WO2021143393A1 - 风道部件以及送风装置 - Google Patents

风道部件以及送风装置 Download PDF

Info

Publication number
WO2021143393A1
WO2021143393A1 PCT/CN2020/134221 CN2020134221W WO2021143393A1 WO 2021143393 A1 WO2021143393 A1 WO 2021143393A1 CN 2020134221 W CN2020134221 W CN 2020134221W WO 2021143393 A1 WO2021143393 A1 WO 2021143393A1
Authority
WO
WIPO (PCT)
Prior art keywords
air duct
air
duct
outlet
wall
Prior art date
Application number
PCT/CN2020/134221
Other languages
English (en)
French (fr)
Inventor
张玮玮
余勇
胡坤
刘镇根
Original Assignee
广东美的环境科技有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020137474.1U external-priority patent/CN211550078U/zh
Priority claimed from CN202010060629.0A external-priority patent/CN113137407B/zh
Priority claimed from CN202010060614.4A external-priority patent/CN113137385A/zh
Priority claimed from CN202020136766.3U external-priority patent/CN211550077U/zh
Priority claimed from CN202020136769.7U external-priority patent/CN211550051U/zh
Application filed by 广东美的环境科技有限公司, 美的集团股份有限公司 filed Critical 广东美的环境科技有限公司
Publication of WO2021143393A1 publication Critical patent/WO2021143393A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • This application relates to the field of household appliances, and in particular to an air duct component and an air supply device with the air duct component.
  • the air duct of the air supply device is vertically arranged with respect to the transverse cross-section of the air duct body, that is, the air duct is arranged vertically.
  • the present application provides an air duct component.
  • the air duct of the air duct component can guide the airflow, so as to avoid the generation of eddy currents in the air duct, thereby reducing the working noise of the air duct component.
  • This application further proposes an air supply device.
  • the air duct component according to the present application includes: an air duct body, the air duct body has an air duct, the air duct has an air duct air outlet and an air inlet interface, and the air duct communicates with the air inlet interface and the air inlet.
  • the duct air outlet, the air duct is arranged obliquely with respect to the longitudinal section of the duct body.
  • the air duct is arranged obliquely with respect to the longitudinal section of the air duct body.
  • the air duct can be inclined.
  • the air duct can guide the airflow.
  • the air flow function can avoid eddy currents in the air duct, thereby reducing the working noise of the air duct components.
  • the longitudinal direction of the air duct body is defined as the Z direction
  • the width direction of the air duct body is defined as the Y direction
  • the thickness direction of the air duct body is defined as the X direction
  • the angle between the air duct and the ZX plane determined by the X direction and the Z direction is ⁇ , and the ⁇ satisfies: 0 ⁇ ⁇ 10°.
  • the longitudinal direction of the air duct body is defined as the Z direction
  • the width direction of the air duct body is defined as the Y direction
  • the thickness direction of the air duct body is defined as the X direction
  • the angle between the air duct air outlet and the ZY plane determined by the Y direction and the Z direction is ⁇ , and the ⁇ satisfies: 0 ⁇ 10°.
  • the air duct has a cross section of the air duct, and the cross section of the air duct decreases from an end of the air duct close to the air inlet interface to an end far away from the air inlet interface, and the The change trend of the width of the air supply opening of the air duct is consistent with the change trend of the air duct section of the air duct.
  • the air duct has a cross section of the air duct, and the cross section of the air duct remains unchanged from the end of the air duct close to the air inlet to the end far away from the air inlet.
  • the width of the air outlet of the air duct decreases from an end of the air duct close to the air inlet to an end far away from the air inlet.
  • the air duct has a cross section of the air duct, and the cross section of the air duct decreases from an end of the air duct close to the air inlet interface to an end far away from the air inlet interface.
  • the width of the air duct is kept constant from the end of the air duct close to the air inlet to the end far away from the air inlet.
  • the cross-sectional area of the air passages near the one end of the inlet end of the cross-sectional area away from the interface S i, of the air passages of the intake air interface is S o, Satisfy the relationship: 1 ⁇ S i /S o ⁇ 2.
  • the air outlet duct near the inlet end of the width of interface is L i
  • the air outlet duct away from the inlet end of the interface width L o Satisfy the relationship: L i /L o ⁇ 0.8S i /S o .
  • L i and L o are 0.5-7mm.
  • the air duct includes a first air duct and a second air duct, and the first air duct and the second air duct are both in communication with the air inlet interface, and the first air duct The duct and the second air duct are symmetrical with respect to the longitudinal center line of the air duct component.
  • the distance between the upper end of the first air duct and the upper end of the second air duct is smaller than the distance between the lower end of the first air duct and the lower end of the second air duct.
  • the front part of the air duct body forms the air duct air outlet extending up and down.
  • the height of the air duct air outlet is H a and the air duct air outlet width at H a is C
  • the air duct has a height of H b and the air duct air outlet width is D, which satisfies the relationship formula: when H b ⁇ H a, then C ⁇ D, and 0.1 ⁇ C / D ⁇ 1.
  • the air duct includes: an inner wall of the air duct, an outer wall of the air duct, and a bottom wall of the air duct opposite to the air outlet of the air duct.
  • the inner side of the air duct is the inner wall of the air duct.
  • the outside of the duct is the outer wall of the air duct, and the rear of the air duct body is closed by the bottom wall of the air duct; the front end of the inner wall of the air duct and the front end of the outer wall of the air duct are spaced apart to form the air duct.
  • the included angle between the tangent line passing through the foremost end of the outer wall of the air duct and the horizontal center line of the width of the air duct air outlet is G 1 , which satisfies the relationship: 0° ⁇ G 1 ⁇ 45°.
  • the included angle between the tangent line passing through the foremost end of the inner wall of the air duct and the horizontal center line of the width of the air duct air outlet is G 2 , which satisfies the relationship: 0° ⁇ G 2 ⁇ 45°.
  • the separation distance between the inner wall of the air duct and the outer wall of the air duct first increases and then decreases, or the The separation distance between the inner wall of the air duct and the outer wall of the air duct gradually decreases.
  • the cross-sectional area of the air duct gradually decreases in the direction from being close to the air inlet port to away from the air inlet port.
  • the air duct extends along the height direction of the air duct component.
  • the height of the air channel is at H a cross-sectional area S a
  • the air duct component further includes: a diversion structure, the diversion structure is arranged on the bottom wall of the air duct opposite to the air outlet of the air duct, the The diversion structure is used to guide the wind in the air duct to the air duct and blow it out from the air duct through the diversion effect, and the diversion structure has a windward surface and a leeward surface, and the windward surface
  • the included angle with the bottom wall of the air duct is smaller than the included angle between the leeward surface and the bottom wall of the air duct.
  • the angle ⁇ 1 between the windward surface and the bottom wall of the air duct satisfies: 10° ⁇ 1 ⁇ 15°; the angle ⁇ between the leeward surface and the bottom wall of the air duct 1 Satisfaction: 45° ⁇ 1 ⁇ 50°.
  • the diversion structure is configured as a triangular diversion structure, and the height of the triangular diversion structure is smaller than the bottom side of the triangular diversion structure, wherein the windward surface and the The leeward surface constitutes two sides of the triangular flow guiding structure.
  • the diversion structure includes three, from the lower end to the upper end of the air duct, and the distance between the lower end of the diversion structure at the lowest end and the lower end of the air duct
  • the separation distance between the lower ends of the two adjacent guide structures is H 1 and H 2 , H 3 , respectively, which satisfies the relationship: H 1 ⁇ H 2 ⁇ H 3 .
  • the included angle between the air inlet port and the air outlet of the air duct is 80°-110°;
  • the windward surface faces the air intake interface, and the leeward surface faces away from the air intake interface.
  • the air duct component further includes: a plurality of spaced-apart air outlet gratings, the plurality of air outlet gratings are arranged at the air outlet of the air duct, and the air outlet is delivered in the air duct.
  • the distance between two adjacent outlet air grilles gradually increases from a direction close to the air inlet port to a direction away from the air inlet port.
  • the separation distance between two adjacent outlet style grids is h 0 , h 0 ⁇ 10mm; the length of the outlet style grid is L O , which satisfies the relationship: L 0 ⁇ 40mm .
  • the air outlet grille is rotatably arranged at the air outlet of the air duct to change the air outlet direction of the air supply device.
  • the outlet grille may be rotated around an axis parallel to the width direction of the air duct air outlet to change the angle between the outlet grille and the horizontal plane; the outlet grille
  • the angle between the grid and the horizontal plane has an elevation angle A 1 and a depression angle A 2 , and satisfies the relationship: 0° ⁇ A 1 ⁇ 6°, -6° ⁇ A 2 ⁇ 0°.
  • the air duct component further includes: a shunt structure disposed between the inlet end of the first air duct and the inlet end of the second air duct, the The shunting structure is configured to guide the wind from the air inlet port to the first air duct and the second air duct through the shunting action, and the shunt structure has a windward end close to the air inlet port And the end far away from the air inlet port, the shunt structure is configured as a streamline shunt structure whose cross section increases from the windward end to the end.
  • the diverging structure has a first diverging wall and a second diverging wall, the first diverging wall is used to guide the wind to the first air duct, and the second diverging wall is used to direct the wind to the first air duct.
  • the wind is guided to the second air duct, the ends of the first dividing wall and the second dividing wall close to the air inlet interface are connected to each other, and the distance between the first dividing wall and the second dividing wall is far away from each other.
  • the other ends of the air inlet ports are separated from each other.
  • the first dividing wall and the second dividing wall are arranged symmetrically with respect to the longitudinal centerline of the air duct component; the connection of the first dividing wall and the second dividing wall connected to each other It is located on the longitudinal centerline and constitutes the windward end.
  • the other ends of the first dividing wall and the second dividing wall that are far from each other are connected by the bottom wall of the dividing structure; the two ends of the bottom wall of the dividing structure are respectively connected to the first wind The inner wall of the first air duct of the air duct and the inner wall of the second air duct of the second air duct.
  • the maximum height of the shunt structure is H
  • the maximum width of the shunt structure is L
  • H and L satisfy the relationship: H/L ⁇ 0.5
  • the windward end structure of the shunt structure It is a tip and the shunt angle is ⁇
  • the ⁇ satisfies the relationship: ⁇ 120°.
  • the air duct body is provided with a mounting hole, the mounting hole is located between the air inlet interface and the windward end of the shunt structure, and the mounting hole includes a mounting hole located in the air duct.
  • the first mounting hole and the second mounting hole on both sides of the longitudinal centerline of the component; the windward end of the shunt structure corresponds to the center of the air inlet interface.
  • the widths of the inlet end of the first air duct and the inlet end of the second air duct are both L 1 , and the windward end and the wind wheel of the air supply device
  • the shortest distance between the outer diameters of the rotors is L 2 , which satisfies the relationship: 2L 1 ⁇ L 2 .
  • the air blowing device includes the above-mentioned air duct component.
  • the air duct component is arranged on the air supply device, and the air duct component can make the appearance of the air duct component more beautiful, thereby promoting the development of the appearance of the air duct component and the air supply device.
  • Fig. 1 is a schematic diagram of an air blowing device according to an embodiment of the present application
  • Figure 2 is a partial structural diagram of an air supply device according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an air duct component of an air blowing device according to an embodiment of the present application
  • Fig. 4 is a side view of the air duct component of the air blowing device according to the embodiment of the present application.
  • Figure 5 is a diagram showing the influence of the included angle ⁇ of the air supply device according to an embodiment of the present application on the amount of air output, the increase in noise, and the angle between the air output speed and the horizontal plane;
  • Fig. 6 is a diagram showing the influence of the included angle ⁇ of the air supply device according to an embodiment of the present application on the output air volume, the noise increase, and the intersecting gradient of the two airflows in the Z direction;
  • Fig. 7 is a diagram showing the influence of Si/So of the air supply device on the wind speed ratio in the Z direction according to the embodiment of the present application;
  • Fig. 8 is a diagram of the influence of Li/Lo of the air supply device on the wind speed ratio in the Z direction according to an embodiment of the present application
  • Fig. 9 is a diagram showing the influence of Li or Lo of the air supply device on the wind speed and noise reduction according to the embodiment of the present application.
  • Fig. 10 is a diagram of the influence of Li or Lo of the air supply device on the air volume and the air outlet area according to the embodiment of the present application;
  • Figure 11 is a side view of the air blowing device according to an embodiment of the present application.
  • Figure 12 is a cross-sectional view at A-A in Figure 11;
  • Figure 13 is a cross-sectional view at B-B in Figure 11;
  • Fig. 14 is a partial schematic diagram of the air duct of the air supply device according to the embodiment of the present application.
  • Fig. 15 is another perspective view of the air blowing device according to the embodiment of the present application.
  • Figure 16 is a cross-sectional view of an air blowing device according to an embodiment of the present application.
  • Figure 17 is a cross-sectional view of the air duct component of the air blowing device according to an embodiment of the present application.
  • Figure 18 is an enlarged view of C in Figure 17;
  • Figure 19 is a cross-sectional view of an air blowing device according to an embodiment of the present application.
  • Figure 20 is an enlarged view at D in Figure 19;
  • 21 is a cross-sectional view of a side view of the air duct component of the air blowing device according to the embodiment of the present application.
  • Figure 22 is a cross-sectional view of an air blowing device according to an embodiment of the present application.
  • Fig. 23 is an enlarged view of E in Fig. 22.
  • the air duct component 200 according to an embodiment of the present application will be described below with reference to FIGS. 1 to 23.
  • the air duct component 200 may be provided in the air supply device 300.
  • the air duct component 200 includes: an air duct body 201, the air duct body 201 has an air duct 20111, and the air duct 20111 has an air duct air supply opening 2019 and an air inlet interface 2015,
  • the air duct 20111 is connected to the air inlet port 2015 and the air duct air outlet 2019.
  • the wind flows into the air duct 20111 from the air inlet port 2015, and then the wind in the air duct 20111 is blown out from the air duct air outlet 2019.
  • the air duct 20111 is relative to the air duct body 201
  • the longitudinal section 500 is arranged obliquely. As shown in FIG. 3, the longitudinal section 500 of the air duct body 201 is perpendicular to the transverse section of the air duct body 201, and the longitudinal section 500 is parallel to the direction perpendicular to the paper.
  • the longitudinal direction of the air duct body 201 refers to the up and down direction in FIG. 3, the transverse cross section is parallel to the horizontal plane, and the air duct 20111 is arranged obliquely with respect to the horizontal plane.
  • the air duct of the present application The component 200 can incline the air duct 20111.
  • the air duct 20111 can be inclined. When the airflow flows in the air duct 20111, the air duct 20111 can guide the airflow, thereby avoiding the air duct.
  • the eddy current is generated in 20111, which can reduce the working noise of the air duct component 200.
  • the appearance of the air duct component 200 can also be made more beautiful, which can promote the appearance development of the air duct component 200, and can also promote the appearance development of the air supply device 300, thereby solving the problem that the vertical arrangement of the air duct 20111 restricts the air supply device.
  • the air duct 20111 is arranged obliquely with respect to the longitudinal section 500 of the air duct body 201, and compared with the prior art, the air duct 20111 can be inclined.
  • the air duct 20111 can react to the airflow. Due to the diversion effect, eddy currents in the air duct 20111 can be avoided, and the working noise of the air duct component 200 can be reduced.
  • the longitudinal direction of the air duct body 201 is defined as the Z direction
  • the width direction of the air duct body 201 is defined as the Y direction
  • the thickness direction of the air duct body 201 is defined as the X direction
  • the X direction, Y direction The direction is perpendicular to the Z direction.
  • the vertical direction of the air duct body 201 in Fig. 3 is the Z direction
  • the left and right direction of the air duct body 201 in Fig. 3 is the Y direction
  • the front and rear direction of the air duct body 201 in Fig. 3 is X direction, where the angle between the air duct 20111 and the ZX plane determined by the X and Z directions is ⁇ .
  • the angle between the inner wall of the air duct 20111 of the air duct 20111 and the ZX plane is ⁇ , as shown in Figure 5
  • can be set to 3°. This setting can make the angle between the air duct 20111 and the ZX plane more suitable.
  • the longitudinal direction of the air duct body 201 is defined as the Z direction
  • the width direction of the air duct body 201 is defined as the Y direction
  • the thickness direction of the air duct body 201 is defined as the X direction
  • the X direction, Y direction The direction and the Z direction are perpendicular to each other.
  • the angle between the air duct air outlet 2019 and the ZY plane determined by the Y and Z directions is ⁇ . It should be noted that the front end surface of the air duct air outlet 2019 is sandwiched between the ZY plane The angle is ⁇ . As shown in Figure 6, with the increase of ⁇ angle, the air volume decreases, the noise increase increases, and the gradient angle of the two airflows in the Z direction becomes larger.
  • the overall performance factors of the whole machine should make ⁇ satisfy: 0 ⁇ 10°, preferably, ⁇ can be set to 1°.
  • This setting can make the angle between the air duct air outlet 2019 and the ZY plane more suitable.
  • the airflow flows in the air duct 20111, it can further avoid the air duct 20111
  • the impact noise is generated, which can further reduce the working noise of the air duct component 200, and can also better guide the airflow to the air duct air outlet 2019, thereby making it easier for wind to blow out from the air duct air outlet 2019.
  • the lower end of the air duct 20111 may be provided with an air inlet port 2015, and the wind may flow into the air duct 20111 from the lower end of the air duct 20111.
  • the air duct 20111 has a cross section of the air duct 20111, and the cross section of the air duct 20111 may be parallel to the horizontal plane.
  • One end is decreasing, which can also be understood as, as shown in Figure 3, in the direction from bottom to top, the cross section of the air duct 20111 gradually decreases, and the change trend of the width of the air duct air outlet 2019 is the same as the change of the air duct 20111 section of the air duct 20111 The trend is the same, that is, as shown in FIG. 3, in the direction from bottom to top, the width of the air duct air outlet 2019 gradually decreases, and the width direction of the air duct air outlet 2019 refers to the left and right directions in FIG. 3.
  • this arrangement can reduce the energy loss of the airflow, can make the wind speed of the air duct air outlet 2019 more uniform, can also reduce the wind noise of the air duct air outlet 2019, and can also increase the wind The air supply distance of the channel component 200.
  • the air duct 20111 has a cross section of the air duct 20111, the cross section of the air duct 20111 may be parallel to the horizontal plane, and the cross section of the air duct 20111 extends from the end of the air duct 20111 close to the air inlet port 2015 to away from the air inlet port 2015 It can also be understood that the area of the cross section of the air duct 20111 of the air duct 20111 remains unchanged, and the width of the air duct air supply opening 2019 is from the end of the air duct air supply opening 2019 close to the air inlet interface 2015 to away from the air inlet interface One end of 2015 decreases, that is, as shown in FIG.
  • the width of the air duct air outlet 2019 gradually decreases in the direction from bottom to top, and the width direction of the air duct air outlet 2019 refers to the left and right directions in FIG. 3.
  • this arrangement can reduce the energy loss of the airflow, can make the wind speed of the air duct air outlet 2019 more uniform, can also reduce the wind noise of the air duct air outlet 2019, and increase the wind The air supply distance of the channel component 200.
  • the air duct 20111 has a cross section of the air duct 20111, the cross section of the air duct 20111 may be parallel to the horizontal plane, and the cross section of the air duct 20111 extends from the end of the air duct 20111 close to the air inlet port 2015 to away from the air inlet port 2015
  • the cross section of the air duct 20111 gradually decreases, and the width of the air duct air outlet 2019 is from the air duct air outlet 2019 close to the air inlet interface 2015
  • One end toward the end far away from the air inlet port 2015 remains unchanged, that is, the width of the air duct air outlet 2019 remains unchanged.
  • this setting can reduce the energy loss of the airflow, which can make
  • the wind speed of the air duct air supply opening 2019 is more uniform, which can also reduce the wind noise of the air duct air supply opening 2019, and can also increase the air supply distance of the air duct component 200.
  • the cross-sectional area near the inlet end of the duct 2015 20111 interfaces to S i, 20111 duct cross-sectional area away from the inlet end of the 2015 interfaces as S o, to be explained is as shown, the lower end section of the cross-sectional area of 20111 20111 duct cross-sectional area of the duct 3 to the upper end of the 20111-section S i, the air passage duct is 20111 S o, shown in Figure 7, As the ratio of S i /S o increases, the wind speed ratio in the Z direction gradually decreases. The wind speed ratio in the Z direction should not be too large or too small. The wind speed ratio in the Z direction is too large or too small.
  • S i /S o should satisfy the relationship: 1 ⁇ S i /S o ⁇ 2.
  • the ratio of S i /S o is 1.286, and the wind
  • the section of the duct 20111 runs from the end of the air duct 20111 close to the air inlet port 2015 to the end away from the air inlet port 2015.
  • This arrangement can ensure that the area of the duct 20111 section is gradually reduced, and the wind can flow in the air duct 20111.
  • the speed is more uniform, which can reduce the noise in the air duct 20111, and can also make the air flow from the air duct 20111 even, thereby improving the user experience.
  • the air outlet duct width 2019 near the inlet end of the 2015 interface L i a width of the duct air outlet end of the 2015 interfaces 2019 of the inlet away from L o
  • the lower end of the duct air outlet 2019 is L i
  • the width of the upper end of the air outlet duct is 2019 L o
  • L i / L o ratio on the direction of the air damper 8 Z ratio because that wind machine performance good sense, Z direction of the air damper ratio should be between 0.7-2, so L i / L o should satisfy the relationship: L i / L o ⁇ 0.8S i / S o, from bottom to top in
  • This arrangement can ensure that the width of the air duct air supply opening 2019 is gradually reduced, can make the wind blown from the air duct air supply opening 2019 more uniform, and can also improve the wind feeling effect of the air blown by the air duct component 200.
  • L i and L is O can be set 0.5-7mm, 9 and 10, with L or L i O increases, the air resistance becomes smaller duct 20111, increasing the amount of wind, increasing the wind area, L If i or L o is too large, the wind speed will decrease, and if Li or L o is too small, the air volume will be small, which will make the user feel that there is no wind blowing from the air duct member 200.
  • 0.5mm ⁇ L i or L o ⁇ 7mm should be made, for example: Li is set to 4mm, L o is set to 2mm, this setting can make the values of Li and L o more suitable, which can make the air duct component 200
  • the wind speed and air volume of the wind are suitable, so that the user can feel that there is wind blowing from the air duct member 200.
  • the air duct 20111 may include a first air duct 2011 and a second air duct 2012, and the first air duct 2011 and the second air duct 2012 are both connected to the air inlet port 2015 , The wind can flow into the first air duct 2011 and the second air duct 2012 from the air inlet port 2015.
  • the first air duct 2011 and the second air duct 2012 are symmetrically arranged with respect to the longitudinal center line of the air duct component 200, and the wind flows in from the air inlet port 2015
  • the air duct 20111 is set in this way, the air flow difference between the first air duct 2011 and the second air duct 2012 can be further reduced, so that the air volume distributed by the first air duct 2011 and the second air duct 2012 can be more uniform, and then The aerodynamic noise of the air duct component 200 can be reduced.
  • the distance between the upper end of the first air duct 2011 and the upper end of the second air duct 2012 is smaller than the lower end of the first air duct 2011 and the lower end of the second air duct 2012
  • This setting can ensure that the air duct 20111 is arranged obliquely with respect to the transverse cross-section of the air duct body 201, and the arrangement form of the first air duct 2011 and the second air duct 2012 can be more reasonable.
  • the air duct component 200 includes: an air duct body 201 with an air duct 20111 in the air duct body 201, and an air duct 20111 with an air duct air supply opening 2019 and an inlet end.
  • the end is in communication with the air inlet port 2015, and the cross-sectional area of the air duct air outlet 2019 gradually decreases in the direction from the inlet end to the far away from the inlet end.
  • the air duct air outlets of the existing air duct components are of equal width design, that is, the width of the air duct air outlet remains unchanged in the extension direction of the air duct air outlet.
  • the wind speed perpendicular to the cross section of the air duct gradually decreases, and the air flow pressure becomes smaller, which makes the static pressure of the air flow in the direction from the inlet end of the air duct to the direction away from the inlet end increases, causing the air duct to blow out
  • the wind speed is uneven, which increases the noise of the air outlet of the air duct.
  • the angle between the direction of the wind and the horizontal plane is large, and the wind is easy to blow on the user’s head. The feeling of wind becomes worse, which affects the user experience.
  • the wind flows into the air duct 20111 from the inlet end.
  • the air volume in the air duct 20111 gradually decreases, and the wind blows out from the air duct air outlet 2019, due to the air duct air outlet 2019
  • the cross-sectional area of the air duct is gradually reduced, that is, the width of the air duct air supply opening 2019 is gradually reduced.
  • the width direction of the air duct air supply opening 2019 refers to the left and right directions in FIG.
  • the cross-sectional area of the air duct air outlet 2019 is gradually reduced, and when the air supply device 300 is in operation, the air blown from the air duct air outlet 2019 can be more uniform, and the air noise of the air duct air outlet 2019 can be reduced. This can improve the user experience.
  • the air duct 20111 may extend along the height direction of the air duct component 200, the height direction of the air duct component 200 refers to the up and down direction in FIG. 1, and the inlet end may be arranged at the lower end of the air duct 20111
  • the front part of the air duct body 201 forms an air duct air outlet 2019 that extends up and down. This arrangement enables the air blowing device 300 to blow toward the front side of the air blowing device 300, which can facilitate the wind to blow on the user.
  • the duct feeding highly outlet 2019 to the duct H a at the air outlet 2019 width is C
  • the height of the duct 20111 for duct H b at the air outlet 2019 width as D satisfy Relational formula: when H b ⁇ H a , then C ⁇ D, and 0.1 ⁇ C/D ⁇ 1.
  • the air volume in the air duct 20111 will gradually decrease, which will make the wind speed decrease, and the air flow pressure will decrease, which will increase the static pressure of the airflow, and finally make the height H a
  • the ratio V a '/V b 'of the wind speed of the air duct air outlet 2019 at the height of H b to the wind speed of the air duct air outlet 2019 at the height of H b becomes larger, and the wind speed of the air duct air outlet 2019 is uneven, resulting in the air duct air outlet The noise becomes louder in 2019.
  • the cross-sectional area of the air duct air outlet 2019 gradually decreases, and 0.1 ⁇ C/D ⁇ 1.
  • the air duct The wind speed change rate of the air outlet 2019 is reduced, that is, the ratio of V a '/V b 'is reduced, which can make the wind speed blown from the air duct air outlet 2019 more uniform, thereby reducing the wind noise of the air duct air outlet 2019.
  • the angle between the direction of the wind and the horizontal plane can be further reduced, which can ensure that the wind is not easy to blow on the user's head position, thereby further improving the wind of the air blowing device 300 Sense, which can further enhance the user experience.
  • the ratio of C/D can be set to 0.5.
  • this setting can make the wind speed blown out from the air duct air outlet 2019 more uniform, which can further reduce the air duct air outlet 2019. Wind noise.
  • the air duct 20111 includes: an inner wall of the air duct 20192, an outer wall of the air duct 20193, and a bottom wall of the air duct 20191 opposite to the air supply opening 2019 of the air duct.
  • the inner side is the inner wall 20192 of the air duct
  • the outer side of the air duct 20111 is the outer wall 20193 of the air duct.
  • the rear of the air duct body 201 is closed by the air duct bottom wall 20191.
  • the front end of the air duct 20111 is blown out, so that the wind can be prevented from blowing from the bottom wall 20191 of the air duct, and the overall structure of the air duct 20111 can be made more reasonable.
  • the front end of the air duct inner wall 20192 and the front end of the air duct outer wall 20193 are spaced apart. This arrangement can form an air duct air outlet 2019 between the air duct inner wall 20192 and the air duct outer wall 20193, so as to ensure that the air flows from Blow out from the air duct 20111.
  • the cross-sectional area of the air duct 20111 gradually decreases from the direction close to the inlet end to the direction away from the inlet end.
  • the air duct of the existing air supply device is of constant cross-section design, that is, the cross-sectional area of the air duct is constant in the extending direction of the air duct.
  • the wind speed of the cross section perpendicular to the air duct gradually decreases, which will cause the wind speed in the air duct to be uneven and increase the noise in the air duct.
  • the wind flows into the air duct 20111 from the inlet end, and the air volume in the air duct 20111 gradually decreases in the direction from the inlet end to the far away from the inlet end.
  • the wind flows in the air duct 20111
  • due to the The cross-sectional area is gradually reduced.
  • the wind speed perpendicular to the cross-section of the air duct 20111 can be increased in the direction from the inlet end to the far away from the inlet end, which can make the wind flow speed in the air duct 20111 even faster. Uniformity, which can reduce the noise in the air duct 20111.
  • the wind speed of the cross section perpendicular to the air duct 20111 is more uniform, the air flow pressure becomes larger, so that the airflow static pressure change is smaller, and the wind blows out from the air duct air outlet 2019 At this time, the wind speed blowing from the air duct air outlet 2019 can be made more uniform, and the wind noise of the air duct air outlet 2019 can be reduced, thereby improving the user experience.
  • the separation distance between the inner wall 20192 of the air duct and the outer wall 20193 of the air duct gradually decreases.
  • This arrangement enables the air duct 20111 to have Rectification.
  • the blowing speed can further increase the range of the blowing, and thus the wind of the blowing device 300 can be blown farther.
  • the air duct component 200 includes: an air duct body 201 with an air duct 20111 in the air duct body 201, and an air duct 20111 with an air duct air supply opening 2019 and an inlet end.
  • the end communicates with the air inlet port 2015, and the cross-sectional area of the air duct 20111 gradually decreases in the direction from the inlet end to the far away from the inlet end.
  • the air duct of the existing air supply device is of constant cross-section design, that is, the cross-sectional area of the air duct is constant in the extension direction of the air duct.
  • the wind flows in the air duct, it is close to the inlet end of the air duct to the direction away from the inlet end.
  • the wind speed of the cross section perpendicular to the air duct gradually decreases, which will cause the wind speed in the air duct to be uneven and increase the noise in the air duct.
  • the cross-sectional area is gradually reduced.
  • the wind speed perpendicular to the cross section of the air duct 20111 can be increased in the direction from the inlet end to the far away from the inlet end, and the flow velocity of the wind in the air duct 20111 can be more uniform. , Which can reduce the noise in the air duct 20111.
  • the wind speed of the cross section perpendicular to the air duct 20111 is more uniform, the air flow pressure becomes larger, so that the airflow static pressure change is smaller, and the wind blows out from the air duct air outlet 2019 At this time, the wind speed blowing from the air duct air outlet 2019 can be made more uniform, and the wind noise of the air duct air outlet 2019 can be reduced, thereby improving the user experience.
  • the cross-sectional area of the air duct 20111 is gradually reduced, and when the air supply device 300 is in operation, the wind blown from the air duct air outlet 2019 can be made more uniform, and the wind noise of the air duct air outlet 2019 can be reduced, and it can also The flow velocity of the wind in the air duct 20111 is more uniform, the noise in the air duct 20111 can be reduced, and the user experience can be improved.
  • the air duct 20111 may extend along the height direction of the air duct component 200, the height direction of the air duct component 200 refers to the up and down direction in FIG. 1, and the inlet end may be arranged at the lower end of the air duct 20111
  • the air duct air outlet 2019 can be arranged at the front end of the air duct 20111, and this arrangement can make the air blowing device 300 blow toward the front side of the air blowing device 300, which can facilitate the wind to blow on the user.
  • the height of the cross-sectional area of the duct 20111 at Ha is S a
  • the height of the cross sectional area of the duct 20111 is at H b S b
  • the air duct 20111 in the direction from close to the inlet end to far away from the inlet end, by setting the air duct 20111 to have a variable cross-section, when the wind flows in the air duct 20111, the ratios of V b /V a and V a '/V b 'can be equalized If it becomes smaller, the wind speed in the air duct 20111 can be evened, and the wind speed of the air duct air supply opening 2019 can be made more uniform, thereby reducing the noise in the air duct 20111 and the air duct air supply opening 2019.
  • the ratio of S a /S b can be set to 0.75, so that the setting can better uniform the wind speed in the air duct 20111, and can also further make the wind speed of the air duct air outlet 2019 more uniform, thereby further reducing the air duct 20111 Noise inside and at the air outlet 2019 of the air duct.
  • the air duct 20111 may include: an inner wall of the air duct 20192, an outer wall of the air duct 20193, and a bottom wall 20191 of the air duct opposite to the air supply opening 2019 of the air duct.
  • the inside of the air duct 20111 is the inner wall 20192 of the air duct
  • the outside of the air duct 20111 is the outer wall 20193 of the air duct.
  • the rear of the air duct body 201 is closed by the air duct bottom wall 20191. This arrangement can ensure that the air blows towards the front side of the air duct 20111.
  • the distance between the inner wall of the air duct 20192 and the outer wall of the air duct 20193 is The separation distance first increases and then decreases.
  • This arrangement can make the air duct 20111 have a rectifying effect.
  • the wind speed in the direction of the air supply opening 2019 can increase the blowing speed of the air duct air supply opening 2019, thereby increasing the air supply range, and thereby making the wind of the air supply device 300 blow farther.
  • the separation distance between the inner wall 20192 of the air duct and the outer wall 20193 of the air duct gradually decreases.
  • This arrangement enables the air duct 20111 to have Rectification.
  • the blowing speed can further increase the range of the blowing, and thus the wind of the blowing device 300 can be blown farther.
  • the included angle between the tangent line passing through the foremost end of the air duct outer wall 20193 and the width horizontal center line of the air duct air outlet 2019 is G 1 , which satisfies the relationship: 0° ⁇ G 1 ⁇ 45°.
  • the width horizontal centerline refers to the centerline of the air duct air outlet 2019 in the width direction of the air duct air outlet 2019, and the angle between the tangent line at the inner wall surface of the foremost end of the air duct outer wall 20193 and the width horizontal centerline is G 1 , this setting can prevent the wind from generating eddy currents at the air duct air outlet 2019, can ensure the air supply distance of the air supply device 300, and can further reduce the airflow noise at the air duct air outlet 2019.
  • the angle between the tangent line passing through the foremost end of the inner wall 20192 of the air duct and the horizontal center line of the width of the air duct air outlet 2019 is G 2 , which satisfies the relationship: 0° ⁇ G 2 ⁇ 45°. It should be noted that the angle between the tangent to the outer wall surface at the foremost end of the inner wall of the air duct 20192 and the horizontal center line of the width is G 2 , this setting can further prevent the wind from generating vortices at the air duct air outlet 2019 and further ensure the delivery
  • the air supply distance of the air device 300 can also further reduce the airflow noise at the air duct air outlet 2019.
  • the air duct component 200 may be provided in a bladeless fan, and the air duct component 200 includes an air duct body 201 and a diversion structure 204.
  • the air duct body 201 has an air duct, and the air duct may include a first air duct 2011 and a second air duct 2012, and the air duct has an air duct air supply opening 2019.
  • the first air duct 2011 and the second air duct 2012 The structure of the first air duct 2011 and the second air duct 2012 are both provided with an air duct air supply opening 2019, and the wind in the air duct can be blown out of the air duct component 200 from the air duct air supply opening 2019.
  • the diversion structure 204 is arranged on the bottom wall 20191 of the air duct opposite to the air duct air outlet 2019, and the diversion structure 204 is used to guide the wind in the air duct to the air duct air outlet 2019 and from the air duct through the diversion effect.
  • the air outlet 2019 blows out, and the diversion structure 204 has a windward surface 2041 and a leeward surface 2042.
  • the angle between the windward surface 2041 and the bottom wall 20191 of the air duct is smaller than the angle between the leeward surface 2042 and the bottom wall 20191 of the air duct.
  • the air duct extends in the up and down direction.
  • the air volume in the air duct will gradually decrease from the bottom to the top, which will cause the wind speed in the air duct to become smaller and smaller, which will lead to The wind speed in the air duct is uneven.
  • the gas flow noise will be increased.
  • the dynamic pressure of the airflow becomes smaller, the static pressure becomes larger, and the wind changes from The air duct air outlet 2019 will be uneven after being blown out, which causes the noise of the air duct air outlet 2019 to become louder, and the angle between the blowing direction of the wind and the horizontal plane becomes larger, the wind is easy to blow the head, and the wind feels after the wind blows on the user. Poor.
  • the wind speed and flow direction of the airflow can be changed to guide the wind to the air duct.
  • the air supply opening 2019 can reduce the difference between the dynamic pressure and the static pressure of the airflow.
  • the wind will be more uniform after being blown out from the air duct air supply opening 2019, which can reduce the noise of the air duct air supply opening 2019 and increase the air supply of the air duct air supply opening 2019.
  • Wind distance, and under the guidance of the guide structure 204 the angle between the direction of the wind and the wind from the horizontal plane can be reduced, and the wind is not easy to blow the head. After the wind blows on the user, it can make the user feel more comfortable , Can improve the user experience.
  • the air outlet speed of the air duct air outlet 2019 can be made more uniform, the wind noise of the air duct air outlet 2019 can be reduced, and after the wind blows on the user, the user can feel more Comfortable and can enhance the user experience.
  • the structure of the diversion structure 204 can be configured as a triangular diversion structure 204.
  • the longitudinal section of the diversion structure 204 is triangular, and the longitudinal section is along the The upper and lower directions are parallel, and the height of the triangular diversion structure 204 is smaller than the bottom side of the triangular diversion structure 204, wherein the windward surface 2041 and the leeward surface 2042 constitute two sides of the triangular diversion structure 204 and pass through the windward surface 2041
  • the angle with the bottom wall 20191 of the air duct is set to be smaller than the angle between the leeward surface 2042 and the bottom wall 20191 of the air duct, so that the installation area of the windward surface 2041 is larger than the installation area of the leeward surface 2042.
  • the contact area between the airflow and the windward surface 2041 can make the wind blow out from the air duct
  • the included angle ⁇ between the windward surface 2041 and the air duct bottom wall 20191 satisfies: 10° ⁇ 1 ⁇ 15°
  • the included angle ⁇ between the leeward surface 2042 and the air duct bottom wall 20191 satisfies: 45° ⁇ 1 ⁇ 50°
  • the angle ⁇ 1 between the windward surface 2041 and the bottom wall 20191 of the wind tunnel is set to 13°
  • the angle between the leeward surface 2042 and the bottom wall 20191 of the wind tunnel is set to 47°.
  • the angle between the windward surface 2041 and the bottom wall 20191 of the air duct is smaller than the angle between the leeward surface 2042 and the bottom wall 20191 of the air duct, which can make the setting values of the included angle ⁇ 1 and the included angle ⁇ 1 more reasonable, thereby ensuring the diversion structure 204 Performance.
  • the diversion structure 204 may be provided in multiple, and the plurality of diversion structures 204 are arranged at intervals along the longitudinal direction of the air duct air outlet 2019, and the air duct air outlet 2019 Longitudinal refers to the up and down direction of the air duct component 200.
  • the plurality of guide structures 204 can guide the air flow at multiple positions in the up and down direction, so that more wind can be diverted.
  • the structure 204 is guided to the air duct air outlet 2019, which can further reduce the angle between the blowing direction of the wind and the horizontal plane, and solve the problem of easy blowing. After the wind blows on the user, the user can feel more comfortable. Further enhance the user experience.
  • the difference between the dynamic pressure and the static pressure of the air flow can be further reduced, and the wind will be more uniform after being blown from the air duct air outlet 2019, which can further reduce the noise of the air duct air outlet 2019.
  • the diversion structure 204 may include three, in the direction from the lower end to the upper end of the air duct, between the lower end of the diversion structure 204 and the lower end of the air duct.
  • the separation distance is H 1
  • the separation distances between the lower ends of two adjacent guide structures 204 are H 2 and H 3 respectively , satisfying the relationship: H 1 ⁇ H 2 ⁇ H 3 , it needs to be explained that the three diversion structures 204 are respectively a first diversion structure, a second diversion structure and a third diversion structure.
  • the first diversion structure is arranged in the direction from the lower end to the upper end of the air duct.
  • the length of the air duct air supply opening 2019 is set to Hmm, that is, the height of the air duct air supply opening 2019 in the up and down direction is set to Hmm, n is the number of diversion structures 204, and H and n satisfy the relationship : N ⁇ H/50, in the up and down direction, this arrangement can make the density of the diversion structure 204 more suitable. At different heights, it can ensure that the airflow can contact the windward surface 2041 of the diversion structure 204, so that The working performance of each diversion structure 204 is guaranteed.
  • the front part of the air duct body 201 forms an air duct air outlet 2019 extending up and down
  • the rear part of the air duct body 201 is closed by the air duct bottom wall 20191
  • the bottom of the air duct body 201 has an air inlet Interface 2015, where wind flows from the air inlet interface 2015 into the inside of the air duct, under the action of the diversion structure 204 on the air duct bottom wall 20191, the wind can be blown out from the air duct air outlet 2019, which can avoid the wind from the air duct bottom wall 20191 is blown out, so that the overall structure of the air duct body 201 and the air duct bottom wall 20191 can be more reasonable.
  • the included angle between the air inlet port 2015 and the air duct air outlet 2019 can be set to 80°-110°. After the wind flows into the air duct from the air inlet port 2015, it is convenient for the diversion structure 204 to disperse the airflow.
  • Guide to the air duct air outlet 2019 can reduce the impact of the air flow on the diversion structure 204, thereby reducing the flow noise of the airflow in the air duct, and thereby setting the value of the angle between the air inlet interface 2015 and the air duct air outlet 2019 It is more reasonable, and after the wind is blown from the air duct air outlet 2019, the angle between the blowing direction of the wind and the horizontal plane can be further reduced, the wind is not easy to blow the head, and the wind can make the user feel more comfortable after the wind blows on the user.
  • the windward surface 2041 is arranged facing the wind inlet port 2015, and the leeward surface 2042 is arranged away from the wind inlet port 2015. After the wind flows into the air duct from the wind inlet port 2015, this arrangement can facilitate the airflow and the windward surface.
  • the 2041 contact can make the air flow more convenient to be guided to the air duct 2019.
  • the lower end of the windward surface 2041 and the upper end of the leeward surface 2042 are connected to the air duct bottom wall 20191, and the upper end of the windward surface 2041 and the lower end of the leeward surface 2042 are connected to each other ,
  • the inner side of the air duct is the air duct inner wall 20192
  • the outer side of the air duct is the air duct outer wall 20193
  • the inner edge of each of the windward surface 2041 and the leeward surface 2042 is connected to the air duct inner wall 20192 and the outer edge is connected to the air duct outer wall 20193
  • the diversion structure 204 can guide more airflow to the air duct opening 2019, thereby improving the working efficiency of the diversion structure 204.
  • the diversion structure 204 may be formed by concavely forming the air duct bottom wall 20191 toward the air duct air outlet 2019 of the air duct. This arrangement enables the diversion structure 204 and the air duct bottom wall 20191 to be integrated.
  • the molded part can increase the strength of the connection between the diversion structure 204 and the bottom wall 20191 of the air duct, and can also reduce the development of molds, thereby reducing the manufacturing cost of the air duct component 200.
  • the air duct component 200 includes: an air duct body 201 and a plurality of spaced-apart outlet grilles 205.
  • the air duct body 201 has an air duct, and the air duct has an air duct air supply opening 2019 and an inlet end.
  • the air duct has a first air duct 2011 and a second air duct 2012, and the first air duct 2011 and the second air duct
  • the structure of the duct 2012 is the same. Both the first air duct 2011 and the second air duct 2012 have an air duct air supply opening 2019, and the wind in the air duct can be blown out of the air duct component 200 from the air duct air supply opening 2019.
  • the first air duct 2011 and the second air duct 2012 are arranged to extend in the up and down direction of the air duct body 201, the inlet end has a first inlet end 2013 and a second inlet end 2014, and the first inlet end 2013 and the first air duct 2011 are arranged correspondingly , The second inlet end 2014 and the second air duct 2012 are arranged correspondingly, and airflow can flow into the first air duct 2011 and the second air duct 2012 from the first inlet end 2013 and the second inlet end 2014, respectively.
  • the air volume in the air duct will gradually decrease from the bottom to the top in the air duct, and the wind speed in the air duct will become smaller and smaller.
  • the wind speed of the air outlet of the air duct is uneven, and the air flow noise will increase when the wind flows in the air duct.
  • the dynamic pressure of the airflow becomes smaller and static If the pressure becomes larger, the wind will be uneven after blowing out from the air outlet of the air duct, resulting in greater noise at the air outlet of the air duct.
  • the plurality of outlet style gratings 205 are arranged at intervals along the up and down direction of the air duct body 201, and the inlet end is arranged on the air duct.
  • the separation distance between two adjacent outlet grilles 205 gradually increases. In the direction from the lower end to the upper end of the duct, this setting can make the wind resistance of the air duct air outlet 2019 from large to small.
  • the air outlet speed of the air duct air outlet 2019 can be made more uniform, and the air duct air outlet can be reduced.
  • the noise of 2019 can reduce the working noise of the air supply device 300, thereby improving the air output effect of the air supply device 300. After the wind blows on the user, the user can feel more comfortable, thereby improving the user experience.
  • the wind speed of the air duct air outlet 2019 can be made more uniform, the noise of the air duct air outlet 2019 can be reduced, and the air supply device 300 can be reduced.
  • Working noise can further improve the air outlet effect of the air supply device 300.
  • the separation distance between two adjacent outlet gratings 205 is h 0 , h 0 ⁇ 10 mm, and this setting can make the separation distance between two adjacent outlet gratings 205 more appropriate.
  • the air output of the air supply device 300 can be guaranteed, so that the air output effect of the air supply device 300 can be ensured, and the working performance of the air supply device 300 can be ensured.
  • the length of the outlet grating 205 can be set to L O , which satisfies the relationship: L 0 ⁇ 40mm, where the length direction of the outlet grating 205 refers to the length of the air duct body 201 in FIG. 21 In the front and rear direction, this arrangement can make the length of the outlet style grill 205 more suitable.
  • the outlet style grill 205 When the wind flows in the air duct, it can prevent the outlet style grill 205 from blocking the air flow, thereby preventing loss of air flow in the air duct, and further ensuring the air supply device 300 Moreover, when the airflow is blown out from the air duct air outlet 2019, the outlet style grill 205 can have a good guiding effect on the airflow, and the air outlet speed of the air duct air outlet 2019 can be made more uniform.
  • each outlet grating 205 is parallel to the horizontal plane, wherein, when the air flow is blown out from the air duct air outlet 2019, the outlet grating 205 can perform the wind speed direction of the wind from the air duct.
  • a certain diversion can make the direction of the wind speed blown by the air duct air outlet 2019 as parallel to the ground as possible. After the wind blows from the air duct air outlet 2019, it can prevent the wind from blowing to the user's head, or increase the air duct air outlet 2019 to blow out the wind.
  • the range of the air supply device 300 can be improved.
  • a plurality of outlet grilles 205 are integrally formed with the air duct air outlet 2019, wherein the outlet grill 205 is connected to the shape of the air duct outlet 2019 in a matching manner, and the outlet grill 205 is The number is adjusted according to the length of the air duct air outlet 2019. This setting can reliably install the air outlet grill 205 at the air duct air outlet 2019, avoiding the separation of the air outlet grill 205 from the air duct air outlet 2019, so that it can be Ensure the working performance of the style grid 205.
  • the outlet grill 205 is rotatably arranged at the air duct air outlet 2019.
  • the user adjusts the outlet grill 205 to make The outlet style grill 205 rotates relative to the air duct air outlet 2019, which can change the air outlet direction of the air blowing device 300, so as to meet the needs of users for different air outlet directions of the air blowing device 300, thereby expanding the air supply of the air blowing device 300. Wind range.
  • the outlet grill 205 can rotate around an axis parallel to the width direction of the air duct air outlet 2019. It should be explained that the width direction of the air duct air outlet 2019 refers to the left and right directions in FIG. 19. This setting can change the angle between the style grill 205 and the horizontal plane, thereby changing the air supply angle of the air supply device 300 in the up and down direction, and can also ensure that the air supply range of the air supply device 300 can be expanded, and the air can be discharged. The setting form of the grille 205 is more reasonable.
  • the angle between the exit grating 205 and the horizontal plane may have an elevation angle A1 and a depression angle A2, satisfying the relationship: 0° ⁇ A 1 ⁇ 6°, -6° ⁇ A 2 ⁇ 0 °, for example: the elevation angle A 1 is 3°, and the depression angle A 2 is -3°.
  • This setting can ensure that the wind blowing from the air duct air outlet 2019 can be prevented when the air outlet direction of the air supply device 300 is changed To the user's head, which can solve the problem of wind blowing head easily.
  • the air duct component 200 may further include: a diversion structure 204, which is arranged on the bottom wall 20191 of the air duct opposite to the air duct air outlet 2019.
  • the diversion structure 204 is used to guide the wind in the air duct to the air duct air outlet 2019 and blow it out from the air duct air outlet 2019 through the diversion effect.
  • the wind speed and flow direction of the airflow can be changed, and the wind can be guided to the air duct air outlet 2019, which can reduce the difference between the dynamic pressure and the static pressure of the airflow.
  • the wind will be more uniform after blowing from the air duct air outlet 2019, which can further reduce the noise of the air duct air outlet 2019, and also increase the air supply distance of the air duct air outlet 2019. Moreover, under the guidance of the diversion structure 204, it can be The angle between the blowing direction of the wind and the horizontal plane is reduced, and the wind is not easy to blow the head. After the wind blows on the user, the user can feel more comfortable and the user experience can be improved.
  • the air duct component 200 includes: an air duct body 201 and a shunt structure 202.
  • the air duct body 201 has a first air duct 2011 and a second air duct 2012.
  • the first air duct 2011 and the second air duct 2012 are arranged in an up-and-down direction, and the shunt structure 202 is arranged at the inlet end of the first air duct 2011 (ie Between the first inlet end 2013) and the inlet end of the second air duct 2012 (that is, the second inlet end 2014), the shunt structure 202 is configured to pass the wind from the air inlet port 2015 of the air duct body 201 through the shunt action.
  • the flow dividing structure 202 has a windward end 2021 close to the air inlet interface 2015 and an end 2022 far away from the wind inlet interface 2015.
  • the flow dividing structure 202 is configured to have a cross section from the windward end 2021.
  • the streamlined shunt structure 202 increasing at the end 2022, it should be noted that in the direction from bottom to top, the cross section of the shunt structure 202 is a streamlined shunt structure 202 that gradually increases.
  • the wind flows from the air inlet port 2015 of the air duct body 201 to the first inlet end 2013 and the second inlet end 2014.
  • the wind flows through the split structure 202 first.
  • the wind from the air inlet port 2015 can be more smoothly and evenly split into the first air duct 2011 and the second air duct 2012, which can make the first wind
  • the air output of the second air channel 2011 and the second air channel 2012 is more even, and the consistency of the air output effect of the first air channel 2011 and the second air channel 2012 can also be improved.
  • the user After the wind blows on the user, the user can feel more comfortable, thereby The user experience can be improved, and after the wind is shunted by the shunt structure 202, the noise generated by the wind in the air duct component 200 can be reduced, the operating noise of the air supply device 300 can be reduced, and the noise pollution caused to the indoor environment can be reduced.
  • the working performance of the air supply device 300 can be improved.
  • the split structure 202 the wind flowing out of the air inlet port 2015 can be split more smoothly and evenly to the first air duct 2011 and the second air duct 2012, and the wind noise of the air duct component 200 can be reduced, thereby The operating noise of the air supply device 300 can be reduced, and the air output from the first air duct 2011 and the second air duct 2012 can also be made more uniform, which can make the user feel more comfortable, thereby improving the user experience.
  • the flow dividing structure 202 may have a first dividing wall 2023 and a second dividing wall 2024.
  • the first dividing wall 2023 is used to direct the wind from the air inlet port 2015 to the first wind.
  • the second diverging wall 2024 is used to guide the wind direction from the air inlet port 2015 to the second air passage 2012.
  • the first diverging wall 2023 and the second diverging wall 2024 are connected to each other at their ends close to the air inlet port 2015.
  • the other ends of the dividing wall 2023 and the second dividing wall 2024 far from the air inlet port 2015 are separated from each other.
  • This arrangement can make the cross section of the dividing structure 202 gradually increase from the windward end 2021 to the end 2022, and the wind from the air inlet port 2015 can be reduced. It is more smoothly guided to the first air duct 2011 and the second air duct 2012, so that the structure of the shunt structure 202 is more reasonable.
  • the first diverging wall 2023 and the second diverging wall 2024 are arranged symmetrically with respect to the longitudinal centerline 203 of the air duct component 200, wherein the longitudinal centerline 203 extends in the up and down direction, and is arranged like this
  • the structure of the first dividing wall 2023 and the second dividing wall 2024 can be made the same, and the first dividing wall 2023 and the second dividing wall 2024 can have the same dividing effect, so that the flow into the first air channel 2011 and the second air channel can be achieved.
  • the wind speed, air volume and other parameters in 2012 are the same, which can improve the consistency of the wind blown by the first air duct 2011 and the second air duct 2012.
  • connection point where the first dividing wall 2023 and the second dividing wall 2024 are connected to each other is located on the longitudinal centerline 203, and the first dividing wall 2023 and the second dividing wall 2024 are mutually connected.
  • the connected joints constitute the windward end 2021, and such arrangement can facilitate the symmetrical arrangement of the first diverging wall 2023 and the second diverging wall 2024 with respect to the longitudinal centerline 203 of the air duct component 200, which can reduce the difficulty of setting the diverging structure 202.
  • the other ends of the first diverging wall 2023 and the second diverging wall 2024 far away from each other may be connected by the diverging structure bottom wall 2025, specifically, as shown in FIG. 23, the first diverging wall 2023
  • the upper end and the upper end of the second dividing wall 2024 are connected by a dividing structure bottom wall 2025.
  • the dividing structure bottom wall 2025 can support the first dividing wall 2023 and the second dividing wall 2024.
  • the wind flows through the first dividing wall 2023 and the second dividing wall 2023.
  • the dividing wall 2024 will generate pressure on the first dividing wall 2023 and the second dividing wall 2024.
  • This arrangement can prevent the first dividing wall 2023 and the second dividing wall 2024 from being deformed by the wind, and ensuring the first dividing wall 2023 and the second dividing wall 2023 and the second dividing wall 2024.
  • the dividing effect of the dividing wall 2024 can ensure the working reliability of the first dividing wall 2023 and the second dividing wall 2024.
  • the two ends of the split structure bottom wall 2025 are respectively connected to the inner wall of the first air channel 2011 of the first air channel 2011 and the inner wall of the second air channel 2012 of the second air channel 2012, as shown in FIG. 23, the split structure bottom wall 2025 It can be integrally formed with the inner wall of the first air duct 2011 and the inner wall of the second air duct 2012.
  • the left end of the split structure bottom wall 2025 is connected to the inner wall of the first air duct 2011 of the first air channel 2011, and the right end of the split structure bottom wall 2025 is connected to the second
  • the inner wall of the second air duct 2012 of the air duct 2012 can be installed on the inner wall of the first air duct 2011 and the inner wall of the second air duct 2012 to increase the structural strength of the shunt structure 202, thereby preventing the shunt structure The position of 202 has moved.
  • the first diverging wall 2023 and the second diverging wall 2024 are configured as curved walls that are curved in a direction away from each other, wherein when wind flows through the first diverging wall 2023 and the second diverging wall 2024,
  • This arrangement can reduce the frictional resistance between the wind and the first dividing wall 2023 and the second dividing wall 2024, so that the wind can flow smoothly through the first dividing wall 2023 and the second dividing wall 2024, so that the wind can flow into the second dividing wall more smoothly.
  • the first air duct 2011 and the second air duct 2012 can further reduce the airflow noise in the air duct component 200.
  • the maximum height of the shunt structure 202 can be set to H, and the maximum width of the shunt structure 202 can be set to L, where H and L satisfy the relationship: H/L ⁇ 0.5. It should be noted that, The height direction of the shunt structure 202 refers to the up and down direction in FIG. 23, and the width direction of the shunt structure 202 refers to the left and right directions in FIG. 23.
  • the maximum height of the shunt structure 202 is set to 73 mm, and the maximum width of the shunt structure 202 is set to 126mm, this setting can make the overall size of the shunt structure 202 more suitable, and can improve the shunt effect of the shunt structure 202, so that the wind from the air inlet interface 2015 can be better diverted to the first air duct 2011 and the second air duct 2012 Inside, the airflow noise in the air duct component 200 can be further reduced.
  • the windward end 2021 of the shunt structure 202 is configured as a tip, and the shunt angle of the windward end 2021 is ⁇ , and ⁇ satisfies the relationship: ⁇ 120°, for example: ⁇ is set to 116°, so set
  • is set to 116°, so set
  • the diversion effect of the flow structure can be further improved, and the wind can flow into the first air duct 2011 and the second air duct 2012 more evenly.
  • the flow dividing structure 202 may have a first dividing wall 2023, a second dividing wall 2024, and a dividing structure bottom wall 2025.
  • the first dividing wall 2023, the second dividing wall 2024, and the dividing structure bottom wall 2025 are connected end to end to form a triangular shape.
  • the height of the triangle coincides with the longitudinal center line 203 of the air duct component 200, the connecting end of the first diverging wall 2023 and the second diverging wall 2024 is arranged downward, and the connecting end of the first diverging wall 2023 and the second diverging wall 2024 is configured as the windward end
  • the height of the triangle is H
  • the width of the bottom wall 2025 of the splitter structure is L
  • H and L satisfy the relationship: H/L ⁇ 0.5
  • the angle between the first splitter wall 2023 and the second splitter wall 2024 is ⁇
  • The relationship is satisfied: ⁇ 120°.
  • the height of the triangle is the maximum height of the diverging structure 202
  • the width of the bottom wall 2025 of the diverging structure is the maximum width of the diverging structure 202
  • the first diverging wall 2023 and the second diverging wall 2024 are sandwiched between
  • the angle is the split angle of the windward end 2021.
  • the air duct body 201 may be provided with a mounting hole 2016.
  • the mounting hole 2016 is located between the air inlet port 2015 and the windward end 2021 of the shunt structure 202 .
  • the mounting hole 2016 may include a first mounting hole 2017 and a second mounting hole 2018 located on both sides of the longitudinal center line 203 of the air duct component 200, wherein the first mounting hole 2017 and the second mounting hole 2018 are used to install the negative ion probe.
  • the objective of installing the negative ion probe on the air duct body 201 is realized.
  • the windward end 2021 of the shunt structure 202 corresponds to the center of the air inlet port 2015. After the wind flows out from the air inlet port 2015, this arrangement can divide the wind into two evenly, and a part of the wind flows into the first wind. Channel 2011, another part of the wind flows into the second air channel 2012, so that the flow of the wind flowing into the first air channel 2011 and the second air channel 2012 can be the same, thereby further improving the diversion effect of the diversion structure 202.
  • the widths of the inlet end of the first air duct 2011 and the inlet end of the second air duct 2012 are both L 1 , and the width between the windward end 2021 and the outer diameter of the wind wheel of the air supply device 300
  • the shortest distance is L 2 , which satisfies the relationship; 2L 1 ⁇ L 2 , this setting can make the shortest distance between the windward end 2021 and the outer diameter of the wind wheel of the air supply device 300 more suitable.
  • the air supply device 300 may be a bladeless fan.
  • the air supply device 300 includes the air duct component 200 of the above-mentioned embodiment.
  • the air duct component 200 is arranged on the air supply device 300. 200 can make the appearance of the air duct component 200 more beautiful, so as to promote the development of the appearance of the air duct component 200 and the air supply device 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Duct Arrangements (AREA)

Abstract

一种风道部件(200)以及送风装置(300),风道部件(200)包括:风道本体(201),所述风道本体(201)具有风道(20111),所述风道(20111)具有风道送风口(2019)和进风接口(2015),所述风道(20111)连通所述进风接口(2015)和所述风道送风口(2019),所述风道(20111)相对于所述风道本体(201)的纵向截面倾斜设置。

Description

风道部件以及送风装置
相关申请的交叉引用
本申请要求“广东美的环境科技有限公司”和“美的集团股份有限公司”于2020年01月19日提交的、名称为“风道部件以及送风装置”、“用于送风装置的风道部件以及送风装置”、“用于送风装置的风道部件以及送风装置”、“用于送风装置的风道部件”、“用于送风装置的风道部件以及送风装置”和“用于送风装置的风道部件以及送风装置”的、中国专利申请号“202010063057.1”、“202020136766.3”、“202020136769.7”、“202010060629.0”、“202010060614.4”和“202020137474.1”的优先权。
技术领域
本申请涉及生活电器领域,尤其是涉及一种风道部件以及具有该风道部件的送风装置。
背景技术
相关技术中,送风装置的风道相对于风道本体的横向截面垂直设置,即风道竖直布置,气流在风道内流动时,风道内会产生噪声。
申请内容
本申请提供一种风道部件,该风道部件的风道可以对气流起到导流作用,从而可以避免风道内产生涡流,进而可以降低风道部件的工作噪音。
本申请进一步地提出了一种送风装置。
根据本申请的风道部件包括:风道本体,所述风道本体具有风道,所述风道具有风道送风口和进风接口,所述风道连通所述进风接口和所述风道送风口,所述风道相对于所述风道本体的纵向截面倾斜设置。
根据本申请的风道部件,通过风道相对于风道本体的纵向截面倾斜设置,与现有技术相比,能够使风道倾斜,气流在风道内流动时,风道可以对气流起到导流作用,从而可以避免风道内产生涡流,进而可以降低风道部件的工作噪音。
在本申请的一些示例中,定义所述风道本体的纵向方向为Z向,定义所述风道本体的宽度方向为Y方向,定义所述风道本体的厚度方向为X方向,并且所述X方向、所述Y方向和所述Z方向两两垂直;其中,所述风道与由所述X方向和所述Z方向确定的ZX平面的夹角为α,所述α满足:0<α≤10°。
在本申请的一些示例中,定义所述风道本体的纵向方向为Z向,定义所述风道本体的宽度方向为Y方向,定义所述风道本体的厚度方向为X方向,并且所述X方向、所述Y方向和所述Z方向两两垂直;其中,所述风道送风口与由所述Y方向和所述Z方向确定的ZY平面的夹角为β,所述β满足:0<β≤10°。
在本申请的一些示例中,所述风道具有风道截面,所述风道截面从所述风道的靠近所述进风接口的一端向着远离所述进风接口的一端递减,并且所述风道送风口的宽度变化趋势与所述风道的风道截面的变化趋势一致。
在本申请的一些示例中,所述风道具有风道截面,所述风道截面从所述风道的靠近所述进风接口的一端向着远离所述进风接口的一端保持不变,所述风道送风口的宽度从所述风道送风口的靠近所述进风接口的一端向着远离所述进风接口的一端递减。
在本申请的一些示例中,所述风道具有风道截面,所述风道截面从所述风道的靠近所述进风接口的一端向着远离所述进风接口的一端递减,所述风道送风口的宽度从所述风道送风口的靠近所述进风接口的一端向着远离所述进风接口的一端保持不变。
在本申请的一些示例中,所述风道的靠近所述进风接口的一端的横截面积为S i,所述风道的远离所述进风接口的一端的横截面积为S o,满足关系式:1<S i/S o<2。
在本申请的一些示例中,所述风道送风口的靠近所述进风接口的一端的宽度为L i,所述风道送风口的远离所述进风接口的一端的宽度为L o,满足关系式:L i/L o≥0.8S i/S o
在本申请的一些示例中,L i和L o均为0.5-7mm。
在本申请的一些示例中,所述风道包括第一风道和第二风道,所述第一风道和所述第二风道均与所述进风接口连通,所述第一风道和所述第二风道关于所述风道部件的纵向中线对称。
在本申请的一些示例中,所述第一风道的上端与所述第二风道的上端间隔距离小于所述第一风道的下端与所述第二风道的下端间隔距离。
在本申请的一些示例中,所述风道本体的前部形成上下延伸的所述风道送风口。
在本申请的一些示例中,所述风道送风口的高度为H a处的风道送风口宽度为C,所述风道的高度为H b处的风道送风口宽度为D,满足关系式:当H b<H a时,则C<D,且0.1≤C/D≤1。
在本申请的一些示例中,所述风道包括:风道内壁、风道外壁和与所述风道送风口相对的风道底壁,所述风道的内侧为风道内壁,所述风道的外侧为风道外壁,所述风道本体的后部由所述风道底壁封闭;所述风道内壁的前端和所述风道外壁的前端间隔开,以形成所述风道送风口。
在本申请的一些示例中,通过所述风道外壁最前端的切线与所述风道送风口的宽度水平中线的夹角为G 1,满足关系式:0°≤G 1≤45°。
在本申请的一些示例中,通过所述风道内壁最前端的切线与所述风道送风口的宽度水平中线的夹角为G 2,满足关系式:0°≤G 2≤45°。
在本申请的一些示例中,从所述风道底壁至所述风道送风口方向,所述风道内壁与所述风道外壁之间的间隔距离先增大后减小,或所述风道内壁与所述风道外壁之间的间隔距离逐渐减小。
在本申请的一些示例中,在靠近所述进风接口至远离所述进风接口的方向上,所述风道的横截面积逐渐减小。
在本申请的一些示例中,所述风道沿所述风道部件的高度方向延伸。
在本申请的一些示例中,所述风道的高度为H a处的横截面积为S a,所述风道的高度为H b处的横截面积为S b,满足关系式:H b<H a,S a<S b,0.1≤S a/S b≤1。
在本申请的一些示例中,所述的风道部件还包括:导流结构,所述导流结构设置在所述风道的与所述风道送风口相对的风道底壁上,所述导流结构用于将所述风道内的风通过导流作用引导至所述风道送风口并从所述风道送风口吹出,所述导流结构具有迎风面和背风面,所述迎风面与所述风道底壁的夹角小于所述背风面与所述风道底壁的夹角。
在本申请的一些示例中,所述迎风面与所述风道底壁的夹角α 1满足:10°≤α 1≤15°;所述背风面与所述风道底壁的夹角β 1满足:45°≤β 1≤50°。
在本申请的一些示例中,所述导流结构构造为三角形导流结构,且三角形的所述导流结构的高小于三角形的所述导流结构的底边,其中所述迎风面和所述背风面构成三角形的所述导流结构的两个侧边。
在本申请的一些示例中,所述导流结构为多个且沿所述风道送风口的纵向间隔开布置。
在本申请的一些示例中,所述导流结构包括三个,由所述风道的下端至上端的方向,位于最下端的所述导流结构的下端与所述风道的下端间的间隔距离为H 1且相邻的两个所述导流结构的下端间的间隔距离分别为H 2、H 3,满足关系式:H 1<H 2<H 3
在本申请的一些示例中,所述进风接口与所述风道送风口的夹角为80°-110°;
在本申请的一些示例中,所述迎风面与所述进风接口面对,所述背风面背离所述进风接口。
在本申请的一些示例中,所述的风道部件还包括:多个间隔开的出风格栅,多个所述出风格栅设于所述风道送风口,在所述风道送风口处,从靠近所述进风接口至远离所述进风接口的方向上,相邻两个所述出风格栅的间隔距离逐渐增大。
在本申请的一些示例中,相邻两个所述出风格栅的间隔距离为h 0,h 0≥10mm;所述出风格栅的长度为L O,满足关系式:L 0≤40mm。
在本申请的一些示例中,所述出风格栅可转动地设于所述风道送风口,以改变所述送风装置的出风方向。
在本申请的一些示例中,所述出风格栅可绕平行于所述风道送风口宽度方向的轴线 转动,以改变所述出风格栅与水平面间的夹角;所述出风格栅与所述水平面间的夹角具有上仰角A 1和俯角A 2,满足关系式:0°≤A 1≤6°,-6°≤A 2≤0°。
在本申请的一些示例中,所述的风道部件还包括:分流结构,所述分流结构设置在所述第一风道的进口端和所述第二风道的进口端之间,所述分流结构设置成用于将来自所述进风接口的风通过分流作用后分别引导至所述第一风道和所述第二风道,所述分流结构具有靠近所述进风接口的迎风端和远离所述进风接口的末端,所述分流结构构造为横截面自所述迎风端向所述末端递增的流线型分流结构。
在本申请的一些示例中,所述分流结构具有第一分流壁和第二分流壁,所述第一分流壁用于将风向所述第一风道引导,所述第二分流壁用于将风向所述第二风道引导,所述第一分流壁和所述第二分流壁的靠近所述进风接口的一端彼此相连,所述第一分流壁和所述第二分流壁的远离所述进风接口的另一端彼此分开。
在本申请的一些示例中,所述第一分流壁和所述第二分流壁关于所述风道部件的纵向中线对称布置;所述第一分流壁和所述第二分流壁彼此相连的连接处处在所述纵向中线上并构成所述迎风端。
在本申请的一些示例中,所述第一分流壁和所述第二分流壁的彼此远离的另一端通过分流结构底壁相连;所述分流结构底壁的两端分别连接所述第一风道的第一风道内壁和所述第二风道的第二风道内壁。
在本申请的一些示例中,所述分流结构的最大高度为H,所述分流结构的最大宽度为L,其中H和L满足关系式:H/L≥0.5;所述分流结构的迎风端构造为尖端且分流角为θ,所述θ满足关系式:θ≤120°。
在本申请的一些示例中,所述风道本体上开设有安装孔,所述安装孔位于所述进风接口和所述分流结构的迎风端之间,所述安装孔包括位于所述风道部件的纵向中线两侧的第一安装孔和第二安装孔;所述分流结构的迎风端与所述进风接口的中心对应。
在本申请的一些示例中,所述第一风道的所述进口端和所述第二风道的所述进口端的宽度均为L 1,所述迎风端与所述送风装置的风轮的风轮外径间的最短距离为L 2,满足关系式;2L 1≤L 2
根据本申请的送风装置,包括上述的风道部件。
根据本申请的送风装置,风道部件设置在送风装置上,风道部件可以使风道部件的外观更加美观,从而可以促进风道部件以及送风装置的外观发展。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的送风装置的示意图;
图2是根据本申请实施例的送风装置的部分结构示意图;
图3是根据本申请实施例的送风装置的风道部件的示意图;
图4是根据本申请实施例的送风装置的风道部件的侧视图;
图5是根据本申请实施例的送风装置的夹角α对出风风量、噪音增加量、出风风速与水平面夹角的影响图;
图6是根据本申请实施例的送风装置的夹角β对出风风量、噪音增加量、Z方向双气流相交梯度的影响图;
图7是根据本申请实施例的送风装置的Si/So对Z方向出风风速比的影响图;
图8是根据本申请实施例的送风装置的Li/Lo对Z方向出风风速比的影响图;
图9是根据本申请实施例的送风装置的Li或Lo对出风风速、噪声减少量的影响图;
图10是根据本申请实施例的送风装置的Li或Lo对风量和出风面积的影响图;
图11是根据本申请实施例的送风装置的侧视图;
图12是图11中A-A处的剖视图;
图13是图11中B-B处的剖视图;
图14是根据本申请实施例的送风装置的风道的局部示意图;
图15是根据本申请实施例的送风装置的另一个角度示意图;
图16是根据本申请实施例的送风装置的剖视图;
图17是根据本申请实施例的送风装置的风道部件的截面图;
图18是图17中C处的放大图;
图19是根据本申请实施例的送风装置的剖视图;
图20是图19中D处的放大图;
图21是根据本申请实施例的送风装置的风道部件侧视图的截面图;
图22是根据本申请实施例的送风装置的剖视图;
图23是图22中E处的放大图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图23描述根据本申请实施例的风道部件200,风道部件200可以设置于送风装置300。
如图1-图10所示,根据本申请实施例的风道部件200包括:风道本体201,风道本体201具有风道20111,风道20111具有风道送风口2019和进风接口2015,风道20111连通进风接口2015和风道送风口2019,风从进风接口2015流入风道20111,然后风道20111内的风从风道送风口2019吹出,风道20111相对于风道本体201的纵向截面500倾斜设置,如图3所示,风道本体201的纵向截面500与风道本体201的横向截面垂直,且纵向截面500与垂直于纸面的方向平行。
其中,需要说明的是,风道本体201的纵向方向是指图3中的上下方向,横向截面与水平面平行,风道20111相对于水平面倾斜设置,与现有技术相比,本申请的风道部 件200能够使风道20111倾斜设置,与现有技术相比,能够使风道20111倾斜,气流在风道20111内流动时,风道20111可以对气流起到导流作用,从而可以避免风道20111内产生涡流,进而可以降低风道部件200的工作噪音。并且,也可以使风道部件200的外观更加美观,从而可以促进风道部件200的外观发展,也可以促进送风装置300的外观发展,进而可以解决风道20111竖直布置限制了送风装置300的外观发展的问题。
由此,通过风道20111相对于风道本体201的纵向截面500倾斜设置,与现有技术相比,能够使风道20111倾斜,气流在风道20111内流动时,风道20111可以对气流起到导流作用,从而可以避免风道20111内产生涡流,进而可以降低风道部件200的工作噪音。
在本申请的一些实施例中,定义风道本体201的纵向方向为Z向,定义风道本体201的宽度方向为Y方向,定义风道本体201的厚度方向为X方向,并且X方向、Y方向和Z方向两两垂直,需要解释的是,图3中风道本体201的上下方向为Z向,图3中风道本体201的左右方向为Y方向,即图3中风道本体201的前后方向为X方向,其中,风道20111与由X方向和Z方向确定的ZX平面的夹角为α,需要说明的是,风道20111的风道20111内壁与ZX平面的夹角为α,如图5所示,随α角度的增加,出风风量减小,噪音增加量增大,出风风速与水平面的夹角变小,综合整机性能因素,应使得α满足:0<α≤10°,优选地,α可以设置为3°,这样设置能够使风道20111与ZX平面的夹角更加适宜,气流在风道20111内流动时,可以避免风道20111内产生冲击噪声,从而可以降低风道部件200的工作噪音,并且,也可以将气流导向至风道送风口2019,从而便于风从风道送风口2019吹出。
在本申请的一些实施例中,定义风道本体201的纵向方向为Z向,定义风道本体201的宽度方向为Y方向,定义风道本体201的厚度方向为X方向,并且X方向、Y方向和Z方向两两垂直,其中,风道送风口2019与由Y方向和Z方向确定的ZY平面的夹角为β,需要说明的是,风道送风口2019的前端面与ZY平面的夹角为β,如图6所示,随β角度的增加,出风风量减小,噪音增加量增大,Z方向双气流相交梯度角变大,综合整机性能因素,应使得β满足:0<β≤10°,优选地,β可以设置为1°,如此设置能够使风道送风口2019与ZY平面的夹角更加适宜,气流在风道20111内流动时,可以进一步避免风道20111内产生冲击噪声,从而可以进一步降低风道部件200的工作噪音,并且,也可以更好地将气流导向至风道送风口2019,从而更加便于风从风道送风口2019吹出。
在本申请的一些实施例中,风道20111的下端可以设置有进风接口2015,风可以从 风道20111的下端流入风道20111。
根据本申请的一个具体实施例,风道20111具有风道20111截面,风道20111截面可以与水平面平行,风道20111截面从风道20111的靠近进风接口2015的一端向着远离进风接口2015的一端递减,也可以理解为,如图3所示,在从下至上的方向上,风道20111截面逐渐递减,并且风道送风口2019的宽度变化趋势与风道20111的风道20111截面的变化趋势一致,也就是说,如图3所示,在从下至上的方向上,风道送风口2019的宽度逐渐递减,风道送风口2019的宽度方向是指图3中的左右方向。其中,当气流在风道20111内流动时,这样设置能够降低气流的能量损耗,可以使风道送风口2019的风速更加均匀,也可以降低风道送风口2019的出风噪音,还可以增大风道部件200的送风距离。
根据本申请的另一个具体实施例,风道20111具有风道20111截面,风道20111截面可以与水平面平行,风道20111截面从风道20111的靠近进风接口2015的一端向着远离进风接口2015的一端保持不变,也可以理解为,风道20111的风道20111截面的面积不变,风道送风口2019的宽度从风道送风口2019的靠近进风接口2015的一端向着远离进风接口2015的一端递减,也就是说,如图3所示,在从下至上的方向上,风道送风口2019的宽度逐渐递减,风道送风口2019的宽度方向是指图3中的左右方向。其中,当气流在风道20111内流动时,如此设置能够降低气流的能量损耗,可以使风道送风口2019的风速更加均匀,也可以降低风道送风口2019的出风噪音,还可以增大风道部件200的送风距离。
根据本申请的另一个具体实施例,风道20111具有风道20111截面,风道20111截面可以与水平面平行,风道20111截面从风道20111的靠近进风接口2015的一端向着远离进风接口2015的一端递减,也可以理解为,如图3所示,在从下至上的方向上,风道20111截面逐渐递减,风道送风口2019的宽度从风道送风口2019的靠近进风接口2015的一端向着远离进风接口2015的一端保持不变,也就是说,风道送风口2019的宽度不变,其中,当气流在风道20111内流动时,如此设置能够降低气流的能量损耗,可以使风道送风口2019的风速更加均匀,也可以降低风道送风口2019的出风噪音,还可以增大风道部件200的送风距离。
在本申请的一些实施例中,风道20111的靠近进风接口2015的一端的横截面积为S i,风道20111的远离进风接口2015的一端的横截面积为S o,需要解释的是,如图3所示,风道20111的下端的风道20111截面的横截面积为S i,风道20111的上端的风道20111截面的横截面积为S o,如图7所示,随S i/S o比值的增加,Z方向出风风速比逐渐 减小,Z方向上的出风风速比不宜过大也不宜过小,Z方向上的出风风速比过大或过小均会导致风道20111出风不均,噪声较大,因此应使得S i/S o满足关系式:1<S i/S o<2,优选地,S i/S o的比值为1.286,风道20111截面从风道20111的靠近进风接口2015的一端向着远离进风接口2015的一端的方向上,这样设置能够保证风道20111截面的面积逐渐递减,可以使风在风道20111内的流动速度更加均匀,可以降低风道20111内噪声,还可以使风道20111出风均匀,从而可以提升用户体验。
进一步地,风道送风口2019的靠近进风接口2015的一端的宽度为L i,风道送风口2019的远离进风接口2015的一端的宽度为L o,需要说明的是,如图3所示,风道送风口2019的下端的宽度为L i,风道送风口2019的上端的宽度为L o,如图8所示,L i/L o比值影响Z方向出风风速比,因使得整机性能风感较好,Z方向出风风速比应在0.7-2之间,因此L i/L o应满足关系式:L i/L o≥0.8S i/S o,在从下至上的方向,如此设置能够保证风道送风口2019的宽度逐渐递减,可以使从风道送风口2019吹出的风更加均匀,也可以提升风道部件200吹出风的风感效果。
具体地,L i和L o均可以设置为0.5-7mm,如图9和图10所示,随L i或L o的增加,风道20111风阻变小,风量增加,出风面积增加,L i或L o过大时会导致出风风速变小,L i或L o过小时会导致风量小,会使用户感觉没有风从风道部件200吹出。因此应使得0.5mm<L i或L o<7mm,例如:L i设置为4mm,L o设置为2mm,这样设置能够使L i和L o的值更加适宜,可以使从风道部件200的出风风速和风量适宜,从而可以使用户感觉有风从风道部件200吹出。
在本申请的一些实施例中,如图3所示,风道20111可以包括第一风道2011和第二风道2012,第一风道2011和第二风道2012均与进风接口2015连通,风可以从进风接口2015流入第一风道2011和第二风道2012,第一风道2011和第二风道2012关于风道部件200的纵向中线对称布置,风从进风接口2015流入风道20111时,如此设置能够使第一风道2011和第二风道2012的气流流量差值进一步变小,从而可以使第一风道2011和第二风道2012分配的风量更加均匀,进而可以降低风道部件200的气动噪声。
在本申请的一些实施例中,如图3所示,第一风道2011的上端与第二风道2012的上端的间隔距离值小于第一风道2011的下端与第二风道2012的下端的间隔距离值,如此设置能够保证风道20111相对于风道本体201的横向截面倾斜设置,可以使第一风道2011和第二风道2012的设置形式更加合理。
如图1-图14所示,根据本申请实施例的风道部件200包括:风道本体201,风道本体201内具有风道20111,风道20111具有风道送风口2019和进口端,进口端与进 风接口2015连通,在靠近进口端至远离进口端的方向上,风道送风口2019的横截面积逐渐减小。
现有风道部件的风道送风口为等宽设计,即在风道送风口的延伸方向上风道送风口的宽度不变,风在风道内流动时,在靠近风道的进口端至远离进口端的方向上,垂直于风道的横截面的风速逐渐减小,则气流动压变小,使得在靠近风道的进口端至远离进口端的方向上气流静压变大,导致风道送风口吹出的风速不均匀,增大风道送风口的出风噪声,并且,风从风道送风口吹出后,风的方向与水平面之间的夹角较大,风容易吹在用户的头部位置,使风感变差,影响用户使用体验。
在本申请中,风从进口端流入风道20111,在靠近进口端至远离进口端的方向上,风道20111内的风量逐渐减小,风从风道送风口2019吹出,由于风道送风口2019的横截面积逐渐减小,即风道送风口2019的宽度逐渐减小,风道送风口2019的宽度方向是指图13中的左右方向,与现有技术相比,在靠近进口端至远离进口端的方向上,风从风道送风口2019吹出时,能够使风道送风口2019的风速变化率减小,可以使从风道送风口2019吹出的风速更加均匀,从而可以降低风道送风口2019的出风噪声,并且,风从风道送风口2019吹出后,风的方向与水平面之间的夹角较小,风不容易吹在用户的头部位置,使风感变好,从而提升用户使用体验。
由此,通过风道送风口2019的横截面积逐渐减小,送风装置300工作时,能够使从风道送风口2019吹出的风更加均匀,可以降低风道送风口2019的出风噪音,从而可以提升用户体验。
在本申请的一些实施例中,风道20111可以沿风道部件200的高度方向延伸布置,风道部件200的高度方向是指图1中的上下方向,进口端可以设置于风道20111的下端,风道本体201的前部形成上下延伸的风道送风口2019,如此设置能够使送风装置300朝向送风装置300的前侧吹风,可以便于风吹到用户身上。
在本申请的一些实施例中,风道送风口2019的高度为H a处的风道送风口2019宽度为C,风道20111的高度为H b处的风道送风口2019宽度为D,满足关系式:当H b<H a时,则C<D,且0.1≤C/D≤1。其中,在靠近进口端至远离进口端的方向上,风道20111内的风量会逐渐减小,会使得风速变小,则气流动压变小,使得气流静压变大,最终使高度为H a处的风道送风口2019的风速与高度为H b处的风道送风口2019的风速之比V a’/V b’变大,风道送风口2019的风速不均匀,导致风道送风口2019噪声变大。
因此,在靠近进口端至远离进口端的方向上,通过风道送风口2019的横截面积逐渐减小,且0.1≤C/D≤1,风从风道送风口2019吹出时,能够使风道送风口2019的风 速变化率减小,即减小V a’/V b’的比值,可以使从风道送风口2019吹出的风速更加均匀,从而可以降低风道送风口2019的出风噪声,并且,风从风道送风口2019吹出后,能够进一步减小风的方向与水平面之间的夹角,可以保证风不容易吹在用户的头部位置,从而可以进一步提升送风装置300的风感,进而可以进一步提升用户使用体验。
进一步地,C/D的比值可以设置为0.5,风从风道送风口2019吹出时,这样设置可以使从风道送风口2019吹出的风速更加均匀,从而可以进一步降低风道送风口2019的出风噪声。
在本申请的一些示例中,如图12-图14所示,风道20111包括:风道内壁20192、风道外壁20193和与风道送风口2019相对的风道底壁20191,风道20111的内侧为风道内壁20192,风道20111的外侧为风道外壁20193,风道本体201的后部由风道底壁20191封闭,如此设置能够保证朝向风道20111的前侧吹风,可以使风从风道20111的前端吹出,从而可以避免风从风道底壁20191吹出,进而可以使风道20111的整体结构形式更加合理。
在本申请的一些示例中,风道内壁20192的前端和风道外壁20193的前端间隔开设置,如此设置可以在风道内壁20192和风道外壁20193之间形成风道送风口2019,从而可以保证风从风道20111内吹出。
在本申请的一些示例中,从靠近进口端至远离进口端的方向上,风道20111的横截面积逐渐减小。其中,现有送风装置的风道为等截面设计,即在风道的延伸方向上风道的横截面积不变,风在风道内流动时,在靠近风道的进口端至远离进口端的方向上,垂直于风道的横截面的风速逐渐减小,会导致风道内的风速不均匀,增加风道内噪声。而且在靠近进口端至远离进口端的方向上,由于垂直于风道的横截面的风速逐渐减小,则气流动压变小,使得气流静压变大,导致风道送风口吹出的风速不均匀,增大风道送风口的噪声。
而在本申请中,风从进口端流入风道20111,在靠近进口端至远离进口端的方向上,风道20111内的风量逐渐减小,风在风道20111内流动时,由于风道20111的横截面积逐渐减小,与现有技术相比,在靠近进口端至远离进口端的方向上,能够提升垂直于风道20111的横截面的风速,可以使风在风道20111内的流动速度更加均匀,从而可以降低风道20111内噪声。并且,在靠近进口端至远离进口端的方向上,由于垂直于风道20111的横截面的风速更加均匀,则气流动压变大,使得气流静压变化量变小,风从风道送风口2019吹出时,能够使从风道送风口2019吹出的风速更加均匀,可以降低风道送风口2019的出风噪声,从而可以提升用户体验。
根据本申请的一个具体实施例,如图14所示,从风道底壁20191至风道送风口2019方向,即图14中的由后向前方向,风道内壁20192与风道外壁20193之间的间隔距离先增大后减小,这样设置能够使风道20111具有整流作用,气流在风道20111内朝向风道送风口2019流动时,能够提升风道20111内的风道底壁20191至风道送风口2019方向的风速,可以增加风道送风口2019的吹风速度,从而可以增加送风射程,进而可以使送风装置300的风吹得更远。
根据本申请的另一个具体实施例,从风道底壁20191至风道送风口2019方向,风道内壁20192与风道外壁20193之间的间隔距离逐渐减小,如此设置能够使风道20111具有整流作用,气流在风道20111内朝向风道送风口2019流动时,能够进一步提升风道20111内的风道底壁20191至风道送风口2019方向的风速,可以进一步增加风道送风口2019的吹风速度,从而可以进一步增加送风射程,进而可以使送风装置300的风吹得更远。
如图1-图14所示,根据本申请实施例的风道部件200包括:风道本体201,风道本体201内具有风道20111,风道20111具有风道送风口2019和进口端,进口端与进风接口2015连通,在靠近进口端至远离进口端的方向上,风道20111的横截面积逐渐减小。
现有送风装置的风道为等截面设计,即在风道的延伸方向上风道的横截面积不变,风在风道内流动时,在靠近风道的进口端至远离进口端的方向上,垂直于风道的横截面的风速逐渐减小,会导致风道内的风速不均匀,增加风道内噪声。而且在靠近进口端至远离进口端的方向上,由于垂直于风道的横截面的风速逐渐减小,则气流动压变小,使得气流静压变大,导致风道送风口吹出的风速不均匀,增大风道送风口的噪声。
在本申请中,风从进口端流入风道20111,在靠近进口端至远离进口端的方向上,风道20111内的风量逐渐减小,风在风道20111内流动时,由于风道20111的横截面积逐渐减小,与现有技术相比,在靠近进口端至远离进口端的方向上,能够提升垂直于风道20111的横截面的风速,可以使风在风道20111内的流动速度更加均匀,从而可以降低风道20111内噪声。并且,在靠近进口端至远离进口端的方向上,由于垂直于风道20111的横截面的风速更加均匀,则气流动压变大,使得气流静压变化量变小,风从风道送风口2019吹出时,能够使从风道送风口2019吹出的风速更加均匀,可以降低风道送风口2019的出风噪声,从而可以提升用户体验。
由此,通过风道20111的横截面积逐渐减小,送风装置300工作时,能够使从风道送风口2019吹出的风更加均匀,可以降低风道送风口2019的出风噪音,也能够使风在 风道20111内的流动速度更加均匀,可以降低风道20111内噪声,从而可以提升用户体验。
在本申请的一些实施例中,风道20111可以沿风道部件200的高度方向延伸布置,风道部件200的高度方向是指图1中的上下方向,进口端可以设置于风道20111的下端,风道送风口2019可以设置于风道20111的前端,如此设置能够使送风装置300朝向送风装置300的前侧吹风,可以便于风吹到用户身上。
在本申请的一些实施例中,在风道20111的高度为Ha处的横截面积为S a,在风道20111的高度为H b处的横截面积为S b,满足关系式:H b<H a,S a<S b,0.1≤S a/S b≤1。其中,在靠近进口端至远离进口端的方向上,风道20111内的风量会逐渐减小,若S a=S b,会使得横截面积为S a处的垂直于横截面积S a的风速V a小于横截面积为S b处的垂直于横截面积S b的风速V b,横截面积S a和横截面积S b之间的间隔距离越远,V b/V a的值越大,会导致风道20111内风速不均匀,增加风道20111内噪声,而且风道20111内由于靠近进口端至远离进口端的方向上方向风速变小,则气流动压变小,使得气流静压沿横截面积S b至横截面积S a的方向变大,最终使横截面积S a处的风道送风口2019的风速与横截面积S b处的风道送风口2019的风速之比V a’/V b’变大,风道送风口2019的风速不均匀,导致风道送风口2019噪声变大。因此,在靠近进口端至远离进口端的方向上,通过将风道20111设置为变截面,风在风道20111内流动时,能够使V b/V a和V a’/V b’的比值均变小,可以均匀风道20111内的风速,也可以使风道送风口2019的风速更加均匀,从而可以降低风道20111内以及风道送风口2019处的噪音。
进一步地,S a/S b的比值可以设置为0.75,这样设置能够更好地均匀风道20111内的风速,也可以进一步使风道送风口2019的风速更加均匀,从而可以进一步降低风道20111内以及风道送风口2019处的噪音。
在本申请的一些实施例中,如图12-图14所示,风道20111可以包括:风道内壁20192、风道外壁20193和与风道送风口2019相对的风道底壁20191,风道20111的内侧为风道内壁20192,风道20111的外侧为风道外壁20193,风道本体201的后部由风道底壁20191封闭,如此设置能够保证朝向风道20111的前侧吹风,可以使风从风道20111的前端吹出,从而可以避免风从风道底壁20191吹出,进而可以使风道20111的整体结构形式更加合理。
根据本申请的一个具体实施例,如图14所示,从风道底壁至风道送风口方向,即图14中的由后向前方向,风道内壁20192与风道外壁20193之间的间隔距离先增大后减小,这样设置能够使风道20111具有整流作用,气流在风道20111内朝向风道送风口 2019流动时,能够提升风道20111内的风道底壁20191至风道送风口2019方向的风速,可以增加风道送风口2019的吹风速度,从而可以增加送风射程,进而可以使送风装置300的风吹得更远。
根据本申请的另一个具体实施例,从风道底壁20191至风道送风口2019方向,风道内壁20192与风道外壁20193之间的间隔距离逐渐减小,如此设置能够使风道20111具有整流作用,气流在风道20111内朝向风道送风口2019流动时,能够进一步提升风道20111内的风道底壁20191至风道送风口2019方向的风速,可以进一步增加风道送风口2019的吹风速度,从而可以进一步增加送风射程,进而可以使送风装置300的风吹得更远。
在本申请的一些实施例中,通过风道外壁20193最前端的切线与风道送风口2019的宽度水平中线的夹角为G 1,满足关系式:0°≤G 1≤45°。需要说明的是,宽度水平中线是指风道送风口2019的在风道送风口2019宽度方向上的中线,风道外壁20193最前端的内壁面处的切线与宽度水平中线之间的夹角为G 1,这样设置能够避免风在风道送风口2019处产生涡流,可以保证送风装置300的送风距离,也可以进一步降低风道送风口2019处的气流噪音。
在本申请的一些实施例中,通过风道内壁20192最前端的切线与风道送风口2019的宽度水平中线的夹角为G 2,满足关系式:0°≤G 2≤45°。需要说明的是,风道内壁20192最前端的外壁面处的切线与宽度水平中线之间的夹角为G 2,这样设置能够进一步避免风在风道送风口2019处产生涡流,可以进一步保证送风装置300的送风距离,也可以进一步降低风道送风口2019处的气流噪音。
如图15-图18所示,根据本申请实施例的风道部件200,风道部件200可以设置于无叶风扇,风道部件200包括:风道本体201和导流结构204。风道本体201内具有风道,风道可以包括第一风道2011和第二风道2012,风道具有风道送风口2019,需要说明的是,第一风道2011和第二风道2012的结构相同,第一风道2011和第二风道2012均具有风道送风口2019,风道内的风可以从风道送风口2019吹出风道部件200。导流结构204设置在风道的与风道送风口2019相对的风道底壁20191上,导流结构204用于将风道内的风通过导流作用引导至风道送风口2019并从风道送风口2019吹出,导流结构204具有迎风面2041和背风面2042,迎风面2041与风道底壁20191的夹角小于背风面2042与风道底壁20191的夹角。
其中,风道沿上下方向延伸布置,风在风道内流动过程中,在风道内由下至上的方向,风道内的风量会逐渐减小,则会使风道中的风速越来越小,会导致风道内风速不均 匀,风在风道内流动时会增加气体流动噪音,具体地,在风道内由下至上的方向,由于风速变小,则气流的动压变小,静压变大,风从风道送风口2019吹出后会不均匀,导致风道送风口2019噪音变大,而且风的吹出方向与水平面的出风夹角变大,风容易吹头,风吹到用户身上后,风感较差。
在本申请中,通过在风道底壁20191上设置导流结构204,风沿上下方向流动至导流结构204的迎风面2041后,能够改变气流的风速和流动方向,将风引导至风道送风口2019,能够减小气流的动压与静压的差值,风从风道送风口2019吹出后会更加均匀,可以降低风道送风口2019噪音,也可以增加风道送风口2019的送风距离,并且,在导流结构204的引导作用下,能够使风的吹出方向与水平面的出风夹角变小,风不容易吹头,风吹到用户身上后,能够使用户感到更加舒适,可以提升用户体验。
由此,通过设置导流结构204,能够使风道送风口2019的出风速度更加均匀,可以降低风道送风口2019的出风噪声,并且,风吹到用户身上后,能够使用户感到更加舒适,可以提升用户体验。
在本申请的一些实施例中,如图17和图18所示,导流结构204构造可以设置为三角形导流结构204,需要说明的是,导流结构204的纵截面为三角形,纵截面沿上下方向平行,而且三角形的导流结构204的高小于三角形的导流结构204的底边,其中迎风面2041和背风面2042构成三角形的导流结构204的两个侧边,并且通过迎风面2041与风道底壁20191的夹角设置成小于背风面2042与风道底壁20191的夹角,能够使迎风面2041的设置面积大于背风面2042的设置面积,气流在风道内流动时,可以增加气流与迎风面2041的接触面积,从而可以使风更加均匀地从风道送风口2019吹出,可以进一步降低风道送风口2019噪音。
在本申请的一些实施例中,迎风面2041与风道底壁20191的夹角α满足:10°≤α 1≤15°,背风面2042与风道底壁20191的夹角β满足:45°≤β 1≤50°,优选地:迎风面2041与风道底壁20191的夹角α 1设置为13°,背风面2042与风道底壁20191的夹角设置47°,如此设置能够实现使迎风面2041与风道底壁20191的夹角小于背风面2042与风道底壁20191的夹角,可以使夹角α 1和夹角β 1的设置数值更加合理,从而可以保证导流结构204的工作性能。
在本申请的一些实施例中,如图17所示,导流结构204可以设置为多个,而且多个导流结构204沿风道送风口2019的纵向间隔开布置,风道送风口2019的纵向是指风道部件200的上下方向,气流在风道内由下至上流动过程中,多个导流结构204能够在上下方向的多个位置对气流进行引导,可以使更多的风被导流结构204引导至风道送风 口2019,从而可以进一步减小风的吹出方向与水平面的出风夹角,解决了容易吹头的问题,风吹到用户身上后,能够使用户感到更加舒适,可以进一步提升用户体验。并且,也能够进一步减小气流的动压与静压的差值,风从风道送风口2019吹出后会更加均匀,可以进一步降低风道送风口2019噪音。
在本申请的一些实施例中,如图17所示,导流结构204可以包括三个,由风道的下端至上端的方向上,位于最下端的导流结构204的下端与风道的下端间的间隔距离为H 1,而且由风道的下端至上端的方向上,相邻的两个导流结构204的下端间的间隔距离分别为H 2、H 3,满足关系式:H 1<H 2<H 3,需要解释的是,三个导流结构204分别为第一导流结构、第二导流结构和第三导流结构,由风道的下端至上端的方向上,依次设置第一导流结构、第二导流结构和第三导流结构,第一导流结构的下端与风道的下端间的间隔距离为H 1,第一导流结构的下端与第二导流结构的下端间的间隔距离分别为H 2,第二导流结构的下端与第三导流结构的下端间的间隔距离分别为H 3,满足关系式:H 1<H 2<H 3,这样设置能够使风道送风口2019吹出的风更加均匀,可以更好地降低风道送风口2019噪音,从而可以使多个导流结构204的布置形式更加合理。但本申请不限于此,H1、H2、H3的数值可以相同,H 1、H 2、H 3的数值可以根据风道部件200的实际出风风速与水平面的夹角确定。
在本申请的一些实施例中,风道送风口2019的长度设置为Hmm,即在上下方向风道送风口2019的高度设置为Hmm,n为导流结构204的数量,H和n满足关系式:n≤H/50,在上下方向上,如此设置能够使导流结构204的疏密程度更加适宜,在不同的高度处,可以保证气流能够与导流结构204的迎风面2041接触,从而可以保证每个导流结构204的工作性能。
在本申请的一些实施例中,风道本体201的前部形成上下延伸的风道送风口2019,风道本体201的后部由风道底壁20191封闭,风道本体201的底部具有进风接口2015,其中,风从进风接口2015流入风道内部后,在风道底壁20191上导流结构204的作用下可以使风从风道送风口2019吹出,可以避免风从风道底壁20191吹出,从而可以使风道本体201和风道底壁20191的整体结构形式更加合理。
在本申请的一些实施例中,进风接口2015与风道送风口2019的夹角可以设置为80°-110°,风从进风接口2015流入风道后,能够方便导流结构204将气流引导至风道送风口2019,可以减小气流对导流结构204的冲击力,从而可以降低气流在风道内的流动噪音,进而可以使进风接口2015与风道送风口2019的夹角设置数值更加合理,并且,风从风道送风口2019吹出后,能够进一步减小风的吹出方向与水平面的夹角, 风不容易吹头,风吹到用户身上后,能够使用户感到更加舒适。
在本申请的一些实施例中,迎风面2041与进风接口2015面对设置,背风面2042背离进风接口2015设置,风从进风接口2015流入风道后,这样设置能够便于气流与迎风面2041接触,可以使气流更加方便被引导至风道送风口2019。
在本申请的一些实施例中,如图16和图18所示,迎风面2041的下端和背风面2042的上端与风道底壁20191连接,迎风面2041的上端和背风面2042的下端彼此连接,且风道的内侧为风道内壁20192,风道的外侧为风道外壁20193,迎风面2041和背风面2042中的每一个的内侧沿与风道内壁20192连接且外侧沿与风道外壁20193连接,如此设置能够增大导流结构204的横截面积,单位时间内,导流结构204可以将更多的气流引导至风道送风口2019,从而可以提升导流结构204的工作效率。
在本申请的一些实施例中,导流结构204可以由风道底壁20191朝向风道的风道送风口2019内凹形成,这样设置能够使导流结构204与风道底壁20191构造为一体成型件,可以提升导流结构204与风道底壁20191连接强度,也可以减少模具的开发,从而可以降低风道部件200的制造成本。
如图1、图19-图21所示,根据本申请实施例的风道部件200包括:风道本体201和多个间隔开的出风格栅205。风道本体201内具有风道,风道具有风道送风口2019和进口端,需要说明的是,风道具有第一风道2011和第二风道2012,第一风道2011和第二风道2012的结构相同,第一风道2011和第二风道2012均具有风道送风口2019,风道内的风可以从风道送风口2019吹出风道部件200。第一风道2011和第二风道2012在风道本体201的上下方向延伸布置,进口端具有第一进口端2013和第二进口端2014,第一进口端2013与第一风道2011对应设置,第二进口端2014与第二风道2012对应设置,气流可以从第一进口端2013和第二进口端2014分别流入第一风道2011和第二风道2012。
其中,现有技术中,风在送风装置的风道内流动过程中,在风道内由下至上的方向,风道内的风量会逐渐减小,则会使风道中的风速越来越小,会导致风道送风口的出风风速不均匀,风在风道内流动时会增加气体流动噪音,具体地,在风道内由下至上的方向,由于风速变小,则气流的动压变小,静压变大,风从风道送风口吹出后会不均匀,导致风道送风口噪音变大。
在本申请中,通过将多个出风格栅205设置于风道送风口2019,多个出风格栅205沿风道本体201的上下方向间隔开布置,并且,进口端设置于风道的下端,在风道送风口2019处,从靠近进口端至远离进口端的方向上,即从风道的下端至上端的方向上, 相邻两个出风格栅205的间隔距离逐渐增大,从风道的下端至上端的方向上,这样设置能够使风道送风口2019的风阻从大变小,送风装置300工作时,可以使风道送风口2019的出风速度更加均匀,降低风道送风口2019的噪音,从而可以降低送风装置300的工作噪音,进而可以提升送风装置300的出风效果,风吹到用户身上后,可以使用户感到更加舒适,从而可以提升用户体验。
由此,通过相邻两个出风格栅205的间隔距离逐渐增大,能够使风道送风口2019的风速更加均匀,可以降低风道送风口2019的噪音,从而可以降低送风装置300的工作噪音,进而可以提升送风装置300的出风效果。
在本申请的一些实施例中,相邻两个出风格栅205的间隔距离为h 0,h 0≥10mm,如此设置能够使相邻两个出风格栅205的间隔距离更加适宜,单位时间内,可以保证送风装置300的出风量,从而可以保证送风装置300的出风效果,进而可以保证送风装置300的工作性能。
在本申请的一些实施例中,出风格栅205的长度可以设置为L O,满足关系式:L 0≤40mm,其中,出风格栅205的长度方向是指图21中风道本体201的前后方向,这样设置能够使出风格栅205的长度更加适宜,风在风道内流动时,可以避免出风格栅205挡住气流,从而可以防止损失风道内气流,进而可以进一步保证送风装置300的出风量,并且,气流从风道送风口2019吹出时,能够使出风格栅205对气流具有很好的导向作用,可以使风道送风口2019的出风速度更加均匀。
在本申请的一些实施例中,每个出风格栅205与水平面均平行,其中,当气流从风道送风口2019吹出时,出风格栅205能够将从风道吹出风的风速方向进行一定的导流,可以使风道送风口2019吹出的风速方向尽量与地面平行,风从风道送风口2019吹出后,可以防止风吹向用户头部,也可以增加风道送风口2019吹出风的射程,从而可以提升送风装置300的风感。
在本申请的一些实施例中,多个出风格栅205均与风道送风口2019一体成型,其中,出风格栅205与风道送风口2019的形状匹配连接,出风格栅205的数量根据风道送风口2019的长度进行调节设置,这样设置能够将出风格栅205可靠地安装在风道送风口2019处,可以避免出风格栅205与风道送风口2019分离,从而可以保证出风格栅205的工作性能。
在本申请的一些实施例中,出风格栅205可转动地设置于风道送风口2019处,当需要改变送风装置300的的出风方向时,用户通过调节出风格栅205,使出风格栅205相对风道送风口2019转动,可以改变送风装置300的出风方向,从而可以满足用户对 送风装置300的不同出风方向的需求,进而可以扩大送风装置300的送风范围。
在本申请的一些实施例中,出风格栅205可绕平行于风道送风口2019宽度方向的轴线转动,需要解释的是,风道送风口2019宽度方向是指图19中的左右方向,如此设置可以改变出风格栅205与水平面间的夹角,从而可以改变送风装置300在上下方向上送风角度,也可以保证能够扩大送风装置300的送风范围,进而可以使出风格栅205的设置形式更加合理。
在本申请的一些实施例中,出风格栅205与水平面间的夹角可以具有上仰角A1和俯角A2,满足关系式:0°≤A 1≤6°,-6°≤A 2≤0°,例如:上仰角A 1为3°,俯角A 2为-3°,这样设置能够保证在改变送风装置300的出风方向的情况下,可以防止从风道送风口2019吹出的风吹向用户头部,从而可以解决风容易吹头的问题。
在本申请的一些实施例中,如图21所示,风道部件200还可以包括:导流结构204,导流结构204设置在风道的与风道送风口2019相对的风道底壁20191上,导流结构204用于将风道内的风通过导流作用引导至风道送风口2019并从风道送风口2019吹出。其中,风沿上下方向流动至导流结构204的迎风面2041后,能够改变气流的风速和流动方向,将风引导至风道送风口2019,能够减小气流的动压与静压的差值,风从风道送风口2019吹出后会更加均匀,可以进一步降低风道送风口2019噪音,也可以增加风道送风口2019的送风距离,并且,在导流结构204的引导作用下,能够使风的吹出方向与水平面的出风夹角变小,风不容易吹头,风吹到用户身上后,能够使用户感到更加舒适,可以提升用户体验。
如图1、图22、图23所示,根据本申请实施例的风道部件200包括:风道本体201和分流结构202。风道本体201内具有第一风道2011和第二风道2012,第一风道2011和第二风道2012在上下方向延伸布置,分流结构202设置在第一风道2011的进口端(即第一进口端2013)和第二风道2012的进口端(即第二进口端2014)之间,分流结构202设置成用于将来自风道本体201的进风接口2015的风通过分流作用后分别引导至第一风道2011和第二风道2012,分流结构202具有靠近进风接口2015的迎风端2021和远离进风接口2015的末端2022,分流结构202构造为横截面自迎风端2021向末端2022递增的流线型分流结构202,需要说明的是,在从下至上的方向上,分流结构202的横截面为逐渐递增的流线型分流结构202。
其中,送风装置300工作时,风从风道本体201的进风接口2015流向第一进口端2013和第二进口端2014,在风流入第一进口端2013和第二进口端2014之前,风先流过分流结构202,风被分流结构202分流后,能够将从进风接口2015流出的风更加顺 畅和均匀地分流至第一风道2011和第二风道2012内,可以使第一风道2011和第二风道2012的出风更加均匀,也可以提升第一风道2011和第二风道2012的出风效果一致性,风吹到用户身上后,可以使用户感到更加舒适,从而可以提升用户体验,并且,风被分流结构202分流后,也能够降低风在风道部件200内产生的噪声,可以降低送风装置300工作噪声,从而可以降低对室内环境造成的噪声污染,进而可以提升送风装置300的工作性能。
由此,通过设置分流结构202,能够将从进风接口2015流出的风更加顺畅和均匀地分流至第一风道2011和第二风道2012,可以降低风道部件200的出风噪声,从而可以降低送风装置300工作噪声,并且,也能够使第一风道2011和第二风道2012的出风更加均匀,可以使用户感到更加舒适,从而可以提升用户体验。
在本申请的一些实施例中,如图23所示,分流结构202可以具有第一分流壁2023和第二分流壁2024,第一分流壁2023用于将来自进风接口2015的风向第一风道2011引导,第二分流壁2024用于将来自进风接口2015的风向第二风道2012引导,第一分流壁2023和第二分流壁2024的靠近进风接口2015的一端彼此相连,第一分流壁2023和第二分流壁2024的远离进风接口2015的另一端彼此分开,如此设置能够使分流结构202自迎风端2021向末端2022的横截面逐渐递增,可以将来自进风接口2015的风更加顺畅引导至第一风道2011和第二风道2012,从而使分流结构202的结构更加合理。
在本申请的一些实施例中,如图23所示,第一分流壁2023和第二分流壁2024关于风道部件200的纵向中线203对称布置,其中,纵向中线203沿上下方向延伸,这样设置能够使第一分流壁2023和第二分流壁2024的结构相同,可以使第一分流壁2023和第二分流壁2024具有相同的分流效果,从而可以使流入第一风道2011和第二风道2012内的风速、风量等参数相同,进而可以提升第一风道2011和第二风道2012吹出的风感一致性。
在本申请的一些实施例中,如图23所示,第一分流壁2023和第二分流壁2024彼此相连的连接处处在纵向中线203上,并且第一分流壁2023和第二分流壁2024彼此相连的连接处构成迎风端2021,如此设置能够便于使第一分流壁2023和第二分流壁2024关于风道部件200的纵向中线203对称,可以降低分流结构202的设置难度。
在本申请的一些实施例中,第一分流壁2023和第二分流壁2024的彼此远离的另一端可以通过分流结构底壁2025相连,具体地,如图23所示,第一分流壁2023的上端和第二分流壁2024的上端通过分流结构底壁2025连接,分流结构底壁2025能够对第一分流壁2023和第二分流壁2024起到支撑作用,风流过第一分流壁2023和第二分流 壁2024时会对第一分流壁2023和第二分流壁2024产生压力,这样设置能够防止第一分流壁2023和第二分流壁2024被风吹变形,可以保证第一分流壁2023和第二分流壁2024的分流效果,从而可以保证第一分流壁2023和第二分流壁2024的工作可靠性。
具体地,分流结构底壁2025的两端分别连接第一风道2011的第一风道2011内壁和第二风道2012的第二风道2012内壁,如图23所示,分流结构底壁2025可以与第一风道2011内壁、第二风道2012内壁均一体成型,分流结构底壁2025的左端连接第一风道2011的第一风道2011内壁,分流结构底壁2025的右端连接第二风道2012的第二风道2012内壁,如此设置能够将分流结构202安装在第一风道2011内壁和第二风道2012内壁上,可以提升分流结构202安装的结构强度,从而可以防止分流结构202的位置发生移动。
在本申请的一些实施例中,第一分流壁2023和第二分流壁2024构造为向着远离彼此的方向弯曲的曲面壁,其中,当风流经第一分流壁2023和第二分流壁2024时,这样设置能够减小风与第一分流壁2023和第二分流壁2024的摩擦阻力,可以使风平顺地流过第一分流壁2023和第二分流壁2024,从而可以使风更加顺畅地流入第一风道2011和第二风道2012,进而可以进一步降低风道部件200内气流噪音。
在本申请的一些实施例中,分流结构202的最大高度可以设置为H,分流结构202的最大宽度可以设置为L,其中H和L满足关系式:H/L≥0.5,需要说明的是,分流结构202的高度方向是指图23中的上下方向,分流结构202的宽度方向是指图23中的左右方向,例如:分流结构202的最大高度设置为73mm,分流结构202的最大宽度设置为126mm,如此设置能够使分流结构202的整体尺寸更加适宜,可以提升分流结构202的分流效果,从而可以将来自进风接口2015的风更好地分流至第一风道2011和第二风道2012内,进而可以进一步降低风道部件200内气流噪音。
在本申请的一些实施例中,分流结构202的迎风端2021构造为尖端,而且迎风端2021的分流角为θ,θ满足关系式:θ≤120°,例如:θ设置为116°,这样设置能够进一步提升流结构的分流效果,可以使风更加均匀地流入第一风道2011和第二风道2012内。
优选地,分流结构202可以具有第一分流壁2023、第二分流壁2024和分流结构底壁2025,第一分流壁2023、第二分流壁2024、分流结构底壁2025首尾依次连接构成三角形形状,三角形的高与风道部件200的纵向中线203重合,第一分流壁2023与第二分流壁2024的连接端朝向下方布置,第一分流壁2023与第二分流壁2024的连接端构造为迎风端2021,三角形的高为H,分流结构底壁2025的宽度为L,H和L满足关系 式:H/L≥0.5,第一分流壁2023与第二分流壁2024间的夹角为θ,θ满足关系式:θ≤120°,此时三角形的高为分流结构202的最大高度,分流结构底壁2025的宽度为分流结构202的最大宽度,第一分流壁2023与第二分流壁2024的夹角为迎风端2021的分流角,风流经第一分流壁2023、第二分流壁2024时,如此设置能够进一步减小风与第一分流壁2023、第二分流壁2024的摩擦力,可以使风流动的更加顺畅,从而可以进一步降低送风装置300的工作噪音,也可以进一步提升分流结构202的分流效果。
在本申请的一些实施例中,如图23所示,风道本体201上可以开设有安装孔2016,在上下方向上,安装孔2016位于进风接口2015和分流结构202的迎风端2021之间,安装孔2016可以包括位于风道部件200的纵向中线203两侧的第一安装孔2017和第二安装孔2018,其中,第一安装孔2017和第二安装孔2018用于安装负离子探头,可以实现将负离子探头安装在风道本体201上的工作目的。
在本申请的一些实施例中,分流结构202的迎风端2021与进风接口2015的中心对应,风从进风接口2015流出后,这样设置能够使风平均分成两部分,一部分风流入第一风道2011,另一部分风流入第二风道2012,可以使流入第一风道2011和第二风道2012内的风的流量相同,从而可以进一步提升分流结构202的分流效果。
在本申请的一些实施例中,第一风道2011的进口端和第二风道2012的进口端的宽度均为L 1,迎风端2021与送风装置300的风轮的风轮外径间的最短距离为L 2,满足关系式;2L 1≤L 2,这样设置能够使迎风端2021与送风装置300的风轮的风轮外径间的最短距离更加适宜,风流过分流结构202时,可以保证分流结构202的分流效果,从而可以使风均匀地分流至第一风道2011和第二风道2012。
根据本申请实施例的送风装置300,送风装置300可以为无叶风扇,送风装置300包括上述实施例的风道部件200,风道部件200设置在送风装置300上,风道部件200可以使风道部件200的外观更加美观,从而可以促进风道部件200以及送风装置300的外观发展。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱 离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (39)

  1. 一种风道部件,其特征在于,包括:
    风道本体,所述风道本体具有风道,所述风道具有风道送风口和进风接口,所述风道连通所述进风接口和所述风道送风口,所述风道相对于所述风道本体的纵向截面倾斜设置。
  2. 根据权利要求1所述的风道部件,其特征在于,定义所述风道本体的纵向方向为Z向,定义所述风道本体的宽度方向为Y方向,定义所述风道本体的厚度方向为X方向,并且所述X方向、所述Y方向和所述Z方向两两垂直;
    其中,所述风道与由所述X方向和所述Z方向确定的ZX平面的夹角为α,所述α满足:0<α≤10°。
  3. 根据权利要求1或2所述的风道部件,其特征在于,定义所述风道本体的纵向方向为Z向,定义所述风道本体的宽度方向为Y方向,定义所述风道本体的厚度方向为X方向,并且所述X方向、所述Y方向和所述Z方向两两垂直;
    其中,所述风道送风口与由所述Y方向和所述Z方向确定的ZY平面的夹角为β,所述β满足:0<β≤10°。
  4. 根据权利要求1-3中任一项所述的风道部件,其特征在于,所述风道具有风道截面,所述风道截面从所述风道的靠近所述进风接口的一端向着远离所述进风接口的一端递减,并且所述风道送风口的宽度变化趋势与所述风道的风道截面的变化趋势一致。
  5. 根据权利要求1-3中任一项所述的风道部件,其特征在于,所述风道具有风道截面,所述风道截面从所述风道的靠近所述进风接口的一端向着远离所述进风接口的一端保持不变,所述风道送风口的宽度从所述风道送风口的靠近所述进风接口的一端向着远离所述进风接口的一端递减。
  6. 根据权利要求1-3中任一项所述的风道部件,其特征在于,所述风道具有风道截面,所述风道截面从所述风道的靠近所述进风接口的一端向着远离所述进风接口的一端递减,所述风道送风口的宽度从所述风道送风口的靠近所述进风接口的一端向着远离所述进风接口的一端保持不变。
  7. 根据权利要求4所述的风道部件,其特征在于,所述风道的靠近所述进风接口的一端的横截面积为S i,所述风道的远离所述进风接口的一端的横截面积为S o,满足关系式:1<S i/S o<2。
  8. 根据权利要求7所述的风道部件,其特征在于,所述风道送风口的靠近所述进 风接口的一端的宽度为L i,所述风道送风口的远离所述进风接口的一端的宽度为L o,满足关系式:L i/L o≥0.8S i/S o
  9. 根据权利要求8所述的风道部件,其特征在于,L i和L o均为0.5-7mm。
  10. 根据权利要求1-9中任一项所述的风道部件,其特征在于,所述风道包括第一风道和第二风道,所述第一风道和所述第二风道均与所述进风接口连通,所述第一风道和所述第二风道关于所述风道部件的纵向中线对称。
  11. 根据权利要求10所述的风道部件,其特征在于,所述第一风道的上端与所述第二风道的上端间隔距离小于所述第一风道的下端与所述第二风道的下端间隔距离。
  12. 根据权利要求1-11中任一项所述的风道部件,其特征在于,所述风道本体的前部形成上下延伸的所述风道送风口。
  13. 根据权利要求12所述的风道部件,其特征在于,所述风道送风口的高度为H a处的风道送风口宽度为C,所述风道的高度为H b处的风道送风口宽度为D,满足关系式:当H b<H a时,则C<D,且0.1≤C/D≤1。
  14. 根据权利要求12所述的风道部件,其特征在于,所述风道包括:风道内壁、风道外壁和与所述风道送风口相对的风道底壁,所述风道的内侧为风道内壁,所述风道的外侧为风道外壁,所述风道本体的后部由所述风道底壁封闭;
    所述风道内壁的前端和所述风道外壁的前端间隔开,以形成所述风道送风口。
  15. 根据权利要求14所述的风道部件,其特征在于,通过所述风道外壁最前端的切线与所述风道送风口的宽度水平中线的夹角为G 1,满足关系式:0°≤G 1≤45°。
  16. 根据权利要求14所述的风道部件,其特征在于,通过所述风道内壁最前端的切线与所述风道送风口的宽度水平中线的夹角为G 2,满足关系式:0°≤G 2≤45°。
  17. 根据权利要求14所述的风道部件,其特征在于,从所述风道底壁至所述风道送风口方向,所述风道内壁与所述风道外壁之间的间隔距离先增大后减小,或所述风道内壁与所述风道外壁之间的间隔距离逐渐减小。
  18. 根据权利要求1所述的风道部件,其特征在于,在靠近所述进风接口至远离所述进风接口的方向上,所述风道的横截面积逐渐减小。
  19. 根据权利要求1-18中任一项所述的风道部件,其特征在于,所述风道沿所述风道部件的高度方向延伸。
  20. 根据权利要求1所述的风道部件,其特征在于,所述风道的高度为H a处的横截面积为S a,所述风道的高度为H b处的横截面积为S b,满足关系式:H b<H a,S a<S b,0.1≤S a/S b≤1。
  21. 根据权利要求1-20中任一项所述的风道部件,其特征在于,还包括:导流结构,所述导流结构设置在所述风道的与所述风道送风口相对的风道底壁上,所述导流结构用于将所述风道内的风通过导流作用引导至所述风道送风口并从所述风道送风口吹出,所述导流结构具有迎风面和背风面,所述迎风面与所述风道底壁的夹角小于所述背风面与所述风道底壁的夹角。
  22. 根据权利要求21所述的风道部件,其特征在于,所述迎风面与所述风道底壁的夹角α 1满足:10°≤α 1≤15°;
    所述背风面与所述风道底壁的夹角β 1满足:45°≤β 1≤50°。
  23. 根据权利要求21所述的风道部件,其特征在于,所述导流结构构造为三角形导流结构,且三角形的所述导流结构的高小于三角形的所述导流结构的底边,其中所述迎风面和所述背风面构成三角形的所述导流结构的两个侧边。
  24. 根据权利要求21所述的风道部件,其特征在于,所述导流结构为多个且沿所述风道送风口的纵向间隔开布置。
  25. 根据权利要求24所述的风道部件,其特征在于,所述导流结构包括三个,由所述风道的下端至上端的方向,位于最下端的所述导流结构的下端与所述风道的下端间的间隔距离为H 1且相邻的两个所述导流结构的下端间的间隔距离分别为H 2、H 3,满足关系式:H 1<H 2<H 3
  26. 根据权利要求1-25中任一项所述的风道部件,其特征在于,所述进风接口与所述风道送风口的夹角为80°-110°;
  27. 根据权利要求21所述的风道部件,其特征在于,所述迎风面与所述进风接口面对,所述背风面背离所述进风接口。
  28. 根据权利要求1-27中任一项所述的风道部件,其特征在于,还包括:多个间隔开的出风格栅,多个所述出风格栅设于所述风道送风口,在所述风道送风口处,从靠近所述进风接口至远离所述进风接口的方向上,相邻两个所述出风格栅的间隔距离逐渐增大。
  29. 根据权利要求28所述的风道部件,其特征在于,相邻两个所述出风格栅的间隔距离为h 0,h 0≥10mm;
    所述出风格栅的长度为L O,满足关系式:L 0≤40mm。
  30. 根据权利要求28所述的风道部件,其特征在于,所述出风格栅可转动地设于所述风道送风口,以改变所述送风装置的出风方向。
  31. 根据权利要求30所述的风道部件,其特征在于,所述出风格栅可绕平行于所 述风道送风口宽度方向的轴线转动,以改变所述出风格栅与水平面间的夹角;
    所述出风格栅与所述水平面间的夹角具有上仰角A 1和俯角A 2,满足关系式:0°≤A 1≤6°,-6°≤A 2≤0°。
  32. 根据权利要求10所述的风道部件,其特征在于,还包括:分流结构,所述分流结构设置在所述第一风道的进口端和所述第二风道的进口端之间,所述分流结构设置成用于将来自所述进风接口的风通过分流作用后分别引导至所述第一风道和所述第二风道,所述分流结构具有靠近所述进风接口的迎风端和远离所述进风接口的末端,所述分流结构构造为横截面自所述迎风端向所述末端递增的流线型分流结构。
  33. 根据权利要求32所述的风道部件,其特征在于,所述分流结构具有第一分流壁和第二分流壁,所述第一分流壁用于将风向所述第一风道引导,所述第二分流壁用于将风向所述第二风道引导,所述第一分流壁和所述第二分流壁的靠近所述进风接口的一端彼此相连,所述第一分流壁和所述第二分流壁的远离所述进风接口的另一端彼此分开。
  34. 根据权利要求33所述的风道部件,其特征在于,所述第一分流壁和所述第二分流壁关于所述风道部件的纵向中线对称布置;
    所述第一分流壁和所述第二分流壁彼此相连的连接处处在所述纵向中线上并构成所述迎风端。
  35. 根据权利要求33所述的风道部件,其特征在于,所述第一分流壁和所述第二分流壁的彼此远离的另一端通过分流结构底壁相连;
    所述分流结构底壁的两端分别连接所述第一风道的第一风道内壁和所述第二风道的第二风道内壁。
  36. 根据权利要求32所述的风道部件,其特征在于,所述分流结构的最大高度为H,所述分流结构的最大宽度为L,其中H和L满足关系式:H/L≥0.5;
    所述分流结构的迎风端构造为尖端且分流角为θ,所述θ满足关系式:θ≤120°。
  37. 根据权利要求32所述的风道部件,其特征在于,所述风道本体上开设有安装孔,所述安装孔位于所述进风接口和所述分流结构的迎风端之间,所述安装孔包括位于所述风道部件的纵向中线两侧的第一安装孔和第二安装孔;
    所述分流结构的迎风端与所述进风接口的中心对应。
  38. 根据权利要求32所述的风道部件,其特征在于,所述第一风道的所述进口端和所述第二风道的所述进口端的宽度均为L 1,所述迎风端与所述送风装置的风轮的风轮外径间的最短距离为L 2,满足关系式;2L 1≤L 2
  39. 一种送风装置,其特征在于,包括根据权利要求1-38中任一项所述的风道部件。
PCT/CN2020/134221 2020-01-19 2020-12-07 风道部件以及送风装置 WO2021143393A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202010060629.0 2020-01-19
CN202010063057 2020-01-19
CN202010060614.4 2020-01-19
CN202020137474.1U CN211550078U (zh) 2020-01-19 2020-01-19 用于送风装置的风道部件以及送风装置
CN202010060629.0A CN113137407B (zh) 2020-01-19 2020-01-19 用于送风装置的风道部件
CN202020137474.1 2020-01-19
CN202020136769.7 2020-01-19
CN202020136766.3 2020-01-19
CN202010060614.4A CN113137385A (zh) 2020-01-19 2020-01-19 用于送风装置的风道部件以及送风装置
CN202020136766.3U CN211550077U (zh) 2020-01-19 2020-01-19 用于送风装置的风道部件以及送风装置
CN202020136769.7U CN211550051U (zh) 2020-01-19 2020-01-19 用于送风装置的风道部件以及送风装置
CN202010063057.1 2020-01-19

Publications (1)

Publication Number Publication Date
WO2021143393A1 true WO2021143393A1 (zh) 2021-07-22

Family

ID=76863544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134221 WO2021143393A1 (zh) 2020-01-19 2020-12-07 风道部件以及送风装置

Country Status (1)

Country Link
WO (1) WO2021143393A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117630A (ja) * 2009-12-01 2011-06-16 Shinpo Co Ltd 上引き排気装置における吸引ダクト
GB2496263A (en) * 2010-11-02 2013-05-08 Dyson Technology Ltd An Annular Fan Nozzle
CN104180489A (zh) * 2013-05-27 2014-12-03 珠海格力电器股份有限公司 导风分流机构及具有该导风分流机构的空调器
CN204141747U (zh) * 2014-09-30 2015-02-04 青岛海高设计制造有限公司 环境调节装置
CN110486808A (zh) * 2019-08-22 2019-11-22 青岛海尔空调器有限总公司 空调室内机
CN209761879U (zh) * 2019-05-05 2019-12-10 宋振明 一种均匀出风的风道结构及涡轮风扇
CN211550077U (zh) * 2020-01-19 2020-09-22 广东美的环境电器制造有限公司 用于送风装置的风道部件以及送风装置
CN211550078U (zh) * 2020-01-19 2020-09-22 广东美的环境电器制造有限公司 用于送风装置的风道部件以及送风装置
CN211550051U (zh) * 2020-01-19 2020-09-22 广东美的环境电器制造有限公司 用于送风装置的风道部件以及送风装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117630A (ja) * 2009-12-01 2011-06-16 Shinpo Co Ltd 上引き排気装置における吸引ダクト
GB2496263A (en) * 2010-11-02 2013-05-08 Dyson Technology Ltd An Annular Fan Nozzle
CN104180489A (zh) * 2013-05-27 2014-12-03 珠海格力电器股份有限公司 导风分流机构及具有该导风分流机构的空调器
CN204141747U (zh) * 2014-09-30 2015-02-04 青岛海高设计制造有限公司 环境调节装置
CN209761879U (zh) * 2019-05-05 2019-12-10 宋振明 一种均匀出风的风道结构及涡轮风扇
CN110486808A (zh) * 2019-08-22 2019-11-22 青岛海尔空调器有限总公司 空调室内机
CN211550077U (zh) * 2020-01-19 2020-09-22 广东美的环境电器制造有限公司 用于送风装置的风道部件以及送风装置
CN211550078U (zh) * 2020-01-19 2020-09-22 广东美的环境电器制造有限公司 用于送风装置的风道部件以及送风装置
CN211550051U (zh) * 2020-01-19 2020-09-22 广东美的环境电器制造有限公司 用于送风装置的风道部件以及送风装置

Similar Documents

Publication Publication Date Title
CN103307721B (zh) 一种立式空调送风装置
WO2018082437A1 (zh) 空调出风结构和空调器
WO2021190201A1 (zh) 空调室内机
WO2021223486A1 (zh) 壁挂式空调室内机
WO2021169403A1 (zh) 壁挂式空调室内机及其导风板
WO2017198068A1 (zh) 空调器、风机系统及其风道部件
CN106885316B (zh) 一种导风圈及空调器室外机
WO2021169802A1 (zh) 壁挂式空调室内机及其导风板
WO2021169803A1 (zh) 壁挂式空调室内机及其导风板
CN103307719B (zh) 具有导流片的空调送风装置
CN109931293B (zh) 无叶风扇及其机头
CN106194834A (zh) 风洞的嵌套式出风结构
CN103453641A (zh) 一种空调送风装置
CN212227228U (zh) 壁挂式空调室内机及其导风板
WO2022037723A1 (zh) 壁挂式空调室内机
WO2021143393A1 (zh) 风道部件以及送风装置
CN211550078U (zh) 用于送风装置的风道部件以及送风装置
CN211550083U (zh) 送风装置
CN206281174U (zh) 变风量末端及空调
CN106677978A (zh) 一种风力发电机组的叶片射流增效系统设计
CN207299436U (zh) 用于空调器的导风结构和空调器
CN103307722B (zh) 具有导流片的立式空调送风装置
CN211550051U (zh) 用于送风装置的风道部件以及送风装置
JP2024519553A (ja) ファンアセンブリ及び空調機
CN211550077U (zh) 用于送风装置的风道部件以及送风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914068

Country of ref document: EP

Kind code of ref document: A1