present application provides a method and device for transmitting PTRS.
  • the determined PTRS pattern can be made suitable for the current scene, thereby improving the estimation accuracy of phase noise.
  • a method for transmitting PTRS includes: determining a first PTRS pattern corresponding to a current scene according to preset correspondence information, where the preset correspondence information includes multiple scenes and multiple PTRS patterns. Correspondence; according to the first PTRS pattern, send PTRS to the receiving end; wherein, the first PTRS pattern is any one of the following: discrete PTRS pattern, blocky zero power PTRS pattern, blocky non-zero power PTRS pattern.
  • determining the PTRS pattern according to the scene it is possible to dynamically determine the PTRS pattern based on the scene, so that the determined PTRS pattern is suitable for the current scene, thereby improving the estimation accuracy of phase noise and reducing the difficulty of data demodulation.
  • the scene is characterized by scene parameters
  • the preset correspondence information includes the correspondence between scene parameters of multiple scenes and multiple PTRS patterns
  • the preset Setting corresponding information to determine the first PTRS pattern corresponding to the current scene includes: determining the first PTRS pattern corresponding to the current scene according to the scene parameters of the current scene and preset corresponding information, wherein the scene parameters may include any of the following parameters Or multiple: phase noise model, carrier frequency, subcarrier spacing, scheduling bandwidth, modulation order, code rate, modulation coding mode MCS, phase noise power spectral density, number of PTRS, channel conditions, signal-to-noise ratio SNR, PTRS time The threshold value of the frequency domain density.
  • the first PTRS pattern any one of the following: discrete PTRS pattern, block zero power PTRS pattern, block non-zero power PTRS pattern; or the number of PTRS in the current scene is greater than the first threshold and less than or equal to the second threshold
  • the first PTRS pattern is a blocky zero-power PTRS pattern or a blocky non-zero power PTRS pattern
  • the first PTRS pattern is a blocky non-zero power PTRS pattern.
  • the PTRS pattern By dynamically determining the PTRS pattern according to the number of PTRS, the PTRS pattern can be effectively used, and the adaptive ICI order can be accurately estimated with lower complexity, which can improve the data demodulation performance under phase noise and the spectral efficiency under the influence of phase noise .
  • the first PTRS pattern when the scene is characterized by scene parameter modulation and coding mode (MCS), when the MCS is less than or equal to the third threshold, the first PTRS pattern Is a discrete PTRS pattern; or when the MCS is greater than the third threshold and less than or equal to the fourth threshold, the first PTRS pattern is a block zero-power PTRS pattern; or when the MCS is greater than the fourth threshold In this case, the first PTRS pattern is a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • MCS scene parameter modulation and coding mode
  • the PTRS pattern By dynamically determining the PTRS pattern based on the MCS, the PTRS pattern can be effectively used, and the adaptive ICI order can be accurately estimated with lower complexity, which can improve the data demodulation performance under phase noise and the spectrum efficiency under the influence of phase noise.
  • the first PTRS pattern in the case where the value of the parameter included in the scene parameter of the current scene is an element in the first subset S1, the first PTRS pattern is a discrete PTRS Pattern; in the case where the values of the parameters included in the scene parameters of the current scene are elements in the second subset S2, the first PTRS pattern is a block zero-power PTRS pattern; the selection of the parameters included in the scene parameters of the current scene When the value is an element of the third subset S3, the first PTRS pattern is a blocky non-zero power PTRS pattern.
  • each of the first subset S1, the second subset S2, and the third subset S3 includes the value or value range of any one or more of the following parameters: phase noise model, carrier frequency, Sub-carrier spacing, scheduling bandwidth, modulation order, code rate, modulation coding mode MCS, phase noise power spectral density, PTRS number, channel conditions, signal-to-noise ratio SNR, PTRS time-frequency domain density threshold.
  • This parameter is related to the ICI order.
  • the PTRS pattern can be effectively used, and the lower complexity is adopted to realize the accurate estimation of the adaptive ICI order, which can improve the data demodulation performance under phase noise and increase the influence of phase noise. Spectral efficiency under.
  • the block size of the first PTRS pattern is 1, and the block size of the first PTRS pattern is zero.
  • the block size of the first PTRS pattern is related to the frequency selectivity characterization parameter of the channel of the current scene.
  • the block size of the first PTRS pattern is the number of PTRS, and the number of blocks is 1. If the frequency selectivity characterization parameter of the channel in the current scene is equal to or higher than the threshold, the block size of the first PTRS pattern is less than the number of PTRS, and the number of blocks is greater than one.
  • the block size of the block PTRS pattern is related to the frequency selectivity characterization parameter of the channel, that is, the block size of the block PTRS pattern can be determined based on the frequency selectivity characterization parameter of the channel, which can improve the anti-frequency selection ability of the block PTRS pattern , which can improve the estimation accuracy of phase noise.
  • the preset corresponding information is stipulated by an agreement or predefined or preconfigured.
  • the preset corresponding information is stipulated by the protocol or pre-defined or pre-configured, which is equivalent to the PTRS pattern implicitly determined by the scene parameters, and no additional signaling is required to specifically indicate the PTRS pattern of the current scene at the receiving end, which can save signaling .
  • the method further includes: sending indication information of the first PTRS pattern to the receiving end, where the indication information includes any one of the following attributes of the first PTRS pattern Or multiple: pattern type, block size, block quantity.
  • sending the PTRS to the receiving end according to the first PTRS pattern includes: sending the PTRS to the receiving end according to the mapping position of the first PTRS pattern and the PTRS.
  • the method further includes: determining the mapping position of the PTRS according to the channel quality of the current scene; sending indication information of the determined mapping position of the PTRS to the receiving end .
  • determining the mapping position of the PTRS according to the channel quality of the current scene includes: selecting a group of channels with the best channel quality from multiple groups of channels as the PTRS Map location.
  • mapping position of the PTRS according to the channel conditions can improve the anti-frequency selection ability of the PTRS pattern, thereby improving the data demodulation performance under phase noise, and improving the spectrum efficiency under the influence of phase noise.
  • the frequency domain mapping positions of the PTRS on adjacent symbols are different.
  • the method further includes: determining the mapping position of the PTRS according to any one or more of the following parameters, so that the frequency domain of the PTRS on the adjacent symbols The positions are different, that is, the frequency domain mapping positions of the PTRS on adjacent symbols have different offsets: scheduling bandwidth, symbol data, and number of blocks.
  • the different frequency domain positions of the PTRS on adjacent symbols can enhance the anti-frequency selection ability of the PTRS pattern, thereby improving the data demodulation performance under phase noise, and improving the spectral efficiency under the influence of phase noise.
  • a method for transmitting a phase tracking reference signal PTRS includes: determining a first PTRS pattern corresponding to a current scene; It is assumed that the PTRS pattern corresponding to the current scene determined by the corresponding information is sent PTRS, where the preset correspondence information includes the correspondence between multiple scenes and multiple PTRS patterns; wherein, the first PTRS pattern is any one of the following: discrete PTRS Pattern, block zero power PTRS pattern, block non-zero power PTRS pattern.
  • determining the PTRS pattern according to the scene it is possible to dynamically determine the PTRS pattern based on the scene, so that the determined PTRS pattern is suitable for the current scene, thereby improving the estimation accuracy of phase noise and reducing the difficulty of data demodulation.
  • the preset corresponding information is stipulated by an agreement or predefined or preconfigured.
  • determining the first PTRS pattern corresponding to the current scene includes: determining the first PTRS pattern corresponding to the current scene according to preset corresponding information.
  • the preset corresponding information is stipulated by the protocol or pre-defined or pre-configured, which is equivalent to the PTRS pattern implicitly determined by the scene parameters, and no additional signaling is required to specifically indicate the PTRS pattern of the current scene at the receiving end, which can save signaling .
  • the scene is characterized by scene parameters
  • the preset correspondence information includes the correspondence between scene parameters of multiple scenes and multiple PTRS patterns
  • the preset Setting corresponding information to determine the first PTRS pattern corresponding to the current scene includes: determining the first PTRS pattern corresponding to the current scene according to the scene parameters of the current scene and preset corresponding information, wherein the scene parameters may include any of the following parameters Or multiple: phase noise model, carrier frequency, subcarrier spacing, scheduling bandwidth, modulation order, code rate, modulation coding mode MCS, phase noise power spectral density, number of PTRS, channel conditions, signal-to-noise ratio SNR, PTRS time The threshold value of the frequency domain density.
  • the first PTRS pattern any one of the following: discrete PTRS pattern, block zero power PTRS pattern, block non-zero power PTRS pattern; or the number of PTRS in the current scene is greater than the first threshold and less than or equal to the second threshold
  • the first PTRS pattern is a blocky zero-power PTRS pattern or a blocky non-zero power PTRS pattern
  • the first PTRS pattern is a blocky non-zero power PTRS pattern.
  • the PTRS pattern By dynamically determining the PTRS pattern according to the number of PTRS, the PTRS pattern can be effectively used, and the adaptive ICI order can be accurately estimated with lower complexity, which can improve the data demodulation performance under phase noise and the spectral efficiency under the influence of phase noise .
  • the first PTRS pattern when the scene is characterized by the scene parameter MCS, when the MCS is less than or equal to the third threshold, the first PTRS pattern is a discrete PTRS pattern; Or when the MCS is greater than the third threshold and less than or equal to the fourth threshold, the first PTRS pattern is a block zero-power PTRS pattern; or when the MCS is greater than the fourth threshold, the first PTRS pattern is The PTRS pattern is a block zero power PTRS pattern or a block non-zero power PTRS pattern.
  • the PTRS pattern By dynamically determining the PTRS pattern based on the MCS, the PTRS pattern can be effectively used, and the adaptive ICI order can be accurately estimated with lower complexity, which can improve the data demodulation performance under phase noise and the spectrum efficiency under the influence of phase noise.
  • the first PTRS pattern in the case where the value of the parameter included in the scene parameter of the current scene is an element in the first subset S1, the first PTRS pattern is a discrete PTRS Pattern; in the case where the values of the parameters included in the scene parameters of the current scene are elements in the second subset S2, the first PTRS pattern is a block zero-power PTRS pattern; the selection of the parameters included in the scene parameters of the current scene When the value is an element of the third subset S3, the first PTRS pattern is a blocky non-zero power PTRS pattern.
  • each of the first subset S1, the second subset S2, and the third subset S3 includes the value or value range of any one or more of the following parameters: phase noise model, carrier frequency, Sub-carrier spacing, scheduling bandwidth, modulation order, code rate, modulation coding mode MCS, phase noise power spectral density, PTRS number, channel conditions, signal-to-noise ratio SNR, PTRS time-frequency domain density threshold.
  • This parameter is related to the ICI order.
  • the PTRS pattern can be effectively used, and the lower complexity is adopted to realize the accurate estimation of the adaptive ICI order, which can improve the data demodulation performance under phase noise and increase the influence of phase noise. Spectral efficiency under.
  • the block size of the first PTRS pattern is 1; and the block size of the first PTRS pattern is zero block.
  • the block size of the first PTRS pattern is related to the frequency selectivity characterization parameter of the channel of the current scene.
  • the block size of the first PTRS pattern is the number of PTRS, and the number of blocks is 1. If the frequency selectivity characterization parameter of the channel in the current scene is equal to or higher than the threshold, the block size of the first PTRS pattern is less than the number of PTRS, and the number of blocks is greater than one.
  • the block size of the first PTRS pattern is the number of PTRS, and the number of blocks is 1. If the frequency selectivity characterization parameter of the channel in the current scene is equal to or higher than the threshold, the block size of the first PTRS pattern is less than the number of PTRS, and the number of blocks is greater than one.
  • the block size of the block PTRS pattern is related to the frequency selectivity characterization parameter of the channel, that is, the block size of the block PTRS pattern can be determined based on the frequency selectivity characterization parameter of the channel, which can improve the anti-frequency selection ability of the block PTRS pattern , which can improve the estimation accuracy of phase noise.
  • determining the first PTRS pattern corresponding to the current scene includes: receiving indication information of the PTRS pattern sent by the transmitting end, and the indication information including the first PTRS pattern is as follows Any one or more of the attributes: pattern type, block size, and block quantity; according to the indication information of the PTRS pattern, the first PTRS pattern corresponding to the current scene is obtained.
  • receiving the PTRS sent by the sending end according to the first PTRS pattern includes: receiving the PTRS sent by the sending end according to the mapping position of the first PTRS pattern and the PTRS .
  • the method further includes: receiving indication information of the PTRS mapping position sent by the transmitting end, where the PTRS mapping position is determined by the transmitting end according to the channel quality of the current scene ⁇ ; According to the indication information of the PTRS mapping position, determine the PTRS mapping position.
  • mapping position of the PTRS according to the channel conditions can improve the anti-frequency selection ability of the PTRS pattern, thereby improving the data demodulation performance under phase noise, and improving the spectrum efficiency under the influence of phase noise.
  • the frequency domain mapping positions of the PTRS on adjacent symbols are different.
  • the method further includes: determining the mapping position of the PTRS according to any one or more of the following parameters, so that the frequency domain positions of the TRS on the adjacent symbols are different, that is, the frequency domain mapping of the PTRS on the adjacent symbols
  • the positions have different offsets: scheduling bandwidth, symbol data, and block number.
  • the different frequency domain positions of the PTRS on adjacent symbols can enhance the anti-frequency selection ability of the PTRS pattern, thereby improving the data demodulation performance under phase noise, and improving the spectral efficiency under the influence of phase noise.
  • a communication device is provided, and the communication device may be used to execute the method in the method in the first aspect or the second aspect.
  • the communication device may include a module for executing the method in the method in the first aspect or the second aspect.
  • a communication device in a fourth aspect, includes a processor coupled with a memory.
  • the memory is used to store a computer program or instruction, and the processor is used to execute the computer program or instruction stored in the memory, so that the first aspect Or the method in the second aspect is executed.
  • the processor is configured to execute a computer program or instruction stored in the memory, so that the communication device executes the method in the first aspect or the second aspect.
  • the communication device includes one or more processors.
  • the communication device may further include a memory coupled with the processor.
  • the communication device may include one or more memories.
  • the memory can be integrated with the processor or provided separately.
  • the communication device may also include a transceiver.
  • a chip in a fifth aspect, includes a processing module and a communication interface, the processing module is used to control the communication interface to communicate with the outside, and the processing module is also used to implement the method in the first aspect or the second aspect.
  • a computer-readable storage medium on which a computer program (also referred to as an instruction or code) for implementing the method in the first aspect or the second aspect is stored.
  • the computer when the computer program is executed by a computer, the computer can execute the method in the first aspect or the second aspect.
  • the computer may be a communication device.
  • a computer program product includes a computer program (also referred to as an instruction or code), which when executed by a computer causes the computer to implement the method in the first aspect or the second aspect .
  • the computer may be a communication device.
  • a communication system which includes the communication device provided in the third aspect for executing the method provided in the first aspect and the communication device provided in the third aspect for executing the method provided in the second aspect.
  • the communication device provided by the third aspect for executing the method provided by the first aspect may be referred to as a network device, and the communication device provided by the third aspect for executing the method provided by the second aspect may be referred to as a terminal device.
  • the embodiment of the present application establishes the correspondence between various scene parameters and the PTRS pattern, so that the PTRS pattern can be dynamically selected according to the scene, so that the phase can be improved.
  • the accuracy of noise estimation can reduce the difficulty of data demodulation.
  • Fig. 1 is a schematic diagram of reference signal transmission.
  • Fig. 2 is a schematic diagram of a communication system to which an embodiment of the present application is applicable.
  • Fig. 3 is a schematic diagram of a PTRS pattern in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of performing PTRS measurement according to a PTRS pattern in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for transmitting PTRS provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the block size and the number of blocks of a block PTRS pattern in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the mapping position of PTRS in an embodiment of the present application.
  • FIG. 8 is another schematic flowchart of a method for transmitting PTRS according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • High-frequency frequency bands (frequency bands above 6 GHz, for example, 28 GHz, 39 GHz, 60 GHz, and 73 GHz frequency bands) have become a hot spot for research and development in the industry to solve the growing communication needs due to their rich frequency band resources.
  • the salient features of the high-frequency frequency band can achieve high throughput due to the large bandwidth and highly integrated antenna array, as well as mid-range radio frequency distortion.
  • phase noise introduces phase error, which in turn causes frequency domain interference, leading to high-frequency communication systems The performance drops or even fails to work.
  • s represents a frequency domain signal that is not affected by phase noise
  • S represents a frequency domain signal that is affected by a noise signal
  • E represents a conversion matrix between s and S. It should be understood that E reflects the influence of phase noise on the frequency domain signal.
  • the expression of each element in E is
  • the coefficient E 0 of the first term in the above formula can be called common phase error (CPE), and the summation formula of the second term in the above formula can be called inter sub-carrier interference (inter sub-carrier interference, ICI).
  • CPE common phase error
  • ICI inter sub-carrier interference
  • E 0 s i means that the phase noise causes the original signal on the subcarrier to rotate or scale. Can understand That is, E 0 has nothing to do with the subcarrier number, that is, the rotation or scaling of the original signal on all subcarriers is the same. Therefore, the phase error caused by the phase noise represented by the first term E 0 s i in the above formula can be referred to as the common phase error (CPE).
  • CPE common phase error
  • phase error caused by the phase noise expressed by the second summation formula in the above formula is related to the subcarrier number. Therefore, the phase error caused by the phase noise expressed by the second summation formula in the above formula can be called Inter-subcarrier interference (ICI).
  • ICI Inter-subcarrier interference
  • phase error caused by the phase noise represented by the first term E 0 s i in the above formula can be regarded as the interference of the sub-carrier to the sub-carrier itself.
  • phase noise will cause phase error, and this phase error will cause frequency domain interference.
  • the frequency domain interference caused by phase noise will increase the difficulty of data demodulation, and cause the performance of the high-frequency communication system to decrease or even fail to work.
  • the higher the phase noise power spectrum density the greater the impact on the received signal.
  • phase tracking reference signal For the phase noise in the high frequency band, a phase tracking reference signal (PTRS) is usually used to estimate and compensate the phase error caused by the phase noise.
  • the phase error estimation and compensation mainly include: CPE estimation and compensation, and ICI estimation and compensation.
  • the reference signal is that the transmitting end adds a pre-known pilot symbol to the transmitted effective signal, and the receiving end can demodulate or decode the effective signal according to the known pilot symbol.
  • Using PTRS to estimate and compensate the phase error refers to using the PTRS inserted into the effective signal to estimate and compensate the phase error.
  • the PTRS pattern demap the signal from the transmitting end to obtain the PTRS received signal after demapping, where the PTRS pattern should be consistent with the PTRS pattern on the transmitting end side;
  • phase error for example, including CPE and/or ICI
  • the operation of the receiving end also includes equalization.
  • Equalization represents an anti-frequency selective fading method, which can compensate for changes in amplitude-frequency characteristics caused by frequency selective fading. Equalization can be regarded as removing the influence of the channel on the signal. Before equalization, the process of implicit channel estimation.
  • the data bit stream obtained by the receiving end is consistent with the data bit stream sent by the sending end.
  • phase noise estimation scheme based on PTRS will reduce the estimation accuracy of phase noise in some scenarios.
  • the discrete PTRS pattern is used for phase noise estimation.
  • the phase noise will be reduced.
  • the estimated accuracy of the introduced ICI is the estimated accuracy of the introduced ICI.
  • This application provides a method and device for transmitting PTRS.
  • the PTRS pattern can be dynamically determined with the scene, so that the determined PTRS pattern can be adapted to the current scene, and thus the phase noise in the current scene can be improved The accuracy of the estimate.
  • phase noise causes phase error, which in turn causes frequency domain interference. Therefore, the estimation of phase noise is equivalent to the estimation of the phase error caused by the phase noise and the estimation of the frequency domain interference caused by the phase noise. Therefore, the following descriptions in this article can be equivalently replaced:
  • phase error estimation includes CPE estimation, and/or ICI estimation.
  • LTE long term evolution
  • 5G fifth generation mobile communication
  • M2M machine to machine communication
  • 6G 6th Generation
  • 5G wireless air interface technology is called a new radio (NR)
  • NR new radio
  • the communication systems to which the embodiments of the present application can be applied include, but are not limited to, any one or more of the following communication methods:
  • wireless broadband to the home wireless to the x, WTTx
  • enhanced mobile broadband eMBB
  • D2D device to device
  • Fig. 2 is a schematic diagram of a communication system to which an embodiment of this application is applicable.
  • the communication system includes a plurality of network devices, such as the network devices 210 and 220 shown in FIG. 2, and a plurality of terminal devices 230.
  • the network device can be used to communicate with one or more terminal devices. As shown in FIG. 2, the network device 220 is used to communicate with the terminal device 230.
  • the communication system between the network device 220 and the terminal device 230 may be an enhanced mobile broadband (eMBB) system.
  • eMBB enhanced mobile broadband
  • the network device can be used to communicate with one or more base stations with partial terminal device functions. As shown in FIG. 2, the network device 210 and the network device 220 can communicate with each other, and the network device 220 can also communicate with each other. For example, the network devices 220, or the network device 220 and the network device 210 may communicate directly or indirectly through a non-ideal backhaul interface. For another example, the communication method between the network devices 220 or the communication method between the network device 220 and the network device 210 may be wireless broadband to the home (wireless to the x, WTTx).
  • Terminal equipment can be distributed throughout the communication system.
  • the terminal equipment can be stationary or mobile.
  • Device-to-device (D2D) communication can be performed between terminal devices. As shown in FIG. 2, D2D communication can be performed between terminal devices 230.
  • Network equipment can be called a base station.
  • the base station can have many forms, for example, a macro base station, a micro base station, a relay station, or an access point.
  • the network equipment may be an evolved Node B (eNB) in an LTE system, or a 5G system, or a transmission reception point (TRP).
  • eNB evolved Node B
  • TRP transmission reception point
  • some network devices are eNBs, some are gNBs, some are TRPs, and some are central units (CU) or other network entities.
  • the network device 210 is a central unit
  • the network device 220 is a TRP.
  • Terminal equipment can be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user agent Or user device.
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, wearable devices, etc.
  • the communication system shown in FIG. 2 is only to illustrate the technical solution of the application more clearly, and does not constitute a limitation to the application. Those of ordinary skill in the art will know that with the evolution of the network architecture and the emergence of new business scenarios, the application The technical solutions provided in the embodiments are equally applicable to similar technical problems.
  • the PTRS pattern represents the distribution style or distribution pattern of the resources occupied by the PTRS.
  • the embodiments of this application involve the following three PTRS patterns.
  • the discrete PTRS pattern is shown in (a) in FIG. 3, and every N resource elements (resource elements, RE) are mapped to one PTRS, and N is a positive integer.
  • the distribution pattern or distribution pattern of the resources occupied by the PTRS represented by the discrete PTRS pattern is that the PTRS occupies 1 RE for every N REs.
  • the discrete PTRS pattern can also be expressed as: each N/N0 resource block (RB) is mapped to one PTRS, where N is an integer multiple of N0, and N0 represents the number of REs included in one RB. For example, in the existing protocol, the number of REs contained in one RB is 12.
  • each RE represents a subcarrier.
  • the method of estimating the CPE based on the discrete PTRS pattern is to obtain the CPE estimation value according to the received signal and the transmitted signal of the RE where the PTRS is located.
  • the method of estimating ICI based on the discrete PTRS pattern is to combine the received signal of the RE where the PTRS is located and the received signal of the RE near the RE where the PTRS is located to construct a matrix, and use the inverse matrix of the matrix and the transmitted signal of the RE where the PTRS is located, Obtain ICI estimates.
  • NZP Block-shaped non-zero power
  • the block-shaped non-zero power PTRS pattern is shown in Figure 3(b), the PTRS is intensively mapped on M REs, and M is a positive integer. That is, the PTRS is intensively mapped on a certain frequency domain resource.
  • the distribution pattern or distribution pattern of the PTRS occupied resources represented by the block-shaped non-zero power PTRS pattern is that the PTRS is intensively mapped to a certain frequency domain resource.
  • the block non-zero power PTRS pattern can also be expressed as that the PTRS is intensively mapped on M/N0 RBs, where M is an integer multiple of N0, and N0 represents the number of REs contained in one RB.
  • the method of estimating the CPE based on the blocky non-zero power PTRS pattern is to obtain the CPE estimation value according to the received signal and the transmitted signal of the RE where the PTRS is located.
  • the method of estimating ICI based on the blocky non-zero power PTRS pattern is to construct a matrix based on the transmitted signal of the RE where the PTRS is located, and obtain the ICI estimated value through the inverse matrix of the matrix and the received signal of the RE where the PTRS is located.
  • the block-shaped zero-power PTRS pattern is shown in Figure 3(c).
  • the PTRS is intensively mapped on M REs. Except for the non-zero-power PTRS on the middle RE, the other REs are all zero-power PTRS, that is, other REs.
  • the REs are all vacant and do not carry any signals.
  • the distribution pattern or distribution pattern of the PTRS occupied resources represented by the block zero-power PTRS pattern is that the PTRS is intensively mapped on a certain frequency domain resource, in which, except for the non-zero power PTRS on the middle RE, the other REs are all Zero power PTRS.
  • the block-shaped zero-power PTRS pattern can also be expressed as that PTRS is intensively mapped on M/N0 RBs, where M is an integer multiple of N0, and N0 represents the number of REs contained in an RB, except that the middle RE has non-zero power. Except PTRS, all other REs are zero-power PTRS.
  • the method of estimating the CPE based on the block zero-power PTRS pattern is to obtain the CPE estimation value according to the received signal and the transmitted signal of the RE where the PTRS is located.
  • E i corresponds to the aforementioned E k .
  • r i represents the received signal.
  • p means sending a signal.
  • the PTRS pattern includes two attributes, pattern type and pattern parameter.
  • the pattern type indicates the distribution pattern or the type of the distribution pattern of the resources occupied by the PTRS.
  • (a), (b), (c) in Figure 3 show three different pattern types of PTRS patterns, namely discrete PTRS patterns, block non-zero power PTRS patterns, and block zero power PTRS patterns. .
  • the PTRS pattern has the concept of blocks.
  • the pattern parameters include the size of the blocks in the PTRS pattern and the number of included blocks.
  • block size is used below to refer to the size of the block in the PTRS pattern
  • number of blocks refers to the number of blocks included in the PTRS pattern. The meaning of the blocks in the PTRS pattern is described below.
  • each PTRS is regarded as a block. That is, in the discrete PTRS pattern, each block occupies 1 RE.
  • the PTRS that is intensively mapped on M REs is regarded as one block. That is, in the block-shaped non-zero power PTRS pattern, each block occupies consecutive M REs.
  • the PTRS that is intensively mapped on M REs is regarded as one block. That is, in the block zero-power PTRS pattern, each block occupies consecutive M REs.
  • the block size can be characterized by the number of PTRS contained in the block or the number of REs related to the PTRS. For example, in the discrete PTRS pattern shown in (a) of FIG. 3, the block size is 1 PTRS. In the block non-zero power PTRS pattern shown in (b) of FIG. 3, the block size is M PTRS. In the block-shaped zero-power PTRS pattern shown in Figure 3(c), the block size is M REs, or it can be regarded as the block size is M PTRSs, and the vacant part is considered as zero-power PTRS (ZP-PTRS ).
  • ZP-PTRS zero-power PTRS
  • the number of blocks indicates the number of blocks included in the PTRS pattern.
  • the relationship between the number of PTRS of the PTRS pattern, the block size of the PTRS pattern, and the number of blocks of the PTRS pattern is: the number of PTRS of the PTRS pattern is equal to the cumulative sum of the block sizes of all blocks included in the PTRS pattern.
  • the relationship between the number of PTRS of the PTRS pattern, the block size of the PTRS pattern, and the number of blocks of the PTRS pattern is that the number of PTRS of the PTRS pattern is equal to the number of blocks of the PTRS pattern The product of size and number of blocks.
  • FIG. 3 is only an example and not a limitation.
  • 4 blocks in the discrete PTRS pattern are schematically shown
  • Fig. 3(b) 1 block in the blocky non-zero power PTRS pattern is schematically shown
  • Block in (c) of FIG. 3, one block in the block-shaped zero-power PTRS pattern is schematically given.
  • the block size and the number of blocks of the PTRS pattern can be determined according to actual needs.
  • the PTRS is intensively mapped on multiple REs, so it can be collectively referred to as the blocky PTRS pattern.
  • a blocky non-zero power PTRS pattern because the PTRS is intensively mapped on multiple REs, in a scenario where the channel conditions of the mapped multiple REs are poor, the ability to resist frequency selection is poor. For example, if a block non-zero power PTRS pattern is used for ICI estimation, the accuracy of ICI estimation will be reduced due to poor anti-frequency selection ability.
  • the block-shaped zero-power PTRS pattern is similar to the block-shaped non-zero-power PTRS pattern, because the PTRS is intensively mapped on the RE, resulting in poor frequency selection resistance.
  • Frequency selectivity means the frequency selective fading of the channel.
  • the ability to resist frequency selection means the ability to resist the frequency selective fading of the channel.
  • the block zero-power PTRS pattern if the non-zero power PTRS does not perform power uplift, the estimated ICI accuracy is low; if the power on the zero-power PTRS is used to increase the power of the non-zero power PTRS, when a block occupies the RE
  • the number (M as shown in Fig. 3(c)) is relatively large, for example, greater than 7 (M>7 as shown in Fig. 3(c)) will result in non-zero power PTRS and side data
  • the power difference on the RE that is, the subcarrier
  • PAPR peak-to-average power ratio
  • this application proposes to determine the PTRS pattern based on the scene, so that the PTRS pattern can be dynamically determined according to the scene, and the determined PTRS pattern can be adapted to the current scene, thereby improving the estimation accuracy of phase noise and reducing data demodulation. (Or decoding) difficulty.
  • FIG. 5 is a schematic flowchart of a method for transmitting PTRS according to an embodiment of the application. As shown in Figure 5, the method includes the following steps.
  • S510 The sending end determines the first PTRS pattern corresponding to the current scene according to the preset corresponding information.
  • the preset correspondence information includes the correspondence between multiple scenes and multiple PTRS patterns, where the multiple PTRS patterns include any two or more of the following PTRS patterns: discrete PTRS patterns, block zero-power PTRS patterns, Block-shaped non-zero power PTRS pattern.
  • each scene uniquely corresponds to a PTRS pattern. For example, regarding the current scene, it uniquely corresponds to the first PTRS pattern.
  • the first PTRS pattern corresponding to the current scene determined according to the preset correspondence information may be any one of the following: a discrete PTRS pattern, a blocky zero-power PTRS pattern, and a blocky non-zero-power PTRS pattern.
  • S520 The receiving end determines the PTRS pattern corresponding to the current scene, that is, the first PTRS pattern.
  • the receiving end determines the PTRS pattern corresponding to the current scene.
  • the PTRS pattern corresponding to the current scene is determined as the first PTRS pattern based on preset corresponding information, or the PTRS pattern corresponding to the current scene is learned according to the signaling of the sending end.
  • the first PTRS pattern It will be described below and will not be described here.
  • the sending end and the receiving end transmit the PTRS according to the first PTRS pattern. That is, the transmitting end sends the PTRS according to the first PTRS pattern, and the receiving end receives the PTRS according to the first PTRS pattern.
  • the PTRS pattern can be dynamically determined based on the scene, so that the determined PTRS pattern can be adapted to the current scene.
  • the determined PTRS pattern is suitable for the current scene, which means that using the PTRS pattern to estimate the phase noise in the current scene can improve the estimation accuracy of the phase error, or can also reduce the estimation complexity.
  • the PTRS pattern by determining the PTRS pattern according to the scene, the PTRS pattern can be dynamically determined based on the scene, so that the determined PTRS pattern is suitable for the current scene, thereby improving the estimation accuracy of phase noise and reducing the difficulty of data demodulation.
  • the "first” in the "first PTRS pattern” mentioned in this article is only for distinction and not limitation, that is, in order to distinguish the PTRS pattern corresponding to the current scene from multiple PTRS patterns included in the preset correspondence information.
  • the sending end is a network device (for example, a base station), and the receiving end is a terminal device, or the sending end is a terminal device, and the receiving end is a network device.
  • the receiving end performs phase noise estimation and compensation by measuring the received PTRS, such as CPE estimation and compensation, or ICI estimation and compensation.
  • the receiving end may also estimate other information by measuring the received PTRS, for example, estimate the Doppler shift, or perform time synchronization or channel estimation.
  • the receiving end can determine what information to estimate based on PTRS according to application requirements, which is not limited in this application.
  • the estimation of phase noise by the receiving end based on the received PTRS is taken as an example for description.
  • the preset correspondence information includes the correspondence between multiple scenes and multiple PTRS patterns, where the scene can be characterized by scene parameters, that is, the preset correspondence information includes the relationship between the scene parameters and the PTRS pattern. In other words, the preset correspondence information includes the correspondence between scene parameters of multiple scenes and multiple PTRS patterns.
  • the scene parameters can include any one or more of the following parameters:
  • Phase noise model carrier frequency, sub-carrier spacing, scheduling bandwidth, modulation order, code rate, modulation and coding scheme (MCS), phase noise power spectral density, number of PTRS, channel conditions, signal-to-noise ratio ( signal-to-noise ratio, SNR), PTRS time-frequency domain density threshold.
  • MCS modulation order
  • MCS modulation and coding scheme
  • SNR signal-to-noise ratio
  • the threshold of PTRS time-frequency domain density can be the threshold of PTRS time-frequency domain density used for CPE estimation/compensation, or the threshold of PTRS time-frequency domain density used for ICI estimation/compensation value.
  • the PTRS time-frequency domain density threshold is the threshold of PTRS time-frequency domain density used for CPE estimation/compensation.
  • the PTRS time-frequency domain density threshold is The threshold value of the frequency domain density is the threshold value of the PTRS time-frequency domain density used for ICI estimation/compensation.
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the preset corresponding information and the scene parameter of the current scene .
  • the scene parameters mentioned in this article can include any one or more of the following parameters:
  • Phase noise model carrier frequency, sub-carrier spacing, scheduling bandwidth, modulation order, code rate, MCS, phase noise power spectrum density, PTRS number, channel conditions, SNR, PTRS time-frequency domain density threshold.
  • the preset correspondence information may have multiple definition methods, that is, the correspondence between multiple scenes and multiple PTRS patterns included in the preset correspondence information may have multiple definition methods.
  • the corresponding relationship between the scene parameter included in the preset corresponding information and the PTRS pattern can be defined in multiple ways.
  • the definition of the corresponding relationship between the scene parameter and the PTRS pattern included in the preset correspondence information is determined based on the value of the scene parameter. That is, the definition method of the preset corresponding information is determined based on the value of the scene parameter of the scene.
  • the definition of the preset corresponding information is shown in Table 1.
  • the value of the scene parameter The first subset S1 Second subset S2
  • the third subset S3 PTRS pattern Discrete PTRS pattern Block zero power PTRS pattern Block non-zero power PTRS pattern
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene is a blocky non-zero power PTRS pattern.
  • Each of the first subset S1, the second subset S2, and the third subset S3 includes the value or range of any one or more of the following parameters:
  • Phase noise model carrier frequency, sub-carrier spacing, scheduling bandwidth, modulation order, code rate, MCS, phase noise power spectrum density, PTRS number, channel conditions, SNR, PTRS time-frequency domain density threshold.
  • j represents any one of the above scene parameters.
  • the sets of different scene parameters can be intersection or union.
  • a (i, j) can be an empty set, or a complete set of scene parameter j, or a specific value of scene parameter j, or a value range of scene parameter j.
  • Table 1 may be Table 2 below; if the scene parameter is modulation and coding scheme (MCS), Table 1 may be Table 4 below; if the scene parameter is scheduling Bandwidth, Table 1 can be the following Table 5; if the scene parameter is the carrier frequency, Table 1 can be the following Table 6; if the scene parameter is the modulation order, Table 1 can be the following Table 7; if the scene parameter is the code Code rate, Table 1 can be Table 8 below; if the scene parameter is the signal-to-noise ratio (SNR), Table 1 can be the following Table 9; if the scene parameter is the phase noise model, Table 1 can be the following Table 10; if The scene parameter is the subcarrier interval, and Table 1 may be Table 11 below. See the related description below for details.
  • MCS modulation and coding scheme
  • Table 1 if the scene parameter is scheduling Bandwidth, Table 1 can be the following Table 5; if the scene parameter is the carrier frequency, Table 1 can be the following Table 6; if the scene parameter is the modulation order, Table 1 can
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the value of the scene parameter of the current scene and the preset corresponding information.
  • step S510 in the case where the value of the scene parameter of the current scene is an element in the first subset S1, the sending end determines A PTRS pattern is a discrete PTRS pattern; in the case where the value of the scene parameter of the current scene is an element in the second subset S2, the transmitting end determines that the first PTRS pattern is a block zero-power PTRS pattern; in the scene of the current scene When the value of the parameter is an element in the third subset S3, the transmitting end determines that the first PTRS pattern is a blocky non-zero power PTRS pattern.
  • the definition of the preset corresponding information can be different accordingly.
  • Various definitions of the preset corresponding information will be described below.
  • the first definition method the corresponding relationship between the scene and the PTRS pattern is determined based on the number of PTRS in the scene.
  • the scene is characterized by the number of scene parameters PTRS.
  • the number of PTRS is small, for example, if the number of PTRS is less than or equal to the first threshold, the accuracy of estimating ICI is low. At this time, estimating ICI and compensating for ICI will introduce negative gains compared to estimating CPE and compensating for CPE . Therefore, when the number of PTRS is small, it is not suitable for estimating ICI, but suitable for estimating CPE. In the case of only estimating the CPE, no matter which of the three PTRS patterns shown in FIG. 3 is adopted for the PTRS pattern, the computational complexity is relatively small, but among them, the discrete PTRS pattern has the highest resistance to frequency selection. Therefore, in a scenario where the number of PTRS is small, the PTRS pattern can be a discrete PTRS pattern.
  • the PTRS pattern can also be selected as a zero-power PTRS Pattern or shape non-zero power PTRS pattern.
  • the number of PTRS is not too small or too much, for example, if the number of PTRS is greater than the first threshold and less than or equal to the second threshold, the number of PTRS at this time is sufficient to estimate the low-order ICI coefficient.
  • the block zero-power PTRS pattern has the lowest estimation complexity and better performance.
  • the power boost value related to the number of PTRS does not exceed the limit of hardware implementation complexity
  • the block zero-power PTRS pattern can achieve the best ICI estimation accuracy with the least complexity compared to the other two PTRS patterns. Therefore, in a scenario where the number of PTRS is not too small or too much, the PTRS pattern can be a block zero-power PTRS pattern.
  • the number of PTRS is large, for example, if the number of PTRS is greater than the second threshold, the number of PTRS is sufficient to estimate the high-order ICI coefficient.
  • the discrete PTRS pattern has a significant increase in estimation complexity with the increase of the ICI order. Compared with the other two PTRS patterns, its complexity is higher. Due to the large number of PTRS, the block zero-power PTRS pattern will exceed the hardware limitation due to the power increase. Therefore, in a scenario with a large number of PTRS, the PTRS pattern can be a blocky non-zero power PTRS pattern.
  • the ICI order can represent the first q ICI coefficients sorted by importance.
  • the ICI coefficients can be sorted by importance as E0, E-1, E1, E-2, E2, E-3, E3,..., Eu, Eu,..., or E0, E1, E-1, E2, E- 2.
  • the transmission sequence may be looped from the beginning to the end, and the receiving end may use the characteristics of the beginning and end cycles of the transmitted signal within the block to reduce the estimation complexity.
  • the first definition of the preset corresponding information is shown in Table 2.
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene is a blocky non-zero power PTRS pattern.
  • the first threshold value is related to the ICI order, the higher the ICI order, the larger the first threshold value, the lower the ICI order, and the smaller the first threshold value.
  • the second threshold is related to hardware capabilities. For example, the better the PA performance, the higher the second threshold.
  • Table 2 is only an example and not a limitation.
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a blocky non-zero power PTRS pattern.
  • the PTRS pattern corresponding to the scene is blocky non Zero power PTRS pattern.
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the number of PTRS of the current scene and the preset corresponding information.
  • step S510 when the number of PTRS in the current scene is less than or equal to the first threshold, the transmitting end determines that the first PTRS pattern is a discrete PTRS pattern ; In the case that the number of PTRS in the current scene is greater than the first threshold and less than or equal to the second threshold, the sender determines that the first PTRS pattern is a block zero-power PTRS pattern; the number of PTRS in the current scene is greater than the first In the case of two thresholds, the transmitting end determines that the first PTRS pattern is a blocky non-zero power PTRS pattern.
  • step S510 the transmitting end determines that the first PTRS pattern is a blocky zero-power PTRS pattern.
  • the transmitting end determines that the first PTRS pattern is a blocky non-zero power PTRS pattern.
  • the transmitting end determines that the first PTRS pattern is a blocky non-zero power PTRS pattern.
  • the number of PTRS may be determined by the scheduling bandwidth, the scheduling bandwidth threshold indicated by the base station, and the offset of the RB level for the PTRS mapping position.
  • the transmitting end is a base station and the receiving end is a terminal, the transmitting end knows the number of PTRS autonomously, and the receiving end can determine the number of PTRS from the scheduling bandwidth and the scheduling bandwidth threshold indicated by the base station, and the offset of the RB level for the PTRS mapping position .
  • the number of PTRS may also be directly indicated by signaling or specified by an agreement.
  • the number of PTRS is a fixed value.
  • the number of PTRS can be specified by protocol or directly indicated by signaling.
  • the given scene mentioned here can be defined by any one or more of the following parameters: phase noise model, carrier frequency, sub-carrier spacing, MCS, modulation order, coding rate, signal-to-noise ratio (SNR), etc. .
  • the PTRS pattern By dynamically determining the PTRS pattern according to the number of PTRS, the PTRS pattern can be effectively used, and the adaptive ICI order can be accurately estimated with lower complexity, which can improve the data demodulation performance under phase noise and the spectral efficiency under the influence of phase noise .
  • the PTRS pattern can be a discrete PTRS pattern.
  • the PTRS pattern can be a discrete PTRS pattern.
  • the PTRS pattern can be a block zero-power PTRS pattern.
  • the PTRS pattern can be a block zero-power PTRS pattern.
  • the PTRS pattern can be a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • the ICI estimation complexity of the discrete PTRS pattern is relatively high, while the complexity of the blocky zero-power PTRS pattern and the blocky non-zero-power PTRS pattern are relatively low, and the number of equations that can be constructed to estimate ICI is sufficient. Therefore, Either way.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consideration of the frequency selection characteristics of the channel, different options are possible. Because when the frequency selectivity of the channel is not strong, the larger the block size of the PTRS pattern, the better the accuracy of the estimated ICI, so the following choices can be made.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern; if the channel has a certain frequency selectivity (that is, the frequency domain of the channel is not very flat), Then select the PTRS pattern as a block zero-power PTRS pattern. Because, compared with the blocky non-zero power PTRS pattern, the blocky zero-power PTRS pattern can have more blocks distributed in different frequency domain positions, which can enhance the anti-frequency selection ability.
  • the channel frequency selectivity can be measured by the variance of the channel amplitude measured by the measurement reference signal (SRS), and can also be measured by the variance of the subband channel quality indicator (CQI) fed back by the terminal device.
  • SRS measurement reference signal
  • CQI subband channel quality indicator
  • the channel frequency selectivity can also be measured by the maximum value of the channel amplitude difference (the difference between the maximum amplitude and the minimum amplitude) or the maximum difference of the subband CQI (the difference between the maximum CQI and the minimum CQI) on each subcarrier.
  • the PTRS pattern can be effectively used, and the lower complexity is adopted to realize the accurate estimation of the adaptive ICI order, which can improve the data demodulation performance under phase noise and improve the performance under the influence of phase noise. Spectral efficiency.
  • the PTRS pattern can be determined based on the scene parameters that affect the ICI order.
  • the scene parameters that affect the ICI order include but are not limited to: phase noise model, carrier frequency, sub-carrier spacing, scheduling bandwidth, MCS, modulation order, coding rate and signal-to-noise ratio (SNR).
  • SNR signal-to-noise ratio
  • phase noise model and the carrier frequency determine the severity of the phase noise itself, that is, the two can be regarded as the inherent properties of the phase noise.
  • the scheduling bandwidth and sub-carrier spacing determine the degree of influence of phase noise on the signal. The larger the scheduling bandwidth, the greater the influence of phase noise on the signal. The larger the sub-carrier spacing, the smaller the influence of phase noise on the signal.
  • MCS modulation order, coding rate
  • the second definition method the corresponding relationship between the scene and the PTRS pattern is determined based on the modulation and coding scheme (MCS) of the scene.
  • MCS modulation and coding scheme
  • the scene is characterized by the scene parameter MCS.
  • the Chinese name of MCS can also be modulation and coding strategy.
  • MCS determines the signal's ability to carry phase noise. The higher the MCS, the weaker the signal's ability to carry phase noise. Or, under the influence of the same phase noise, that is, under the same ICI caused by the phase noise, the higher the MCS, the greater the data demodulation performance difference caused by the phase noise.
  • the second definition of the preset corresponding information is shown in Table 4.
  • MCS (0, the third threshold) (The third threshold, the fourth threshold] (The fourth threshold value, + ⁇ ] PTRS pattern Discrete PTRS pattern Block zero power PTRS pattern Block non-zero power PTRS pattern
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene may be a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consider the frequency selection characteristics of the channel, there can be different options. Because when the frequency selectivity of the channel is not strong, the larger the block size of the PTRS pattern, the better the accuracy of the estimated ICI, so the following choices can be made.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern.
  • the PTRS pattern is selected as a block zero-power PTRS pattern. Because, compared with the blocky non-zero power PTRS pattern, the blocky zero-power PTRS pattern can have more blocks distributed in different frequency domain positions, which can enhance the anti-frequency selection ability.
  • the third threshold value and the fourth threshold value can be determined according to the following factors:
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the MCS of the current scene and the preset corresponding information.
  • step S510 when the MCS of the current scene is less than or equal to the third threshold, the transmitting end determines that the first PTRS pattern is a discrete PTRS pattern;
  • the sender determines that the first PTRS pattern is a block zero-power PTRS pattern;
  • the MCS of the current scene is greater than the fourth threshold Value, if the frequency selectivity of the channel in the current scene is not strong (that is, the frequency domain of the channel is relatively flat), the transmitter determines that the first PTRS pattern is a blocky non-zero power, if the channel in the current scene has a certain frequency selection (That is, the frequency domain of the channel is not very flat), the transmitting end determines that the first PTRS pattern is a block zero-power PTRS.
  • the third definition method the corresponding relationship between the scene and the PTRS pattern is determined based on the scheduling bandwidth of the scene.
  • the scene is characterized by using scene parameter scheduling bandwidth.
  • the scheduling bandwidth determines the degree of influence of phase noise on the signal. The larger the scheduling bandwidth, the greater the influence of phase noise on the signal.
  • the third definition of the preset corresponding information is shown in Table 5.
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene may be a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consideration of the frequency selection characteristics of the channel, different options are possible.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern.
  • the PTRS pattern is selected as a block zero-power PTRS pattern.
  • the size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and considering the frequency selection characteristics of the channel, different options are possible.
  • the thresholds TD1 and TD2 can be determined according to the following factors:
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the scheduling bandwidth of the current scene and the preset corresponding information.
  • the fourth definition method the corresponding relationship between the scene and the PTRS pattern is determined based on the frequency of the carrier frequency point of the scene.
  • the scene is characterized by the scene parameter carrier frequency.
  • the frequency of the carrier frequency determines the severity of the phase noise itself, which can be regarded as an inherent property of the phase noise.
  • the fourth definition of the preset corresponding information is shown in Table 6.
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene may be a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consideration of the frequency selection characteristics of the channel, different options are possible.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern.
  • the PTRS pattern is selected as a block zero-power PTRS pattern.
  • the size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and considering the frequency selection characteristics of the channel, different options are possible.
  • the thresholds TF1 and TF2 can be determined according to the following factors:
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the carrier frequency of the current scene and the preset corresponding information .
  • the fifth definition method the corresponding relationship between the scene and the PTRS pattern is determined based on the modulation order of the scene.
  • the scene is characterized by the modulation order of the scene parameter.
  • the modulation order determines the signal's ability to carry phase noise. The higher the modulation order, the weaker the signal's ability to carry phase noise. Or, under the influence of the same phase noise, that is, under the same ICI caused by phase noise, the higher the modulation order, the greater the data demodulation performance difference caused by the introduction of phase noise.
  • the fifth definition method of the preset corresponding information is shown in Table 7.
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene may be a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consideration of the frequency selection characteristics of the channel, different options are possible.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern.
  • the PTRS pattern is selected as a block zero-power PTRS pattern.
  • the size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and considering the frequency selection characteristics of the channel, different options are possible.
  • the thresholds TM1 and TM2 can be determined according to the following factors:
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the modulation order of the current scene and the preset corresponding information .
  • the sixth definition method the corresponding relationship between the scene and the PTRS pattern is determined based on the code rate of the scene.
  • the scene is characterized by the scene parameter code rate.
  • the code rate can also be referred to as the code rate.
  • the code rate determines the signal's ability to carry phase noise. The higher the code rate, the weaker the signal's ability to carry phase noise. Or, under the influence of the same phase noise, that is, under the same ICI caused by the phase noise, the higher the code rate, the greater the data demodulation performance difference caused by the phase noise.
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene may be a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consideration of the frequency selection characteristics of the channel, different options are possible.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern.
  • the PTRS pattern is selected as a block zero-power PTRS pattern.
  • the size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and considering the frequency selection characteristics of the channel, different options are possible.
  • the thresholds TR1 and TR2 can be determined according to the following factors:
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the code rate of the current scene and the preset corresponding information.
  • the seventh definition method the corresponding relationship between the scene and the PTRS pattern is determined based on the signal-to-noise ratio (SNR) of the scene.
  • SNR signal-to-noise ratio
  • SNR affects the accuracy of ICI estimation.
  • the seventh definition of the preset corresponding information is shown in Table 9.
  • SNR Signal-to-noise ratio
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene may be a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consideration of the frequency selection characteristics of the channel, different options are possible.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern.
  • the PTRS pattern is selected as a block zero-power PTRS pattern.
  • the size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and considering the frequency selection characteristics of the channel, different options are possible.
  • the thresholds TS1 and TS2 can be determined according to the following factors:
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the SNR of the current scene and the preset corresponding information.
  • the eighth way of definition the corresponding relationship between the scene and the PTRS pattern is determined based on the phase noise model of the scene.
  • the scene is characterized by the scene parameter phase noise model.
  • the harshness of the phase noise model determines the harshness of the phase noise itself, which can be regarded as an inherent attribute of the phase noise.
  • the eighth definition of the preset corresponding information is shown in Table 10.
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the PTRS pattern corresponding to the scene is blocky zero Power PTRS pattern
  • the PTRS pattern corresponding to the scene can be a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consideration of the frequency selection characteristics of the channel, different options are possible.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern.
  • the PTRS pattern is selected as a block zero-power PTRS pattern.
  • the size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and considering the frequency selection characteristics of the channel, different options are possible.
  • the thresholds TQ1 and TQ2 can be determined according to the following factors:
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the phase noise model of the current scene and the preset corresponding information .
  • the ninth definition method the corresponding relationship between the scene and the PTRS pattern is determined based on the subcarrier interval of the scene.
  • the scene is characterized by the scene parameter subcarrier interval.
  • the sub-carrier spacing determines the degree of influence of phase noise on the signal, and the greater the sub-carrier spacing, the smaller the influence of phase noise on the signal.
  • the ninth definition of the preset corresponding information is shown in Table 11.
  • the PTRS pattern corresponding to the scene may be a blocky non-zero power PTRS pattern.
  • the PTRS pattern corresponding to the scene is a block zero-power PTRS pattern.
  • the PTRS pattern corresponding to the scene is a discrete PTRS pattern.
  • the block size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and further consideration of the frequency selection characteristics of the channel, different options are possible.
  • the PTRS pattern is selected as a blocky non-zero power PTRS pattern.
  • the PTRS pattern is selected as a block zero-power PTRS pattern.
  • the size of each block in the block zero-power PTRS pattern needs to be smaller than a given value or a predetermined value, and considering the frequency selection characteristics of the channel, different options are possible.
  • the thresholds TG1 and TG2 can be determined according to the following factors:
  • the threshold TG1 is 15kHz, and the threshold TG2 is 30kHz.
  • the threshold value TG1 is 30 kHz, and the threshold value TG2 is 60 kHz.
  • step S510 the sending end determines the first PTRS pattern corresponding to the current scene according to the subcarrier interval of the current scene and the preset corresponding information .
  • the present application can dynamically determine the PTRS pattern according to the scene, and estimate the phase error based on the PTRS pattern corresponding to the current scene, which can improve the estimation performance. For example, taking ICI estimation as an example, based on the PTRS pattern corresponding to the current scene, the estimation accuracy of ICI can be improved.
  • the definition method of the preset corresponding information is any one of the first definition method to the sixth definition method, the eighth definition method, and the ninth definition method
  • the scene parameters are fixed Parameters (for example, phase noise model) or parameters carried in system scheduling (for example, carrier frequency, subcarrier spacing, scheduling bandwidth, MCS, modulation order, coding rate)
  • the corresponding information in the preset is specified by the agreement
  • both the sending end and the receiving end can determine the PTRS pattern through the pre-configured preset corresponding information and the scene parameters of the current scene without additional signaling to indicate the PTRS pattern corresponding to the current scene. This can save signaling.
  • the SNR needs to be indicated through signaling. For example, if the sending end measures the SNR, the SNR is sent to the receiving end, and if the receiving end measures the SNR, the SNR is sent to the sending end.
  • the attributes of the PTRS pattern include not only the pattern type (ie, discrete PTRS pattern, block non-zero power PTRS pattern, and block zero power PTRS pattern), but also block size and block number.
  • the block size is 1 PTRS, and the number of blocks is equal to the number of PTRS.
  • the block size is determined according to the frequency selectivity of the channel, and the number of blocks changes with the change of the block size.
  • determining the block size and the number of blocks of the block PTRS pattern according to the frequency selectivity of the channel can improve the anti-frequency selection ability of the block PTRS pattern.
  • the number of blocks K is 1, and the block size is equal to the number of PTRS.
  • N PTRS represents the number of PTRS
  • M 0 represents the maximum allowable block size of the block zero-power PTRS
  • M 0 is determined by hardware constraints. ceil means round up.
  • N PTRS /M 0 is an integer
  • the block sizes in the block zero-power PTRS pattern are all M 0 .
  • N PTRS /M 0 is not an integer
  • the method for determining the block size in the block zero-power PTRS pattern is as follows.
  • the block size of K-1 blocks is M 0
  • the block size of the remaining 1 block is ⁇ N PTRS -(K- 1)*M 0 ⁇ or mod(N PTRS -1,M 0 )+1.
  • the block size M satisfies the following formula:
  • ceil means round up
  • floor means round down
  • mod means remainder
  • the number of blocks K satisfies the following formula:
  • N PTRS represents the number of PTRS, and the value of M f is determined according to the frequency selectivity of the channel. The stronger the frequency selectivity, the smaller M f , the weaker the frequency selectivity, and the larger M f. ceil means round up.
  • the formula used to determine the number of blocks K in example (3) (denoted as formula 2) is to replace formula 2 with M f The M 0 . Therefore, in the example (3), the method for determining the block size and the number of blocks is described in the example (2), which will not be repeated here.
  • the number of blocks K meets the following requirements formula:
  • N PTRS represents the number of PTRS.
  • the value of M f is determined according to the frequency selectivity of the channel. The stronger the frequency selectivity, the smaller the M f , the weaker the frequency selectivity, and the larger the M f.
  • M 0 represents the maximum allowable block size of the block zero-power PTRS, and M 0 is determined by hardware constraints. ceil means round up.
  • the formula used to determine the number of blocks K in example (4) (denoted as formula 3) is to use min(M f ,M 0 ) Replace M 0 in Formula 1. Therefore, in the example (4), the method for determining the block size and the number of blocks is described in the example (2), which will not be repeated here.
  • the frequency selectivity of the channel can be characterized by the fluctuation of the channel amplitude.
  • a parameter used to characterize the frequency selectivity of a channel may be referred to as a frequency selectivity characterization parameter. That is, for the block PTRS pattern, the block size can be related to the frequency selectivity characterization parameter of the channel.
  • the case where the frequency selectivity characterization parameter of the channel is lower than the threshold value can be regarded as the frequency selectivity of the channel is not strong
  • the case where the frequency selectivity characterization parameter of the channel is equal to or higher than the threshold is regarded as the channel has a certain frequency selectivity; or the case where the frequency selectivity characterization parameter of the channel is lower than or equal to the threshold can be regarded as the channel
  • the frequency selectivity is not strong, and the case where the frequency selectivity characterization parameter of the channel is higher than the threshold is regarded as the channel has a certain frequency selectivity.
  • the threshold may be determined according to a parameter used to characterize the frequency selectivity of the channel.
  • the block size of the block PTRS pattern is related to the frequency selectivity characterization parameter of the channel, that is, the block size of the block PTRS pattern can be determined based on the frequency selectivity characterization parameter of the channel, which can improve the anti-frequency selection ability of the block PTRS pattern .
  • the frequency-selective characterization parameters of the channel can be obtained by measurement and estimation of network equipment (for example, base station), or can be obtained by measurement and estimation feedback of terminal equipment.
  • the frequency selectivity characterization parameters of the channel include the amplitude difference, the amplitude variance, and the mean square error of the amplitude on each sub-carrier in the frequency domain.
  • the amplitude difference on each subcarrier in the frequency domain includes, but is not limited to, the average value of the amplitude difference of each subcarrier and the maximum value of the amplitude difference of each subcarrier.
  • the frequency selectivity characterization parameter of the channel may also include a precoding matrix indicator (precoding matrix indicator, PMI) difference on each subband of the frequency domain fed back by the terminal device.
  • PMI precoding matrix indicator
  • the PMI difference on each subband in the frequency domain includes but is not limited to the average value of the PMI difference and the maximum value of the PMI difference.
  • the frequency selectivity characterization parameter of the channel may also include a channel quality indicator (CQI) difference on each subband of the frequency domain fed back by the terminal device.
  • CQI channel quality indicator
  • the CQI difference on each subband of the frequency domain includes, but is not limited to, the average value of the CQI difference and the maximum value of the CQI difference.
  • the method for determining the block size and the number of blocks of the block-shaped PTRS pattern may be stipulated by the protocol or pre-defined or pre-configured.
  • the agreement stipulates or pre-defined or pre-configured:
  • the blocky non-zero power PTRS pattern if the frequency selectivity of the channel of the current scene is not strong, the number of blocks K is 1, and the block size is equal to the number of PTRS; if the channel of the current scene has a certain frequency selectivity, the above example (3 ) Describe the number of blocks and block size;
  • the frequency selectivity of the channel of the current scene is not strong, use the method described in the above example (2) to determine the number of blocks and the block size; if the channel of the current scene has a certain frequency selectivity, use the above The method described in example (4) determines the number of blocks and the block size.
  • the sending end and the receiving end may pre-arranged.
  • the sending end is a base station
  • the receiving end is a terminal.
  • the sending end sends the values of M 0 and/or M f to the receiving end in any of the following ways:
  • Radio resource control radio resource control
  • RRC radio resource control
  • media access control media access control
  • DCI downlink control information
  • the rules for determining the strength of the frequency selectivity of the channel may be stipulated by the protocol or pre-defined or pre-configured.
  • the agreement stipulates or is pre-defined or pre-configured, and the frequency selectivity of the channel is determined by comparing the frequency selectivity characteristic parameter of the channel with the threshold value.
  • the threshold may be stipulated by the protocol or pre-defined or pre-configured, or it may be pre-arranged by the sending end and the receiving end.
  • the sending end and the receiving end determine the block size and the block size of the block PTRS pattern according to the same rules. Number of blocks.
  • the parameters involved in the rule for example, M 0 and/or M f in the above example
  • M 0 and/or M f in the above example can be agreed in advance.
  • the correspondence between the scene and the PTRS pattern included in the preset correspondence information may be the correspondence between the scene and the PTRS pattern type.
  • step S510 the sending end determines the pattern type of the first PTRS pattern corresponding to the current scene according to the preset corresponding information, and determines the block size and block size of the first PTRS pattern according to the method for determining the block size and the number of blocks described above. Quantity.
  • the corresponding relationship between the scene and the PTRS pattern included in the preset correspondence information includes:
  • the sending end may directly determine the pattern type, block size, and block quantity of the first PTRS pattern corresponding to the current scene according to the preset corresponding information.
  • the block size can be determined based on the frequency selectivity characterization parameter of the channel, which can improve the anti-frequency selection ability of the block PTRS pattern, thereby improving the estimation accuracy of phase noise.
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene, that is, the first PTRS pattern.
  • the receiving end determines the PTRS pattern corresponding to the current scene.
  • the receiving end determines the PTRS pattern corresponding to the current scene according to preset corresponding information.
  • the preset corresponding information is stipulated by the agreement or pre-defined or pre-configured.
  • step S520 includes: the receiving end determines the PTRS pattern corresponding to the current scene according to the preset corresponding information.
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene according to the value of the scene parameter of the current scene and the preset corresponding information .
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene according to the number of PTRS in the current scene and the preset corresponding information.
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene according to the MCS of the current scene and the preset corresponding information.
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene according to the scheduling bandwidth of the current scene and the preset corresponding information.
  • step S520 the receiving end determines the PTRS corresponding to the current scene according to the frequency of the carrier frequency of the current scene and the preset corresponding information. pattern.
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene according to the modulation order of the current scene and the preset corresponding information.
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene according to the coding rate of the current scene and the preset corresponding information.
  • step S520 the receiving end determines the corresponding information of the current scene according to the signal-to-noise ratio (SNR) of the current scene and the preset corresponding information.
  • SNR signal-to-noise ratio
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene according to the phase noise model of the current scene and the preset corresponding information.
  • step S520 the receiving end determines the PTRS pattern corresponding to the current scene according to the subcarrier interval of the current scene and the preset corresponding information.
  • the preset corresponding information is stipulated by the protocol or pre-defined or pre-configured, which is equivalent to the PTRS pattern implicitly determined by the scene parameters, and no additional signaling is required to specifically indicate the PTRS pattern of the current scene at the receiving end, which can save signaling .
  • the receiving end can determine the block size and block quantity of the PTRS pattern corresponding to the current scene according to the pre-configured way .
  • the sending end and the receiving end adopt the same criteria to determine the block size and block size of the PTRS pattern. Quantity.
  • the receiving end can use the preset corresponding information To determine the block size and the number of blocks of the PTRS pattern corresponding to the current scene.
  • the receiving end obtains the PTRS pattern corresponding to the current scene according to the signaling instruction of the sending end.
  • the method of the embodiment shown in FIG. 5 further includes the following steps.
  • the sending end sends the indication information of the first PTRS pattern to the receiving end.
  • step S520 includes: the receiving end learns, according to the indication information, that the PTRS pattern corresponding to the current scene is the first PTRS pattern.
  • the indication information of the first PTRS pattern may indicate any one or more of the following information: pattern type, block size, and block quantity.
  • the pattern type includes any one of discrete PTRS pattern, block non-zero power PTRS pattern, and block zero power PTRS pattern
  • the indication information indicates the pattern type, and does not indicate the block size and the number of blocks.
  • the indication information is 2 bits.
  • the receiving end can directly determine that the block size is 1, and the number of blocks is the number of PTRS.
  • the receiving end can determine the block size and the number of blocks according to the pre-appointed M f with the transmitting end, as in the examples (1) and (3) described above.
  • the receiving end can determine the block size and the number of blocks according to M 0 and/or M f pre-appointed with the transmitting end, as described in example (2) and example (4) above.
  • the indication information indicates the block size, but does not indicate the pattern type and the number of blocks.
  • the receiving end can directly determine that the number of blocks is the number of PTRS, and the pattern type is a discrete PTRS pattern.
  • the receiving end can determine that the number of blocks is 1, and the pattern type is a blocky non-zero power PTRS pattern, as in the example (1) described above.
  • the receiving end can determine that the pattern type is a blocky non-zero power PTRS pattern, and the number of blocks and block size can be determined according to similar ideas in Example (3).
  • the receiving end can determine that the pattern type is a block zero-power PTRS pattern, and the number of blocks and block size can be determined according to similar ideas in Example (2).
  • the receiving end can determine that the pattern type is a block zero-power PTRS pattern, and the number of blocks and block size can be determined according to similar ideas in Example (4) .
  • the indication information indicates the number of blocks, but does not indicate the pattern type and block size.
  • the receiving end can directly determine that the block size is 1, and the pattern type is a discrete PTRS pattern.
  • the receiving end can determine that the block size is the number of PTRS, and the pattern type is a blocky non-zero power PTRS pattern, as in the example (1) described above.
  • the receiving end can determine that the pattern type is a blocky non-zero power PTRS pattern .
  • the number of blocks and block size can be determined according to the similar idea in example (3).
  • the receiving end can determine that the pattern type is a block zero-power PTRS pattern,
  • the number of blocks and the block size can be determined according to a similar idea in Example (2).
  • the receiving end It can be determined that the pattern type is a block zero-power PTRS pattern, and the number of blocks and the block size can be determined according to similar ideas in Example (4).
  • the indication information indicates any two of the pattern type, the number of blocks, and the block size, but does not indicate the remaining one.
  • the indication information indicates the pattern type, the number of blocks, and the block size.
  • this application does not limit the content carried by the indication information of the first PTRS pattern, as long as the receiving end can learn that the PTRS pattern corresponding to the current scene is the first PTRS pattern.
  • the sending end may determine the content carried in the indication information of the first PTRS pattern sent to the receiving end according to the actual situation.
  • the transmitting end may send the indication information of the first PTRS pattern to the receiving end through any of the following signaling:
  • Radio resource control radio resource control
  • RRC radio resource control
  • media access control media access control
  • DCI downlink control information
  • the correspondence between the scene in the preset corresponding information and the PTRS pattern may be blurred. If the receiving end uses the first implementation method to obtain the PTRS pattern corresponding to the current scene, it may lead to receiving The PTRS patterns used by the sending end and the sending end are inconsistent. In this case, the receiving end adopts the second implementation method to obtain the PTRS pattern corresponding to the current scene, which can avoid the above-mentioned error.
  • the first implementation manner described above may be referred to as an implicit manner, and the second implementation manner may be referred to as a display manner.
  • the transmitting end may send the data to the receiving end.
  • the transmitting end is a base station, and the receiving end is a terminal.
  • the transmitting end sends indication information for indicating the block size and/or the number of blocks of the PTRS pattern to the receiving end in any of the following ways:
  • Radio Resource Control RRC
  • Medium Access Control MAC
  • DCI Downlink Control Information
  • the PTRS pattern is dynamically determined according to the scene, so that the determined PTRS pattern has better phase noise estimation performance in the current scene, which can improve the phase noise estimation performance, for example, Improve the estimation accuracy of ICI coefficients.
  • the PTRS pattern only represents the pattern or pattern of the frequency domain resource unit (for example, RE or RB) occupied by the PTRS, and does not include the mapping position of the PTRS.
  • the mapping position of the PTRS indicates the mapping position of the PTRS on the frequency domain resource, or in other words, the frequency domain position of the PTRS on the time domain symbol (hereinafter referred to as the symbol for short). In other words, the change of the mapping position of the PTRS will not cause the change of the PTRS pattern.
  • the sending end sending the PTRS includes: sending the PTRS according to the mapping position of the first PTRS pattern and the PTRS.
  • the transmitting end maps and transmits the PTRS according to the mapping position of the PTRS pattern and the PTRS.
  • the receiving end receiving the PTRS includes: receiving the PTRS according to the mapping position of the first PTRS pattern and the PTRS. Referring to Figure 1, the receiving end receives and maps the PTRS according to the mapping position of the PTRS pattern and the PTRS.
  • mapping position of the PTRS There can be multiple ways to determine the mapping position of the PTRS.
  • the first determination method is to determine the mapping position of the PTRS according to the channel quality.
  • the second determination method makes the mapping positions of the PTRS on the adjacent symbols different, that is, there is an offset.
  • the mapping position of the PTRS is determined according to the channel quality. That is, according to the channel conditions, the channel as the mapping position of the PTRS is determined.
  • channel quality can be characterized by using a channel quality indicator (CQI).
  • CQI channel quality indicator
  • channel quality can be characterized by power or power variance.
  • the power here means the square of the channel amplitude on each subcarrier or the average of the square of the channel amplitude on each subband.
  • a channel also referred to as a subcarrier whose channel quality reaches the channel quality threshold is selected as the mapping position of the PTRS.
  • the channel quality threshold can be determined according to the parameters used to characterize the channel quality.
  • the channel quality threshold is a certain value of CQI.
  • a group of channels whose average CQI reaches the channel quality threshold is selected from multiple groups of channels as the mapping position of the PTRS.
  • the channel quality threshold is a certain value of power.
  • the channel quality threshold is a certain value of the power variance.
  • the channel quality threshold can be determined according to the channel status of the current scene, or can be pre-configured.
  • a group of channels with the best channel quality is selected from a plurality of groups of channels as the mapping position of the PTRS.
  • the channel quality is characterized by CQI
  • the group of channels with the largest average CQI among multiple groups of channels can be regarded as the channel with the best quality.
  • the channel with the highest average power among multiple channels can be regarded as the channel with the best quality.
  • the channel quality is characterized by the rate variance
  • the channel with the smallest power variance among the multiple channels can be regarded as the channel with the best quality.
  • the division of multiple groups of channels can be specified by the protocol or pre-configured or pre-defined. That is, both the sending end and the receiving end can independently learn the division methods of multiple groups of channels.
  • the sending end may send the indication information of the target channel to the receiving end, so that the receiving end knows the target channel as the mapping position of the PTRS.
  • the indication information of the target channel is the offset of the target channel in multiple sets of channels.
  • the offset can be relative or absolute.
  • the offset is RE-level offsets
  • the offset is sub-band-level offsets. Offset.
  • the indication information of the target channel is the channel number of the target channel in the multiple groups of channels.
  • the sending end is a network device (such as a base station), and the receiving end is a terminal device.
  • the sending segment can send indication information of the target channel to the receiving end through any of the following signaling: RRC, MAC, DCI.
  • mapping position of the PTRS according to the channel quality
  • the PTRS pattern is a discrete PTRS pattern.
  • N RB the maximum resource block offset of PTRS
  • N RE/RB the number of REs contained in one RB
  • the value of N RE/RB is 12. It should be understood that as technology evolves, the value of N RE/RB can be updated accordingly.
  • the N RB *N RE/RB group channel can be defined according to the RE offset, N RB *The RE offset values corresponding to the channels of the N RE/RB group are 0, 1, ..., N RB *N RE/RB -1.
  • the first group of channels H 0 is the subcarrier index (the index within the relative scheduling bandwidth) is the channel corresponding to ⁇ 0,N,2N,... ⁇
  • the second group of channels H 1 is the subcarrier index respectively ⁇ 1,N+ 1,2N+1,... ⁇ corresponding channels,...
  • the j+1 group channel H j is the sub-carrier index ⁇ j,N+j,2N+j,... ⁇ corresponding channels, as shown in Figure 7 ( a) Shown.
  • N represents the number of REs between two adjacent PTRSs in the discrete PTRS pattern.
  • N is determined by the PTRS frequency domain density. It should be understood that N here is the same as N shown in (a) in FIG. 3.
  • the transmitting end selects a set of subcarriers corresponding to a group of channels with the best quality from the N RB *N RE/RB group of channels as the frequency domain position for transmitting the PTRS. In other words, the transmitting end selects a set of subcarriers corresponding to a group of channels with the best quality from the N RB *N RE/RB group channels as the mapping position of the PTRS.
  • the N RB *N RE/RB group channel may be protocol-defined or pre-configured or pre-defined, that is, the receiving end can independently learn the N RB *N RE/RB group channel.
  • the transmitting end indicates to the receiving end the RE offset corresponding to a group of channels as the mapping position of the PTRS in the N RB *N RE/RB group of channels. In this way, the receiving end can know the mapping position of the PTRS.
  • the N DMRS group channel is defined by the RE offset, where N DMRS represents the associated DMRS contained in the N RB The number of subcarriers corresponding to the port.
  • the relative RE offsets corresponding to the N DMRS group channels are 0, 1, ..., N DMRS -1, that is, the j-th group of channels are sub-carrier indexes respectively ⁇ I j , N+I j , 2N+I j , ... ⁇
  • I j represents the subcarrier index corresponding to the jth DMRS in N RB.
  • the transmitting end selects a set of subcarriers corresponding to a set of channels with the best quality from the N DMRS group channels as the frequency domain position for transmitting the PTRS. In other words, the transmitting end selects a set of subcarriers corresponding to a group of channels with the best quality from the N DMRS group channels as the mapping position of the PTRS.
  • the N DMRS group channel may be protocol-defined or pre-configured or pre-defined, that is, the receiving end can learn the N DMRS group channel autonomously.
  • the transmitting end indicates to the receiving end the RE offset corresponding to a group of channels as the mapping position of the PTRS in the N DMRS group channels. In this way, the receiving end can know the mapping position of the PTRS.
  • the PTRS pattern is a block PTRS pattern (including a block non-zero power PTRS pattern and a block zero power PTRS pattern).
  • each subband is composed of multiple consecutive subcarriers.
  • K SB ceil(BW/S SB )
  • BW represents the scheduling bandwidth
  • S SB is related to the coherent bandwidth or the frequency selectivity of the channel.
  • the S SB can be measured and estimated by the sending end (for example, the base station), or can be measured and estimated by the receiving end (for example, the terminal) and fed back to the sending end. This application does not limit the method for determining S SB.
  • the size of the first K SB -1 subband is S SB
  • the size of the last subband is BW-(K SB -1)*S SB .
  • the frequency domain resource of each symbol includes K SB subbands.
  • the number of subbands K SB is 4, that is, the frequency domain resource of each symbol includes 4 subbands.
  • the above method of determining the size of the subband and the number of subbands is only an example. In practical applications, the size of the subband or the number of subbands can be determined or adjusted according to actual conditions, for example, it can be adjusted adaptively according to channel conditions.
  • the PTRS is uniformly mapped in one subband in units of blocks.
  • the K SB group of channels and the k-th group of channels is the channel corresponding to the corresponding sub-carrier when the PTRS is assumed to be mapped in the k-th subband.
  • 4 sets of channels are defined.
  • the transmitting end selects a set of subcarriers corresponding to a group of channels with the best quality from the K SB group of channels as the frequency domain position for transmitting the PTRS.
  • the sender selects a set of subcarriers corresponding to a group of channels with the best quality from the K SB group of channels as the mapping position of the PTRS.
  • the transmitting end selects the second group of channels among the 4 groups of channels as the mapping position of the PTRS.
  • the K SB group channel may be protocol-defined or pre-configured or pre-defined, that is, the receiving end can learn the K SB group channel autonomously.
  • K SB manner determined set of channels e.g., the determination and the size of the value K SB method K SB subbands
  • the receiver may send pre-agreed parameters S SB .
  • the sending end and the receiving end can determine the K SB group channel according to the same rule.
  • Transmitting end K SB set of channels as a group channel map position PTRS corresponding subband indicated to the receiving end e.g., the transmit end K SB set of channels as a group channel map position PTRS corresponding subband bias
  • the shift amount is indicated to the receiving end. In this way, the receiving end can know the mapping position of the PTRS.
  • mapping position of the PTRS according to the channel conditions can improve the anti-frequency selection ability of the PTRS pattern, thereby improving the data demodulation performance under phase noise, and improving the spectrum efficiency under the influence of phase noise.
  • mapping position of the PTRS means that when determining the mapping position of the PTRS, the mapping position of the PTRS on the adjacent symbols is offset, that is, the frequency of the PTRS on the adjacent symbols is offset. There is an offset between the domain positions.
  • the mapping position of the PTRS is specified or pre-configured or pre-defined by the protocol. That is, the mapping position of the PTRS is known to the receiving end and the transmitting end.
  • the method of the embodiment shown in FIG. 5 further includes: the sending end sends the indication information of the mapping position of the PTRS to the receiving end.
  • the indication information of the mapping position of the PTRS may be a parameter agreed upon by the sending end and the receiving end when determining the mapping position of the PTRS.
  • the rules for determining the mapping position of the PTRS are stipulated by the protocol or pre-configured or pre-defined.
  • the sending end and the receiving end determine the mapping position of the PTRS according to the same rules and pre-agreed parameters.
  • the offset mentioned refers to the offset of the frequency domain position of the first PTRS mapped on the symbol of the mapped PTRS compared to the first RE in the frequency domain.
  • the number of REs, or the number of subbands offset by the frequency domain position of the first PTRS from the first subband in the frequency domain, or the first subband of the frequency domain position of the first PTRS The number of REs offset by each RE from the first RE in the frequency domain.
  • the PTRS pattern is a discrete PTRS pattern.
  • N RB the maximum resource block (RB) offset of PTRS
  • N PTRS the number of subcarriers that can be mapped to PTRS within N RB RB as N PTRS
  • N RE/RB the number of REs contained in one RB
  • the value of N RE/RB is 12. It should be understood that as technology evolves, the value of N RE/RB can be updated accordingly.
  • N PTRS N RB *N RE/RB .
  • N PTRS N DMRS
  • N DMRS represents the corresponding DMRS port contained in the N RB. The number of subcarriers.
  • RE offset mod(I sym ,N sym )*floor(N PTRS /N sym ),
  • I sym represents the relative number of symbols that can be mapped to the PTRS in a time slot.
  • N sym represents that the RE offset is cycled every N sym symbols.
  • the value of N sym can be the number of all the symbols that can be mapped to the PTRS in a time slot, or it can be determined according to the channel characteristics.
  • N represents the number of REs between two adjacent PTRSs in the discrete PTRS pattern.
  • N is determined by the PTRS frequency domain density. It should be understood that N here is the same as N shown in (a) in FIG. 3.
  • the following parameters may be stipulated by the agreement or pre-configured or pre-defined:
  • N PTRS the relative RE offset between symbols RE offset .
  • the calculation rule for the relative RE offset between symbols, RE offset may be stipulated by the protocol or pre-configured or pre-defined, and the following parameters involved may be pre-arranged by the sending end and the receiving end:
  • N PTRS I sym , N sym .
  • the transmitting end is a base station, and the receiving end is a terminal device.
  • the transmitting end can send N PTRS , I sym , N sym : RRC, MAC, DCI to the receiving end through any of the following signaling.
  • the PTRS pattern is a block PTRS pattern (including a block non-zero power PTRS pattern and a block zero power PTRS pattern).
  • each subband is composed of multiple consecutive subcarriers.
  • K SB ceil(BW/S SB )
  • BW represents the scheduling bandwidth
  • S SB is related to the coherent bandwidth or the frequency selectivity of the channel.
  • the S SB can be measured and estimated by the sending end (for example, the base station), or can be measured and estimated by the receiving end (for example, the terminal) and fed back to the sending end. This application does not limit the method for determining S SB.
  • the subband size is S SB .
  • the size of the first K SB -1 subband is S SB
  • the size of the last subband is BW-(K SB -1)*S SB .
  • the frequency domain resource of each symbol includes K SB subbands.
  • the above method of determining the size of the subband and the number of subbands is only an example. In practical applications, the size of the subband or the number of subbands can be determined or adjusted according to actual conditions, for example, it can be adjusted adaptively according to channel conditions.
  • the PTRS on each symbol is uniformly mapped on one of the K SB subbands in units of blocks.
  • the unit of the offset of the frequency domain position of the mapped PTRS on the symbol is the subband.
  • the offset can be called the subband offset.
  • the PTRS on the I sym +1 th PTRS symbol is mapped on the subband numbered mod (I sym , K SB ) (numbering starts from 0).
  • I sym represents the relative number (starting from 0) of the symbols that can be mapped to the PTRS in a slot.
  • the number of subbands K SB can also be understood as the offset cycle every K SB symbols.
  • the determined subband can be equally divided into K bandwidths, and the PTRS block can be mapped in the middle of each equally divided bandwidth, as shown in Figure 7 (d- 1) Shown.
  • K represents the number of blocks of the block PTRS pattern.
  • (d-1) in FIG. 7 is only an example, and the distribution mode of the PTRS block in the subband is not limited in this application.
  • the sub-band division method and the frequency domain position of the mapped PTRS on each symbol can be specified or pre-configured or pre-defined by the protocol. That is, both the sending end and the receiving end can independently determine the mapping position of the PTRS.
  • the parameters K SB , I sym , and the calculation rule of the number of the subband used to map the PTRS on each symbol can be specified by the protocol or pre-configured or pre-defined.
  • the calculation rule for the number of the subband used to map the PTRS on each symbol is stipulated by the protocol or pre-configured or pre-defined.
  • the sender and the receiver can make a pre-arrangement .
  • the sending end and the receiving end can also pre-appoint the subband size.
  • the transmitting end is a base station, and the receiving end is a terminal device.
  • the transmitting end can send K SB , I sym , and subband size to the receiving end through any of the following signaling: RRC, MAC, DCI.
  • the distribution mode of the PTRS block in the subband can be stipulated by agreement or pre-configured or pre-defined.
  • one PTRS block in the PTRS mapped on each symbol is mapped on a subband.
  • the offset of the frequency domain position of the mapped PTRS on the symbol is the offset within the subband, or Including sub-band level offset and sub-band offset.
  • an in-subband offset is introduced in the same subband between different symbols.
  • the offset in the subband can be different or cyclic. As shown in (d-2) in FIG. 7, the number of subbands and the number of blocks of the block PTRS pattern are both 2.
  • the subband level offset may be performed first, and then the subband offset may be performed.
  • the number of subbands is 4, the number of blocks of the block PTRS pattern is 2, and the subband level offsets of the 1, 2, 3, 4, and 5 symbols are respectively 0 subbands, 1 subband, 0 subbands, 1 subband, 0 subbands, the offsets in the subbands of the 1, 2, 3, 4, and 5 symbols are 0 RE, 0 RE, and 0 RE, respectively.
  • One subband contains half the number of REs, half the number of REs contained in the first subband, and 0 REs.
  • the sub-band division method and the frequency domain position of the mapped PTRS on each symbol can be specified or pre-configured or pre-defined by the protocol. That is, both the sending end and the receiving end can independently determine the mapping position of the PTRS.
  • the frequency domain position acquisition rules used to map the PTRS on each symbol are stipulated by the protocol or pre-configured or pre-defined.
  • the parameters involved for example, the number of subbands K SB , the offset within the subband, and the subband
  • the band-level offset, the sending end and the receiving end can be pre-arranged.
  • the sending end and the receiving end can also pre-appoint the subband size.
  • the transmitter is a base station and the receiver is a terminal device.
  • the transmitter can send the number of subbands K SB , subband offset, subband level offset, and subband size to the receiver through any of the following signaling: RRC , MAC, DCI.
  • the distribution mode of the PTRS block in the subband can be stipulated by agreement or pre-configured or pre-defined.
  • mapping position of the PTRS When determining the mapping position of the PTRS, it only needs to make the frequency domain positions of the PTRS mapped between adjacent symbols different. In addition to the implementations shown in (c), (d-1), (d-2) and (d-3) in Figure 7, other feasible methods can also be used to map PTRS between adjacent symbols The frequency domain position is different.
  • the number of elements in the offset set and the value of the elements are determined according to the number of cyclic symbols N sym and the maximum allowable PTRS offset N RB , where the number of elements is N sym .
  • the number of elements in the offset set and the value of the elements are determined according to the number of subbands K SB used for mapping the PTRS and the size of the subbands.
  • the number of elements is the number of subbands K SB , and the value of one type of element is mod (I sym , K SB ). It should be understood that the value of the element varies with the value of I sym.
  • the number of elements in the offset set and the number of elements in the offset set are determined according to the number of subbands K SB used to map the PTRS and the number of blocks of the block PTRS pattern.
  • the value is, for example, the situation shown in (d-2) and (d-3) in FIG. 7 described above.
  • the different frequency domain positions of the PTRS on adjacent symbols can enhance the anti-frequency selection ability of the PTRS pattern, thereby improving the data demodulation performance under phase noise, and improving the spectral efficiency under the influence of phase noise.
  • the PTRS mentioned in this article has an offset in the frequency domain on adjacent symbols.
  • the offset here is not zero.
  • the expression means that the PTRS has different frequency domain positions on adjacent symbols. .
  • the frequency domain positions of the PTRS on different symbols may be the same, as long as the frequency domain positions on adjacent symbols are different.
  • FIG. 8 is another schematic flowchart of a method for transmitting PTRS according to an embodiment of the application. The method includes the following steps.
  • the sending end determines the first PTRS pattern corresponding to the current scene according to the preset corresponding information and the scene parameters of the current scene.
  • Step S810 is the same as step S510 in the above embodiment, please refer to the above, and will not be repeated here.
  • S820 The transmitting end determines the mapping position of the PTRS.
  • the sender can use the first determination method or the second determination method described above to determine the mapping position of the PTRS, please refer to the above, and will not be repeated here.
  • S830 The transmitting end maps the PTRS according to the mapping position of the first PTRS pattern and the PTRS.
  • S840 The sending end sends the PTRS to the receiving end.
  • the sending end sends the PTRS according to the mapping of the PTRS in step S830.
  • the receiving end determines the first PTRS pattern corresponding to the current scene.
  • the receiving end determines the mapping position of the PTRS.
  • the receiving end can use the first determination method or the second determination method described above to determine the mapping position of the PTRS, please refer to the above, and will not be repeated here.
  • the receiving end receives the PTRS sent by the transmitting end according to the mapping position of the first PTRS pattern and the PTRS, that is, acquiring the PTRS received signal.
  • the receiving end can perform CPE or ICI estimation and compensation according to the PTRS received signal.
  • step S850 the receiving end determines the first PTRS corresponding to the current scene according to the preset corresponding information and the scene parameters of the current scene pattern.
  • the preset corresponding information is stipulated by the protocol or pre-configured or pre-defined, which means that the preset corresponding information is pre-stored or pre-configured on the sending end and the receiving end.
  • the method of the embodiment shown in FIG. 8 is also Including step S880.
  • S880 The sending end sends indication information of the first PTRS pattern to the receiving end, where the indication information includes any one or more of the following attributes of the first PTRS pattern: pattern type, block size, and block quantity.
  • the sending operation in step S880 and the sending operation in step S840 may be combined into one sending operation, or may be two independent sending operations.
  • step S870 is a receiving operation corresponding to the sending operation of step S840.
  • step S850 and step S860 are located below step S840, according to the inherent logic, it can be known that step S850 and step S860 are executed before step S840.
  • the embodiment of the present application establishes the correspondence between various scene parameters and the PTRS pattern, so that the PTRS pattern can be dynamically selected according to the scene, so that the phase can be improved.
  • the accuracy of noise estimation can reduce the difficulty of data demodulation.
  • the anti-frequency selection capability of the PTRS pattern can be improved.
  • the embodiments of the present application can be applied to scenarios where phase noise exists in a communication system.
  • the embodiments of the present application can be applied to scenarios where phase noise is severe in a high frequency band.
  • the embodiments of the present application can be applied to scenarios where the system performance is severely impaired due to phase noise due to high-order and high code rates.
  • the methods and operations implemented by the terminal device in the foregoing method embodiments can also be implemented by components (such as chips or circuits) that can be used in the terminal device.
  • the methods and operations implemented by the network device in the foregoing method embodiments may also be implemented by a network device. Operations can also be implemented by components (such as chips or circuits) that can be used in network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to realize the described functions, but this realization should not be considered as going beyond the protection scope of this application.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules based on the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one process.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other feasible division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 9 is a schematic block diagram of a communication device 900 according to an embodiment of the application.
  • the communication device 900 includes a transceiving unit 910 and a processing unit 920.
  • the transceiver unit 910 can communicate with the outside, and the processing unit 910 is used for data processing.
  • the transceiving unit 910 may also be referred to as a communication interface or a communication unit.
  • the communication device 900 can be used to perform the actions performed by the sending end in the above method embodiment, wherein the transceiver unit 910 is used to perform the sending and receiving-related operations on the sending end in the above method embodiment, and the processing unit 920 is used to perform The processing-related operations on the sender side in the above method embodiments. If the sending end is a network device, at this time, the communication device 900 can be called a network device,
  • the communication device 900 may be used to perform the actions performed by the receiving end in the above method embodiment, where the transceiving unit 910 is used to perform operations related to receiving and sending on the receiving end in the above method embodiment, and the processing unit 920 uses To perform operations related to processing on the receiving end side in the above method embodiment. If the receiving end is a terminal device, at this time, the communication device 900 may be referred to as a terminal device.
  • the communication device 900 is used to perform the actions performed by the sending end in the above method embodiments.
  • the processing unit 920 is configured to determine a first transmission phase tracking reference signal PTRS pattern corresponding to the current scene according to preset correspondence information, where the preset correspondence information includes correspondences between multiple scenes and multiple PTRS patterns.
  • the transceiver unit 910 is configured to send the PTRS to the receiving end according to the first PTRS pattern, where the first PTRS pattern is any one of the following: a discrete PTRS pattern, a blocky zero-power PTRS pattern, and a blocky non-zero-power PTRS pattern.
  • the scene is characterized by scene parameters, and the preset correspondence information includes the correspondence between scene parameters of multiple scenes and multiple PTRS patterns; wherein, the processing unit 920 is configured to correspond to the preset corresponding to the scene parameters of the current scene.
  • Information determine the first PTRS pattern corresponding to the current scene, where the scene parameters may include any one or more of the following parameters: phase noise model, carrier frequency, subcarrier spacing, scheduling bandwidth, modulation order, code rate, Modulation coding mode MCS, phase noise power spectral density, PTRS number, channel conditions, signal-to-noise ratio SNR, PTRS time-frequency domain density threshold.
  • the first PTRS pattern is any one of the following: discrete PTRS pattern, blocky Zero-power PTRS pattern, blocky non-zero-power PTRS pattern; or when the number of PTRS in the current scene is greater than the first threshold and less than or equal to the second threshold, the first PTRS pattern is a blocky zero-power PTRS The pattern or block non-zero power PTRS pattern; or in the case that the number of PTRS in the current scene is greater than the second threshold, the first PTRS pattern is a block non-zero power PTRS pattern.
  • the first PTRS pattern when the scene is characterized by the scene parameter MCS, when the MCS is less than or equal to the third threshold, the first PTRS pattern is a discrete PTRS pattern; or when the MCS is greater than the third threshold and less than or equal to In the case of the fourth threshold, the first PTRS pattern is a blocky zero-power PTRS pattern; or when the MCS is greater than the fourth threshold, the first PTRS pattern is a blocky zero-power PTRS pattern or a blocky non-zero Power PTRS pattern.
  • the first PTRS pattern is a discrete PTRS pattern; the values of the parameters included in the scene parameters of the current scene In the case of elements in the second subset S2, the first PTRS pattern is a block zero-power PTRS pattern; in the case where the values of the parameters included in the scene parameters of the current scene are elements of the third subset S3, the first PTRS pattern is an element in the third subset S3.
  • a PTRS pattern is a blocky non-zero power PTRS pattern, wherein each of the first subset S1, the second subset S2, and the third subset S3 includes the value of any one or more of the following parameters or Value range: phase noise model, carrier frequency, subcarrier spacing, scheduling bandwidth, modulation order, code rate, modulation coding mode MCS, phase noise power spectral density, number of PTRS, channel conditions, signal-to-noise ratio SNR, PTRS time The threshold value of the frequency domain density.
  • the block size of the first PTRS pattern is 1; when the first PTRS pattern is a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern , The block size of the first PTRS pattern is related to the frequency selectivity characterization parameter of the channel of the current scene.
  • the block size of the first PTRS pattern is the number of PTRS, and the number of blocks is 1;
  • the block size of the first PTRS pattern is less than the number of PTRS, and the number of blocks is greater than one.
  • the transceiver unit 910 is configured to send the PTRS to the receiving end according to the mapping position of the first PTRS pattern and the PTRS.
  • the processing unit 920 is further configured to determine the mapping position of the PTRS according to the channel quality of the current scene; the transceiver unit 910 is also configured to send indication information of the determined mapping position of the PTRS to the receiving end.
  • the processing unit 920 is configured to select a group of channels with the best channel quality from a plurality of groups of channels as the mapping position of the PTRS.
  • the frequency domain mapping positions of the PTRS on adjacent symbols are different.
  • the processing unit 920 is further configured to determine the mapping position of the PTRS according to any one or more of the following parameters: scheduling bandwidth, symbol data, and number of blocks.
  • the transceiver unit 910 is further configured to send indication information of the first PTRS pattern to the receiving end, where the indication information includes any one or more of the following attributes of the first PTRS pattern: pattern type, block size, block quantity .
  • the communication device 900 is used to perform the actions performed by the receiving end in the above method embodiments.
  • the processing unit 920 is configured to determine the first phase tracking reference signal PTRS pattern corresponding to the current scene;
  • the transceiving unit 910 is configured to receive the PTRS sent by the transmitting end according to the first PTRS pattern, wherein the transmitting end determines according to the preset corresponding information
  • the PTRS pattern corresponding to the current scene of the PTRS is sent, where the preset correspondence information includes the correspondence between multiple scenes and multiple PTRS patterns; wherein, the first PTRS pattern is any one of the following: discrete PTRS pattern, block shape Zero power PTRS pattern, block non-zero power PTRS pattern.
  • the processing unit 920 is configured to determine the first PTRS pattern corresponding to the current scene according to preset correspondence information.
  • the scene is characterized by scene parameters, and the preset correspondence information includes the correspondence between scene parameters of multiple scenes and multiple PTRS patterns; wherein, the processing unit 920 is configured to correspond to the preset corresponding to the scene parameters of the current scene.
  • Information determine the first PTRS pattern corresponding to the current scene, where the scene parameters may include any one or more of the following parameters: phase noise model, carrier frequency, subcarrier spacing, scheduling bandwidth, modulation order, code rate, Modulation coding mode MCS, phase noise power spectral density, PTRS number, channel conditions, signal-to-noise ratio SNR, PTRS time-frequency domain density threshold.
  • the first PTRS pattern is any one of the following: discrete PTRS pattern, blocky Zero-power PTRS pattern, blocky non-zero-power PTRS pattern; or when the number of PTRS in the current scene is greater than the first threshold and less than or equal to the second threshold, the first PTRS pattern is a blocky zero-power PTRS The pattern or block non-zero power PTRS pattern; or in the case that the number of PTRS in the current scene is greater than the second threshold, the first PTRS pattern is a block non-zero power PTRS pattern.
  • the first PTRS pattern when the scene is characterized by the scene parameter MCS, when the MCS is less than or equal to the third threshold, the first PTRS pattern is a discrete PTRS pattern; or when the MCS is greater than the third threshold and less than or equal to In the case of the fourth threshold, the first PTRS pattern is a blocky zero-power PTRS pattern; or when the MCS is greater than the fourth threshold, the first PTRS pattern is a blocky zero-power PTRS pattern or a blocky non-zero Power PTRS pattern.
  • the first PTRS pattern is a discrete PTRS pattern; the values of the parameters included in the scene parameters of the current scene In the case of elements in the second subset S2, the first PTRS pattern is a block zero-power PTRS pattern; in the case where the values of the parameters included in the scene parameters of the current scene are elements of the third subset S3, the first PTRS pattern is an element in the third subset S3.
  • a PTRS pattern is a blocky non-zero power PTRS pattern, wherein each of the first subset S1, the second subset S2, and the third subset S3 includes the value of any one or more of the following parameters or Value range: phase noise model, carrier frequency, subcarrier spacing, scheduling bandwidth, modulation order, code rate, modulation coding mode MCS, phase noise power spectral density, number of PTRS, channel conditions, signal-to-noise ratio SNR, PTRS time The threshold value of the frequency domain density.
  • the block size of the first PTRS pattern is 1; when the first PTRS pattern is a blocky zero-power PTRS pattern or a blocky non-zero-power PTRS pattern , The block size of the first PTRS pattern is related to the frequency selectivity characterization parameter of the channel of the current scene.
  • the block size of the first PTRS pattern is the number of PTRS, and the number of blocks is 1. If the frequency selectivity characterization parameter of the channel of the current scene is equal to or higher than the threshold, the block size of the first PTRS pattern is less than the number of PTRS, and the number of blocks is greater than 1.
  • the transceiver unit 910 is further configured to receive indication information of the PTRS pattern sent by the transmitting end, where the indication information includes any one or more of the following attributes of the first PTRS pattern: pattern type, block size, and block quantity;
  • the processing unit 920 is configured to obtain the first PTRS pattern corresponding to the current scene according to the indication information of the PTRS pattern.
  • the transceiver unit 910 is configured to receive the PTRS sent by the transmitting end according to the mapping position of the first PTRS pattern and the PTRS.
  • the transceiving unit 910 is further configured to receive the indication information of the PTRS mapping position sent by the transmitting end, where the PTRS mapping position is determined by the transmitting end according to the channel quality of the current scene; wherein, the processing unit 920 is configured to, according to the PTRS The indication information of the mapping position determines the mapping position of the PTRS.
  • the frequency domain mapping positions of the PTRS on adjacent symbols are different.
  • the processing unit 920 is further configured to determine the mapping position of the PTRS according to any one or more of the following parameters: scheduling bandwidth, symbol data, and number of blocks.
  • the processing unit 920 in the above embodiment may be implemented by a processor or a processor-related circuit.
  • the transceiver unit 910 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiving unit 910 may also be referred to as a communication unit or a communication interface.
  • an embodiment of the present application also provides a communication device 1000.
  • the communication device 1000 includes a processor 1010, the processor 1010 is coupled with a memory 1020, the memory 1020 is used to store computer programs or instructions, and the processor 1010 is used to execute the computer programs or instructions stored in the memory 1020, so that The method is executed.
  • the communication device 1000 may further include a memory 1020.
  • the communication device 1000 may further include a transceiver 1030, and the transceiver 1030 is used for receiving and/or transmitting signals.
  • the processor 1010 is used to control the transceiver 1030 to receive and/or send signals.
  • the communication device 1000 is used to implement the operations performed by the sending end in the foregoing method embodiments.
  • the processor 1010 is used to implement processing-related operations performed by the transmitting end in the foregoing method embodiment
  • the transceiver 1030 is used to implement transceiving-related operations performed by the transmitting end in the foregoing method embodiment.
  • the communication device 1000 is used to implement the operations performed by the receiving end in the foregoing method embodiments.
  • the processor 1010 is used to implement processing-related operations performed by the receiving end in the foregoing method embodiment
  • the transceiver 1030 is used to implement transceiving-related operations performed by the receiving end in the foregoing method embodiment.
  • the embodiment of the present application also provides a communication device 1100, and the communication device 1100 may be a terminal device or a chip.
  • the communication device 1100 may be used to perform operations performed by the receiving end in the foregoing method embodiments, or may also be used to perform operations performed by the sending end in the foregoing method embodiments. In the following description, the communication device 1100 is used to perform operations performed by the receiving end in the foregoing method embodiments as an example.
  • FIG. 11 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiving unit 1110 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 1120 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1110 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1110 as the sending unit, that is, the transceiver unit 1110 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 1120 is configured to perform step S520 in FIG. 5, and/or the processing unit 1120 is further configured to perform other processing-related steps performed by the receiving end in the embodiment of the present application; the transceiver unit 1110 It is used to perform the receiving operation in step S530, and/or the transceiving unit 1110 is also used to perform other transceiving-related steps performed by the receiving end.
  • the processing unit 1120 is configured to perform step S850 and step S860 in FIG. 8, and/or the processing unit 1120 is further configured to perform other processing related steps performed by the receiving end in the embodiment of the present application.
  • the transceiving unit 1110 is used to perform step S870, and the receiving operations in steps S840 and S880, and/or the transceiving unit 1110 is also used to perform other transceiving-related steps performed by the receiving end.
  • FIG. 11 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 11.
  • the chip When the communication device 1100 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 1200, and the communication device 1200 may be a network device or a chip.
  • the communication device 1200 may be used to perform operations performed by the receiving end in the foregoing method embodiments, or may also be used to perform operations performed by the sending end in the foregoing method embodiments. In the following, description is made by taking the communication device 1200 for performing operations performed by the sending end in the foregoing method embodiments as an example.
  • FIG. 12 shows a simplified schematic diagram of the base station structure.
  • the base station includes part 1210 and part 1220.
  • the 1210 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1220 part is mainly used for baseband processing and control of base stations.
  • the 1210 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 1220 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1210 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1210 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 1210 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 1220 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit of part 1210 is used to perform the sending operation in step S530 in FIG. 5, and/or the transceiver unit of part 1210 is also used to perform other operations performed by the network device in the embodiment of the present application.
  • Transceiving-related steps; part 1220 is used to perform step S510 in FIG. 5, and/or part 1220 is also used to perform processing-related steps performed by the network device in the embodiment of the present application.
  • the transceiver unit of part 1210 is used to perform step S840 and step S880 in FIG. 8, and/or the transceiver unit of part 1210 is also used to perform other operations performed by the network device in the embodiment of the present application.
  • Transceiving-related steps; part 1220 is used to perform step S810, step S820, and step S830 in FIG. 8, and/or part 1220 is also used to perform processing-related steps performed by the network device in the embodiment of the present application.
  • FIG. 12 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 12.
  • the chip When the communication device 1200 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiment.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system at the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of this application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of this application, as long as it can run a program that records the code of the method provided in the embodiment of this application, according to the method provided in the embodiment of this application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • Computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.), etc. ), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to: wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Direct RAM Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the essence of the technical solution of this application, or the part that contributes to the existing technology, or the part of the technical solution, can be embodied in the form of a computer software product, and the computer software product is stored in a storage
  • the computer software product includes several instructions, which are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media may include but are not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks, etc., which can store programs The medium of the code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种传输PTRS的方法与装置,该方法包括:根据预设对应信息,确定当前场景对应的第一PTRS图样,其中,预设对应信息包括多个场景与多种PTRS图样之间的对应关系;按照第一PTRS图样,向接收端发送PTRS;其中,第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。通过根据场景确定PTRS图样,可以实现基于场景动态确定PTRS图样,以使得所确定的PTRS图样适合于当前场景,从而可以提高相位噪声的估计准确度,降低数据解调的难度。

Description

传输相位跟踪参考信号的方法与装置 技术领域
本申请涉及通信领域,具体涉及一种传输相位跟踪参考信号(phase tracking reference signal,PTRS)的方法与装置。
背景技术
高频频段(6GHz以上的频段,例如,28GHz、39GHz、60GHz、73GHz的频段)因其丰富的频段资源成为业界用于解决日益增长的通信需求,而研究和开发的热点。高频频段具有大带宽、高集成天线阵列等优势,但也存在中射频失真问题,例如,相位噪声(phase noise,PHN)引起的相位误差会导致频域干扰,例如,载波内干扰(也称为公共相位误差(common phase error,CPE))与载波间干扰(inter sub-carrier interference,ICI)。频域干扰会增加数据解调的难度,导致高频通信系统的性能下降甚至无法工作。
针对高频下的相位噪声,通常采用相位跟踪参考信号(phase tracking reference signal,PTRS)进行相位噪声引起的相位误差的估计与补偿。当前技术中采用PTRS进行相位噪声的估计的方案,不能保证适用于所有场景,例如,在一些场景下相位噪声的估计准确度较低。例如,当前技术中提出的基于离散PTRS图样进行相位噪声估计的方案,在需要抬升参考信号功率的情况下,会降低相位噪声引起的载波间干扰的估计准确度。
发明内容
本申请提供一种传输PTRS的方法与装置,通过基于场景确定PTRS图样,可以使得所确定的PTRS图样适合于当前场景,从而可以提高相位噪声的估计准确度。
第一方面,提供了一种传输PTRS的方法,该方法包括:根据预设对应信息,确定当前场景对应的第一PTRS图样,其中,预设对应信息包括多个场景与多种PTRS图样之间的对应关系;按照第一PTRS图样,向接收端发送PTRS;其中,第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
通过根据场景确定PTRS图样,可以实现基于场景动态确定PTRS图样,以使得所确定的PTRS图样适合于当前场景,从而可以提高相位噪声的估计准确度,降低数据解调的难度。
结合第一方面,在第一方面的一种可能的实现方式中,场景采用场景参数表征,预设对应信息包括多个场景的场景参数与多种PTRS图样之间的对应关系;其中,根据预设对应信息,确定当前场景对应的第一PTRS图样,包括:根据当前场景的场景参数与预设对应信息,确定当前场景对应的第一PTRS图样,其中,场景参数可以包括下列参数中任一种或多种:相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
结合第一方面,在第一方面的一种可能的实现方式中,当场景采用场景参数PTRS数量表征时,在当前场景的PTRS数量小于或等于第一门限值的情况下,第一PTRS图样为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样;或在当前场景的PTRS数量大于第一门限值、且小于或等于第二门限值的情况下,第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样;或在当前场景的PTRS数量大于第二门限值的情况下,第一PTRS图样为块状非零功率PTRS图样。
通过根据PTRS数量动态确定PTRS图样,可以有效利用PTRS图样,采用较低复杂度实现自适应的ICI阶数的准确估计,可以改善相噪下的数据解调性能,提高相噪影响下的频谱效率。
结合第一方面,在第一方面的一种可能的实现方式中,当场景采用场景参数调制编码模式(MCS)表征时,在MCS小于或等于第三门限值的情况下,第一PTRS图样为离散PTRS图样;或在MCS大于第三门限值、且小于或等于第四门限值的情况下,第一PTRS图样为块状零功率PTRS图样;或在MCS大于第四门限值的情况下,第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样。
通过根据MCS动态确定PTRS图样,可以有效利用PTRS图样,采用较低复杂度实现自适应的ICI阶数的准确估计,可以改善相噪下的数据解调性能,提高相噪影响下的频谱效率。
结合第一方面,在第一方面的一种可能的实现方式中,在当前场景的场景参数包括的参数的取值为第一子集S1中的元素的情况下,第一PTRS图样为离散PTRS图样;在当前场景的场景参数包括的参数的取值为第二子集S2中的元素的情况下,第一PTRS图样为块状零功率PTRS图样;在当前场景的场景参数包括的参数的取值为第三子集S3的元素的情况下,第一PTRS图样为块状非零功率PTRS图样。
其中,第一子集S1、第二子集S2、第三子集S3中的各个子集中包括下列中任一种或多种参数的取值或取值范围:相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。这个参数均与ICI阶数相关。
通过根据与ICI相关的场景参数动态确定PTRS图样,可以有效利用PTRS图样,采用较低复杂度实现自适应的ICI阶数的准确估计,可以改善相噪下的数据解调性能,提高相噪影响下的频谱效率。
结合第一方面,在第一方面的一种可能的实现方式中,在第一PTRS图样为离散PTRS图样的情况下,第一PTRS图样的块大小为1;在第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样的情况下,第一PTRS图样的块大小与当前场景的信道的频选性表征参数相关。
例如,在第一PTRS图样为块状非零功率PTRS图样的情况下,若当前场景的信道的频选性表征参数低于阈值,第一PTRS图样的块大小为PTRS数量,块数量为1;若当前场景的信道的频选性表征参数等于或高于阈值,第一PTRS图样的块大小小于PTRS数量,块数量大于1。
应理解,块状PTRS图样的块大小与信道的频选性表征参数相关,即块状PTRS图样的块大小可以基于信道的频选性表征参数确定,可以提高块状PTRS图样的抗频选能力, 从而可以提高相位噪声的估计准确度。
结合第一方面,在第一方面的一种可能的实现方式中,该预设对应信息由协议规定或预定义或预配置。
应理解,该预设对应信息由协议规定或预定义或预配置,相当于PTRS图样由场景参数隐式确定,不需要额外的信令专门来指示接收端当前场景的PTRS图样,可以节省信令。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:向接收端发送第一PTRS图样的指示信息,指示信息包括第一PTRS图样的如下属性中的任一种或多种:图样类型、块大小、块数量。
应理解,通过发送端向接收端发送信令来指示当前场景对应的PTRS图样,收发端可以相对准确地约定PTRS图样。
结合第一方面,在第一方面的一种可能的实现方式中,按照第一PTRS图样,向接收端发送PTRS,包括:根据第一PTRS图样与PTRS的映射位置,向接收端发送PTRS。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:根据当前场景的信道质量,确定PTRS的映射位置;向接收端发送所确定的PTRS的映射位置的指示信息。
结合第一方面,在第一方面的一种可能的实现方式中,根据当前场景的信道质量,确定PTRS的映射位置,包括:从多组信道中选择信道质量最优的一组信道作为PTRS的映射位置。
应理解,根据信道条件确定PTRS的映射位置,可以提高PTRS图样的抗频选能力,从而可以改善相位噪声下的数据解调性能,可以提高相位噪声影响下的频谱效率。
结合第一方面,在第一方面的一种可能的实现方式中,PTRS在相邻符号上的频域映射位置不同。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:根据下列参数中任一项或多项,确定PTRS的映射位置,使得PTRS在相邻符号上的频域位置不同,即PTRS在相邻符号上的频域映射位置具有不同的偏移量:调度带宽、符号数据、块数量。
应理解,PTRS在相邻符号上的频域位置不同,可以增强PTRS图样的抗频选能力,从而可以改善相位噪声下的数据解调性能,可以提高相位噪声影响下的频谱效率。
第二方面,提供一种传输相位跟踪参考信号PTRS的方法,该方法包括:确定当前场景对应的第一PTRS图样;根据第一PTRS图样,接收发送端发送的PTRS,其中,发送端按照基于预设对应信息确定的当前场景对应的PTRS图样发送PTRS,其中,预设对应信息包括多个场景与多种PTRS图样之间的对应关系;其中,第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
通过根据场景确定PTRS图样,可以实现基于场景动态确定PTRS图样,以使得所确定的PTRS图样适合于当前场景,从而可以提高相位噪声的估计准确度,降低数据解调的难度。
结合第二方面,在第二方面的一种可能的实现方式中,该预设对应信息由协议规定或预定义或预配置。其中,确定当前场景对应的第一PTRS图样,包括:根据预设对应信息,确定当前场景对应的第一PTRS图样。
应理解,该预设对应信息由协议规定或预定义或预配置,相当于PTRS图样由场景参 数隐式确定,不需要额外的信令专门来指示接收端当前场景的PTRS图样,可以节省信令。
结合第二方面,在第二方面的一种可能的实现方式中,场景采用场景参数表征,预设对应信息包括多个场景的场景参数与多种PTRS图样之间的对应关系;其中,根据预设对应信息,确定当前场景对应的第一PTRS图样,包括:根据当前场景的场景参数与预设对应信息,确定当前场景对应的第一PTRS图样,其中,场景参数可以包括下列参数中任一种或多种:相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
结合第二方面,在第二方面的一种可能的实现方式中,当场景采用场景参数PTRS数量表征时,在当前场景的PTRS数量小于或等于第一门限值的情况下,第一PTRS图样为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样;或在当前场景的PTRS数量大于第一门限值、且小于或等于第二门限值的情况下,第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样;或在当前场景的PTRS数量大于第二门限值的情况下,第一PTRS图样为块状非零功率PTRS图样。
通过根据PTRS数量动态确定PTRS图样,可以有效利用PTRS图样,采用较低复杂度实现自适应的ICI阶数的准确估计,可以改善相噪下的数据解调性能,提高相噪影响下的频谱效率。
结合第二方面,在第二方面的一种可能的实现方式中,当场景采用场景参数MCS表征时,在MCS小于或等于第三门限值的情况下,第一PTRS图样为离散PTRS图样;或在MCS大于第三门限值、且小于或等于第四门限值的情况下,第一PTRS图样为块状零功率PTRS图样;或在MCS大于第四门限值的情况下,第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样。
通过根据MCS动态确定PTRS图样,可以有效利用PTRS图样,采用较低复杂度实现自适应的ICI阶数的准确估计,可以改善相噪下的数据解调性能,提高相噪影响下的频谱效率。
结合第二方面,在第二方面的一种可能的实现方式中,在当前场景的场景参数包括的参数的取值为第一子集S1中的元素的情况下,第一PTRS图样为离散PTRS图样;在当前场景的场景参数包括的参数的取值为第二子集S2中的元素的情况下,第一PTRS图样为块状零功率PTRS图样;在当前场景的场景参数包括的参数的取值为第三子集S3的元素的情况下,第一PTRS图样为块状非零功率PTRS图样。
其中,第一子集S1、第二子集S2、第三子集S3中的各个子集中包括下列中任一种或多种参数的取值或取值范围:相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。这个参数均与ICI阶数相关。
通过根据与ICI相关的场景参数动态确定PTRS图样,可以有效利用PTRS图样,采用较低复杂度实现自适应的ICI阶数的准确估计,可以改善相噪下的数据解调性能,提高相噪影响下的频谱效率。
结合第二方面,在第二方面的一种可能的实现方式中,在第一PTRS图样为离散PTRS图样的情况下,第一PTRS图样的块大小为1;在第一PTRS图样为块状零功率PTRS图 样或块状非零功率PTRS图样的情况下,第一PTRS图样的块大小与当前场景的信道的频选性表征参数相关。
例如,在第一PTRS图样为块状非零功率PTRS图样的情况下,若当前场景的信道的频选性表征参数低于阈值,第一PTRS图样的块大小为PTRS数量,块数量为1;若当前场景的信道的频选性表征参数等于或高于阈值,第一PTRS图样的块大小小于PTRS数量,块数量大于1。
例如,在第一PTRS图样为块状非零功率PTRS图样的情况下,若当前场景的信道的频选性表征参数低于阈值,第一PTRS图样的块大小为PTRS数量,块数量为1;若当前场景的信道的频选性表征参数等于或高于阈值,第一PTRS图样的块大小小于PTRS数量,块数量大于1。
应理解,块状PTRS图样的块大小与信道的频选性表征参数相关,即块状PTRS图样的块大小可以基于信道的频选性表征参数确定,可以提高块状PTRS图样的抗频选能力,从而可以提高相位噪声的估计准确度。
结合第二方面,在第二方面的一种可能的实现方式中,确定当前场景对应的第一PTRS图样,包括:接收发送端发送的PTRS图样的指示信息,指示信息包括第一PTRS图样的如下属性中的任一种或多种:图样类型、块大小、块数量;根据PTRS图样的指示信息,获取当前场景对应的第一PTRS图样。
应理解,通过发送端向接收端发送信令来指示当前场景对应的PTRS图样,收发端可以相对准确地约定PTRS图样。
结合第二方面,在第二方面的一种可能的实现方式中,根据第一PTRS图样,接收发送端发送的PTRS,包括:根据第一PTRS图样与PTRS的映射位置,接收发送端发送的PTRS。
结合第二方面,在第二方面的一种可能的实现方式中,该方法还包括:接收发送端发送的PTRS映射位置的指示信息,其中,PTRS映射位置是发送端根据当前场景的信道质量确定的;根据PTRS映射位置的指示信息,确定PTRS的映射位置。
应理解,根据信道条件确定PTRS的映射位置,可以提高PTRS图样的抗频选能力,从而可以改善相位噪声下的数据解调性能,可以提高相位噪声影响下的频谱效率。
结合第二方面,在第二方面的一种可能的实现方式中,PTRS在相邻符号上的频域映射位置不同。
可选地,该方法还包括:根据下列参数中任一项或多项,确定PTRS的映射位置,使得TRS在相邻符号上的频域位置不同,即PTRS在相邻符号上的频域映射位置具有不同的偏移量:调度带宽、符号数据、块数量。
应理解,PTRS在相邻符号上的频域位置不同,可以增强PTRS图样的抗频选能力,从而可以改善相位噪声下的数据解调性能,可以提高相位噪声影响下的频谱效率。
第三方面,提供一种通信装置,该通信装置可以用于执行第一方面或者第二方面中的方法中的方法。
可选地,该通信装置可以包括用于执行第一方面或者第二方面中的方法中的方法的模块。
第四方面,提供一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,该 存储器用于存储计算机程序或指令,处理器用于执行存储器存储的计算机程序或指令,使得第一方面或者第二方面中的方法被执行。
例如,处理器用于执行存储器存储的计算机程序或指令,使得该通信装置执行第一方面或者第二方面中的方法。
可选地,该通信装置包括的处理器为一个或多个。
可选地,该通信装置中还可以包括与处理器耦合的存储器。
可选地,该通信装置包括的存储器可以为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者分离设置。
可选地,该通信装置中还可以包括收发器。
第五方面,提供一种芯片,该芯片包括处理模块与通信接口,处理模块用于控制所述通信接口与外部进行通信,处理模块还用于实现第一方面或者第二方面中的方法。
第六方面,提供一种计算机可读存储介质,其上存储有用于实现第一方面或者第二方面中的方法的计算机程序(也可称为指令或代码)。
例如,该计算机程序被计算机执行时,使得该计算机可以执行第一方面或者第二方面中的方法。该计算机可以为通信装置。
第七方面,提供一种计算机程序产品,该计算机程序产品包括计算机程序(也可称为指令或代码),该计算机程序被计算机执行时使得所述计算机实现第一方面或者第二方面中的方法。该计算机可以为通信装置。
第八方面,提供一种通信系统,包括第三方面提供的用于执行第一方面提供的方法的通信装置与第三方面提供的用于执行第二方面提供的方法的通信装置。
第三方面提供的用于执行第一方面提供的方法的通信装置可以称为网络设备,第三方面提供的用于执行第二方面提供的方法的通信装置可以称为终端设备。
基于上述描述,相比现有技术固定为一种PTRS图样的方案,本申请实施例通过建立各种场景参数与PTRS图样之间的对应关系,可以实现根据场景动态选择PTRS图样,从而可以提高相位噪声的估计准确度,可以减低数据解调的难度。
附图说明
图1是参考信号传输的示意图。
图2是本申请实施例适用于的通信系统的示意图。
图3是本申请实施例中的PTRS图样的示意图。
图4是本申请实施例中根据PTRS图样进行PTRS测量的示意图。
图5是本申请实施例提供的传输PTRS的方法的示意性流程图。
图6是本申请实施例中块状PTRS图样的块大小与块数量的示意图。
图7是本申请实施例中PTRS的映射位置的示意图。
图8是本申请实施例提供的传输PTRS的方法的另一示意性流程图。
图9是本申请实施例提供的通信装置的示意性框图。
图10是本申请实施例提供的通信装置的另一示意性框图。
图11是本申请实施例提供的终端设备的示意性框图。
图12是本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
高频频段(6GHz以上的频段,例如,28GHz、39GHz、60GHz、73GHz的频段)因其丰富的频段资源,成为业界用于解决日益增长的通信需求而研究和开发的热点。高频频段的显著特点除了因为大带宽和高集成天线阵列而可以实现高吞吐量之外,还包括中射频失真问题,例如,相位噪声引入相位误差,进而引起频域干扰,导致高频通信系统的性能下降甚至无法工作。
下面给出相位噪声引起频域干扰的一个示例。
假设一个正交频分复用(orthogonal frequency division multiplexing,OFDM)时域信号上的相位噪声为θ n,n=0,...,N c-1,其频域响应为
Figure PCTCN2019128610-appb-000001
该相位噪声对频域信号的影响可表达为下列公式:
Figure PCTCN2019128610-appb-000002
其中,s表示未受相位噪声影响的频域信号,S表示受到噪声信号影响后的频域信号,E表示s与S之间的转换矩阵。应理解,E反应了相位噪声对频域信号的影响。E中的各个元素的表达为
Figure PCTCN2019128610-appb-000003
上述公式的另一种表达方式如下所示:
Figure PCTCN2019128610-appb-000004
其中,上式中第一项的系数E 0可以称为公共相位误差(common phase error,CPE),上式中的第二项求和公式可以称为子载波间干扰(inter sub-carrier interference,ICI)。原因如下。
E 0s i表示相位噪声导致子载波上原始信号发生旋转或缩放。可以理解到
Figure PCTCN2019128610-appb-000005
即E 0与子载波编号无关,也就是说,所有子载波上原始信号发生的旋转或缩放均相同。因此,上式中第一项E 0s i表示的相位噪声引起的相位误差可以称为公共相位误差(CPE)。
可以理解到,上式中的第二项求和公式表示的相位噪声引起的相位误差与子载波编号有关,因此,上式中第二项求和公式表示的相位噪声引起的相位误差可以称为子载波间干扰(ICI)。
上式中第一项E 0s i表示的相位噪声引起的相位误差可以视为是子载波对子载波本身的 干扰。
从上面示例可知,相位噪声会引起相位误差,该相位误差会产生频域干扰。相位噪声引起的频域干扰会增加数据解调的难度,导致高频通信系统的性能下降甚至无法工作。
例如,随着频段的增加,相位噪声功率谱密度越高,对接收信号的影响越大。
再例如,在6GHz以上的无线通信网络中,为满足日益增加的通信需求,对高阶调制,例如,256正交幅度调制(quadrature amplitude modulation,QAM)甚至1024QAM的需求也越来越高。在相位噪声功率谱密度达到一定水平的情况下,当调制阶数较高时,除了相位噪声引起的CPE,因相位噪声引起的ICI也不可忽略。例如,在同一相位噪声功率谱密度下,调制阶数越高,相位噪声引起的ICI越大,会显著增加数据解调(或解码)的难度。
基于上述描述可知,需要对高频下的相位噪声进行估计与补偿,以降低数据解调的难度。
针对高频段下的相位噪声,通常采用相位跟踪参考信号(phase tracking reference signal,PTRS)进行相位噪声引起的相位误差的估计与补偿。相位误差的估计与补偿主要包括:CPE的估计与补偿,以及ICI的估计与补偿。
参考信号是发送端在发送的有效信号中加入预先已知的导频符号,接收端根据已知的导频符号可以解调或解码出有效信号。采用PTRS进行相位误差的估计与补偿指的是,利用插入有效信号中的PTRS来估计与补偿相位误差。
作为示例,采用PTRS进行相位误差的估计与补偿的流程如图1所示。
在发送端,执行如下操作:
对数据比特流进行编码、符号调制与映射,获得待发送的有效信号(图1未示出);
根据PTRS图样生成PTRS序列,并对PTRS序列进行映射,获得待发送的PTRS;
对待发送的有效信号与PTRS进行预编码,获得天线上待发送的信号;
向接收端发送上述预编码后的信号。
在接收端,执行如下操作:
根据PTRS图样,对来自于发送端的信号进行解映射,获得解映射之后的PTRS接收信号,其中,该PTRS图样与发送端侧的PTRS图样应该一致;
根据解映射之后的PTRS接收信号,进行相位误差(例如,包括CPE和/或ICI)的估计;
根据相位误差的估计结果进行相位误差的补偿;
基于相位误差补偿的结果,进行符号解调,然后进行符号译码,最终获得数据比特流。
如图1所示,接收端的操作还包括均衡。均衡表示一种抗频率选择性衰落的方法,它可以补偿频率选择性衰落带来的幅频特性的变化。均衡可以视为是去除信号上的信道的影响,在均衡之前,隐含信道估计的过程。
应理解,理想情况下,接收端获得的数据比特流与发送端发送的数据比特流一致。
当前技术中提出的基于PTRS进行相位噪声的估计的方案,在一些场景会降低相位噪声的估计准确度,采用离散PTRS图样进行相位噪声估计,在需要抬升参考信号功率的情况下,会降低相位噪声引入的ICI的估计准确度。
申请人发现固定一种PTRS图样不能适用于所有场景,而现有技术中由于使用固定的PTRS图样,而不考虑场景的因素,导致在一些场景下的相位噪声的估计准确度较低。
本申请提供一种传输PTRS的方法与装置,通过基于场景确定PTRS图样,使得PTRS图样可以随场景进行动态确定,从而可以使所确定的PTRS图样适合于当前场景,因此可以提高当前场景下相位噪声的估计准确度。
从前文关于相位噪声的描述可知,相位噪声引起相位误差,进而引起频域干扰。因此,对相位噪声的估计,相当于是对相位噪声引起的相位误差的估计,也相当于是对相位噪声引起的频域干扰的估计。因此,本文中的如下描述可以等效替换:
“相位噪声的估计”、“相位误差的估计”、“频域干扰的估计”。
其中,“相位误差的估计”包括CPE估计,和/或ICI估计。
本申请实施例可以应用于各种通信系统,例如,长期演进(long term evolution,LTE)系统、第五代移动通信(the 5th Generation,5G)系统、机器与机器通信(machine to machine,M2M)系统、或者未来演进的其它通信系统,如6G系统。其中,5G的无线空口技术称为新空口(new radio,NR),5G系统也可称为NR系统。
本申请实施例可以应用于的通信系统包括但不限于如下任一种或多种通信方式:
回传、无线宽带到户(wireless to the x,WTTx)、增强移动宽带(enhanced mobile broadband,eMBB)、设备到设备(device to device,D2D)。
图2为本申请实施例适用于的一种通信系统的示意图。如图2所示,该通信系统包括多个网络设备,如图2中所示的网络设备210与220,以及多个终端设备230。
网络设备可以用于与一个或多个终端设备进行通信。如图2所示,网络设备220用于与终端设备230进行通信。例如,网络设备220与终端设备230之间的通信系统可以是增强移动宽带(enhanced mobile broadband,eMBB)系统。
网络设备可以用于与一个或多个具有部分终端设备功能的基站进行通信。如图2中所示,网络设备210与网络设备220之间可以进行通信,网络设备220之间也可以进行通信。例如,网络设备220之间,或者网络设备220与网络设备210之间可以通过非理想回传(non-ideal backhaul)接口直接或间接地通信。再例如,网络设备220之间的通信方式,或者网络设备220与网络设备210之间的通信方式可以是无线宽带到户(wireless to the x,WTTx)。
终端设备可以分布在整个通信系统中。终端设备可以是静止的,也可以是移动的。终端设备之间可以进行设备到设备(device to device,D2D)通信。如图2所示,终端设备230之间可以进行D2D通信。
网络设备可以称为基站。基站可以有多种形式,例如,宏基站、微基站、中继站或接入点等。例如,网络设备可以是LTE系统中的演进型基站(evolved Node B,eNB),或5G系统,或者传输接收点(transmission reception point,TRP)。例如,在图2中,有些网络设备是eNB,有些是gNB,有些是TRP,有些是中心单元(central unit,CU)或其他网络实体。例如,网络设备210为中心单元,网络设备220为TRP。
终端设备可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中 的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴设备等。
图2示出的通信系统仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为了便于理解与描述,下文首先结合图3描述本申请实施例中涉及的PTRS图样。
PTRS图样,表示PTRS占用资源的分布样式或分布图案。本申请实施例涉及如下三种PTRS图样(pattern)。
1、离散PTRS图样
离散PTRS图样如图3中的(a)所示,每N个资源单元(resource element,RE)上映射一个PTRS,N为正整数。
换言之,离散PTRS图样表示的PTRS占用资源的分布样式或分布图样为,PTRS每隔N个RE占用1个RE。
离散PTRS图样还可以表述为,每N/N0个资源块(resource block,RB)上映射一个PTRS其中,N为N0的整数倍,N0表示一个RB所包含的RE的数量。例如,在现有协议中,一个RB所包含的RE的数量为12。
例如,每个RE表示一个子载波。
作为示例,基于离散PTRS图样估计CPE的方法为,根据PTRS所在RE的接收信号和发送信号,获取CPE估计值。
作为另一示例,基于离散PTRS图样估计ICI的方法为,联合PTRS所在RE的接收信号以及PTRS所在RE附近的RE的接收信号构造矩阵,并通过该矩阵的逆矩阵以及PTRS所在RE的发送信号,获取ICI估计值。
2、块状非零功率(non zero power,NZP)PTRS图样
块状非零功率PTRS图样如图3中的(b)所示,PTRS集中映射在M个RE上,M为正整数。即PTRS集中映射在某一段频域资源上。
换言之,块状非零功率PTRS图样表示的PTRS占用资源的分布样式或分布图样为,PTRS集中映射在某一段频域资源。
块状非零功率PTRS图样还可以表述为,PTRS集中映射在M/N0个RB上,其中,M为N0的整数倍,N0表示一个RB所包含的RE的数量。
作为示例,基于块状非零功率PTRS图样估计CPE的方法为,根据PTRS所在RE的接收信号和发送信号,获取CPE估计值。
作为另一示例,基于块状非零功率PTRS图样估计ICI的方法为,根据PTRS所在RE的发送信号构造矩阵,并通过该矩阵的逆矩阵以及PTRS所在RE的接收信号,获取ICI估计值。
3、块状零功率(zero power,ZP)PTRS图样
块状零功率PTRS图样如图3中的(c)所示,PTRS集中映射在M个RE上,其中,除了中间的RE上是非零功率PTRS外,其他RE上均为零功率PTRS,即其他RE均空置,不承载任何信号。
换言之,块状零功率PTRS图样表示的PTRS占用资源的分布样式或分布图样为,PTRS集中映射在某一段频域资源上,其中,除了中间的RE上是非零功率PTRS外,其他RE上均为零功率PTRS。
块状零功率PTRS图样还可以表述为,PTRS集中映射在M/N0个RB上,其中,M为N0的整数倍,N0表示一个RB所包含的RE的数量,除了中间的RE上是非零功率PTRS外,其他RE上均为零功率PTRS。
作为示例,基于块状零功率PTRS图样估计CPE的方法为,根据PTRS所在RE的接收信号和发送信号,获取CPE估计值。
作为示例,基于块状零功率PTRS图样估计ICI的方法如图4所示,E i可由r i与发射信号p获取,即E i=f(r i,p)。
其中,E i对应前文提及的E k。r i表示接收信号。p表示发送信号。
需要说明的是,PTRS图样包括图样类型与图样参数两个属性。
图样类型表示PTRS占用资源的分布样式或分布图案的类型。例如,图3中(a)、(b)、(c)所示的是三种不同图样类型的PTRS图样,即分别为离散PTRS图样、块状非零功率PTRS图样、块状零功率PTRS图样。
PTRS图样具有块的概念。图样参数包括PTRS图样中的块的大小,以及包括的块的数量。为了简洁,下文中以描述“块大小”指代PTRS图样中的块的大小,以描述“块数量”指代PTRS图样中包括的块的数量。关于PTRS图样中块的含义如下文描述。
在图3的(a)所示的离散PTRS图样中,每一个PTRS视为一个块。也就是说,在离散PTRS图样中,每个块占用1个RE。
在图3的(b)所示的块状非零功率PTRS图样中,集中映射在M个RE上的PTRS视为一个块。也就是说,在块状非零功率PTRS图样中,每个块占用连续的M个RE。
在图3的(c)所示的块状零功率PTRS图样中,集中映射在M个RE上的PTRS视为一个块。也就是说,在块状零功率PTRS图样中,每个块占用连续的M个RE。
块大小可以采用块包含的PTRS的数量或与PTRS有关的RE的数量来表征。例如,在图3的(a)所示的离散PTRS图样中,块大小为1个PTRS。在图3的(b)所示的块状非零功率PTRS图样中,块大小为M个PTRS。在图3的(c)所示的块状零功率PTRS图样中,块大小为M个RE,或者,可以视为块大小为M个PTRS,其中,空置部分认为是零功率PTRS(ZP-PTRS)。
块数量表示PTRS图样中包括的块的数量。
可以理解到,PTRS图样的PTRS数量、PTRS图样的块大小与PTRS图样的块数量之间的关系为:PTRS图样的PTRS数量等于PTRS图样包括的所有块的块大小的累加和。
在PTRS图样中包括的每个块的块大小相等的情况下,PTRS图样的PTRS数量、PTRS图样的块大小与PTRS图样的块数量之间的关系为,PTRS图样的PTRS数量等于PTRS图样的块大小与块数量的乘积。
还需要说明的是,图3仅为示例而非限定。例如,在图3的(a)中,示意性地给出离散PTRS图样中的4个块,在图3的(b)中,示意性地给出块状非零功率PTRS图样中的1个块,在图3的(c)中,示意性地给出块状零功率PTRS图样中的1个块。但实际应用中,可以根据实际需求确定PTRS图样的块大小与块数量。
应理解,在块状非零功率PTRS图样与块状零功率PTRS图样中,PTRS集中映射在多个RE上,故可以统称为块状PTRS图样。
申请人发现图3所示的三种PTRS图样中的任一种PTRS图样,在一些特定场景中,存在降低ICI估计准确度的问题,或者增大计算复杂度的问题,或者增大硬件实现难度的问题。
例如,对于离散PTRS图样,在估计ICI的场景中,需结合PTRS周围的数据接收信号,导致计算复杂度较高;此外,如果需要单独对PTRS提升功率,会降低ICI估计准确度。
又例如,对于块状非零功率PTRS图样,因为PTRS集中映射在多个RE上,在所映射的多个RE的信道条件较差的场景中,导致抗频选能力较差。例如,若采用块状非零功率PTRS图样进行ICI估计,由于抗频选能力差,会降低ICI估计准确度。
再例如,对于块状零功率PTRS图样,与块状非零功率PTRS图样类似,因为PTRS集中映射在RE上,导致抗频选能力较差。
频选性表示,信道的频率选择性衰落。抗频选能力表示,抵抗信道的频率选择性衰落的能力。
此外,对于块状零功率PTRS图样,如果非零功率PTRS不做功率抬升,估计ICI准确度较低;如果借用零功率PTRS上的功率对非零功率PTRS进行功率抬升,当一个块占用的RE的数量(如图3的(c)中所示的M)较大,例如,大于7(如图3的(c)中所示的M>7)时,会导致非零功率PTRS与旁边数据RE(即子载波)上的功率相差太大,增加信号的峰均功率比(peak-to-average power ratio,PAPR)以及硬件实现复杂度。
基于上述分析,本申请提出基于场景确定PTRS图样,以实现可以根据场景动态确定PTRS图样,可以使所确定的PTRS图样适合于当前场景,从而可以提高相位噪声的估计准确度,进而降低数据解调(或解码)的难度。
图5为本申请实施例的传输PTRS的方法的示意性流程图。如图5所示,该方法包括如下步骤。
S510,发送端根据预设对应信息,确定当前场景对应的第一PTRS图样。
该预设对应信息包括多个场景与多种PTRS图样之间的对应关系,其中,该多种PTRS图样包括下列PTRS图样中任意两种或多种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。在该预设对应信息中,每个场景唯一对应一种PTRS图样。例如,关于当前场景,其唯一对应于第一PTRS图样。
可以理解到,按照该预设对应信息所确定的当前场景对应的第一PTRS图样可以为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
S520,接收端确定当前场景对应的PTRS图样,即第一PTRS图样。
接收端确定当前场景对应的PTRS图样的方式有多种,例如,基于预设对应信息确定当前场景对应的PTRS图样为第一PTRS图样,或者,根据发送端的信令获知当前场景对应的PTRS图样为第一PTRS图样。下文将进行描述,这里暂不描述。
S530,发送端与接收端按照第一PTRS图样,传输PTRS。即发送端按照第一PTRS图样发送PTRS,接收端按照第一PTRS图样接收PTRS。
应理解,通过根据场景确定PTRS图样的方案,可以实现基于场景动态确定PTRS图 样,从而可以实现所确定的PTRS图样适合于当前场景。其中,确定的PTRS图样适合于当前场景,表示,在当前场景下采用该PTRS图样进行相位噪声的估计,可以提高相位误差的估计准确度,或者还可以降低估计复杂度。
在现有技术中,采用固定的PTRS图样,未考虑场景的因素,因此,不能有效提高相位噪声的估计准确度。
而本申请实施例通过根据场景确定PTRS图样,可以实现基于场景动态确定PTRS图样,以使得所确定的PTRS图样适合于当前场景,从而可以提高相位噪声的估计准确度,降低数据解调的难度。
本文中提及的“第一PTRS图样”中的“第一”仅为了区分而非限定,即为了区分当前场景对应的PTRS图样,与预设对应信息中包括的多种PTRS图样。
本申请实施例中的发送端为网络设备(例如,基站),接收端为终端设备,或者,发送端为终端设备,接收端为网络设备。
接收端通过测量接收到的PTRS,进行相位噪声的估计与补偿,例如进行CPE的估计与补偿吗,或者,进行ICI的估计与补偿。
或者,接收端通过测量接收到的PTRS,还可以进行其它信息的估计,例如,进行多普勒频移的估计,或者,进行时间同步或信道的估计。
在实际应用中,接收端可以根据应用需求确定基于PTRS进行什么信息的估计,本申请对此不作限定。下文中以接收端基于接收到的PTRS进行相位噪声的估计为例进行描述。
预设对应信息中包括多个场景与多种PTRS图样之间的对应关系,其中,场景可以采用场景参数来表征,即预设对应信息中包括场景参数与PTRS图样之间的关系。或者说,预设对应信息中包括多个场景的场景参数与多种PTRS图样之间的对应关系。
场景参数可以包括下列参数中任一个或多个:
相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式(modulation and coding scheme,MCS)、相位噪声功率谱密度、PTRS数量、信道条件、信噪比(signal-to-noise ratio,SNR)、PTRS时频域密度的门限值。
例如,PTRS时频域密度的门限值可以是用于进行CPE估计/补偿的PTRS时频域密度的门限值,也可以是用于进行ICI估计/补偿的PTRS时频域密度的门限值。例如,如果要进行CPE估计/补偿,则PTRS时频域密度的门限值为用于进行CPE估计/补偿的PTRS时频域密度的门限值,如果要进行ICI估计/补偿,则PTRS时频域密度的门限值为用于进行ICI估计/补偿的PTRS时频域密度的门限值。
在预设对应信息包括场景参数与PTRS图样之间的对应关系的实施例中,在步骤S510中,发送端根据该预设对应信息以及当前场景的场景参数,确定当前场景对应的第一PTRS图样。
如无特殊说明,本文中提及的场景参数可以包括下列参数中任一个或多个:
相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、MCS、相位噪声功率谱密度、PTRS数量、信道条件、SNR、PTRS时频域密度的门限值。
预设对应信息可以具有多种定义方式,即预设对应信息中包括的多个场景与多种PTRS图样之间的对应关系可以具有多种定义方式。
以场景采用场景参数表征为例,预设对应信息中包括的场景参数与PTRS图样之间的 对应关系可以具有多种定义方式。例如,预设对应信息中包括的场景参数与PTRS图样之间的对应关系的定义方式,基于场景参数的取值而确定。即该预设对应信息的定义方式,基于场景的场景参数的取值而确定。
作为示例,预设对应信息的定义方式如表1所示。
表1
场景参数的取值 第一子集S1 第二子集S2 第三子集S3
PTRS图样 离散PTRS图样 块状零功率PTRS图样 块状非零功率PTRS图样
如表1中第2列所示,当场景的场景参数的取值为第一子集S1中的元素,该场景对应的PTRS图样为离散PTRS图样。
如表1中第3列所示,当场景的场景参数的取值为第二子集S2中的元素,该场景对应的PTRS图样为块状零功率PTRS图样。
如表1中第4列所示,当场景的场景参数的取值为第三子集S3中的元素,该场景对应的PTRS图样为块状非零功率PTRS图样。
第一子集S1、第二子集S2、第三子集S3中的各个子集中包括下列中任一种或多种参数的取值或取值范围:
相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、MCS、相位噪声功率谱密度、PTRS数量、信道条件、SNR、PTRS时频域密度的门限值。
例如,子集S i(i=1,2,3)中可包含任意一种或多种场景参数的取值或取值范围.
作为示例,S i=A (i,1)∪A (i,2)…∪A (i,j)…,或S i=A (i,1)∩A (i,2)…∩A (i,j)…,或S i=A (i,1)∩A (i,2)…∪A (i,j)…。其中j表示上述场景参数中任意一种。不同场景参数间的集合可以是交集也可以是并集。A (i,j)可以是空集,也可是场景参数j的全集,还可以是场景参数j具体的取值,或场景参数j的取值范围。
示例性地,若场景参数为PTRS数量,表1可以为下文的表2;若场景参数为调制编码模式(modulation and coding scheme,MCS),表1可以为下文的表4;若场景参数为调度带宽,表1可以为下文的表5;若场景参数为载波频点,表1可以为下文的表6;若场景参数为调制阶数,表1可以为下文的表7;若场景参数为编码码率,表1可以为下文的表8;若场景参数为信噪比(SNR),表1可以为下文的表9;若场景参数为相噪模型,表1可以为下文的表10;若场景参数为子载波间隔,表1可以为下文的表11。详见下文相关描述。
在本实施例中,在步骤S510中,发送端根据当前场景的场景参数的取值以及该预设对应信息,确定当前场景对应的第一PTRS图样。
作为示例,假设该预设对应信息的定义方式如表1所示,则在步骤S510中,在当前场景的场景参数的取值为第一子集S1中的元素的情况下,发送端确定第一PTRS图样为离散PTRS图样;在当前场景的场景参数的取值为第二子集S2中的元素的情况下,发送端确定第一PTRS图样为块状零功率PTRS图样;在当前场景的场景参数的取值为第三子集S3中的元素的情况下,发送端确定第一PTRS图样为块状非零功率PTRS图样。
随场景参数的不同,该预设对应信息的定义方式可以相应不同。下文将描述该预设对应信息的多种定义方式。
第一种定义方式:场景与PTRS图样之间的对应关系,基于场景的PTRS数量而确定。换言之,在第一种定义方式中,场景采用场景参数PTRS数量表征。
在PTRS数量较少的场景中,例如,PTRS数量小于或等于第一门限值,估计ICI的准确度较低,此时估计ICI并补偿ICI相比于估计CPE并补偿CPE,会引入负增益。因此,当PTRS数量较少时,不适合估计ICI,适合估计CPE。在仅估计CPE的情形下,无论PTRS图样采用图3所示的三种PTRS图样中的哪一种,计算复杂度都较小,但是其中,离散PTRS图样的抗频选能力最高。因此,在PTRS数量较少的场景中,PTRS图样可以选择离散PTRS图样。
应理解,在仅估计CPE的情形下,图3所示的三种PTRS图样对应的计算复杂度都较小,因此,在这种情形下,作为替换方案,PTRS图样也可以选择状零功率PTRS图样或状非零功率PTRS图样。
在PTRS数量不太少也不太多的场景中,例如,PTRS数量大于第一门限值、且小于或等于第二门限值,此时的PTRS数量足够估计低阶ICI系数。图3所示的三种PTRS图样中块状零功率PTRS图样的估计复杂度最低,且性能较好。此外,当与PTRS数量相关的功率抬升值没有超过硬件实现复杂度的限制时,块状零功率PTRS图样相比于另外两种PTRS图样,可以最小的复杂度实现最优的ICI估计精度。因此,在PTRS数量不太少也不太多的场景中,PTRS图样可以选择块状零功率PTRS图样。
在PTRS数量较大的场景中,例如,PTRS数量大于第二门限值,此时PTRS数量足够估计高阶ICI系数。离散PTRS图样因为估计复杂度随着ICI阶数增加而显著增加,相比于另外两种PTRS图样,其复杂度较高。由于PTRS数量较大,块状零功率PTRS图样会因为功率抬升而超过硬件的限制条件。因此,在PTRS数量较大的场景中,PTRS图样可以选择块状非零功率PTRS图样。
其中,记ICI阶数为q,ICI阶数q可以表示按重要性排序后的前q个ICI系数。其中ICI系数按重要性排序可以为E0,E-1,E1,E-2,E2,E-3,E3,…,E-u,Eu,…,或E0,E1,E-1,E2,E-2,E3,E-3,…,Eu,E-u,…,则CPE可等价为ICI阶数为1的场景,即CPE=E0,或可表示为按重要性排序后的前2q+1个ICI系数,则CPE可等价为ICI阶数为0的场景,即CPE=E0。
可选地,当PTRS图样为块状非零功率PTRS图样时,其发送序列可以首尾循环,接收端可以利用块内发射信号首尾循环的特点降低估计复杂度。
作为示例,该预设对应信息的第一种定义方式如表2所示。
表2
PTRS数量 (0,第一门限值] (第一门限值,第二门限值] (第二门限值,+∞]
PTRS图样 离散PTRS图样 块状零功率PTRS图样 块状非零功率PTRS图样
如表2中的第2列所示,当场景的PTRS数量小于或等于第一门限值,与该场景对应的PTRS图样为离散PTRS图样。
如表2中的第3列所示,当场景的PTRS数量大于第一门限值、且小于或等于第二门限值,与该场景对应的PTRS图样为块状零功率PTRS图样。
如表2中的第4列所示,当场景的PTRS数量大于第二门限值,与该场景对应的PTRS 图样为块状非零功率PTRS图样。
其中,第一门限值与ICI阶数有关,ICI阶数越高,第一门限值越大,ICI阶数越低,第一门限值越小。第二门限值与硬件能力有关。例如,PA性能越好,第二门限值越高。
表2仅为示例而非限定。
可选地,在预设对应信息的第一种定义方式中,当场景的PTRS数量小于或等于第一门限值,与该场景对应的PTRS图样为离散PTRS图样。
可选地,在预设对应信息的第一种定义方式中,当场景的PTRS数量小于或等于第一门限值,与该场景对应的PTRS图样为块状非零功率PTRS图样。
可选地,在预设对应信息的第一种定义方式中,当场景的PTRS数量大于第一门限值、且小于或等于第二门限值,与该场景对应的PTRS图样为块状非零功率PTRS图样。
在该预设对应信息的定义方式为第一种定义方式的实施例中,在步骤S510中,发送端根据当前场景的PTRS数量以及该预设对应信息,确定当前场景对应的第一PTRS图样。
例如,该预设对应信息的定义方式如表2所示,在步骤S510中,在当前场景的PTRS数量小于或等于第一门限值的情况下,发送端确定第一PTRS图样为离散PTRS图样;在当前场景的PTRS数量大于第一门限值、且小于或等于第二门限值的情况下,发送端确定第一PTRS图样为块状零功率PTRS图样;在当前场景的PTRS数量大于第二门限值的情况下,发送端确定第一PTRS图样为块状非零功率PTRS图样。
再例如,如果在预设对应信息的第一种定义方式中,当场景的PTRS数量小于或等于第一门限值,与该场景对应的PTRS图样为块状零功率PTRS图样,则在步骤S510中,在当前场景的PTRS数量小于或等于第一门限值的情况下,发送端确定第一PTRS图样为块状零功率PTRS图样。
再例如,如果在预设对应信息的第一种定义方式中,当场景的PTRS数量小于或等于第一门限值,与该场景对应的PTRS图样为块状非零功率PTRS图样,则在步骤S510中,在当前场景的PTRS数量小于或等于第一门限值的情况下,发送端确定第一PTRS图样为块状非零功率PTRS图样。
再例如,如果在预设对应信息的第一种定义方式中,当场景的PTRS数量大于第一门限值、且小于或等于第二门限值,与该场景对应的PTRS图样为块状非零功率PTRS图样,则在步骤S510中,在当前场景的PTRS数量大于第一门限值、且小于或等于第二门限值的情况下,发送端确定第一PTRS图样为块状非零功率PTRS图样。
需要说明的是,本申请对PTRS数量的获取方式不作限定。
例如,PTRS数量可以由调度带宽和基站指示的调度带宽门限值、以及针对PTRS映射位置的RB级别的偏移量确定。
若发送端为基站,接收端为终端,则发送端自主获知PTRS数量,接收端可以由调度带宽和基站指示的调度带宽门限值、以及针对PTRS映射位置的RB级别的偏移量确定PTRS数量。
又例如,比如PTRS数量还可由信令直接指示,或由协议规定。
例如,在给定场景中,PTRS数量是一个固定值,这种情形下,PTRS数量可以由协议规定或者信令直接指示。其中,这里提及的给定场景可以由下列任一种或多种参数定义:相噪模型、载波频点、子载波间隔、MCS、调制阶数、编码码率、信噪比(SNR)等。
通过根据PTRS数量动态确定PTRS图样,可以有效利用PTRS图样,采用较低复杂度实现自适应的ICI阶数的准确估计,可以改善相噪下的数据解调性能,提高相噪影响下的频谱效率。
从上文描述的PTRS数量与PTRS图样之间的对应关系的分析可知,影响PTRS图样的一个重要因素为所估计的ICI阶数。下文描述ICI阶数与PTRS图样之间的对应关系。
假设,将ICI阶数记为q。本文中将CPE视为ICI阶数为1的情况。
在q=1(或q=0),且仅需估计CPE的情况下,PTRS图样可以选择离散PTRS图样。
因为,在仅需估计CPE的情况下,采用图3所示任一种PTRS图样估计CPE的复杂度均相同,为了增强PTRS的抗频选能力,PTRS图样可以选择离散PTRS图样。
在q>1(或q>=1),且q与PTRS数量较接近的情况下,PTRS图样可以选择块状零功率PTRS图样。q与PTRS数量较接近可以理解为:q=M-4或2q+1=M或2q+1=M-4或4q+1=M。
因为,在这种情况下,由于离散PTRS图样与块状非零功率PTRS图样能够构建的用于估计ICI的方程数小于q或与q较接近(或小于2q+1或与2q+1较接近),导致ICI估计准确度下降,反而在补偿ICI后引入负增益,因此,PTRS图样可以选择块状零功率PTRS图样。
在q>1(或q>=1),且q远小于PTRS数量的情况下,PTRS图样可以选择块状零功率PTRS图样或块状非零功率PTRS图样。
因为,离散PTRS图样的ICI估计复杂度较高,而块状零功率PTRS图样和块状非零功率PTRS图样的复杂度均较低,且能够构建的用于估计ICI的方程数足够,因此,二者均可。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。因为信道的频选性不强时,PTRS图样的块大小越大,估计ICI的准确度越好,因此可以进行如下选择。若信道的频选性不强(即信道的频域较平坦),则选择PTRS图样为块状非零功率PTRS图样;若信道有一定的频选性(即信道的频域不很平坦),则选择PTRS图样为块状零功率PTRS图样。因为,相比于块状非零功率PTRS图样,块状零功率PTRS图样可以有较多的块分布在不同频域位置,可以增强抗频选能力。
其中,信道频选性可由测量参考信号(sounding reference signal,SRS)测量所得的信道幅值方差衡量,也可由终端设备反馈的子带信道质量指示(channel quality indicator,CQI)方差衡量。信道幅值方差越大,或子带CQI方差越大,则信道频选性越强。信道频选性还可以由各子载波上的信道幅值差的最大值(最大幅值与最小幅值之差)或子带CQI的最大差值(最大CQI与最小CQI之差)衡量。
应理解,通过根据场景动态确定PTRS图样,可以有效利用PTRS图样,采用较低复杂度实现自适应的ICI阶数的准确估计,可以改善相噪下的数据解调性能,提高相噪影响下的频谱效率。
从上述分析的ICI阶数与PTRS图样之间的对应关系可知,可以基于影响ICI阶数的场景参数,确定PTRS图样。
影响ICI阶数的场景参数包括但不限于:相噪模型、载波频点、子载波间隔、调度带 宽、MCS、调制阶数、编码码率与信噪比(SNR)。ICI阶数与这些场景参数的关系如表3所示。
表3
场景参数 与ICI阶数的关系 备注
相噪模型 正相关 相噪模型越恶劣,所需估计的ICI阶数越高
载波频点 正相关 频点越高,所需估计的ICI阶数越高
子载波间隔 负相关 子载波间隔越大,所需估计的ICI阶数越低
调度带宽 正相关 调度带宽越大,所需估计的ICI阶数越高
MCS 正相关 MCS越大,所需估计的ICI阶数越高
调制阶数 正相关 调制阶数越大,所需估计的ICI阶数越高
编码码率 正相关 编码码率越大,所需估计的ICI阶数越高
SNR 正相关 SNR越大,可准确估计的ICI阶数越高
其中,相噪模型、载波频点决定了相位噪声本身的恶劣程度,即二者可以看成是相位噪声的固有属性。调度带宽、子载波间隔决定了相位噪声对信号的影响程度,调度带宽越大,相位噪声对信号的影响越大,子载波间隔越大,相位噪声对信号的影响越小。MCS(调制阶数、编码码率)则决定了信号扛相位噪声的能力,MCS(调制阶数、编码码率)越高,抗相位噪声能力越弱,或在相同的相位噪声影响下,如相同的相位噪声ICI下,MCS(调制阶数、编码码率)越高,因引入相位噪声带来的数据解调性能差越大。SNR影响ICI的估计准确度,SNR越大,可达到一定估计精度的ICI阶数越高。
下文将描述基于表3中的各种场景参数确定预设对应信息的定义方式。
第二种定义方式:场景与PTRS图样之间的对应关系,基于场景的调制编码模式(modulation and coding scheme,MCS)而确定。换言之,在第二种定义方式中,场景采用场景参数MCS表征。MCS的中文名称也可以是调制与编码策略。
MCS决定了信号扛相位噪声的能力,MCS越高,信号扛相位噪声的能力越弱。或者,在相同的相位噪声的影响下,即在相同的相位噪声引起的ICI下,MCS越高,因引入相位噪声而引起的数据解调性能差越大。
作为示例,该预设对应信息的第二种定义方式如表4所示。
表4
MCS (0,第三门限值] (第三门限值,第四门限值] (第四门限值,+∞]
PTRS图样 离散PTRS图样 块状零功率PTRS图样 块状非零功率PTRS图样
如表4中的第2列所示,当场景的MCS小于或等于第三门限值,该场景对应的PTRS图样为离散PTRS图样。
如表4中的第3列所示,当场景的MCS大于第三门限值、且小于或等于第四门限值,该场景对应的PTRS图样为块状零功率PTRS图样,
如表4中的第4列所示,当场景的MCS大于第四门限值,该场景对应的PTRS图样可以为块状零功率PTRS图样或块状非零功率PTRS图样。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于 给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。因为信道的频选性不强时,PTRS图样的块大小越大,估计ICI的准确度越好,因此可以进行如下选择。
若信道的频选性不强(即信道的频域较平坦),则选择PTRS图样为块状非零功率PTRS图样。
若信道有一定的频选性(即信道的频域不是很平坦),则选择PTRS图样为块状零功率PTRS图样。因为,相比于块状非零功率PTRS图样,块状零功率PTRS图样可以有较多的块分布在不同频域位置,可以增强抗频选能力。
其中,第三门限值与第四门限值可以根据如下因素确定:
MCS与ICI阶数的关系,所要估计的ICI阶数。
在该预设对应信息的定义方式为第二种定义方式的实施例中,在步骤S510中,发送端根据当前场景的MCS以及该预设对应信息,确定当前场景对应的第一PTRS图样。
例如,该预设对应信息的定义方式如表4所示,在步骤S510中,在当前场景的MCS小于或等于第三门限值的情况下,发送端确定第一PTRS图样为离散PTRS图样;在当前场景的MCS大于第三门限值、且小于或等于第四门限值的情况下,发送端确定第一PTRS图样为块状零功率PTRS图样;在当前场景的MCS大于第四门限值的情况下,若当前场景的信道的频选性不强(即信道的频域较平坦),发送端确定第一PTRS图样为块状非零功率,若当前场景的信道有一定的频选性(即信道的频域不是很平坦),发送端确定第一PTRS图样为块状零功率PTRS。
第三种定义方式:场景与PTRS图样之间的对应关系,基于场景的调度带宽而确定。换言之,在第三种定义方式中,场景采用场景参数调度带宽表征。
应理解,调度带宽决定了相位噪声对信号的影响程度,调度带宽越大,相位噪声对信号的影响越大。
作为示例,该预设对应信息的第三种定义方式如表5所示。
表5
调度带宽 (0,TD1] (TD1,TD2] (TD2,+∞]
PTRS图样 离散PTRS图样 块状零功率PTRS图样 块状非零功率PTRS图样
如表5中的第2列所示,当场景的调度带宽小于或等于门限值TD1,该场景对应的PTRS图样为离散PTRS图样。
如表5中的第3列所示,当场景的调度带宽等于或大于门限值TD1、且小于或等于门限值TD2,该场景对应的PTRS图样为块状零功率PTRS图样,
如表5中的第4列所示,当场景的调度带宽大于门限值TD2,该场景对应的PTRS图样可以为块状零功率PTRS图样或块状非零功率PTRS图样。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。
若信道的频选性不强(即信道的频域较平坦),则选择PTRS图样为块状非零功率PTRS图样。
若信道有一定的频选性(即信道的频域不是很平坦),则选择PTRS图样为块状零功率PTRS图样。
若进一步考虑硬件的限制,块状零功率PTRS图样中每个块的大小需小于给定值或预定值,以及考虑信道的频选特性,可以有不同的选择。
这样选择的原因请参见上文,这里不再赘述。
其中,门限值TD1与TD2可以根据如下因素确定:
调度带宽与ICI阶数的关系,所要估计的ICI阶数。
在该预设对应信息的定义方式为第三种定义方式的实施例中,在步骤S510中,发送端根据当前场景的调度带宽以及该预设对应信息,确定当前场景对应的第一PTRS图样。
第四种定义方式:场景与PTRS图样之间的对应关系,基于场景的载波频点的频率而确定。换言之,在第四种定义方式中,场景采用场景参数载波频点表征。
应理解,载波频点的频率决定了相位噪声本身的恶劣程度,可以看成是相位噪声的固有属性。
作为示例,该预设对应信息的第四种定义方式如表6所示。
表6
载波频点的频率 (0,TF1] (TF1,TF2] (TF2,+∞]
PTRS图样 离散PTRS图样 块状零功率PTRS图样 块状非零功率PTRS图样
如表6中的第2列所示,当场景的载波频点的频率小于或等于门限值TF1,该场景对应的PTRS图样为离散PTRS图样。
如表6中的第3列所示,当场景的载波频点的频率等于或大于门限值TF1、且小于或等于门限值TF2,该场景对应的PTRS图样为块状零功率PTRS图样,
如表6中的第4列所示,当场景的载波频点的频率大于门限值TF2,该场景对应的PTRS图样可以为块状零功率PTRS图样或块状非零功率PTRS图样。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。
若信道的频选性不强,则选择PTRS图样为块状非零功率PTRS图样。
若信道有一定的频选性,则选择PTRS图样为块状零功率PTRS图样。
若进一步考虑硬件的限制,块状零功率PTRS图样中每个块的大小需小于给定值或预定值,以及考虑信道的频选特性,可以有不同的选择。
这样选择的原因请参见上文,这里不再赘述。
其中,门限值TF1与TF2可以根据如下因素确定:
载波频点与ICI阶数的关系,所要估计的ICI阶数。
在该预设对应信息的定义方式为第四种定义方式的实施例中,在步骤S510中,发送端根据当前场景的载波频点以及该预设对应信息,确定当前场景对应的第一PTRS图样。
第五种定义方式:场景与PTRS图样之间的对应关系,基于场景的调制阶数而确定。换言之,在第五种定义方式中,场景采用场景参数调制阶数表征。
调制阶数决定了信号扛相位噪声的能力,调制阶数越高,信号扛相位噪声的能力越弱。或者,在相同的相位噪声的影响下,即在相同的相位噪声引起的ICI下,调制阶数越高,因引入相位噪声而引起的数据解调性能差越大。
作为示例,该预设对应信息的第五种定义方式如表7所示。
表7
调制阶数 (0,TM1] (TM1,TM2] (TM2,+∞]
PTRS图样 离散PTRS图样 块状零功率PTRS图样 块状非零功率PTRS图样
如表7中的第2列所示,当场景的调制阶数小于或等于门限值TM1,该场景对应的PTRS图样为离散PTRS图样。
如表7中的第3列所示,当场景的调制阶数等于或大于门限值TM1、且小于或等于门限值TM2,该场景对应的PTRS图样为块状零功率PTRS图样,
如表7中的第4列所示,当场景的调制阶数大于门限值TM2,该场景对应的PTRS图样可以为块状零功率PTRS图样或块状非零功率PTRS图样。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。
若信道的频选性不强,则选择PTRS图样为块状非零功率PTRS图样。
若信道有一定的频选性,则选择PTRS图样为块状零功率PTRS图样。
若进一步考虑硬件的限制,块状零功率PTRS图样中每个块的大小需小于给定值或预定值,以及考虑信道的频选特性,可以有不同的选择。
这样选择的原因请参见上文,这里不再赘述。
其中,门限值TM1与TM2可以根据如下因素确定:
调制阶数与ICI阶数的关系,所要估计的ICI阶数。
在该预设对应信息的定义方式为第五种定义方式的实施例中,在步骤S510中,发送端根据当前场景的调制阶数以及该预设对应信息,确定当前场景对应的第一PTRS图样。
第六种定义方式:场景与PTRS图样之间的对应关系,基于场景的码率而确定。换言之,在第六种定义方式中,场景采用场景参数码率表征。码率也可称为编码码率。
码率决定了信号扛相位噪声的能力,码率越高,信号扛相位噪声的能力越弱。或者,在相同的相位噪声的影响下,即在相同的相位噪声引起的ICI下,码率越高,因引入相位噪声而引起的数据解调性能差越大。
作为示例,该预设对应信息的第六种定义方式如表8所示。
表8
码率 (0,TR1] (TR1,TR2] (TR2,+∞]
PTRS图样 离散PTRS图样 块状零功率PTRS图样 块状非零功率PTRS图样
如表8中的第2列所示,当场景的码率小于或等于门限值TR1,该场景对应的PTRS图样为离散PTRS图样。
如表8中的第3列所示,当场景的码率等于或大于门限值TR1、且小于或等于门限值TR2,该场景对应的PTRS图样为块状零功率PTRS图样,
如表8中的第4列所示,当场景的码率大于门限值TR2,该场景对应的PTRS图样可以为块状零功率PTRS图样或块状非零功率PTRS图样。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。
若信道的频选性不强,则选择PTRS图样为块状非零功率PTRS图样。
若信道有一定的频选性,则选择PTRS图样为块状零功率PTRS图样。
若进一步考虑硬件的限制,块状零功率PTRS图样中每个块的大小需小于给定值或预定值,以及考虑信道的频选特性,可以有不同的选择。
这样选择的原因请参见上文,这里不再赘述。
其中,门限值TR1与TR2可以根据如下因素确定:
码率与ICI阶数的关系,所要估计的ICI阶数。
在该预设对应信息的定义方式为第六种定义方式的实施例中,在步骤S510中,发送端根据当前场景的码率以及该预设对应信息,确定当前场景对应的第一PTRS图样。
第七种定义方式:场景与PTRS图样之间的对应关系,基于场景的信噪比(SNR)而确定。换言之,在第七种定义方式中,场景采用场景参数SNR表征。
SNR影响ICI估计的准确度,SNR越大,可达到一定估计精度的ICI阶数越高。
作为示例,该预设对应信息的第七种定义方式如表9所示。
表9
信噪比(SNR) (0,TS1] (TS1,TS2] (TS2,+∞]
PTRS图样 离散PTRS图样 块状零功率PTRS图样 块状非零功率PTRS图样
如表9中的第2列所示,当场景的SNR小于或等于门限值TS1,该场景对应的PTRS图样为离散PTRS图样。
如表9中的第3列所示,当场景的SNR等于或大于门限值TS1、且小于或等于门限值TS2,该场景对应的PTRS图样为块状零功率PTRS图样,
如表9中的第4列所示,当场景的SNR大于门限值TS2,该场景对应的PTRS图样可以为块状零功率PTRS图样或块状非零功率PTRS图样。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。
若信道的频选性不强,则选择PTRS图样为块状非零功率PTRS图样。
若信道有一定的频选性,则选择PTRS图样为块状零功率PTRS图样。
若进一步考虑硬件的限制,块状零功率PTRS图样中每个块的大小需小于给定值或预定值,以及考虑信道的频选特性,可以有不同的选择。
这样选择的原因请参见上文,这里不再赘述。
其中,门限值TS1与TS2可以根据如下因素确定:
信噪比与ICI阶数的关系,所要估计的ICI阶数。
在该预设对应信息的定义方式为第七种定义方式的实施例中,在步骤S510中,发送端根据当前场景的SNR以及该预设对应信息,确定当前场景对应的第一PTRS图样。
第八种定义方式:场景与PTRS图样之间的对应关系,基于场景的相噪模型而确定。换言之,在第八种定义方式中,场景采用场景参数相噪模型表征。
应理解,相噪模型的恶劣程度决定了相位噪声本身的恶劣程度,可以看成是相位噪声的固有属性。
作为示例,该预设对应信息的第八种定义方式如表10所示。
表10
Figure PCTCN2019128610-appb-000006
如表10中的第2列所示,当场景的相噪模型的恶劣程度的量值小于或等于门限值TQ1,该场景对应的PTRS图样为离散PTRS图样。
如表10中的第3列所示,当场景的相噪模型的恶劣程度的量值等于或大于门限值TQ1、且小于或等于门限值TQ2,该场景对应的PTRS图样为块状零功率PTRS图样,
如表10中的第4列所示,当场景的相噪模型的恶劣程度的量值大于门限值TQ2,该场景对应的PTRS图样可以为块状零功率PTRS图样或块状非零功率PTRS图样。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。
若信道的频选性不强,则选择PTRS图样为块状非零功率PTRS图样。
若信道有一定的频选性,则选择PTRS图样为块状零功率PTRS图样。
若进一步考虑硬件的限制,块状零功率PTRS图样中每个块的大小需小于给定值或预定值,以及考虑信道的频选特性,可以有不同的选择。
这样选择的原因请参见上文,这里不再赘述。
其中,门限值TQ1与TQ2可以根据如下因素确定:
相噪模型的恶劣程度与ICI阶数的关系,所要估计的ICI阶数。
在该预设对应信息的定义方式为第八种定义方式的实施例中,在步骤S510中,发送端根据当前场景的相噪模型以及该预设对应信息,确定当前场景对应的第一PTRS图样。
第九种定义方式:场景与PTRS图样之间的对应关系,基于场景的子载波间隔而确定。换言之,在第九种定义方式中,场景采用场景参数子载波间隔表征。
应理解,子载波间隔决定了相位噪声对信号的影响程度,子载波间隔越大,相噪对信号的影响越小。
作为示例,该预设对应信息的第九种定义方式如表11所示。
表11
子载波间隔 (0,TG1] (TG1,TG2] (TG2,+∞]
PTRS图样 块状非零功率PTRS图样 块状零功率PTRS图样 离散PTRS图样
如表11中的第2列所示,当场景的子载波间隔小于或等于门限值TG1,该场景对应的PTRS图样可以为块状非零功率PTRS图样。
如表11中的第3列所示,当场景的子载波间隔小于或等于门限值TG2、且大于门限值TG1,该场景对应的PTRS图样为块状零功率PTRS图样,
如表11中的第4列所示,当场景的子载波间隔大于门限值TG2,该场景对应的PTRS图样为离散PTRS图样。
若进一步考虑硬件的限制,例如,块状零功率PTRS图样中的每个块的块大小需小于给定值或预定值,以及进一步考虑信道的频选特性,可以有不同的选择。
若信道的频选性不强,则选择PTRS图样为块状非零功率PTRS图样。
若信道有一定的频选性,则选择PTRS图样为块状零功率PTRS图样。
若进一步考虑硬件的限制,块状零功率PTRS图样中每个块的大小需小于给定值或预定值,以及考虑信道的频选特性,可以有不同的选择。
这样选择的原因请参见上文,这里不再赘述。
其中,门限值TG1与TG2可以根据如下因素确定:
子载波间隔与ICI阶数的关系,所要估计的ICI阶数。
例如,门限值TG1为15kHz,门限值TG2为30kHz。或者,门限值TG1为30kHz,门限值TG2为60kHz。
在该预设对应信息的定义方式为第九种定义方式的实施例中,在步骤S510中,发送端根据当前场景的子载波间隔以及该预设对应信息,确定当前场景对应的第一PTRS图样。
上文中以示例的方式描述了该预设对应信息的几种定义方式,但本申请并非限定于此,只要该预设对应信息中定义了,多个场景中每个场景与适合于其的一种PTRS图样具有对应关系即可。应理解,在实际应用中,可以根据实际需求确定该预设对应信息的定义方式。
基于上述描述,本申请可以根据场景动态确定PTRS图样,基于与当前场景对应的PTRS图样进行相位误差的估计,可以提高估计性能。例如,以ICI估计为例,基于与当前场景对应的PTRS图样,可以提高ICI的估计准确度。
在该预设对应信息的定义方式为第一种定义方式至第六种定义方式、第八种定义方式与第九种定义方式中的任一种定义方式的实施例中,由于场景参数为固定参数(例如,相噪模型)或者系统调度中携带的参数(例如,载波频点、子载波间隔、调度带宽、MCS、调制阶数、编码速率),因此,在该预设对应信息由协议规定或预定义或预配置的情况下,发送端与接收端均可通过预先配置的预设对应信息与当前场景的场景参数确定PTRS图样,而无需额外的信令来指示当前场景对应的PTRS图样,这可以节省信令。
在该预设对应信息的定义方式为第七种定义方式的实施例中,需要通过信令来指示SNR。例如,若发送端测量得到SNR,则向接收端发送该SNR,若接收端测量得到SNR,则向发送端发送该SNR。
从前文结合图3对PTRS图样的描述可知,PTRS图样的属性除了图样类型(即离散PTRS图样、块状非零功率PTRS图样、块状零功率PTRS图样),还包括块大小与块数量。
对于离散PTRS图样,块大小为1个PTRS,块数量等于PTRS数量。
对于块状PTRS图样(包括块状零功率PTRS图样与块状非零功率PTRS图样),块大小根据信道的频选性确定,块数量随块大小的变化而变化。
应理解,根据信道的频选性确定块状PTRS图样的块大小与块数量,可以提高块状PTRS图样的抗频选能力。
例如,对块状PTRS图样,确定块大小与块数量时,除了考虑信道的频选性,还可以考虑硬件限制条件,以实现在硬件限制条件下,充分提高相位噪声的估计准确度。
下面给出几个确定块状PTRS图样的块大小与块数量的示例。
示例(1)。
对于块状非零功率PTRS图样,若当前场景的信道的频选性不强(或者说信道的频域较平坦),块数量K为1,块大小等于PTRS数量。
示例(2)。
对于块状零功率PTRS图样,若当前场景的信道的频选性不强,块数量K满足如下公式:
K=ceil(N PTRS/M 0)
其中,N PTRS表示PTRS数量,M 0表示最大允许的块状零功率PTRS的块大小,M 0由硬件限制条件决定。ceil表示向上取整。
若N PTRS/M 0为整数,块状零功率PTRS图样中的块大小均为M 0
若N PTRS/M 0不是整数,块状零功率PTRS图样中的块大小的确定方法如下。
1)在PTRS图样中不同块的大小差值可以大于或等于1的情形下,其中,K-1个块的块大小为M 0,剩余1个块的块大小为{N PTRS-(K-1)*M 0}或mod(N PTRS-1,M 0)+1。如图6中(a)所示,M 0=5,N PTRS=22。
2)在PTRS图样中不同块的大小差值可以小于或等于1的情况下,块大小M满足如下公式:
M=[M1,M2]=[floor(N PTRS/K),ceil(N PTRS/K)],或
M=[M1,M2]=[floor(N PTRS/K),floor(N PTRS/K)+1],或
M=[M1,M2]=[ceil(N PTRS/K)-1,ceil(N PTRS/K)]。
其中,其中ceil表示向上取整,floor表示向下取整,mod表示求余。
两种块的块大小对应的PTRS数量分别为K1=K-K2,K2=mod(N PTRS,M1)。如图6中的(b)所示,M 0=5,N PTRS=22。
示例(3)。
对于块状非零功率PTRS图样,若当前场景的信道有一定的频选性(或者说,当前场景的信道的频选性较强,或者说信道的频域不是太平坦),块数量K满足如下公式:
K=ceil(N PTRS/M f)
其中,N PTRS表示PTRS数量,M f的取值根据的信道的频选性确定,频选性越强,M f越小,频选性越弱,M f越大。ceil表示向上取整。
相对于示例(2)中用于确定块数量K的公式(记为公式一),示例(3)中用于确定块数量K的公式(记为公式二),是用M f替换公式二中的M 0。因此,在示例(3)中,块大小与块数量的确定方法参见示例(2)中的描述,这里不再赘述。
示例(4)。
对于块状零功率PTRS图样,若当前场景的信道有一定的频选性(或者说,当前场景的信道的频选性较强,或者说信道的频域不是太平坦),块数量K满足如下公式:
K=ceil(N PTRS/min(M f,M 0))
其中,N PTRS表示PTRS数量。M f的取值根据的信道的频选性确定,频选性越强,M f越小,频选性越弱,M f越大。M 0表示最大允许的块状零功率PTRS的块大小,M 0由硬件限制条件决定。ceil表示向上取整。
相对于示例(2)中用于确定块数量K的公式(记为公式一),示例(4)中用于确定块数量K的公式(记为公式三),是用min(M f,M 0)替换公式一中的M 0。因此,在示例(4) 中,块大小与块数量的确定方法参见示例(2)中的描述,这里不再赘述。
例如,信道的频选性可以采用信道幅度波动性表征。例如,可以将用来表征信道的频选性的参数称为频选性表征参数。即对于块状PTRS图样,块大小可以与信道的频选性表征参数相关。
例如,在上面示例(1)、示例(2)、示例(3)与示例(4)中,可以将信道的频选性表征参数低于阈值的情况,视为信道的频选性不强,将信道的频选性表征参数等于或高于该阈值的情况视为信道有一定的频选性;或者,可以将信道的频选性表征参数低于或等于该阈值的情况,视为信道的频选性不强,将信道的频选性表征参数高于该阈值的情况视为信道有一定的频选性。其中,该阈值可以根据用来表征信道的频选性的参数来确定。
应理解,块状PTRS图样的块大小与信道的频选性表征参数相关,即块状PTRS图样的块大小可以基于信道的频选性表征参数确定,可以提高块状PTRS图样的抗频选能力。
信道的频选性表征参数可由网络设备(例如基站)测量估计所得,也可由终端设备测量估计反馈所得。
例如,信道的频选性表征参数包括频域各子载波上的幅度差、幅度方差、幅度的均方差等。其中,频域各子载波上的幅度差包括但不限于各子载波的幅度差的平均值、各子载波的幅度差的最大值。
又例如,信道的频选性表征参数还可以包括,终端设备反馈的频域各子带上的预编码矩阵指示(precoding matrix indicator,PMI)差。频域各子带上的PMI差包括但不限于PMI差的平均值、PMI差的最大值。
又例如,信道的频选性表征参数还可以包括,终端设备反馈的频域各子带上的信道质量指示(channel quality indicator,CQI)差。
频域各子带上的CQI差包括但不限于,CQI差的平均值、CQI差的最大值。
可选地,对于块状PTRS图样的块大小与块数量的确定方式,可以由协议规定或预定义或预配置。
例如,协议规定或预定义或预配置:
对于块状非零功率PTRS图样,若当前场景的信道的频选性不强,块数量K为1,块大小等于PTRS数量;若当前场景的信道有一定的频选性,采用上述示例(3)描述的方式确定块数量与块大小;
对于块状零功率PTRS图样,若当前场景的信道的频选性不强,采用上述示例(2)描述的方式确定块数量与块大小;若当前场景的信道有一定的频选性,采用上述示例(4)描述的方式确定块数量与块大小。
其中,对于示例(2)、示例(3)与示例(4)中涉及到的参数,例如,M 0和/或M f,发送端与接收端可以预先约定。例如,发送端为基站,接收端为终端,发送端通过下列任一种方式向接收端发送M 0和/或M f的取值:
无线资源控制(radio resource control,RRC)、媒体接入控制(media access control,MAC)、下行控制信息(downlink control information,DCI)。
对于确定信道的频选性的强弱程度的规则,可以由协议规定或预定义或预配置。
例如,协议规定或预定义或预配置,通过比较信道的频选性表征参数与阈值来确定信道的频选性的强弱程度。其中,该阈值可以由协议规定或预定义或预配置,或者,也可以 由发送端与接收端预先约定。
应理解,在块状PTRS图样的块大小与块数量的确定方式由协议规定或预定义或预配置的实施例中,发送端与接收端按照相同的规则,确定块状PTRS图样的块大小与块数量。其中,对于该规则中涉及的参数(例如,上述示例中的M 0和/或M f)可以预先约定。
可选地,预设对应信息中包括的场景与PTRS图样之间的对应关系可以是场景与PTRS图样类型之间的对应关系。
在步骤S510中,发送端根据该预设对应信息,确定当前场景对应的第一PTRS图样的图样类型,根据前文描述的确定块大小与块数量的方法,确定第一PTRS图样的块大小与块数量。
可选地,预设对应信息中包括的场景与PTRS图样之间的对应关系包括:
场景与PTRS图样类型之间的对应关系;
场景与PTRS图样中块大小(或块数量)之间的对应关系。在步骤S510中,发送端可以根据该预设对应信息,直接确定当前场景对应的第一PTRS图样的图样类型以及块大小与块数量。
应理解,对于块状PTRS图样,其块大小可以基于信道的频选性表征参数确定,可以提高块状PTRS图样的抗频选能力,从而可以提高相位噪声的估计准确度。
在步骤S520中,接收端确定当前场景对应的PTRS图样,即第一PTRS图样。其中,接收端确定当前场景对应的PTRS图样的方式有多种。
第一种实现方式,接收端根据预设对应信息确定当前场景对应的PTRS图样。
在第一种实现方式中,该预设对应信息由协议规定或预定义或预配置。
应理解,在协议规定或预定义或预配置该预设对应信息之后,发送端与接收端均可以根据该预设对应信息确定当前场景对应的PTRS图样。即步骤S520包括:接收端根据该预设对应信息,确定当前场景对应的PTRS图样。
作为一个示例,若该预设对应信息的定义方式如表1所示,则在步骤S520中,接收端根据当前场景的场景参数的取值以及该预设对应信息,确定当前场景对应的PTRS图样。
作为另一个示例,若该预设对应信息的定义方式如表2所示,则在步骤S520中,接收端根据当前场景的PTRS数量以及该预设对应信息,确定当前场景对应的PTRS图样。
作为又一个示例,若该预设对应信息的定义方式如表4所示,则在步骤S520中,接收端根据当前场景的MCS以及该预设对应信息,确定当前场景对应的PTRS图样。
作为又一个示例,若该预设对应信息的定义方式如表5所示,则在步骤S520中,接收端根据当前场景的调度带宽以及该预设对应信息,确定当前场景对应的PTRS图样。
作为又一个示例,若该预设对应信息的定义方式如表6所示,则在步骤S520中,接收端根据当前场景的载波频点的频率以及该预设对应信息,确定当前场景对应的PTRS图样。
作为又一个示例,若该预设对应信息的定义方式如表7所示,则在步骤S520中,接收端根据当前场景的调制阶数以及该预设对应信息,确定当前场景对应的PTRS图样。
作为又一个示例,若该预设对应信息的定义方式如表8所示,则在步骤S520中,接收端根据当前场景的编码码率以及该预设对应信息,确定当前场景对应的PTRS图样。
作为又一个示例,若该预设对应信息的定义方式如表9所示,则在步骤S520中,接 收端根据当前场景的信噪比(SNR)以及该预设对应信息,确定当前场景对应的PTRS图样。
作为又一个示例,若该预设对应信息的定义方式如表10所示,则在步骤S520中,接收端根据当前场景的相噪模型以及该预设对应信息,确定当前场景对应的PTRS图样。
作为又一个示例,若该预设对应信息的定义方式如表11所示,则在步骤S520中,接收端根据当前场景的子载波间隔以及该预设对应信息,确定当前场景对应的PTRS图样。
应理解,该预设对应信息由协议规定或预定义或预配置,相当于PTRS图样由场景参数隐式确定,不需要额外的信令专门来指示接收端当前场景的PTRS图样,可以节省信令。
关于接收端确定当前场景对应的PTRS图样的块大小与块数量的方法,参见上文描述的发送端确定当前场景对应的PTRS图样的块大小与块数量的方法。
例如,如果块状PTRS图样的块大小与块数量的确定方式,由协议规定或预定义或预配置,则接收端可以根据预先配置的方式,确定当前场景对应的PTRS图样的块大小与块数量。
应理解,在块状PTRS图样的块大小与块数量的确定方式,由协议规定或预定义或预配置的实施例中,发送端与接收端采用的相同准则,确定PTRS图样的块大小与块数量。
再例如,如果预设对应信息中包括场景与PTRS图样的图样类型之间的对应关系,还包括场景与块大小(或块数量)之间的对应关系,则接收端可以根据该预设对应信息,确定当前场景对应的PTRS图样的块大小与块数量。
第二种实现方式,接收端根据发送端的信令指示,获取当前场景对应的PTRS图样。
在第二种实现方式中,图5所示实施例的方法还包括如下步骤。
发送端向接收端发送第一PTRS图样的指示信息。
其中,步骤S520包括:接收端根据该指示信息获知当前场景对应的PTRS图样为第一PTRS图样。
第一PTRS图样的指示信息可以指示下列中任一种或多种信息:图样类型、块大小、块数量。其中,图样类型包括离散PTRS图样、块状非零功率PTRS图样、块状零功率PTRS图样中的任一种
可选地,该指示信息指示图样类型,不指示块大小与块数量。例如,该指示信息为2比特。
若图样类型为离散PTRS图样,则接收端可直接确定块大小为1,块数量为PTRS数量。
若图样类型为块状非零功率PTRS图样,接收端可以根据与发送端预先约定的M f确定块大小和块数量,如上文描述的示例(1)与示例(3)。
若图样类型为块状零功率PTRS图样,接收端可以根据与发送端预先约定的M 0和/或M f确定块大小和块数量,如上文描述的示例(2)与示例(4)。
可选地,该指示信息指示块大小,不指示图样类型与块数量。
若块大小等于1,则接收端可以直接确定块数量为PTRS数量,图样类型为离散PTRS图样。
若块大小M等于PTRS数量,则接收端可以确定块数量为1,图样类型为块状非零功率PTRS图样,如上文描述的示例(1)。
若块大小M>1,且M≤M f,则接收端可确定图案类型为块状非零功率PTRS图样,块数量和块大小可以根据示例(3)中类似的思路确定。
若块大小M>1,且M≤M 0,则接收端可确定图案类型为块状零功率PTRS图样,块数量和块大小可以根据示例(2)中类似的思路确定。
若块大小M>1,且M≤min(M 0,M f),则接收端可确定图案类型为块状零功率PTRS图样,块数量和块大小可以根据示例(4)中类似的思路确定。
可选地,该指示信息指示块数量,不指示图样类型与块大小。
若块数量等于PTRS数量,则接收端可以直接确定块大小为1,图样类型为离散PTRS图样。
若块数量等于1,则接收端可以确定块大小为PTRS数量,图样类型为块状非零功率PTRS图样,如上文描述的示例(1)。
若块数量K大于1,且小于PTRS数量,且ceil(N PTRS/K)≤M f或floor(N PTRS/K)≤M f,则接收端可确定图案类型为块状非零功率PTRS图样,块数量和块大小可以根据示例(3)中类似的思路确定。
若块数量K大于1,且小于PTRS数量,且ceil(N PTRS/K)≤M 0或floor(N PTRS/K)≤M 0,则接收端可确定图案类型为块状零功率PTRS图样,块数量和块大小可以根据示例(2)中类似的思路确定。
若块数量K大于1,且小于PTRS数量,且ceil(N PTRS/K)≤min(M 0,M f)或floor(N PTRS/K)≤min(M 0,M f),则接收端可确定图案类型为块状零功率PTRS图样,块数量和块大小可以根据示例(4)中类似的思路确定。
可选地,该指示信息指示图样类型、块数量、块大小中的任意两项,而不指示剩余一项。
可选地,该指示信息指示图样类型、块数量、块大小。
需要说明的是,本申请对第一PTRS图样的指示信息携带的内容不作限定,只要能够使得接收端获知当前场景对应的PTRS图样为第一PTRS图样即可。例如,在实际应用中,发送端可以根据实际情况,确定向接收端发送的第一PTRS图样的指示信息中携带的内容。
第一PTRS图样的指示信息的发送方式可以有多种。
例如,发送端为基站,接收端为终端,发送端可以通过下列任一种信令向接收端发送第一PTRS图样的指示信息:
无线资源控制(radio resource control,RRC)、媒体接入控制(media access control,MAC)、下行控制信息(downlink control information,DCI)。
应理解,通过发送端向接收端发送信令来指示当前场景对应的PTRS图样,收发端可以相对准确地约定PTRS图样。
例如,实际应用中,因为特殊场景可能会导致预设对应信息中的场景与PTRS图样之间的对应关系模糊,若接收端采用第一种实现方式获取当前场景对应的PTRS图样,可能会导致接收端与发送端所采用的PTRS图样不一致。这种情形下,接收端采用第二种实现方式获取当前场景对应的PTRS图样,可以避免上述错误。
上述第一种实现方式可以称为隐式方式,第二种实现方式可以称为显示方式。
可选地,在上述第一种实现方式中,在第一PTRS图样为块状PTRS图样、且接收端 无法自主获知PTRS图样的块大小与块数量的情况下,发送端可以向接收端发送用于指示PTRS图样的块大小和/或块数量的指示信息。
例如,发送端为基站,接收端为终端,发送端通过下列任一种方式向接收端发送用于指示PTRS图样的块大小和/或块数量的指示信息:
无线资源控制(RRC)、媒体接入控制(MAC)、下行控制信息(DCI)。
基于上述描述可知,在本申请中,通过根据场景动态确定PTRS图样,以使所确定的PTRS图样在当前场景下具有较好的相位噪声估计性能,这样可以提高相位噪声的估计性能,例如,可以提高ICI系数的估计准确度。
为了便于理解与描述,本申请对PTRS图样作如下约定:
PTRS图样仅表示PTRS所占用的频域资源单元(例如RE或RB)的样式或图案,不包含PTRS的映射位置。PTRS的映射位置表示PTRS在频域资源上的映射位置,或者说,PTRS在时域符号(下文简称为符号)上的频域位置。也就是说,PTRS的映射位置的变化,不会引起PTRS图样的变化。
在步骤S530中,发送端发送PTRS包括:根据第一PTRS图样与PTRS的映射位置,发送PTRS。参见图1,发送端根据PTRS图样与PTRS的映射位置,对PTRS进行映射并发送。
在步骤S530中,接收端接收PTRS包括:根据第一PTRS图样与PTRS的映射位置,接收PTRS。参见图1,接收端根据PTRS图样与PTRS的映射位置,对PTRS进行接收并接映射。
PTRS的映射位置的确定方式可以有多种。
第一种确定方式,根据信道质量确定PTRS的映射位置。
第二种确定方式,使得PTRS在相邻符号上的映射位置不同,即具有偏移。
下文将描述第一种确定方式与第二种确定方式。
第一种确定方式。
根据信道质量确定PTRS的映射位置。即根据信道条件,确定作为PTRS的映射位置的信道。
例如,信道质量可以采用信道质量指示(channel quality indicator,CQI)来表征。CQI越大,表示信道质量越好,CQI越小,表示信道质量越差。
再例如,信道质量可以采用功率或功率方差来表征,功率越高,信道质量越好,功率方差越小,信道质量越好。这里的功率表示,各子载波上的信道幅值平方或各子带上信道幅值平方的平均值。
可选地,选择信道质量达到信道质量门限值的信道(也可称为子载波)作为PTRS的映射位置。
信道质量门限值可以根据用来表征信道质量的参数确定。
若信道质量采用CQI来表征,则信道质量门限值为CQI的某个取值。
例如,从多组信道中选择一组平均CQI达到信道质量门限值的信道作为PTRS的映射位置。
若信道质量采用功率来表征,则信道质量门限值为功率的某个取值。
若信道质量采用功率方差来表征,则信道质量门限值为功率方差的某个取值。
信道质量门限值可以根据当前场景的信道状态确定,或者可以预先配置。
可选地,从多组信道中选择一组信道质量最好的信道作为PTRS的映射位置。
若信道质量采用CQI来表征,可以将多组信道中平均CQI最大的一组信道作为质量最好的信道。
若信道质量采用功率来表征,可以将多组信道中平均功率最高的一组信道作为质量最好的信道。
若以信道质量采用率方差来表征,可以将多组信道中功率方差最小的一组信道作为质量最好的信道。
多组信道的划分方式可以由协议规定或预配置或预规定。即发送端与接收端均可自主获知多组信道的划分方式。
假设,将发送端从多组信道中选出的作为PTRS的映射位置的一组信道记为目标信道。发送端可以向接收端发送目标信道的指示信息,以使得接收端获知作为PTRS的映射位置的该目标信道。
例如,目标信道的指示信息为该目标信道在多组信道中的偏移量。该偏移量可以是相对于的,也可以是绝对的。
如下文结合图7中的(a)与(b)描述的示例,对于离散PTRS图样,该偏移量为RE级的偏移量,对于块状PTRS图样,该偏移量为子带级的偏移量。
再例如,假设多组信道具有信道编号,则目标信道的指示信息为该目标信道在多组信道中的信道编号。
例如,发送端为网络设备(例如基站),接收端为终端设备,发送段可以通过下列任一种信令,向接收端发送目标信道的指示信息:RRC、MAC、DCI。
下面给出根据信道质量确定PTRS的映射位置的几个示例。
一、在PTRS图样为离散PTRS图样的情况下。
先做如下规定:记PTRS的最大资源块偏移量为N RB,一个RB内包含的RE个数为N RE/RB。例如,在现有协议下,N RE/RB的取值为12。应理解,随着技术演进,N RE/RB的取值可以进行相应更新。
作为一个示例。若不限制PTRS所映射的子载波索引必须是解调参考信号(demodulation reference signal,DMRS)所映射的子载波索引,则可以根据RE偏移量定义N RB*N RE/RB组信道,N RB*N RE/RB组信道对应的RE偏移值分别为0,1,…,N RB*N RE/RB-1。第一组信道H 0为子载波索引(相对调度带宽内的索引)分别为{0,N,2N,…}对应的信道,第二组信道H 1为子载波索引分别为{1,N+1,2N+1,…}对应的信道,…,第j+1组信道H j为子载波索引分别为{j,N+j,2N+j,…}对应的信道,如图7中(a)所示。其中,N表示离散PTRS图样中相邻两个PTRS之间的RE个数。例如,N由PTRS频域密度确定。应理解,这里的N与图3中的(a)所示的N相同。
发送端从N RB*N RE/RB组信道中选择一组质量最好的信道所对应的子载波集合作为传输PTRS的频域位置。换句话说,发送端从N RB*N RE/RB组信道中选择一组质量最好的信道所对应的子载波集合作为PTRS的映射位置。
应理解,N RB*N RE/RB组信道可以是协议规定或预配置或预规定的,即接收端可以自主获知N RB*N RE/RB组信道。
发送端将N RB*N RE/RB组信道中作为PTRS的映射位置的一组信道对应的RE偏移量指示给接收端。这样,接收端可以获知PTRS的映射位置。
作为另一个示例。若限制PTRS所映射的子载波必须是其所关联的DMRS端口所映射的子载波索引,则以RE偏移量定义N DMRS组信道,其中,N DMRS表示N RB内包含的其所关联的DMRS端口所对应的子载波数。N DMRS组信道对应的相对RE偏移量分别为0,1,…,N DMRS-1,即,第j组信道为子载波索引分别为{I j,N+I j,2N+I j,…}对应的信道,I j表示N RB内第j个DMRS所对应的子载波索引。
发送端从N DMRS组信道中选择一组质量最好的信道所对应的子载波集合作为传输PTRS的频域位置。换句话说,发送端从N DMRS组信道中选择一组质量最好的信道所对应的子载波集合作为PTRS的映射位置。
应理解,N DMRS组信道可以是协议规定或预配置或预规定的,即接收端可以自主获知N DMRS组信道。
发送端将N DMRS组信道中作为PTRS的映射位置的一组信道对应的RE偏移量指示给接收端。这样,接收端可以获知PTRS的映射位置。
二、在PTRS图样为块状PTRS图样(包括块状非零功率PTRS图样与块状零功率PTRS图样)的情况下。
先做如下规定,将用于映射块状PTRS的频域资源称为子带。应理解,每个子带由多个连续的子载波组成。
根据如下公式确定子带数目K SB
K SB=ceil(BW/S SB)
其中,BW表示调度带宽,S SB与相干带宽有关,或与信道的频选性有关。S SB可由发送端(例如基站)测量估计,也可由接收端(例如终端)测量估计并反馈给发送端。本申请对S SB的确定方法不作限定。
如果BW/S SB不是整数,前K SB-1个子带的大小为S SB,最后一个子带的大小为BW-(K SB-1)*S SB
基于上述规定,可以视为,每个符号的频域资源包括K SB个子带。
如图7中的(b)所示,子带数目K SB为4,即每个符号的频域资源包括4个子带。
需要说明的是,上述确定子带大小与子带数量的方法仅为示例。实际应用中,子带大小或子带数目均可以实际情况进行确定或调整,例如,可以根据信道条件等自适应调整。
假设PTRS以块为单位均匀映射在一个子带内。定义K SB组信道,第k组信道为假设PTRS在第k个子带内映射时对应的子载波所对应的信道。例如,在图7的(b)的示例中,定义了4组信道。
发送端从K SB组信道中选择一组质量最好的信道所对应的子载波集合作为传输PTRS的频域位置。换句话说,发送端从K SB组信道中选择一组质量最好的信道所对应的子载波集合作为PTRS的映射位置。例如,在图7的(b)所示的示例中,发送端选择4组信道中的第2组信道作为PTRS的映射位置。
可选地,K SB组信道可以是协议规定或预配置或预规定的,即接收端可以自主获知K SB组信道。
可选地,K SB组信道的确定方式(例如,上述确定K SB的取值以及K SB个子带的大小的 方法)由协议规定或预配置或预规定,发送端与接收端可以预先约定参数S SB。也就是说,发送端与接收端可以根据相同的规则,确定K SB组信道。
发送端将K SB组信道中作为PTRS的映射位置的一组信道对应的子带指示给接收端,例如,发送端将K SB组信道中作为PTRS的映射位置的一组信道对应的子带偏移量指示给接收端。这样,接收端可以获知PTRS的映射位置。
应理解,根据信道条件确定PTRS的映射位置,可以提高PTRS图样的抗频选能力,从而可以改善相位噪声下的数据解调性能,可以提高相位噪声影响下的频谱效率。
第二种确定方式。
采用第二种确定方式确定PTRS的映射位置,指的是,在确定PTRS的映射位置时,使PTRS在相邻符号上的映射位置之间具有偏移,即使得PTRS在相邻符号上的频域位置之间具有偏移。
可选地,PTRS的映射位置由协议规定或预配置或预规定。即PTRS的映射位置对于接收端与发送端是已知的。
可选地,图5所示实施例的方法还包括:发送端向接收端发送PTRS的映射位置的指示信息。
PTRS的映射位置的指示信息可以是确定PTRS的映射位置时需要发送端与接收端约定的参数。
例如,确定PTRS的映射位置的规则由协议规定或预配置或预规定。发送端与接收端根据相同的规则,以及预先约定的参数,确定PTRS的映射位置。
在下文关于第二种确定方式的描述中,提及的偏移量指的是,映射PTRS的符号上映射的第一个PTRS的频域位置相比频域上第一个RE所偏移的RE数,或第一个PTRS的频域位置所在的子带相比频域上第一个子带所偏移的子带数,或第一个PTRS的频域位置所在的子带的第一个RE相比频域上第一个RE所偏移的RE数。
为了便于理解,下面先给出示例。
一、在PTRS图样为离散PTRS图样的情况下。
先做如下规定。记PTRS的最大资源块(RB)偏移量为N RB,记N RB个RB内能映射PTRS的子载波数为N PTRS,将对应的子载波编号分别记为
Figure PCTCN2019128610-appb-000007
一个RB内包含的RE个数为N RE/RB。例如,在现有协议下,N RE/RB的取值为12。应理解,随着技术演进,N RE/RB的取值可以进行相应更新。
若不限制PTRS所映射的子载波索引必须是其所关联的DMRS所映射的子载波索引,则N PTRS的取值为N RB*N RE/RB
若限制PTRS所映射的子载波索引必须是其所关联的DMRS端口所映射的子载波索引,则N PTRS的取值为N DMRS,N DMRS表示N RB内包含的其所关联的DMRS端口所对应的子载波数。
在N PTRS个子载波内,PTRS符号I sym上的相对RE偏移量RE offset如下列公式所示:
RE offset=mod(I sym,N sym)*floor(N PTRS/N sym),
其中,I sym表示一个时隙内能映射PTRS的符号的相对编号。I sym从0开始,即第一个映 射PTRS的符号的I sym=0,第二个映射PTRS的符号的I sym=1,第i个映射PTRS的符号的I sym=i-1。N sym表示RE偏移量每N sym个符号循环一次。N sym的值可以为一个时隙内所有能映射PTRS的符号数,也可以根据信道特性进行确定。N sym可以称为循环符号数。如图7中的(c)所示,N sym=4。
由前文描述可知,各个符号上映射PTRS的子载波索引为:
Figure PCTCN2019128610-appb-000008
其中,N表示离散PTRS图样中相邻两个PTRS之间的RE个数。例如,N由PTRS频域密度确定。应理解,这里的N与图3中的(a)所示的N相同。
可选地,如下参数可以由协议规定或预配置或预规定:
N PTRS,符号之间的相对RE偏移量RE offset
可选地,符号之间的相对RE偏移量RE offset的计算规则,可以由协议规定或预配置或预规定,其中涉及的如下参数,可以由发送端与接收端预先约定:
N PTRS,I sym,N sym
例如,发送端为基站,接收端为终端设备,发送端可以通过如下任一种信令向接收端发送N PTRS,I sym,N sym:RRC、MAC、DCI。
二、在PTRS图样为块状PTRS图样(包括块状非零功率PTRS图样与块状零功率PTRS图样)的情况下。
先做如下规定,将用于映射块状PTRS的频域资源称为子带。应理解,每个子带由多个连续的子载波组成。
根据如下公式确定子带数目K SB
K SB=ceil(BW/S SB)
其中,BW表示调度带宽,S SB与相干带宽有关,或与信道的频选性有关。S SB可由发送端(例如基站)测量估计,也可由接收端(例如终端)测量估计并反馈给发送端。本申请对S SB的确定方法不作限定。
如果BW/S SB是整数,子带大小为S SB
如果BW/S SB不是整数,前K SB-1个子带的大小为S SB,最后一个子带的大小为BW-(K SB-1)*S SB
或者,定义子带数目为S SB,如果BW/K SB是整数,则子带大小为BW/K SB,否则,子带大小为{floor(BW/K SB),ceil(BW/K SB)},两种子带大小对应的子带数目分别为K SB1=K SB-K SB2,K SB2=mod(BW,K SB)。
基于上述规定,可以视为,每个符号的频域资源包括K SB个子带。
需要说明的是,上述确定子带大小与子带数量的方法仅为示例。实际应用中,子带大小或子带数目均可以实际情况进行确定或调整,例如,可以根据信道条件等自适应调整。
作为一个示例,每个符号上的PTRS以块为单位均匀映射在K SB个子带中的一个子带上,这种情形下,符号上映射PTRS的频域位置的偏移量的单位为子带,该偏移量可以称为子带偏移量。
例如,第I sym+1个PTRS符号上的PTRS映射在编号为mod(I sym,K SB)的子带上(编号从0开始)。其中,I sym表示一个时隙内能映射PTRS的符号的相对编号(从0开始)。子带数量 K SB,也可以理解为偏移量每K SB个符号循环一次。如图7中的(d-1)所示,子带数量为4,I sym=0,1,2,3,4的PTRS符号上的子带偏移量分别为0个子带、1个子带、2个子带、3个子带、0个子带。
对于一个符号来说,在确定映射PTRS的子带后,可以将所确定的子带等分为K份带宽,将PTRS块映射在每一等分带宽的中间,如图7中的(d-1)所示。其中,K表示块状PTRS图样的块数量。
需要说明的是,图7中的(d-1)仅为示例,本申请对PTRS块在子带内的分布方式不做限定。
在本示例中,子带的划分方式,以及各个符号上映射PTRS的频域位置,可以由协议规定或预配置或与预规定。即发送端与接收端均可自主确定PTRS的映射位置。
例如,参数K SB、I sym,以及每个符号上用来映射PTRS的子带的编号的计算规则,可以由协议规定或预配置或与预规定。
或者,每个符号上用来映射PTRS的子带的编号的计算规则,由协议规定或预配置或与预规定,对于其中涉及的参数K SB、I sym,发送端与接收端可以进行预先约定。例如,发送端与接收端还可以预先约定子带大小。
例如,发送端为基站,接收端为终端设备,发送端可以通过如下任一种信令向接收端发送K SB、I sym、子带大小:RRC、MAC、DCI。
在本示例中,对于PTRS块在子带内的分布方式,可以协议规定或预配置或预规定。
作为另一个示例,每个符号上映射的PTRS中的一个PTRS块映射在一个子带上,这种情形下,符号上映射PTRS的频域位置的偏移量为子带内偏移量,或者包括子带级偏移量与子带内偏移量。
在子带数量K SB与块状PTRS图样的块数量相同的情况下,在不同符号之间,在同一个子带内引入子带内偏移量。在不同符号上,该子带内偏移量可以是不同或循环的。如图7中的(d-2)所示,子带数量与块状PTRS图样的块数量均为2。
在子带数量K SB与块状PTRS图样的块数量不相同的情况下,在各个符号之间,可以先进行子带级偏移,然后进行子带内偏移。如图7中的(d-3)所示,子带数量为4,块状PTRS图样的块数量为2,第1,2,3,4,5个符号的子带级偏移量分别为0个子带、1个子带、0个子带、1个子带、0个子带,第1,2,3,4,5个符号的子带内偏移量分别为0个RE,0个RE,第一个子带所包含的RE数的一半,第一个子带所包含的RE数的一半,0个RE。
在本示例中,子带的划分方式,以及各个符号上映射PTRS的频域位置,可以由协议规定或预配置或与预规定。即发送端与接收端均可自主确定PTRS的映射位置。
或者,每个符号上用来映射PTRS的频域位置的获取规则,由协议规定或预配置或与预规定,对于其中涉及的参数,例如,子带数量K SB、子带内偏移、子带级偏移、发送端与接收端可以进行预先约定。例如,发送端与接收端还可以预先约定子带大小。
例如,发送端为基站,接收端为终端设备,发送端可以通过如下任一种信令向接收端发送子带数量K SB、子带内偏移、子带级偏移、子带大小:RRC、MAC、DCI。
在本示例中,对于PTRS块在子带内的分布方式,可以协议规定或预配置或预规定。
需要说明的是,图7中的(a)、(b)、(c)、(d-1)、(d-2)与(d-3)仅为示例而非限定。
在确定PTRS的映射位置时,只要使得相邻符号之间映射PTRS的频域位置不同即可。除了图7中的(c)、(d-1)、(d-2)与(d-3)所示的实现方式之外,还可以采用其他可行的方式,使得相邻符号之间映射PTRS的频域位置不同。
对于离散PTRS图样,根据循环符号数N sym与允许的PTRS最大偏移量N RB,确定偏移量集合中的元素个数和元素取值,其中,元素个数为N sym。例如,一种元素取值为RE offset=mod(I sym,N sym)*floor(N PTRS/N sym)。应理解,随I sym取值的不同,元素取值也不同。
该确定偏移量集合中的元素个数和元素取值的确定方式可以有多种,只要可以保证相邻符号上映射PTRS的频域位置不同即可。
对于块状PTRS图样,根据用于映射PTRS的子带数量K SB与子带大小,确定偏移量集合中的元素个数和元素取值。
若一个符号上的PTRS以块为单位映射在一个子带上,元素个数为子带数量K SB,一一种元素取值为mod(I sym,K SB)。应理解,随I sym取值的不同,元素取值也不同。
若一个符号上的PTRS以块为单位映射在多个子带上,根据用于映射PTRS的子带数量K SB以及块状PTRS图样的块数量,确定偏移量集合中的元素个数和元素取值,例如,上文描述的图7中的(d-2)与(d-3)所示的情形。
应理解,PTRS在相邻符号上的频域位置不同,可以增强PTRS图样的抗频选能力,从而可以改善相位噪声下的数据解调性能,可以提高相位噪声影响下的频谱效率。
需要说明的是,本文中提及的PTRS在相邻符号上的频域位置具有偏移量,这里的偏移量不为零,表达是含义是,PTRS在相邻符号上的频域位置不同。
还应理解,在第二种确定方式中,PTRS在不同符号上的频域位置可能相同,只要保证在相邻符号上的频域位置不同即可。
图8为本申请实施例提供的传输PTRS的方法的另一示意性流程图。该方法包括如下步骤。
S810,发送端根据预设对应信息,以及当前场景的场景参数,确定当前场景对应的第一PTRS图样。
步骤S810与上文实施例中的步骤S510相同,请参见上文,这里不再赘述。
关于预设对应信息的定义也参见上文描述,这里不再赘述。
S820,发送端确定PTRS的映射位置。
发送端可以采用上文描述的第一种确定方式或第二种确定方式确定PTRS的映射位置,请参见上文,这里不再赘述。
S830,发送端根据第一PTRS图样与PTRS的映射位置,对PTRS进行映射。
S840,发送端向接收端发送PTRS。
发送端按照步骤S830中对PTRS的映射,发送PTRS。
S850,接收端确定当前场景对应的第一PTRS图样。
S860,接收端确定PTRS的映射位置。
接收端可以采用上文描述的第一种确定方式或第二种确定方式确定PTRS的映射位置,请参见上文,这里不再赘述。
S870,接收端根据第一PTRS图样与PTRS映射位置,接收发送端发送的PTRS,即获取PTRS接收信号。
例如,接收端根据PTRS接收信号,可以进行CPE或ICI的估计与补偿。
可选地,在预设对应信息由协议规定或预配置或预规定的情况下,在步骤S850中,接收端根据预设对应信息,以及当前场景的场景参数,确定当前场景对应的第一PTRS图样。
应理解,预设对应信息由协议规定或预配置或预规定,意味着,发送端与接收端上预先存储或预配置有该预设对应信息。
可选地,在接收端上未预先存储或预配置有该预设对应信息的情况下,例如,该预先对应信息未由协议规定或未预配置的情况,图8所示实施例的方法还包括步骤S880。
S880,发送端向接收端发送第一PTRS图样的指示信息,该指示信息包括第一PTRS图样的下列属性中的任一种或多种:图样类型、块大小、块数量。
具体描述,参见上位,这里不再赘述。
步骤S880中的发送操作与步骤S840中的发送操作可以为合为一个发送操作,也可以为两个独立的发送操作。
应理解,在图8中,步骤S870为步骤S840的发送操作对应的接收操作。
图8中所示的各个步骤之间的执行顺序合乎内在逻辑。例如,虽然在图8中,步骤S850与步骤S860位于步骤S840的下面,按照内在逻辑可知,骤S850与步骤S860在步骤S840之前执行。
基于上述描述,相比现有技术固定为一种PTRS图样的方案,本申请实施例通过建立各种场景参数与PTRS图样之间的对应关系,可以实现根据场景动态选择PTRS图样,从而可以提高相位噪声的估计准确度,可以减低数据解调的难度。
此外,通过根据信道质量确定PTRS的映射位置,或者使得相邻符号上映射PTRS的频域位置不同,可以提高PTRS图样的抗频选能力。
应理解,本申请实施例可以应用于通信系统中存在相位噪声的场景。例如,本申请实施例可以应用于高频段下相位噪声较为严重的场景。再例如,本申请实施例可以应用于高阶高码率因为相位噪声导致系统性能严重受损的场景。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,上述各个方法实施例中由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文描述了本申请提供的方法实施例,下文将描述本申请提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上文主要从各个网元之间交互的角度对本申请实施例提供的方案进行了描述。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
本申请实施例可以根据上述方法示例,对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有其它可行的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图9为本申请实施例提供的通信装置900的示意性框图。该通信装置900包括收发单元910和处理单元920。收发单元910可以与外部进行通信,处理单元910用于进行数据处理。收发单元910还可以称为通信接口或通信单元。
该通信装置900可以用于执行上文方法实施例中发送端所执行的动作,其中,收发单元910用于执行上文方法实施例中发送端侧的收发相关的操作,处理单元920用于执行上文方法实施例中发送端侧的处理相关的操作。若发送端为网络设备,这时,该通信装置900可以称为网络设备,
或者,该通信装置900可以用于执行上文方法实施例中接收端所执行的动作,其中,收发单元910用于执行上文方法实施例中接收端侧的收发相关的操作,处理单元920用于执行上文方法实施例中接收端侧的处理相关的操作。若接收端为终端设备,这时,该通信装置900可以称为终端设备。
作为一种设计,该通信装置900用于执行上文方法实施例中发送端所执行的动作。处理单元920,用于根据预设对应信息,确定当前场景对应的第一传输相位跟踪参考信号PTRS图样,其中,预设对应信息包括多个场景与多种PTRS图样之间的对应关系。收发单元910,用于按照第一PTRS图样,向接收端发送PTRS;其中,第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
可选地,场景采用场景参数表征,预设对应信息包括多个场景的场景参数与多种PTRS图样之间的对应关系;其中,处理单元920用于,根据当前场景的场景参数与预设对应信息,确定当前场景对应的第一PTRS图样,其中,场景参数可以包括下列参数中任一种或多种:相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
可选地,当场景采用采用场景参数PTRS数量表征时,在当前场景的PTRS数量小于或等于第一门限值的情况下,第一PTRS图样为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样;或在当前场景的PTRS数量大于第一门限值、且小于或等于第二门限值的情况下,第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样;或在当前场景的PTRS数量大于第二门限值的情况下,第一PTRS图样为块状非零功率PTRS图样。
可选地,当场景采用场景参数MCS表征时,在MCS小于或等于第三门限值的情况下,第一PTRS图样为离散PTRS图样;或在MCS大于第三门限值、且小于或等于第四门限值的情况下,第一PTRS图样为块状零功率PTRS图样;或在MCS大于第四门限值的情况下,第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样。
可选地,在当前场景的场景参数包括的参数的取值为第一子集S1中的元素的情况下,第一PTRS图样为离散PTRS图样;在当前场景的场景参数包括的参数的取值为第二子集S2中的元素的情况下,第一PTRS图样为块状零功率PTRS图样;在当前场景的场景参数包括的参数的取值为第三子集S3的元素的情况下,第一PTRS图样为块状非零功率PTRS图样,其中,第一子集S1、第二子集S2、第三子集S3中的各个子集中包括下列中任一种或多种参数的取值或取值范围:相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
可选地,在第一PTRS图样为离散PTRS图样的情况下,第一PTRS图样的块大小为1;在第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样的情况下,第一PTRS图样的块大小与当前场景的信道的频选性表征参数相关。
可选地,在第一PTRS图样为块状非零功率PTRS图样的情况下,若当前场景的信道的频选性表征参数低于阈值,第一PTRS图样的块大小为PTRS数量,块数量为1;
若当前场景的信道的频选性表征参数等于或高于阈值,第一PTRS图样的块大小小于PTRS数量,块数量大于1。
可选地,收发单元910用于,根据第一PTRS图样与PTRS的映射位置,向接收端发送PTRS。
可选地,处理单元920还用于,根据当前场景的信道质量,确定PTRS的映射位置;收发单元910还用于,向接收端发送所确定的PTRS的映射位置的指示信息。
可选地,处理单元920用于,从多组信道中选择信道质量最优的一组信道作为PTRS的映射位置。
可选地,PTRS在相邻符号上的频域映射位置不同。
可选地,处理单元920还用于,根据下列参数中任一项或多项,确定PTRS的映射位置:调度带宽、符号数据、块数量。
可选地,收发单元910还用于,向接收端发送第一PTRS图样的指示信息,指示信息包括第一PTRS图样的如下属性中的任一种或多种:图样类型、块大小、块数量。
作为另一种设计,该通信装置900用于执行上文方法实施例中接收端所执行的动作。处理单元920,用于确定当前场景对应的第一相位跟踪参考信号PTRS图样;收发单元910,用于根据第一PTRS图样,接收发送端发送的PTRS,其中,发送端按照基于预设对应信息确定的当前场景对应的PTRS图样发送PTRS,其中,预设对应信息包括多个场景与多种PTRS图样之间的对应关系;其中,第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
可选地,处理单元920用于,根据预设对应信息,确定当前场景对应的第一PTRS图样。
可选地,场景采用场景参数表征,预设对应信息包括多个场景的场景参数与多种PTRS图样之间的对应关系;其中,处理单元920用于,根据当前场景的场景参数与预设对应信息,确定当前场景对应的第一PTRS图样,其中,场景参数可以包括下列参数中任一种或多种:相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的 门限值。
可选地,当场景采用采用场景参数PTRS数量表征时,在当前场景的PTRS数量小于或等于第一门限值的情况下,第一PTRS图样为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样;或在当前场景的PTRS数量大于第一门限值、且小于或等于第二门限值的情况下,第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样;或在当前场景的PTRS数量大于第二门限值的情况下,第一PTRS图样为块状非零功率PTRS图样。
可选地,当场景采用场景参数MCS表征时,在MCS小于或等于第三门限值的情况下,第一PTRS图样为离散PTRS图样;或在MCS大于第三门限值、且小于或等于第四门限值的情况下,第一PTRS图样为块状零功率PTRS图样;或在MCS大于第四门限值的情况下,第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样。
可选地,在当前场景的场景参数包括的参数的取值为第一子集S1中的元素的情况下,第一PTRS图样为离散PTRS图样;在当前场景的场景参数包括的参数的取值为第二子集S2中的元素的情况下,第一PTRS图样为块状零功率PTRS图样;在当前场景的场景参数包括的参数的取值为第三子集S3的元素的情况下,第一PTRS图样为块状非零功率PTRS图样,其中,第一子集S1、第二子集S2、第三子集S3中的各个子集中包括下列中任一种或多种参数的取值或取值范围:相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
可选地,在第一PTRS图样为离散PTRS图样的情况下,第一PTRS图样的块大小为1;在第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样的情况下,第一PTRS图样的块大小与当前场景的信道的频选性表征参数相关。
可选地,在第一PTRS图样为块状非零功率PTRS图样的情况下,若当前场景的信道的频选性表征参数低于阈值,第一PTRS图样的块大小为PTRS数量,块数量为1;若当前场景的信道的频选性表征参数等于或高于阈值,第一PTRS图样的块大小小于PTRS数量,块数量大于1。
可选地,收发单元910还用于,接收发送端发送的PTRS图样的指示信息,指示信息包括第一PTRS图样的如下属性中的任一种或多种:图样类型、块大小、块数量;其中,处理单元920用于,根据PTRS图样的指示信息,获取当前场景对应的第一PTRS图样。
可选地,收发单元910用于,根据第一PTRS图样与PTRS的映射位置,接收发送端发送的PTRS。
可选地,收发单元910还用于,接收发送端发送的PTRS映射位置的指示信息,其中,PTRS映射位置是发送端根据当前场景的信道质量确定的;其中,处理单元920用于,根据PTRS映射位置的指示信息,确定PTRS的映射位置。
可选地,PTRS在相邻符号上的频域映射位置不同。
1可选地,处理单元920还用于,根据下列参数中任一项或多项,确定PTRS的映射位置:调度带宽、符号数据、块数量。
上文实施例中的处理单元920可以由处理器或处理器相关电路实现。收发单元910可以由收发器或收发器相关电路实现。收发单元910还可称为通信单元或通信接口。
如图10所示,本申请实施例还提供一种通信装置1000。该通信装置1000包括处理器1010,处理器1010与存储器1020耦合,存储器1020用于存储计算机程序或指令,处理器1010用于执行存储器1020存储的计算机程序或指令,使得上文方法实施例中的方法被执行。
可选地,如图10所示,该通信装置1000还可以包括存储器1020。
可选地,如图10所示,该通信装置1000还可以包括收发器1030,收发器1030用于信号的接收和/或发送。例如,处理器1010用于控制收发器1030进行信号的接收和/或发送。
作为一种方案,该通信装置1000用于实现上文方法实施例中由发送端执行的操作。
例如,处理器1010用于实现上文方法实施例中由发送端执行的处理相关的操作,收发器1030用于实现上文方法实施例中由发送端执行的收发相关的操作。
作为另一种方案,该通信装置1000用于实现上文方法实施例中由接收端执行的操作。
例如,处理器1010用于实现上文方法实施例中由接收端执行的处理相关的操作,收发器1030用于实现上文方法实施例中由接收端执行的收发相关的操作。
本申请实施例还提供一种通信装置1100,该通信装置1100可以是终端设备也可以是芯片。该通信装置1100可以用于执行上述方法实施例中由接收端所执行的操作,或者,也可以用于执行上述方法实施例中由发送端所执行的操作。下文中以该通信装置1100用于执行上述方法实施例中由接收端所执行的操作为例进行描述。
当该通信装置1100为终端设备时,图11示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图11中,终端设备以手机作为例子。如图11所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图11所示,终端设备包括收发单元1110和处理单元1120。收发单元1110也可以称为收发器、收发机、收发装置等。处理单元1120也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1120用于执行图5中步骤S520,和/或处理单元1120还用于执行本申请实施例中由接收端执行的其他处理相关的步骤;收发单元1110用于执行步骤S530中的接收操作,和/或收发单元1110还用于执行由接收端执行的其他收发相关的步骤。
又例如,在一种实现方式中,处理单元1120用于执行图8中步骤S850与步骤S860,和/或处理单元1120还用于执行本申请实施例中由接收端执行的其他处理相关的步骤;收发单元1110用于执行步骤S870,以及步骤S840与S880中的接收操作,和/或收发单元1110还用于执行由接收端执行的其他收发相关的步骤。
应理解,图11仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图11所示的结构。
当该通信装置1100为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1200,该通信装置1200可以是网络设备也可以是芯片。该通信装置1200可以用于执行上述方法实施例中由接收端所执行的操作,或者,也可以用于执行上述方法实施例中由发送端所执行的操作。下文中以该通信装置1200用于执行上述方法实施例中由发送端所执行的操作为例进行描述。
当该通信装置1200为网络设备时,例如为基站。图12示出了一种简化的基站结构示意图。基站包括1210部分以及1220部分。1210部分主要用于射频信号的收发以及射频信号与基带信号的转换;1220部分主要用于基带处理,对基站进行控制等。1210部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1220部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1210部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1210部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1210部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1220部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1210部分的收发单元用于执行图5中步骤S530中的发送 操作,和/或1210部分的收发单元还用于执行本申请实施例中由网络设备执行的其他收发相关的步骤;1220部分用于执行图5中的步骤S510,和/或1220部分还用于执行本申请实施例中由网络设备执行的处理相关的步骤。
又例如,在一种实现方式中,1210部分的收发单元用于执行图8中步骤S840与步骤S880,和/或1210部分的收发单元还用于执行本申请实施例中由网络设备执行的其他收发相关的步骤;1220部分用于执行图8中的步骤S810、步骤S820与步骤S830,和/或1220部分还用于执行本申请实施例中由网络设备执行的处理相关的步骤。
应理解,图12仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图12所示的结构。
当该通信装置1200为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令 和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上,或者说对现有技术做出贡献的部分,或者该技术方案的部分,可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,该计算机软件产品包括若干指令,该指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。前述的存储介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (55)

  1. 一种传输相位跟踪参考信号PTRS的方法,其特征在于,包括:
    根据预设对应信息,确定当前场景对应的第一PTRS图样,其中,所述预设对应信息包括多个场景与多种PTRS图样之间的对应关系;
    按照所述第一PTRS图样,向接收端发送PTRS;
    其中,所述第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
  2. 根据权利要求1所述的方法,其特征在于,所述场景采用场景参数表征,所述预设对应信息包括多个场景的场景参数与所述多种PTRS图样之间的对应关系;
    其中,所述根据预设对应信息,确定当前场景对应的第一PTRS图样,包括:
    根据当前场景的场景参数与所述预设对应信息,确定当前场景对应的所述第一PTRS图样,
    其中,所述场景参数包括下列参数中任一种或多种:
    相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
  3. 根据权利要求2所述的方法,其特征在于,当所述场景采用采用场景参数PTRS数量表征时,
    在所述当前场景的PTRS数量小于或等于第一门限值的情况下,所述第一PTRS图样为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样;或
    在所述当前场景的PTRS数量大于所述第一门限值、且小于或等于第二门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样;或
    在所述当前场景的PTRS数量大于所述第二门限值的情况下,所述第一PTRS图样为块状非零功率PTRS图样。
  4. 根据权利要求2所述的方法,其特征在于,当所述场景采用采用场景参数调制编码模式MCS表征时,
    在所述MCS小于或等于第三门限值的情况下,所述第一PTRS图样为离散PTRS图样;或
    在所述MCS大于所述第三门限值、且小于或等于第四门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样;或
    在所述MCS大于所述第四门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样。
  5. 根据权利要求2所述的方法,其特征在于,
    在所述当前场景的场景参数包括的参数的取值为第一子集S1中的元素的情况下,所述第一PTRS图样为离散PTRS图样;
    在所述当前场景的场景参数包括的参数的取值为第二子集S2中的元素的情况下,所述第一PTRS图样为块状零功率PTRS图样;
    在所述当前场景的场景参数包括的参数的取值为第三子集S3的元素的情况下,所述第一PTRS图样为块状非零功率PTRS图样,
    其中,所述第一子集S1、所述第二子集S2、所述第三子集S3中的各个子集中包括下列中任一种或多种参数的取值或取值范围:
    相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    在所述第一PTRS图样为离散PTRS图样的情况下,所述第一PTRS图样的块大小为1;
    在所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样的情况下,所述第一PTRS图样的块大小与所述当前场景的信道的频选性表征参数相关。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一PTRS图样为块状非零功率PTRS图样的情况下,
    若所述当前场景的信道的频选性表征参数低于阈值,所述第一PTRS图样的块大小为PTRS数量,块数量为1;
    若所述当前场景的信道的频选性表征参数等于或高于所述阈值,所述第一PTRS图样的块大小小于PTRS数量,块数量大于1。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述按照所述第一PTRS图样,向接收端发送PTRS,包括:
    根据所述第一PTRS图样与PTRS的映射位置,向接收端发送PTRS。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    根据当前场景的信道质量,确定PTRS的映射位置;
    向所述接收端发送所确定的PTRS的映射位置的指示信息。
  10. 根据权利要求9所述的方法,其特征在于,所述根据当前场景的信道质量,确定PTRS的映射位置,包括:
    从多组信道中选择信道质量最优的一组信道作为PTRS的映射位置。
  11. 根据权利要求8所述的方法,其特征在于,PTRS在相邻符号上的频域映射位置不同。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    根据下列参数中任一项或多项,确定PTRS的映射位置:
    调度带宽、符号数据、块数量。
  13. 根据权利要求1至11所述的方法,其特征在于,所述方法还包括:
    向所述接收端发送所述第一PTRS图样的指示信息,所述指示信息包括所述第一PTRS图样的如下属性中的任一种或多种:
    图样类型、块大小、块数量。
  14. 一种传输相位跟踪参考信号PTRS的方法,其特征在于,包括:
    确定当前场景对应的第一PTRS图样;
    根据所述第一PTRS图样,接收发送端发送的PTRS,其中,所述发送端按照基于预设对应信息确定的当前场景对应的PTRS图样发送PTRS,其中,所述预设对应信息包括 多个场景与多种PTRS图样之间的对应关系;
    其中,所述第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
  15. 根据权利要求14所述的方法,其特征在于,确定当前场景对应的第一PTRS图样,包括:
    根据所述预设对应信息,确定当前场景对应的所述第一PTRS图样。
  16. 根据权利要求15所述的方法,其特征在于,所述场景采用场景参数表征,所述预设对应信息包括多个场景的场景参数与所述多种PTRS图样之间的对应关系;
    其中,所述根据所述预设对应信息,确定当前场景对应的所述第一PTRS图样,包括:
    根据当前场景的场景参数与所述预设对应信息,确定当前场景对应的所述第一PTRS图样,
    其中,所述场景参数包括下列参数中任一种或多种:
    相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
  17. 根据权利要求16所述的方法,其特征在于,当所述场景采用采用场景参数PTRS数量表征时,
    在所述当前场景的PTRS数量小于或等于第一门限值的情况下,所述第一PTRS图样为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样;或
    在所述当前场景的PTRS数量大于所述第一门限值、且小于或等于第二门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样;或
    在所述当前场景的PTRS数量大于所述第二门限值的情况下,所述第一PTRS图样为块状非零功率PTRS图样。
  18. 根据权利要求16所述的方法,其特征在于,当所述场景采用场景参数调制编码模式MCS表征时,
    在所述MCS小于或等于第三门限值的情况下,所述第一PTRS图样为离散PTRS图样;或
    在所述MCS大于所述第三门限值、且小于或等于第四门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样;或
    在所述MCS大于所述第四门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样。
  19. 根据权利要求16所述的方法,其特征在于,
    在所述当前场景的场景参数包括的参数的取值为第一子集S1中的元素的情况下,所述第一PTRS图样为离散PTRS图样;
    在所述当前场景的场景参数包括的参数的取值为第二子集S2中的元素的情况下,所述第一PTRS图样为块状零功率PTRS图样;
    在所述当前场景的场景参数包括的参数的取值为第三子集S3的元素的情况下,所述第一PTRS图样为块状非零功率PTRS图样,
    其中,所述第一子集S1、所述第二子集S2、所述第三子集S3中的各个子集中包括下 列中任一种或多种参数的取值或取值范围:
    相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,
    在所述第一PTRS图样为离散PTRS图样的情况下,所述第一PTRS图样的块大小为1;
    在所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样的情况下,所述第一PTRS图样的块大小与所述当前场景的信道的频选性表征参数相关。
  21. 根据权利要求20所述的方法,其特征在于,在所述第一PTRS图样为块状非零功率PTRS图样的情况下,
    若所述当前场景的信道的频选性表征参数低于阈值,所述第一PTRS图样的块大小为PTRS数量,块数量为1;
    若所述当前场景的信道的频选性表征参数等于或高于所述阈值,所述第一PTRS图样的块大小小于PTRS数量,块数量大于1。
  22. 根据权利要求14所述的方法,其特征在于,确定当前场景对应的第一PTRS图样,包括:
    接收所述发送端发送的PTRS图样的指示信息,所述指示信息包括所述第一PTRS图样的如下属性中的任一种或多种:图样类型、块大小、块数量;
    根据所述PTRS图样的指示信息,获取当前场景对应的所述第一PTRS图样。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述根据所述第一PTRS图样,接收发送端发送的PTRS,包括:
    根据所述第一PTRS图样与PTRS的映射位置,接收发送端发送的PTRS。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    接收所述发送端发送的PTRS映射位置的指示信息,其中,所述PTRS映射位置是所述发送端根据当前场景的信道质量确定的;
    根据所述PTRS映射位置的指示信息,确定PTRS的映射位置。
  25. 根据权利要求23所述的方法,其特征在于,PTRS在相邻符号上的频域映射位置不同。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    根据下列参数中任一项或多项,确定PTRS的映射位置:
    调度带宽、符号数据、块数量。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于根据预设对应信息,确定当前场景对应的第一传输相位跟踪参考信号PTRS图样,其中,所述预设对应信息包括多个场景与多种PTRS图样之间的对应关系;
    收发单元,用于按照所述第一PTRS图样,向接收端发送PTRS;
    其中,所述第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
  28. 根据权利要求27所述的通信装置,其特征在于,所述场景采用场景参数表征,所述预设对应信息包括多个场景的场景参数与所述多种PTRS图样之间的对应关系;
    其中,所述处理单元用于,根据当前场景的场景参数与所述预设对应信息,确定当前场景对应的所述第一PTRS图样,
    其中,所述场景参数包括下列参数中任一种或多种:
    相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
  29. 根据权利要求28所述的通信装置,其特征在于,当所述场景采用采用场景参数PTRS数量表征时,
    在所述当前场景的PTRS数量小于或等于第一门限值的情况下,所述第一PTRS图样为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样;或
    在所述当前场景的PTRS数量大于所述第一门限值、且小于或等于第二门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样;或
    在所述当前场景的PTRS数量大于所述第二门限值的情况下,所述第一PTRS图样为块状非零功率PTRS图样。
  30. 根据权利要求28所述的通信装置,其特征在于,当所述场景采用场景参数调制编码模式MCS表征时,
    在所述MCS小于或等于第三门限值的情况下,所述第一PTRS图样为离散PTRS图样;或
    在所述MCS大于所述第三门限值、且小于或等于第四门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样;或
    在所述MCS大于所述第四门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样。
  31. 根据权利要求28所述的通信装置,其特征在于,
    在所述当前场景的场景参数包括的参数的取值为第一子集S1中的元素的情况下,所述第一PTRS图样为离散PTRS图样;
    在所述当前场景的场景参数包括的参数的取值为第二子集S2中的元素的情况下,所述第一PTRS图样为块状零功率PTRS图样;
    在所述当前场景的场景参数包括的参数的取值为第三子集S3的元素的情况下,所述第一PTRS图样为块状非零功率PTRS图样,
    其中,所述第一子集S1、所述第二子集S2、所述第三子集S3中的各个子集中包括下列中任一种或多种参数的取值或取值范围:
    相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
  32. 根据权利要求27至31中任一项所述的通信装置,其特征在于,
    在所述第一PTRS图样为离散PTRS图样的情况下,所述第一PTRS图样的块大小为1;
    在所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样的情况下,所述第一PTRS图样的块大小与所述当前场景的信道的频选性表征参数相关。
  33. 根据权利要求32所述的通信装置,其特征在于,在所述第一PTRS图样为块状 非零功率PTRS图样的情况下,
    若所述当前场景的信道的频选性表征参数低于阈值,所述第一PTRS图样的块大小为PTRS数量,块数量为1;
    若所述当前场景的信道的频选性表征参数等于或高于所述阈值,所述第一PTRS图样的块大小小于PTRS数量,块数量大于1。
  34. 根据权利要求27至33中任一项所述的通信装置,其特征在于,所述收发单元用于,根据所述第一PTRS图样与PTRS的映射位置,向接收端发送PTRS。
  35. 根据权利要求34所述的通信装置,其特征在于,所述处理单元还用于,根据当前场景的信道质量,确定PTRS的映射位置;
    所述收发单元还用于,向所述接收端发送所确定的PTRS的映射位置的指示信息。
  36. 根据权利要求35所述的通信装置,其特征在于,所述处理单元用于,从多组信道中选择信道质量最优的一组信道作为PTRS的映射位置。
  37. 根据权利要求34所述的通信装置,其特征在于,PTRS在相邻符号上的频域映射位置不同。
  38. 根据权利要求37所述的通信装置,其特征在于,所述处理单元还用于,根据下列参数中任一项或多项,确定PTRS的映射位置:
    调度带宽、符号数据、块数量。
  39. 根据权利要求27至37所述的通信装置,其特征在于,所述收发单元还用于,向所述接收端发送所述第一PTRS图样的指示信息,所述指示信息包括所述第一PTRS图样的如下属性中的任一种或多种:
    图样类型、块大小、块数量。
  40. 一种通信装置,其特征在于,包括:
    处理单元,用于确定当前场景对应的第一相位跟踪参考信号PTRS图样;
    收发单元,用于根据所述第一PTRS图样,接收发送端发送的PTRS,其中,所述发送端按照基于预设对应信息确定的当前场景对应的PTRS图样发送PTRS,其中,所述预设对应信息包括多个场景与多种PTRS图样之间的对应关系;
    其中,所述第一PTRS图样为下列中任意一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样。
  41. 根据权利要求40所述的通信装置,其特征在于,所述处理单元用于,根据所述预设对应信息,确定当前场景对应的所述第一PTRS图样。
  42. 根据权利要求41所述的通信装置,其特征在于,所述场景采用场景参数表征,所述预设对应信息包括多个场景的场景参数与所述多种PTRS图样之间的对应关系;
    其中,所述所述处理单元用于,根据当前场景的场景参数与所述预设对应信息,确定当前场景对应的所述第一PTRS图样,
    其中,所述场景参数包括下列参数中任一种或多种:
    相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
  43. 根据权利要求42所述的通信装置,其特征在于,当所述场景采用采用场景参数PTRS数量表征时,
    在所述当前场景的PTRS数量小于或等于第一门限值的情况下,所述第一PTRS图样为下列中任一种:离散PTRS图样、块状零功率PTRS图样、块状非零功率PTRS图样;或
    在所述当前场景的PTRS数量大于所述第一门限值、且小于或等于第二门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样;或
    在所述当前场景的PTRS数量大于所述第二门限值的情况下,所述第一PTRS图样为块状非零功率PTRS图样。
  44. 根据权利要求42所述的通信装置,其特征在于,当所述场景采用场景参数调制编码模式MCS表征时,
    在所述MCS小于或等于第三门限值的情况下,所述第一PTRS图样为离散PTRS图样;或
    在所述MCS大于所述第三门限值、且小于或等于第四门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样;或
    在所述MCS大于所述第四门限值的情况下,所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样。
  45. 根据权利要求42所述的通信装置,其特征在于,
    在所述当前场景的场景参数包括的参数的取值为第一子集S1中的元素的情况下,所述第一PTRS图样为离散PTRS图样;
    在所述当前场景的场景参数包括的参数的取值为第二子集S2中的元素的情况下,所述第一PTRS图样为块状零功率PTRS图样;
    在所述当前场景的场景参数包括的参数的取值为第三子集S3的元素的情况下,所述第一PTRS图样为块状非零功率PTRS图样,
    其中,所述第一子集S1、所述第二子集S2、所述第三子集S3中的各个子集中包括下列中任一种或多种参数的取值或取值范围:
    相噪模型、载波频点、子载波间隔、调度带宽、调制阶数、码率、调制编码模式MCS、相位噪声功率谱密度、PTRS数量、信道条件、信噪比SNR、PTRS时频域密度的门限值。
  46. 根据权利要求40至45中任一项所述的通信装置,其特征在于,
    在所述第一PTRS图样为离散PTRS图样的情况下,所述第一PTRS图样的块大小为1;
    在所述第一PTRS图样为块状零功率PTRS图样或块状非零功率PTRS图样的情况下,所述第一PTRS图样的块大小与所述当前场景的信道的频选性表征参数相关。
  47. 根据权利要求46所述的通信装置,其特征在于,在所述第一PTRS图样为块状非零功率PTRS图样的情况下,
    若所述当前场景的信道的频选性表征参数低于阈值,所述第一PTRS图样的块大小为PTRS数量,块数量为1;
    若所述当前场景的信道的频选性表征参数等于或高于所述阈值,所述第一PTRS图样的块大小小于PTRS数量,块数量大于1。
  48. 根据权利要求40所述的通信装置,其特征在于,所述收发单元还用于,接收所述发送端发送的PTRS图样的指示信息,所述指示信息包括所述第一PTRS图样的如下属 性中的任一种或多种:图样类型、块大小、块数量;
    其中,所述处理单元用于,根据所述PTRS图样的指示信息,获取当前场景对应的所述第一PTRS图样。
  49. 根据权利要求40至48中任一项所述的通信装置,其特征在于,所述收发单元用于,根据所述第一PTRS图样与PTRS的映射位置,接收发送端发送的PTRS。
  50. 根据权利要求49所述的通信装置,其特征在于,所述收发单元还用于,接收所述发送端发送的PTRS映射位置的指示信息,其中,所述PTRS映射位置是所述发送端根据当前场景的信道质量确定的;
    其中,所述处理单元用于,根据所述PTRS映射位置的指示信息,确定PTRS的映射位置。
  51. 根据权利要求49所述的通信装置,其特征在于,PTRS在相邻符号上的频域映射位置不同。
  52. 根据权利要求51所述的通信装置,其特征在于,所述处理单元还用于,根据下列参数中任一项或多项,确定PTRS的映射位置:
    调度带宽、符号数据、块数量。
  53. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述通信装置执行:如权利要求1至13中任一项所述的方法,或如权利要求14至26中任一项所述的方法。
  54. 一种计算机存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求1至13中任一项所述的方法,或如权利要求14至26中任一项所述的方法。
  55. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,所述计算机程序被计算机执行时使得所述计算机实现如权利要求1至13中任一项所述的方法,或如权利要求14至26中任一项所述的方法。
PCT/CN2019/128610 2019-12-26 2019-12-26 传输相位跟踪参考信号的方法与装置 WO2021128151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128610 WO2021128151A1 (zh) 2019-12-26 2019-12-26 传输相位跟踪参考信号的方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128610 WO2021128151A1 (zh) 2019-12-26 2019-12-26 传输相位跟踪参考信号的方法与装置

Publications (1)

Publication Number Publication Date
WO2021128151A1 true WO2021128151A1 (zh) 2021-07-01

Family

ID=76573419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128610 WO2021128151A1 (zh) 2019-12-26 2019-12-26 传输相位跟踪参考信号的方法与装置

Country Status (1)

Country Link
WO (1) WO2021128151A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050118A1 (en) 2021-09-29 2023-04-06 Zte Corporation Phase tracking reference signal pattern configuration and signaling in wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112079A (zh) * 2017-06-23 2018-06-01 中兴通讯股份有限公司 配置资源的发送、配置、接收方法及装置
CN108809598A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种通信方法及装置
CN109217992A (zh) * 2017-06-29 2019-01-15 中国移动通信有限公司研究院 一种相位跟踪参考信号的传输方法、通信设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809598A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种通信方法及装置
CN108112079A (zh) * 2017-06-23 2018-06-01 中兴通讯股份有限公司 配置资源的发送、配置、接收方法及装置
CN109217992A (zh) * 2017-06-29 2019-01-15 中国移动通信有限公司研究院 一种相位跟踪参考信号的传输方法、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "PTRS for DFT-s-OFDM", 3GPP DRAFT; R1-1708142, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051273338 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050118A1 (en) 2021-09-29 2023-04-06 Zte Corporation Phase tracking reference signal pattern configuration and signaling in wireless communication system
EP4344464A4 (en) * 2021-09-29 2024-07-24 Zte Corp CONFIGURING AND SIGNALING PHASE TRACKING REFERENCE SIGNAL PATTERN IN A WIRELESS COMMUNICATION SYSTEM

Similar Documents

Publication Publication Date Title
US11764928B2 (en) Reference signal configuration method, apparatus, and system
EP3295724B1 (en) Systems and methods for adaptive pilot allocation
US20180083760A1 (en) System and Method for Semi-Orthogonal Multiple Access
US11096069B2 (en) Apparatus and method for hybrid multiple access wireless communication system
CN109586868B (zh) 信息传输方法、装置、发送设备及计算机可读存储介质
WO2018028384A1 (zh) 一种信息处理方法和装置
WO2021189216A1 (zh) 参考信号设置方法及装置
CA2725436A1 (en) Methods and systems for adaptive effective cinr reporting in a wireless communication system
JP7150858B2 (ja) 通信方法、mcs受信方法、mcs通知方法、およびデバイス
US20190028233A1 (en) Configuring transmission parameters in a cellular system
WO2021098355A1 (zh) Csi测量方法及装置
CN105229983B (zh) 在使用多音调频率正交幅度调制的无线通信系统中进行码元映射的装置和方法
WO2019079936A1 (zh) 一种选择波形的方法及设备
WO2017000095A1 (zh) 无线通信中确定信噪比的方法和装置
CN114902774A (zh) 一种确定参考信号的方法及装置
WO2021128151A1 (zh) 传输相位跟踪参考信号的方法与装置
WO2018113719A1 (zh) 一种数据调制方法、解调方法、数据调制设备、数据解调设备
WO2019219022A1 (zh) 通信方法、终端设备和网络设备
WO2021146990A1 (zh) 传输相位跟踪参考信号的方法和装置
CN111865847B (zh) 数据传输方法及装置
CN112751792B (zh) 一种信道估计方法及装置
WO2022099611A1 (zh) 一种通信方法及装置
WO2022077792A1 (zh) 一种通信方法和装置
WO2016082127A1 (zh) 信息传输方法、装置及系统
CN115189836A (zh) 一种传输相位跟踪参考信号的方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957805

Country of ref document: EP

Kind code of ref document: A1