WO2021144929A1 - 積層型蓄電素子 - Google Patents

積層型蓄電素子 Download PDF

Info

Publication number
WO2021144929A1
WO2021144929A1 PCT/JP2020/001341 JP2020001341W WO2021144929A1 WO 2021144929 A1 WO2021144929 A1 WO 2021144929A1 JP 2020001341 W JP2020001341 W JP 2020001341W WO 2021144929 A1 WO2021144929 A1 WO 2021144929A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
power storage
storage element
side terminal
Prior art date
Application number
PCT/JP2020/001341
Other languages
English (en)
French (fr)
Inventor
西村 和也
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2021570575A priority Critical patent/JPWO2021144929A1/ja
Priority to PCT/JP2020/001341 priority patent/WO2021144929A1/ja
Publication of WO2021144929A1 publication Critical patent/WO2021144929A1/ja
Priority to US17/863,750 priority patent/US20220351917A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laminated power storage element having a laminated electrode body.
  • Patent Document 1 discloses a device including a laminated electrode body in which a large number of sheet-shaped positive electrode bodies and negative electrode bodies are laminated via a separator.
  • a current collector is connected to each of a large number of sheet-shaped positive electrode bodies (negative electrode bodies).
  • a structure is adopted in which a large number of these current collectors are connected to the positive electrode side terminal (negative electrode side terminal) at one place by welding or the like in a state where they are stacked together.
  • An object of the present invention is to provide a laminated power storage element in which a temperature rise is suppressed in order to solve the above problems.
  • the laminated power storage element according to the present invention is used.
  • An electrode body formed by stacking a plurality of sheet-shaped positive electrode bodies and a plurality of negative electrode bodies arranged so as to face each other, and a separator interposed between each positive electrode body and each negative electrode body.
  • connection points between the positive and / or negative electrode current collectors and the terminals are dispersed, so that current concentration at the connection points is avoided.
  • it is possible to prevent the temperature rise due to the concentration of the current flowing through the local portion having high electric resistance, which is the connection point inside the device, and to suppress the temperature rise transmitted from the current collector to the entire device. can.
  • This stacked power storage element may be, for example, an element configured as a capacitor including an electrode on which an electric double layer is formed. According to this configuration, a large amount of current can be instantaneously passed as compared with a chemical battery. Even in this case, the influence of heat generation can be suppressed by the above-described configuration, and a relatively large current can be easily passed.
  • connection points to which the current collectors are connected are arranged so as to be spatially dispersed, so that a larger heat generation suppressing effect can be obtained. preferable.
  • the laminated body is formed of an insulating resin material and is bonded to form the outer body of the battery covering the electrode body, the positive electrode current collector, and the negative electrode current collector.
  • the positive electrode side terminal and the negative electrode side terminal are each covered with the bonding material and exposed from the bonding material and a covering portion to which the positive electrode current collector and the negative electrode current collector are connected.
  • Each connection portion at the at least one terminal may be dispersed in a direction perpendicular to the stacking direction of the electrode body.
  • connection points may be dispersed in the take-out direction in which the covering portion and the exposed portion are lined up. According to this configuration, it is possible to suppress heat generation of the positive electrode side terminal and the negative electrode side terminal in the taking-out direction.
  • the at least one terminal has a width direction perpendicular to the take-out direction and the thickness direction as compared with the take-out direction dimension in which the cover portion and the exposed portion are lined up.
  • the dimensions are large, and the connection points may be dispersed in the width direction. According to this configuration, it is possible to suppress heat generation at the connection location while avoiding an increase in dimensions in the take-out direction.
  • At least one of the positive electrode current collector and the negative electrode current collector has a base connected to the electrode body and projects from the base portion. It has a positive electrode side terminal or a protruding portion connected to the negative electrode side terminal, and at least a portion of the protruding portion adjacent to the base portion is perpendicular to the protruding portion and the thickness direction of the protruding portion as the distance from the base portion increases. It may be formed so that the dimension in the width direction becomes smaller and smaller. According to this configuration, the concentration of current is suppressed at the corner of the connecting portion from the base portion to the protruding portion of the current collector, so that heat generation at this portion can be suppressed.
  • FIG. 1 is a vertical sectional view which shows the schematic structure of the laminated type power storage element which concerns on one Embodiment of this invention. It is a figure for demonstrating the effect of the laminated type power storage element of FIG. 1, and is the schematic diagram which shows the connection structure of the comparative example. It is a figure for demonstrating the effect of the laminated type power storage element of FIG. 1, and is the schematic diagram which shows the connection structure of an Example. It is a top view which shows one modification of the power storage element of FIG.
  • FIG. 3 is an enlarged plan view showing a positive electrode current collector of the power storage element of FIG. 1.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a stacked power storage element (hereinafter, simply referred to as “power storage element”) 1 according to an embodiment of the present invention.
  • a material active carbon in this example
  • lithium ions can be occluded and desorbed by a chemical reaction (a material that can be occluded and desorbed by a chemical reaction).
  • a chemical reaction a material that can be occluded and desorbed by a chemical reaction.
  • it is configured as a lithium ion capacitor in which graphite) is the main negative electrode active material and a non-aqueous solution is the electrolytic solution.
  • the power storage element 1 is a sheet interposed between a plurality of sheet-shaped positive electrode bodies 3 and a plurality of sheet-shaped negative electrode bodies 5 arranged so as to face each other, and between each positive electrode body 3 and each negative electrode body 5. It has an electrode body 9 formed by laminating the shape separator 7. Specifically, in the present embodiment, a plurality of separators are arranged side by side in the stacking direction, and positive electrode bodies and negative electrode bodies are arranged alternately in the stacking direction between these separators. Each sheet of the separator, the positive electrode body, and the negative electrode body is formed in a rectangular shape when viewed from the stacking direction.
  • lithium ions are occluded in the negative electrode active material coated on the negative electrode body at the negative electrode, and anions in the electrolytic solution are occluded by the positive electrode active material coated on the positive electrode body at the positive electrode.
  • lithium ions are desorbed from the negative electrode active material at the negative electrode and released into the electrolytic solution, and anions are desorbed from the positive electrode active material at the positive electrode and released into the electrolytic solution.
  • the electrode body 9 is housed in the exterior body 11 together with the electrolytic solution.
  • the exterior body 11 is formed of an insulating resin material, and is composed of bonding materials 11a and 11b that cover the positive electrode current collector 13 and the negative electrode current collector 15, which will be described later. More specifically, the laminating materials 11a and 11b are formed from an aluminum laminated film formed by laminating synthetic resin films on both sides of an aluminum foil.
  • the positive electrode body 3 is formed in a sheet shape by applying the above-mentioned positive electrode active material to a substrate made of a metal foil containing aluminum as a main component.
  • the negative electrode body 5 is formed in a sheet shape by applying the above-mentioned negative electrode active material to a substrate made of a metal foil containing copper as a main component.
  • One positive electrode current collector 13 is electrically connected to each of the plurality of positive electrode bodies 3. In other words, the positive electrode current collector 13 is provided for each positive electrode body 3.
  • one negative electrode current collector 15 is electrically connected to each of the plurality of negative electrode bodies 5. In other words, the negative electrode current collector 15 is provided for each negative electrode body 5.
  • the positive electrode current collector 13 is connected to the substrate of the positive electrode body 3, and the negative electrode current collector 15 is connected to the substrate of the negative electrode body 5.
  • the positive electrode current collector 13 is connected to a side edge portion forming a rectangular side of the positive electrode body 3.
  • the positive electrode current collector 13 is provided so as to project in a direction substantially parallel to the substrate to which the positive electrode current collector 13 is connected and substantially orthogonal to the side edge portion to which the positive electrode current collector 13 is connected. There is. Further, the plurality of positive electrode current collectors 13 are arranged at substantially equal intervals along the side edges to which the positive electrode current collectors 13 are connected.
  • the negative electrode current collector 15 is connected to a side edge portion that forms one side of a rectangle of the negative electrode body 5 and is located on the opposite side in a plan view from the side edge portion to which the positive electrode current collector 13 is connected.
  • the negative electrode current collector 15 is provided so as to project in a direction substantially parallel to the substrate to which the negative electrode current collector 15 is connected and substantially orthogonal to the side edge portion to which the negative electrode current collector 15 is connected. There is. Further, the plurality of negative electrode type current collectors are arranged at substantially equal intervals along the side edge portion to which the negative electrode current collector 15 is connected. The entire positive electrode current collector 13 and negative electrode current collector 15 formed in this way are housed inside the exterior body 11.
  • the plurality of positive electrode current collectors 13 are electrically connected to a common positive electrode side terminal 17.
  • the plurality of negative electrode current collectors 15 are electrically connected to a common negative electrode side terminal 19.
  • the connection between each positive electrode current collector 13 and the positive electrode side terminal 17 and the connection between each negative electrode current collector 15 and the negative electrode side terminal 19 are performed by, for example, ultrasonic welding.
  • the current collectors 13 and 15 may be connected to the terminals 17 and 19 by other methods such as laser welding and spot welding.
  • the positive electrode side terminal 17 is connected to a plurality of positive electrode current collectors 13 inside the exterior body 11 (hereinafter, may be simply referred to as “inside the element”).
  • the positive electrode side terminal 17 extends from the connection portion P with each positive electrode current collector 13 to the outside of the exterior body 11 (hereinafter, may be simply referred to as “outside the element”).
  • the negative electrode side terminal 19 is connected to a plurality of negative electrode current collectors 15 inside the element.
  • the negative electrode side terminal 19 extends from the connection portion P with each negative electrode side current collector to the outside of the element.
  • the positive electrode side terminal 17 and the negative electrode side terminal 19 are exposed from the bonding material and the covering portion 21 which is covered with the bonding material and to which the positive electrode current collector 13 and the negative electrode current collector 15 are connected, respectively. It has an exposed portion 23.
  • the direction in which the covered portion 21 and the exposed portion 23 are aligned that is, the direction in which the positive electrode side terminal 17 and the negative electrode side terminal 19 extend from the inside of the element to the outside of the element and are taken out is referred to as “take-out direction D”. ..
  • first take-out direction D1 the take-out directions D on the positive electrode side and the negative electrode side
  • second take-out direction D2 the take-out directions D on the positive electrode side and the negative electrode side
  • the take-out direction D is the same as the protruding direction of the current collectors 13 and 15 described above. Therefore, in the present embodiment, the first take-out direction D1 and the second take-out direction D2 are in opposite directions from the side edges located on the opposite sides of the rectangular electrode body.
  • connection structure between the positive electrode side terminal 17 and the plurality of positive electrode current collectors 13 and the connection structure between the negative electrode side terminal 19 and the plurality of negative electrode current collectors 15 will be described.
  • connection structure between the terminal and the current collector is almost the same on the positive electrode side and the negative electrode side
  • connection structure on the positive electrode side will be mainly described below as a representative.
  • each connection point P to which the plurality of positive electrode current collectors 13 are connected is arranged so as to be spatially dispersed.
  • a plurality of positive electrode current collectors 13 are connected to the positive electrode side terminals 17 in an arrangement in which all the positive electrode current collectors 13 do not overlap at one place.
  • each connection point P is dispersed in a direction perpendicular to the stacking direction S of the electrode body 9.
  • connection points P are dispersed in the take-out direction D.
  • the plurality of positive electrode current collectors 13 are formed so that the dimension in the take-out direction D becomes longer in the order of the positive electrode current collector 13 located closer to the positive electrode side terminal 17 and the positive electrode current collector 13 located farther from the positive electrode side terminal 17. Has been done.
  • Each of the positive electrode current collectors 13 thus formed is connected to the positive electrode side terminal 17 at each dispersed portion P along the take-out direction D.
  • connection point P By joining the positive electrode current collectors 13 to the positive electrode side terminals 17 at different positions, it is possible to prevent poor joining as compared with the case where a plurality of current collectors 13 are joined at one place. As a result, the electrical resistance of the connection point P can be further reduced.
  • connection points P are dispersed on both the positive electrode side and the negative electrode side. With such a configuration, it is possible to prevent current concentration at both the connection points P on the positive electrode side and the negative electrode side, and further prevent the temperature from rising.
  • each connection portion P is dispersed in the direction perpendicular to the stacking direction S of the electrode body 9 in the above example.
  • each connection portion P may be dispersed in the width direction W of the positive electrode side terminal 17.
  • the "width direction B" of the positive electrode side terminal 17 refers to a direction perpendicular to the take-out direction D and the stacking direction S.
  • the dimension of the positive electrode side terminal 17 in the width direction B is set to be larger than the dimension in the take-out direction D.
  • each of the plurality of positive electrode current collectors 13 is formed at a position deviated in the width direction B, in other words, at a position deviated so that the positions B in the width direction do not overlap.
  • Each positive electrode current collector 13 is connected at each position dispersed along the width direction B of the positive electrode side terminal 17 formed as described above. According to this configuration, it is possible to suppress heat generation at the connection point P while avoiding an increase in the dimension of the stacking type power storage element 1 in the take-out direction D due to the positive electrode side terminal 17 extending in the take-out direction.
  • the positive electrode current collector 13 has a base portion 13a connected to the electrode body 9 and a protruding portion 13b protruding from the base portion 13a and connected to the positive electrode side terminal 17.
  • the portion of the protruding portion 13b adjacent to the base portion 13a is formed so that the dimension of the protruding portion 13b in the width direction B gradually decreases as the distance from the base portion 13a increases. More specifically, the width method dimension of the protruding portion 13b is smaller than the width direction dimension of the base portion 13a, and the corner portion 13ba extending from the base portion 13a to the protruding portion 13b is formed in an R shape.
  • the shape in which the widthwise dimension of the protruding portion 13b gradually decreases as the distance from the base portion 13a increases may be formed at least in a portion adjacent to the base portion 13a of the protruding portion 13b. It may have such a shape. Further, such a shape is preferably provided on at least one of the positive electrode current collector 13 and the negative electrode current collector 15, and more preferably provided on both.
  • the shape of the portion of the protruding portion 13b adjacent to the base portion 13a is not limited to the R shape illustrated here, and may be, for example, an inclined shape or a parabolic shape.
  • the configuration in which the first take-out direction D1 of the positive electrode side terminal 17 and the second take-out direction D2 of the negative electrode side terminal 19 are different is shown.
  • the first take-out direction D1 and the second take-out direction D2 may be the same direction. That is, the positive electrode current collector 13 and the negative electrode current collector 15 are provided on the same side edge portion of the rectangular electrode body 9 at positions deviated from each other along the side edge portion, and then the positive electrode side terminal 17 is provided.
  • the negative electrode side terminal 19 may be projected in each take-out direction D1 and D2 at a position corresponding to each of the current collectors 13 and 15.
  • connection point P may be dispersed only on either the positive electrode side or the negative electrode side.
  • connection structure of the present embodiment can be obtained. That is, for example, even when four current collectors are distributed to two connection points by two and connected to the terminals, when all four current collectors are connected to the terminals at one connection point. Compared with this, heat generation can be suppressed.
  • the power storage element 1 is a lithium ion capacitor
  • the power storage element to which the configuration of the present embodiment is applied stores a charge by using an electric double layer electrode other than the lithium ion capacitor. It may be a capacitor or a chemical battery (for example, a lithium ion secondary battery).
  • the exterior body 11 of the power storage element 1 is an aluminum laminated film. According to this configuration, in the so-called laminated type power storage element 1 suitable for a thin structure, the temperature rise inside the element can be effectively suppressed.
  • the exterior body 11 of the power storage element 1 is not limited to this, and may be, for example, a metal can.
  • the plurality of connection points P between the positive electrode and / or negative electrode current collectors 13 and 15 and the terminals 17 and 19 are dispersed. , The concentration of current at the connection point P is avoided. As a result, it is possible to prevent the temperature rise due to the concentration of the current flowing through the local portion having high electric resistance, which is the connection point inside the element, and the temperature rise transmitted from the current collectors 13 and 15 to the entire power storage element 1. Can be suppressed. Further, by suppressing the temperature rise inside the power storage element 1 in this way, it is possible to suppress the deterioration of the output performance and the life of the power storage element 1.
  • the stacked power storage element according to this embodiment is used for mobile devices, electric vehicles, and the like.
  • it is suitably used for electrical equipment that requires a relatively large instantaneous current.
  • an electric device that requires an instantaneous current it is suitably used as a power source for a saddle-type vehicle or a small gliding boat that performs relatively large acceleration / deceleration traveling.
  • a so-called drone which is a multicopter whose flight is controlled by individually controlling a plurality of rotor motors.
  • the application of the stacked power storage element according to the present embodiment is not limited to these.

Abstract

互いに対向するように配置されたシート状の複数の正極体(3)と,複数の負極体(5)と、これらの間に介装されたセパレータ(7)とを積層してなる電極体(9)と、前記複数の正極体(3)に接続された複数の正極集電体(13)と、前記複数の負極体(5)に接続された複数の負極集電体(15)と、各正極集電体(13)がそれぞれ接続された正極側端子(17)と、各負極集電体(15)がそれぞれ接続された負極側端子(19)とを備える積層式蓄電素子(1)において、前記正極側端子(17)および前記負極側端子(19)の少なくとも一方の端子において、各集電体が接続される各接続箇所(P)が空間的に分散するように配置されている。

Description

積層型蓄電素子
 本発明は、積層型の電極体を有する積層型蓄電素子に関する。
 特許文献1には、シート状の正極体と負極体とをセパレータを介して多数積層した積層型の電極体を備えるものが開示される。特許文献1に開示の電極体は、多数のシート状の正極体(負極体)のそれぞれに集電体が接続される。これら多数の集電体が、まとめて重ねられた状態で、一箇所で正極側端子(負極側端子)に溶接等によって接続される構造が採用されている。
特開2014-229435号公報
 素子から電流を取り出す際に、素子の温度上昇が大きくなる場合がある。
 本発明の目的は、上記の課題を解決するために、温度上昇が抑制される積層式蓄電素子を提供することにある。
 前記した目的を達成するために、本発明に係る積層式蓄電素子は、
 互いに対向するように配置されたシート状の複数の正極体および複数の負極体と、各正極体と各負極体との間に介装されたセパレータとを積層してなる電極体と、
 前記複数の正極体のそれぞれに接続された複数の正極集電体と、
 前記複数の負極体のそれぞれに接続された複数の負極集電体と、
 各正極集電体がそれぞれ接続された正極側端子と、
 各負極集電体がそれぞれ接続された負極側端子と、
を備え、
 前記正極側端子および前記負極側端子の少なくとも一方の端子において、各集電体が接続される各接続箇所が、空間的に分散するように配置されている。
 この構成によれば、正極および/または負極の集電体と端子との複数の接続箇所が分散されることにより、接続箇所における電流の集中が回避される。その結果、素子内部における接続箇所となる、電気抵抗が高い局所的な部分を流れる電流の集中に起因する温度上昇を防ぐことができ、集電体から素子全体に伝わる温度上昇を抑制することができる。
 この積層式蓄電素子は、例えば、電気二重層が形成される電極を含むキャパシタとして構成された素子であってよい。この構成によれば、化学電池に比べて瞬間的に多くの電流を流すことができる。この場合であっても、上述する構成によって発熱の影響を抑えて、比較的大きい電流を流しやすくすることができる。
 なお、前記正極側端子および前記負極側端子のそれぞれにおいて、各集電体が接続される各接続箇所が空間的に分散するように配置されていることが、より大きな発熱抑制効果を得られるので好ましい。
 本発明の一実施形態に係る積層式蓄電素子において、絶縁性樹脂材料で形成されて、前記電極体、前記正極集電体および前記負極集電体を覆う当該電池の外装体を構成する貼り合わせ材を備え、前記正極側端子および前記負極側端子は、それぞれ、前記貼り合わせ材に覆われて前記正極集電体および前記負極集電体が接続される被覆部分と、前記貼り合わせ材から露出した露出部分とを有し、前記少なくとも一方の端子における各接続箇所は、前記電極体の積層方向に垂直な方向に分散していてもよい。この構成によれば、薄型構造に適した、いわゆるラミネート式の蓄電素子において、素子内部の温度上昇を効果的に抑制することができる。
 本発明の一実施形態に係る積層式蓄電素子において、各接続箇所は、前記被覆部分と前記露出部分とが並ぶ取出し方向に分散していてもよい。この構成によれば、正極側端子および負極側端子の前記取出し方向における発熱を抑制することができる。
 本発明の一実施形態に係る積層式蓄電素子において、前記少なくとも一方の端子は、前記被覆部分と、前記露出部分とが並ぶ取出し方向寸法に比べて、前記取出し方向および厚み方向に垂直な幅方向寸法が大きく形成されており、各接続箇所は、前記幅方向に分散していてもよい。この構成によれば、取出し方向の寸法増大を回避しながら接続箇所における発熱を抑制することができる。
 本発明の一実施形態に係る積層式蓄電素子において、前記正極集電体および前記負極集電体の少なくとも一方の集電体は、前記電極体に接続される基部と、前記基部から突出して前記正極側端子または前記負極側端子に接続される突出部とを有し、前記突出部の少なくとも前記基部に隣接する部分は、前記基部から離れるにしたがって、当該突出部の突出方向および厚み方向に垂直な幅方向の寸法が次第に小さくなるように形成されていてもよい。この構成によれば、集電体の基部から突出部への接続部分の角部において電流の集中が抑制されるので、この部分における発熱を抑制することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の一実施形態に係る積層式蓄電素子の概略構造を示す縦断面図である。 図1の積層式蓄電素子の効果を説明するための図であり、比較例の接続構造を示す模式図である。 図1の積層式蓄電素子の効果を説明するための図であり、実施例の接続構造を示す模式図である。 図1の蓄電素子の一変形例を示す平面図である。 図1の蓄電素子の正極集電体を拡大して示す平面図である。
 以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。
 図1は、本発明の一実施形態に係る積層式蓄電素子(以下、単に「蓄電素子」という。)1の構造を模式的に示す断面図である。この蓄電素子1は、イオンの物理的な吸脱着により電気二重層が形成される材料(この例では活性炭)を主要な正極活物質とし、リチウムイオンを化学反応により吸蔵,脱離可能な材料(この例では黒鉛)を主要な負極活物質とし、非水溶液を電解液とするリチウムイオンキャパシタとして構成されている。
 蓄電素子1は、互いに対向するように配置されたシート状の複数の正極体3およびシート状の複数の負極体5と、各正極体3と各負極体5との間に介装されたシート状のセパレータ7とを積層してなる電極体9を有する。具体的には、本実施形態では、複数のセパレータが積層方向に並んで配置されており、これらセパレータ間に、正極体、負極体が積層方向に交互に並んで配置されている。セパレータ、正極体および負極体の各シートは、積層方向から見て矩形形状に形成されている。充電時には、負極においてはリチウムイオンが負極体に塗布された負極活物質に吸蔵され、正極においては電解液中のアニオンが正極体に塗布された正極活物質に吸着される。放電時には、負極において負極活物質からリチウムイオン脱離して電解液中に放出され、正極において正極活物質からアニオンが脱離して電解液中に放出される。
 電極体9は、電解液と共に外装体11に収容されている。本実施形態では、外装体11は、絶縁性樹脂材料で形成されて、後述する正極集電体13および負極集電体15を覆う貼り合わせ材11a,11bから構成されている。より具体的には、貼り合わせ材11a,11bは、アルミニウム箔の両面に合成樹脂フィルムを積層することによって形成したアルミラミネートフィルムから形成されている。
 本実施例では正極体3は、アルミニウムを主成分とする金属箔からなる基体に、上述の正極活物質を塗布することによりシート状に形成されている。本実施例では負極体5は、銅を主成分とする金属箔からなる基体に、上述の負極活物質を塗布することによりシート状に形成されている。
 複数の正極体3のそれぞれに、1つの正極集電体13がそれぞれ電気的に接続されている。言い換えると、正極集電体13は、正極体3ごとに設けられる。同様に、複数の負極体5のそれぞれに、1つの負極集電体15がそれぞれ電気的に接続されている。言い換えると、負極集電体15は、負極体5ごとに設けられる。
 正極集電体13は、正極体3の基体に接続されており、負極集電体15は、負極体5の基体に接続されている。正極集電体13は、正極体3の矩形の一辺を形成する側縁部に接続されている。正極集電体13は、この正極集電体13が接続された基体にほぼ平行に、かつこの正極集電体13が接続された側縁部にほぼ直交する方向に突出するように設けられている。また、複数の正極集電体13は、正極集電体13が接続された側縁部に沿ってほぼ等間隔に配置されている。負極集電体15は、負極体5の矩形の一辺を形成する、正極集電体13が接続された側縁部と平面視で反対側に位置する一側縁部に接続されている。負極集電体15は、この負極集電体15が接続された基体にほぼ平行に、かつこの負極集電体15が接続された側縁部にほぼ直交する方向に突出するように設けられている。また、複数の負極種電体は、負極集電体15が接続された側縁部に沿ってほぼ等間隔に配置されている。このように形成された正極集電体13および負極集電体15は、その全体が外装体11の内部に収容されている。
 複数の正極集電体13は、共通の正極側端子17に電気的に接続されている。複数の負極集電体15は、共通の負極側端子19に電気的に接続されている。各正極集電体13と正極側端子17との接続、および各負極集電体15と負極側端子19との接続は、例えば超音波溶接によって行われている。もっとも各集電体13,15と端子17,19との接続は、他の方法、例えばレーザー溶接やスポット溶接等によって行ってもよい。
 正極側端子17は、外装体11の内部(以下、単に「素子内部」という場合がある。)において複数の正極集電体13に接続されている。正極側端子17は、各正極集電体13との接続箇所Pから外装体11の外部(以下、単に「素子外部」という場合がある。)へ延びている。同様に、負極側端子19は、素子内部において複数の負極集電体15に接続されている。負極側端子19は、各負極側集電体との接続箇所Pから素子外部へ延びている。
 換言すれば、正極側端子17および負極側端子19は、それぞれ、貼り合わせ材に覆われて正極集電体13および負極集電体15が接続される被覆部分21と、貼り合わせ材から露出した露出部分23とを有している。本明細書では、前記被覆部分21と露出部分23とが並ぶ方向、すなわち正極側端子17および負極側端子19が素子内部から素子外部へ延出して取り出される方向を、「取出し方向D」と呼ぶ。また正極側と負極側とで取出し方向を区別して説明する場合、正極側,負極側の取出し方向Dを、各々「第1取出し方向D1」,「第2取出し方向D2」と呼ぶことがある。この取出し方向Dは、上述した集電体13,15の突出方向と同一の向きである。したがって、本実施形態では、第1取出し方向D1と第2取出し方向D2は、矩形の電極体の互いに反対側に位置する側縁部から互いに反対の方向となっている。
 以下、正極側端子17と複数の正極集電体13との接続構造、および負極側端子19と複数の負極集電体15との接続構造について説明する。もっとも、正極側と負極側とで、端子と集電体との接続構造はほぼ同様であるので、以下、代表として、主に正極側の接続構造について説明する。
 本実施形態では、正極側端子17において、複数の正極集電体13がそれぞれ接続される各接続箇所Pが、空間的に分散するように配置されている。換言すれば、複数の正極集電体13が正極側端子17に、すべての正極集電体13が1箇所に重ならない配置で接続されている。図示の例では、各接続箇所Pは、電極体9の積層方向Sに垂直な方向に分散している。
 より具体的には、本実施例では、各接続箇所Pは、取出し方向Dに分散している。詳細には、複数の正極集電体13は、正極側端子17に近い位置の正極集電体13から遠い位置の正極集電体13の順で、取出し方向Dの寸法が長くなるように形成されている。このように形成された各正極集電体13が、それぞれ、取出し方向Dに沿って、分散した各箇所Pにおいて正極側端子17に接続されている。
 この構成によれば、正極側端子17において同一箇所に複数の正極集電体13が接続されている構成に比べて、接続箇所に電流が集中して流れることによる発熱が抑制されるので、正極集電体13の取出し方向Dにおける発熱を抑制することができる。すなわち、複数の正極集電体13は、正極側端子17に同一箇所で接続された場合(比較例)と分散された箇所で接続された場合(実施例)とで、以下のように電力量すなわちジュール熱が異なる。
 <比較例>
 接続箇所では、接触に起因して電気抵抗が残余の部分に比べて大きい。図2Aに示すように1つの接続箇所で複数の集電体113が一箇所で重ねて端子117に接続された場合には、1つの接続箇所に電流が集中して流れる。電力量Wは、W=RIであるので、10Aの電流がそれぞれ流れる5つの集電体113が、1つの接続箇所で合流すると、
 W=R×(50)=2500R
となる。
<実施例>
 図2Bに示す実施例では、5つの集電体13が5箇所に分散して端子17に接続されているので、接続箇所を通過する電流が分散され、各箇所における電力量W’の合計である全体の電力量Wは、
 W=5×W´=5×(R×10)=500R
となる。
 このようにして、接触箇所Pを流れる電流を分散させることで、接触箇所Pでの発熱を抑えることができる。これによって接触箇所Pから集電体を介して電極体9に伝わる熱が抑えられ、電極体9での発熱の影響を防ぐことができる。
 さらに、正極集電体13ごとに異なる位置で正極側端子17にそれぞれ接合することで、複数の集電体13を一箇所で接合する場合に比べて、接合不良を防ぐことができる。これによって接続箇所Pの電気抵抗をさらに低減することができる。
 また、本実施形態では、正極側と負極側との両方で、接続箇所Pを分散させている。このように構成することで、正極側及び負極側での両方の接続箇所Pでの電流集中を防ぐことができ、さらに温度上昇を防ぐことができる。
 各接続箇所Pを、電極体9の積層方向Sに垂直な方向に分散させる態様は、上記の例に限定されない。例えば、図3に変形例として示すように、各接続箇所Pは、正極側端子17の幅方向Wに分散していてもよい。ここで、正極側端子17の「幅方向B」とは、取出し方向Dおよび積層方向Sに垂直な方向を指す。
 より詳細には、同図の例では、正極側端子17は、幅方向Bの寸法が取出し方向Dの寸法よりも大きく設定されている。他方、複数の正極集電体13のそれぞれは、幅方向Bにずれて、言い換えると幅方向B位置が重ならないように偏位した位置に形成されている。上述のように形成された正極側端子17の、幅方向Bに沿って分散した各箇所において、各正極集電体13が接続されている。この構成によれば、正極側端子17が取り出し方向に延びることに起因する積層型蓄電素子1の取出し方向Dの寸法増大を回避しながら接続箇所Pにおける発熱を抑制することができる。
 また、図4に示すように、本実施形態では、正極集電体13は、電極体9に接続される基部13aと、基部13aから突出して正極側端子17に接続される突出部13bとを有している。突出部13bの基部13aに隣接する部分には、基部13aから離れるにしたがって、当該突出部13bの幅方向Bの寸法が次第に小さくなるように形成されている。より具体的には、突出部13bの幅方法寸法は基部13aの幅方向寸法よりも小さく、基部13aから突出部13bへ連なる角部分13baがR形状に形成されている。
 このように構成することにより、正極集電体13の基部13aから突出部13bへの接続部分の角部分13baにおいて電流の集中が抑制されるので、この部分における発熱を抑制することができる。
 なお、突出部13bの幅方向寸法が基部13aから離れるにしたがって次第に小さくなる形状は、少なくとも突出部13bの基部13aに隣接する部分に形成されていればよいが、突出部13b全体に渡ってこのような形状であってもよい。また、このような形状は、正極集電体13および負極集電体15の少なくとも一方に設けられていることが好ましく、両方に設けられていることがより好ましい。なお、突出部13bの基部13aに隣接する部分の形状は、ここで例示したR形状に限らず、例えば傾斜形状でもよいし、放物線形状でもよい。
 なお、以上説明したいずれの例でも、正極側端子17の第1取出し方向D1と負極側端子19の第2取出し方向D2が異なる構成を示した。このように構成することにより、幅方向Bに沿って接続領域を増やして、接続箇所Pの電気抵抗を低減させることが容易になる。もっとも、第1取出し方向D1と第2取出し方向D2は同一方向であってもよい。すなわち、正極集電体13と負極集電体15とを、矩形の電極体9の同一側縁部に、この側縁部に沿って互いに偏位した位置に設けたうえで、正極側端子17および負極側端子19を、それぞれの集電体13,15に対応した位置において各取出し方向D1,D2に突出させてもよい。
 また、上述のように、正極側および負極側の両方で接続位置Pを分散させることが好ましいが、正極側および負極側のいずれか一方のみで接続箇所Pを分散させてもよい。
 また、以上説明したいずれの例でも、各接続箇所Pにおいて1つの集電体が端子に接続されている構成を示したが、複数の集電体が少なくとも2つ以上の接続箇所Pに分散されていれば、本実施形態の接続構造の効果を得ることができる。すなわち、例えば4つの集電体が2つずつ、2つの接続箇所に分散して端子に接続された場合でも、4つの集電体の全部が1つの接続箇所において端子に接続されている場合に比べて発熱を抑えることができる。
 なお、本実施形態では、蓄電素子1がリチウムイオンキャパシタである例について説明したが、本実施形態の構成が適用される蓄電素子はリチウムイオンキャパシタ以外の電気二重層電極を利用して電荷を蓄えるキャパシタであってもよいし、化学電池(例えばリチウムイオン二次電池)であってもよい。
 また、本実施形態では、蓄電素子1の外装体11がアルミラミネートフィルムである例について説明した。この構成によれば、薄型構造に適した、いわゆるラミネート式の蓄電素子1において、素子内部の温度上昇を効果的に抑制することができる。もっとも、蓄電素子1の外装体11はこれに限定されず、例えば金属製の缶であってもよい。
 以上説明したように、本実施形態に係る積層式蓄電素子1によれば、正極および/または負極の集電体13,15と端子17,19との複数の接続箇所Pが分散されることにより、接続箇所Pにおける電流の集中が回避される。その結果、素子内部における接続箇所となる、電気抵抗が高い局所的な部分を流れる電流の集中に起因する温度上昇を防ぐことができ、集電体13,15から蓄電素子1全体に伝わる温度上昇を抑制することができる。さらに、このように蓄電素子1内部の温度上昇を抑えることにより、蓄電素子1の出力性能や寿命が低下することを抑制することができる。
 なお、本実施形態に係る積層型蓄電素子は、携帯機器や電動車両などに用いられる。特には、比較的大きい瞬時電流が要求される電気機器に好適に用いられる。たとえば瞬間的な電流が要求される電気機器として、比較的大きな加減速走行が行われる鞍乗型車両、小型滑走艇用の電源として好適に用いられる。また複数のロータ用モータを個別に制御することで飛行制御されるマルチコプター、いわゆるドローン用の電源として好適に用いられる。もっとも、本実施形態に係る積層型蓄電素子の用途はこれらに限定されない。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1 積層型蓄電素子
3 正極体
5 負極体
7 セパレータ
9 電極体
11 外装体
11a,11b 貼り合わせ材
13 正極集電体
15 負極集電体
17 正極側端子
19 負極側端子
21 被覆部分
23 露出部分
P 接続箇所

Claims (7)

  1.  互いに対向するように配置されたシート状の複数の正極体および複数の負極体と、各正極体と各負極体との間に介装されたセパレータ7とを積層してなる電極体と、
     前記複数の正極体のそれぞれに接続された複数の正極集電体と、
     前記複数の負極体のそれぞれに接続された複数の負極集電体と、
     各正極集電体がそれぞれ接続された正極側端子と、
     各負極集電体がそれぞれ接続された負極側端子と、
    を備え、
     前記正極側端子および前記負極側端子の少なくとも一方の端子において、各集電体が接続される各接続箇所が、空間的に分散するように配置されている、
    積層型蓄電素子。
  2.  請求項1に記載の積層型蓄電素子において、
     絶縁性樹脂材料で形成されて、前記電極体、前記正極集電体および前記負極集電体を覆う当該蓄電素子の外装体を構成する貼り合わせ材を備え、
     前記正極側端子および前記負極側端子は、それぞれ、前記貼り合わせ材に覆われて前記正極集電体および前記負極集電体が接続される被覆部分と、前記貼り合わせ材から露出した露出部分とを有し、
     前記少なくとも一方の端子における各接続箇所は、前記電極体の積層方向に垂直な方向に分散している、
    積層型蓄電素子。
  3.  請求項2に記載の積層型蓄電素子において、各接続箇所は、前記被覆部分と前記露出部分とが並ぶ取出し方向に分散している積層型蓄電素子。
  4.  請求項2または3に記載の積層型蓄電素子において、前記少なくとも一方の端子は、前記被覆部分と、前記露出部分とが並ぶ取出し方向寸法に比べて、前記取出し方向および厚み方向に垂直な幅方向寸法が大きく形成されており、
     各接続箇所は、前記幅方向に分散している、積層型蓄電素子。
  5.  請求項1から4のいずれか一項に記載の積層型蓄電素子において、電気二重層が形成される電極を含むキャパシタとして構成されている積層型蓄電素子。
  6.  請求項1から5のいずれか一項に記載の積層型蓄電素子において、前記正極側端子および前記負極側端子のそれぞれにおいて、各集電体が接続される各接続箇所が、空間的に分散するように配置されている積層型蓄電素子。
  7.  請求項1から6のいずれか一項に記載の積層型蓄電素子において、前記正極集電体および前記負極集電体の少なくとも一方の集電体は、前記電極体に接続される基部と、前記基部から突出して前記正極側端子または前記負極側端子に接続される突出部とを有し、前記突出部の少なくとも前記基部に隣接する部分は、前記基部から離れるにしたがって、当該突出部の突出方向および厚み方向に垂直な幅方向の寸法が次第に小さくなるように形成されている積層型蓄電素子。
PCT/JP2020/001341 2020-01-16 2020-01-16 積層型蓄電素子 WO2021144929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021570575A JPWO2021144929A1 (ja) 2020-01-16 2020-01-16
PCT/JP2020/001341 WO2021144929A1 (ja) 2020-01-16 2020-01-16 積層型蓄電素子
US17/863,750 US20220351917A1 (en) 2020-01-16 2022-07-13 Laminated power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001341 WO2021144929A1 (ja) 2020-01-16 2020-01-16 積層型蓄電素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/863,750 Continuation US20220351917A1 (en) 2020-01-16 2022-07-13 Laminated power storage element

Publications (1)

Publication Number Publication Date
WO2021144929A1 true WO2021144929A1 (ja) 2021-07-22

Family

ID=76864570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001341 WO2021144929A1 (ja) 2020-01-16 2020-01-16 積層型蓄電素子

Country Status (3)

Country Link
US (1) US20220351917A1 (ja)
JP (1) JPWO2021144929A1 (ja)
WO (1) WO2021144929A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201621A (ja) * 1984-03-27 1985-10-12 ソニー株式会社 固体電解コンデンサブロツクの製造方法
JP2007157811A (ja) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd 巻回形電気二重層コンデンサ
JP2008293717A (ja) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd 二次電池およびこれを搭載した車両
JP2015230745A (ja) * 2014-06-03 2015-12-21 株式会社豊田自動織機 蓄電装置、及び蓄電装置の製造方法
WO2018016653A1 (ja) * 2016-07-22 2018-01-25 Necエナジーデバイス株式会社 電気化学デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201621A (ja) * 1984-03-27 1985-10-12 ソニー株式会社 固体電解コンデンサブロツクの製造方法
JP2007157811A (ja) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd 巻回形電気二重層コンデンサ
JP2008293717A (ja) * 2007-05-22 2008-12-04 Nissan Motor Co Ltd 二次電池およびこれを搭載した車両
JP2015230745A (ja) * 2014-06-03 2015-12-21 株式会社豊田自動織機 蓄電装置、及び蓄電装置の製造方法
WO2018016653A1 (ja) * 2016-07-22 2018-01-25 Necエナジーデバイス株式会社 電気化学デバイス

Also Published As

Publication number Publication date
JPWO2021144929A1 (ja) 2021-07-22
US20220351917A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
JP5618010B2 (ja) 多方向性リード−タブ構造を有するリチウム二次電池
JP5779828B2 (ja) 段差を有する電極組立体、それを含む電池セル、電池パック及びデバイス
US8372536B2 (en) Battery module
JP6225734B2 (ja) 蓄電装置
JP2004139775A (ja) 積層型電池、組電池および車両
JP2004134210A (ja) 積層型電池、組電池および車両
JP2019530176A (ja) 電池セルのための電極ユニットの製造方法、及び、電極ユニット
JPWO2017038042A1 (ja) 積層型電池
JP2018133201A (ja) 蓄電モジュール
JP2020532082A (ja) バッテリ端子のためのリードタブ
KR101286910B1 (ko) 적층형 전지
JP2020035653A (ja) 蓄電装置
JPH0982305A (ja) 二次電池及びその製造方法
US20210265703A1 (en) Electrode Assembly
KR20170104826A (ko) 전극조립체 및 이를 포함하는 이차전지
WO2021144929A1 (ja) 積層型蓄電素子
CN109301378B (zh) 用于软包电池的接片冷却
JP2018517268A (ja) 向上した冷却構造を有するバッテリーモジュール
US11600844B2 (en) Solid-state battery cell and solid-state battery module
JP2019212440A (ja) 蓄電装置
KR102558787B1 (ko) 리튬 이차전지
JP2019096466A (ja) 蓄電素子
KR102398572B1 (ko) 압전 소자 및 열전 소자를 포함하는 원통형 이차 전지
CN116420211A (zh) 蓄电模块
CN108701867B (zh) 层叠型非水电解质二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913093

Country of ref document: EP

Kind code of ref document: A1