WO2021143527A1 - 一种轴向差动暗场共焦显微测量装置及其方法 - Google Patents

一种轴向差动暗场共焦显微测量装置及其方法 Download PDF

Info

Publication number
WO2021143527A1
WO2021143527A1 PCT/CN2020/141185 CN2020141185W WO2021143527A1 WO 2021143527 A1 WO2021143527 A1 WO 2021143527A1 CN 2020141185 W CN2020141185 W CN 2020141185W WO 2021143527 A1 WO2021143527 A1 WO 2021143527A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semi
lens
sample
reflective
Prior art date
Application number
PCT/CN2020/141185
Other languages
English (en)
French (fr)
Inventor
刘俭
刘辰光
刘婧
姜勇
陈刚
Original Assignee
哈尔滨工业大学
南京恒锐精密仪器有限公司
江苏锐精光电研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学, 南京恒锐精密仪器有限公司, 江苏锐精光电研究院有限公司 filed Critical 哈尔滨工业大学
Publication of WO2021143527A1 publication Critical patent/WO2021143527A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection

Definitions

  • the invention relates to the technical field of optical precision measurement, and more specifically to an axially differential dark field confocal microscopic measurement device and a method thereof.
  • High-performance optical components and micro-electromechanical components are the core components of modern high-end equipment. In order to ensure their processing quality and service reliability, surface topography measurement and sub-surface defect detection are required. At present, there is no equipment at home and abroad that can achieve the above at the same time. Function.
  • the existing surface topography non-destructive measurement technologies at home and abroad mainly include: confocal microscopy measurement technology, white light interference microscopy measurement technology and zoom microscopy measurement technology.
  • the confocal microscopy measurement technology Compared with the other two technologies, the confocal microscopy measurement technology has the characteristics of wide applicability for measuring samples and the ability to measure complex sample structures, so it is widely used in the field of industrial testing.
  • Non-destructive testing techniques for subsurface defects mainly include: laser modulation and scattering technology, total internal reflection microscopy, optical coherence tomography, high-frequency scanning acoustic microscopy, and X-ray microscopy imaging technology. It generally has shortcomings such as low depth positioning accuracy, low signal-to-noise ratio, low detection efficiency, and limited detection samples.
  • the present invention provides an axial differential dark-field confocal microscopy measurement device and method thereof, which can simultaneously obtain the three-dimensional distribution information of nano-scale surface scratches, wear, sub-surface cracks, bubbles and other defects. And the integrated detection function of sub-surface defects solves the defects of various measurement technologies in the prior art.
  • An axial differential dark field confocal microscopy measurement device comprising: a ring light illumination module, a ring light scanning module and a differential confocal detection module;
  • the ring light illumination module includes a laser, a beam expander, a polarizer one, a polarization beam splitting film, a quarter wave plate, a conical lens, and a plane reflector in sequence according to the light propagation direction;
  • the annular light scanning module includes: a semi-reflective semi-transparent film one, a two-dimensional scanning galvanometer, a scanning lens, a tube lens, and an objective lens;
  • the differential confocal detection module includes: a semi-reflective semi-transparent film and a detection light path; the detection light path includes a transmission light path unit and a reflection light path unit;
  • the transmissive light path unit includes: diaphragm 1, polarizer 2, focusing lens 1, pinhole 1, and camera 1.
  • the reflective light path unit includes diaphragm 2, polarizer 3 in order according to the light propagation direction. , Focus lens two, pinhole two and camera two;
  • the polarization splitting film and the semi-reflective and semi-transparent film are arranged correspondingly, and the semi-reflective and semi-transparent film one and the semi-reflective and semi-transparent film two are arranged correspondingly;
  • the light beam reflected from the polarization splitting film passes through the semi-reflective semi-transparent film one for reflection and transmission; the light beam passing through the semi-reflective semi-transparent film one transmits again through the semi-reflective semi-transparent film two for reflection and transmission.
  • the combination of the conical lens and the flat mirror shapes the Gaussian beam into a ring light with adjustable inner and outer diameters
  • the beam expander placed at the front end of the optical path of the conical lens is used to adjust the inner diameter of the ring light
  • the outer diameter of the ring light depends on the distance between the conical lens and the plane mirror. The longer the relative distance, the larger the outer diameter.
  • the outer diameter of the Gaussian beam shaped into a ring light matches the entrance pupil of the objective lens.
  • the scanning lens working surface is arranged at the front focal surface of the tube lens.
  • the sample to be tested is arranged in front of the objective lens, and the ring light is incident on the objective lens to focus on the sample to be tested.
  • the apertures of the first stop and the second stop are complementary to the inner diameter of the ring light, and the first stop and the second stop completely block the reflected light beam from the sample to be tested, and only allow all The scattered light of the information of the sample to be tested enters the detection light path.
  • the transmitted light beam is focused to a place far away from the focal plane, passes through the pinhole and is collected by the camera;
  • the reflected light beam is focused to a near-off focal plane, passes through the second pinhole and is collected by the second camera;
  • the far-away focal plane is located between the first pinhole and the camera, and the near-off focal plane is located between the second focusing lens and the second pinhole.
  • the parallel laser beam emitted by the laser is enlarged by the beam diameter of the beam expander, and then becomes linearly polarized light after passing through the polarizer, and then passes through the polarization beam splitter, quarter wave plate and conical lens in turn, and then is reflected by the plane mirror.
  • the reflected light beam is shaped into a circular beam after passing through the conical lens again, and after passing through the quarter wave plate again, the polarization direction changes by 90°, and is reflected by the polarization beam splitting film to the semi-reflective semi-transparent film one;
  • the light beam is reflected by the semi-reflective and semi-transmissive film one- and two-dimensional scanning galvanometer, and is focused to the front focal plane of the tube lens through the scanning lens, and a circular parallel beam is generated by the tube lens and enters the objective lens to form a focused spot on the sample to be tested. Ring light illumination for the sample to be tested;
  • the light beam incident from the semi-reflective film 1 to the semi-reflective film 2 is divided into two detection beams:
  • the light beam passes through the diaphragm 1, the direct reflected light of the sample to be tested is blocked and filtered out, and the scattered light of the sample to be tested passes through the second polarizer and the focusing lens 1 to be focused to a place far from the focal plane, passing through Once the pinhole is collected by the camera;
  • the light beam passes through the second diaphragm, the direct reflected light of the sample to be tested is blocked and filtered out, and the scattered light of the sample to be tested passes through the polarizer three and the focusing lens two in turn to be focused to a near-off focal plane, passing through The second pinhole is collected by the second camera; the differential confocal detection of the sample to be tested is completed;
  • the device in the present invention uses a combination of a conical lens and a flat mirror to shape the Gaussian beam into a ring beam with adjustable inner and outer diameters, and uses ring light with a suitable aperture for illumination and complementary aperture shielding detection to effectively separate the reflected signal from the sample.
  • the scattered signal overcomes the shortcomings of the traditional confocal measurement sample sub-surface defects, and realizes the nano-level high-precision detection of the sub-surface defects of high-performance optical components and microelectromechanical components;
  • the present invention uses the two detection light paths before and after the focus to scan the object to be measured, and performs differential processing for differential detection; the optical path layout and detection of the differential confocal improves the sensitivity of the measurement system in the axial direction. Linearity and signal-to-noise ratio can significantly suppress common mode noise caused by differences in environmental conditions, fluctuations in light intensity of the light source, and electrical drift of the detector.
  • Fig. 1 is a schematic structural diagram of an axially differential dark field confocal microscopy measurement device provided by the present invention
  • the embodiment of the invention discloses an axial differential dark field confocal microscopy measurement device, which includes: a ring light illumination module, a ring light scanning module and a differential confocal detection module;
  • the ring light illumination module includes laser 1, beam expander 2, polarizer one 3, polarization splitter film 4, quarter wave plate 5, conical lens 6 and plane mirror 7 in sequence according to the light propagation direction;
  • the ring light scanning module includes in turn according to the light propagation direction: a semi-reflective semi-transparent film 8, a two-dimensional scanning galvanometer 9, a scanning lens 10, a tube lens 11 and an objective lens 12;
  • the differential confocal detection module includes: a semi-reflective semi-transparent film 14 and a detection light path; the detection light path includes a transmission light path unit and a reflection light path unit;
  • the transmitted light path unit includes: diaphragm 15, polarizer 2 16, focusing lens 17, pinhole 18, and camera 19;
  • the reflected light path unit includes: diaphragm 2 20, polarization Film three 21, focusing lens two 22, pinhole two 23 and camera two 24;
  • the polarization splitting film 4 is arranged corresponding to the semi-reflective and semi-transparent film one 8, and the semi-reflective and semi-transparent film one 8 and the semi-reflective and semi-transparent film two 14 are arranged correspondingly;
  • the light beam reflected from the polarization beam splitting film 4 is reflected and transmitted through the semi-reflective semi-transparent film 8; the light beam transmitted through the semi-reflective semi-transparent film 8 is reflected and transmitted through the semi-reflective semi-transparent film 2 14 again.
  • the combination of the conical lens 6 and the flat mirror 7 shapes the Gaussian beam into a ring light with adjustable inner and outer diameters.
  • the beam expander 2 placed at the front end of the optical path of the conical lens 6 is used to adjust the inner diameter of the ring light.
  • the outer diameter after shaping into the ring light matches the entrance pupil of the objective lens 12, which meets the observation requirements of the sample.
  • the working surface of the scanning lens 10 is arranged at the front focal surface of the tube lens 11.
  • the sample 13 to be tested is arranged in front of the objective lens 12, and the ring light is incident on the objective lens 12 and then focused on the sample 13 to be tested.
  • the apertures of diaphragm one 15 and diaphragm two 20 are complementary to match the inner diameter of the ring light, diaphragm one 15 and diaphragm two 20 completely block the reflected light beam from the sample 13 to be tested, and only the sample 13 to be tested is allowed to be carried.
  • the scattered light of the information enters the detection light path, effectively separating the reflected signal and the scattered signal from the sample.
  • the transmitted light beam is focused away from the focal plane, passes through the pinhole 18 and is collected by the camera 19;
  • the reflected light beam is focused to a near-off focal plane, passes through the second pinhole 23 and is collected by the second camera 24;
  • the far-away focal plane is located between pinhole one 18 and camera one 19, and the near-off focal plane is located between focus lens two 22 and pinhole two 23.
  • Camera one 19 is placed close to pinhole one 18; camera two 22 is placed close to pinhole two 23; due to the two light path units of the reflected light path and the transmitted light path, the device has a differential detection optical path layout.
  • the parallel laser beam emitted by laser 1 is enlarged by beam expander 2 and becomes linearly polarized light after passing through polarizer 3, which passes through polarization beam splitting film 4, quarter wave plate 5 and conical lens 6 in turn , Is reflected by the plane mirror 7; the reflected beam passes through the conical lens 6 again and is shaped into a ring beam.
  • the polarization direction changes by 90° and is reflected by the polarization beam splitting film 4 to semi-reflective and semi-transparent Film one 8;
  • the ring beam is reflected by the semi-reflective film one 8, the two-dimensional scanning galvanometer 9, and is focused to the front focal plane of the tube lens 11 by the scanning lens 10, and a circular parallel beam is generated by the tube lens 11 and enters the objective lens 12, in A focused light spot is formed on the sample 13 to be tested to realize the ring light illumination of the sample 13 to be tested;
  • the light beam passes through the diaphragm 15 and the direct reflected light of the sample 13 to be tested is blocked and filtered out.
  • the scattered light of the sample 13 to be tested passes through the second polarizer 16 and the focusing lens 17 in turn to be focused away from the focal plane. Collected by camera 19 through pinhole 18;
  • the light beam passes through the diaphragm two 20, and the direct reflected light of the sample 13 to be tested is blocked and filtered out.
  • the scattered light of the sample 13 to be tested passes through the polarizer three 21 and the focusing lens two 22 in turn to be focused to a near defocusing plane. Collected by the second camera 24 through the second pinhole 23; complete the differential confocal detection of the sample 13 to be tested;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种轴向差动暗场共焦显微测量装置及其方法,该装置包括环形光照明模块、环形光扫描模块和差动共焦探测模块;通过照明光束整形与互补孔径遮挡探测,有效分离样品反射信号与散射信号,获取纳米级亚表面裂痕、气泡等缺陷的三维分布信息;通过差动共焦探测,提高了测量系统轴向的灵敏度、线性和信噪比,可显著抑制环境状态差异、光源光强波动和探测器电气漂移等引起的共模噪声。

Description

一种轴向差动暗场共焦显微测量装置及其方法 技术领域
本发明涉及光学精密测量技术领域,更具体的说是涉及一种轴向差动暗场共焦显微测量装置及其方法。
背景技术
高性能光学元件及微机电元件是现代高端装备的核心组成部分,为保障其加工质量和服役可靠性需要对其进行表面形貌测量和亚表面缺陷检测,目前国内外尚无设备能够同时实现上述功能。
国内外现有表面形貌无损测量技术主要包括:共焦显微测量技术、白光干涉显微测量技术和变焦显微测量技术。其中共焦显微测量技术相比于另外两种技术具有测量样品适用性宽、可以测量复杂样品结构的特点,因而在工业检测领域广泛应用。亚表面缺陷无损检测技术主要包括:激光调制散射技术,全内反射显微技术,光学相干层析技术,高频扫描声学显微技术,X射线显微成像技术。其普遍存在深度定位精度不高、信噪比低、检测效率不高,检测样品受限等不足。
因此,如何提供一种测量精度高的轴向差动暗场共焦显微测量装置及其方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种轴向差动暗场共焦显微测量装置及其方法,可同时获取纳米级表面划痕、磨损及亚表面裂痕、气泡等缺陷的三维分布信息,兼具表面及亚表面缺陷一体化检测功能,解决了现有技术中的各测量技术所存在的缺陷。
为了实现上述目的,本发明采用如下技术方案:
一种轴向差动暗场共焦显微测量装置,包括:环形光照明模块、环形光扫描模块和差动共焦探测模块;
所述环形光照明模块按照光线传播方向依次包括:激光器、扩束镜、偏振片一、偏振分光膜、四分之一波片、锥透镜和平面反射镜;
所述环形光扫描模块按照光线传播方向依次包括:半反半透膜一、二维扫描振镜、扫描透镜、管镜和物镜;
所述差动共焦探测模块包括:半反半透膜二和探测光路;所述探测光路包括透射光路单元和反射光路单元;
所述透射光路单元按照光线传播方向依次包括:光阑一、偏振片二、聚焦透镜一、针孔一和相机一;所述反射光路单元按照光线传播方向依次包括:光阑二、偏振片三、聚焦透镜二、针孔二和相机二;
其中所述偏振分光膜与所述半反半透膜一对应设置,所述半反半透膜一和所述半反半透膜二对应设置;
从所述偏振分光膜反射的光束经过所述半反半透膜一进行反射和透射;经过所述半反半透膜一透射的光束再次经过所述半反半透膜二进行反射和透射。
优选的,所述锥透镜与所述平面反射镜的组合将高斯光束整形为内外径可调节的环形光,放置于所述锥透镜光路前端的所述扩束镜用以调整环形光的内径,所述扩束镜输出光斑直径越大,环形光的厚度越大,内径越小;环形光外径大小依赖所述锥透镜与所述平面反射镜的距离,相对距离越长,外径越大;高斯光束整形为环形光后的外径与所述物镜的入瞳相匹配。
优选的,所述扫描透镜工作面设置于所述管镜的前焦面处。
优选的,待测样品设置于所述物镜的前方,环形光入射至所述物镜后在所述待测样品上聚焦。
优选的,所述光阑一和所述光阑二的孔径与环形光内径互补匹配,所述光阑一和所述光阑二完全遮挡来自所述待测样品的反射光束,仅允许携带所述待测样品信息的散射光进入所述探测光路。
优选的,在所述透射光路单元中,透射光束被聚焦至远离焦平面处,穿过针孔一被相机一收集;
在所述反射光路单元中,反射光束被聚焦至近离焦平面处,穿过针孔二被相机二收集;
所述远离焦平面位于所述针孔一与所述相机之间,所述近离焦平面位于所述聚焦透镜二和所述针孔二之间。
一种轴向差动暗场共焦显微测量方法,具体包括以下步骤:
S1.激光器所发平行激光光束,通过扩束镜光束直径放大后,经过偏振片一变为线偏振光,依次通过偏振分光膜、四分之一波片和锥透镜后,被平面反射镜反射;反射光束再次通过所述锥透镜后被整形为环形光束,再次通过所述四分之一波片后,偏振方向变化90°,被所述偏振分光膜反射至半反半透膜一;环形光束经所述半反半透膜一、二维扫描振镜反射,通过扫描透镜聚焦至管镜前焦面处,通过管镜产生环形平行光束入射物镜,在待测样品上形成聚焦光斑,实现对所述待测样品的环形光照明;
S2.控制所述二维扫描振镜偏转使聚焦光斑在样品上进行二维扫描,所述待测样品表面及亚表面中的直接反射光与散射光依次经过所述物镜、所述管镜、所述扫描透镜和所述二维扫描振镜后,透射所述半反半透膜一,实现对所述待测样品的环形光扫描;
S3.从所述半反半透膜一入射到半反半透膜二的光束被分为两路探测光束:
透射光路中,光束经过光阑一,所述待测样品的直接反射光被遮挡滤除,所述待测样品的散射光依次通过偏振片二和聚焦透镜一被聚焦至远离焦平面处,经过针孔一被相机一收集;
反射光路中,光束经过光阑二,所述待测样品的直接反射光被遮挡滤除,所述待测样品的散射光依次通过偏振片三和聚焦透镜二被聚焦至近离焦平面处,经过针孔二被相机二收集;完成对所述待测样品的差动共焦探测;
S4.竖直方向移动所述待测样品,进行对所述待测样品不同轴向位置的横向二维扫描,实现对所述待测样品的立体显微测量。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种轴向差动暗场共焦显微测量装置,具有以下有益效果:
第一、本发明中的该装置使用锥透镜与平面反射镜的组合将高斯光束整形为内外径可调节的环形光束,利用合适孔径的环形光照明与互补孔径遮挡探测,有效分离样品反射信号与散射信号,克服了传统共焦测量样品亚表面 缺陷的不足,实现高性能光学元件及微机电元件的亚表面缺陷的纳米级高精度检测;
第二、本发明利用焦前、焦后两路探测光路对被测物体进行扫描,进行差动处理来进行差动探测;差动共焦的光路布局和探测提高了测量系统轴向的灵敏度、线性和信噪比,可显著抑制环境状态差异、光源光强波动、探测器电气漂移等引起的共模噪声。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明提供的一种轴向差动暗场共焦显微测量装置的结构示意图;
图中:1激光器、2扩束镜、3偏振片一、4偏振分光膜、5四分之一波片、6锥透镜、7平面反射镜、8半反半透膜一、9二维扫描振镜、10扫描透镜、11管镜、12物镜、13样品、14半反半透膜二、15光阑一、16偏振片二、17聚焦透镜一、18针孔一、19相机一、20光阑二、21偏振片三、22聚焦透镜二、23针孔二、24相机二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种轴向差动暗场共焦显微测量装置,包括:环形光照明模块、环形光扫描模块和差动共焦探测模块;
环形光照明模块按照光线传播方向依次包括:激光器1、扩束镜2、偏振片一3、偏振分光膜4、四分之一波片5、锥透镜6和平面反射镜7;
环形光扫描模块按照光线传播方向依次包括:半反半透膜一8、二维扫描振镜9、扫描透镜10、管镜11和物镜12;
差动共焦探测模块包括:半反半透膜二14和探测光路;探测光路包括透射光路单元和反射光路单元;
透射光路单元按照光线传播方向依次包括:光阑一15、偏振片二16、聚焦透镜一17、针孔一18和相机一19;反射光路单元按照光线传播方向依次包括:光阑二20、偏振片三21、聚焦透镜二22、针孔二23和相机二24;
其中偏振分光膜4与半反半透膜一8对应设置,半反半透膜一8和半反半透膜二14对应设置;
从偏振分光膜4反射的光束经过半反半透膜一8进行反射和透射;经过半反半透膜一8透射的光束再次经过半反半透膜二14进行反射和透射。
为了进一步实施上述技术方案,锥透镜6与平面反射镜7的组合将高斯光束整形为内外径可调节的环形光,放置于锥透镜6光路前端的扩束镜2用以调整环形光的内径,扩束镜2输出光斑直径越大,环形光的厚度越大,内径越小;环形光外径大小依赖锥透镜6与平面反射镜7的距离,相对距离越长,外径越大;高斯光束整形为环形光后的外径与物镜12的入瞳相匹配,满足对样品的观察需求。
为了进一步实施上述技术方案,扫描透镜10工作面设置于管镜11的前焦面处。
为了进一步实施上述技术方案,待测样品13设置于物镜12的前方,环形光入射至物镜12后在待测样品13上聚焦。
为了进一步实施上述技术方案,光阑一15和光阑二20的孔径与环形光内径互补匹配,光阑一15和光阑二20完全遮挡来自待测样品13的反射光束,仅允许携带待测样品13信息的散射光进入探测光路,有效分离来自样品的反射信号与散射信号。
为了进一步实施上述技术方案,在透射光路单元中,透射光束被聚焦至远离焦平面处,穿过针孔一18被相机一19收集;
在反射光路单元中,反射光束被聚焦至近离焦平面处,穿过针孔二23被相机二24收集;
远离焦平面位于针孔一18与相机一19之间,近离焦平面位于聚焦透镜二22和针孔二23之间。
需要说明的是:
相机一19紧贴针孔一18放置;相机二22紧贴针孔二23放置;由于具有反射光路和透射光路两个光路单元,装置具有差动探测的光路布局。
一种轴向差动暗场共焦显微测量方法,具体包括以下步骤:
S1.激光器1所发平行激光光束,通过扩束镜2光束直径放大后,经过偏振片一3变为线偏振光,依次通过偏振分光膜4、四分之一波片5和锥透镜6后,被平面反射镜7反射;反射光束再次通过锥透镜6后被整形为环形光束,再次通过四分之一波片5后,偏振方向变化90°,被偏振分光膜4反射至半反半透膜一8;环形光束经半反半透膜一8、二维扫描振镜9反射,通过扫描透镜10聚焦至管镜11前焦面处,通过管镜11产生环形平行光束入射物镜12,在待测样品13上形成聚焦光斑,实现对待测样品13的环形光照明;
S2.控制二维扫描振镜9偏转使聚焦光斑在样品13上进行二维扫描,待测样品13表面及亚表面中的直接反射光与散射光依次经过物镜12、管镜11、扫描透镜10和二维扫描振镜9后,透射半反半透膜一8,实现对待测样品13的环形光扫描;
S3.从半反半透膜一8入射到半反半透膜二14的光束被分为两路探测光束:
透射光路中,光束经过光阑一15,待测样品13的直接反射光被遮挡滤除,待测样品13的散射光依次通过偏振片二16和聚焦透镜一17被聚焦至远离焦平面处,经过针孔一18被相机一19收集;
反射光路中,光束经过光阑二20,待测样品13的直接反射光被遮挡滤除,待测样品13的散射光依次通过偏振片三21和聚焦透镜二22被聚焦至近离焦平面处,经过针孔二23被相机二24收集;完成对待测样品13的差动共焦探测;
S4.竖直方向移动待测样品13,进行对待测样品13不同轴向位置的横向二维扫描,实现对待测样品13的立体显微测量。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。 对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种轴向差动暗场共焦显微测量装置,其特征在于,包括:环形光照明模块、环形光扫描模块和差动共焦探测模块;
    所述环形光照明模块按照光线传播方向依次包括:激光器(1)、扩束镜(2)、偏振片一(3)、偏振分光膜(4)、四分之一波片(5)、锥透镜(6)和平面反射镜(7);
    所述环形光扫描模块按照光线传播方向依次包括:半反半透膜一(8)、二维扫描振镜(9)、扫描透镜(10)、管镜(11)和物镜(12);
    所述差动共焦探测模块包括:半反半透膜二(14)和探测光路;所述探测光路包括透射光路单元和反射光路单元;
    所述透射光路单元按照光线传播方向依次包括:光阑一(15)、偏振片二(16)、聚焦透镜一(17)、针孔一(18)和相机一(19);
    所述反射光路单元按照光线传播方向依次包括:光阑二(20)、偏振片三(21)、聚焦透镜二(22)、针孔二(23)和相机二(24);
    其中所述偏振分光膜(4)与所述半反半透膜一(8)对应设置,所述半反半透膜一(8)和所述半反半透膜二(14)对应设置;
    从所述偏振分光膜(4)反射的光束经过所述半反半透膜一(8)进行反射和透射;经过所述半反半透膜一(8)透射的光束再次经过所述半反半透膜二(14)进行反射和透射。
  2. 根据权利要求1所述的一种轴向差动暗场共焦显微测量装置,其特征在于,所述锥透镜(6)与所述平面反射镜(7)的组合将高斯光束整形为内外径可调节的环形光,放置于所述锥透镜(6)光路前端的所述扩束镜(2)用以调整环形光的内径,所述扩束镜(2)输出光斑直径越大,环形光的厚度越大,内径越小;环形光外径大小依赖所述锥透镜(6)与所述平面反射镜(7)的距离,相对距离越长,外径越大;高斯光束整形为环形光后的外径与所述物镜(12)的入瞳相匹配。
  3. 根据权利要求1所述的一种轴向差动暗场共焦显微测量装置,其特征在于,所述扫描透镜(10)工作面设置于所述管镜(11)的前焦面处。
  4. 根据权利要求1所述的一种轴向差动暗场共焦显微测量装置,其特征在于,待测样品(13)设置于所述物镜(12)的前方,环形光入射至所述物镜(12)后在所述待测样品(13)上聚焦。
  5. 根据权利要求4所述的一种轴向差动暗场共焦显微测量装置,其特征在于,所述光阑一(15)和所述光阑二(20)的孔径与环形光内径互补匹配,所述光阑一(15)和所述光阑二(20)完全遮挡来自所述待测样品(13)的反射光束,仅允许携带所述待测样品(13)信息的散射光进入所述探测光路。
  6. 根据权利要求1所述的一种轴向差动暗场共焦显微测量装置,其特征在于,
    在所述透射光路单元中,透射光束被聚焦至远离焦平面处,穿过针孔一(18)被相机一(19)收集;
    在所述反射光路单元中,反射光束被聚焦至近离焦平面处,穿过针孔二(23)被相机二(24)收集;
    所述远离焦平面位于所述针孔一(18)与所述相机一(19)之间,所述近离焦平面位于所述聚焦透镜二(22)和所述针孔二(23)之间。
  7. 一种轴向差动暗场共焦显微测量方法,基于权利要求1~6中任意一项所述的轴向差动暗场共焦显微测量装置,其特征在于,具体包括以下步骤:
    S1.激光器(1)所发平行激光光束,通过扩束镜(2)光束直径放大后,经过偏振片一(3)变为线偏振光,依次通过偏振分光膜(4)、四分之一波片(5)和锥透镜(6)后,被平面反射镜(7)反射;反射光束再次通过所述锥透镜(6)后被整形为环形光束,再次通过所述四分之一波片(5)后,偏振方向变化90°,被所述偏振分光膜(4)反射至半反半透膜一(8);环形光束经所述半反半透膜一(8)、二维扫描振镜(9)反射,通过扫描透镜(10)聚焦至管镜(11)前焦面处,通过管镜(11)产生环形平行光束入射物镜(12),在待测样品(13)上形成聚焦光斑,实现对所述待测样品(13)的环形光照明;
    S2.控制所述二维扫描振镜(9)偏转使聚焦光斑在样品(13)上进行二维扫描,所述待测样品(13)表面及亚表面中的直接反射光与散射光依次经过所述物镜(12)、所述管镜(11)、所述扫描透镜(10)和所述二维扫描 振镜(9)后,透射所述半反半透膜一(8),实现对所述待测样品(13)的环形光扫描;
    S3.从所述半反半透膜一(8)入射到半反半透膜二(14)的光束被分为两路探测光束:
    透射光路中,光束经过光阑一(15),所述待测样品(13)的直接反射光被遮挡滤除,所述待测样品(13)的散射光依次通过偏振片二(16)和聚焦透镜一(17)被聚焦至远离焦平面处,经过针孔一(18)被相机一(19)收集;
    反射光路中,光束经过光阑二(20),所述待测样品(13)的直接反射光被遮挡滤除,所述待测样品(13)的散射光依次通过偏振片三(21)和聚焦透镜二(22)被聚焦至近离焦平面处,经过针孔二(23)被相机二(24)收集;完成对所述待测样品(13)的差动共焦探测;
    S4.竖直方向移动所述待测样品(13),进行对所述待测样品(13)不同轴向位置的横向二维扫描,实现对所述待测样品(13)的立体显微测量。
PCT/CN2020/141185 2020-01-18 2020-12-30 一种轴向差动暗场共焦显微测量装置及其方法 WO2021143527A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010056473.9A CN111239153B (zh) 2020-01-18 2020-01-18 一种轴向差动暗场共焦显微测量装置及其方法
CN202010056473.9 2020-01-18

Publications (1)

Publication Number Publication Date
WO2021143527A1 true WO2021143527A1 (zh) 2021-07-22

Family

ID=70865559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141185 WO2021143527A1 (zh) 2020-01-18 2020-12-30 一种轴向差动暗场共焦显微测量装置及其方法

Country Status (2)

Country Link
CN (1) CN111239153B (zh)
WO (1) WO2021143527A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018873A (zh) * 2021-11-09 2022-02-08 之江实验室 一种快速大视场高分辨的光学内窥显微系统及方法
CN114486910A (zh) * 2022-01-05 2022-05-13 中国科学院合肥物质科学研究院 一种平面光学元件表面疵病检测装置和检测方法
CN115128002A (zh) * 2022-06-20 2022-09-30 中国科学院上海光学精密机械研究所 一种测量材料非线性光学性质的系统及方法
CN115598147A (zh) * 2022-09-30 2023-01-13 南京理工大学(Cn) 基于白光显微干涉的微球内外表面缺陷检测装置及方法
CN116577334A (zh) * 2023-03-15 2023-08-11 哈尔滨工业大学 基于矢量偏振光束的差分暗场共焦显微测量装置与方法
CN117006969A (zh) * 2022-11-23 2023-11-07 深圳市中图仪器股份有限公司 光学测量系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239153B (zh) * 2020-01-18 2023-09-15 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法
CN113984771B (zh) * 2021-09-24 2023-07-28 哈尔滨工业大学 基于矢量偏振光的深度学习暗场共焦显微测量装置与方法
CN113960010B (zh) * 2021-09-24 2024-05-14 江苏锐精光电研究院有限公司 基于涡旋光束的暗场共聚焦拉曼偏振光谱测量装置与方法
CN116952544B (zh) * 2023-08-29 2024-03-08 茂莱(南京)仪器有限公司 用于ar光波导性能检测设备的辅助定标工装及使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208913A (ja) * 1990-12-03 1992-07-30 Nikon Corp 光導波路デバイス及びそれを用いたコンフォーカルレーザ走査微分干渉顕微鏡
JPH1195113A (ja) * 1997-09-19 1999-04-09 Olympus Optical Co Ltd 共焦点顕微鏡及びこれに適用される回転ディスク
EP1992905A1 (en) * 2007-05-16 2008-11-19 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Optical sensor with tilt error correction
CN108020505A (zh) * 2017-11-30 2018-05-11 哈尔滨工业大学 变焦共聚焦光镊显微成像装置和方法
CN109187491A (zh) * 2018-11-13 2019-01-11 北京理工大学 后置分光瞳差动共焦拉曼、libs光谱显微成像方法与装置
CN109470710A (zh) * 2018-12-07 2019-03-15 哈尔滨工业大学 基于同轴双圆锥透镜的暗场共焦亚表面检测装置和方法
CN109490201A (zh) * 2018-11-06 2019-03-19 浙江大学 一种基于光束整形的结构光生成装置和方法
US20190162662A1 (en) * 2017-11-27 2019-05-30 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Substrates with independently tunable topographies and chemistries for quantifiable surface-induced cell behavior
CN111239153A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650846A (en) * 1968-11-04 1972-03-21 Gen Electric Process for reconstituting the grain structure of metal surfaces
US4677386A (en) * 1985-07-31 1987-06-30 Chevron Research Company Method of interpreting impedance distribution of an earth formation obtained by a moving array using end emitting current electrodes sequentially activated and a series of potential electrodes
DE19640495C2 (de) * 1996-10-01 1999-12-16 Leica Microsystems Vorrichtung zur konfokalen Oberflächenvermessung
FR2864438B1 (fr) * 2003-12-31 2006-11-17 Mauna Kea Technologies Tete optique miniature a balayage integre pour la realisation d'une image confocale homogene, et systeme d'imagerie confocale utilisant ladite tete
WO2013089258A1 (ja) * 2011-12-15 2013-06-20 株式会社ニコン 顕微鏡及び刺激装置
CN103163154B (zh) * 2013-02-04 2015-05-27 西安交通大学 一种硬脆性高精元件亚表面损伤程度的表征方法
CN103135369B (zh) * 2013-03-21 2014-11-26 中国科学院上海光学精密机械研究所 光刻照明模式产生装置
CN108413867B (zh) * 2017-04-18 2020-08-04 北京理工大学 激光微纳加工分光瞳差动共焦在线监测一体化方法与装置
CN109580640A (zh) * 2018-12-07 2019-04-05 哈尔滨工业大学 一种环形光式暗场共焦亚表面无损检测装置和方法
CN109580639A (zh) * 2018-12-07 2019-04-05 哈尔滨工业大学 基于同心双锥面镜的暗场共焦亚表面检测装置和方法
CN109470711A (zh) * 2018-12-07 2019-03-15 哈尔滨工业大学 一种遮挡式暗场共焦亚表面无损检测装置和方法
CN109916909B (zh) * 2019-03-25 2021-04-06 西安工业大学 光学元件表面形貌及亚表面缺陷信息的检测方法及其装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208913A (ja) * 1990-12-03 1992-07-30 Nikon Corp 光導波路デバイス及びそれを用いたコンフォーカルレーザ走査微分干渉顕微鏡
JPH1195113A (ja) * 1997-09-19 1999-04-09 Olympus Optical Co Ltd 共焦点顕微鏡及びこれに適用される回転ディスク
EP1992905A1 (en) * 2007-05-16 2008-11-19 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Optical sensor with tilt error correction
US20190162662A1 (en) * 2017-11-27 2019-05-30 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Substrates with independently tunable topographies and chemistries for quantifiable surface-induced cell behavior
CN108020505A (zh) * 2017-11-30 2018-05-11 哈尔滨工业大学 变焦共聚焦光镊显微成像装置和方法
CN109490201A (zh) * 2018-11-06 2019-03-19 浙江大学 一种基于光束整形的结构光生成装置和方法
CN109187491A (zh) * 2018-11-13 2019-01-11 北京理工大学 后置分光瞳差动共焦拉曼、libs光谱显微成像方法与装置
CN109470710A (zh) * 2018-12-07 2019-03-15 哈尔滨工业大学 基于同轴双圆锥透镜的暗场共焦亚表面检测装置和方法
CN111239153A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG ZHENGDE: "Shaped Annular Beam Differential Confocal Measurement with Higher Spatial Resolution", JOURNAL OF APPLIED OPTICS, vol. 28, no. 4, 31 July 2007 (2007-07-31), pages 488 - 495, XP055828365 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114018873A (zh) * 2021-11-09 2022-02-08 之江实验室 一种快速大视场高分辨的光学内窥显微系统及方法
CN114018873B (zh) * 2021-11-09 2024-05-28 之江实验室 一种快速大视场高分辨的光学内窥显微系统及方法
CN114486910A (zh) * 2022-01-05 2022-05-13 中国科学院合肥物质科学研究院 一种平面光学元件表面疵病检测装置和检测方法
CN114486910B (zh) * 2022-01-05 2024-05-10 中国科学院合肥物质科学研究院 一种平面光学元件表面疵病检测装置和检测方法
CN115128002A (zh) * 2022-06-20 2022-09-30 中国科学院上海光学精密机械研究所 一种测量材料非线性光学性质的系统及方法
CN115128002B (zh) * 2022-06-20 2024-04-12 中国科学院上海光学精密机械研究所 一种测量材料非线性光学性质的系统及方法
CN115598147A (zh) * 2022-09-30 2023-01-13 南京理工大学(Cn) 基于白光显微干涉的微球内外表面缺陷检测装置及方法
CN115598147B (zh) * 2022-09-30 2024-05-17 南京理工大学 基于白光显微干涉的微球内外表面缺陷检测装置及方法
CN117006969A (zh) * 2022-11-23 2023-11-07 深圳市中图仪器股份有限公司 光学测量系统
CN116577334A (zh) * 2023-03-15 2023-08-11 哈尔滨工业大学 基于矢量偏振光束的差分暗场共焦显微测量装置与方法
CN116577334B (zh) * 2023-03-15 2024-05-17 哈尔滨工业大学 基于矢量偏振光束的差分暗场共焦显微测量装置与方法

Also Published As

Publication number Publication date
CN111239153A (zh) 2020-06-05
CN111239153B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
WO2021143527A1 (zh) 一种轴向差动暗场共焦显微测量装置及其方法
CN111220624A (zh) 表面及亚表面一体化共焦显微测量装置和方法
CN111220625B (zh) 表面及亚表面一体化共焦显微测量装置和方法
JP6695010B1 (ja) フレキシブルモード走査光学顕微鏡法、及び検査システム
CN109975820B (zh) 基于Linnik型干涉显微镜的同步偏振相移检焦系统
CN109253989A (zh) 一种激光差动共焦层析定焦方法与装置
CN111257227B (zh) 基于偏振自相关的暗场共焦显微测量装置和方法
WO2021143525A1 (zh) 一种横向差动暗场共焦显微测量装置及其方法
CN103105143A (zh) 基于被测表面荧光激发的差动共焦显微测量装置
CN113959357A (zh) 一种表面及亚表面一体化共焦显微测量装置和方法
CN104296686A (zh) 基于荧光差动共焦技术的光滑大曲率样品测量装置与方法
CN111257226B (zh) 基于偏振自相关的暗场共焦显微测量装置和方法
WO2017210281A1 (en) Dark field wafer nano-defect inspection system with a singular beam
CN111257225B (zh) 一种横向差动暗场共焦显微测量装置及其方法
JP5592108B2 (ja) 干渉共焦点顕微鏡および光源撮像方法
CN113916891B (zh) 基于光纤环形光束的暗场共焦布里渊显微测量装置与方法
CN116256377A (zh) 基于圆二向色性的暗场共焦显微测量装置与方法
CN111239155B (zh) 一种轴向差动暗场共焦显微测量装置及其方法
KR20060086938A (ko) 포커싱 시스템 및 방법
CN107478332B (zh) 一种环形光束共聚焦纵向高分辨成像装置
JP5472780B2 (ja) 穴形状測定装置及び光学系
JP2008026049A (ja) フランジ焦点距離測定装置
TWI738808B (zh) 用於量測穿通孔之幾何參數的方法及系統
CN114726995B (zh) 检测方法和检测系统
CN116989698B (zh) 一种组合式相位显微成像测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914001

Country of ref document: EP

Kind code of ref document: A1