WO2021143419A1 - 天线结构及具有该天线结构的电子设备 - Google Patents

天线结构及具有该天线结构的电子设备 Download PDF

Info

Publication number
WO2021143419A1
WO2021143419A1 PCT/CN2020/135927 CN2020135927W WO2021143419A1 WO 2021143419 A1 WO2021143419 A1 WO 2021143419A1 CN 2020135927 W CN2020135927 W CN 2020135927W WO 2021143419 A1 WO2021143419 A1 WO 2021143419A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
antenna structure
tuning
gap
electronic device
Prior art date
Application number
PCT/CN2020/135927
Other languages
English (en)
French (fr)
Inventor
蔡晓涛
周大为
李元鹏
梁铁柱
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to MX2022008826A priority Critical patent/MX2022008826A/es
Priority to US17/786,788 priority patent/US20230029513A1/en
Priority to BR112022011923A priority patent/BR112022011923A2/pt
Priority to AU2020422039A priority patent/AU2020422039B2/en
Priority to EP20913264.6A priority patent/EP4060811A4/en
Priority to JP2022542641A priority patent/JP7392163B2/ja
Publication of WO2021143419A1 publication Critical patent/WO2021143419A1/zh
Priority to JP2023198128A priority patent/JP2024020504A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/245Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • the invention relates to an antenna structure and an electronic device with the antenna structure.
  • metal is increasingly applied to the industrial design (ID) of electronic devices, such as metal frames.
  • ID industrial design
  • designing the metal frame as an antenna has become an antenna design direction.
  • the longitudinal component of the side is mainly used, for example, the inverted-F antenna (IFA) mode of the side is used to excite the longitudinal mode of the antenna to achieve low frequency (LB) performance.
  • IFA inverted-F antenna
  • LB low frequency
  • the present application provides an antenna structure of an electronic device.
  • the antenna structure includes a frame, a first feeding portion, and a first connecting portion.
  • the frame is at least partially made of a metal material, and the frame is at least It includes a first part and a second part, the second part is connected to one end of the first part, the length of the second part is greater than the length of the first part, the first part is provided with a first gap, the The second part is provided with a second gap, the frame between the first gap and the second gap forms a first radiating part, and the first feeding part is disposed on the first radiating part , And located in the first part of the frame, the first feeding portion is electrically connected to a first feeding point to feed a current signal to the first radiating portion, and the first connecting portion is disposed on the first A radiating part is located on the second part of the frame.
  • the antenna structure provided in the first aspect adopts low-frequency (LB) bottom feed, which is different from the IFA mode. It has the characteristics of miniaturization and mainly lateral components, so it is less affected by the side curved screen . Furthermore, with the side slits, it can assist in increasing the longitudinal component of the sides, thereby realizing the improvement of the efficiency of the low frequency (LB) FS.
  • LB low-frequency
  • the antenna structure further includes a first tuning unit, one end of the first tuning unit is electrically connected to the first feeding part, and the other end is grounded, the first tuning unit It includes a first tuning branch, a second tuning branch, and at least one first switch unit.
  • the first tuning branch includes a capacitor or an inductor
  • the second tuning branch includes a capacitor or an inductor.
  • the first tuning unit is used to perform port matching tuning and frequency adjustment on the first radiating part.
  • the antenna structure further includes a second tuning unit, one end of the second tuning unit is electrically connected to the first connection part, the other end is grounded, and the second tuning unit It includes a third tuning branch, a fourth tuning branch and at least one second switch unit, the third tuning branch includes a capacitor or an inductor, and the fourth tuning branch includes a capacitor or an inductor.
  • the first connecting portion fine-tunes the frequency and longitudinal component of the first radiating portion through the second tuning unit.
  • the first part is further provided with a third gap, the third gap is spaced apart from the first gap, and the first gap is larger than the third gap.
  • the frame between the first slot and the third slot constitutes a parasitic stub of the first radiating part, so that the antenna structure generates an additional resonance.
  • the additional resonance is moved to the effective frequency band of the first radiating part, and the radiation efficiency of the first radiating part is improved.
  • the frame body further includes a third part, the third part is disposed opposite to the second part, and is connected to the other end of the first part, the first part A third gap is also opened on the upper part, the third gap is spaced apart from the first gap, and the first gap is closer to the second gap than the third gap, and the third part is provided with Grounding point, the frame between the grounding point and the third slot forms a second radiating portion, the antenna structure further includes a second feeding portion, the second feeding portion is disposed on the second radiating portion And located in the first part of the frame, the second feeding part is electrically connected to a second feeding point, so as to feed a current signal to the second radiating part.
  • the frame between the first gap and the first connecting portion constitutes a parasitic branch of the second radiating part, and the parasitic branch of the second radiating part is used for Disperse the current distribution of the second radiation part. In this way, the electromagnetic wave absorption ratio of the second radiation portion can be effectively reduced.
  • the antenna structure further includes a second connecting portion disposed on the first radiating portion and located in the second part of the frame, so The distance from the second connecting portion to the second gap is greater than the distance from the first connecting portion to the second gap, and the second connecting portion is grounded through the second tuning unit.
  • the parasitic branch of the second radiating part is frequency-tuned by the first tuning unit, the first tuning unit, and the second tuning unit.
  • the antenna structure further includes a third connecting portion and a third tuning unit, and the third connecting portion is disposed on the second radiating portion and located at the bottom of the frame.
  • the third connecting part is closer to the third part than the second feeding part, one end of the third tuning unit is electrically connected to the third connecting part and the second feeding part, and the other One end is grounded
  • the third tuning unit includes a fifth tuning branch, a sixth tuning branch and at least one third switch unit
  • the fifth tuning branch includes a capacitor or an inductor
  • the sixth tuning branch includes a capacitor Or inductance.
  • the third tuning unit is used to perform frequency tuning on the second radiation part.
  • the frame is the metal frame of the electronic device, that is, the antenna structure is a metal frame antenna, and the first part is the bottom metal frame of the electronic device.
  • the second part is a side metal frame of the electronic device.
  • the antenna structure is not limited to a metal frame antenna, and may also be other antenna forms such as an in-mold decoration antenna (MDA).
  • MDA in-mold decoration antenna
  • the antenna structure when it is an MDA antenna, it uses metal parts in the housing of the electronic device as a radiator to realize the radiation function.
  • the casing of the electronic device is made of materials such as plastic, and the metal part is integrated with the casing by in-mold injection molding.
  • the present application also provides an electronic device, including the antenna structure provided in the above-mentioned first aspect.
  • the electronic device further includes a backplane and a display unit, the backplane is disposed on the edge of the frame, and the display unit is disposed on the frame away from the back One side of the board.
  • the back plate is made of metal or other conductive materials.
  • the backplane can also be made of insulating materials, such as glass, plastic, and other materials. That is, the antenna structure can be applied to electronic devices with different material backplanes. In addition, the antenna structure can be adapted to electronic devices with large screens such as curved screens and thinner (narrower) side metal frames.
  • the present application also provides an electronic device, the electronic device includes an antenna structure, the antenna structure includes a frame, the frame is at least partially made of a metal material, the frame includes at least a first part, The second part and the third part, the second part and the third part are arranged oppositely and connected to both ends of the first part, and the lengths of the second part and the third part are both greater than the length of the The length of the first part, the frame is provided with a first slit, a second slit, and a third slit, the first slit and the third slit are opened on the first part at intervals, and the second slit is opened On the second part, and the first slit is closer to the second slit than the third slit, and the frame between the first slit and the second slit forms a first radiating portion ,
  • the third part is provided with a grounding point, the frame between the grounding point and the third gap forms a second radiating part, the first radiating part is provided
  • the antenna structure further includes a first tuning unit, one end of the first tuning unit is electrically connected to the first feeding part, and the other end is grounded, the first tuning unit It includes a first tuning branch, a second tuning branch, and at least one first switch unit.
  • the first tuning branch includes a capacitor or an inductor
  • the second tuning branch includes a capacitor or an inductor.
  • the first tuning unit is used to perform port matching tuning and frequency adjustment on the first radiating part.
  • the antenna structure further includes a first connecting portion, a second connecting portion, and a second tuning unit, and the first connecting portion and the second connecting portion are spaced apart from each other.
  • the second tuning unit includes a third tuning branch, a fourth tuning branch, and at least one second In the switch unit, the third tuning branch includes a capacitor or an inductor, and the fourth tuning branch includes a capacitor or an inductor.
  • the frame between the first slot and the third slot constitutes a parasitic stub of the first radiating part, so that the antenna structure generates an additional resonance.
  • the additional resonance is moved to the effective frequency band of the first radiating part, and the radiation efficiency of the first radiating part is improved.
  • the frame between the first gap and the first connecting portion constitutes a parasitic branch of the second radiating part, and the parasitic branch of the second radiating part is used for Disperse the current distribution of the second radiation part.
  • the parasitic stub of the second radiating part is frequency-tuned by the first tuning unit, the first tuning unit, and the second tuning unit.
  • the antenna structure further includes a third connecting portion and a third tuning unit, and the third connecting portion is disposed on the second radiating portion and located at the bottom of the frame.
  • the third radiating part is closer to the third part than the second feeding part
  • one end of the third tuning unit is electrically connected to the third connecting part and the second feeding part, and the other One end is grounded
  • the third tuning unit includes a fifth tuning branch, a sixth tuning branch and at least one third switch unit
  • the fifth tuning branch includes a capacitor or an inductor
  • the sixth tuning branch includes a capacitor Or inductance.
  • the third tuning unit is used to perform frequency tuning on the second radiation part.
  • the frame is the metal frame of the electronic device, that is, the antenna structure is a metal frame antenna, and the first part is the bottom metal frame of the electronic device.
  • the second part and the third part are side metal frames of the electronic device.
  • the antenna structure is not limited to a metal frame antenna, and may also be other antenna forms such as an in-mold decoration antenna (MDA).
  • MDA in-mold decoration antenna
  • the antenna structure when it is an MDA antenna, it uses metal parts in the housing of the electronic device as a radiator to realize the radiation function.
  • the casing of the electronic device is made of materials such as plastic, and the metal part is integrated with the casing by in-mold injection molding.
  • the antenna structure provided by the third aspect can simultaneously achieve both low SAR and low frequency (LB) radiation performance of medium and high frequency (MHB). That is to say, by designing the slot position and slot width of the antenna, the position of the frame and the coupling current strength of the slot are adjusted, thereby affecting the concentration and dispersion of the current distribution on the antenna frame.
  • the antenna structure provided by the third aspect is achieved by increasing the current distribution area of the medium and high frequency (MHB) (for example, adjusting the electrical length of the second radiating part), and at the same time cooperating with the parasitic frame of the medium and high frequency (MHB) to disperse the current.
  • MHB medium and high frequency
  • the low-frequency (LB) bottom feed is used, which is different from the IFA mode. It has the characteristics of miniaturization and mainly lateral components, so it is affected by the side curved screen. The impact is small. Moreover, with the side slits, it can help increase the longitudinal component of the side. In addition, with the joint adjustment of the switch, the efficiency of the low frequency (LB) FS can be improved, and the parasitic resonance adjustment of the medium and high frequency (MHB) can be taken into account. Guarantee the performance and low SAR characteristics of the medium and high frequency (MHB), and do not need to reduce the power to control the SAR.
  • LB low-frequency
  • FIG. 1 is a schematic diagram of an antenna structure of a preferred embodiment of the present invention applied to an electronic device.
  • FIG. 2 is a schematic diagram of the electronic device shown in FIG. 1 from another angle.
  • Fig. 3 is a circuit diagram of the antenna structure shown in Fig. 1.
  • 4A to 4C are schematic diagrams of three existing antenna design schemes.
  • FIGS 5A to 5C are schematic diagrams of three different MHB design schemes.
  • FIG. 6 is a schematic diagram of the structure of the switch unit shown in FIG. 3.
  • Fig. 7 is a graph of S parameter (scattering parameter) and radiation efficiency when the antenna structure shown in Fig. 1 works in a low-frequency mode.
  • Fig. 8 is a graph of S parameters (scattering parameters) and system efficiency when the antenna structure shown in Fig. 1 works in the LTE B5 frequency band.
  • FIG. 9 is a schematic diagram of the current of resonance 1 when the antenna structure shown in FIG. 8 works in the LTE B5 frequency band.
  • FIG. 10 is a schematic diagram of the current of resonance 2 when the antenna structure shown in FIG. 8 works in the LTE B5 frequency band.
  • FIG. 11 is a graph of S parameters (scattering parameters) of the antenna structure when different on-resistances (Ron) are connected to the first connecting portion shown in FIG. 3.
  • FIG. 12 is a graph showing the radiation efficiency of the antenna structure when different on-resistances (Ron) are connected to the first connecting portion shown in FIG. 3.
  • FIG. 13 is a graph of S parameters (scattering parameters) of the antenna structure when different on-resistances (Ron) are connected to the second connecting portion shown in FIG. 3.
  • FIG. 14 is a graph of radiation efficiency of the antenna structure when different on-resistances (Ron) are connected to the second connecting portion shown in FIG. 3.
  • FIG. 15 is a graph of S parameters (scattering parameters) and radiation efficiency when the antenna structure shown in FIG. 1 operates in the LTE B28 frequency band when the second slot is opened on the side and the second slot is not opened.
  • FIG. 16 is a graph of S parameters (scattering parameters) and radiation efficiency when the antenna structure shown in FIG. 1 operates in the LTE B5 frequency band when the second slot is opened on the side and the second slot is not opened.
  • FIG. 17 is a graph of S parameters (scattering parameters) and radiation efficiency when the antenna structure shown in FIG. 1 operates in the LTE B8 frequency band when the second slot is opened on the side and the second slot is not opened.
  • Fig. 18 is a graph of S parameters (scattering parameters) and radiation efficiency when the frame between the first slot and the third slot in the antenna structure shown in Fig. 3 is used as a parasitic stub, and the antenna structure works in the LTE B28 frequency band .
  • Antenna structure 100 case 11 frame 111 Backplane 112 first part 115 the second part 116 the third part 117 First gap 120
  • Third tuning unit SW3 switch 61, 62, 63 Tuning branch L1, L2, L3 Electronic equipment 200 Display unit 201 First feed point 202 Second feed point 203 First electronic component twenty one Second electronic component twenty two Third electronic component twenty three
  • an element when referred to as being “electrically connected” to another element, it can be directly on the other element or a central element may also be present.
  • an element when it is considered to be “electrically connected” to another element, it can be a contact connection, for example, it can be a wire connection, or it can be a non-contact connection, for example, it can be a non-contact coupling.
  • a preferred embodiment of the present invention provides an antenna structure 100 (refer to FIG. 3), which can be applied to electronic devices 200 such as mobile phones, tablet computers, and personal digital assistants (PDAs). It is used to transmit and receive radio waves to transmit and exchange wireless signals.
  • electronic devices 200 such as mobile phones, tablet computers, and personal digital assistants (PDAs). It is used to transmit and receive radio waves to transmit and exchange wireless signals.
  • PDAs personal digital assistants
  • the electronic device 200 may adopt one or more of the following communication technologies: Bluetooth (BT) communication technology, global positioning system (GPS) communication technology, wireless fidelity (wireless fidelity, Wi-Fi) communication technology. Fi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology, 5G communication technology, SUB-6G communication technology and other future communication technologies, etc.
  • Bluetooth Bluetooth
  • GPS global positioning system
  • Wi-Fi wireless fidelity
  • Fi wireless fidelity
  • GSM global system for mobile communications
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • 5G communication technology 5G communication technology
  • SUB-6G communication technology SUB-6G communication technology and other future communication technologies, etc.
  • the electronic device 200 includes a housing 11 and a display unit 201.
  • the housing 11 at least includes a frame 111 and a back plate 112.
  • the frame 111 has a substantially ring-shaped structure, which is made of metal or other conductive materials.
  • the back plate 112 is disposed on the edge of the frame 111.
  • the back plate 112 may be made of metal or other conductive materials.
  • the back plate 112 may also be made of insulating materials, such as glass, plastic, and other materials.
  • an opening (not labeled in the figure) is provided on the side of the frame 111 opposite to the back plate 112 for accommodating the display unit 201.
  • the display unit 201 has a display plane, and the display plane is exposed at the opening.
  • the display unit 201 can be combined with a touch sensor to form a touch screen.
  • the touch sensor can also be called a touch panel or a touch-sensitive panel.
  • the antenna structure 100 at least includes a frame, a first feeding portion 12, a second feeding portion 13, a first connecting portion 15, a second connecting portion 17, and a third connecting portion 18.
  • the frame body is at least partially made of metal material.
  • the frame body is the frame 111 of the electronic device 200.
  • the frame 111 at least includes a first part 115, a second part 116 and a third part 117.
  • the first part 115 is the bottom end of the electronic device 200, that is, the first part 115 is the bottom metal frame of the electronic device 200, and the antenna structure 100 constitutes the bottom of the electronic device 200. Lower the antenna.
  • the second part 116 and the third part 117 are disposed opposite to each other, and the two are respectively disposed at two ends of the first part 115, preferably vertically.
  • the length of the second part 116 or the third part 117 is greater than the length of the first part 115. That is, the second part 116 and the third part 117 are both side metal frames of the electronic device 200.
  • At least one gap is also opened on the frame 111.
  • the frame 111 is provided with three slits, namely the first slit 120, the second slit 121 and the third slit 122.
  • the first slit 120 and the third slit 122 are opened on the first portion 115 at intervals.
  • the second gap 121 is disposed on the second portion 116.
  • the first slot 120 is located closer to the second portion 116 than the third slot 122
  • the third slot 122 is located closer to the third portion 117 relative to the first slot 120.
  • the antenna structure 100 further includes a ground point 19.
  • the ground point 19 is arranged on the third part 117.
  • the first gap 120, the second gap 121, and the third gap 122 all penetrate and partition the frame 111.
  • the at least one gap and the ground point 19 jointly divide at least two radiating parts from the frame 111.
  • the first slot 120, the second slot 121, the third slot 122, and the ground point 19 jointly divide the first radiating portion F1 and the second radiating portion from the frame 111.
  • Department F2. wherein, in this embodiment, the frame 111 between the first gap 120 and the second gap 121 forms the first radiating portion F1.
  • the frame 111 between the third gap 122 and the ground point 19 forms the second radiating portion F2.
  • the first radiation part F1 is disposed at the lower right corner of the electronic device 200, that is, it is composed of a part of the first part 115 and a part of the second part 116.
  • the second radiating part F2 is disposed at the lower left corner of the electronic device 200, that is, it is composed of a part of the first part 115 and a part of the third part 117.
  • the electrical length of the first radiating portion F1 is greater than the electrical length of the second radiating portion F2.
  • the first gap 120, the second gap 121, and the third gap 122 are all filled with insulating materials, such as plastic, rubber, glass, wood, ceramics, etc., but not This is limited.
  • the widths of the first slit 120, the second slit 121, and the third slit 122 are all small, and may be set to be 0.5 millimeters (mm) to 2 mm, for example.
  • the widths of the first slit 120, the second slit 121, and the third slit 122 can all be set to 0.8 mm, 1 mm or 1.2 mm.
  • the first feeding portion 12 is located in the housing 11.
  • the first feeding part 12 is disposed on the first radiating part F1 and located in the first part 115.
  • the first feeding part 12 can be electrically connected to a first feeding point 202 by means of elastic sheets, microstrip lines, strip lines, coaxial cables, etc., so as to feed current signals to the first radiating part F1.
  • the second feeding portion 13 is disposed in the housing 11.
  • the second feeding part 13 is disposed on the second radiating part F2 and located in the first part 115.
  • the second feeding part 13 can be electrically connected to a second feeding point 203 by means of elastic sheets, microstrip lines, strip lines, coaxial cables, etc., to feed current signals to the second radiating part F2.
  • the first feeding portion 12 and the second feeding portion 13 can be made of iron, metal copper foil, conductors in the laser direct structuring (LDS) process, and other materials. .
  • the first connecting portion 15 is disposed on the first radiating portion F1 and located in the second portion 116.
  • the second connecting portion 17 is disposed on the first radiating portion F1 and located at the second portion 116. That is, in this embodiment, the first connecting portion 15 and the second connecting portion 17 are spaced apart from the second portion 116, and the distance between the first connecting portion 15 and the second gap 121 is It is smaller than the distance between the second connecting portion 17 and the second gap 121. In other words, the first connecting portion 15 is closer to the second gap 121 than the second connecting portion 17 is.
  • the third connecting portion 18 is provided in the housing 11.
  • the third connecting portion 18 is disposed on the second radiating portion F2 and is located in the first portion 115.
  • the third connecting portion 18 is closer to the third portion 117 than the second feeding portion 13.
  • the electrical length L of the first radiating portion F1 (refer to FIG. 3) is adjusted so that the electrical length L is about half of the wavelength corresponding to its resonance frequency.
  • the first radiating portion F1 can adopt a half-wave mode to generate resonance.
  • the radiation pattern of the antenna structure 100 is a longitudinal pattern.
  • the first radiating part F1 may also adopt a composite right/left handed (CRLH) mode to generate resonance.
  • the radiation pattern of the antenna structure 100 is a transverse pattern.
  • the first radiating part F1 can adopt the CRLH mode and the half-wave mode at the same time, and then excite a first working mode to generate a radiation signal in the first radiation frequency band.
  • the first working mode is a low-band (LB) mode.
  • the frequency of the first radiation frequency band includes, but is not limited to, LTE B28/B5/B8 and other frequency bands.
  • the above longitudinal mode may refer to a radiation mode in which the longitudinal side metal frame (for example, the second part 116) is used as the main radiator to radiate outward.
  • the lateral mode may refer to a radiation pattern in which the lateral bottom metal frame (for example, the first part 115) is used as the main radiator to radiate outward.
  • the CRLH mode is the main resonant mode, which is different from the inverted F antenna (IFA) mode in that it has miniaturization and uses the lateral component as the main resonance mode.
  • the main characteristic so it is less affected by the side radiator or curved screen.
  • the antenna structure 100 can assist in increasing the longitudinal component of the side radiator by opening a slit on its side, such as the second portion 116 (ie, the second slit 121), thereby ensuring that the antenna structure 100 Has good LB radiation performance.
  • the antenna structure 100 can adopt the CRLH mode and the parasitic mode, and then excite a second working mode to generate a radiation signal in the second radiation frequency band.
  • the second working mode is a middle/high band (MHB) mode.
  • the frequency of the second radiation frequency band includes, but is not limited to, LTE B1/B3/B4/B7/B38/B39/B40/B41, WCDMA B1/B2, GSM 1800/1900 and other frequency bands.
  • the electromagnetic wave absorption rate (Specific Absorption Rate, SAR) is an important indicator of mobile phones, and it is also a content that antenna engineers pay special attention to when designing antennas.
  • SAR Specific Absorption Rate
  • TRP total radiated power
  • the SAR is controlled by reducing the radiated power of the mobile phone under normal circumstances.
  • FIG. 4A, FIG. 4B, and FIG. 4C are schematic diagrams of three existing antenna solutions.
  • the second radiating part F2 adopts two resonance modes, namely, the CRLH mode and the parasitic mode.
  • the CRLH mode is located on one side of the second feeding part 13.
  • the parasitic mode of the second radiating part F2 is made to cross the first gap 120 at the same time.
  • the third slot 122, and make the frame 111 between the first slot 120 and the first connecting portion 15 constitute a parasitic stub, so as to achieve the purpose of dispersing current distribution, so that the antenna structure 100 can work at medium and high frequencies. It also has the characteristics of lower SAR without reducing its radiation power.
  • area 1 constitutes the MHB area of the antenna structure 100. That is, the second radiating portion F2 is mainly in the CRLH mode, and its parasitic mode crosses the first gap 120 and the third gap 122, so that the first gap 120 and the first connecting portion 15 are
  • the frame 111 constitutes a parasitic branch.
  • the area 2 in the figure constitutes the LB area of the antenna structure 100.
  • Fig. 5A, Fig. 5B and Fig. 5C are schematic diagrams of three different MHB design schemes.
  • Fig. 5A adopts the long left hand and far parasitic mode
  • Fig. 5B adopts the short left hand and far parasitic mode
  • Fig. 5C adopts the short left hand and near parasitic mode.
  • the long left hand and the short left hand mean that the electrical length of the second radiating portion F2 in FIG. 5A is greater than the electrical length of the second radiating portion F2 in FIG. 5B and FIG. 5C.
  • Far parasitic and near parasitic respectively refer to the parasitic branches farther from the second radiating part F2 (for example, the frame 111 between the first gap 120 and the first connecting part 15, see FIGS. 5A and 5B) and distance Parasitic branch nodes near the second radiating portion F2 (for example, the frame 111 between the first gap 120 and the third gap 122, refer to FIG. 5C).
  • H field the tangential component of the magnetic field
  • the antenna structure 100 further includes a first tuning unit SW1, a second tuning unit SW2, and a third tuning unit SW3.
  • One end of the first tuning unit SW1 is electrically connected to the first feeding part 12, and the other end is grounded.
  • the first tuning unit SW1 is used to perform port matching tuning and frequency adjustment on the first radiating part F1.
  • One end of the second tuning unit SW2 is electrically connected to the first connecting portion 15 and the second connecting portion 17. The other end of the second tuning unit SW2 is grounded.
  • the second tuning unit SW2 constitutes a multiplexing switch, that is, the first connecting portion 15 and the second connecting portion 17 share the second tuning unit SW2.
  • the first connecting portion 15 can be switched to a different tuning branch through the second tuning unit SW2, so as to realize the adjustment of frequency and longitudinal component.
  • the first connecting portion 15 can be switched or adjusted to zero ohmic resistance or 1 nanohenry (nH)/2nH inductance through the second tuning unit SW2, thereby fine-tuning the frequency and longitudinal direction of the first radiating portion F1 Weight.
  • the second connecting part 17 adjusts the parasitic resonance frequency of the second radiating part F2 through the second tuning unit SW2.
  • the third tuning unit SW3 is electrically connected to the second feeding portion 13 and the third connection portion 18, and the other end is grounded.
  • the third tuning unit SW3 is used for frequency tuning the CRLH mode of the second radiation part F2.
  • the second radiating part F2 can perform frequency tuning of its spurious mode through the first tuning unit SW1.
  • the second radiating part F2 can also perform auxiliary tuning of its parasitic mode through the second tuning unit SW2 on the basis of the first tuning unit SW1.
  • the CRLH mode of the second radiating part F2 is mainly tuned by the third tuning unit SW3.
  • the parasitic mode of the second radiating part F2 is tuned by the first tuning unit SW1, the first tuning unit SW1, and the second tuning unit SW2.
  • the tuning unit may include at least one switch unit, such as three SPST switches, namely a switch 61, a switch 62, and a switch 63. One end of each switch unit is grounded, and the other end can be connected to the corresponding tuning branch.
  • the switch 61 is connected to the tuning branch L1
  • the switch 62 is connected to the tuning branch L2
  • the switch 63 is connected to the tuning branch L3.
  • the tuning branches L1, L2, and L3 may all include capacitors or inductors. The tuning unit can selectively turn on different tuning branches to achieve frequency adjustment.
  • the tuning unit such as the first tuning unit SW1, the second tuning unit SW2, and the third tuning unit SW3, may also include other types of switch units, which are not limited to the aforementioned SPST switches.
  • the antenna structure 100 cooperates with the joint tuning of the tuning unit, such as the first tuning unit SW1, the second tuning unit SW2, and the third tuning unit SW3, to achieve a low-frequency modal free space (free space). space, FS) efficiency improvement.
  • the parasitic resonance adjustment of the middle and high frequency modes can be taken into account, thereby ensuring the performance and low SAR characteristics of the middle and high frequency modes.
  • the FS efficiency refers to the efficiency of the antenna structure 100 in the low frequency mode when the electronic device 200 is not held by the user.
  • FIG. 7 is a graph of S parameters (scattering parameters) and radiation efficiency when the antenna structure 100 works in a low frequency mode.
  • the curve S41 is the S11 value when the antenna structure 100 works in the LTE B28 frequency band.
  • the curve S42 is the S11 value when the antenna structure 100 works in the LTE B5 frequency band.
  • the curve S43 is the S11 value when the antenna structure 100 works in the LTE B8 frequency band.
  • the curve S44 is the radiation efficiency when the antenna structure 100 works in the LTE B28 frequency band.
  • the curve S45 is the radiation efficiency when the antenna structure 100 works in the LTE B5 frequency band.
  • the curve S46 is the radiation efficiency when the antenna structure 100 works in the LTE B8 frequency band.
  • the curve S47 is the system efficiency when the antenna structure 100 works in the LTE B28 frequency band.
  • the curve S48 is the system efficiency when the antenna structure 100 works in the LTE B5 frequency band.
  • the curve S49 is the system efficiency when the antenna structure 100 works in the LTE B8 frequency band.
  • FIG. 8 is a graph of S parameters (scattering parameters) and system efficiency when the antenna structure 100 operates in the LTE B5 frequency band.
  • the curve S51 is the S11 value when the antenna structure 100 works in the LTE B5 frequency band.
  • the curve S52 is the system efficiency when the antenna structure 100 works in the LTE B5 frequency band.
  • FIG. 9 is a schematic diagram of the current of resonance 1 when the antenna structure 100 operates in the LTE B5 frequency band.
  • FIG. 10 is a schematic diagram of the current of resonance 2 when the antenna structure 100 operates in the LTE B5 frequency band.
  • the resonance 1 is mainly in the CRLH mode, that is, mainly in the transverse mode radiation.
  • the position where its side is connected to the ground that is, the position of the first connecting portion 15 and the second connecting portion 17, the frame (ie, the first radiating portion F1) will be in the antenna high current area, that is, a maximum current density Jmax is formed.
  • the parasitic resistance including the second tuning unit SW2 will have a greater impact on the low frequency efficiency of the antenna structure 100. It can be seen from FIGS. 8 and 10 that when the first radiating part F1 works at resonance 2, resonance 2 is dominated by half-wave mode, that is, dominated by longitudinal mode radiation. At the same time, the current is fed in from the first feeding part 12, flows through the first radiating part F1, and then radiates out through the first slit 120 and the second slit 121 at both ends of the first radiating part F1.
  • the on-resistance (Ron) generated by the on-resistance (Ron) affects its antenna performance.
  • the curve S81 is the S11 value of the antenna structure 100 when the on-resistance (Ron) is 2 ohms.
  • the curve S82 is the S11 value of the antenna structure 100 when the on-resistance (Ron) is 1.5 ohms.
  • the curve S83 is the S11 value of the antenna structure 100 when the on-resistance (Ron) is 1 ohm.
  • the curve S84 is the S11 value of the antenna structure 100 when the on-resistance (Ron) is 0.5 ohm.
  • the curve S85 is the S11 value of the antenna structure 100 when the on-resistance (Ron) is zero ohm.
  • the curve S91 is the radiation efficiency of the antenna structure 100 when the on-resistance (Ron) is 2 ohms.
  • the curve S92 is the radiation efficiency of the antenna structure 100 when the on-resistance (Ron) is 1.5 ohms.
  • the curve S93 is the radiation efficiency of the antenna structure 100 when the on-resistance (Ron) is 1 ohm.
  • the curve S94 is the radiation efficiency of the antenna structure 100 when the on-resistance (Ron) is 0.5 ohm.
  • the curve S95 is the radiation efficiency of the antenna structure 100 when the on-resistance (Ron) is zero ohm.
  • the on-resistance (Ron) when the on-resistance (Ron) is 2 ohms, the influence is about 1.6 dB. When the on-resistance (Ron) is 1 ohm, its influence is about 0.9dB. In other words, the on-resistance (Ron) at the first connecting portion 15 has a greater impact on the antenna efficiency. Therefore, in this embodiment, for the low frequency band (LB), the first connecting portion 15 can be designed to be directly grounded, for example, directly grounded through a zero-ohm resistance, without passing through the on-resistance of the second tuning unit SW2. (Ron).
  • the on-resistance (Ron) generated therefrom affects the performance of the antenna.
  • the curve S101 is the S11 value of the antenna structure 100 when the on-resistance (Ron) is 2 ohms.
  • the curve S102 is the S11 value of the antenna structure 100 when the on-resistance (Ron) is 1 ohm.
  • the curve S103 is the S11 value of the antenna structure 100 when the on-resistance (Ron) is zero ohm.
  • the curve S111 is the radiation efficiency of the antenna structure 100 when the on-resistance (Ron) is 2 ohms.
  • the curve S112 is the radiation efficiency of the antenna structure 100 when the on-resistance (Ron) is 1 ohm.
  • the curve S113 is the radiation efficiency of the antenna structure 100 when the on-resistance (Ron) is zero ohm.
  • a switch with a small on-resistance such as a 4SPST switch, can be selected to reduce the on-resistance at the second connecting portion 17 when the first tuning unit SW1 is used to perform port tuning on the low frequency band.
  • Ron The impact on antenna performance.
  • the antenna structure 100 works in the LTE B28 frequency band.
  • S parameter scattering parameter
  • radiation efficiency graph is the S11 value when the antenna structure 100 operates in the LTE B28 frequency band when the second slot 121 is opened.
  • the curve S122 is the radiation efficiency when the antenna structure 100 operates in the LTE B28 frequency band when the second slot 121 is opened.
  • the curve S123 is the system efficiency when the antenna structure 100 operates in the LTE B28 frequency band when the second slot 121 is opened.
  • the curve S124 is the S11 value when the antenna structure 100 operates in the LTE B28 frequency band when the second slot 121 is not opened.
  • the curve S125 is the radiation efficiency when the antenna structure 100 works in the LTE B28 frequency band when the second slot 121 is not opened.
  • the curve S126 is the system efficiency when the antenna structure 100 works in the LTE B28 frequency band when the second slot 121 is not opened.
  • the antenna structure 100 works in the LTE B5 frequency band ( Scattering parameters) and radiation efficiency graphs.
  • the curve S131 is the S11 value when the antenna structure 100 operates in the LTE B5 frequency band when the second slot 121 is opened.
  • the curve S132 is the radiation efficiency when the antenna structure 100 operates in the LTE B5 frequency band when the second slot 121 is opened.
  • the curve S133 is the system efficiency when the antenna structure 100 operates in the LTE B5 frequency band when the second slot 121 is opened.
  • the curve S134 is the S11 value when the antenna structure 100 operates in the LTE B5 frequency band when the second slot 121 is not opened.
  • the curve S135 is the radiation efficiency when the antenna structure 100 operates in the LTE B5 frequency band when the second slot 121 is not opened.
  • the curve S136 is the system efficiency when the antenna structure 100 works in the LTE B5 frequency band when the second slot 121 is not opened.
  • the antenna structure 100 works in the LTE B8 frequency band ( Scattering parameters) and radiation efficiency graphs.
  • the curve S141 is the S11 value when the antenna structure 100 operates in the LTE B8 frequency band when the second slot 121 is opened.
  • the curve S142 is the radiation efficiency when the antenna structure 100 operates in the LTE B8 frequency band when the second slot 121 is opened.
  • the curve S143 is the system efficiency when the antenna structure 100 operates in the LTE B8 frequency band when the second slot 121 is opened.
  • the curve S144 is the S11 value when the antenna structure 100 operates in the LTE B8 frequency band when the second slot 121 is not opened.
  • the curve S145 is the radiation efficiency when the antenna structure 100 operates in the LTE B8 frequency band when the second slot 121 is not opened.
  • the curve S146 is the system efficiency when the antenna structure 100 works in the LTE B8 frequency band when the second slot 121 is not opened.
  • the electronic device 200 further includes at least one electronic component.
  • the electronic device 200 includes at least three electronic components, namely a first electronic component 21, a second electronic component 22 and a third electronic component 23.
  • the first electronic component 21, the second electronic component 22 and the third electronic component 23 are all arranged in the housing 11.
  • the first electronic component 21 is a Universal Serial Bus (USB) interface module.
  • the first electronic component 21 is located between the first gap 120 and the third gap 122.
  • the second electronic component 22 is a sound cavity.
  • the second electronic component 22 is disposed between the third gap 122 and the third portion 117.
  • the third electronic component 23 is a Subscriber Identity Module (SIM) card socket.
  • SIM Subscriber Identity Module
  • the frame 111 between the first slot 120 and the third slot 122 in the antenna structure 100 may also constitute a parasitic branch F3 in the low-frequency mode.
  • the parasitic branch F3 is spaced apart from the first radiating portion F1 and the second radiating portion F2, that is, suspended.
  • FIG. 18 is a graph of S parameters (scattering parameters) and radiation efficiency when the antenna structure 100 operates in the LTE B28 frequency band when the parasitic stub F3 is tuned and not tuned.
  • the curve S151 is the S11 value when the antenna structure 100 is operating in the LTE B28 frequency band when the parasitic stub F3 is not tuned.
  • the curve S152 is the radiation efficiency when the antenna structure 100 works in the LTE B28 frequency band when the parasitic stub F3 is not tuned.
  • the curve S153 is the S11 value when the antenna structure 100 works in the LTE B28 frequency band when the parasitic stub F3 is tuned.
  • the curve S154 is the radiation efficiency when the antenna structure 100 works in the LTE B28 frequency band when the parasitic stub F3 is tuned.
  • the antenna structure 100 can generate an additional resonance 3.
  • the resonance 3 can be moved into the effective frequency band of the first radiating part F1, and the radiation efficiency of the LTE B28 frequency band is significantly improved.
  • the first tuning unit SW1 can be used to multiplex the first tuning unit SW1 to further tune the parasitic stub F3 of the low frequency mode.
  • a corresponding switch unit may be additionally provided to realize the tuning of the parasitic branch F3 of the low frequency mode.
  • the second radiating portion F2 is disposed on the side where the second electronic component 22 is located.
  • the position of the second radiating portion F2 can be adjusted as required.
  • the second radiating portion F2 may be disposed on the side where the third electronic component 23 is located, and the first radiating portion F1 may be disposed on the side of the second electronic component 22. That is, the positions of the first radiating portion F1 and the second radiating portion F2 can be adjusted as required, for example, they can be replaced with each other.
  • the antenna structure 100 adopts a low-frequency and medium-high frequency separate feeding manner, that is, the first feeding part 12 and the second feeding part 13 are fed separately, and the first feeding part 12 and the second feeding part 13 are separately fed.
  • the full coverage of LB/MB/HB is effectively realized, and at the same time, it is equipped with medium and high frequency (MHB) low SAR Features and better low frequency (LB) radiation performance.
  • MHB medium and high frequency
  • the frame of the antenna structure 100 is directly constituted by the frame 111 of the electronic device 200, that is, the housing (frame) of the electronic device 200 is made of metal, and the antenna
  • the structure 100 is a metal frame antenna.
  • the antenna structure 100 is not limited to a metal frame antenna, and may also be other antenna forms such as an in-mold decoration antenna (MDA).
  • MDA in-mold decoration antenna
  • the antenna structure 100 uses a metal part in the housing of the electronic device 200 as a frame to realize the radiation function.
  • the casing of the electronic device 200 is made of insulating materials such as plastic, and the metal parts are integrated with the casing by in-mold injection molding.
  • the antenna structure 100 of the present invention can simultaneously achieve both low SAR and low frequency (LB) radiation performance of the medium and high frequency (MHB). That is to say, by designing the slot position and slot width of the antenna, the position of the frame and the coupling current strength of the slot are adjusted, thereby affecting the concentration and dispersion of the current distribution on the antenna frame.
  • the antenna structure 100 increases the current distribution area of the medium and high frequency (MHB) CRLH mode (for example, adjusts the electrical length of the second radiating part F2), and at the same time cooperates with the medium and high frequency (MHB) parasitic frame to disperse the current to achieve low The purpose of SAR.
  • MHB medium and high frequency
  • a low-frequency (LB) bottom feed is adopted, and the main resonance mode is a CRLH mode.
  • the CRLH mode is different from the IFA mode in that it has the characteristics of miniaturization and mainly lateral components, so it is less affected by the side curved screen.
  • the side slits it can help increase the longitudinal component of the side.
  • the efficiency of the low frequency (LB) FS can be improved, and the parasitic resonance adjustment of the medium and high frequency (MHB) can be taken into account. Guarantee the performance and low SAR characteristics of the medium and high frequency (MHB), and do not need to reduce the power to control the SAR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供一种天线结构, 包括框体, 第一馈入部及第一连接部, 所述框体至少部分由金属材料制成, 所述框体至少包括第一部分及第二部分, 所述第二部分连接至所述第一部分的一端, 所述第二部分的长度大于第一部分的长度, 所述第一部分上开设有第一缝隙, 所述第二部分上开设有第二缝隙, 所述第一缝隙与第二缝隙之间的框体形成一第一辐射部, 所述第一馈入部设置于所述第一辐射部上, 且位于所述框体的第一部分, 所述第一馈入部电连接至一第一馈电点, 以为所述第一辐射部馈入电流信号, 所述第一连接部设置于所述第一辐射部上, 且位于所述框体的第二部分。所述天线结构可有效提升低频(LB)辐射性能。本发明还提供一种具有该天线结构的电子设备。

Description

天线结构及具有该天线结构的电子设备 技术领域
本发明涉及一种天线结构及具有该天线结构的电子设备。
背景技术
目前,为了增强移动电话、个人数字助理等电子设备的品质感,金属被越来越多的应用到电子设备的工业设计(industry design,ID)中,例如金属边框。在采用金属边框的工业设计中,将金属边框设计成天线成为一种天线设计方向。
现有技术中,主要采用侧边的纵向分量,例如采用侧边的倒F天线(inverted-F antenna,IFA)模式,激励天线的纵向模式来实现低频(LB)性能。然而,随着曲面屏等大屏幕的流行,手机的侧边金属框体越来越薄(窄)。因此,在曲面屏越来越极致,侧边框体和侧边环境变得越来越弱的情况下,以侧边框体作为主要辐射天线的天线性能会急剧下降,无法再满足低频(LB)性能的要求。
发明内容
有鉴于此,有必要提供一种能有效提升低频(LB)辐射性能的天线结构及具有该天线结构的电子设备。
第一方面,本申请提供一种电子设备的天线结构,所述天线结构包括框体、第一馈入部及第一连接部,所述框体至少部分由金属材料制成,所述框体至少包括第一部分及第二部分,所述第二部分连接至所述第一部分的一端,所述第二部分的长度大于所述第一部分的长度,所述第一部分上开设有第一缝隙,所述第二部分上开设有第二缝隙,所述第一缝隙与所述第二缝隙之间的所述框体形成一第一辐射部,所述第一馈入部设置于所述第一辐射部上,且位于所述框体的第一部分,所述第一馈入部电连接至一第一馈电点,以为所述第一辐射部馈入电流信号,所述第一连接部设置于所述第一辐射部上,且位于所述框体的第二部分。
可以看出,第一方面提供的天线结构是采用低频(LB)底部馈电,其不同于IFA模式,具有小型化,且以横向分量为主的特点,所以受侧边曲面屏的影响较小。再者,配合侧边开缝,可辅助提高侧边的纵向分量,进而实现低频(LB)FS效率的提升。
结合第一方面,在一些实施例中,所述天线结构还包括第一调谐单元,所述第一调谐单元的一端电连接至所述第一馈入部,另一端接地,所述第一调谐单元包括第一调谐支路、第二调谐支路和至少一个第一开关单元,所述第一调谐支路包括电容或者电感,所述第二调谐支路包括电容或者电感。其中,所述第一调谐单元用以对所述第一辐射部进行端口匹配调谐和频率调节。
结合第一方面,在一些实施例中,所述天线结构还包括第二调谐单元,所述第二调谐单元的一端电连接至所述第一连接部,另一端接地,所述第二 调谐单元包括第三调谐支路、第四调谐支路和至少一个第二开关单元,所述第三调谐支路包括电容或者电感,所述第四调谐支路包括电容或者电感。其中,所述第一连接部通过所述第二调谐单元微调所述第一辐射部的频率及纵向分量。
结合第一方面,在一些实施例中,所述第一部分上还开设有第三缝隙,所述第三缝隙与所述第一缝隙间隔设置,且所述第一缝隙比所述第三缝隙更靠近所述第二缝隙,所述第一缝隙与所述第三缝隙之间的框体构成所述第一辐射部的寄生枝节,使得所述天线结构产生一额外的谐振。另外,通过对所述第一辐射部的寄生枝节进行调谐,使得所述额外的谐振移动至所述第一辐射部的有效频段内,并提升所述第一辐射部的辐射效率。
结合第一方面,在一些实施例中,所述框体还包括第三部分,所述第三部分与所述第二部分相对设置,且连接至所述第一部分的另一端,所述第一部分上还开设有第三缝隙,所述第三缝隙与所述第一缝隙间隔设置,且所述第一缝隙比所述第三缝隙更靠近所述第二缝隙,所述第三部分上设置有接地点,所述接地点与所述第三缝隙之间的框体形成一第二辐射部,所述天线结构还包括第二馈入部,所述第二馈入部设置于所述第二辐射部上,且位于所述框体的第一部分,所述第二馈入部电连接至一第二馈电点,以为所述第二辐射部馈入电流信号。
结合第一方面,在一些实施例中,所述第一缝隙与所述第一连接部之间的框体构成所述第二辐射部的寄生枝节,所述第二辐射部的寄生枝节用以分散所述第二辐射部的电流分布。如此,可有效降低所述第二辐射部的电磁波吸比率。
结合第一方面,在一些实施例中,所述天线结构还包括第二连接部,所述第二连接部设置于所述第一辐射部上,且位于所述框体的第二部分,所述第二连接部至所述第二缝隙的距离大于所述第一连接部至所述第二缝隙的距离,所述第二连接部通过所述第二调谐单元接地。其中,所述第二辐射部的寄生枝节通过所述第一调谐单元、所述第一调谐单元及所述第二调谐单元进行频率调谐。
结合第一方面,在一些实施例中,所述天线结构还包括第三连接部及第三调谐单元,所述第三连接部设置于所述第二辐射部上,且位于所述框体的第一部分,所述第三连接部比所述第二馈入部更靠近所述第三部分,所述第三调谐单元的一端电连接至所述第三连接部与所述第二馈入部,另一端接地,所述第三调谐单元包括第五调谐支路、第六调谐支路和至少一个第三开关单元,所述第五调谐支路包括电容或者电感,所述第六调谐支路包括电容或者电感。其中,所述第三调谐单元用以对所述第二辐射部进行频率调谐。
结合第一方面,在一些实施例中,所述框体为所述电子设备的金属边框,即所述天线结构为金属边框天线,此时所述第一部分为所述电子设备的底部金属边框,所述第二部分为所述电子设备的侧边金属边框。
结合第一方面,在一些实施例中,所述天线结构不局限于金属边框天线, 其还可为模内装饰天线(Mode decoration antenna,MDA)等其他天线形式。例如,当所述天线结构为MDA天线时,其是利用电子设备机壳内的金属件作为辐射体,以实现辐射功能。而所述电子设备的机壳为塑料等材质,所述金属件采用模内注塑的方式和机壳做成一个整体。
第二方面,本申请还提供一种电子设备,包括上述第一方面提供的天线结构。
结合第二方面,在一些实施例中,所述电子设备还包括背板及显示单元,所述背板设置于所述框体的边缘,所述显示单元设置于所述框体远离所述背板的一侧。所述背板由金属或其他导电材料制成。当然,所述背板也可以由绝缘材料,例如玻璃、塑料等材料制成。即所述天线结构可适用于不同材质背板的电子设备。另外,所述天线结构可以适应于曲面屏等大屏幕,且侧边金属框体越来越薄(窄)的电子设备。
第三方面,本申请还提供一种电子设备,所述电子设备包括天线结构,所述天线结构包括框体,所述框体至少部分由金属材料制成,所述框体至少包括第一部分、第二部分及第三部分,所述第二部分及所述第三部分相对设置,且连接至所述第一部分的两端,所述第二部分及所述第三部分的长度均大于所述第一部分的长度,所述框体上开设有第一缝隙、第二缝隙及第三缝隙,所述第一缝隙及所述第三缝隙间隔开设于所述第一部分上,所述第二缝隙开设于所述第二部分上,且所述第一缝隙比所述第三缝隙更靠近所述第二缝隙,所述第一缝隙与所述第二缝隙之间的框体形成一第一辐射部,所述第三部分上设置有接地点,所述接地点与所述第三缝隙之间的框体形成一第二辐射部,所述第一辐射部上设置有第一馈入部,所述第一馈入部位于所述框体的第一部分,以为所述第一辐射部馈入电流信号,所述第二辐射部上设置有第二馈入部,所述第二馈入部位于所述框体的第一部分,以为所述第二辐射部馈入电流信号。
结合第三方面,在一些实施例中,所述天线结构还包括第一调谐单元,所述第一调谐单元的一端电连接至所述第一馈入部,另一端接地,所述第一调谐单元包括第一调谐支路、第二调谐支路和至少一个第一开关单元,所述第一调谐支路包括电容或者电感,所述第二调谐支路包括电容或者电感。其中,所述第一调谐单元用以对所述第一辐射部进行端口匹配调谐和频率调节。
结合第三方面,在一些实施例中,所述天线结构还包括第一连接部、第二连接部及第二调谐单元,所述第一连接部与所述第二连接部间隔设置于所述第一辐射部上,且位于所述框体的第二部分,所述第二连接部至所述第二缝隙的距离大于所述第一连接部至所述第二缝隙的距离,所述第二调谐单元的一端分别电连接至所述第一连接部及所述第二连接部,另一端接地,所述第二调谐单元包括第三调谐支路、第四调谐支路和至少一个第二开关单元,所述第三调谐支路包括电容或者电感,所述第四调谐支路包括电容或者电感。其中,所述第一连接部通过所述第二调谐单元微调所述第一辐射部的频率及纵向分量。
结合第三方面,在一些实施例中,所述第一缝隙与所述第三缝隙之间的框体构成所述第一辐射部的寄生枝节,以使得所述天线结构产生一额外的谐振。另外,通过对所述第一辐射部的寄生枝节进行调谐,使得所述额外的谐振移动至所述第一辐射部的有效频段内,并提升所述第一辐射部的辐射效率。
结合第三方面,在一些实施例中,所述第一缝隙与所述第一连接部之间的框体构成所述第二辐射部的寄生枝节,所述第二辐射部的寄生枝节用以分散所述第二辐射部的电流分布。如此,可有效降低所述第二辐射部的电磁波吸比率。另外,所述第二辐射部的寄生枝节通过所述第一调谐单元、所述第一调谐单元及所述第二调谐单元进行频率调谐。
结合第三方面,在一些实施例中,所述天线结构还包括第三连接部及第三调谐单元,所述第三连接部设置于所述第二辐射部上,且位于所述框体的第一部分,所述第三辐射部比所述第二馈入部更靠近所述第三部分,所述第三调谐单元的一端电连接至所述第三连接部与所述第二馈入部,另一端接地,所述第三调谐单元包括第五调谐支路、第六调谐支路和至少一个第三开关单元,所述第五调谐支路包括电容或者电感,所述第六调谐支路包括电容或者电感。其中,所述第三调谐单元用以对所述第二辐射部进行频率调谐。
结合第三方面,在一些实施例中,所述框体为所述电子设备的金属边框,即所述天线结构为金属边框天线,此时所述第一部分为所述电子设备的底部金属边框,所述第二部分及所述第三部分为所述电子设备的侧边金属边框。
结合第三方面,在一些实施例中,所述天线结构不局限于金属边框天线,其还可为模内装饰天线(Mode decoration antenna,MDA)等其他天线形式。例如,当所述天线结构为MDA天线时,其是利用电子设备机壳内的金属件作为辐射体,以实现辐射功能。而所述电子设备的机壳为塑料等材质,所述金属件采用模内注塑的方式和机壳做成一个整体。
可以看出,第三方面提供的天线结构可同时实现中高频(MHB)的低SAR和低频(LB)辐射性能的兼顾。也就是说,通过设计天线的开缝位置及缝隙宽度尺寸,调节框体位置和缝隙耦合电流强弱,进而影响天线框体上的电流分布集中和分散程度。第三方面提供的所述天线结构通过增大中高频(MHB)的电流分布区域(例如调节所述第二辐射部的电长度),同时配合中高频(MHB)的寄生框体分散电流,实现低SAR的目的。另外,通过于侧边框体开缝(即第二缝隙),采用低频(LB)底部馈电,不同于IFA模式,其具有小型化,且以横向分量为主的特点,所以受侧边曲面屏的影响较小。再者,配合侧边开缝,可辅助提高侧边的纵向分量,另外,再配合开关的联调,可以实现低频(LB)FS效率的提升,同时兼顾中高频(MHB)的寄生谐振调节,保证中高频(MHB)的性能和低SAR特点,且不用通过大幅降低功率的方法来控制SAR。
附图说明
图1为本发明较佳实施例的天线结构应用至电子设备的示意图。
图2为图1所示电子设备另一角度下的示意图。
图3为图1所示天线结构的电路图。
图4A至图4C为现有的三种天线设计方案示意图。
图5A至图5C为三种不同的MHB设计方案示意图。
图6为图3所示开关单元的结构示意图。
图7为图1所示天线结构工作于低频模态时的S参数(散射参数)及辐射效率曲线图。
图8为图1所示天线结构工作于LTE B5频段时的S参数(散射参数)及系统效率曲线图。
图9为图8所示天线结构工作于LTE B5频段时谐振1的电流示意图。
图10为图8所示天线结构工作于LTE B5频段时谐振2的电流示意图。
图11为当图3所示第一连接部连接不同的导通电阻(Ron)时,所述天线结构的S参数(散射参数)曲线图。
图12为当图3所示第一连接部连接不同的导通电阻(Ron)时,所述天线结构的辐射效率曲线图。
图13为当图3所示第二连接部连接不同的导通电阻(Ron)时,所述天线结构的S参数(散射参数)曲线图。
图14为当图3所示第二连接部连接不同的导通电阻(Ron)时,所述天线结构的辐射效率曲线图。
图15为当于侧边开设所述第二缝隙及未开设所述第二缝隙时,图1所示天线结构工作于LTE B28频段时的S参数(散射参数)及辐射效率曲线图。
图16为当于侧边开设所述第二缝隙及未开设所述第二缝隙时,图1所示天线结构工作于LTE B5频段时的S参数(散射参数)及辐射效率曲线图。
图17为当于侧边开设所述第二缝隙及未开设所述第二缝隙时,图1所示天线结构工作于LTE B8频段时的S参数(散射参数)及辐射效率曲线图。
图18为当图3所示天线结构中第一缝隙与第三缝隙之间的框体作为寄生枝节时,所述天线结构工作于LTE B28频段时的S参数(散射参数)及辐射效率曲线图。
主要元件符号说明
天线结构 100
壳体 11
边框 111
背板 112
第一部分 115
第二部分 116
第三部分 117
第一缝隙 120
第二缝隙 121
第三缝隙 122
第一辐射部 F1
第二辐射部 F2
第一馈入部 12
第二馈入部 13
第一连接部 15
第二连接部 17
第三连接部 18
接地点 19
第一调谐单元 SW1
第二调谐单元 SW2
第三调谐单元 SW3
开关 61、62、63
调谐支路 L1、L2、L3
电子设备 200
显示单元 201
第一馈电点 202
第二馈电点 203
第一电子元件 21
第二电子元件 22
第三电子元件 23
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当一个元件被称为“电连接”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“电连接”另 一个元件,它可以是接触连接,例如,可以是导线连接的方式,也可以是非接触式连接,例如,可以是非接触式耦合的方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1及图2,本发明较佳实施方式提供一种天线结构100(参图3),其可应用于移动电话、平板电脑、个人数字助理(personal digital assistant,PDA)等电子设备200中,用以发射、接收无线电波以传递、交换无线信号。
可以理解,所述电子设备200可以采用以下一种或多种通信技术:蓝牙(bluetooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,Wi-Fi)通信技术、全球移动通信系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其他通信技术等。
所述电子设备200包括壳体11及显示单元201。所述壳体11至少包括边框111及背板112。所述边框111大致呈环状结构,其由金属或其他导电材料制成。所述背板112设置于所述边框111的边缘。所述背板112可由金属或其他导电材料制成。当然,所述背板112也可以由绝缘材料,例如玻璃、塑料等材料制成。
可以理解,在本实施例中,所述边框111相对所述背板112的一侧设置有一开口(图未标),用于容置所述显示单元201。可以理解,所述显示单元201具有一显示平面,该显示平面裸露于该开口。可以理解,所述显示单元201可结合触摸传感器组合成触控屏。触摸传感器又可称为触控面板或触敏面板。
请一并参阅图3,所述天线结构100至少包括框体、第一馈入部12、第二馈入部13、第一连接部15、第二连接部17及第三连接部18。
所述框体至少部分由金属材料制成。在本实施例中,所述框体为所述电子设备200的边框111。所述边框111至少包括第一部分115、第二部分116以及第三部分117。在本实施例中,所述第一部分115为所述电子设备200的底端,即所述第一部分115为所述电子设备200的底部金属边框,所述天线结构100构成所述电子设备200的下天线。所述第二部分116与所述第三部分117相对设置,两者分别设置于所述第一部分115的两端,优选垂直设置。在本实施例中,所述第二部分116或所述第三部分117的长度大于所述第一部分115的长度。即所述第二部分116及第三部分117均为所述电子设备200的侧边金属边框。
所述边框111上还开设有至少一缝隙。在本实施例中,所述边框111上 开设有三个缝隙,即第一缝隙120、第二缝隙121及第三缝隙122。其中,所述第一缝隙120与第三缝隙122间隔开设于所述第一部分115上。所述第二缝隙121设置于所述第二部分116上。所述第一缝隙120相对于所述第三缝隙122更靠近所述第二部分116设置,所述第三缝隙122相对于所述第一缝隙120更靠近所述第三部分117设置。
可以理解,在本实施例中,所述天线结构100还包括接地点19。所述接地点19设置在所述第三部分117上。
在本实施例中,所述第一缝隙120、所述第二缝隙121、所述第三缝隙122均贯通且隔断所述边框111。所述至少一缝隙及所述接地点19共同自所述边框111上划分出至少两个辐射部。在本实施例中,所述第一缝隙120、所述第二缝隙121、所述第三缝隙122及所述接地点19共同自所述边框111上划分出第一辐射部F1及第二辐射部F2。其中,在本实施例中,所述第一缝隙120与所述第二缝隙121之间的所述边框111形成所述第一辐射部F1。所述第三缝隙122与所述接地点19之间的所述边框111形成所述第二辐射部F2。也就是说,所述第一辐射部F1设置在所述电子设备200的右下角位置,即由部分所述第一部分115及部分所述第二部分116构成。所述第二辐射部F2设置在所述电子设备200的左下角位置,即由部分所述第一部分115及部分所述第三部分117构成。所述第一辐射部F1的电长度大于所述第二辐射部F2的电长度。
可以理解,在本实施例中,所述第一缝隙120、所述第二缝隙121、所述第三缝隙122均填充有绝缘材料,例如塑胶、橡胶、玻璃、木材、陶瓷等,但不以此为限。
可以理解,在本实施例中,所述第一缝隙120、所述第二缝隙121、所述第三缝隙122的宽度都很小,例如可以设置为0.5毫米(mm)至2mm。作为一种优选方案,所述第一缝隙120、所述第二缝隙121、所述第三缝隙122的宽度均可设置为0.8mm、1mm或1.2mm。
可以理解,在本实施例中,所述第一馈入部12位于所述壳体11内。所述第一馈入部12设置在所述第一辐射部F1上,且位于所述第一部分115。所述第一馈入部12可通过弹片、微带线、条状线、同轴电缆等方式电连接至一第一馈电点202,以馈入电流信号至所述第一辐射部F1。
所述第二馈入部13设置于所述壳体11内。所述第二馈入部13设置在所述第二辐射部F2上,且位于所述第一部分115。所述第二馈入部13可通过弹片、微带线、条状线、同轴电缆等方式电连接至一第二馈电点203,以馈入电流信号至所述第二辐射部F2。
可以理解,在本实施例中,所述第一馈入部12及第二馈入部13可以由铁件、金属铜箔、激光直接成型技术(Laser Direct structuring,LDS)制程中的导体等材质制成。
所述第一连接部15设置在所述第一辐射部F1上,且位于所述第二部分116。所述第二连接部17设置在所述第一辐射部F1上,且位于所述第二部 分116。即,在本实施例中,所述第一连接部15与所述第二连接部17间隔设置于所述第二部分116,且所述第一连接部15与所述第二缝隙121的距离小于所述第二连接部17与所述第二缝隙121的距离。或者说,所述第一连接部15比所述第二连接部17更靠近所述第二缝隙121。
所述第三连接部18设置于所述壳体11内。在本实施例中,所述第三连接部18设置在所述第二辐射部F2上,且位于所述第一部分115。所述第三连接部18比所述第二馈入部13更靠近所述第三部分117。
可以理解,在本实施例中,通过调节所述第一辐射部F1的电长度L(参图3),使其电长度L为其谐振频率对应波长的二分之一左右。如此,当电流自所述第一馈入部12馈入时,所述第一辐射部F1可采用半波模式产生谐振。此时,所述天线结构100的辐射模式为纵向模式。另外,当电流自所述第一馈入部12馈入时,所述第一辐射部F1还可采用复合左/右手(composite right/left handed,CRLH)模式产生谐振。此时,所述天线结构100的辐射模式为横向模式。即,当电流自所述第一馈入部12馈入时,所述第一辐射部F1可同时采用CRLH模式及半波模式,进而激发一第一工作模态以产生第一辐射频段的辐射信号。在本实施例中,所述第一工作模态为低频(low band,LB)模态。所述第一辐射频段的频率包括,但不限于LTE B28/B5/B8等频段。
可以理解,上述纵向模式可以是指纵向的侧金属边框(例如第二部分116)作为主辐射体向外辐射的辐射模式。横向模式可以是指横向的底部金属边框(例如第一部分115)作为主辐射体向外辐射的辐射模式。
可以理解,当电流自所述第一馈入部12馈入时,CRLH模式为主谐振模式,该模式不同于倒F天线(inverted F antenna,IFA)模式,其具有小型化,且以横向分量为主的特点,因此受侧边辐射体或者曲面屏的影响较小。再者,所述天线结构100通过在其侧边,例如所述第二部分116上开缝(即第二缝隙121),可辅助提高侧边辐射体的纵向分量,进而确保所述天线结构100具有较好的LB辐射性能。
当电流自所述第二馈入部13馈入时,所述天线结构100可采用CRLH模式及寄生模式,进而激发一第二工作模态以产生第二辐射频段的辐射信号。其中,所述第二工作模态为中高频(middle/high band,MHB)模态。所述第二辐射频段的频率包括,但不限于LTE B1/B3/B4/B7/B38/B39/B40/B41、WCDMA B1/B2、GSM 1800/1900等频段。
可以理解,随着信息技术的发展,大众在享受信息技术带来的便利同时,也在关注着无线通信终端的电磁辐射对人体的伤害。电磁波吸收比率(Specific Absorption Rate,SAR)是手机的一项重要指标,同样也是天线工程师设计天线时特别关注的一项内容。通常电子设备的总辐射功率(Total Radiated Power,TRP)和SAR有密切关系,然而在实际天线的设计中,常规情况下都是通过降低手机辐射功率来控制SAR。例如,请一并参阅图4A、图4B及图4C,为现有的三种天线方案示意图。这三种天线方案均是通过增加SAR传感器(Sensor)来判断场景,以获得不同的SAR值,再通过降低 手机辐射功率来满足SAR要求。然而,一味的通过降低手机辐射功率来控制SAR,不仅会使得产品无线性能受损,影响用户体验,同时也降低了产品的竞争力。
而所述天线结构100中,由于所述第二辐射部F2采用两个谐振模式,即CRLH模式和寄生模式。其中,所述CRLH模式位于所述第二馈入部13的一侧。如此,通过增大所述CRLH模式的电流分布区域(例如调节或增加所述第二辐射部F2的电长度),同时使得所述第二辐射部F2的寄生模式跨过所述第一缝隙120及第三缝隙122,并使得所述第一缝隙120与所述第一连接部15之间的边框111构成寄生枝节,进而实现分散电流分布的目的,使得所述天线结构100可工作于中高频段且具有较低SAR的特点,而无需降低其辐射功率。也就是说,如图3所示,区域1构成所述天线结构100的MHB区域。即所述第二辐射部F2以CRLH模式为主,且其寄生模式跨过所述第一缝隙120及第三缝隙122,进而使得所述第一缝隙120与所述第一连接部15之间的边框111构成寄生枝节。另外,图中区域2构成所述天线结构100的LB区域。
请一并参阅图5A、图5B及图5C,为三种不同的MHB设计方案示意图。其中,图5A采用长左手及远寄生模式,图5B采用短左手及远寄生模式,图5C采用短左手及近寄生模式。其中,长左手与短左手是指图5A中第二辐射部F2的电长度大于图5B及图5C中第二辐射部F2的电长度。远寄生及近寄生分别是指距离所述第二辐射部F2较远的寄生枝节(例如所述第一缝隙120与第一连接部15之间的边框111,参图5A及图5B)及距离所述第二辐射部F2较近的寄生枝节(例如所述第一缝隙120与所述第三缝隙122之间的边框111,参图5C)。显然,通过对上述三种方案的SAR值进行仿真,发现图5A中的方案(即本案采用的方案)的磁场(H场)切向分量更分散,具有较低的SAR值特点。
可以理解,在本实施例中,所述天线结构100还包括第一调谐单元SW1、第二调谐单元SW2及第三调谐单元SW3。所述第一调谐单元SW1的一端电连接至所述第一馈入部12,另一端接地。所述第一调谐单元SW1用以对所述第一辐射部F1进行端口匹配调谐和频率调节。
所述第二调谐单元SW2的一端电连接至所述第一连接部15与所述第二连接部17。所述第二调谐单元SW2的另一端接地。
可以理解,在本实施例中,所述第二调谐单元SW2构成一复用开关,即所述第一连接部15及第二连接部17共用所述第二调谐单元SW2。所述第一连接部15可通过所述第二调谐单元SW2切换至不同的调谐支路,进而实现频率及纵向分量的调节。例如,所述第一连接部15可通过所述第二调谐单元SW2切换或调节至零欧姆电阻或者1纳亨(nH)/2nH的电感,进而微调所述第一辐射部F1的频率及纵向分量。所述第二连接部17通过所述第二调谐单元SW2来调节第二辐射部F2的寄生谐振频率。
所述第三调谐单元SW3的一端电连接至所述第二馈入部13及所述第三 连接部18,另一端接地。所述第三调谐单元SW3用以对所述第二辐射部F2的CRLH模式进行频率调谐。另外,所述第二辐射部F2可通过所述第一调谐单元SW1对其寄生模式进行频率调谐。作为一种优选方案,所述第二辐射部F2还可在所述第一调谐单元SW1的基础上通过所述第二调谐单元SW2对其寄生模式进行辅助调谐。也就是说,所述第二辐射部F2的CRLH模式主要通过所述第三调谐单元SW3进行调谐。所述第二辐射部F2的寄生模式则通过所述第一调谐单元SW1、所述第一调谐单元SW1和第二调谐单元SW2进行调谐。
可以理解,以上提及的调谐单元,例如所述第一调谐单元SW1、第二调谐单元SW2及第三调谐单元SW3均可以,但不局限于,由多个单刀单掷(single pole single throw,SPST)开关组合而成。例如,请一并参阅图6,所述调谐单元可包括至少一个开关单元,例如三个SPST开关,即开关61、开关62及开关63。每个开关单元的一端接地,另一端可连接相应的调谐支路。例如,开关61连接调谐支路L1,开关62连接调谐支路L2,开关63连接调谐支路L3。调谐支路L1、L2、L3均可包括电容或电感。所述调谐单元可以选择性导通不同的调谐支路,以实现频率调节。
当然,在其他实施例中,所述调谐单元,例如第一调谐单元SW1、第二调谐单元SW2及第三调谐单元SW3还可包括其他类型的开关单元,不局限上述所述的SPST开关。
可以理解,在本实施例中,所述天线结构100通过配合调谐单元的联调,例如第一调谐单元SW1、第二调谐单元SW2及第三调谐单元SW3,可以实现低频模态自由空间(free space,FS)效率的提升。同时,可兼顾中高频模态的寄生谐振调节,进而保证中高频模态的性能和低SAR特点。
可以理解,所述FS效率是指当电子设备200没有被用户手握时,所述天线结构100于低频模态的效率。
图7为所述天线结构100工作于低频模态时的S参数(散射参数)及辐射效率曲线图。其中,曲线S41为所述天线结构100工作于LTE B28频段时的S11值。曲线S42为所述天线结构100工作于LTE B5频段时的S11值。曲线S43为所述天线结构100工作于LTE B8频段时的S11值。曲线S44为所述天线结构100工作于LTE B28频段时的辐射效率。曲线S45为所述天线结构100工作于LTE B5频段时的辐射效率。曲线S46为所述天线结构100工作于LTE B8频段时的辐射效率。曲线S47为所述天线结构100工作于LTE B28频段时的系统效率。曲线S48为所述天线结构100工作于LTE B5频段时的系统效率。曲线S49为所述天线结构100工作于LTE B8频段时的系统效率。
图8为所述天线结构100工作于LTE B5频段时的S参数(散射参数)及系统效率曲线图。其中,曲线S51为所述天线结构100工作于LTE B5频段时的S11值。曲线S52为所述天线结构100工作于LTE B5频段时的系统效率。
图9为所述天线结构100工作于LTE B5频段时谐振1的电流示意图。图10为所述天线结构100工作于LTE B5频段时谐振2的电流示意图。其中,由图8及图9可知,由于所述第一辐射部F1是在底部进行馈电,谐振1是以CRLH模式为主,即以横向模式辐射为主。同时,其侧边连接下地的位置,即第一连接部15及第二连接部17的位置,框体(即第一辐射部F1)会处于天线大电流区,即形成一最大电流密度Jmax。因此,包括所述第二调谐单元SW2在内的寄生电阻会对所述天线结构100的低频效率有较大影响。由图8及图10可知,当所述第一辐射部F1工作在谐振2时,谐振2是以半波模式为主,即以纵向模式辐射为主。同时,其电流自所述第一馈入部12馈入,并流经所述第一辐射部F1,再通过所述第一辐射部F1两端的第一缝隙120及第二缝隙121辐射出去。
请参阅图11及图12,分别为当所述第一连接部15连接所述第二调谐单元SW2时其产生的导通电阻(Ron)对其天线性能的影响。其中,曲线S81为当导通电阻(Ron)为2欧姆时,所述天线结构100的S11值。曲线S82为当导通电阻(Ron)为1.5欧姆时,所述天线结构100的S11值。曲线S83为当导通电阻(Ron)为1欧姆时,所述天线结构100的S11值。曲线S84为当导通电阻(Ron)为0.5欧姆时,所述天线结构100的S11值。曲线S85为当导通电阻(Ron)为零欧姆时,所述天线结构100的S11值。曲线S91为当导通电阻(Ron)为2欧姆时,所述天线结构100的辐射效率。曲线S92为当导通电阻(Ron)为1.5欧姆时,所述天线结构100的辐射效率。曲线S93为当导通电阻(Ron)为1欧姆时,所述天线结构100的辐射效率。曲线S94为当导通电阻(Ron)为0.5欧姆时,所述天线结构100的辐射效率。曲线S95为当导通电阻(Ron)为零欧姆时,所述天线结构100的辐射效率。
显然,由图11及图12可知,当导通电阻(Ron)为2欧姆,其影响为1.6dB左右。当导通电阻(Ron)为1欧姆时,其影响为0.9dB左右。也就是说,所述第一连接部15处的导通电阻(Ron)对天线效率影响较大。因此,在本实施例中,针对低频段(LB),所述第一连接部15可设计为直接接地,例如直接通过零欧姆电阻接地,而不经过所述第二调谐单元SW2的导通电阻(Ron)。
请参阅图13及图14,分别为当所述第二连接部17连接所述第二调谐单元SW2时其产生的导通电阻(Ron)对其天线性能的影响。其中,曲线S101为当导通电阻(Ron)为2欧姆时,所述天线结构100的S11值。曲线S102为当导通电阻(Ron)为1欧姆时,所述天线结构100的S11值。曲线S103为当导通电阻(Ron)为零欧姆时,所述天线结构100的S11值。曲线S111为当导通电阻(Ron)为2欧姆时,所述天线结构100的辐射效率。曲线S112为当导通电阻(Ron)为1欧姆时,所述天线结构100的辐射效率。曲线S113为当导通电阻(Ron)为零欧姆时,所述天线结构100的辐射效率。
显然,由图13及图14可知,当所述第二调谐单元SW2采用三个单刀单掷(single pole single throw,SPST)开关时,其导通电阻(Ron)为2欧姆, 影响为0.4dB左右。当所述第二调谐单元SW2采用4SPST开关时,其导通电阻(Ron)为1欧姆,影响为0.2dB左右。也就是说,所述第二连接部17对所述天线结构100的影响较小。因此可以选用导通电阻(Ron)较小的开关,例如4SPST开关,从而减少当利用所述第一调谐单元SW1对低频段进行端口调谐时,所述第二连接部17处的导通电阻(Ron)对天线性能的影响。
可以理解,请一并参阅图15,为当所述天线结构100于侧边开设所述第二缝隙121及未开设所述第二缝隙121时,所述天线结构100工作于LTE B28频段时的S参数(散射参数)及辐射效率曲线图。其中,曲线S121为当开设所述第二缝隙121时,所述天线结构100工作于LTE B28频段时的S11值。曲线S122为当开设所述第二缝隙121时,所述天线结构100工作于LTE B28频段时的辐射效率。曲线S123为当开设所述第二缝隙121时,所述天线结构100工作于LTE B28频段时的系统效率。曲线S124为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B28频段时的S11值。曲线S125为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B28频段时的辐射效率。曲线S126为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B28频段时的系统效率。
请一并参阅图16,为当所述天线结构100于侧边开设所述第二缝隙121及未开设所述第二缝隙121时,所述天线结构100工作于LTE B5频段时的S参数(散射参数)及辐射效率曲线图。其中,曲线S131为当开设所述第二缝隙121时,所述天线结构100工作于LTE B5频段时的S11值。曲线S132为当开设所述第二缝隙121时,所述天线结构100工作于LTE B5频段时的辐射效率。曲线S133为当开设所述第二缝隙121时,所述天线结构100工作于LTE B5频段时的系统效率。曲线S134为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B5频段时的S11值。曲线S135为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B5频段时的辐射效率。曲线S136为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B5频段时的系统效率。
请一并参阅图17,为当所述天线结构100于侧边开设所述第二缝隙121及未开设所述第二缝隙121时,所述天线结构100工作于LTE B8频段时的S参数(散射参数)及辐射效率曲线图。其中,曲线S141为当开设所述第二缝隙121时,所述天线结构100工作于LTE B8频段时的S11值。曲线S142为当开设所述第二缝隙121时,所述天线结构100工作于LTE B8频段时的辐射效率。曲线S143为当开设所述第二缝隙121时,所述天线结构100工作于LTE B8频段时的系统效率。曲线S144为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B8频段时的S11值。曲线S145为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B8频段时的辐射效率。曲线S146为当未开设所述第二缝隙121时,所述天线结构100工作于LTE B8频段时的系统效率。
显然,由图15至图17可看出,当所述天线结构100开设所述第二缝隙 121时,其低频(LB)性能比原先未开设缝隙的方案提升1至1.5dB,具有较佳的FS性能。
可以理解,请再次参阅图3,在本实施例中,所述电子设备200还包括至少一电子元件。在本实施例中,所述电子设备200至少包括三个电子元件,即第一电子元件21、第二电子元件22及第三电子元件23。所述第一电子元件21、第二电子元件22及第三电子元件23均设置于壳体11内。
在本实施例中,所述第一电子元件21为一通用串行总线(Universal Serial Bus,USB)接口模块。所述第一电子元件21位于所述第一缝隙120及第三缝隙122之间。所述第二电子元件22为一音腔。所述第二电子元件22设置于所述第三缝隙122与所述第三部分117之间。所述第三电子元件23为一用户身份模块(Subscriber Identity Module,SIM)卡座。所述第三电子元件23设置于所述第一馈入部12与所述第二部分116之间。
可以理解,在其他实施例中,所述天线结构100中第一缝隙120与第三缝隙122之间的边框111还可构成低频模态的寄生枝节F3。该寄生枝节F3与所述第一辐射部F1及第二辐射部F2均间隔设置,即悬浮设置。请一并参阅图18,为当对所述寄生枝节F3进行调谐及不进行调谐时,所述天线结构100工作于LTE B28频段时的S参数(散射参数)及辐射效率曲线图。其中,曲线S151为当不对所述寄生枝节F3进行调谐时,所述天线结构100工作于LTE B28频段时的S11值。曲线S152为当不对所述寄生枝节F3进行调谐时,所述天线结构100工作于LTE B28频段时的辐射效率。曲线S153为当对所述寄生枝节F3进行调谐时,所述天线结构100工作于LTE B28频段时的S11值。曲线S154为当对所述寄生枝节F3进行调谐时,所述天线结构100工作于LTE B28频段时的辐射效率。
显然,当所述天线结构100中第一缝隙120与第三缝隙122之间的边框111构成所述低频模态的寄生枝节F3时,所述天线结构100可产生一额外的谐振3。且由图18可知,当对所述寄生枝节F3进行调谐时,可使得所述谐振3移动至所述第一辐射部F1的有效频段内,并使得LTE B28频段的辐射效率有明显的提升。
可以理解,在其中一实施例中,可通过所述第一调谐单元SW1,即复用所述第一调谐单元SW1,进而对所述低频模态的寄生枝节F3进行调谐。当然,在其他实施例中,也可额外设置相应的开关单元,以实现对所述低频模态的寄生枝节F3的调谐。
可以理解,在本实施例中,所述第二辐射部F2设置在所述第二电子元件22所在的一侧。当然,在其他实施例中,所述第二辐射部F2的位置可根据需要进行调整。例如,可将所述第二辐射部F2设置在所述第三电子元件23所在的一侧,而所述第一辐射部F1设置于所述第二电子元件22一侧。即所述第一辐射部F1及第二辐射部F2的位置可根据需要进行调整,例如互相替换。
可以理解,在本实施例中,所述天线结构100采用低频与中高频分开馈 入的方式,即通过所述第一馈入部12及第二馈入部13单独馈入,且设置所述第一调谐单元SW1、第二调谐单元SW2及第三调谐单元SW3。通过控制/调整所述第一调谐单元SW1、第二调谐单元SW2及第三调谐单元SW3的通断状态,有效实现LB/MB/HB的全覆盖,并同时具备中高频(MHB)低SAR的特点以及较好的低频(LB)辐射性能。
可以理解,如上所述,在本实施例中,所述天线结构100的框体直接由电子设备200的边框111构成,即所述电子设备200的机壳(边框)为金属材质,所述天线结构100为金属边框天线。当然,在其他实施例中,所述天线结构100不局限于金属边框天线,其还可为模内装饰天线(Mode decoration antenna,MDA)等其他天线形式。例如,当所述天线结构100为MDA天线时,其是利用电子设备200机壳内的金属件作为框体,以实现辐射功能。而所述电子设备200的机壳由塑料等绝缘材质制成,所述金属件采用模内注塑的方式和机壳做成一个整体。
综上,在全面曲面屏越来越极致的情况下,本发明的天线结构100可同时实现中高频(MHB)的低SAR和低频(LB)辐射性能的兼顾。也就是说,通过设计天线的开缝位置及缝隙宽度尺寸,调节框体位置和缝隙耦合电流强弱,进而影响天线框体上的电流分布集中和分散程度。所述天线结构100通过增大中高频(MHB)CRLH模式的电流分布区域(例如调节所述第二辐射部F2的电长度),同时配合中高频(MHB)的寄生框体分散电流,实现低SAR的目的。另外,通过于侧边框体开缝(即第二缝隙121),采用低频(LB)底部馈电,且主谐振模式采用CRLH模式。该CRLH模式不同于IFA模式,其具有小型化,且以横向分量为主的特点,所以受侧边曲面屏的影响较小。再者,配合侧边开缝,可辅助提高侧边的纵向分量,另外,再配合开关的联调,可以实现低频(LB)FS效率的提升,同时兼顾中高频(MHB)的寄生谐振调节,保证中高频(MHB)的性能和低SAR特点,且不用通过大幅降低功率的方法来控制SAR。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。本领域技术人员还可在本发明精神内做其它变化等用在本发明的设计,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (20)

  1. 一种电子设备的天线结构,其特征在于,所述天线结构包括框体、第一馈入部及第一连接部,所述框体至少部分由金属材料制成,所述框体至少包括第一部分及第二部分,所述第二部分连接至所述第一部分的一端,所述第二部分的长度大于所述第一部分的长度,所述第一部分上开设有第一缝隙,所述第二部分上开设有第二缝隙,所述第一缝隙与所述第二缝隙之间的所述框体形成一第一辐射部,所述第一馈入部设置于所述第一辐射部上,且位于所述框体的第一部分,所述第一馈入部电连接至一第一馈电点,以为所述第一辐射部馈入电流信号,所述第一连接部设置于所述第一辐射部上,且位于所述框体的第二部分。
  2. 如权利要求1所述的天线结构,其特征在于:所述天线结构还包括第一调谐单元,所述第一调谐单元的一端电连接至所述第一馈入部,另一端接地,所述第一调谐单元包括第一调谐支路、第二调谐支路和至少一个第一开关单元,所述第一调谐支路包括电容或者电感,所述第二调谐支路包括电容或者电感。
  3. 如权利要求1或2所述的天线结构,其特征在于:所述天线结构还包括第二调谐单元,所述第二调谐单元的一端电连接至所述第一连接部,另一端接地,所述第二调谐单元包括第三调谐支路、第四调谐支路和至少一个第二开关单元,所述第三调谐支路包括电容或者电感,所述第四调谐支路包括电容或者电感。
  4. 如权利要求1-3中任一项所述的天线结构,其特征在于:所述第一部分上还开设有第三缝隙,所述第三缝隙与所述第一缝隙间隔设置,且所述第一缝隙比所述第三缝隙更靠近所述第二缝隙,所述第一缝隙与所述第三缝隙之间的框体构成所述第一辐射部的寄生枝节,使得所述天线结构产生一额外的谐振。
  5. 如权利要求3所述的天线结构,其特征在于:所述框体还包括第三部分,所述第三部分与所述第二部分相对设置,且连接至所述第一部分的另一端,所述第一部分上还开设有第三缝隙,所述第三缝隙与所述第一缝隙间隔设置,且所述第一缝隙比所述第三缝隙更靠近所述第二缝隙,所述第三部分上设置有接地点,所述接地点与所述第三缝隙之间的框体形成一第二辐射部,所述天线结构还包括第二馈入部,所述第二馈入部设置于所述第二辐射部上,且位于所述框体的第一部分,所述第二馈入部电连接至一第二馈电点,以为所述第二辐射部馈入电流信号。
  6. 如权利要求5所述的天线结构,其特征在于:所述第一缝隙与所述第一连接部之间的框体构成所述第二辐射部的寄生枝节,所述第二辐射部的寄生枝节用以分散所述第二辐射部的电流分布。
  7. 如权利要求5或6所述的天线结构,其特征在于:所述天线结构还包括第二连接部,所述第二连接部设置于所述第一辐射部上,且位于所述框体 的第二部分,所述第二连接部至所述第二缝隙的距离大于所述第一连接部至所述第二缝隙的距离,所述第二连接部通过所述第二调谐单元接地。
  8. 如权利要求5-7中任一项所述的天线结构,其特征在于:所述天线结构还包括第三连接部及第三调谐单元,所述第三连接部设置于所述第二辐射部上,且位于所述框体的第一部分,所述第三连接部比所述第二馈入部更靠近所述第三部分,所述第三调谐单元的一端电连接至所述第三连接部与所述第二馈入部,另一端接地,所述第三调谐单元包括第五调谐支路、第六调谐支路和至少一个第三开关单元,所述第五调谐支路包括电容或者电感,所述第六调谐支路包括电容或者电感。
  9. 如权利要求1-8中任一项所述的天线结构,其特征在于:所述框体为所述电子设备的金属边框,所述第一部分为所述电子设备的底部金属边框,所述第二部分为所述电子设备的侧边金属边框。
  10. 如权利要求1-8中任一项所述的天线结构,其特征在于:所述框体设置于所述电子设备的机壳内,且通过模内注塑的方式和所述机壳做成整体。
  11. 一种电子设备,其特征在于:所述电子设备包括如权利要求1-10中任一项所述的天线结构。
  12. 如权利要求11所述的电子设备,其特征在于:所述电子设备还包括背板及显示单元,所述背板设置于所述框体的边缘,所述显示单元设置于所述框体远离所述背板的一侧。
  13. 一种电子设备,其特征在于,所述电子设备包括天线结构,所述天线结构包括框体,所述框体至少部分由金属材料制成,所述框体至少包括第一部分、第二部分及第三部分,所述第二部分与所述第三部分相对设置,且连接至所述第一部分的两端,所述第二部分及所述第三部分的长度均大于所述第一部分的长度,所述框体上开设有第一缝隙、第二缝隙及第三缝隙,所述第一缝隙及所述第三缝隙间隔开设于所述第一部分上,所述第二缝隙开设于所述第二部分上,且所述第一缝隙比所述第三缝隙更靠近所述第二缝隙,所述第一缝隙与所述第二缝隙之间的框体形成一第一辐射部,所述第三部分上设置有接地点,所述接地点与所述第三缝隙之间的框体形成一第二辐射部,所述第一辐射部上设置有第一馈入部,所述第一馈入部位于所述框体的第一部分,以为所述第一辐射部馈入电流信号,所述第二辐射部上设置有第二馈入部,所述第二馈入部位于所述框体的第一部分,以为所述第二辐射部馈入电流信号。
  14. 如权利要求13所述的电子设备,其特征在于:所述天线结构还包括第一调谐单元,所述第一调谐单元的一端电连接至所述第一馈入部,另一端接地,所述第一调谐单元包括第一调谐支路、第二调谐支路和至少一个第一开关单元,所述第一调谐支路包括电容或者电感,所述第二调谐支路包括电容或者电感。
  15. 如权利要求13或14所述的电子设备,其特征在于:所述天线结构还包括第一连接部、第二连接部及第二调谐单元,所述第一连接部与所述第 二连接部间隔设置于所述第一辐射部上,且位于所述框体的第二部分,所述第二连接部至所述第二缝隙的距离大于所述第一连接部至所述第二缝隙的距离,所述第二调谐单元的一端分别电连接至所述第一连接部及所述第二连接部,另一端接地,所述第二调谐单元包括第三调谐支路、第四调谐支路和至少一个第二开关单元,所述第三调谐支路包括电容或者电感,所述第四调谐支路包括电容或者电感。
  16. 如权利要求13-15中任一项所述的电子设备,其特征在于:所述第一缝隙与所述第三缝隙之间的框体构成所述第一辐射部的寄生枝节,以使得所述天线结构产生一额外的谐振。
  17. 如权利要求15所述的电子设备,其特征在于:所述第一缝隙与所述第一连接部之间的框体构成所述第二辐射部的寄生枝节,所述第二辐射部的寄生枝节用以分散所述第二辐射部的电流分布。
  18. 如权利要求13所述的电子设备,其特征在于:所述天线结构还包括第三连接部及第三调谐单元,所述第三连接部设置于所述第二辐射部上,且位于所述框体的第一部分,所述第三辐射部比所述第二馈入部更靠近所述第三部分,所述第三调谐单元的一端电连接至所述第三连接部与所述第二馈入部,另一端接地,所述第三调谐单元包括第五调谐支路、第六调谐支路和至少一个第三开关单元,所述第五调谐支路包括电容或者电感,所述第六调谐支路包括电容或者电感。
  19. 如权利要求13-18中任一项所述的电子设备,其特征在于:所述框体为所述电子设备的金属边框,所述第一部分为所述电子设备的底部金属边框,所述第二部分及所述第三部分为所述电子设备的侧边金属边框。
  20. 如权利要求13-18中任一项所述的电子设备,其特征在于:所述电子设备还包括机壳,所述框体设置于所述机壳内,且通过模内注塑的方式和所述机壳做成整体。
PCT/CN2020/135927 2020-01-17 2020-12-11 天线结构及具有该天线结构的电子设备 WO2021143419A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2022008826A MX2022008826A (es) 2020-01-17 2020-12-11 Estructura de antena y dispositivo electronico que tiene estructura de antena.
US17/786,788 US20230029513A1 (en) 2020-01-17 2020-12-11 Antenna structure and electronic device having antenna structure
BR112022011923A BR112022011923A2 (pt) 2020-01-17 2020-12-11 Estrutura de antena e dispositivo eletrônico tendo estrutura de antena
AU2020422039A AU2020422039B2 (en) 2020-01-17 2020-12-11 Antenna structure and electronic device having the antenna structure
EP20913264.6A EP4060811A4 (en) 2020-01-17 2020-12-11 ANTENNA STRUCTURE AND ELECTRONIC DEVICE WITH THE ANTENNA STRUCTURE
JP2022542641A JP7392163B2 (ja) 2020-01-17 2020-12-11 アンテナ構造およびアンテナ構造を有する電子デバイス
JP2023198128A JP2024020504A (ja) 2020-01-17 2023-11-22 アンテナ構造およびアンテナ構造を有する電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010054712.7 2020-01-17
CN202010054712.7A CN113140896B (zh) 2020-01-17 2020-01-17 天线结构及具有该天线结构的电子设备

Publications (1)

Publication Number Publication Date
WO2021143419A1 true WO2021143419A1 (zh) 2021-07-22

Family

ID=76808576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135927 WO2021143419A1 (zh) 2020-01-17 2020-12-11 天线结构及具有该天线结构的电子设备

Country Status (8)

Country Link
US (1) US20230029513A1 (zh)
EP (1) EP4060811A4 (zh)
JP (2) JP7392163B2 (zh)
CN (4) CN116706536A (zh)
AU (1) AU2020422039B2 (zh)
BR (1) BR112022011923A2 (zh)
MX (1) MX2022008826A (zh)
WO (1) WO2021143419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851821A (zh) * 2021-08-17 2021-12-28 荣耀终端有限公司 终端天线及移动终端设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871851B (zh) * 2021-08-31 2023-07-25 荣耀终端有限公司 移动终端设备
CN115842238A (zh) * 2021-09-18 2023-03-24 华为技术有限公司 一种电子设备
CN116073107A (zh) * 2021-10-29 2023-05-05 Oppo广东移动通信有限公司 一种天线组件、天线装置和电子设备
CN114883791B (zh) * 2022-07-04 2022-11-25 荣耀终端有限公司 天线系统和终端设备
US20240154306A1 (en) * 2022-11-03 2024-05-09 Meta Platforms Technologies, Llc Wide-band antenna with parasitic element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229674A (zh) * 2016-07-18 2016-12-14 瑞声精密制造科技(常州)有限公司 全频段金属框天线结构
KR20170130820A (ko) * 2016-05-19 2017-11-29 엘에스엠트론 주식회사 이동 통신 단말용 안테나 장치
CN110165373A (zh) * 2019-05-14 2019-08-23 华为技术有限公司 天线装置及电子设备
CN110505325A (zh) * 2019-07-17 2019-11-26 华为技术有限公司 一种中框、电池盖和电子设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107851884B (zh) * 2015-12-03 2020-06-02 华为技术有限公司 金属边框天线和终端设备
WO2017101068A1 (zh) * 2015-12-17 2017-06-22 华为技术有限公司 一种移动通讯终端
US10511081B2 (en) * 2016-07-21 2019-12-17 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
US10236556B2 (en) * 2016-07-21 2019-03-19 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
TWI650904B (zh) * 2016-07-21 2019-02-11 群邁通訊股份有限公司 天線結構及具有該天線結構之無線通訊裝置
US10321590B2 (en) * 2016-09-06 2019-06-11 Apple Inc. Interlock features of a portable electronic device
KR102241084B1 (ko) * 2017-01-26 2021-04-16 엘지전자 주식회사 이동 단말기
US11069955B2 (en) * 2017-03-20 2021-07-20 Huawei Technologies Co., Ltd. Antenna of mobile terminal and mobile terminal
CN107394347B (zh) * 2017-04-21 2020-05-29 瑞声科技(新加坡)有限公司 天线及移动终端
CN107437661B (zh) * 2017-04-21 2021-07-09 瑞声科技(新加坡)有限公司 天线及移动终端
CN109921174B (zh) * 2017-12-12 2022-03-22 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN108155485A (zh) * 2017-12-25 2018-06-12 重庆宝力优特科技有限公司 一种金属边框手机天线、控制系统及通讯终端
TWI674701B (zh) * 2018-05-08 2019-10-11 群邁通訊股份有限公司 天線結構及具有該天線結構之無線通訊裝置
CN110459856A (zh) * 2018-05-08 2019-11-15 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
TWI758606B (zh) * 2018-05-13 2022-03-21 仁寶電腦工業股份有限公司 天線裝置及電子裝置
US11205834B2 (en) * 2018-06-26 2021-12-21 Apple Inc. Electronic device antennas having switchable feed terminals
TWI691117B (zh) * 2018-06-28 2020-04-11 群邁通訊股份有限公司 天線結構及具有該天線結構的無線通訊裝置
CN208873874U (zh) * 2018-08-01 2019-05-17 Oppo广东移动通信有限公司 天线组件和电子设备
CN109149115B (zh) * 2018-08-03 2021-01-12 瑞声科技(南京)有限公司 天线系统及移动终端
CN109088152B (zh) * 2018-08-03 2020-11-20 瑞声科技(南京)有限公司 天线系统及移动终端
CN109103569B (zh) * 2018-08-24 2021-03-12 Oppo广东移动通信有限公司 天线组件和电子设备
CN109546305A (zh) * 2018-11-14 2019-03-29 维沃移动通信有限公司 一种通信终端
CN209072551U (zh) * 2019-01-21 2019-07-05 Oppo广东移动通信有限公司 中框组件及电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170130820A (ko) * 2016-05-19 2017-11-29 엘에스엠트론 주식회사 이동 통신 단말용 안테나 장치
CN106229674A (zh) * 2016-07-18 2016-12-14 瑞声精密制造科技(常州)有限公司 全频段金属框天线结构
CN110165373A (zh) * 2019-05-14 2019-08-23 华为技术有限公司 天线装置及电子设备
CN110505325A (zh) * 2019-07-17 2019-11-26 华为技术有限公司 一种中框、电池盖和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851821A (zh) * 2021-08-17 2021-12-28 荣耀终端有限公司 终端天线及移动终端设备

Also Published As

Publication number Publication date
CN113140896B (zh) 2023-05-12
US20230029513A1 (en) 2023-02-02
CN116706536A (zh) 2023-09-05
CN116487893A (zh) 2023-07-25
AU2020422039B2 (en) 2023-08-17
JP2023510827A (ja) 2023-03-15
BR112022011923A2 (pt) 2022-09-06
EP4060811A4 (en) 2023-01-18
CN117810676B (zh) 2024-10-11
CN117810676A (zh) 2024-04-02
AU2020422039A1 (en) 2022-07-14
MX2022008826A (es) 2022-10-27
EP4060811A1 (en) 2022-09-21
JP7392163B2 (ja) 2023-12-05
JP2024020504A (ja) 2024-02-14
CN113140896A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2021143419A1 (zh) 天线结构及具有该天线结构的电子设备
CN109921175B (zh) 天线结构及具有该天线结构的无线通信装置
CN110741506A (zh) 一种移动终端的天线及移动终端
CN113078449B (zh) 天线结构及具有该天线结构的无线通信装置
TW202002400A (zh) 天線結構及具有該天線結構的無線通訊裝置
JP2011528519A (ja) アンテナ装置
CN113809511A (zh) 天线结构及具有该天线结构的电子设备
CN111478016B (zh) 移动装置
TWI832048B (zh) 天線結構及具有該天線結構之電子設備
CN113140892B (zh) 天线结构及具有该天线结构的无线通信装置
TWI724754B (zh) 天線結構及具有該天線結構之無線通訊裝置
CN113078444B (zh) 天线结构及具有该天线结构的无线通信装置
CN113078445B (zh) 天线结构及具有该天线结构的无线通信装置
CN113871852B (zh) 终端天线及移动终端设备
TWI776303B (zh) 天線結構及具有該天線結構的無線通訊裝置
TWI724738B (zh) 天線結構及具有該天線結構之無線通訊裝置
RU2801540C1 (ru) Антенная конструкция и электронное устройство, имеющее антенную конструкцию
CN114552171A (zh) 天线结构及具有该天线结构的电子设备
WO2024131422A1 (zh) 天线和具有所述天线的电子设备
WO2024164639A1 (zh) 电子设备
TWI727597B (zh) 天線結構及具有該天線結構之無線通訊裝置
CN112751169B (zh) 天线结构及具有该天线结构的无线通信装置
WO2024179404A1 (zh) 一种天线结构和电子设备
CN112751161B (zh) 天线结构及具有该天线结构的无线通信装置
CN118610769A (zh) 一种天线结构和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020913264

Country of ref document: EP

Effective date: 20220616

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022011923

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022542641

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020422039

Country of ref document: AU

Date of ref document: 20201211

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022011923

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220615