WO2021143920A1 - 一种索道穿梭机定位系统及定位方法 - Google Patents

一种索道穿梭机定位系统及定位方法 Download PDF

Info

Publication number
WO2021143920A1
WO2021143920A1 PCT/CN2021/072631 CN2021072631W WO2021143920A1 WO 2021143920 A1 WO2021143920 A1 WO 2021143920A1 CN 2021072631 W CN2021072631 W CN 2021072631W WO 2021143920 A1 WO2021143920 A1 WO 2021143920A1
Authority
WO
WIPO (PCT)
Prior art keywords
shuttle
module
line segment
ropeway
positioning system
Prior art date
Application number
PCT/CN2021/072631
Other languages
English (en)
French (fr)
Inventor
马亚胜
张旭耀
黎树中
Original Assignee
广东自来物智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东自来物智能科技有限公司 filed Critical 广东自来物智能科技有限公司
Publication of WO2021143920A1 publication Critical patent/WO2021143920A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks

Definitions

  • the invention relates to the technical field of spatial positioning, in particular to a ropeway shuttle positioning system and a positioning method.
  • Intelligent shuttle logistics is a new type of logistics. Intelligent shuttle logistics mainly includes fixed ropeways or tracks erected at low altitudes. It also includes shuttles that automatically travel on ropeways or tracks to transport goods.
  • Intelligent shuttle logistics is different from existing ropeway vehicles and traditional express delivery or sorting "transport vehicles".
  • intelligent shuttle logistics is a new type of transportation that uses logistics shuttles (also called shuttle robots) to realize unmanned and automatic distribution. It can provide transportation solutions that reduce costs and increase efficiency in a single line for all walks of life.
  • the shuttle itself needs to be driven by its own drive device; on the other hand, the intelligent shuttle logistics is a transportation system network that can realize cross-regional deployment. It needs the help of a huge cloud computing control center to achieve a large number of The overall arrangement and scheduling of logistics.
  • intelligent shuttle logistics is a super physical network in which a cloud control system controls a large number of logistics shuttles. Therefore, the successful construction of intelligent shuttle logistics will bring about the era of self-made things in the true sense.
  • the invention provides a ropeway shuttle positioning system, which is used to solve the technical problem of low positioning accuracy of the cable car or shuttle on the ropeway in the prior art.
  • the invention also provides a positioning method of the above ropeway shuttle positioning system.
  • a ropeway shuttle positioning system includes multiple fixed points for dividing the ropeway line into multiple line sections, and also includes a control module, a buffer module, a monitoring module, and a metering module.
  • the monitoring module is used to monitor whether the shuttle has arrived.
  • the measurement module is used to measure the route travel of the shuttle on each line segment from the starting point of the corresponding line segment
  • the buffer module is used to store the route travel
  • the control module uses When the shuttle arrives at the end of each line segment, the route itinerary stored in the buffer module is cleared.
  • the control module is also used to determine the shuttle by the length of the route itinerary and the positions of the two fixed points corresponding to the route itinerary.
  • the position; the buffer module and the monitoring module are electrically connected with the control module, and the metering module is electrically connected with the buffer module.
  • the monitoring module includes an infrared sensor and a trigger reflector, one of the infrared sensor and the trigger reflector is arranged on the shuttle, and the other is arranged at each fixed point.
  • the beneficial effects are: the infrared sensor and the trigger reflector have simple structure and low cost, which facilitates the identification of the shuttle passing the fixed point position.
  • the monitoring module includes a vibration sensor, the vibration sensor is used to monitor the vibration frequency of the shuttle on the ropeway line, and send the vibration frequency to the control module, and the control module judges by analyzing the change of the vibration frequency Whether the shuttle has reached the end of each route segment.
  • the beneficial effects are: increased monitoring means and improved monitoring accuracy.
  • the monitoring module includes a gyroscope and/or accelerometer, and the gyroscope and accelerometer are used to monitor the vibration amplitude of the shuttle on the ropeway line, and transmit the vibration amplitude to the control module.
  • the module judges whether the shuttle has reached the end of each line section by analyzing the change of the vibration amplitude.
  • the beneficial effect is that the monitoring means are further increased to ensure the accuracy of the identification through the fixed point.
  • the monitoring module also includes an anti-interference device.
  • the beneficial effect is that the frequency of interference vibration can be filtered out, thereby improving the monitoring accuracy of the vibration sensor.
  • the metering module is an encoder, and a driving wheel is provided on the shuttle.
  • the driving wheel is driven by a driving motor, and the encoder is used to count the number of rotations of the driving motor.
  • the beneficial effects are: the structure is simple, the arrangement is convenient, and rapid measurement can be realized, which facilitates the counting of the number of rotations of the driving motor, and further realizes the counting of the number of rotations of the driving wheel.
  • a positioning chip is installed on the shuttle.
  • the beneficial effect is that it can play a role in assisting positioning, and when the positioning system fails, the shuttle can perform positioning and search through conventional positioning methods.
  • the terminal module for displaying the position of the shuttle, and the terminal module is connected to the control module for signal transmission.
  • a shuttle positioning method includes the following steps:
  • S3 The specific location of the shuttle is determined by the location of the two fixed points corresponding to the line segment, the length of the line segment, and the measured route stroke length.
  • the shuttle positioning method of the present invention is simple, convenient to operate, and has high positioning accuracy, and can realize the positioning accuracy of the shuttle.
  • each line segment corresponds to the linear distance between two fixed points.
  • Figure 1 is a schematic diagram of the overall structure of an embodiment of the ropeway shuttle positioning system of the present invention
  • Figure 2 is a partial enlarged view of A in Figure 1;
  • FIG. 3 is a schematic diagram of the structure of the fixed pile points of the embodiment of the ropeway shuttle positioning system of the present invention.
  • Figure 4 is a partial enlarged view at B in Figure 3;
  • FIG. 5 is a schematic diagram of the structure of the connection point of the embodiment of the ropeway shuttle positioning system of the present invention.
  • Fig. 6 is a schematic diagram of the effect of comparison with GPS of the embodiment of the ropeway shuttle positioning system of the present invention.
  • Figure 7 is a Z-axis acceleration signal amplitude-frequency curve diagram of the embodiment of the ropeway shuttle positioning system of the present invention when the shuttle runs on a smooth track;
  • Figure 8 is a Z-axis acceleration signal amplitude-frequency curve diagram of the embodiment of the ropeway shuttle positioning system of the present invention when the shuttle is traveling at the connection point;
  • Fig. 9 is a schematic diagram of the overall structure of an embodiment of the shuttle positioning method of the present invention.
  • An embodiment of the positioning system of the ropeway shuttle 7 (hereinafter referred to as the positioning system) of the present invention:
  • the positioning system includes multiple fixed points for dividing the ropeway line into multiple line sections, and also includes a control module, a buffer module, a monitoring module, and a metering module.
  • the monitoring module is used for monitoring Whether the shuttle 7 reaches the end point of each line segment
  • the metering module is used to measure the route travel of the shuttle 7 from the starting point of the corresponding line segment on each line segment
  • the buffer module is used to store the route travel
  • the control module is used to clear the route itinerary stored in the buffer module when the shuttle 7 reaches the end of each line section, and the control module is also used to pass the length of the route itinerary and the two fixed routes corresponding to the route itinerary.
  • the position of the dot determines the position of the shuttle 7; the buffer module and the monitoring module are electrically connected to the control module, and the metering module is electrically connected to the buffer module.
  • the fixed points are each fixed pile point on the cableway line, the fixed pile points are each supporting column, and the steel cable 3 is coiled on each fixed pile point.
  • the line section is the distance between two fixed pile points, specifically, the length of the steel cable 3 between any two adjacent fixed pile points.
  • the control module, cache module, monitoring module, and metering module are all installed on the shuttle 7, where the control module is a PLC control system or a common processor, and the cache module is a common storage module, which can be an SD card or Other memory.
  • the monitoring module includes an infrared sensor 8, a gyroscope, an accelerometer, and a vibration sensor.
  • the metering module includes an encoder.
  • the infrared sensor 8 in this embodiment is installed on the shuttle 7, and the trigger reflector 6 is installed at the corresponding position of each fixed pile point, and the trigger reflector 6 is installed on each fixed pile point.
  • the infrared sensor 8 includes a transmitter and a receiver.
  • the infrared rays emitted by the transmitter cannot be reflected to the receiver.
  • the trigger reflector 6 installed on each fixed pile point will reflect infrared rays to the receiver.
  • the infrared sensor 8 receives the reflected signal and transmits the reflected signal to the control module, which is based on the received reflected signal. It will be judged that the shuttle 7 has reached the fixed pile point position.
  • the monitoring module in this embodiment further includes a vibration sensor, and the vibration sensor is a vibration sensor.
  • the vibration sensor can monitor the change of the vibration frequency of the shuttle 7.
  • each fixed pile point is installed with a section of supporting rod hard track
  • the two ends of each supporting hard track are respectively fixedly connected with the steel cable 3, and in this embodiment, the steel cable 3 is connected to the steel cable 3 through the connecting piece 5.
  • the supporting hard rails are connected together, and the connection point between the connecting piece 5 and the steel cable is the vibration point 4.
  • the above-mentioned connection structure is a common connection method of a ropeway, so it is not described in detail in this embodiment.
  • the vibration frequency of the shuttle 7 at the steel cable 3 is different, and the vibration sensor will be real-time It monitors the vibration frequency of the shuttle 7 and transmits the monitored vibration frequency to the control module.
  • the control module analyzes the monitored vibration frequency and analyzes whether the shuttle 7 passes through the steel cable 3 and supports the hard track according to the difference in the vibration frequency.
  • the connection point that is, the connection point.
  • an anti-jamming device is also installed on the shuttle 7 in this embodiment.
  • the anti-jammer can filter out the vibration frequency that distinguishes this kind of vibration, so as to ensure the accuracy of the vibration frequency transmitted by the vibration sensor, and then facilitate the control module to make accurate judgments.
  • the shuttle 7 is also provided with a gyroscope and an accelerometer.
  • the gyroscope and accelerometer are used to collect the acceleration signal of the shuttle 7 in the vertical direction.
  • the acceleration signals at the dock and the supporting hard track are also different, and the collected acceleration signals can accurately reflect whether the shuttle 7 passes the dock.
  • the acceleration signal measured by the gyroscope and accelerometer and the vibration frequency monitored by the vibration sensor are calculated by the fast Fourier transform, and the analysis and processing of the signal in the frequency domain can be established
  • the method of detecting the passing of the shuttle 7 in the frequency domain is mainly divided into 5 steps: acceleration signal acquisition in a certain axis direction, FFT calculation, digital filtering, drawing a threshold line 10 to shield interference and analyzing effective signals.
  • the sampling frequency fs 50Hz
  • the monitoring frequency range includes when the shuttle 7 is running on the track.
  • the wave line is the amplitude-frequency curve 11 of the Z-axis acceleration signal when the shuttle 7 is running on a smooth track (Y-axis: vibration amplitude, X-axis: frequency point), where the horizontal
  • the broken line is the set threshold line 10. It can be observed that the acceleration signal energy during smooth driving in the frequency domain mode is significantly lower than the preset threshold line 10. Therefore, it can be determined that the shuttle 7 is not currently passing through the fixed pile point, as shown in Figure 8.
  • the signal energy jump amplitude is significantly greater than that of the smooth steel cable 3 soft rail , Where the energy amplitude of the acceleration signal in the frequency range of about 12 ⁇ 0.5Hz exceeds the set threshold, and the frequency points of the signal exceeding the threshold are counted to calculate the bandwidth ⁇ f. If ⁇ f is less than the preset bandwidth requirement, it is also regarded as an invalid signal.
  • the signal amplitude and frequency characteristics in the following figure meet the preset requirements and are regarded as valid signals. Therefore, it can be detected that the shuttle 7 is passing through the fixed pile point at the rail connection. Similarly, there is also a slip from the fixed pile point to the steel cable 3. At the connection point, the shuttle 7 can also detect the signal to walk out of the fixed pile point when it passes by.
  • both ends of the supporting hard track are provided with
  • the trigger reflector 6, that is, the same fixed pile point in this embodiment can be subdivided into two sub-fixed points, and the distance between two adjacent sub-fixed points at different fixed pile points constitutes the line section, and The distance between two sub-fixed points of the same fixed pile point is the length of the supporting hard track.
  • the operating conditions of the control module, the metering module, and the buffer module are the same, that is, the supporting hard track can be regarded as a short-length line section.
  • the three monitoring methods of infrared sensor 8, vibration sensor, gyroscope and accelerometer in this embodiment can monitor whether the shuttle 7 moves to a fixed pile point by setting independent thresholds. When one of the methods reaches the threshold, it can be determined that the shuttle 7 has reached a fixed point or a sub-fixed point.
  • the three monitoring methods of infrared sensor 8, vibration sensor, gyroscope and accelerometer can also be monitored in an overall manner, that is, only three or two monitoring methods reach the corresponding threshold, then the control module will determine the shuttle 7 Arrive at a fixed point or sub-fixed point.
  • the metering module is an encoder.
  • the shuttle 7 is driven forward by a driving wheel, and the driving wheel is driven by a driving motor.
  • the encoder is used to measure the number of rotations of the driving motor, and then pass the driving wheel and the driving motor.
  • the number of rotations of the drive wheel can be calculated by the transmission ratio of, and since the circumference of the drive wheel is known and fixed, the number of rotations of the drive wheel is multiplied by the circumference of the drive wheel to calculate the number of shuttle 7 Route itinerary.
  • the positioning system of this embodiment also includes a positioning chip and a terminal module.
  • the positioning chip is a GPS chip, and the positioning chip is installed on the shuttle 7.
  • the positioning chip in this embodiment only plays a role of assisting positioning, that is, when the positioning system of this embodiment fails, the position of the shuttle 7 can be determined by the positioning chip.
  • the terminal module is a terminal display device.
  • the terminal display device includes a display screen and a terminal processor.
  • the control module is connected to the terminal module for data transmission.
  • the transmission method can be a data line connection or a wireless transmission connection.
  • the control module will receive The data is sent to the terminal module, and these data include route itinerary data and monitoring data of the monitoring module.
  • the terminal processor analyzes the data and determines the determined position of the shuttle 7, and then displays the determined position on the display screen, thereby facilitating the staff to visually check the position of the shuttle 7.
  • the shuttle 7 of this embodiment When the shuttle 7 of this embodiment is running, take the first fixed point 1 and the second fixed point 2 in FIG. 1 as an example.
  • the monitoring module When the shuttle 7 runs to the first fixed point 1, the monitoring module will detect that the shuttle 7 has reached the fixed pile point.
  • the control module will clear the route data in the buffer module to zero, and then the shuttle 7 will follow the first fixed point.
  • the line section between the fixed point 1 and the second fixed point 2 is displaced.
  • the metering module ie, the encoder
  • the metering module ie, the encoder
  • the length of the route taken by the shuttle 7 can be calculated by calculation.
  • the position of the shuttle 7 can be calculated by combining the latitude and longitude of the first fixed point 1 and the second fixed point 2 together with the measured route stroke length.
  • the line segment in this embodiment can be regarded as a straight line segment. Since the end point coordinates of the straight line segment are known, the coordinates of the point can be calculated by ratio by combining the distance between a point in the line segment and the corresponding end point.
  • the traditional GPS positioning tolerance range 9 is 2.5m
  • the positioning system of this embodiment is positioned by the number of turns of the driving wheel, and the number of turns is taken In the case of an integer, precise positioning within the circumference of a driving wheel can be achieved, so the positioning system of this embodiment has better positioning accuracy.
  • the positioning method includes the following steps:
  • each line segment in this embodiment can be regarded as a straight line segment, that is, the length of each line segment corresponds to the linear distance between two fixed points.
  • L1 represents the length of the line segment between the first fixed point 1 and the second fixed point 2
  • L2 represents the length of the line segment between the second fixed point 2 and the third fixed point.
  • the longitude and latitude of the first fixed point 1 and the longitude and latitude of the second fixed point 2 are known, and the first fixed point and the second fixed point The length L1 of the line segment between 2 is also known.
  • the number of rotations of the driving motor of the shuttle 7 needs to be measured by an encoder, and then the number of rotations of the driving wheel is determined by the transmission ratio of the driving motor and the driving wheel, and the circumference of the driving wheel is compared with that of the driving wheel. Multiply the number of turns to determine the length of the route. It should be noted that the length of the route stroke in this embodiment is the displacement of the shuttle 7 from the starting point of each route section.
  • the ratio of the length of the route travel to the length of the route section is first calculated, and then the end point of the route travel, that is, the location of the shuttle 7 can be calculated by using the latitude and longitude of the two fixed points and the ratio.

Abstract

一种索道穿梭机(7)定位系统及定位方法。包括用于将索道线路分隔为多个线路段的多个固定点(1,2),还包括控制模块、缓存模块、监测模块以及计量模块,监测模块用于监测穿梭机(7)是否到达各线路段的终点,计量模块用于计量各线路段上穿梭机(7)从离开对应线路段的起点所行走的路线行程,缓存模块用于存储路线行程,控制模块用于在穿梭机(7)抵达各线路段的终点时将缓存模块所存储的路线行程清零,控制模块还用于通过路线行程的长度以及路线行程所对应两个固定点的位置来确定穿梭机(7)的位置。通过采用索道穿梭机(7)定位系统,一方面造价低廉、便于推广应用,另一方面还具有较高的定位精准度,使得操作人员能够快速锁定穿梭机(7)的所在位置。

Description

一种索道穿梭机定位系统及定位方法 技术领域
本发明涉及空间定位技术领域,尤其涉及一种索道穿梭机定位系统及定位方法。
背景技术
近年来,为了满足日益增长的物流需求,各种新型物流方式和构想也相继涌现,智能穿梭机物流即为一种新型的物流方式,智能穿梭机物流主要包括在低空架设的固定索道或轨道、还包括在索道或轨道上自动行驶运送货物的穿梭机。
智能穿梭机物流有别于现有的索道交通工具和传统快递分发或分选的“运输小车”。智能穿梭机物流一方面是一种利用物流穿梭机(也称穿梭机器人)实现无人驾驶、自动配送的新型运输工具,其能够以单线形式为各行各业提供降本增效的运输解决方案,而穿梭机本身需要通过自带驱动装置来实现自行驱动行驶;另一方面智能穿梭机物流是一种能够实现跨区域调配的运输系统网络,其需要借助于庞大的云计算控制中心来实现对大量物流的统筹安排、调度。简而言之,智能穿梭机物流是一个云控制系统控制着大量物流穿梭机的超级物理网络,因此,智能穿梭机物流的成功建设会带来真正意义上的自来物时代。
由于智能穿梭机物流具有大跨度、广区域的特点,为了实现对系统网络的统筹控制和调配,系统网络中行驶的各个穿梭机需要进行精准定位,但是现有的定位方式大都采用GPS等定位系统,这种定位方式需要借助于地面基站才能精准定位,受限于索道所处的复杂地形,有一部分索道是建设在没有开发过的树林或山林上的,或者经过水库池塘湖畔等,这些复杂区域索道线路附近往往是难以建设大量基站的,这会造成穿梭机的定位存在较大误差,增加了工作人员找寻穿梭机的难度,若发生意外事件,定位不准确需要花费大量的人力物力才能找到发生故障的穿梭机,因此发明一种能够精准定位到穿梭机位置的定位系统是极为必要的。此外,现有基站的建设成本和维护成本均十分高昂,这一定程度上也不利于精准定位系统的推广应用。
发明内容
本发明提供了一种索道穿梭机定位系统,用于解决现有技术中索道上的缆车或穿梭机存在定位精度低的技术问题。本发明还提供了一种上述索道穿梭机定位系统的定位方法。
本发明的索道穿梭机定位系统采用如下的技术方案:
一种索道穿梭机定位系统包括用于将索道线路分隔为多个线路段的多个固定点,还包括控制模块、缓存模块、监测模块以及计量模块,所述监测模块用于监测穿梭机是否到达各线路段的终点,所述计量模块用于计量各线路段上穿梭机从离开对应线路段的起点所行走的路线行程,所述缓存模块用于存储所述的路线行程,所述控制模块用于在穿梭机抵达各线路段的终点时将缓存模块所存储的路线行程清零,所述控制模块还用于通过路线行程的长度以及该路线行程所对应两个固定点的位置来确定穿梭机的位置;所述缓存模块、监测模块均与控制模块电性连接,所述计量模块与缓冲模块电性连接。
有益效果:通过采用本发明的索道穿梭机定位系统,由于各个固定点的位置(一般为经纬度)是可以提前获知的,当穿梭机在各个线路段上运行时,对应的路线行程是可以通过计量模块计量的,此外,由于索道在运输时是处于拉伸的,所以各线路段可视为呈直线延伸分布。这样在各线路段两端固定点位置以及路线行程长度已知的情况下,即可计算出穿梭机的所在位置,而影响该位置的精度计算只有路线行程的这一种指标,而针对路线行程的测量为常规测量、且能达到较高的精度,所以本发明的定位系统,一方面结构简单、造价低廉、便于推广应用,另一方面还具有较高的定位精准度,使得操作人员能够快速锁定穿梭机的所在位置。
进一步地,所述监测模块包括红外传感器和触发反射件,所述红外传感器和触发反射件的其中一个设置在穿梭机上,另一个设置在各固定点处。其有益效果是:红外传感器和触发反射件结构简单,造价低廉,方便了对通过固定点位置的穿梭机进行识别。
进一步地,所述监测模块包括震动感应器,所述震动感应器用于监测穿梭机在索道线路上的震动频次,并将震动频次发送给控制模块,所述控制模块通过分析震动频次的变化来判断穿梭机是否到达各路线段的终点。其有益效果是:增加 了监测手段,提高了监测精度。
进一步地,所述监测模块包括陀螺仪和/或加速度计,所述陀螺仪和加速度计用于监测穿梭机在索道线路上的震动幅值,并将震动幅值传送给控制模块,所述控制模块通过分析震动幅值的变化来判断穿梭机是否到达各线路段的终点。其有益效果是:进一步增加监测手段,保证了过固定点识别的精确度。
进一步地,所述监测模块还包括防干扰器。其有益效果是:能够滤去干扰震动频次,从而提高震动感应器的监测精度。
进一步地,所述计量模块为编码器,所述穿梭机上设置有驱动轮,所述驱动轮通过驱动电机进行驱动,所述编码器用于统计驱动电机的转动圈数。其有益效果是:结构简单,方便布置,且能够实现快速的计量,方便了对驱动电机转动圈数的统计,进而实现了对驱动轮转动圈数的统计。
进一步地,所述穿梭机上安装有定位芯片。其有益效果是:能够起到辅助定位作用,在定位系统发生故障时,使得穿梭机能够通过常规定位方式进行定位找寻。
进一步地,还包括用于显示穿梭机位置的终端模块,所述终端模块与控制模块信号传输连接。其有益效果是:方便了操作人员从而远端查看穿梭机的位置。
本发明的穿梭机定位方法采用如下的技术方案:
一种穿梭机定位方法包括以下步骤:
S1:首先获知各固定点的具体位置以及各线路段的长度;
S2:在对应线路段上,通过计量模块计量穿梭机从离开该线路段起点后所行驶的路线行程长度;
S3:通过该线路段所对应的两个固定点位置、线路段长度和计量的路线行程长度确定穿梭机具体位置。
有益效果:本发明的穿梭机定位方法简单,操作方便且具有较高的定位精度,能够实现了对穿梭机的定位精度。
进一步地,各线路段的长度为对应两个固定点之间的直线距离。
附图说明
图1是本发明的索道穿梭机定位系统的实施例的整体结构示意图;
图2是图1中A处的局部放大图;
图3是本发明的索道穿梭机定位系统的实施例的固定桩点的结构示意图;
图4是图3中B处的局部放大图;
图5是本发明的索道穿梭机定位系统的实施例的接驳处结构示意图;
图6是本发明的索道穿梭机定位系统的实施例的与GPS对比效果示意图;
图7是本发明的索道穿梭机定位系统的实施例的穿梭机在平滑轨道上行驶时的Z轴加速度信号幅频曲线图;
图8是本发明的索道穿梭机定位系统的实施例的穿梭机在接驳处行驶时的Z轴加速度信号幅频曲线图;
图9是本发明的穿梭机定位方法的实施例的整体结构示意图。
附图标记说明如下:
1-第一固定点,2-第二固定点,3-钢索,4-震动点,5-接驳件,6-触发反射件,7-穿梭机,8-红外传感器,9-GPS定位公差范围,10-阈值线,11-幅频曲线。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面结合附图和实施例对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明的索道穿梭机7定位系统(以下简称定位系统)的实施例:
如图1至图8所示,定位系统包括用于将索道线路分隔为多个线路段的多个固定点,还包括控制模块、缓存模块、监测模块以及计量模块,所述监测模块用于监测穿梭机7是否到达各线路段的终点,所述计量模块用于计量各线路段上穿梭机7从离开对应线路段的起点所行走的路线行程,所述缓存模块用于存储所述的路线行程,所述控制模块用于在穿梭机7抵达各线路段的终点时将缓存模块所 存储的路线行程清零,所述控制模块还用于通过路线行程的长度以及该路线行程所对应两个固定点的位置来确定穿梭机7的位置;所述缓存模块、监测模块均与控制模块电性连接,所述计量模块与缓冲模块电性连接。
具体而言,本实施例中固定点即为索道线路上的各个固定桩点,固定桩点即为各个支撑立柱,而钢索3即盘绕在各个固定桩点上。本实施例中线路段即为两个固定桩点之间的间距,具体的即为任意相邻两个固定桩点之间的钢索3长度。本实施例中控制模块、缓存模块、监测模块以及计量模块均安装在穿梭机7上,其中控制模块为PLC控制系统或常见的处理器,缓存模块即为常见的储存模块,可以为SD卡或其他记忆体。本实施例中监测模块包括红外传感器8、陀螺仪、加速度计以及震动感应器。本实施例中计量模块包括编码器。
如图4所示,本实施例中红外传感器8安装在穿梭机7上,而各个固定桩点的对应位置处均安装有触发反射件6,触发反射件6即为安装在各固定桩点上的一块反射板,红外传感器8包括发射器和接收器。当穿梭机7不经过固定桩点时,发射器所发射的红外线是不能被反射至接收器处的,此时即可判断穿梭机7为达到固定桩点位置;当穿梭机7经过固定桩点时,安装在各固定桩点上的触发反射件6会将红外线反射至接收器处,此时红外传感器8接收到反射信号,并将该反射信号传送给控制模块,控制模块根据接收的反射信号即会判断出穿梭机7以到达固定桩点位置。
为了保证穿梭机7过桩的精确度,本实施例中监测模块还包括震动感应器,震动感应器即为振动传感器。震动感应器能够监测穿梭机7的震动频率变化。本实施例中由于各固定桩点上均安装有一段支撑杆硬轨道,各支撑硬轨道的两端分别与钢索3固定连接,具体的本实施例中通过接驳件5将钢索3与各支撑硬轨道连接在一起,接驳件5与钢索的连接处即为震动点4。上述连接结构为索道常见的连接方式,所以本实施例中不再详述。由于穿梭机7需要沿着支撑硬轨道滑行一段长度,穿梭机7在钢索3、钢索3与支撑硬轨道的连接处以及支撑硬轨道上的震动频率是不相同的,震动感应器会实时的监测穿梭机7的震动频率,并将监测的震动频率传递给控制模块,控制模块会分析监测的震动频率,并根据震动频率的不同分析出穿梭机7是否经过钢索3与支撑硬轨道的连接处(即接驳位)。为了增强震动感应器监测的精确性,本实施例中在穿梭机7上还安装有防干扰器, 当穿梭机7经过接驳位时,会产生2Hz~4Hz的震动,且该震动会持续100ms-3000ms的时间,防干扰器能够将区别这种震动的震动频率滤去,从而保证震动感应器所传递震动频率的准确性,进而方便控制模块做出精准判断。
本实施例中穿梭机7上还设置有陀螺仪和加速度计,陀螺仪和加速度计用于采集穿梭机7处于竖直方向的加速度信号,由于穿梭机7在经过不同位置(钢索3、接驳处、支撑硬轨道)处的加速度信号也是不同的,采集的加速度信号能够准确的反应出穿梭机7是否经过接驳处。
如图7和图8所示,本实施例中将陀螺仪和加速度计测量的加速度信号和震动感应器所监测的震动频次经过快速傅立叶变换计算后,可以建立在频域下的信号的分析处理模型,频域下检测穿梭机7过杆方法主要分为:某轴方向加速度信号采集、FFT计算、数字滤波、拟定阈值线10屏蔽干扰并分析有效信号5个步骤。而在实际测量的所得数据中,其中采样频率fs=50Hz,采样点算N=128,经FFT计算后,频率分辨刻度约fΔ=0.39Hz,监测频率范围涵括穿梭机7在轨道上行驶时的振动频率变化区域,如图7所示,波浪线是穿梭机7在平滑轨道上行驶时的Z轴加速度信号幅频曲线11(Y轴:震动幅值,X轴:频率点),其中水平折线是设定的阈值线10,可以观察到频域模式下平滑行驶时的加速度信号能量明显低于预设阈值线10,因此可以判定穿梭机7当前没有经过固定桩点,如图8所示,通过采集钢索3和支撑杆硬轨接驳处信号,并按上述的方法计算分析,可以观察到在3.5Hz~18.5Hz频率成分区间,信号能量跳动幅度已明显大于平滑钢索3软轨,其中约12±0.5Hz频率区间加速度信号能量幅值超出设定阈值,并对超出阈值信号频率点进行统计,计算出频宽Δf,如果Δf小于预设频宽要求,亦视为无效信号,下图信号幅频特性均满足预设要求,视为有效信号,因此可检测出穿梭机7在轨道接驳处,正在通过固定桩点,同样,从固定桩点滑移到钢索3也存在接驳处,穿梭机7行驶经过该处时也能检测到走出固定桩点的信号。
由于本实施例中穿梭机7需要在支撑硬轨道上滑行,为了避免穿梭机7在支撑硬轨道上滑行的行程被统计在路线行程中,本实施例中在支撑硬轨道的两端均设置有触发反射件6,即本实施例中同一固定桩点上又可以细分为两个分固定点,位于不同固定桩点的相邻两个分固定点之间距离构成所述的线路段,而同一固定 桩点的两个分固定点之间的距离则为支撑硬轨道的长度。本实施例中在各线路段上和各支撑硬轨道上,控制模块、计量模块、缓存模块的运行状况相同,即支撑硬轨道可视为较短长度的线路段。
需要说明的是,本实施例中红外传感器8、震动感应器、陀螺仪和加速度计三种监测方式既可以通过设置独立的阈值来监测穿梭机7是否移动至固定桩点处,这样当三种方式中的其中一个达到该阈值即可判定穿梭机7到达固定点或分固定点。红外传感器8、震动感应器、陀螺仪和加速度计三种监测方式也可以采用统筹的方式进行监测,即只有三种或两种监测方式均达到对应的阈值,则控制模块才会判定穿梭机7抵达固定点或分固定点处。
本实施例中计量模块为编码器,本实施例中穿梭机7通过驱动轮驱动前行,驱动轮通过驱动电机进行驱动,编码器用于计量驱动电机的转动圈数,然后通过驱动轮和驱动电机的传动比即可计算出驱动轮的转动圈数,由于驱动轮的周长是已知且固定不变的,通过将驱动轮转动圈数与驱动轮的周长相乘即可计算出穿梭机7的路线行程。
本实施例的定位系统还包括定位芯片和终端模块。定位芯片为GPS芯片,定位芯片安装在穿梭机7上。本实施例中定位芯片仅仅起到辅助定位的作用,即当本实施例的定位系统发生故障时,可以通过定位芯片来确定穿梭机7的位置。
本实施例中终端模块为终端显示装置,终端显示装置包括显示屏和终端处理器,控制模块与终端模块数据传输连接,传输的方式可以为数据线连接或者无线传输连接,控制模块会将接收的数据发送给终端模块,这些数据包括路线行程数据、监测模块的监测数据。终端处理器在接收到这些数据后会分析这些数据,并确定出穿梭机7的确定位置,然后将确定下的位置在显示屏上显示,从而方便了工作人员直观的查看穿梭机7的位置。
本实施例的穿梭机7在运行时,以图1中第一固定点1和第二固定点2为例。当穿梭机7运行至第一固定点1时,监测模块会监测出穿梭机7已到达固定桩点,控制模块会将缓冲模块中的路线行程数据清零,然后穿梭机7会沿着第一固定点1和第二固定点2之间的线路段发生位移,本实施例中计量模块(即编码器)会从穿梭机7离开第一固定点1时开始计量驱动电机的转动圈数,然后通过运算即 可计算出穿梭机7所发生的路线行程长度。然后通过第一固定点1和第二固定点2的经纬度、再结合计量的路线行程长度即可计算出穿梭机7的位置。需要说明的是,本实施例中线路段可以视为直线段,由于直线段的端点坐标已知,再结合直线段中某一点与对应端点的距离长度即可通过比例计算出该点的坐标。当穿梭机7运行至下一个线路段时,重复上述过程即可。
通过采用本发明的定位系统,如图6所示,传统的GPS定位公差范围9为2.5m,而本实施例的定位系统,由于是通过驱动轮转动的圈数进行定位的,在圈数取整数的情况下,可以实现一个驱动轮周长范围内的精准定位,因此本实施例的定位系统具有更好的定位精度。
本发明的穿梭机7定位方法的实施例,定位方法包括以下步骤:
S1:首先获知各固定点的具体位置以及各线路段的长度;
本实施例中需要提前获知各固定点的经纬度,有分固定点的需要确定分固定点的经纬度,然后需要获知任意相邻两个固定点(分固定点)之间的长度。需要说明的是,本实施例中各线路段均可视为直线段,即各线路段的长度为对应两个固定点之间的直线距离。如图9所示,L1表示第一固定点1和第二固定点2之间的线路段长度,L2表示第二固定点2和第三固定点之间的线路段长度。本实施例中以第一固定点1和第二固定点2为例,则第一固定点1的经纬度和第二固定点2的经纬度是已知的,第一固定固定点和第二固定点2之间的线路段长度L1也是已知的。
S2:在对应线路段上,通过计量模块计量穿梭机7从离开该线路段起点后所行驶的路线行程长度
具体而言,本实施例中需要通过编码器测量穿梭机7驱动电机的转动圈数,然后通过驱动电机和驱动轮的传动比确定驱动轮的转动圈数,将驱动轮的周长与驱动轮的转动圈数相乘即可确定出路线行程长度。需要说明的是,本实施例中路线行程长度为穿梭机7从各线路段的起点开始所发生的位移。
S3:通过该线路段所对应的两个固定点位置、线路段长度和计量的路线行程长度确定穿梭机7具体位置
具体而言,本实施例中首先计算出路线行程长度与线路段长度的比值,然后利用两个固定点的经纬度以及该比值即可计算出路线行程的终点,即穿梭机7所在位置。
以上实施例主要描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (10)

  1. 一种索道穿梭机定位系统,其特征在于:包括用于将索道线路分隔为多个线路段的多个固定点,还包括控制模块、缓存模块、监测模块以及计量模块,所述监测模块用于监测穿梭机(7)是否到达各线路段的终点,所述计量模块用于计量各线路段上穿梭机(7)从离开对应线路段的起点所行走的路线行程,所述缓存模块用于存储所述的路线行程,所述控制模块用于在穿梭机(7)抵达各线路段的终点时将缓存模块所存储的路线行程清零,所述控制模块还用于通过路线行程的长度以及该路线行程所对应两个固定点的位置来确定穿梭机(7)的位置;所述缓存模块、监测模块均与控制模块电性连接,所述计量模块与缓冲模块电性连接。
  2. 根据权利要求1所述的索道穿梭机定位系统,其特征在于:所述监测模块包括红外传感器(8)和触发反射件(6),所述红外传感器(8)和触发反射件(6)的其中一个设置在穿梭机(7)上,另一个设置在各固定点处。
  3. 根据权利要求1所述的索道穿梭机定位系统,其特征在于:所述监测模块包括震动感应器,所述震动感应器用于监测穿梭机(7)在索道线路上的震动频次,并将震动频次发送给控制模块,所述控制模块通过分析震动频次的变化来判断穿梭机(7)是否到达各路线段的终点。
  4. 根据权利要求3所述的索道穿梭机定位系统,其特征在于:所述监测模块包括陀螺仪和/或加速度计,所述陀螺仪和加速度计用于监测穿梭机(7)在索道线路上的震动幅值,并将震动幅值传送给控制模块,所述控制模块通过分析震动幅值的变化来判断穿梭机(7)是否到达各线路段的终点。
  5. 根据权利要求3所述的索道穿梭机定位系统,其特征在于:所述监测模块还包括防干扰器。
  6. 根据权利要求1所述的索道穿梭机定位系统,其特征在于:所述计量模块为编码器,所述穿梭机(7)上设置有驱动轮,所述驱动轮通过驱动电机进行驱动,所述编码器用于统计驱动电机的转动圈数。
  7. 根据权利要求1所述的索道穿梭机定位系统,其特征在于:所述穿梭机 (7)上安装有定位芯片。
  8. 根据权利要求1~7中任意一项所述的索道穿梭机定位系统,其特征在于:还包括用于显示穿梭机(7)位置的终端模块,所述终端模块与控制模块信号传输连接。
  9. 一种穿梭机定位方法,其特征在于包括以下步骤:
    S1:首先获知各固定点的具体位置以及各线路段的长度;
    S2:在对应线路段上,通过计量模块计量穿梭机(7)从离开该线路段起点后所行驶的路线行程长度;
    S3:通过该线路段所对应的两个固定点位置、线路段长度和计量的路线行程长度确定穿梭机(7)具体位置。
  10. 根据权利要求9所述的穿梭机定位方法,其特征在于:各线路段的长度为对应两个固定点之间的直线距离。
PCT/CN2021/072631 2020-01-19 2021-01-19 一种索道穿梭机定位系统及定位方法 WO2021143920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010069196.5A CN111174785B (zh) 2020-01-19 2020-01-19 一种索道穿梭机定位系统及定位方法
CN202010069196.5 2020-01-19

Publications (1)

Publication Number Publication Date
WO2021143920A1 true WO2021143920A1 (zh) 2021-07-22

Family

ID=70648009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072631 WO2021143920A1 (zh) 2020-01-19 2021-01-19 一种索道穿梭机定位系统及定位方法

Country Status (2)

Country Link
CN (1) CN111174785B (zh)
WO (1) WO2021143920A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129218A1 (fr) * 2021-11-18 2023-05-19 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de détermination d'une distance corrigée

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174785B (zh) * 2020-01-19 2023-07-18 广东自来物智能科技有限公司 一种索道穿梭机定位系统及定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103171598A (zh) * 2013-04-12 2013-06-26 莱芜钢铁集团有限公司 一种列车定位方法及系统
JP2014162338A (ja) * 2013-02-25 2014-09-08 Toshiba Corp 鉄道車両の位置検知システム
CN104684785A (zh) * 2012-09-27 2015-06-03 西门子公司 用于定位轨道车辆的方法
CN107901948A (zh) * 2016-12-27 2018-04-13 比亚迪股份有限公司 列车定位系统及定位方法
CN108313089A (zh) * 2017-01-18 2018-07-24 扬州立鼎恒新微电子科技有限公司 一种基于mems震动传感器的列车实时定位方法
CN111174785A (zh) * 2020-01-19 2020-05-19 广东自来物智能科技有限公司 一种索道穿梭机定位系统及定位方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015203476A1 (de) * 2015-02-26 2016-09-01 Siemens Aktiengesellschaft Verfahren und Ortungseinrichtung zum Bestimmen der Position eines spurgeführten Fahrzeugs, insbesondere eines Schienenfahrzeugs
CN106197472B (zh) * 2016-09-27 2020-07-14 中信重工开诚智能装备有限公司 一种轨道式机器人距离定位和里程校准装置及方法
EP3456606B1 (en) * 2017-09-15 2020-07-15 Aktiebolaget SKF Position determination method and system
CN110546462A (zh) * 2018-04-25 2019-12-06 深圳市大疆创新科技有限公司 机器人定位方法和装置
CN108801244B (zh) * 2018-06-11 2021-02-12 浙江国自机器人技术股份有限公司 一种适用于轨道机器人的定位系统和方法
CN109094577B (zh) * 2018-08-15 2024-03-19 广东自来物智能科技有限公司 一种索道支架装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104684785A (zh) * 2012-09-27 2015-06-03 西门子公司 用于定位轨道车辆的方法
JP2014162338A (ja) * 2013-02-25 2014-09-08 Toshiba Corp 鉄道車両の位置検知システム
CN103171598A (zh) * 2013-04-12 2013-06-26 莱芜钢铁集团有限公司 一种列车定位方法及系统
CN107901948A (zh) * 2016-12-27 2018-04-13 比亚迪股份有限公司 列车定位系统及定位方法
CN108313089A (zh) * 2017-01-18 2018-07-24 扬州立鼎恒新微电子科技有限公司 一种基于mems震动传感器的列车实时定位方法
CN111174785A (zh) * 2020-01-19 2020-05-19 广东自来物智能科技有限公司 一种索道穿梭机定位系统及定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129218A1 (fr) * 2021-11-18 2023-05-19 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de détermination d'une distance corrigée
EP4184193A1 (fr) 2021-11-18 2023-05-24 Commissariat à l'énergie atomique et aux énergies alternatives Procédé de détermination d'une distance corrigée

Also Published As

Publication number Publication date
CN111174785B (zh) 2023-07-18
CN111174785A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
CN102337710B (zh) 一种gps轨道不平顺检测系统及其检测方法
WO2021143920A1 (zh) 一种索道穿梭机定位系统及定位方法
Weston et al. Perspectives on railway track geometry condition monitoring from in-service railway vehicles
CN104527735B (zh) 基于f轨的磁浮列车定位与测速装置及方法
CN102343922B (zh) 基于无线传感器网络的高速铁路道岔振动特性在线监测系统
CN102141375B (zh) 线路全断面自动检测系统
CN203225009U (zh) 一种激光式交通情况调查系统
CN102180187B (zh) 一种铁路轨道高低高精度检测装置和检测方法
CN103465938A (zh) 轨道交通车辆的快速精确定位装置及定位方法
CN111016972B (zh) 车载式自动过分相地感器的检测系统及其检测方法
CN102069824A (zh) 轨道交通车辆的定位装置和方法
CN102033138A (zh) 一种基于轨道特征的车速测量装置
KR20130070130A (ko) 차륜 마모도 측정장치 및 차륜 마모도 측정방법
CN107642014B (zh) 铁路轨道外轨超高测量系统及方法
CN207850304U (zh) 一种电气化铁路接触网检测系统
CN103335601A (zh) 一种运动车辆的外廓尺寸快速自动检测装置
CN104713769B (zh) 一种用于道路状态评估的主动激振检测系统
CN105509668B (zh) 轨道波磨检测系统
CN114719884A (zh) 一种惯导系统姿态测量精度评估方法及应用
CN114132358B (zh) 一种多平台智能化轨道综合检测系统
CN108242154A (zh) 一种实时检测道路车辆行程车速的方法及系统
CN109668515A (zh) 列车轮对尺寸动态检测系统及检测方法
CN201945294U (zh) 线路全断面自动检测系统
CN208411751U (zh) 一种高铁线路测量系统
CN101302738B (zh) 车辙检测仪器及其检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741249

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-01-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21741249

Country of ref document: EP

Kind code of ref document: A1