WO2018113719A1 - 一种数据调制方法、解调方法、数据调制设备、数据解调设备 - Google Patents

一种数据调制方法、解调方法、数据调制设备、数据解调设备 Download PDF

Info

Publication number
WO2018113719A1
WO2018113719A1 PCT/CN2017/117658 CN2017117658W WO2018113719A1 WO 2018113719 A1 WO2018113719 A1 WO 2018113719A1 CN 2017117658 W CN2017117658 W CN 2017117658W WO 2018113719 A1 WO2018113719 A1 WO 2018113719A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
data
constellation
packet
group
Prior art date
Application number
PCT/CN2017/117658
Other languages
English (en)
French (fr)
Inventor
王森
戴晓明
韩双锋
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2018113719A1 publication Critical patent/WO2018113719A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3444Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power by applying a certain rotation to regular constellations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present disclosure relates to the field of wireless communications technologies, and in particular, to a data modulation method, a demodulation method, a base station, and a terminal.
  • Power division multiple access is one of the non-orthogonal multiple access techniques. By assigning different powers to different users, the power division multiple access can multiplex the signals of different users in the power domain, so that all users can share the same time-frequency domain resources, which greatly improves the spectrum utilization of the system.
  • the power division multiple access technique uses serial interference cancellation for multi-user detection. Studies have shown that split-multiple-access with serial interference cancellation can achieve channel capacity and improve cell edge user performance. In order to ensure the correctness of each serial interference cancellation, the power of different users usually needs to have a large difference, such as exponential decay. With the increase in the number of users, users with low power are likely to be drowning in the noise and cannot be detected correctly. Therefore, a single power division multiple access scheme will have a higher system error rate when loading too many users.
  • the technical problem to be solved by the embodiments of the present disclosure is to provide a data modulation method, a demodulation method, a base station, and a terminal, which are used to improve system error performance under the premise of satisfying the total power constraint of the system.
  • the data modulation method provided by the embodiment of the present disclosure includes: dividing a user into a plurality of groups, and notifying the group information to each user in each group, wherein the group information includes an identification ID of each group and a correspondence relationship between each user and a group. And performing constellation rotation on the data to be sent according to the packet information, to obtain modulated data to be transmitted at the transmitting end.
  • the method further comprises: allocating different transmit transmit powers for different packets, and allocating the same transmit transmit power to users within the same packet.
  • the data to be transmitted is subjected to constellation rotation according to the packet information
  • the obtained data to be transmitted includes: determining a rotation angle of the constellation according to the group information, and performing constellation on the data to be transmitted according to the rotation angle of the constellation. Rotation; wherein the rotation angle of each user corresponding to the constellation point in each packet is obtained by optimizing the mutual information between the user and the base station in the packet as an optimization target.
  • the method further includes: carrying the data to be transmitted to the corresponding communication resource for transmission.
  • the step of dividing the user into multiple groups includes: sorting each user according to a preset rule to obtain a user queue; and selecting a team from the user queue according to the number of users in each group At the beginning, the corresponding number of users are intercepted in turn, and the users of each group are obtained.
  • the step of sorting each user according to a preset rule to obtain a user queue includes: determining channel quality of each user according to channel quality statistics of each user in advance; according to the quality of the channel In order, each user is sorted to get a user queue.
  • the data to be transmitted is subjected to constellation rotation according to the packet information
  • the step of obtaining modulated data to be transmitted includes: determining, for each packet, a basic modulation mode corresponding to the packet, from the pre-established basic In the mapping relationship table of the modulation mode, a constellation map corresponding to the user signal to noise ratio in the packet is found, wherein the mapping relationship table records a constellation diagram of the basic modulation mode at different signal to noise ratios, the constellation The figure includes a rotation angle of each constellation point, and the basic modulation mode includes a phase shift keying PSK and a quadrature amplitude modulation QAM; and the basic modulation mode corresponding to the packet is used to modulate data of each user in the packet.
  • the mapping relationship table for establishing a basic modulation mode includes: determining, by using a transmission signal for a predetermined number of users, a received signal that is transmitted after being transmitted on a preset channel; and a probability according to the transmitted signal. a density, a probability density of the received signal, and a conditional probability density between the transmitted signal and the received signal, calculating mutual information between the transmitted signal and the received signal; and maximizing the mutual information as an optimization target, and obtaining the solution
  • a constellation diagram with different signal-to-noise ratios is used to establish a mapping relationship table of the basic modulation scheme.
  • the method further comprises: determining, according to the found constellation map, a constellation point corresponding to each user in the packet Rotation angle; performs user scheduling and resource allocation according to channel state CSI feedback information of each user, and sends a scheduling grant message to the user, where the scheduling grant message carries the MCS level of the user, the MIMO codebook, the rank of the channel, and the allocation The time-frequency resource, the base station transmission power allocated by the user, and the indication information of the rotation angle of the constellation point corresponding to the user.
  • the method further includes: receiving data receiving feedback information from the first user, the data receiving feedback information including receiving feedback information of the first user's data by the first user, and the first user pairing Receive feedback information of data of other users within the group to which the first user belongs.
  • the embodiment of the present disclosure further provides a data demodulation method, including: acquiring group information of a packet where a user is located, where the group information includes an identifier ID of each packet and a correspondence relationship between the user and the group; and accepting according to the group information
  • the data is rotated by the constellation to obtain demodulated user data.
  • the method before the step of acquiring the group information of the packet in which the user is located, the method further includes: receiving user data sent to the group to which the user belongs according to the predetermined transmit power of the sender allocated by the user.
  • the method before the step of acquiring the group information of the packet where the user is located, the method further includes: receiving a scheduling authorization message sent by the network side, where the scheduling authorization message carries the MCS level, the MIMO codebook, and the rank of the channel of the user. And an indication information of the allocated time-frequency resource, the base station transmission power allocated by the user, and the rotation angle of the constellation point corresponding to the user.
  • the method further includes: rotating according to a predetermined constellation point corresponding to other users in the group where the user is located. Angle, demodulating data of other users from the user data; transmitting data reception feedback information to the network side according to data demodulation results of each user in the packet, the data receiving feedback information including the Receive feedback information for each user's data.
  • the embodiment of the present disclosure further provides a data modulation device, including: a grouping unit, configured to divide a user into a plurality of groups, and a notification unit, configured to notify group information to each user in each group, where the group information includes The identification ID of each packet and the correspondence between each user and the packet, the modulating unit, configured to perform constellation rotation on the data to be sent according to the packet information, to obtain modulated data to be transmitted.
  • a grouping unit configured to divide a user into a plurality of groups
  • a notification unit configured to notify group information to each user in each group, where the group information includes The identification ID of each packet and the correspondence between each user and the packet
  • the modulating unit configured to perform constellation rotation on the data to be sent according to the packet information, to obtain modulated data to be transmitted.
  • the grouping unit is further configured to: allocate different sender transmit powers for different packets, and assign the same sender transmit power to users within the same packet.
  • the modulating unit is further configured to: determine a constellation rotation angle according to the grouping information, and perform constellation rotation on the data to be transmitted according to the constellation rotation angle; wherein each user in each group corresponds to a constellation point The rotation angle is obtained by maximizing the mutual information between the user and the base station within the packet.
  • the data modulation device further includes a sending unit, configured to carry the data to be transmitted to a corresponding communication resource for transmission.
  • the grouping unit is further configured to: sort each user according to a preset rule to obtain a user queue; and according to the number of users in each group, start from the team leader in the user queue, and sequentially intercept the corresponding The number of users who get the users of each group.
  • the grouping unit is further configured to: determine channel quality of each user according to channel quality statistics information of each user in advance; sort each user according to the order of channel quality, and obtain a user queue.
  • the modulating unit is further configured to: determine, for each packet, a basic modulation mode corresponding to the packet, and search for a user message in the packet from a pre-established mapping relationship table of the basic modulation mode. a constellation map corresponding to a noise ratio, wherein the mapping relationship table records a constellation diagram of the basic modulation mode at different signal to noise ratios, wherein the constellation diagram includes a rotation of each constellation point Turning the angle, the basic modulation mode includes phase shift keying PSK and quadrature amplitude modulation QAM; using the basic modulation mode corresponding to the packet, modulating data of each user in the packet to obtain data modulated by each user for the first time.
  • the modulating unit is further configured to: determine, according to a transmission signal of a predetermined number of users, a received signal that is transmitted by using the basic modulation mode and after being transmitted on a preset channel; according to a probability density of the transmitted signal, a probability density of the received signal, and a conditional probability density between the transmitted signal and the received signal, calculating mutual information between the transmitted signal and the received signal; maximizing the mutual information as an optimization target, and obtaining a different letter A constellation diagram under the noise ratio establishes a mapping table of the basic modulation scheme.
  • the modulating unit is further configured to: determine, according to the found constellation map, a rotation angle of a constellation point corresponding to each user in the group; perform user scheduling and resource allocation according to channel state CSI feedback information of each user. And sending a scheduling authorization message to the user, where the scheduling authorization message carries the MCS level of the user, the MIMO codebook, the rank of the channel, the allocated time-frequency resource, the base station transmission power allocated by the user, and the constellation corresponding to the user. Indicates the rotation angle of the point.
  • the data modulation device further includes a receiving unit, configured to receive data receiving feedback information from the first user, where the data receiving feedback information includes receiving feedback information of the data of the first user by the first user, And receiving feedback information of the data of the other users in the group to which the first user belongs.
  • the embodiment of the present disclosure further provides a data demodulating device, including: an acquiring unit, configured to acquire grouping information of a packet where the user is located, where the grouping information includes an identifier ID of each group and a correspondence between the user and the group; and a demodulation unit And performing constellation rotation on the received data according to the grouping information to obtain data of the demodulated user.
  • a data demodulating device including: an acquiring unit, configured to acquire grouping information of a packet where the user is located, where the grouping information includes an identifier ID of each group and a correspondence between the user and the group; and a demodulation unit And performing constellation rotation on the received data according to the grouping information to obtain data of the demodulated user.
  • the obtaining unit is further configured to receive user data sent to the packet to which the user belongs according to a predetermined transmit power of the sender allocated by the user.
  • the obtaining unit is further configured to receive a scheduling authorization message sent by the network side, where
  • the scheduling grant message carries the MCS level of the user, the MIMO codebook, the rank of the channel, the allocated time-frequency resource, the base station transmission power allocated by the user, and the rotation of the constellation point corresponding to the user.
  • the indication of the angle is further configured to receive a scheduling authorization message sent by the network side, where
  • the scheduling grant message carries the MCS level of the user, the MIMO codebook, the rank of the channel, the allocated time-frequency resource, the base station transmission power allocated by the user, and the rotation of the constellation point corresponding to the user. The indication of the angle.
  • the demodulation unit is further configured to demodulate data of other users from the user data according to a predetermined rotation angle of a constellation point corresponding to other users in the group where the user is located; the data demodulation The device further includes a sending unit, configured to send data receiving feedback information to the network side according to the data demodulation result of each user in the packet, where the data receiving feedback information includes receiving feedback of data of each user in the packet. information.
  • the data modulation method, the demodulation method, the data modulation device, and the data demodulation device optimize the transmitting end by combining the user grouping of the power domain and the user constellation rotation in the group, and In the intra-group constellation rotation multi-layer modulation, the mutual information of the users in the group is optimized as an optimization target, so that each user has a different rotation angle, so that the wireless communication system can be loaded under the premise of satisfying the total power constraint of the system. More users, improve system error performance.
  • FIG. 1 is a schematic flowchart diagram of a data modulation method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing superposition of constellation rotation in an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart diagram of a data demodulation method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a transmission process between a base station and a terminal in an embodiment of the present disclosure
  • FIG. 5 is a structural block diagram showing a transmitting end of a base station side in an embodiment of the present disclosure
  • FIG. 6 is a block diagram showing the functional structure of a base station in an embodiment of the present disclosure.
  • FIG. 7 is a block diagram showing the functional structure of a terminal in an embodiment of the present disclosure.
  • system and “network” are used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the form of the base station is not limited, and may be a Macro Base Station, a Pico Base Station, a Node B (a name of a 3G mobile base station), an enhanced base station (eNB), and a home enhanced type.
  • Base station Femto eNB or Home eNode B or Home eNB or HeNB
  • relay station access point
  • RRU Remote Radio Unit
  • RRH Remote Radio Head
  • 5G mobile communication system Network side nodes such as a central unit (CU, Central Unit) and a distributed unit (DU, distributed unit).
  • the terminal can be a mobile phone (or mobile phone), or other device capable of transmitting or receiving wireless signals, including user equipment (UE), personal digital assistant (PDA), wireless modem, wireless communication device, handheld device, laptop computer. , a cordless telephone, a wireless local loop (WLL) station, a CPE (Customer Premise Equipment) capable of converting a mobile signal into a WiFi signal, or a mobile smart hotspot, a smart home appliance, or other non-human operation can spontaneously and mobilely Communication network communication device Wait.
  • UE user equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • CPE Customer Premise Equipment
  • a data modulation method provided by an embodiment of the present disclosure may be applied to a network side device, such as a base station, in a wireless communication system, and the method includes the following steps.
  • step 11 the user is divided into a plurality of groups.
  • the method may further include: assigning different base station transmit powers to different packets, and allocating the same base station transmit power to users within the same packet.
  • each user corresponds to one terminal.
  • the terminal camps on the cell of the base station by performing synchronization with the base station, cell selection, and the like, thereby accessing the wireless communication system.
  • the base station can group the users of the base station.
  • each packet can have the same number of users.
  • the number of users in some/groups may be smaller than the number of users in other groups.
  • the base station transmission powers are allocated for different packets, and base station transmission powers of all users in the same packet are the same. Assuming that there are N x users in a certain packet X, and the base station transmission power allocated by the packet is P X , the base station transmission power allocated by each user in the packet X is P X /N x . Moreover, the base station transmission power of users in different groups in the embodiments of the present disclosure is different. In some embodiments, users with similar channel conditions may also be selected as a group, and users with different channel conditions are divided into different groups.
  • the embodiments of the present disclosure may sort each user according to a preset rule to obtain a user queue.
  • the channel quality statistics of each user may be obtained in advance, and the channel quality of each user may be determined, and each user may be sorted according to the order of the channel quality to obtain a user queue. Then, according to the number of users in each group, starting from the head of the queue in the user queue, a corresponding number of users are sequentially intercepted, and users of each group are obtained.
  • the channel quality statistics information may be specifically characterized by parameters such as a channel correlation matrix, a long-term statistical signal-to-noise ratio (Geometry), and an RSRP (Reference Signal Receiving Power).
  • the foregoing is only an example of a packet mode.
  • the disclosure is not limited thereto.
  • the embodiments of the present disclosure may also be grouped by other grouping methods, for example, considering historical statistical information of a user channel, and considering instantaneous information of a user channel. .
  • the base station notifies the individual information in each packet to the group information.
  • Group information The identification ID of each packet and the correspondence between each user and the group are included.
  • the manner in which the base station notifies the user of the packet may be dynamically indicated by RRC (Radio Resource Control) signaling, MAC-CE (MAC Control Element), or DCI (Downlink Control Indicator).
  • RRC Radio Resource Control
  • MAC-CE MAC Control Element
  • DCI Downlink Control Indicator
  • Step 13 The transmitting end performs constellation rotation on the data to be sent by the transmitting end according to the grouping information, to obtain modulated data to be transmitted by the transmitting end.
  • the transmitting end performs a constellation rotation on the data to be sent by the transmitting end according to the grouping information
  • obtaining the sending data of the transmitting end may include: determining a constellation rotation angle according to the grouping information, and transmitting according to the constellation rotation angle pair. The data to be sent is rotated by the constellation.
  • the base station may separately perform a constellation rotation and superposition of data of each user in the packet for each packet to obtain output data of the packet, wherein each user in the packet corresponds to a rotation angle of the constellation point. It is obtained by maximizing the mutual information between the user and the base station in the packet.
  • the embodiment of the present disclosure optimizes mutual information of users in the group as an optimization target, and assigns different constellation point rotation angles to the user.
  • step 14 the output data of each group is superimposed to obtain data to be transmitted.
  • the embodiment of the present disclosure introduces a constellation rotation multi-layer modulation and optimizes the rotation angle on the basis of the power domain multiplexing user, and merges users with the same or similar channel states into one group.
  • all user signals are superimposed by changing the phase rotation factor of each user.
  • Users in the same group have the same power, adopt a certain power allocation scheme between different groups, and then superimpose and transmit signals of different groups.
  • Figure 2 shows that users 1 to 4 with the same power use BPSK modulation.
  • different users use different rotations to generate independent 16 constellation points.
  • the maximum reachable rate is 4 symbols/superimposed symbols. System capacity.
  • the data modulation method provided by the embodiment of the present disclosure may also be applied to a terminal device in a wireless communication system.
  • the method may include the following steps: the base station groups the user according to certain criteria and notifies the terminal of the group in which the terminal is located.
  • the specific grouping criterion may be: according to the terminal sending power Row partitioning, such as assigning different terminal transmit powers to different packets, and assigning the same or approximately the same terminal transmit power to users within the same packet.
  • the specific notification manner may be RRC signaling or MAC-CE signaling or DCI dynamic indication.
  • the base station specifically informs the content of the packet where the terminal is located that the ID of the packet in which the terminal is located or the base station obtains an optimized constellation rotation angle according to a certain criterion according to the criterion of the terminal, and then the base station notifies the terminal of its constellation rotation angle or its quantization indication.
  • the terminal performs constellation rotation on the data to be sent according to the received base station grouping information, and obtains output data to be sent by the terminal, wherein the criterion for obtaining the optimized rotation angle of the constellation may be: maximizing the relationship between the user and the base station in the packet. Mutual information is obtained for optimization purposes.
  • the transmitting end in the above embodiment refers to the base station; and for the uplink transmission, the transmitting end refers to the terminal.
  • the embodiment of the present disclosure combines the user grouping of the power domain with the rotation of the user constellation in the group, optimizes the transmitting end, and optimizes the mutual information of the users in the group when performing intra-group constellation rotation multi-layer modulation.
  • the goal is to make each user have different rotation angles, so that the wireless communication system can load more users and improve system error performance under the premise of satisfying the total power constraint of the system.
  • the embodiment of the present disclosure may further transmit the data to be sent to the corresponding communication resource for transmission, and the data of each user is sent according to the transmission power determined in step 11 above.
  • the specific sending mode refer to related implementations of the related technologies, and the details are not described herein.
  • a mapping relationship table of different basic modulation modes may be established in advance, and a constellation diagram of the basic modulation mode at different signal to noise ratios is recorded in the mapping relationship table, where the constellation diagram includes each constellation point.
  • the rotation angle, the basic modulation method includes phase shift keying (PSK) and quadrature amplitude modulation (QAM). Therefore, in the above step 12, for each packet, the basic modulation mode corresponding to the packet may be determined, and then the mapping of the user signal to noise ratio in the packet is found from the mapping relationship table of the basic modulation mode established in advance. Constellation.
  • the data of each user in the packet is modulated to obtain data that is initially modulated by each user; and then, according to the found constellation diagram, the constellation points corresponding to each user in the packet are determined. And mapping the data modulated by each user in the group according to the corresponding constellation point Modulation, a constellation mapping signal is obtained; and the constellation mapping signals of the respective users are superimposed to obtain output data of the packet.
  • the basic modulation mode corresponding to different groups may be the same modulation mode configured in advance.
  • the embodiment of the present disclosure may pre-establish a mapping relationship table of different basic modulation modes, where the mapping relationship table is related to the number of users in the packet and the basic modulation mode used by the packet, and the specific establishing step may include: a transmission signal of a predetermined number of users included in the packet, determining a received signal after the basic modulation mode and after being transmitted on the predetermined channel; a probability density of the received signal according to a probability density of the transmitted signal, and the transmitting signal Calculating mutual information between the transmitted signal and the received signal according to the conditional probability density between the received signal; maximizing the mutual information as an optimization target, and obtaining a constellation diagram with different signal to noise ratios, thereby establishing the basic modulation method Mapping table.
  • the predetermined channel may adopt a specific channel model obtained by prediction or statistics. Based on the resulting channel model, the received signal can be determined.
  • the specific channel model may be an additive white Gaussian noise (AWGN) channel, a Rayleigh channel, or other channel model.
  • AWGN additive white Gaussian noise
  • the network side may further send the related information to the corresponding user, so that the user performs data demodulation, specifically, according to The searched constellation map determines the rotation angle of the constellation points corresponding to each user in the group; performs user scheduling and resource allocation according to the channel state CSI feedback information of each user, and sends a scheduling authorization message to the user, where the scheduling authorization message carries
  • the user has a Modulation and Coding Scheme (MCS) level, a MIMO codebook (Precoder), a channel rank (Rank), an allocated time-frequency resource, a base station transmission power allocated by the user, and a corresponding
  • MCS Modulation and Coding Scheme
  • Precoder Precoder
  • Rank channel rank
  • an allocated time-frequency resource a base station transmission power allocated by the user
  • the indication information of the rotation angle of the constellation point, the indication information may be a specific rotation angle, or may be a codebook corresponding to the rotation angle.
  • the user when performing data reception and demodulation, the user may simultaneously receive and demodulate data of other users in the same packet, and send data to the network side according to the data receiving situation.
  • the data receiving feedback information includes receiving feedback information of the user data, and may also include receiving feedback information of other user data in the same group.
  • the network side can determine the receiving situation of different user data at the same user, so as to be used for adaptive processing during subsequent data transmission, so as to improve subsequent data transmission performance.
  • the embodiment of the present disclosure further provides a data demodulation method, corresponding to the foregoing modulation method
  • the data demodulation method may include: Step 31: Acquire packet information of a packet where the user is located, where the packet information includes The identifier ID of the group and the correspondence between the user and the packet; in step 32, the received data is subjected to constellation rotation according to the group information, and the demodulated user data is obtained.
  • the method before the step of acquiring the group information of the packet in which the user is located, the method may further include: receiving user data sent to the packet to which the user belongs according to the predetermined transmit power of the sender allocated by the user.
  • the method can be applied to the receiving end, as shown in FIG. 3, and the method includes the following steps when applied to the receiving end.
  • Step 301 Receive user data sent to the first packet to which the first user belongs according to the transmit power of the sender of the first user.
  • each terminal belongs to one user, and the transmitting power of the first user to which the first terminal belongs may be obtained from a control message sent by the base station.
  • the control information sent by the network side may be received, where the control carries the MCS level of the first user, the MIMO codebook, the rank of the channel, the allocated time-frequency resource, and the first user allocated
  • the power control information and the rotation angle of the constellation point corresponding to the first user obtain information including the power of the first user, the rotation angle of the constellation point, and the like.
  • Step 302 Demodulate data of the first user from the user data according to a predetermined rotation angle of a constellation point corresponding to the first user.
  • the rotation angle of the constellation point corresponding to the first user may be parsed in advance from the control signaling sent by the network side.
  • the receiving end can perform transparent/non-transparent interference deletion or nonlinear joint detection to perform data demodulation of the first user.
  • the embodiment of the present disclosure combines the user group of the power domain and the user constellation rotation in the group, optimizes the transmitting end, and performs receiving processing at the receiving end, so that the wireless communication system can satisfy the total power constraint of the system. Next, load more users and improve system erroneousness can.
  • the first terminal may further send data receiving feedback information (ACK/NACK) to the network side. Further, the first terminal may send the data receiving feedback information of the first user, and may also send the same packet at the same time.
  • the data of other users receives feedback information.
  • the first terminal performs data demodulation in step 302
  • the data of other users may be demodulated from the user data according to a rotation angle of a constellation point corresponding to other users in the first group; And receiving, according to the data demodulation result of each user in the first group, data receiving feedback information, where the data receiving feedback information includes receiving feedback information of data of each user in the first group.
  • the embodiment of the present disclosure optimizes the transmitting end for the joint user grouping and the multi-layer modulated functional division multiple access system, and optimizes the phase rotation factor to transmit and receive each user packet.
  • the mutual information of the end is maximized, and under the premise of satisfying the total power constraint of the system, the system error performance can be improved and more users can be loaded.
  • step 41 the terminal performs a synchronization and cell selection process with the base station.
  • the base station After the terminal accesses the system, the base station performs initial system configuration information transmission; when the terminal has a service request, the terminal initiates a random access procedure.
  • the initial system configuration message is enhanced here, and new multiple access configuration signaling is added, indicating that the base station supports the non-orthogonal multiple access transmission mode, and the random access process Unscheduled access can be considered.
  • the non-scheduled means that the terminal does not need to receive the scheduling grant (Grant) message sent by the base station, and directly transmits the data while accessing.
  • Steps 42 to 44 channel information acquisition and feedback process.
  • the terminal may send an uplink channel sounding reference signal (SRS, Sounding Reference Signal) for uplink channel estimation, and obtain channel downlink information by using TDD channel dissimilarity.
  • SRS uplink channel sounding reference signal
  • FDD frequency division duplex
  • CSI-RS Downstream CSI reference signals
  • a channel estimation algorithm such as an algorithm based on maximum likelihood (ML) criteria or serial interference cancellation (SIC) can be employed for CQI measurement and feedback.
  • ML maximum likelihood
  • SIC serial interference cancellation
  • the specific feedback amount includes but is not limited to: channel rank, precoding index (PMI), modulation coding level (MCS), and the like.
  • PMI precoding index
  • MCS modulation coding level
  • the FDD system needs feedback PMI
  • the TDD system does not need feedback PMI.
  • Step 45 The base station performs user scheduling and resource allocation according to the CSI feedback information.
  • the base station sends a scheduling grant (Grant) message to notify the user of the MCS level, the MIMO codebook (Precoder), the rank of the channel (Rank), the allocated time-frequency resource, and the scheduling and sending of the base station of the user in the packet. Power and constellation rotation angle.
  • Steps 46-47, data transmission and ACK/NACK feedback
  • the base station transmits data to the user, and the user receives and demodulates the data, and feeds back ACK/NACK information to the base station.
  • non-transparent interference cancellation or joint detection receivers may be used for reception demodulation.
  • the non-transparent multiple access HARQ process may adopt a non-transparent mode, that is, in addition to feeding back the ACK/NACK information of the user, it is also required to feed back the ACK/NACK information of the paired user. If orthogonal transmission is used, it is handled in the same way as the existing LTE system.
  • the base station performs the optimal rotation angle (codebook) design of the specific user group and the constellation in the user scheduling and resource allocation according to the CSI feedback information, and the implementation thereof is as follows: at the transmitting end, the sending structure block diagram As shown in FIG. 5, users are grouped to allocate different powers to users in the group, and the same power is allocated to users in the group.
  • codebook codebook
  • the user is divided into a plurality of packets, for example, the users 1 to N are divided into L packets, and each user goes through the same basic modulation mode.
  • the constellation rotation angle of each user in the group is ⁇ 1 , ⁇ 2 , ..., ⁇ N , respectively. If the transmission signal of the nth user is b n , then the superimposed signals of all users in the group are
  • the constellation rotation angles ⁇ 1 , ⁇ 2 , ..., ⁇ N are parameters in the equation (7). Under the given SNR condition, the mutual information under different combinations of the rotation angles of the constellation can be calculated. The combination of rotation angles corresponding to the maximum mutual information is the constellation rotation angle of each user in the group under the signal-to-noise ratio.
  • simulations were performed for the group including 2, 3, and 4 users.
  • the user power in the group is normalized and simulated under the AWGN channel. It is assumed that the channel noise is a two-dimensional Gaussian white noise with a mean value of 0, and the variance of each dimension is N 0 /2.
  • Users within the group use BPSK modulation. Among the users in each group, the first user does not perform angle rotation.
  • each group of the user's transmitting end and receiving end Mutual information is maximized.
  • the second user is assigned a rotation angle based on the mutual information maximization criterion, and the signal to noise ratio and the rotation angle relationship are referred to Table 1.
  • the embodiment of the present disclosure further provides a data modulation device, including: a grouping unit, configured to divide a user into multiple groups, and a notification unit, configured to notify group information to each group Each user in the group, wherein the grouping information includes an identifier ID of each group and a correspondence between each user and a packet, and a modulating unit is configured to perform constellation rotation on the data to be sent according to the group information to obtain modulated data to be transmitted.
  • the grouping unit is further configured to: assign different sender transmit powers to different packets, and assign the same sender transmit power to users within the same packet.
  • the modulating unit is further configured to: determine a constellation rotation angle according to the grouping information, and perform constellation rotation on the data to be transmitted according to the constellation rotation angle; wherein each user in each group corresponds to a constellation point The rotation angle is obtained by maximizing the mutual information between the user and the base station within the packet.
  • the data modulation device further includes a sending unit, configured to carry the data to be transmitted to a corresponding communication resource for transmission.
  • the grouping unit is further configured to: sort each user according to a preset rule to obtain a user queue; and according to the number of users in each group, start from the team leader in the user queue, and sequentially intercept the corresponding The number of users who get the users of each group.
  • the grouping unit is further configured to: determine channel quality of each user according to channel quality statistics information of each user in advance; according to the order of the channel quality, The users are sorted to get the user queue.
  • the modulating unit is further configured to: determine, for each packet, a basic modulation mode corresponding to the packet, and search for a user message in the packet from a pre-established mapping relationship table of the basic modulation mode. a constellation map corresponding to the noise ratio, wherein the mapping relationship table records a constellation diagram of the basic modulation mode at different signal to noise ratios, wherein the constellation diagram includes a rotation angle of each constellation point, and the basic modulation mode Including the phase shift keying PSK and the quadrature amplitude modulation QAM; using the basic modulation mode corresponding to the packet, modulating the data of each user in the packet to obtain the data modulated by each user for the first time; according to the found constellation diagram, Determining a constellation point corresponding to each user in the group, and mapping and modulating the data modulated by each user in the group according to the corresponding constellation point to obtain a constellation mapping signal; superimposing the constellation mapping signals of each user to obtain the grouping Output data.
  • the modulating unit is further configured to: determine, according to a transmission signal of a predetermined number of users, a received signal that is transmitted by using the basic modulation mode and after being transmitted on a preset channel; according to a probability density of the transmitted signal, a probability density of the received signal, and a conditional probability density between the transmitted signal and the received signal, calculating mutual information between the transmitted signal and the received signal; maximizing the mutual information as an optimization target, and obtaining a different letter A constellation diagram under the noise ratio establishes a mapping table of the basic modulation scheme.
  • the modulating unit is further configured to: determine, according to the found constellation map, a rotation angle of a constellation point corresponding to each user in the group; perform user scheduling and resource allocation according to channel state CSI feedback information of each user. And sending a scheduling authorization message to the user, where the scheduling authorization message carries the MCS level of the user, the MIMO codebook, the rank of the channel, the allocated time-frequency resource, the base station transmission power allocated by the user, and the constellation corresponding to the user. Indicates the rotation angle of the point.
  • the data modulation device further includes a receiving unit, configured to receive data receiving feedback information from the first user, where the data receiving feedback information includes receiving feedback information of the data of the first user by the first user, And receiving feedback information of the data of the other users in the group to which the first user belongs.
  • the embodiment of the present disclosure further provides a data demodulating device, including: an acquiring unit, configured to acquire grouping information of a packet where the user is located, where the grouping information includes The identifier ID of the group and the correspondence between the user and the packet; the demodulation unit is configured to perform constellation rotation on the received data according to the group information to obtain data of the demodulated user.
  • the obtaining unit is further configured to receive user data sent to the packet to which the user belongs according to a predetermined transmit power of the sender allocated by the user.
  • the acquiring unit is further configured to receive a scheduling grant message sent by the network side, where the scheduling grant message carries an MCS level of the user, a MIMO codebook, a rank of a channel, and an allocated time-frequency resource. And indication information of the base station transmission power allocated by the user and the rotation angle of the constellation point corresponding to the user.
  • the demodulation unit is further configured to demodulate data of other users from the user data according to a predetermined rotation angle of a constellation point corresponding to other users in the group where the user is located; the data demodulation The device further includes a sending unit, configured to send data receiving feedback information to the network side according to the data demodulation result of each user in the packet, where the data receiving feedback information includes receiving feedback of data of each user in the packet. information.
  • an embodiment of the present disclosure provides a base station, including: a grouping unit 61, configured to divide a user into multiple packets, and allocate different base station transmission powers for different packets, and allocate users in the same group.
  • a modulating unit 62 configured to perform a constellation rotation and superposition of data of each user in the packet for each packet, to obtain output data of the packet, wherein each user in the packet corresponds to a constellation
  • the rotation angle of the point is obtained by maximizing the mutual information between the transmitting end and the receiving end of the user in the packet
  • the output unit 63 is configured to superimpose the output data of each packet to obtain data to be transmitted.
  • the foregoing base station may further include: a sending unit, configured to carry the data to be sent to the corresponding communication resource for transmission.
  • the grouping unit includes: a sorting unit, configured to sort each user according to a preset rule to obtain a user queue; and a dividing unit, configured to use a team in the user queue according to the number of users in each group At the beginning, the corresponding number of users are intercepted in turn, and the users of each group are obtained.
  • the sorting unit is specifically configured to determine channel quality of each user according to channel quality statistics information of each user in advance, and sort each user according to the order of the channel quality. Get the user queue.
  • the modulating unit is specifically configured to determine, for each packet, a basic modulation mode corresponding to the packet, and search for a constellation corresponding to a user SNR in the packet from a pre-established mapping relationship table of the basic modulation mode.
  • a mapping diagram of the basic modulation mode at different signal-to-noise ratios wherein the constellation diagram includes a rotation angle of each constellation point, and the basic modulation mode includes a phase shift keying PSK.
  • Quadrature amplitude modulation QAM using the basic modulation mode corresponding to the packet, modulating data of each user in the packet to obtain data that is initially modulated by each user; and determining corresponding users in the packet according to the searched constellation map
  • the foregoing base station may further include: a pre-processing unit, configured to establish a mapping relationship table of a basic modulation mode according to the following steps: determining, by using a predetermined modulation mode, a basic modulation mode a received signal transmitted through a preset channel; a probability density of the received signal, a conditional probability density between the transmitted signal and the received signal, and a calculated relationship between the transmitted signal and the received signal according to a probability density of the transmitted signal Mutual information; to maximize the mutual information as an optimization target, to obtain a constellation diagram with different SNR, to establish a mapping relationship table of the basic modulation mode; an authorization message sending unit, according to the found constellation diagram, Determining a rotation angle of a constellation point corresponding to each user in the group; performing user scheduling and resource allocation according to the channel state CSI feedback information of each user, and sending a scheduling authorization message to the user, where the scheduling authorization message carries the MCS level of the user, MIMO codebook, rank of channel, allocated time-frequency resource,
  • an embodiment of the present disclosure further provides a terminal, including: a first receiving unit 71, configured to receive, according to a predetermined transmission power of a base station that is allocated by a first user, to send to a first group to which the first user belongs.
  • the user data, the first user is a user to which the terminal belongs, and the demodulation unit 72 is configured to: according to a predetermined rotation angle of a constellation point corresponding to the first user, from the user data. Demodulate the data of the first user.
  • the terminal further includes: a second receiving unit, configured to receive a scheduling grant message sent by the network side, where the scheduling grant message carries the MCS level of the first user, the MIMO codebook, the rank of the channel, and the allocated The time-frequency resource, the base station transmission power allocated by the first user, and the indication information of the rotation angle of the constellation point corresponding to the first user.
  • a second receiving unit configured to receive a scheduling grant message sent by the network side, where the scheduling grant message carries the MCS level of the first user, the MIMO codebook, the rank of the channel, and the allocated The time-frequency resource, the base station transmission power allocated by the first user, and the indication information of the rotation angle of the constellation point corresponding to the first user.
  • the demodulation unit is further configured to demodulate data of other users from the user data according to a rotation angle of a constellation point corresponding to other users in the predetermined first group;
  • the terminal further includes: feedback a unit, configured to send, according to a data demodulation result of each user in the first group, data receiving feedback information, where the data receiving feedback information includes receiving feedback of data of each user in the first group information.
  • a module can include: a permanent circuit or logic device for performing a particular operation.
  • Modules may also include programmable logic devices or circuits (such as including general purpose processors or other programmable processors) that are temporarily configured by software for performing particular operations.
  • programmable logic devices or circuits such as including general purpose processors or other programmable processors
  • a computer program eg, implemented as one or more programs running on one or more computer systems
  • implemented as one or more programs running on one or more processors eg, implemented as one or One or more programs running on a plurality of microprocessors, implemented as firmware, or substantially in any combination of the above, and those skilled in the art, in accordance with the present disclosure, will be provided with design circuitry and/or write software and / or firmware code capabilities.
  • processors eg, implemented as one or One or more programs running on a plurality of microprocessors, implemented as firmware, or substantially in any combination of the above, and those skilled in the art, in accordance with the present disclosure, will be provided with design circuitry and/or write software and / or firmware code capabilities.
  • the mechanisms of the subject matter described herein can be distributed as a variety of forms of program products, and regardless of the particular type of signal-bearing medium that is actually used to perform the distribution, the subject matter of the present disclosure
  • the exemplary embodiments are applicable.
  • signal bearing media examples include, but are not limited to, recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, and the like; and transmission-type media such as digital and / or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).
  • recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, and the like
  • transmission-type media such as digital and / or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种数据调制方法、解调方法、基站及终端。所述数据调制方法包括将用户分为多个分组,将分组信息通知给每个分组内的各个用户,其中分组信息包括每个分组的标识ID以及各个用户和分组的对应关系,根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据。

Description

一种数据调制方法、解调方法、数据调制设备、数据解调设备
相关申请的交叉引用
本申请主张在2016年12月21日在中国提交的中国专利申请号No.201611192141.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,具体涉及一种数据调制方法、解调方法、基站及终端。
背景技术
多址技术在现代无线通信系统中具有重要作用。在第四代(4G)移动通信系统中,正交频分多址技术和单载波频分复用多址技术凭借其在可接受的复杂度下良好的系统性能成为两种主要关键技术。但是面对呈爆炸式增长的用户接入数目,第五代移动通信系统需要采取更先进的技术以获得更优异的系统性能。
功分多址是非正交多址接入技术中的一种。通过对不同用户分配不同的功率,功分多址得以在功率域复用不同用户的信号,从而使得所有用户可以共用同一时频域资源,极大地提高了系统的频谱利用率。在接收端,功分多址技术采用串行干扰抵消进行多用户检测。研究表明采用串行干扰抵消的功分多址能够达到信道容量并且改善小区边缘用户的性能。为了保证每一次串行干扰抵消的正确性,不同用户的功率通常需要具有较大的差异,例如呈指数衰减。而随着用户数量的增多,功率小的用户很有可能淹没在噪声中,不能正确检测。所以,单一的功分多址方案在加载过多的用户的情况下系统误码率会比较高。
发明内容
本公开实施例要解决的技术问题是提供一种数据调制方法、解调方法、基站及终端,用以在满足系统总功率约束的前提下,改善系统误码性能。
本公开实施例提供的数据调制方法包括:将用户分为多个分组,将分组信息通知给每个分组内的各个用户,其中分组信息包括每个分组的标识ID以及各个用户和分组的对应关系,根据所述分组信息对待发送的数据进行星座旋转,得到该发送端的调制后的待发送数据。
在一些实施例中,将用户分为多个分组之后,所述方法还包括:为不同分组分配不同的发送端发送功率,以及为同一分组内的用户分配相同的发送端发送功率。
在一些实施例中,根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据包括:根据分组信息确定星座旋转角度,并按照所述星座旋转角度对要发送的数据进行星座旋转;其中,每个分组内的各个用户对应星座点的旋转角度是以最大化该分组内用户和基站之间的互信息为优化目标而得到的。
在一些实施例中,在得到调制后的待发送数据之后,所述方法还包括:将待发送数据承载到相应的通信资源上进行发送。
在一些实施例中,所述将用户分为多个分组的步骤,包括:按照预设规则对各个用户进行排序,得到用户队列;根据各个分组内的用户数量,从所述用户队列中的队首开始,依次截取对应数量的用户,获得各个分组的用户。
在一些实施例中,所述按照预设规则对各个用户进行排序,得到用户队列的步骤,包括:根据预先获得各个用户的信道质量统计信息,确定各个用户的信道质量;按照信道质量的优劣顺序,对各个用户进行排序,得到用户队列。
在一些实施例中,根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据的步骤包括:针对每个分组,确定该分组对应的基本调制方式,从预先建立的该基本调制方式的映射关系表中,查找到该分组内的用户信噪比对应的星座图,其中,所述映射关系表中记录有该基本调制方式在不同信噪比下的星座图,所述星座图中包括有各个星座点的旋转角度,所述基本调制方式包括相移键控PSK和正交幅度调制QAM;利用该分组对应的基本调制方式,对该分组内的各个用户的数据进行调制,得到各个用户初次调制后的数据;根据查找到的星座图,确定分组内各个用户对应的星座 点,并根据对应的星座点,对该分组内各个用户初次调制后的数据进行映射调制,得到星座映射信号;将各个用户的星座映射信号进行叠加,得到该分组的输出数据。
在一些实施例中,建立基本调制方式的映射关系表包括:针对预定数量的用户的发送信号,确定采用该基本调制方式并经过在预设信道传输后的接收信号;根据所述发送信号的概率密度,所述接收信号的概率密度,以及所述发送信号与接收信号之间的条件概率密度,计算发送信号与接收信号之间的互信息;以最大化所述互信息为优化目标,求解得到不同信噪比下的星座图,建立该基本调制方式的映射关系表。
在一些实施例中,在所述查找到该分组内的用户信噪比对应的星座图的步骤之后,所述方法还包括:根据查找到的星座图,确定分组内各个用户对应的星座点的旋转角度;根据各个用户的信道状态CSI反馈信息,进行用户调度和资源分配,并向用户发送调度授权消息,所述调度授权消息携带有用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、用户所分配的基站发送功率、以及该用户对应的星座点的旋转角度的指示信息。
在一些实施例中,所述方法还包括:接收来自第一用户的数据接收反馈信息,所述数据接收反馈信息包括第一用户对第一用户的数据的接收反馈信息,以及第一用户对所述第一用户所属分组内的其他用户的数据的接收反馈信息。
本公开实施例还提供了一种数据解调方法,包括:获取用户所在分组的分组信息,其中分组信息包括每个分组的标识ID以及用户和分组的对应关系;根据所述分组信息对接受的数据进行星座旋转,得到解调后的用户的数据。
在一些实施例中,在获取用户所在分组的分组信息步骤之前,还包括:根据预先确定的用户所分配的发送端发送功率,接收发送至该用户所属分组的用户数据。
在一些实施例中,在获取用户所在分组的分组信息步骤之前,还包括:接收网络侧发送的调度授权消息,所述调度授权消息携带有所述用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、所述用户所分配的基站发送功率、以及该所述用户对应的星座点的旋转角度的指示信息。
在一些实施例中,在根据所述分组信息对接受的数据进行星座旋转,得到解调后的用户的数据步骤之后,还包括:根据预先确定的用户所在分组内其他用户对应的星座点的旋转角度,从所述用户数据中解调其他用户的数据;根据所述分组内的各个用户的数据解调结果,向网络侧发送数据接收反馈信息,所述数据接收反馈信息包括所述分组内的各个用户的数据的接收反馈信息。
本公开实施例还提供了一种数据调制设备,包括:分组单元,用于将用户分为多个分组,通知单元,用于将分组信息通知给每个分组内的各个用户,其中分组信息包括每个分组的标识ID以及各个用户和分组的对应关系,调制单元,用于根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据。
在一些实施例中,分组单元还用于:为不同分组分配不同的发送端发送功率,以及为同一分组内的用户分配相同的发送端发送功率。
在一些实施例中,所述调制单元还用于:根据分组信息确定星座旋转角度,并按照所述星座旋转角度对要发送的数据进行星座旋转;其中,每个分组内的各个用户对应星座点的旋转角度是以最大化该分组内用户和基站之间的互信息为优化目标而得到的。
在一些实施例中,所述数据调制设备还包括发送单元,用于将待发送数据承载到相应的通信资源上进行发送。
在一些实施例中,所述分组单元还用于:按照预设规则对各个用户进行排序,得到用户队列;根据各个分组内的用户数量,从所述用户队列中的队首开始,依次截取对应数量的用户,获得各个分组的用户。
在一些实施例中,所述分组单元还用于:根据预先获得各个用户的信道质量统计信息,确定各个用户的信道质量;按照信道质量的优劣顺序,对各个用户进行排序,得到用户队列。
在一些实施例中,所述调制单元还用于:针对每个分组,确定该分组对应的基本调制方式,从预先建立的该基本调制方式的映射关系表中,查找到该分组内的用户信噪比对应的星座图,其中,所述映射关系表中记录有该基本调制方式在不同信噪比下的星座图,所述星座图中包括有各个星座点的旋 转角度,所述基本调制方式包括相移键控PSK和正交幅度调制QAM;利用该分组对应的基本调制方式,对该分组内的各个用户的数据进行调制,得到各个用户初次调制后的数据;根据查找到的星座图,确定分组内各个用户对应的星座点,并根据对应的星座点,对该分组内各个用户初次调制后的数据进行映射调制,得到星座映射信号;将各个用户的星座映射信号进行叠加,得到该分组的输出数据。
在一些实施例中,所述调制单元还用于:针对预定数量的用户的发送信号,确定采用该基本调制方式并经过在预设信道传输后的接收信号;根据所述发送信号的概率密度,所述接收信号的概率密度,以及所述发送信号与接收信号之间的条件概率密度,计算发送信号与接收信号之间的互信息;以最大化所述互信息为优化目标,求解得到不同信噪比下的星座图,建立该基本调制方式的映射关系表。
在一些实施例中,所述调制单元还用于:根据查找到的星座图,确定分组内各个用户对应的星座点的旋转角度;根据各个用户的信道状态CSI反馈信息,进行用户调度和资源分配,并向用户发送调度授权消息,所述调度授权消息携带有用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、用户所分配的基站发送功率、以及该用户对应的星座点的旋转角度的指示信息。
在一些实施例中,所述数据调制设备还包括接收单元,用于接收来自第一用户的数据接收反馈信息,所述数据接收反馈信息包括第一用户对第一用户的数据的接收反馈信息,以及第一用户对所述第一用户所属分组内的其他用户的数据的接收反馈信息。
本公开实施例还提供了一种数据解调设备,包括:获取单元,用于获取用户所在分组的分组信息,其中分组信息包括每个分组的标识ID以及用户和分组的对应关系;解调单元,用于根据所述分组信息对接收到的数据进行星座旋转,得到解调后的用户的数据。
在一些实施例中,所述获取单元还用于根据预先确定的用户所分配的发送端发送功率,接收发送至该用户所属分组的用户数据。
在一些实施例中,所述获取单元还用于接收网络侧发送的调度授权消息, 所述调度授权消息携带有所述用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、所述用户所分配的基站发送功率、以及该所述用户对应的星座点的旋转角度的指示信息。
在一些实施例中,所述解调单元还用于根据预先确定的用户所在分组内其他用户对应的星座点的旋转角度,从所述用户数据中解调其他用户的数据;所述数据解调设备还包括发送单元,用于根据所述分组内的各个用户的数据解调结果,向网络侧发送数据接收反馈信息,所述数据接收反馈信息包括所述分组内的各个用户的数据的接收反馈信息。
与相关技术相比,本公开实施例提供的数据调制方法、解调方法、数据调制设备、数据解调设备,通过联合功率域的用户分组和组内用户星座旋转,对发送端进行优化,并在进行组内星座旋转多层调制时,以最大化组内用户的互信息为优化目标,使各个用户具有不同的旋转角度,从而可以使得无线通信系统在满足系统总功率约束的前提下,加载更多的用户,改善系统误码性能。
附图说明
图1表示本公开实施例提供的数据调制方法的流程示意图;
图2表示本公开实施例中的星座旋转叠加示意图;
图3表示本公开实施例提供的数据解调方法的流程示意图;
图4表示本公开实施例中基站与终端之间的传输流程示意图;
图5表示本公开实施例中基站侧的发送端结构框图;
图6表示本公开实施例中基站的功能结构框图;
图7表示本公开实施例中终端的功能结构框图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本 公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本公开实施例中,基站的形式不限,可以是宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、RRU(Remote Radio Unit,远端射频模块)、RRH(Remote Radio Head,射频拉远头)、5G移动通信系统中的网络侧节点,如中央单元(CU,Central Unit)和分布式单元(DU,Distributed Unit)等。终端则可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备(UE)、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的CPE(Customer Premise Equipment,客户终端)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备 等。在本文中,终端和用户有时可以表示同一概念。
请参照图1,本公开实施例提供的数据调制方法,可以应用于无线通信系统中的网络侧设备,如基站,该方法包括以下步骤。
步骤11,将用户分为多个分组。
在一些实施例中,将用户分为多个分组之后,所述方法还可以包括:并为不同分组分配不同的基站发送功率,以及为同一分组内的用户分配相同的基站发送功率。
这里,每个用户对应于一个终端。终端通过与基站进行同步、小区选择等过程驻留到基站的小区,从而接入到无线通信系统。在终端接入无线通信系统后,基站可以将本基站的用户进行分组。较佳的,每个分组可以具有相同数量的用户。当然考虑到用户数量的不确定性,可能某些/个分组中的用户数量小于其他分组的用户数量。
本公开实施例在进行功率分配时,为不同分组分配不同的基站发送功率,同一分组内的所有用户的基站发送功率相同。假设某个分组X内有Nx个用户,且该分组分配的基站发送功率为PX,则该分组X中的每个用户分配的基站发送功率为PX/Nx。并且,本公开实施例中不同分组内的用户的基站发送功率是不同的。在一些实施例中,也可选择将信道条件相近的用户分为一组,信道条件差异较大的用户分在不同组。
本公开实施例可以按照预设规则对各个用户进行排序,得到用户队列。具体的,可以根据预先获得各个用户的信道质量统计信息,确定各个用户的信道质量,并按照信道质量的优劣顺序,对各个用户进行排序,得到用户队列。然后,根据各个分组内的用户数量,从所述用户队列中的队首开始,依次截取对应数量的用户,获得各个分组的用户。这里,信道质量统计信息具体可以通过信道相关矩阵、长期统计信噪比(Geometry)、RSRP(Reference Signal Receiving Power,参考信号接收功率)等参数来表征。
以上仅为分组方式的一种举例,本公开并不局限于此,本公开实施例还可以采用其他分组方式进行分组,例如,既考虑用户信道的历史统计信息,同时考虑用户信道的瞬时信息等。
步骤12,基站将分组信息通知给每个分组内的各个用户。其中分组信息 包括每个分组的标识ID以及各个用户和分组的对应关系。在具体实施时,基站通知用户所在分组的方式可以为通过RRC(Radio Resource Control)信令、MAC-CE(MAC Control Element)或DCI(Downlink Control Indicator)动态指示的方式进行。
步骤13,发送端根据所述分组信息对发送端待发送的数据进行星座旋转,得到该发送端的调制后的待发送数据。
在一些实施例中,发送端根据所述分组信息对发送端要发送的数据进行星座旋转,得到该发送端的发送数据可以包括:根据分组信息确定星座旋转角度,并按照所述星座旋转角度对发送端要发送的数据进行星座旋转。
在一些实施例中,基站可以针对每个分组,分别对该分组内的各个用户的数据进行星座旋转并叠加,得到该分组的输出数据,其中,该分组内的各个用户对应星座点的旋转角度是以最大化该分组内用户和基站之间的互信息为优化目标而得到的。
这里,根据相关文献中信息理论分析,想要达到信道容量,需要最大化信号发送端和接收端的互信息。因此,本公开实施例在进行组内星座旋转多层调制时,以最大化组内用户的互信息为优化目标,为用户分配不同星座点旋转角度。
步骤14,将各个分组的输出数据进行叠加,得到待发送数据。
通过以上步骤,本公开实施例在功率域复用用户的基础上,引入星座旋转多层调制并对旋转角度进行优化,将具有相同或相近信道状态的用户合并成一个分组。在每一个分组内,通过改变每一个用户的相位旋转因子将所有用户的信号叠加在一起。同一个分组内的用户具有相同的功率,对不同分组之间采取一定的功率分配方案,之后将不同分组的信号叠加发送。以具有相同功率的用户1~用户4分别采用BPSK调制为例,参见图2,不同用户通过不同的旋转,叠加后产生独立的16个星座点,最大可达速率为4符号/叠加符号,达到系统容量。
本公开实施例提供的数据调制方法,也可以应用于无线通信系统中的终端设备,具体地,该方法可以包括以下步骤:基站将用户按照某种准则进行分组并通知终端其所在分组。具体分组准则可以是:按照终端发送功率的进 行划分,比如为不同分组分配不同的终端发送功率,以及为同一分组内的用户分配相同或近似相同的终端发送功率。具体通知方式可以是RRC信令或MAC-CE信令或DCI动态指示等。基站具体通知终端所在分组的内容可以是:终端所在分组的ID或者基站根据终端所在分组,在基站侧按照某种准则得到一个优化的星座旋转角度,然后基站通知终端其星座旋转角度或其量化指示信息,或者终端所在分组ID以及该组内的终端个数。
终端根据收到的基站分组信息,对其所要发送的数据进行星座旋转,得到其所要发送的输出数据,其中,优化星座旋转角度的获得准则可以是:最大化该分组内用户和基站之间的互信息为优化目标而得到。
也就是说,对于下行传输,上述实施例中的发送端指基站;对于上行传输而言,发送端指终端。
可以看出,本公开实施例联合功率域的用户分组和组内用户星座旋转,对发送端进行优化,并在进行组内星座旋转多层调制时,以最大化组内用户的互信息为优化目标,使各个用户具有不同的旋转角度,从而可以使得无线通信系统在满足系统总功率约束的前提下,加载更多的用户,改善系统误码性能。
在步骤13中获得待发送数据之后,本公开实施例还可以进一步将待发送数据承载到相应的通信资源上进行发送出去,每个用户的数据按照上述步骤11中确定的发送功率进行发送。具体发送方式可以参考相关技术的相关实现,本文对此不再赘述。
本公开实施例可以预先建立不同的基本调制方式的映射关系表,在该映射关系表中记录有该基本调制方式在不同信噪比下的星座图,所述星座图中包括有各个星座点的旋转角度,所述基本调制方式包括相移键控(PSK)和正交幅度调制(QAM)。从而,在上述步骤12中,针对每个分组,可以确定该分组对应的基本调制方式,进而从预先建立的该基本调制方式的映射关系表中,查找到该分组内的用户信噪比对应的星座图。然后,利用该分组对应的基本调制方式,对该分组内的各个用户的数据进行调制,得到各个用户初次调制后的数据;再根据查找到的星座图,确定分组内各个用户对应的星座点,并根据对应的星座点,对该分组内各个用户初次调制后的数据进行映射 调制,得到星座映射信号;并将各个用户的星座映射信号进行叠加,得到该分组的输出数据。
本公开实施例中,不同分组对应的基本调制方式,可以是预先配置的相同调制方式。当然,也可以针对每个分组分配配置一种调制方式,这样不同分组的调整方式可能不同。例如,对于信道质量较好的分组,可以采用调制阶数较高的调制方式,而对于信道质量较差的分组,则可以采用调制阶数较低的调制方式。
另外,本公开实施例在上述步骤11之前,可以预先建立不同基本调制方式的映射关系表,映射关系表与分组内的用户数量以及分组所采用的基本调制方式相关,具体建立步骤可以包括:针对分组所包括的预定数量的用户的发送信号,确定采用基本调制方式并经过在预定信道传输后的接收信号;根据所述发送信号的概率密度,所述接收信号的概率密度,以及所述发送信号与接收信号之间的条件概率密度,计算发送信号与接收信号之间的互信息;以最大化所述互信息为优化目标,求解得到不同信噪比下的星座图,从而建立该基本调制方式的映射关系表。
上述计算过程中,所述预定信道可以采用预测得到或统计得到的具体信道模型。基于所得到的信道模型,可以确定接收信号。具体的信道模型可以是加性高斯白噪声(AWGN)信道、瑞利信道或者其他信道模型。
在上述步骤12中,在查找到该分组内的用户信噪比对应的星座图的步骤之后,网络侧还可以将相关信息发送给对应用户,以使用户进行数据解调,具体的,可以根据查找到的星座图,确定分组内各个用户对应的星座点的旋转角度;根据各个用户的信道状态CSI反馈信息,进行用户调度和资源分配,并向用户发送调度授权消息,所述调度授权消息携带有用户的调制编码策略(MCS,Modulation and Coding Scheme)等级、MIMO码本(Precoder)、信道的秩(Rank)、所分配的时频资源、用户所分配的的基站发送功率以及该用户对应的星座点的旋转角度的指示信息,该指示信息可以为具体的旋转角度,也可以是该旋转角度对应的码本。
本公开实施例中,用户在进行数据接收解调时,可以进行同时接收并解调同一分组内的其他用户的数据,并根据数据接收情况向网络侧发送数据接 收反馈信息,所述数据接收反馈信息包括本用户数据的接收反馈信息,还可以包括同一分组内的其他用户数据的接收反馈信息。这样,网络侧接收到上述数据接收反馈信息后,可以确定不同用户数据在同一用户处的接收情况,以用于后续数据发送时的适应性处理,以改善后续的数据传输性能。
与以上方法对应,本公开实施例还提供了一种数据解调方法,与上述调制方法相对应,该数据解调方法可以包括:步骤31:获取用户所在分组的分组信息,其中分组信息包括每个分组的标识ID以及用户和分组的对应关系;步骤32,根据所述分组信息对接收到的数据进行星座旋转,得到解调后的用户的数据。在一些实施例中,在获取用户所在分组的分组信息步骤之前,所述方法还可以包括:根据预先确定的用户所分配的发送端发送功率,接收发送至该用户所属分组的用户数据。
具体地,该方法可以应用于接收端,如图3所示,该方法在应用于接收端时包括以下步骤。
步骤301,根据预先确定第一用户的发送端发送功率,接收发送至第一用户所属第一分组的用户数据。
这里,每个终端归属于一个用户,第一终端所属的第一用户的发送端发送功率可以从基站发送的控制消息中获得。例如,在步骤31之前,可以通过接收网络侧发送的控制信息,所述控制携带有第一用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、第一用户所分配的功率控制信息以及该第一用户对应的星座点的旋转角度,获得包括第一用户的功率、星座点的旋转角度等信息。
步骤302,根据预先确定的第一用户对应的星座点的旋转角度,从所述用户数据中解调第一用户的数据。
这里,第一用户对应的星座点的旋转角度可以是预先从网络侧发送的控制信令中解析得到的。接收端可以进行透明/非透明的干扰删除,或者非线性联合检测等方式,进行第一用户的数据解调。
通过以上步骤,本公开实施例联合功率域的用户分组和组内用户星座旋转,对发送端进行优化,并在接收端进行了接收处理,从而可以使得无线通信系统在满足系统总功率约束的前提下,加载更多的用户,改善系统误码性 能。
本公开实施例中,第一终端还可以向网络侧发送数据接收反馈信息(ACK/NACK),更进一步的,第一终端可以发送第一用户的数据接收反馈信息,还可以同时发送同一分组内的其他用户的数据接收反馈信息。此时,第一终端在步骤302中进行数据解调时,可以根据预先确定的第一分组内其他用户对应的星座点的旋转角度,从所述用户数据中解调其他用户的数据;然后,根据所述第一分组内的各个用户的数据解调结果,向网络侧发送数据接收反馈信息,所述数据接收反馈信息包括所述第一分组内的各个用户的数据的接收反馈信息。
从图1、图3相关流程可以看出,本公开实施例针对联合用户分组和多层调制的功分多址系统进行发送端优化,通过相位旋转因子的优化,每用户分组内发送端和接收端的互信息实现最大化,在满足系统总功率约束的前提下,可以提高系统误码性能并能够加载更多的用户。
下面进一步结合图4提供的基站与终端之间的传输流程示意图,对本公开实施例作进一步的描述。图4中,基于前述信道理论分析,对不同用户分配合适的旋转因子θ,将旋转后的用户星座图叠加,使组内用户发送端和接收端之间的互信息达到最大。
步骤41,终端与基站进行同步、小区选择过程。
在终端接入系统后,基站进行初始的系统配置信息发送;当终端有业务请求时,终端发起随机接入过程。考虑到新的多址方式(非正交多址),这里对初始系统配置消息进行增强,添加新的多址配置信令,表示基站支持非正交多址的传输方式,同时随机接入过程可以考虑到免调度的接入。这里,免调度是指不需要终端收到基站发送的调度授权(Grant)消息,而直接在接入的同时进行数据的发送。
步骤42~44,信道信息获取与反馈过程。
如果是时分双工(TDD)系统,终端可以发送上行信道探测参考信号(SRS,Sounding Reference Signal)进行上行信道估计,利用TDD的信道互异性而获得下行信道信息。如果是频分双工(FDD)系统,则没有上行SRS的发送过程。不论TDD还是FDD系统,都需要下行的CSI参考信号(CSI-RS,CSI  reference signals)的发送,以便进行下行的CQI测量与反馈。
考虑到非正交多址需要使用非线性接收机,所以进行CQI测量与反馈时,可以采用诸如基于最大似然(ML)准则或串行干扰删除(SIC)等算法的信道估计算法。CQI计算完成后,进行CSI的反馈,具体反馈量包括但不限于:信道的秩(rank)、预编码索引(PMI),调制编码等级(MCS)等。其中,FDD系统需要反馈PMI,TDD系统则不需要反馈PMI。
步骤45,基站根据CSI反馈信息,进行用户调度与资源分配。
这里,考虑到非正交多址与MIMO的结合,预编码计算以及多用户配对与分组将在后文中详细描述。在完成上述过程后,基站发送调度授权(Grant)消息,通知用户的MCS等级、MIMO码本(Precoder),信道的秩(Rank),所分配的时频资源,调度与分组内用户的基站发送功率以及星座旋转角度。
步骤46~47,,数据发送与ACK/NACK反馈。
基站向用户发送数据,用户接收并解调数据,并向基站反馈ACK/NACK信息。这里,在非正交多址传输时,可以采用非透明的干扰删除或者联合检测接收机进行接收解调。同时,针对非正交多址HARQ过程可能采用非透明模式即除了反馈本用户的ACK/NACK信息外,还需要反馈配对用户的ACK/NACK信息。如果采用正交传输,其处理方式与现有LTE系统相同。
对于上述步骤45中,基站根据CSI反馈信息,进行用户调度与资源分配中,具体的用户分组与星座图的最优旋转角度(码本)设计,其实现描述如下:在发送端,发送结构框图如图5所示:将用户分组,为组间用户分配不同功率,为组内用户分配相同功率。
图5中,将用户分成多个分组,例如,将用户1~N分成了L个分组,每个用户经过相同的基本调制方式。
(1)对每个分组内的用户进行星座旋转叠加。
分组内每一个用户的星座图旋转角度分别为θ1、θ2、…、θN,假设第n个用户的发送信号为bn,那么该组内所有用户的叠加信号则为
Figure PCTCN2017117658-appb-000001
下面考虑(2)中如何为分组内用户选择星座旋转角度(码本)设计。假设在AWGN信道传输用户信息,信道噪声是均值为0的二维高斯白噪声,各维方差为N0/2;每组内有N个用户,每个用户均采用BPSK调制,归一化 组内用户功率,接收信号
Figure PCTCN2017117658-appb-000002
可表示为:
Figure PCTCN2017117658-appb-000003
上述公式中,
Figure PCTCN2017117658-appb-000004
表示噪声。其中
Figure PCTCN2017117658-appb-000005
有2N种取值,
Figure PCTCN2017117658-appb-000006
根据b1,b2,…,bN的取值,有:
Figure PCTCN2017117658-appb-000007
Figure PCTCN2017117658-appb-000008
Figure PCTCN2017117658-appb-000009
为了获得输入信号
Figure PCTCN2017117658-appb-000010
与输出信号
Figure PCTCN2017117658-appb-000011
之间的互信息,一种具体计算方式如下:计算发送输入信号概率密度p(b1,b2,…,bN)。根据信息理论可知,对于离散输入连续输出信道,当输入等概时,发送端和接收端之间的互信息最大。因此:
Figure PCTCN2017117658-appb-000012
(1)计算发送信号b1,b2,…,bN与接收信号
Figure PCTCN2017117658-appb-000013
之间的条件概率密度
Figure PCTCN2017117658-appb-000014
Figure PCTCN2017117658-appb-000015
上述公式中,
Figure PCTCN2017117658-appb-000016
表示第j个符号。
(2)计算接收信号的概率密度
Figure PCTCN2017117658-appb-000017
Figure PCTCN2017117658-appb-000018
(3)根据上述公式(1)~(4),计算输入信号
Figure PCTCN2017117658-appb-000019
与输出信号
Figure PCTCN2017117658-appb-000020
之间的互信息I(B1,B2,…,BN;Y)。
Figure PCTCN2017117658-appb-000021
改写上述互信息表达式(5),令
Figure PCTCN2017117658-appb-000022
得到
Figure PCTCN2017117658-appb-000023
Figure PCTCN2017117658-appb-000024
利用Gaussian-Hermite数值积分计算法化简上述等式。最终可以得到以下公式:
Figure PCTCN2017117658-appb-000025
星座图旋转角度θ1、θ2、…、θN是公式(7)中的参数。在给定信噪比条件下,可以计算得到不同的星座图旋转角度组合情况下的互信息。互信息最大时对应的旋转角度组合即为组内各个用户在该信噪比下的星座旋转角度。
进一步对上述方法进行仿真测试,下面对测试情况进行具体说明。
基于下述假设,分别对组内包括2、3和4个用户的情况进行仿真。归一化组内用户功率,并在AWGN信道下仿真。假设信道噪声为均值为0的二维高斯白噪声,各维方差为N0/2。组内用户采用BPSK调制。每组用户中,第1个用户不进行角度旋转。
对于组内包括2个用户情况,对比本公开实施例采用的旋转角度和随机选择旋转角度的两组用户性能,可以发现,通过对组内用户旋转角度的优化,每组用户发送端和接收端的互信息得以最大化。第一组用户中,根据信道状态,基于互信息最大化准则为第2个用户分配旋转角度,信噪比和旋转角度关系参考表1。
信噪比(dB) -30 -20 -10 0 10 20
用户1的旋转角度(单位:°) 0 0 0 0 0 0
用户2的旋转角度(单位:°) 90 90 90 90 90 40~142
表1:2个用户星座旋转角度与信噪比之间的关系
类似的,我们对组内包括3用户、4用户的情况重复上述仿真,其中,信噪比和旋转角度关系请分别参考表2和表3。通过仿真可以发现,本公开实施例能够改善系统传输性能。
信噪比(dB) -30 -20 -10 0 10 20
用户1的旋转角度(单位:°) 0 0 0 0 0 0
用户2的旋转角度(单位:°) 120 120 120 60 134 143
用户3的旋转角度(单位:°) 60 60 60 126 88 37
表2:3个用户星座旋转角度与信噪比之间的关系
信噪比(dB) -10 -5 0 5 10 15 20
用户1的旋转角度(单位:°) 0 0 0 0 0 0 0
用户2的旋转角度(单位:°) 45 45 67 67 67 50 45
用户3的旋转角度(单位:°) 0 45 22 22 45 35 32
用户4的旋转角度(单位:°) 45 0 45 45 22 16 15
表3:4个用户星座旋转角度与信噪比之间的关系
基于以上实施例所述的方法,本公开实施例还提供了一种数据调制设备,包括:分组单元,用于将用户分为多个分组,通知单元,用于将分组信息通知给每个分组内的各个用户,其中分组信息包括每个分组的标识ID以及各个用户和分组的对应关系,调制单元,用于根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据。
在一些实施例中,所述分组单元还用于:为不同分组分配不同的发送端发送功率,以及为同一分组内的用户分配相同的发送端发送功率。
在一些实施例中,所述调制单元还用于:根据分组信息确定星座旋转角度,并按照所述星座旋转角度对要发送的数据进行星座旋转;其中,每个分组内的各个用户对应星座点的旋转角度是以最大化该分组内用户和基站之间的互信息为优化目标而得到的。
在一些实施例中,所述数据调制设备还包括发送单元,用于将待发送数据承载到相应的通信资源上进行发送。
在一些实施例中,所述分组单元还用于:按照预设规则对各个用户进行排序,得到用户队列;根据各个分组内的用户数量,从所述用户队列中的队首开始,依次截取对应数量的用户,获得各个分组的用户。
在一些实施例中,所述分组单元还用于:根据预先获得各个用户的信道质量统计信息,确定各个用户的信道质量;按照信道质量的优劣顺序,对各 个用户进行排序,得到用户队列。
在一些实施例中,所述调制单元还用于:针对每个分组,确定该分组对应的基本调制方式,从预先建立的该基本调制方式的映射关系表中,查找到该分组内的用户信噪比对应的星座图,其中,所述映射关系表中记录有该基本调制方式在不同信噪比下的星座图,所述星座图中包括有各个星座点的旋转角度,所述基本调制方式包括相移键控PSK和正交幅度调制QAM;利用该分组对应的基本调制方式,对该分组内的各个用户的数据进行调制,得到各个用户初次调制后的数据;根据查找到的星座图,确定分组内各个用户对应的星座点,并根据对应的星座点,对该分组内各个用户初次调制后的数据进行映射调制,得到星座映射信号;将各个用户的星座映射信号进行叠加,得到该分组的输出数据。
在一些实施例中,所述调制单元还用于:针对预定数量的用户的发送信号,确定采用该基本调制方式并经过在预设信道传输后的接收信号;根据所述发送信号的概率密度,所述接收信号的概率密度,以及所述发送信号与接收信号之间的条件概率密度,计算发送信号与接收信号之间的互信息;以最大化所述互信息为优化目标,求解得到不同信噪比下的星座图,建立该基本调制方式的映射关系表。
在一些实施例中,所述调制单元还用于:根据查找到的星座图,确定分组内各个用户对应的星座点的旋转角度;根据各个用户的信道状态CSI反馈信息,进行用户调度和资源分配,并向用户发送调度授权消息,所述调度授权消息携带有用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、用户所分配的基站发送功率、以及该用户对应的星座点的旋转角度的指示信息。
在一些实施例中,所述数据调制设备还包括接收单元,用于接收来自第一用户的数据接收反馈信息,所述数据接收反馈信息包括第一用户对第一用户的数据的接收反馈信息,以及第一用户对所述第一用户所属分组内的其他用户的数据的接收反馈信息。
基于以上实施例所述的方法,本公开实施例还提供了一种数据解调设备,包括:获取单元,用于获取用户所在分组的分组信息,其中分组信息包括每 个分组的标识ID以及用户和分组的对应关系;解调单元,用于根据所述分组信息对接收的数据进行星座旋转,得到解调后的用户的数据。
在一些实施例中,所述获取单元还用于根据预先确定的用户所分配的发送端发送功率,接收发送至该用户所属分组的用户数据。
在一些实施例中,所述获取单元还用于接收网络侧发送的调度授权消息,所述调度授权消息携带有所述用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、所述用户所分配的基站发送功率、以及该所述用户对应的星座点的旋转角度的指示信息。
在一些实施例中,所述解调单元还用于根据预先确定的用户所在分组内其他用户对应的星座点的旋转角度,从所述用户数据中解调其他用户的数据;所述数据解调设备还包括发送单元,用于根据所述分组内的各个用户的数据解调结果,向网络侧发送数据接收反馈信息,所述数据接收反馈信息包括所述分组内的各个用户的数据的接收反馈信息。
基于以上实施例所述的方法,本公开实施例还提供了实施上述方法的设备。请参照图6,本公开实施例提供了一种基站,包括:分组单元61,用于将用户分为多个分组,并为不同分组分配不同的基站发送功率,以及为同一分组内的用户分配相同的基站发送功率;调制单元62,用于针对每个分组,分别对该分组内的各个用户的数据进行星座旋转并叠加,得到该分组的输出数据,其中,该分组内的各个用户对应星座点的旋转角度是以最大化该分组内用户发送端和接收端之间的互信息为优化目标而得到的;输出单元63,用于将各个分组的输出数据进行叠加,得到待发送数据。
更进一步的,上述基站还可以包括:发送单元,用于将待发送数据承载到相应的通信资源上进行发送。
这里,所述分组单元,包括:排序单元,用于按照预设规则,对各个用户进行排序,得到用户队列;划分单元,用于根据各个分组内的用户数量,从所述用户队列中的队首开始,依次截取对应数量的用户,获得各个分组的用户。
所述排序单元,具体用于根据预先获得各个用户的信道质量统计信息,确定各个用户的信道质量;按照信道质量的优劣顺序,对各个用户进行排序, 得到用户队列。
所述调制单元,具体用于针对每个分组,确定该分组对应的基本调制方式,从预先建立的该基本调制方式的映射关系表中,查找到该分组内的用户信噪比对应的星座图,其中,所述映射关系表中记录有该基本调制方式在不同信噪比下的星座图,所述星座图中包括有各个星座点的旋转角度,所述基本调制方式包括相移键控PSK和正交幅度调制QAM;利用该分组对应的基本调制方式,对该分组内的各个用户的数据进行调制,得到各个用户初次调制后的数据;根据查找到的星座图,确定分组内各个用户对应的星座点,并根据对应的星座点,对该分组内各个用户初次调制后的数据进行映射调制,得到星座映射信号;将各个用户的星座映射信号进行叠加,得到该分组的输出数据。
在一些可选的实施例中,上述基站还可以包括:预处理单元,用于按照以下步骤,建立基本调制方式的映射关系表:针对预定数量的用户的发送信号,确定采用该基本调制方式并经过预设信道传输后的接收信号;根据所述发送信号的概率密度,所述接收信号的概率密度,以及所述发送信号与接收信号之间的条件概率密度,计算发送信号与接收信号之间的互信息;以最大化所述互信息为优化目标,求解得到不同信噪比下的星座图,建立该基本调制方式的映射关系表;授权消息发送单元,用于根据查找到的星座图,确定分组内各个用户对应的星座点的旋转角度;根据各个用户的信道状态CSI反馈信息,进行用户调度和资源分配,并向用户发送调度授权消息,所述调度授权消息携带有用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、用户所分配的基站发送功率以及该用户对应的星座点的旋转角度的指示信息;接收单元,用于接收来自第一用户的数据接收反馈信息,所述数据接收反馈信息包括第一用户对第一用户的数据的接收反馈信息,以及第一用户对所述第一用户所属分组内的其他用户的数据的接收反馈信息。
请参照图7,本公开实施例还提供了一种终端,包括:第一接收单元71,用于根据预先确定第一用户所分配的基站发送功率,接收发送至第一用户所属第一分组的用户数据,所述第一用户为所述终端所属的用户;解调单元72,用于根据预先确定的第一用户对应的星座点的旋转角度,从所述用户数据中 解调第一用户的数据。
更进一步的,上述终端还包括:第二接收单元,用于接收网络侧发送的调度授权消息,所述调度授权消息携带有第一用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、第一用户所分配的基站发送功率以及该第一用户对应的星座点的旋转角度的指示信息。
具体的,所述解调单元,还用于根据预先确定的第一分组内其他用户对应的星座点的旋转角度,从所述用户数据中解调其他用户的数据;所述终端还包括:反馈单元,用于根据所述第一分组内的各个用户的数据解调结果,向网络侧发送数据接收反馈信息,所述数据接收反馈信息包括所述第一分组内的各个用户的数据的接收反馈信息。
以上通过使用方框图、流程图和/或示例已经详细描述了设备和方法的众多实施例。在这种方框图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种方框图、流程图或示例中的每一功能和/或操作可以通过各种硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本公开的实施例所述主题的全部或若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。本申请各实施例中的模块或单元可以以机械方式或电子方式实现。例如,一个模块可以包括:永久性电路或逻辑器件用于完成特定的操作。模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。然而,本领域技术人员应认识到,这里所公开的实施例的一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和/或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的 示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、波导、有线通信链路、无线通信链路等)。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (28)

  1. 一种数据调制方法,包括:
    将用户分为多个分组,
    将分组信息通知给每个分组内的各个用户,其中分组信息包括每个分组的标识ID以及各个用户和分组的对应关系,
    根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据。
  2. 如权利要求1所述的方法,其中,将用户分为多个分组之后,所述方法还包括:
    为不同分组分配不同的发送端发送功率,以及为同一分组内的用户分配相同的发送端发送功率。
  3. 如权利要求1所述的方法,其中,根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据包括:
    根据分组信息确定星座旋转角度,并按照所述星座旋转角度对要发送的数据进行星座旋转;
    其中,每个分组内的各个用户对应星座点的旋转角度是以最大化该分组内用户和基站之间的互信息为优化目标而得到的。
  4. 如权利要求1所述的方法,其中,在得到调制后的待发送数据之后,所述方法还包括:将待发送数据承载到相应的通信资源上进行发送。
  5. 如权利要求1所述的方法,其中,所述将用户分为多个分组的步骤,包括:
    按照预设规则对各个用户进行排序,得到用户队列;
    根据各个分组内的用户数量,从所述用户队列中的队首开始,依次截取对应数量的用户,获得各个分组的用户。
  6. 如权利要求5所述的方法,其中,所述按照预设规则对各个用户进行排序,得到用户队列的步骤,包括:
    根据预先获得各个用户的信道质量统计信息,确定各个用户的信道质量;
    按照信道质量的优劣顺序,对各个用户进行排序,得到用户队列。
  7. 如权利要求1或6所述的方法,其中,根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据的步骤包括:
    针对每个分组,确定该分组对应的基本调制方式,从预先建立的该基本调制方式的映射关系表中,查找到该分组内的用户信噪比对应的星座图,其中,所述映射关系表中记录有该基本调制方式在不同信噪比下的星座图,所述星座图中包括有各个星座点的旋转角度,所述基本调制方式包括相移键控PSK和正交幅度调制QAM;
    利用该分组对应的基本调制方式,对该分组内的各个用户的数据进行调制,得到各个用户初次调制后的数据;
    根据查找到的星座图,确定分组内各个用户对应的星座点,并根据对应的星座点,对该分组内各个用户初次调制后的数据进行映射调制,得到星座映射信号;
    将各个用户的星座映射信号进行叠加,得到该分组的输出数据。
  8. 如权利要求7所述的方法,其中,建立基本调制方式的映射关系表包括:
    针对预定数量的用户的发送信号,确定采用该基本调制方式并经过在预设信道传输后的接收信号;
    根据所述发送信号的概率密度,所述接收信号的概率密度,以及所述发送信号与接收信号之间的条件概率密度,计算发送信号与接收信号之间的互信息;
    以最大化所述互信息为优化目标,求解得到不同信噪比下的星座图,建立该基本调制方式的映射关系表。
  9. 如权利要求7所述的方法,其中,在所述查找到该分组内的用户信噪比对应的星座图的步骤之后,所述方法还包括:
    根据查找到的星座图,确定分组内各个用户对应的星座点的旋转角度;
    根据各个用户的信道状态CSI反馈信息,进行用户调度和资源分配,并向用户发送调度授权消息,所述调度授权消息携带有用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、用户所分配的基站发送功率、以及该用户对应的星座点的旋转角度的指示信息。
  10. 如权利要求7所述的方法,还包括:
    接收来自第一用户的数据接收反馈信息,所述数据接收反馈信息包括第一用户对第一用户的数据的接收反馈信息,以及第一用户对所述第一用户所属分组内的其他用户的数据的接收反馈信息。
  11. 一种数据解调方法,包括:
    获取用户所在分组的分组信息,其中分组信息包括每个分组的标识ID以及用户和分组的对应关系;
    根据所述分组信息对接收到的数据进行星座旋转,得到解调后的用户的数据。
  12. 如权利要求11所述的方法,其中,在获取用户所在分组的分组信息步骤之前,还包括:
    根据预先确定的用户所分配的发送端发送功率,接收发送至该用户所属分组的用户数据。
  13. 如权利要求11所述的方法,其中,在获取用户所在分组的分组信息步骤之前,还包括:
    接收网络侧发送的调度授权消息,所述调度授权消息携带有所述用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、所述用户所分配的基站发送功率、以及该所述用户对应的星座点的旋转角度的指示信息。
  14. 如权利要求11所述的方法,其中,在根据所述分组信息对接受的数据进行星座旋转,得到解调后的用户的数据步骤之后,还包括:
    根据预先确定的用户所在分组内其他用户对应的星座点的旋转角度,从所述用户数据中解调其他用户的数据;
    根据所述分组内的各个用户的数据解调结果,向网络侧发送数据接收反馈信息,所述数据接收反馈信息包括所述分组内的各个用户的数据的接收反馈信息。
  15. 一种数据调制设备,包括:
    分组单元,用于将用户分为多个分组,
    通知单元,用于将分组信息通知给每个分组内的各个用户,其中分组信息包括每个分组的标识ID以及各个用户和分组的对应关系,
    调制单元,用于根据所述分组信息对待发送的数据进行星座旋转,得到调制后的待发送数据。
  16. 如权利要求15所述的数据调制设备,其中,所述分组单元还用于:
    为不同分组分配不同的发送端发送功率,以及为同一分组内的用户分配相同的发送端发送功率。
  17. 如权利要求15所述的数据调制设备,其中,所述调制单元还用于:
    根据分组信息确定星座旋转角度,并按照所述星座旋转角度对要发送的数据进行星座旋转;
    其中,每个分组内的各个用户对应星座点的旋转角度是以最大化该分组内用户和基站之间的互信息为优化目标而得到的。
  18. 如权利要求15所述的数据调制设备,还包括发送单元,用于将待发送数据承载到相应的通信资源上进行发送。
  19. 如权利要求15所述的方法,其中,所述分组单元还用于:按照预设规则对各个用户进行排序,得到用户队列;
    根据各个分组内的用户数量,从所述用户队列中的队首开始,依次截取对应数量的用户,获得各个分组的用户。
  20. 如权利要求19所述的数据调制设备,其中,所述分组单元还用于:
    根据预先获得各个用户的信道质量统计信息,确定各个用户的信道质量;
    按照信道质量的优劣顺序,对各个用户进行排序,得到用户队列。
  21. 如权利要求15或20所述的数据调制设备,其中,所述调制单元还用于:
    针对每个分组,确定该分组对应的基本调制方式,从预先建立的该基本调制方式的映射关系表中,查找到该分组内的用户信噪比对应的星座图,其中,所述映射关系表中记录有该基本调制方式在不同信噪比下的星座图,所述星座图中包括有各个星座点的旋转角度,所述基本调制方式包括相移键控PSK和正交幅度调制QAM;
    利用该分组对应的基本调制方式,对该分组内的各个用户的数据进行调制,得到各个用户初次调制后的数据;
    根据查找到的星座图,确定分组内各个用户对应的星座点,并根据对应 的星座点,对该分组内各个用户初次调制后的数据进行映射调制,得到星座映射信号;
    将各个用户的星座映射信号进行叠加,得到该分组的输出数据。
  22. 如权利要求21所述的数据调制设备,其中,所述调制单元还用于:
    针对预定数量的用户的发送信号,确定采用该基本调制方式并经过在预设信道传输后的接收信号;
    根据所述发送信号的概率密度,所述接收信号的概率密度,以及所述发送信号与接收信号之间的条件概率密度,计算发送信号与接收信号之间的互信息;
    以最大化所述互信息为优化目标,求解得到不同信噪比下的星座图,建立该基本调制方式的映射关系表。
  23. 如权利要求21所述的数据调制设备,其中,所述调制单元还用于:
    根据查找到的星座图,确定分组内各个用户对应的星座点的旋转角度;
    根据各个用户的信道状态CSI反馈信息,进行用户调度和资源分配,并向用户发送调度授权消息,所述调度授权消息携带有用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、用户所分配的基站发送功率、以及该用户对应的星座点的旋转角度的指示信息。
  24. 如权利要求21所述的数据调制设备,还包括接收单元,用于接收来自第一用户的数据接收反馈信息,所述数据接收反馈信息包括第一用户对第一用户的数据的接收反馈信息,以及第一用户对所述第一用户所属分组内的其他用户的数据的接收反馈信息。
  25. 一种数据解调设备,包括:
    获取单元,用于获取用户所在分组的分组信息,其中分组信息包括每个分组的标识ID以及用户和分组的对应关系;
    解调单元,用于根据所述分组信息对接受的数据进行星座旋转,得到解调后的用户的数据。
  26. 如权利要求25所述的数据解调设备,其中,所述获取单元还用于根据预先确定的用户所分配的发送端发送功率,接收发送至该用户所属分组的用户数据。
  27. 如权利要求25所述的数据解调设备,其中,所述获取单元还用于接收网络侧发送的调度授权消息,所述调度授权消息携带有所述用户的MCS等级、MIMO码本、信道的秩、所分配的时频资源、所述用户所分配的基站发送功率、以及该所述用户对应的星座点的旋转角度的指示信息。
  28. 如权利要求25所述的数据解调设备,其中,解调单元还用于根据预先确定的用户所在分组内其他用户对应的星座点的旋转角度,从所述用户数据中解调其他用户的数据;
    所述数据解调设备还包括发送单元,用于根据所述分组内的各个用户的数据解调结果,向网络侧发送数据接收反馈信息,所述数据接收反馈信息包括所述分组内的各个用户的数据的接收反馈信息。
PCT/CN2017/117658 2016-12-21 2017-12-21 一种数据调制方法、解调方法、数据调制设备、数据解调设备 WO2018113719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611192141.3 2016-12-21
CN201611192141.3A CN108234379B (zh) 2016-12-21 2016-12-21 一种数据调制方法、解调方法、基站及终端

Publications (1)

Publication Number Publication Date
WO2018113719A1 true WO2018113719A1 (zh) 2018-06-28

Family

ID=62624572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117658 WO2018113719A1 (zh) 2016-12-21 2017-12-21 一种数据调制方法、解调方法、数据调制设备、数据解调设备

Country Status (2)

Country Link
CN (1) CN108234379B (zh)
WO (1) WO2018113719A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4160959A1 (en) * 2021-09-30 2023-04-05 Toyota Jidosha Kabushiki Kaisha Information processing apparatus, transmission-side apparatus and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924079A (zh) * 2018-07-31 2018-11-30 北京科技大学 一种功分多址系统发送端优化方法
CN115086133B (zh) * 2022-04-29 2024-03-05 深圳市国电科技通信有限公司 自适应调制scma码本设计方法、装置以及介质、设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039869A2 (en) * 1997-03-05 1998-09-11 Paradyne Corporation System and method for using circular constellations with uncoded modulation
WO2010096952A1 (zh) * 2009-02-27 2010-09-02 上海贝尔股份有限公司 协同波束赋形方法、设备和基站
CN106211348A (zh) * 2015-05-07 2016-12-07 电信科学技术研究院 一种多址接入的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055319A1 (en) * 2009-11-05 2011-05-12 Signext Wireless Ltd. Using maximal sum-rate mutual information to optimize jcma constellations
KR102078191B1 (ko) * 2013-06-14 2020-02-17 삼성전자주식회사 무선통신 시스템에서 링크 품질 측정 방법 및 장치
CN105207741B (zh) * 2015-08-18 2018-07-06 北京邮电大学 一种网络数据传输方法
CN106059970B (zh) * 2016-06-29 2019-06-21 上海交通大学 基于容量最大化的稀疏编码多址接入码本设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039869A2 (en) * 1997-03-05 1998-09-11 Paradyne Corporation System and method for using circular constellations with uncoded modulation
WO2010096952A1 (zh) * 2009-02-27 2010-09-02 上海贝尔股份有限公司 协同波束赋形方法、设备和基站
CN106211348A (zh) * 2015-05-07 2016-12-07 电信科学技术研究院 一种多址接入的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Analysis of modulation schemes for NR", R1-1611252, 3GPP TSG RAN WG1 MEETING #87, 18 November 2016 (2016-11-18), XP051175233 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4160959A1 (en) * 2021-09-30 2023-04-05 Toyota Jidosha Kabushiki Kaisha Information processing apparatus, transmission-side apparatus and method

Also Published As

Publication number Publication date
CN108234379B (zh) 2019-10-22
CN108234379A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN106105071B (zh) 无线通信系统中传输干扰信息以用于网络辅助的干扰消除和抑制的方法和设备
Al-Imari et al. Uplink non-orthogonal multiple access for 5G wireless networks
CN106797266B (zh) 用于在无线通信系统中通过干扰信号消除和抑制来接收下行链路数据的方法和装置
CN105531949B (zh) 增强下行ue特定解调参考信号以促进小区间干扰抑制的设备和方法
KR102244366B1 (ko) 무선통신 시스템에서 간섭 신호 제거 및 억제를 위한 무선 자원 활용 방법 및 장치
EP3386243B1 (en) Base station device, terminal device, and communication method
US9668266B2 (en) Interference control in HETNETs
JP2017533613A (ja) 準直交多元接続のためのシステムおよび方法
CN106576008A (zh) 基站装置、终端装置以及集成电路
WO2017177854A1 (zh) 用于混合多址接入无线通信系统的装置和方法
US10523391B2 (en) Method and apparatus for generating reference signal in wireless communication system
KR102183442B1 (ko) 무선 통신 시스템에서 복수의 변조 및 부호화 기법을 이용한 신호 송수신 방법 및 장치
US10575311B2 (en) Base station device, terminal device, and communication method
US20200106501A1 (en) Channel state information determination using demodulation reference signals in advanced networks
WO2018113719A1 (zh) 一种数据调制方法、解调方法、数据调制设备、数据解调设备
US10523289B2 (en) Base station device, terminal device, and communication method
US20200084731A1 (en) Power control method and device
CN113747497A (zh) 干扰抑制合并方法、资源指示方法及通信装置
Haci et al. A novel interference cancellation technique for non-orthogonal multiple access (NOMA)
Haci Non-orthogonal multiple access (NOMA) with asynchronous interference cancellation
WO2016027646A1 (ja) 端末装置、基地局装置および通信方法
WO2021104020A1 (zh) 数据传输方法、发送设备和接收设备
KR102046868B1 (ko) 무선 통신 시스템에서 복수의 변조 방식을 운용하는 방법 및 장치
Haci Performance study of non-orthogonal multiple access (NOMA) with triangular successive interference cancellation
Ahmad et al. A joint resource optimization and adaptive modulation framework for uplink single‐carrier frequency‐division multiple access systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17884221

Country of ref document: EP

Kind code of ref document: A1