WO2021140965A1 - Paint composition and production method therefor - Google Patents

Paint composition and production method therefor Download PDF

Info

Publication number
WO2021140965A1
WO2021140965A1 PCT/JP2020/048776 JP2020048776W WO2021140965A1 WO 2021140965 A1 WO2021140965 A1 WO 2021140965A1 JP 2020048776 W JP2020048776 W JP 2020048776W WO 2021140965 A1 WO2021140965 A1 WO 2021140965A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
coating composition
mass
less
submicron
Prior art date
Application number
PCT/JP2020/048776
Other languages
French (fr)
Japanese (ja)
Inventor
修治 川崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2021570025A priority Critical patent/JPWO2021140965A1/ja
Publication of WO2021140965A1 publication Critical patent/WO2021140965A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents

Definitions

  • the present invention relates to a coating composition containing activated carbon having a central particle size of 1000 nm or less, and a method for producing the same.
  • Activated carbon is known to have an adsorption function for odors and pollutants, and activated carbon is widely used in equipment and tools for purifying air and water, deodorants, and the like. In many such applications, activated carbon is used in the form of granules, powders, activated carbon molded filters, plastic products containing activated carbon, and the like. In recent years, there has been an increasing demand for higher performance and diversification of cleaning equipment for various odorous components, and various formulations that can be applied directly on the base material such as spray formulations and paint molds have been proposed for the usage patterns of activated carbon. Has been done.
  • Patent Document 1 discloses a deodorant for spraying, which contains activated carbon as a functional substance together with cellulose nanofibers and can be easily peeled off even after drying by shrinking with time.
  • Patent Document 2 discloses an adsorptive paint formulation comprising a mixture of a submicron activated carbon having a median particle size of less than 1 ⁇ m and an aqueous binder system for dispersing the activated carbon. ..
  • the average particle size of powdered activated carbon is about 10 ⁇ m even if it is crushed relatively finely, and the activated carbon used in the activated carbon-containing spraying agent as described in Patent Document 1 is described. Even if it is miniaturized, it often has an average particle size of several ⁇ m (for example, about 5 ⁇ m). Normally, the paint is often applied with a thickness of about 10 to 100 ⁇ m, but it is thinner (for example, from 1 ⁇ m) for the purpose of adding the adsorption performance of activated carbon to fine and complicated precision parts, fibers, paper, etc.
  • a coating film that is thin, uniform, and has an excellent appearance with respect to a coating film forming object (base material) can be easily obtained while ensuring sufficient adsorption performance by the activated carbon. It is an object of the present invention to provide a composition for a coating film which can be formed.
  • a coating composition containing activated carbon and a liquid dispersion medium A coating composition in which the activated carbon is an activated carbon having a central particle size D 50 of 1000 nm or less, and the content of the activated carbon is 1% by mass or more and 10% by mass or less with respect to the total mass of the coating composition.
  • Additives are insect repellents, insecticides, antibacterial agents, dispersants, humidity control agents, photocatalytic materials, pigments, adsorbents other than activated charcoal, adsorbents, resins, wetting agents, thickeners other than cellulose nanofibers.
  • Anti-settling agent includes at least one selected from the group consisting of preservatives, adsorbents, antistatic agents, flame retardants, antifouling agents, antioxidants, pH regulators, antifoaming agents and emulsifiers.
  • the composition for paints described. [8] The coating composition according to the above [6] or [7], wherein the content of the additive is 30% by mass or less with respect to the total mass of the coating composition.
  • the mixture obtained in the above step (1) is wet-ground with a bead mill using zirconia beads having a particle size of 0.2 to 1 mm, and is liquid with activated charcoal having a central particle size D 50 of 1000 nm or less.
  • Step of obtaining a mixture with a dispersion medium (2) The method for producing a coating composition according to any one of the above [1] to [9], which comprises. [11] A spray preparation containing the coating composition according to any one of the above [1] to [9].
  • a coating film that is thin, uniform, and has an excellent appearance with respect to a coating film forming object (base material) can be obtained while ensuring sufficient adsorption performance by the activated carbon. It is possible to provide a coating composition that can be easily formed.
  • the coating composition of the present invention contains activated carbon.
  • the activated carbon contained in the coating composition of the present invention is an activated carbon having a central particle size D 50 of 1000 nm or less (hereinafter, also referred to as “submicron activated carbon”).
  • D 50 central particle size of the activated carbon contained in the coating composition
  • spots due to the activated carbon occur and the thickness varies, making it difficult to form a uniform and thin coating film, and in particular, fine particles. It becomes difficult to obtain a coating film having an excellent appearance with respect to a coating film forming object having a various shape or a complicated shape.
  • the central particle size D 50 of the activated carbon is preferably 800 nm or less, more preferably 600 nm or less, still more preferably 500 nm or less. Further, from the viewpoint of ensuring the adsorption performance and the balance between good coatability, the lower limit of the central particle size D 50 of the activated carbon is preferably 10 nm or more, more preferably 50 nm or more, and further preferably 100 nm or more. ..
  • the central particle size D 50 of activated carbon is an average particle size that can be measured by a laser diffraction measurement method or a dynamic light scattering method, and means the central particle size (D 50 ) in the volumetric particle size distribution.
  • the average particle size in the present invention means the average particle size of the primary particles.
  • General powdered activated carbon having a particle size distribution in the range of about 1 to 100 ⁇ m can be measured with high accuracy by a laser diffraction measurement method
  • submicron activated carbon having a particle size distribution in the range of about 100 to 1000 nm can be measured with high accuracy. Measurement is possible with relatively high accuracy by the dynamic light scattering method.
  • powdered activated carbon having a central particle size D 50 exceeding 1 ⁇ m is measured by a laser diffraction measurement method, and submicrons having a central particle size D 50 of less than 1 ⁇ m are measured.
  • the value measured by the dynamic light scattering method is adopted.
  • the laser diffraction measurement method for example, the Microtrack MT3000II series (manufactured by Nikkiso Co., Ltd.) capable of measuring a wide range of 0.02 to 2,800 ⁇ m with high resolution by adopting the three laser method can be used.
  • Nanotrack UPA series manufactured by Nikkiso Co., Ltd.
  • the central particle size D 50 of the activated carbon can be measured according to the method described in Examples described later.
  • the BET specific surface area of the submicron activated carbon is preferably 700 m 2 / g or more, more preferably 800 m 2 / g or more, still more preferably 900 m 2 / g or more, and preferably 1700 m 2 / g or less. , more preferably 1650 m 2 / g, more preferably not more than 1600 m 2 / g.
  • the BET specific surface area of the activated carbon is at least the above lower limit value, high adsorption performance can be expected even in the finely divided submicron activated carbon.
  • the BET specific surface area is not more than the above upper limit, the bulk density of the submicron activated carbon increases, so that high adsorption performance can be expected per unit volume as a paint.
  • the BET specific surface area can be measured and calculated by the nitrogen adsorption method.
  • Submicron activated carbon can usually be obtained by carbonizing and activating a carbon precursor as a raw material, and has micropores with a pore diameter of less than 2 nm, mesopores with a pore diameter of 2 nm or more and 50 nm or less, and macros with a pore diameter of 50 nm or more. There is a hole.
  • the total pore volume of the activated carbon is preferably 0.2 cm 3 / g or more, more preferably 0.3 cm 3 / g or more, still more preferably 0.4 cm 3 / g or more, and preferably 0.4 cm 3 / g or more. It is 1.1 cm 3 / g or less, more preferably 1.0 cm 3 / g or less, still more preferably 0.8 cm 3 / g or less.
  • the content of submicron activated carbon in the coating composition of the present invention is 1% by mass or more and 10% by mass or less with respect to the total mass of the coating composition. If the content of the submicron activated carbon is less than 1% by mass, it becomes difficult to impart sufficient adsorption performance to the coating composition. Further, when the content of the submicron activated carbon exceeds 10% by mass, the viscosity becomes too high due to the submicron activated carbon and the coatability deteriorates. Therefore, a coating composition for forming a thin and uniform coating film. It becomes difficult to control the viscosity suitable for.
  • the content of the submicron activated carbon is preferably 1.5% by mass or more, more preferably 2% by mass or more, and preferably 8% by mass or less, based on the total mass of the coating composition. , More preferably 7% by mass or less, further preferably 6% by mass or less, particularly preferably 5% by mass or less, and particularly preferably less than 5% by mass.
  • the composition for paint is used as a spray formulation, it is easy to obtain the effect of suppressing dripping while preventing liquid clogging at the time of spray spraying, and it is a thin film that suppresses the occurrence of spray spots and is excellent in appearance. Since a uniform coating film can be formed, the content of the submicron activated carbon is preferably within the above range.
  • the carbon precursor used as a raw material for the submicron activated carbon is not particularly limited as long as it forms activated carbon by activation, and is derived from a plant-derived carbon precursor, a mineral-derived carbon precursor, or a natural material.
  • a plant-derived carbon precursor such as wood, sawdust, charcoal, coconut shells, and walnut shells, fruit seeds, pulp-producing by-products, lignin, waste sugar honey, and other mineral-derived carbon precursors.
  • carbon precursor derived from the material include phenol, saran, and acrylic resin.
  • plant-derived carbon precursors particularly coconut shells
  • bituminous coal, and the like are preferable because activated carbon that is easily available, has excellent processability, and has high adsorption performance can be produced.
  • the submicron activated carbon is finely divided by, for example, a pulverization method such as that used in the method for producing a coating composition of the present invention described later, in which activated carbon obtained by activating a carbide obtained by carbonizing a carbon precursor as described above is activated. It can be manufactured by carbonizing.
  • the activated carbon before the pulverization treatment obtained by carbonizing and activating the carbon precursor may be referred to as "raw material activated carbon”.
  • the method for carbonizing and activating the carbon precursor is not particularly limited, and a conventionally known method may be adopted as a method for obtaining the raw material activated carbon.
  • commercially available raw material activated carbon may be used as the raw material activated carbon. Examples of such commercially available products include Kuraray Call PGW, Kuraray Call PW, and Kuraray Call PKC [all manufactured by Kuraray Co., Ltd.].
  • the coating composition of the present invention contains a liquid dispersion medium.
  • the liquid dispersion medium means a solvent capable of dispersing the raw material activated carbon and the submicron activated carbon, which are liquid at room temperature (25 ° C.).
  • the liquid dispersion medium is not particularly limited as long as it can disperse the raw material activated carbon or the submicron activated carbon and can pulverize the raw material activated carbon to a desired size, and is not particularly limited. It may be selected as appropriate.
  • alcohol solvents such as water, methanol, ethanol, isopropanol and butanol
  • ether solvents such as diethyl ether and ethylene glycol monoethyl ether
  • ketone solvents such as acetone
  • aliphatic hydrocarbon solvents such as hexane, and cyclohexane.
  • examples thereof include alicyclic hydrocarbon solvents such as, and aromatic hydrocarbon solvents such as toluene and m-xylene.
  • the volatile solvent means a solvent that gradually vaporizes under normal temperature and pressure (25 ° C., about 1 atm), and specifically, the vapor pressure at 25 ° C. is 1 ⁇ 10 -7 Pa or more. It is a solvent.
  • a volatile solvent liquid dispersion medium
  • water, an alcohol solvent, and the like can be easily applied to coating compositions for various purposes, and can easily form a coating film having an excellent appearance.
  • at least one selected from the group consisting of a mixture of water and an alcohol solvent is preferable, and ethanol is preferable as the alcohol solvent.
  • liquid dispersion medium one type may be used alone, or two or more types may be used in combination.
  • liquid dispersion medium used when crushing the raw material activated charcoal and the liquid dispersion medium (solvent) used to disperse the submicron activated charcoal in the coating composition and dissolve / disperse the additives to be blended as needed. ) May be the same or different.
  • the content of the liquid dispersion medium in the coating composition of the present invention may be appropriately determined according to the use of the coating composition, the desired viscosity, and the like. In one aspect of the present invention, it is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more, based on the total mass of the coating composition. Also, it is preferably 99% by mass or less, more preferably 98.5% by mass or less, still more preferably 98% by mass or less, and particularly preferably 97.5% by mass or less.
  • the coating composition of the present invention preferably contains cellulose nanofibers.
  • the fine structure of the fibrillated fibers of the cellulose nanofibers firmly entangles and holds the fine particles of the submicron activated carbon, so that the coating film formed from the coating composition is contacted or rubbed.
  • the effect of suppressing the shedding of submicron activated carbon and the transfer to other articles is improved.
  • the coating material since the submicron activated charcoal that functions to impart adsorption performance can also function as a viscosity modifier, the coating material does not contain cellulose nanofibers having a thickening function.
  • cellulose nanofibers are compared with resins (binding agents) such as latex and water-soluble polymers, and general polymer-based thickeners or thickening polysaccharides.
  • resins binding agents
  • the viscosity can be easily adjusted by using a relatively small amount of cellulose nanofibers without significantly affecting the adsorption performance of the submicron activated carbon.
  • the average fiber diameter of the cellulose nanofibers is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 100 nm or less.
  • the lower limit of the average fiber diameter of the cellulose nanofibers is not particularly limited, but from the viewpoint of reducing the catching power of the submicron activated carbon, it is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more. is there.
  • the average fiber diameter of cellulose nanofibers can be measured, for example, by an atomic force microscope (AFM, particularly suitable for measurement with a diameter of 20 nm or less) or a field emission scanning electron microscope (FE-SEM, especially when the diameter is 20 nm or more). It can be measured using (suitable), and can be obtained by analyzing 200 randomly selected fibers and calculating the average.
  • AFM atomic force microscope
  • FE-SEM field emission scanning electron microscope
  • Cellulose nanofibers can be produced by a known production method.
  • a method for producing cellulose nanofibers for example, as described in Japanese Patent Application Laid-Open No. 2010-37200, an oxidation reaction is carried out by adding a copolymer such as hypohalous acid to a dispersion liquid in which cellulose is dispersed. After that, a method for purifying and refining the cellulose; as described in JP-A-2019-127490 and JP-A-2019-997758, in carboxymethylation of cellulose, mercellization under a solvent mainly containing water.
  • cellulose nanofibers may be used as the cellulose nanofibers.
  • examples of such commercially available products include Leocrysta (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and Serenpia (manufactured by Nippon Paper Industries, Ltd.).
  • the coating composition of the present invention contains cellulose nanofibers
  • the mass ratio of cellulose nanofibers to submicron activated carbon exceeds 0, which is preferable. Is less than 0.4, more preferably 0.3 or less, still more preferably 0.17 or less, and particularly preferably 0.12 or less.
  • the viscosity of the solution in which activated carbon is dispersed varies depending on the particle size and concentration of the activated carbon, but when submicron activated carbon having a central particle size D 50 of 1000 nm or less is used, general powdered activated carbon (center particle size D 50 is several ⁇ m).
  • the viscosity of the dispersion solution tends to be higher than that in the case of dispersing (with a thickness of several tens of ⁇ m) at the same concentration. Therefore, when cellulose nanofibers are added to a coating composition containing submicron activated carbon, it is preferable to control the increase in solution viscosity due to submicron activated carbon and the increase in viscosity due to cellulose nanofibers in a well-balanced manner.
  • the mass ratio of the cellulose nanofibers to the submicron activated carbon is not more than the above upper limit, it is easy to control the viscosity of the coating composition while ensuring sufficiently high adsorption performance by the submicron activated carbon, and it is uniform, thin and visually appealing. It becomes easy to easily form an excellent coating film.
  • the content thereof is preferably 0.5% by mass or less, more preferably 0.4% by mass or less, based on the total mass of the coating composition. It is more preferably 0.35% by mass or less, particularly preferably 0.3% by mass or less, and preferably 0.01% by mass or more, more preferably 0.03% by mass or more, still more preferably 0.05% by mass. % Or more.
  • the content of the cellulose nanofibers is within the above range, the adhesion of the submicron activated carbon to the coating film-forming surface of the base material or the like can be enhanced in the coating film formed from the coating composition, which causes rubbing or the like.
  • the content of cellulose nanofibers may be 0% by mass.
  • the coating composition of the present invention since the submicron activated carbon that functions to impart adsorption performance can also function as a viscosity modifier, the coating composition does not include cellulose nanofibers having a thickening function. It is easy to control the viscosity of an object within an appropriate range.
  • Such a coating composition can form a thin, uniform, and visually excellent coating film with respect to a coating film-forming object (base material) while ensuring sufficient adsorption performance by activated carbon.
  • a solution containing cellulose nanofibers may be applied over a coating film formed from the coating composition of the present invention.
  • the solution containing cellulose nanofibers include an aqueous solution of cellulose nanofibers.
  • the coating method is not particularly limited, and various coating methods such as brush coating, roller coating, and spraying can be used. It should be noted that such a solution containing cellulose nanofibers may be applied in layers even when the coating composition of the present invention contains cellulose nanofibers.
  • the coating composition of the present invention may contain an additive that can function to impart a desired function to the coating composition or adjust the physical properties of the coating composition.
  • the additive can be appropriately selected depending on the intended use of the coating composition, etc., but in one aspect of the present invention, the coating composition of the present invention can be used as an additive such as an insect repellent, an insecticide, or an antibacterial agent.
  • insect repellent and insecticide examples include pyrethroid insect repellent / insecticide components such as empentrin, transfluthrin, allethrin, phenothrin, eminence, and profluthrin, paradichlorobenzene, naphthalin, camphor, and 2-phenoxyethanol. These may be used alone or in combination of two or more.
  • an organic compound-based or inorganic compound-based antibacterial agent can be used.
  • the organic compound-based antibacterial agent a phenol-based compound, a pyridine-based compound, a thiazolin-based compound, and an imidazole-based compound are preferable.
  • the inorganic compound-based antibacterial agent silver and silver chloride, silver compounds such as silver carbonate, copper and copper compounds, zinc and zinc compounds and the like are preferable. These may be used alone or in combination of two or more.
  • the effect of preventing the aggregation of activated carbon particles can be expected.
  • the dispersant include a surfactant as a low molecular weight dispersant.
  • a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant are preferable, and more specifically, for example, ammonium polycarboxylate and polyacrylic acid.
  • the polymer dispersant include homopolymers, random polymers, and block polymers.
  • SMA resin polyacrylic acid and the like can be used.
  • a basic surfactant is preferable from the viewpoint of the effect of preventing aggregation of the activated carbon particles, and a dispersant having an aromatic amino group or a quaternary ammonium group or a salt thereof as an anchor portion is more preferable. These may be used alone or in combination of two or more.
  • Dispersants may be used, and commercially available surfactants include, for example, Demor NL, Emargen A-60, Emargen B-66, Sanizol (all manufactured by Kao Corporation). Eslim AD-3172M (manufactured by Nichiyu Co., Ltd.), Adeka Purlonic L-64 (manufactured by Adeka Corporation), and the like can be mentioned.
  • the humidity control agent for example, silica gel, calcium carbonate, calcium chloride and the like can be preferably used.
  • pigments examples include organic coloring pigments such as Hansaello, perylene red, and phthalocyanine blue, inorganic coloring pigments such as titanium oxide, zinc oxide, and carbon black, silica, kaolin, talc, calcium carbonate, precipitated barium sulfate, clay, and the like.
  • organic coloring pigments such as Hansaello, perylene red, and phthalocyanine blue
  • inorganic coloring pigments such as titanium oxide, zinc oxide, and carbon black, silica, kaolin, talc, calcium carbonate, precipitated barium sulfate, clay, and the like.
  • fluorescent pigments temperature indicating pigments
  • conductive pigments heat insulating / heat insulating pigments
  • photocatalyst pigments rust preventive pigments and the like.
  • zeolite for example, zeolite, titanosilicate, silica gel, hydrotalcite, chitosan and the like can be used.
  • the submicron activated carbon can be used as the submicron activated carbon by blending the coating agent used for general impregnated charcoal as the adhering agent.
  • the coating agent used for general impregnated charcoal used for general impregnated charcoal as the adhering agent.
  • basic gases such as ammonia
  • acidic compounds such as phosphoric acid, citric acid, and malic acid
  • gases such as SOx
  • salts such as potassium carbonate, potassium hydroxide, calcium carbonate, and calcium hydroxide, and for aldehyde gas.
  • Amino compounds such as ethylene urea, p-aminobenzoic acid and sulfanilic acid, precious metals such as palladium for ethylene gas, copper sulfate such as copper sulfate and manganese sulfate, and manganese compounds can be used for malodorous substances such as mercaptan.
  • the coating film forming surface is formed by blending the resin (binding agent) with the coating composition.
  • the adhesion of the submicron activated carbon to the resin tends to increase.
  • resins include rosin, nitrocellulose, vinyl chloride, rubber chloride, polystyrene, vinyl acetate emulsion, acrylic, (meth) acrylic acid ester, polyacrylic nitrile, and polymethacrylic acid used in general paints.
  • the content thereof is the total amount based on the total mass of the coating composition, preferably less than 5% by mass, more preferably 4% or less, still more preferably 3. % Or less, particularly preferably 2.5% or less.
  • the coating composition of the present invention may contain a thickener (viscosity adjusting substance) other than cellulose nanofibers.
  • a thickener viscosity adjusting substance
  • Typical examples of the thickener include thickening polysaccharides such as methyl cellulose, carboxymethyl cellulose, pectin, caranagin, xanthan gum and galactomannans, and general polymer thickeners such as acrylic polymer and carboxyvinyl polymer. Be done.
  • a thickener other than cellulose nanofibers hereinafter, also referred to as "other viscosity adjusting substance”
  • the content thereof is the total amount with respect to the total mass of the coating composition.
  • the content of the thickener other than the cellulose nanofibers is not more than the above upper limit, it is suitable for the composition for coating materials while suppressing the deterioration of the adsorption performance of the submicron activated carbon due to the blockage of the pores of the submicron activated carbon. Viscosity can be imparted.
  • the content of the additive in the coating composition of the present invention may be appropriately determined according to the type of the additive used, the desired function, the physical properties, and the like.
  • the content thereof is, preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 20% by mass or less, based on the total mass of the coating composition. It is preferably 10% by mass or less.
  • the content of the additive is not more than the above upper limit, the desired function of the additive can be easily exhibited without affecting the effect of the present invention and the physical properties of the coating composition.
  • the lower limit of the content of the additive in the coating composition of the present invention is not particularly limited, and may be 0% by mass with respect to the total mass of the coating composition.
  • the solid content concentration in the coating composition of the present invention is preferably 1% by mass or more and 20% by mass or less with respect to the total mass of the coating composition.
  • the solid content concentration in the coating composition is within the above range, it is easy to secure good adsorption performance in the coating composition, and the coating composition is imparted with a viscosity suitable for forming a thin and uniform coating film. It will be easier to do.
  • the solid content concentration is more preferably 1.5% by mass or more, further preferably 2% by mass or more, and a better balance between ensuring the adsorption performance and good coatability. From the above viewpoint, it is more preferably 18% by mass or less, further preferably 15% by mass or less, and particularly preferably 12% by mass or less.
  • the solid content concentration in the coating composition means the total amount of the components excluding volatile substances such as a liquid dispersion medium (solvent) from the coating composition.
  • the viscosity of the coating composition of the present invention determines the use of the coating composition, the shape and material of the object to which the coating composition is applied, the degree of unevenness on the surface of the object to be coated, and the required amount of coating according to the purpose. It may be decided as appropriate according to the above.
  • the sub-micron activated carbon which acts to impart adsorption performance it can also serve as a viscosity modifier, the content of the central particle diameter D 50 and the sub-micron activated carbon submicron activated carbon
  • the composition for coating can be easily controlled to a desired viscosity range with a small amount of viscosity adjusting substance such as cellulose nanofibers or without using a viscosity adjusting substance.
  • various shapes and shapes can be obtained by using various coating methods such as brush coating, roller coating, trowel coating, curtain flow, roll coater, immersion coating, airless spray, electrostatic spray, electrodeposition coating, and inkjet method. It can be a coating composition capable of easily forming a coating film which is thin and uniform with respect to a coating film forming object (base material) made of a material and has an excellent appearance.
  • the coating composition of the present invention has a viscosity ⁇ (a) of 8 ⁇ 10 measured at 20 ° C. at a shear rate of 5 ⁇ 10 -3 s -1 using a B-type viscometer. It is preferably 2 mPa ⁇ s or more and 1.2 ⁇ 10 4 mPa ⁇ s or less.
  • a viscosity ⁇ (a) When the viscosity ⁇ (a) is in the above range, it becomes easy to suppress dripping when applied to the coating film-forming object while ensuring good coatability of the coating composition, and the shape is fine or complicated. It is possible to obtain a thin film coating film having an excellent appearance even in the object.
  • the viscosity ⁇ (a) of the coating composition is more preferably 1.5 ⁇ 10 3 mPa ⁇ s or more, further preferably 3 ⁇ 10 3 mPa ⁇ s or more, and more preferably 1 It is 0.0 ⁇ 10 4 mPa ⁇ s or less, more preferably 8 ⁇ 10 3 mPa ⁇ s or less.
  • the coating composition of the present invention has a viscosity ⁇ (b) of 3 ⁇ 10 2 measured at 20 ° C. at a shear rate of 1s -1 using a B-type viscometer. It is preferably mPa ⁇ s or less.
  • the viscosity ⁇ (b) is not more than the above upper limit, it is suitable as a composition to be discharged from a relatively small discharge port, and good sprayability / discharge property can be realized when discharged by a spray method or an inkjet method.
  • the viscosity ⁇ (b) of the coating composition is more preferably 2 ⁇ 10 2 mPa ⁇ s or less, still more preferably 1 ⁇ 10 2 mPa ⁇ s or less.
  • the lower limit of the viscosity ⁇ (b) of the coating composition is not particularly limited, but is, for example, 1 mPa ⁇ s or more.
  • the coating composition of the present invention is, for example, A step (1) of mixing a raw material activated charcoal having a central particle diameter D 50 of 3 to 30 ⁇ m and a liquid dispersion medium so that the concentration of the raw material activated charcoal in the mixture is 1 to 30% by mass to obtain a mixture, and the above-mentioned step.
  • the mixture obtained in (1) is wet-ground with a bead mill using zirconia beads having a particle size of 0.2 to 1 mm, and the activated charcoal having a central particle size D 50 of 1000 nm or less and a liquid dispersion medium are used.
  • Step of obtaining a mixture of (2) It can be manufactured by a manufacturing method including.
  • Steps (1) and (2) are steps for obtaining the submicron activated carbon constituting the coating composition of the present invention from the raw material activated carbon.
  • step (1) the raw material activated carbon having a particle size larger than the particle size of the finally desired submicron activated carbon is mixed with a liquid dispersion medium for dispersing the raw material activated carbon, and the raw material activated carbon and the liquid dispersion medium are mixed. It is a step of obtaining a mixture with.
  • the core particle size D 50 of the raw material activated carbon suitable for obtaining the submicron activated carbon constituting the coating composition of the present invention is preferably 3 to 30 ⁇ m, more preferably 5 to 15 ⁇ m.
  • the activated carbon having the central particle size D 50 as a raw material, it is possible to efficiently obtain the submicron activated carbon as compared with the case where the activated carbon having a large particle size of 30 ⁇ m or more is used as a raw material.
  • the central particle size D 50 of the raw material activated carbon can be measured and calculated by a laser diffraction measurement method.
  • the raw material activated carbon and the liquid dispersion medium are mixed so that the concentration of the raw material activated carbon in the obtained mixture is preferably 1 to 30% by mass, more preferably 10 to 25% by mass.
  • concentration of the raw material activated carbon in the mixture is within the above range, the efficiency is high under the condition that the submicron activated carbon is pulverized by a bead mill or the like.
  • adjusting the content of the submicron activated carbon to 1% by mass or more and 10% by mass or less with respect to the total mass of the coating composition for use as a coating material. Is also easy.
  • a surfactant may be added as a dispersant to the mixture of the raw material activated carbon and the liquid dispersion medium, if necessary.
  • the dispersed state of the coating composition can be improved, and the precipitation of components such as submicron activated carbon in the composition can be effectively suppressed.
  • the amount of the surfactant in that case is preferably 0.1 to 2.0% by mass, more preferably 0.2 to 0.5% by mass, based on the total mass of the obtained mixture.
  • the mixing conditions of the raw material activated carbon and the liquid dispersion medium are not particularly limited, and a uniform mixture can be obtained depending on the particle size and concentration of the raw material activated carbon, the type of the liquid dispersion medium, the equipment and facilities used for mixing, and the like. It may be decided as appropriate. For example, a dissolver, a butterfly mixer, or the like may be used as the stirrer.
  • Step (2) is a step of pulverizing the raw material activated carbon into submicron activated carbon having a central particle size of D 50 1000 nm or less by wet pulverization.
  • the raw material activated carbon can be pulverized using a known fine pulverizer such as a roll mill, a jet mill, a ball mill, or a bead mill. Above all, it is preferable to use a bead mill from the viewpoint that it is easy to efficiently obtain submicron activated carbon in a short time.
  • These devices may be used in combination as needed, or may be classified by a sieve or a wind classifier.
  • the material of the medium is not particularly limited, and for example, glass, alumina, zircon, silica, ceramics, titania, zirconia, steel and the like can be used. ..
  • the media is preferably zirconia beads from the viewpoint of preventing contamination from the media and easily shortening the crushing time.
  • the particle size of the beads is preferably 0.2 to 1 mm, more preferably 0.2 to 0.5 mm, from the viewpoint of more efficiently refining to submicron activated carbon. preferable.
  • the filling rate of the media in the crusher is not particularly limited, but is preferably 50 to 95%, more preferably 70 to 90%, from the viewpoint of easily suppressing deformation during crushing.
  • the crushing time may be appropriately determined according to the particle size of the raw material activated carbon, the type of crusher used, and the like so that the crushing time can be crushed to a desired particle size. For example, by reducing the bead diameter or lengthening the crushing time, it becomes easier to obtain a smaller particle size.
  • the obtained mixture containing the submicron activated carbon and the liquid dispersion medium may be subjected to a concentration treatment for adjusting the concentration.
  • a concentration treatment for example, a filter press, a rotary filter, a drum type dryer, a cylinder type dryer, a shelf type hot air dryer, a conduction heating type dryer, or the like is used to disperse the liquid to a desired concentration. Examples include methods for reducing or removing the medium.
  • the mixture of the submicron activated charcoal and the liquid dispersion medium obtained through the above steps (1) and (2) or a concentrate thereof may be used as it is as a coating composition, and the mixture or concentrate may be used as it is. May be mixed and dispersed in a further liquid dispersion medium (solvent) together with other components such as additives, if necessary, as a coating composition.
  • the liquid dispersion medium for dispersing the mixture of the submicron activated carbon and the liquid dispersion medium may be the same as or different from the liquid dispersion medium used for dispersing the raw material activated carbon during wet pulverization. ..
  • roll mills In addition to bead mills, roll mills, ball mills, homogenizers, high shear mixers, generator-type dispersers, emulsification dispersers, and ultrasonic dispersions are used to mix and disperse a mixture of submicron activated charcoal and a liquid dispersion medium in a further liquid dispersion medium.
  • a known disperser such as a machine can be used.
  • the stirrer a dissolver, a butterfly mixer or the like may be used.
  • the conditions for mixing and dispersing are not particularly limited, and may be appropriately determined depending on the composition of the coating composition, the equipment used, and the like.
  • the coating composition of the present invention is prepared by mixing and dispersing submicron activated carbon, a liquid dispersion medium, and cellulose nanofibers and additives as required, and can have good thixotropy.
  • the viscosity can be reduced during spray spraying or droplet ejection to achieve good spraying / ejection, but after spraying / ejection, Since the viscosity is restored to the extent that the droplets are fixed on the coated surface, dripping after sticking to the coated surface is unlikely to occur. Therefore, the present invention also covers a spray preparation containing the composition for a paint of the present invention.
  • the spray preparation of the present invention can be obtained by accommodating the coating composition of the present invention in a spraying device.
  • the spraying device can be filled with the composition for paint of the present invention, and is not particularly limited as long as it can be sprayed, and may be appropriately selected depending on the intended use and the like.
  • Examples include a spray gun, an air brush with a compressor, and a rechargeable air brush.
  • the coating composition of the present invention is suitable for forming a thin and uniform coating film. Although it depends on the coating method, for example, when the coating composition of the present invention is applied as a spray formulation, for example, 25 to 100 ⁇ m, preferably 20 to 50 ⁇ m, more preferably, while ensuring sufficient adsorption performance by the submicron activated carbon. It can be applied with a thickness of 15 to 25 ⁇ m.
  • the coating composition of the present invention can be used as, for example, a deodorant, a fragrance, an insect repellent, an insecticide, an antibacterial agent, etc., and can be used as a VOC for apartments, detached houses, educational facilities, commercial facilities, hospitals, etc. Volatile organic compounds) Countermeasures against odors and odors are required on the inner walls of buildings and under the floor, the inner walls of clog boxes, the inner walls of refrigerators and deodorant containers for refrigerators, kitchen utensils, toilet supplies and walls, the inner surface of trash cans and the back of lids, etc.
  • General household products, medical equipment, medical products, nursing care products, beds, storage cases, various packaging materials, etc. can be applied as objects.
  • the coating composition of the present invention is applied to the inner wall of these devices and the inner wall of the case in order to protect against gas generated from the inside and gas invading from the outside. By doing so, it is not necessary to secure a space for accommodating the sintered body or molded body of activated carbon, which has been conventionally required, and it is possible to contribute to further miniaturization and thinning of precision equipment and electronic equipment.
  • the composition for coating of the present invention can be used as it is for molded articles and processed products made of various materials such as urethane foam sheets, polyethylene foam sheets, polyethylene foam beads, various plastic beads, cloths, woven fabrics, non-woven fabrics, threads or fibers.
  • the coating composition of the present invention can be used as a colorant or the like as a substitute for carbon black, and can be used as a hair coloring agent or the like, for example.
  • central particle size (D 50 ) and cumulative 99% diameter (D 99 ) of submicron activated charcoal The activated charcoal to be measured is placed in ion-exchanged water together with a surfactant and subjected to ultrasonic vibration to prepare a uniform dispersion.
  • the central particle size (D 50 ) and the cumulative 99% diameter (D 99 ) were measured using a particle size distribution measuring device (“Nanotrack UPA150” manufactured by Microtrac Bell) by a dynamic light scattering method.
  • the surfactant "polyoxyethylene (10) octylphenyl ether” manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • Ion-exchanged water liquid dispersion medium in Table 1, rounded to the first decimal place in Table 1, the same applies hereinafter
  • a composition for coating of submicron activated carbon is mixed.
  • Examples 2-7 Cellulose nanofibers (Serenpia manufactured by Nippon Paper Industries, Ltd.) (CNF in Table 1, rounded off to the third decimal place in Table 1, are described in a 10% by mass slurry of submicron activated carbon obtained by the method of Example 1. The same) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • Example 8 Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and latex (LX812 manufactured by Nippon Zeon) as a resin (binding agent) (additives in Table 1) in a 10 mass% slurry of submicron activated carbon obtained by the method of Example 1. 1), Carboxymethyl cellulose (cellogen WSA manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (additive 2 in Table 1) as a thickener, and ion-exchanged water are mixed according to the formulation shown in Table 1, and a composition for coating of submicron activated carbon is mixed.
  • Example 9 Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and sodium salt of anionic surfactant ⁇ -naphthalene sulfonic acid formalin condensate as a dispersant were added to a 10% by mass slurry of submicron activated carbon obtained by the method of Example 1.
  • Kao Demol NL additive 1 in Table 1
  • ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • Example 10 Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and a nonionic surfactant polyoxyethylene distyrene phenyl ether (manufactured by Kao) as a dispersant are added to a 10 mass% slurry of submicron activated carbon obtained by the method of Example 1.
  • Emulgen A-60 additive 1 in Table 1
  • ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • Example 11 Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and a cationic surfactant alkylbenzyldimethylammonium chloride (Sanisol manufactured by Kao) as a dispersant are added to a 10% by mass slurry of submicron activated carbon obtained by the method of Example 1 (Sanisol manufactured by Kao).
  • Additives 1) in Table 1 and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • Example 12 Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and a polyalkylene glycol derivative (Esleam AD-3172M manufactured by Nippon Paper Industries) as a dispersant were added to a 10 mass% slurry of submicron activated carbon obtained by the method of Example 1 (Table 1). Additive 1) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • Example 13 Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and a nonionic surfactant polyoxyethylene-polyoxypropylene condensate (ADEKA) as a dispersant are added to a 10% by mass slurry of submicron activated carbon obtained by the method of Example 1.
  • Adeka Purronic L-64) (additive 1 in Table 1) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • Example 14 Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and titanium oxide (ST-21 manufactured by Ishihara Sangyo Co., Ltd.) as a photocatalyst (additive 1 in Table 1) in a 10 mass% slurry of submicron activated carbon obtained by the method of Example 1. ), Ion-exchanged water was mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • Comparative Example 1 PGW-BF manufactured by Kuraray (center particle size D 50 : 8 ⁇ m), cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of activated carbon. ..
  • This slurry was concentrated to 17% by mass using a ceramic rotary filter CRF-0 (manufactured by Hiroshima Metal & Machinery).
  • Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed with this concentrate according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • This slurry was concentrated to 30% by mass using a compact disc dryer (manufactured by Nishimura Works Co., Ltd.).
  • Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed with this concentrate according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
  • Viscosity measurement of coating composition The viscosity ⁇ (a) and ⁇ (b) and solid content concentration of the coating composition obtained in Examples 1 to 14 and Comparative Examples 1 to 5 are measured according to the following methods, respectively. did. The results are shown in Table 1. In addition, "-" in the column of viscosity in Table 1 means that measurement was not possible.
  • Viscosity ⁇ (a) Viscosity was measured using a B-type viscometer (Model DV-II + PRO viscometer manufactured by Brookfield, Spindle: SC4-34, Chamber: SC4-13R) at a shear rate of 20 ° C. and 5 ⁇ 10 -3 s -1.
  • Viscosity ⁇ (b) The viscosity was measured using a B-type viscometer (Model DV-II + PRO viscometer manufactured by Brookfield, Spindle: SC4-34, Chamber: SC4-13R) at a shear rate of 20 ° C. and 1s -1.
  • Solid content concentration The value calculated by dividing the total amount of the components charged excluding the liquid dispersion medium (solvent) at the time of preparing the coating composition by the total mass of the coating composition and multiplying by 100. Table 1 shows the solid content concentration.
  • Example 15 Drop-off property test 2 g of each of the paint compositions obtained in Examples 1 to 14, 16 and 17 and Comparative Examples 1 to 5 was tilted at an angle of 45 ° from a horizontal plane (Canon photo paper made by Canon). -Glossy, thick: 0.27 mm, L plate: 89 x 127 mm) was sprayed with a charging air spray so that the coating thickness was 20 to 40 ⁇ m and the thickness was as uniform as possible. Further, as Example 15, the coating composition of Example 1 was spray-coated by the above method and sufficiently dried, and then 1 g of a 0.2 mass% cellulose nanofiber aqueous solution was applied onto the obtained coating film. A coating film was obtained by spray coating in the same manner as the method.
  • the adsorption performance was evaluated according to the following criteria by measuring the amount of benzene adsorbed on the photographic paper coated with the coating composition.
  • the method for measuring the amount of benzene adsorbed is based on JIS K 1474. The results are shown in Table 2.
  • ⁇ Evaluation criteria> ⁇ : 10% or more ⁇ : 5% or more to less than 10% ⁇ : 1% or more to less than 5% ⁇ : less than 1%
  • the coating compositions of Examples 1 to 14, 16 and 17 according to the present invention show good sprayability at the time of spraying, have an appropriate viscosity that prevents dripping after spraying, and ensure adsorption performance by activated carbon. However, it was confirmed that a thin, uniform and excellent appearance coating film having no or suppressed spray unevenness could be formed. On the other hand, when the central particle size of the activated carbon exceeds 1000 nm, the dispersibility is poor, and a thin, uniform and excellent coating film cannot be obtained (Comparative Examples 1 and 2). Further, as the amount of submicron activated carbon increased, the viscosity increased, the sprayability decreased, and the coating film could not be formed by air spray (Comparative Examples 3 to 5).

Abstract

The present invention pertains to a paint composition comprising activated carbon and a liquid dispersion medium, wherein the activated carbon has a central particle diameter D50 of at most 1,000 nm, and the content of the activated carbon is 1-10 mass% with respect to the total mass of the paint composition.

Description

塗料用組成物およびその製造方法Compositions for paints and methods for producing them
 本発明は、1000nm以下の中心粒子径を有する活性炭を含む塗料用組成物、および、その製造方法に関する。 The present invention relates to a coating composition containing activated carbon having a central particle size of 1000 nm or less, and a method for producing the same.
 活性炭は、臭気や汚染物質等に対する吸着機能を有することが知られており、空気や水を清浄するための機器や道具、消臭剤等において活性炭が広く利用されている。そのような利用の多くにおいて、活性炭は、粒状物、粉体、活性炭成型フィルター、活性炭配合のプラスチック製品などの形態で用いられている。近年、様々な臭い成分に対して清浄機器の高性能化や多様化の要請が高まっており、活性炭の利用形態についても、スプレー製剤や塗料型など基材上に直接塗布できる種々の処方が提案されている。例えば、特許文献1には、セルロースナノファイバーとともに機能性物質として活性炭を配合した、経時的に収縮することにより乾燥後も容易に剥がし得るスプレー用脱臭剤が開示されている。また、特許文献2には、粒子サイズの中央値が1μm未満であるサブミクロンの活性炭と、該活性炭を分散させるための水性結着剤系との混合物からなる吸着性塗料処方が開示されている。 Activated carbon is known to have an adsorption function for odors and pollutants, and activated carbon is widely used in equipment and tools for purifying air and water, deodorants, and the like. In many such applications, activated carbon is used in the form of granules, powders, activated carbon molded filters, plastic products containing activated carbon, and the like. In recent years, there has been an increasing demand for higher performance and diversification of cleaning equipment for various odorous components, and various formulations that can be applied directly on the base material such as spray formulations and paint molds have been proposed for the usage patterns of activated carbon. Has been done. For example, Patent Document 1 discloses a deodorant for spraying, which contains activated carbon as a functional substance together with cellulose nanofibers and can be easily peeled off even after drying by shrinking with time. Further, Patent Document 2 discloses an adsorptive paint formulation comprising a mixture of a submicron activated carbon having a median particle size of less than 1 μm and an aqueous binder system for dispersing the activated carbon. ..
特開2018-196550号公報JP-A-2018-196550 特表2008-530311号公報Japanese Patent Application Laid-Open No. 2008-530311
 しかしながら、一般的に粉末活性炭の平均粒子径は、比較的微細に粉砕されたものであっても10μm程度はあり、上記特許文献1に記載されるような活性炭含有スプレー剤において用いられる活性炭は、微細化されたものであっても数μm(例えば5μm程度)の平均粒子径を有していることが多い。通常、塗料は10~100μm程度の厚みで塗布されることが多いが、微細で複雑な精密部品や、繊維、紙などに活性炭の吸着性能を付加する目的においては、より薄く(例えば、1μm~20μmなど)かつ均一な塗膜を形成する必要があり、5μm程度に微細化された活性炭では、活性炭に起因して斑が生じたり、厚みにばらつきを生じたりすることがある。一方、活性炭をさらに微細化し、1μm未満の中心粒子径を有するサブミクロン活性炭を塗料組成物に用いた場合、微細な活性炭の塗装面からの脱落を防ぐために、特許文献2に開示されるように結着剤等を多量に配合する必要があった。しかし、結着剤等を多量に配合した場合には、活性炭の細孔閉塞を引き起こし易く、特に活性炭の含有量が少ない場合においては、十分な吸着性能を維持することが困難であった。 However, in general, the average particle size of powdered activated carbon is about 10 μm even if it is crushed relatively finely, and the activated carbon used in the activated carbon-containing spraying agent as described in Patent Document 1 is described. Even if it is miniaturized, it often has an average particle size of several μm (for example, about 5 μm). Normally, the paint is often applied with a thickness of about 10 to 100 μm, but it is thinner (for example, from 1 μm) for the purpose of adding the adsorption performance of activated carbon to fine and complicated precision parts, fibers, paper, etc. It is necessary to form a uniform coating film (20 μm, etc.), and with activated carbon finely divided to about 5 μm, spots may occur or the thickness may vary due to the activated carbon. On the other hand, when the activated carbon is further refined and a submicron activated carbon having a central particle size of less than 1 μm is used in the coating composition, it is disclosed in Patent Document 2 in order to prevent the fine activated carbon from falling off from the coated surface. It was necessary to add a large amount of binder and the like. However, when a large amount of a binder or the like is blended, pore clogging of the activated carbon is likely to occur, and it is difficult to maintain sufficient adsorption performance particularly when the content of the activated carbon is small.
 本発明は、活性炭の含有量が少量であっても、活性炭による十分な吸着性能を確保しながら、塗膜形成対象物(基材)に対して薄く均一で外観的に優れる塗膜を簡便に形成することのできる塗料用組成物を提供することを目的とする。 According to the present invention, even if the content of activated carbon is small, a coating film that is thin, uniform, and has an excellent appearance with respect to a coating film forming object (base material) can be easily obtained while ensuring sufficient adsorption performance by the activated carbon. It is an object of the present invention to provide a composition for a coating film which can be formed.
 本発明者等は、上記課題を解決するために、炭素質材料およびその製造方法について詳細に検討を重ねた結果、本発明に到達した。
 すなわち、本発明は、以下の態様を包含する。
[1]活性炭と液状分散媒とを含む塗料用組成物であって、
 前記活性炭が1000nm以下の中心粒子径D50を有する活性炭であり、該活性炭の含有量が、塗料用組成物の総質量に対して1質量%以上10質量%以下である塗料用組成物。
[2]セルロースナノファイバーをさらに含み、活性炭に対するセルロースナノファイバーの質量比(セルロースナノファイバー/活性炭)が0.4未満である、前記[1]に記載の塗料用組成物。
[3]前記セルロースナノファイバーの含有量が、塗料用組成物の総質量に対して0.5質量%以下である、前記[2]に記載の塗料用組成物。
[4]B型粘度計を用いて、5×10-3-1のずり速度において20℃で測定される粘度η(a)が8×10mPa・s以上1.2×10mPa・s以下である、前記[1]~[3]のいずれかに記載の塗料用組成物。
[5]B型粘度計を用いて、1s-1のずり速度において20℃で測定される粘度η(b)が3×10mPa・s以下である、前記[1]~[4]のいずれかに記載の塗料用組成物。
[6]添加剤をさらに含む、前記[1]~[5]のいずれかに記載の塗料用組成物。
[7]添加剤が、防虫剤、殺虫剤、抗菌剤、分散剤、調湿剤、光触媒材料、顔料、活性炭以外の吸着剤、添着剤、樹脂、湿潤剤、セルロースナノファイバー以外の増粘剤、沈降防止剤、表面調整剤、皮ばり防止剤、たれ止め剤、レベリング剤、はじき防止剤、わき防止剤、硬化触媒、可塑剤、つや消し剤、すり傷防止剤、紫外線吸収剤、光安定剤、防腐剤、養藻剤、帯電防止剤、難燃剤、防汚剤、酸化防止剤、pH調整剤、消泡剤および乳化剤からなる群より選択される少なくとも1種を含む、前記[6]に記載の塗料用組成物。
[8]添加剤の含有量が、塗料用組成物の総質量に対して30質量%以下である、前記[6]または[7]に記載の塗料用組成物。
[9]塗料組成物中の固形分濃度が塗料用組成物の総質量に対して、1質量%以上20質量%以下である、前記[1]~[8]のいずれかに記載の塗料用組成物。
[10]3~30μmの中心粒子径D50を有する原料活性炭と液状分散媒とを、混合物中の原料活性炭の濃度が1~30質量%になるよう混合して混合物を得る工程(1)、および
 前記工程(1)で得られた混合物に、粒子径が0.2~1mmであるジルコニアビーズを用いたビーズミルにて湿式粉砕を施して、1000nm以下の中心粒子径D50を有する活性炭と液状分散媒との混合物を得る工程(2)
を含む、前記[1]~[9]のいずれかに記載の塗料用組成物の製造方法。
[11]前記[1]~[9]のいずれかに記載の塗料用組成物を含むスプレー製剤。
The present inventors have arrived at the present invention as a result of repeated detailed studies on carbonaceous materials and methods for producing the same in order to solve the above problems.
That is, the present invention includes the following aspects.
[1] A coating composition containing activated carbon and a liquid dispersion medium.
A coating composition in which the activated carbon is an activated carbon having a central particle size D 50 of 1000 nm or less, and the content of the activated carbon is 1% by mass or more and 10% by mass or less with respect to the total mass of the coating composition.
[2] The coating composition according to the above [1], further comprising cellulose nanofibers, wherein the mass ratio of cellulose nanofibers to activated carbon (cellulose nanofibers / activated carbon) is less than 0.4.
[3] The coating composition according to the above [2], wherein the content of the cellulose nanofibers is 0.5% by mass or less with respect to the total mass of the coating composition.
[4] The viscosity η (a) measured at 20 ° C. at a shear rate of 5 × 10 -3 s -1 using a B-type viscometer is 8 × 10 2 mPa · s or more 1.2 × 10 4 mPa. -The coating composition according to any one of the above [1] to [3], which is s or less.
[5] The above-mentioned [1] to [4], wherein the viscosity η (b) measured at 20 ° C. at a shear rate of 1s -1 using a B-type viscometer is 3 × 10 2 mPa · s or less. The coating composition according to any one.
[6] The coating composition according to any one of [1] to [5] above, further comprising an additive.
[7] Additives are insect repellents, insecticides, antibacterial agents, dispersants, humidity control agents, photocatalytic materials, pigments, adsorbents other than activated charcoal, adsorbents, resins, wetting agents, thickeners other than cellulose nanofibers. , Anti-settling agent, surface regulator, anti-skin agent, anti-dripping agent, leveling agent, anti-repellent agent, anti-armpit agent, curing catalyst, plastic agent, matting agent, anti-scratch agent, ultraviolet absorber, light stabilizer The above [6] includes at least one selected from the group consisting of preservatives, adsorbents, antistatic agents, flame retardants, antifouling agents, antioxidants, pH regulators, antifoaming agents and emulsifiers. The composition for paints described.
[8] The coating composition according to the above [6] or [7], wherein the content of the additive is 30% by mass or less with respect to the total mass of the coating composition.
[9] The coating material according to any one of [1] to [8] above, wherein the solid content concentration in the coating composition is 1% by mass or more and 20% by mass or less with respect to the total mass of the coating composition. Composition.
[10] A step (1) of obtaining a mixture by mixing a raw material activated charcoal having a central particle size D 50 of 3 to 30 μm and a liquid dispersion medium so that the concentration of the raw material activated charcoal in the mixture is 1 to 30% by mass. The mixture obtained in the above step (1) is wet-ground with a bead mill using zirconia beads having a particle size of 0.2 to 1 mm, and is liquid with activated charcoal having a central particle size D 50 of 1000 nm or less. Step of obtaining a mixture with a dispersion medium (2)
The method for producing a coating composition according to any one of the above [1] to [9], which comprises.
[11] A spray preparation containing the coating composition according to any one of the above [1] to [9].
 本発明によれば、活性炭の含有量が少量であっても、活性炭による十分な吸着性能を確保しながら、塗膜形成対象物(基材)に対して薄く均一で外観的に優れる塗膜を簡便に形成することのできる塗料用組成物を提供することができる。 According to the present invention, even if the content of activated carbon is small, a coating film that is thin, uniform, and has an excellent appearance with respect to a coating film forming object (base material) can be obtained while ensuring sufficient adsorption performance by the activated carbon. It is possible to provide a coating composition that can be easily formed.
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without impairing the gist of the present invention.
 本発明の塗料用組成物は活性炭を含む。本発明の塗料用組成物に含まれる前記活性炭は、1000nm以下の中心粒子径D50を有する活性炭(以下、「サブミクロン活性炭」ともいう)である。塗料用組成物に含まれる活性炭の中心粒子径が1000nmを超える場合、活性炭に起因した斑が生じたり、厚みにばらつきが生じたりして、均一で薄い塗膜を形成し難くなり、特に、微細な形状や複雑な形状の塗膜形成対象物に対して外観的に優れる塗膜を得ることが困難となる。本発明において、活性炭の中心粒子径D50は、好ましくは800nm以下、より好ましくは600nm以下、さらに好ましくは500nm以下である。また、吸着性能の確保と良好な塗布性とのバランスの観点から、活性炭の中心粒子径D50の下限値は、好ましくは10nm以上であり、より好ましくは50nm以上、さらに好ましくは100nm以上である。 The coating composition of the present invention contains activated carbon. The activated carbon contained in the coating composition of the present invention is an activated carbon having a central particle size D 50 of 1000 nm or less (hereinafter, also referred to as “submicron activated carbon”). When the central particle size of the activated carbon contained in the coating composition exceeds 1000 nm, spots due to the activated carbon occur and the thickness varies, making it difficult to form a uniform and thin coating film, and in particular, fine particles. It becomes difficult to obtain a coating film having an excellent appearance with respect to a coating film forming object having a various shape or a complicated shape. In the present invention, the central particle size D 50 of the activated carbon is preferably 800 nm or less, more preferably 600 nm or less, still more preferably 500 nm or less. Further, from the viewpoint of ensuring the adsorption performance and the balance between good coatability, the lower limit of the central particle size D 50 of the activated carbon is preferably 10 nm or more, more preferably 50 nm or more, and further preferably 100 nm or more. ..
 本発明において、活性炭の中心粒子径D50は、レーザー回折測定法または動的光散乱法にて測定可能な平均粒子径であり、体積粒度分布における中心粒径(D50)を意味する。また、本発明での平均粒子径とは、一次粒子の平均粒子径を意味する。1~100μm程度の範囲に粒度分布を有する一般的な粉末活性炭については、レーザー回析測定法によって高い精度で測定可能であり、100~1000nm程度の範囲に粒度分布を有するサブミクロン活性炭については、動的光散乱法によって比較的高い精度で測定が可能である。したがって、本発明においては、原則として、中心粒子径D50が1μmを超えるような粉末活性炭に対してはレーザー回折測定法により測定を行い、中心粒子径D50が1μm未満となるようなサブミクロン活性炭に対しては動的光散乱法により測定を行った値を採用する。レーザー回折測定法においては、例えば、3本レーザー方式の採用により0.02~2,800μmの幅広いレンジを高分解能に測定可能なマイクロトラック MT3000IIシリーズ(日機装株式会社製)などを用いることができる。また、動的光散乱法において、ヘテロダイン方式による測定によって0.8~6,500nmのレンジで測定可能なナノトラック UPAシリーズ(日機装株式会社製)などを用いることができる。より具体的には、活性炭の中心粒子径D50は、後述する実施例に記載の方法に従い測定できる。 In the present invention, the central particle size D 50 of activated carbon is an average particle size that can be measured by a laser diffraction measurement method or a dynamic light scattering method, and means the central particle size (D 50 ) in the volumetric particle size distribution. Further, the average particle size in the present invention means the average particle size of the primary particles. General powdered activated carbon having a particle size distribution in the range of about 1 to 100 μm can be measured with high accuracy by a laser diffraction measurement method, and submicron activated carbon having a particle size distribution in the range of about 100 to 1000 nm can be measured with high accuracy. Measurement is possible with relatively high accuracy by the dynamic light scattering method. Therefore, in the present invention, as a general rule, powdered activated carbon having a central particle size D 50 exceeding 1 μm is measured by a laser diffraction measurement method, and submicrons having a central particle size D 50 of less than 1 μm are measured. For activated carbon, the value measured by the dynamic light scattering method is adopted. In the laser diffraction measurement method, for example, the Microtrack MT3000II series (manufactured by Nikkiso Co., Ltd.) capable of measuring a wide range of 0.02 to 2,800 μm with high resolution by adopting the three laser method can be used. Further, in the dynamic light scattering method, Nanotrack UPA series (manufactured by Nikkiso Co., Ltd.), which can measure in the range of 0.8 to 6,500 nm by the measurement by the heterodyne method, can be used. More specifically, the central particle size D 50 of the activated carbon can be measured according to the method described in Examples described later.
 本発明において、サブミクロン活性炭のBET比表面積は、好ましくは700m/g以上、より好ましくは800m/g以上、さらに好ましくは900m/g以上であり、また、好ましくは1700m/g以下、より好ましくは1650m/g以下、さらに好ましくは1600m/g以下である。活性炭のBET比表面積が上記下限値以上であると、微細化されたサブミクロン活性炭においても高い吸着性能の発揮が期待できる。また、BET比表面積が上記上限以下であると、サブミクロン活性炭のかさ密度が増加することにより、塗料としての単位体積当たりにおいて高い吸着性能の発揮が期待できる。
 なお、本発明において、BET比表面積は窒素吸着法により測定、算出することができる。
In the present invention, the BET specific surface area of the submicron activated carbon is preferably 700 m 2 / g or more, more preferably 800 m 2 / g or more, still more preferably 900 m 2 / g or more, and preferably 1700 m 2 / g or less. , more preferably 1650 m 2 / g, more preferably not more than 1600 m 2 / g. When the BET specific surface area of the activated carbon is at least the above lower limit value, high adsorption performance can be expected even in the finely divided submicron activated carbon. Further, when the BET specific surface area is not more than the above upper limit, the bulk density of the submicron activated carbon increases, so that high adsorption performance can be expected per unit volume as a paint.
In the present invention, the BET specific surface area can be measured and calculated by the nitrogen adsorption method.
 サブミクロン活性炭は、通常、原料となる炭素前駆体を炭化および賦活処理することにより得ることができ、細孔直径2nm未満のマイクロ孔、細孔直径2nm以上50nm以下のメソ孔や50nm以上のマクロ孔が存在する。
 本発明において、活性炭の全細孔容積は、好ましくは0.2cm/g以上、より好ましくは0.3cm/g以上、さらに好ましくは0.4cm/g以上であり、また、好ましくは1.1cm/g以下、より好ましくは1.0cm/g以下、さらに好ましくは0.8cm/g以下である。
Submicron activated carbon can usually be obtained by carbonizing and activating a carbon precursor as a raw material, and has micropores with a pore diameter of less than 2 nm, mesopores with a pore diameter of 2 nm or more and 50 nm or less, and macros with a pore diameter of 50 nm or more. There is a hole.
In the present invention, the total pore volume of the activated carbon is preferably 0.2 cm 3 / g or more, more preferably 0.3 cm 3 / g or more, still more preferably 0.4 cm 3 / g or more, and preferably 0.4 cm 3 / g or more. It is 1.1 cm 3 / g or less, more preferably 1.0 cm 3 / g or less, still more preferably 0.8 cm 3 / g or less.
 本発明の塗料用組成物におけるサブミクロン活性炭の含有量は、塗料用組成物の総質量に対して1質量%以上10質量%以下である。サブミクロン活性炭の含有量が1質量%未満であると、塗料用組成物に十分な吸着性能を付与することが難しくなる。また、サブミクロン活性炭の含有量が10質量%を超えると、サブミクロン活性炭に起因して粘度が高くなり過ぎて塗布性が低下するため、薄く均一な塗膜を形成するための塗料用組成物として適する粘度に制御し難くなる。本発明において、サブミクロン活性炭の含有量は、塗料用組成物の総質量に対して、好ましくは1.5質量%以上、より好ましくは2質量%以上であり、また、好ましくは8質量%以下、より好ましくは7質量%以下、さらに好ましくは6質量%以下、特に好ましくは5質量%以下、とりわけ好ましくは5質量%未満である。特に、塗料用組成物をスプレー製剤として用いる場合には、スプレー噴霧時の液詰まりを防止しながら、液だれを抑制する効果が得られやすく、スプレー斑の発生を抑制して外観的に優れる薄膜均一な塗膜を形成し得るため、サブミクロン活性炭の含有量が上記範囲内であることが好ましい。 The content of submicron activated carbon in the coating composition of the present invention is 1% by mass or more and 10% by mass or less with respect to the total mass of the coating composition. If the content of the submicron activated carbon is less than 1% by mass, it becomes difficult to impart sufficient adsorption performance to the coating composition. Further, when the content of the submicron activated carbon exceeds 10% by mass, the viscosity becomes too high due to the submicron activated carbon and the coatability deteriorates. Therefore, a coating composition for forming a thin and uniform coating film. It becomes difficult to control the viscosity suitable for. In the present invention, the content of the submicron activated carbon is preferably 1.5% by mass or more, more preferably 2% by mass or more, and preferably 8% by mass or less, based on the total mass of the coating composition. , More preferably 7% by mass or less, further preferably 6% by mass or less, particularly preferably 5% by mass or less, and particularly preferably less than 5% by mass. In particular, when the composition for paint is used as a spray formulation, it is easy to obtain the effect of suppressing dripping while preventing liquid clogging at the time of spray spraying, and it is a thin film that suppresses the occurrence of spray spots and is excellent in appearance. Since a uniform coating film can be formed, the content of the submicron activated carbon is preferably within the above range.
 本発明において、サブミクロン活性炭の原料となる炭素前駆体は、賦活することによって活性炭を形成するものであれば特に限定されず、植物由来の炭素前駆体、鉱物由来の炭素前駆体、天然素材由来の炭素前駆体および合成素材由来の炭素前駆体などから、塗料用組成物の用途等に応じて適宜選択することができる。具体的には、例えば、植物由来の炭素前駆体として、木材、鋸屑、木炭、ヤシ殻、クルミ殻などの果実殻、果実種子、パルプ製造副生物、リグニン、廃糖蜜など、鉱物由来の炭素前駆体として、泥炭、草炭、亜炭、褐炭、レキ青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残査、石油ピッチなど、天然素材由来の炭素前駆体として再生繊維(レーヨン)など、合成素材由来の炭素前駆体としてフェノール、サラン、アクリル樹脂などが挙げられる。
 中でも、入手が容易で加工性にも優れ、高い吸着性能を有する活性炭を製造し得ることから、植物由来の炭素前駆体(特に椰子殻)やレキ青炭等が好ましい。
In the present invention, the carbon precursor used as a raw material for the submicron activated carbon is not particularly limited as long as it forms activated carbon by activation, and is derived from a plant-derived carbon precursor, a mineral-derived carbon precursor, or a natural material. Can be appropriately selected from the carbon precursors of the above and carbon precursors derived from synthetic materials, depending on the use of the coating composition and the like. Specifically, for example, as plant-derived carbon precursors, fruit shells such as wood, sawdust, charcoal, coconut shells, and walnut shells, fruit seeds, pulp-producing by-products, lignin, waste sugar honey, and other mineral-derived carbon precursors. As a body, pulp, grass charcoal, subchar, brown charcoal, leki blue charcoal, smokeless charcoal, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch, etc. Examples of the carbon precursor derived from the material include phenol, saran, and acrylic resin.
Of these, plant-derived carbon precursors (particularly coconut shells), bituminous coal, and the like are preferable because activated carbon that is easily available, has excellent processability, and has high adsorption performance can be produced.
 サブミクロン活性炭は、例えば、上記のような炭素前駆体を炭化処理した炭化物を賦活処理して得られる活性炭を、後述する本発明の塗料用組成物の製造方法において採用するような粉砕方法により微細化することにより製造できる。以下、本明細書において、炭素前駆体を炭化および賦活処理して得られる、粉砕処理前の活性炭を「原料活性炭」ということがある。炭素前駆体を炭化処理および賦活処理する方法は特に限定されず、原料活性炭を得るための方法として従来公知の方法を採用すればよい。
 また、原料活性炭として商業的に入手可能な原料活性炭を使用してもよい。そのような市販品としては、例えば、クラレコールPGW、クラレコールPW、クラレコールPKC〔全て(株)クラレ製〕等が挙げられる。
The submicron activated carbon is finely divided by, for example, a pulverization method such as that used in the method for producing a coating composition of the present invention described later, in which activated carbon obtained by activating a carbide obtained by carbonizing a carbon precursor as described above is activated. It can be manufactured by carbonizing. Hereinafter, in the present specification, the activated carbon before the pulverization treatment obtained by carbonizing and activating the carbon precursor may be referred to as "raw material activated carbon". The method for carbonizing and activating the carbon precursor is not particularly limited, and a conventionally known method may be adopted as a method for obtaining the raw material activated carbon.
Further, commercially available raw material activated carbon may be used as the raw material activated carbon. Examples of such commercially available products include Kuraray Call PGW, Kuraray Call PW, and Kuraray Call PKC [all manufactured by Kuraray Co., Ltd.].
 本発明の塗料用組成物は液状分散媒を含む。本発明において液状分散媒とは、室温(25℃)で液体である、原料活性炭およびサブミクロン活性炭を分散させることが可能な溶媒を意味する。液状分散媒としては、原料活性炭やサブミクロン活性炭を分散させることができ、所望するサイズへの原料活性炭の粉砕を可能とするものである限り、特に限定されるものではなく、従来公知の溶媒から適宜選択すればよい。具体的には、例えば、水、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール溶媒、ジエチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル溶媒、アセトンなどのケトン溶媒、ヘキサンなどの脂肪族炭化水素溶媒、シクロヘキサンなどの脂環式炭化水素溶媒、トルエン、m-キシレンなどの芳香族炭化水素溶媒等が挙げられる。 The coating composition of the present invention contains a liquid dispersion medium. In the present invention, the liquid dispersion medium means a solvent capable of dispersing the raw material activated carbon and the submicron activated carbon, which are liquid at room temperature (25 ° C.). The liquid dispersion medium is not particularly limited as long as it can disperse the raw material activated carbon or the submicron activated carbon and can pulverize the raw material activated carbon to a desired size, and is not particularly limited. It may be selected as appropriate. Specifically, for example, alcohol solvents such as water, methanol, ethanol, isopropanol and butanol, ether solvents such as diethyl ether and ethylene glycol monoethyl ether, ketone solvents such as acetone, aliphatic hydrocarbon solvents such as hexane, and cyclohexane. Examples thereof include alicyclic hydrocarbon solvents such as, and aromatic hydrocarbon solvents such as toluene and m-xylene.
 本発明の塗料用組成物を構成する液状分散媒としては、塗料用組成物から塗膜を形成した際に気化し得る揮発性の溶媒が好ましい。本明細書において、揮発性の溶媒とは、常温常圧下(25℃、1atm程度)において徐々に気化する溶媒を意味し、具体的には25℃における蒸気圧が1×10-7Pa以上の溶媒である。このような揮発性の溶媒(液状分散媒)としては、種々の用途の塗料用組成物に広く適用しやすく、また、外観的にも優れる塗膜を形成しやすい観点から、水、アルコール溶媒、または、水とアルコール溶媒との混合物からなる群から選択される少なくとも1種が好ましく、アルコール溶媒としてはエタノールが好ましい。液状分散媒として、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、原料活性炭の粉砕時に使用する液状分散媒と、塗料用組成物中でサブミクロン活性炭を分散させ、必要に応じて配合される添加剤を溶解/分散させるために使用する液状分散媒(溶媒)は、同じであっても異なっていてもよい。 As the liquid dispersion medium constituting the coating composition of the present invention, a volatile solvent that can be vaporized when a coating film is formed from the coating composition is preferable. In the present specification, the volatile solvent means a solvent that gradually vaporizes under normal temperature and pressure (25 ° C., about 1 atm), and specifically, the vapor pressure at 25 ° C. is 1 × 10 -7 Pa or more. It is a solvent. As such a volatile solvent (liquid dispersion medium), water, an alcohol solvent, and the like can be easily applied to coating compositions for various purposes, and can easily form a coating film having an excellent appearance. Alternatively, at least one selected from the group consisting of a mixture of water and an alcohol solvent is preferable, and ethanol is preferable as the alcohol solvent. As the liquid dispersion medium, one type may be used alone, or two or more types may be used in combination. In addition, the liquid dispersion medium used when crushing the raw material activated charcoal and the liquid dispersion medium (solvent) used to disperse the submicron activated charcoal in the coating composition and dissolve / disperse the additives to be blended as needed. ) May be the same or different.
 本発明の塗料用組成物における液状分散媒の含有量は、塗料用組成物の用途や所望する粘度等に応じて適宜決定すればよい。本発明の一態様においては、塗料用組成物の総質量に対して、好ましくは60質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上であり、また、好ましくは99質量%以下、より好ましくは98.5質量%以下、さらに好ましくは98質量%以下、特に好ましくは97.5質量%以下である。 The content of the liquid dispersion medium in the coating composition of the present invention may be appropriately determined according to the use of the coating composition, the desired viscosity, and the like. In one aspect of the present invention, it is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more, based on the total mass of the coating composition. Also, it is preferably 99% by mass or less, more preferably 98.5% by mass or less, still more preferably 98% by mass or less, and particularly preferably 97.5% by mass or less.
 本発明の塗料用組成物は、セルロースナノファイバーを含むことが好ましい。セルロースナノファイバーを含むことにより、セルロースナノファイバーのフィブリル化した繊維の微細構造が、サブミクロン活性炭の微粒子をしっかりと絡めとり保持するため、塗料用組成物から形成される塗膜において、接触やこすれ等によるサブミクロン活性炭の脱落および他の物品等への転写を抑制する効果が向上する。また、本発明の塗料用組成物においては、吸着性能を付与するために機能するサブミクロン活性炭が粘度調整剤としての機能も果たし得るため、増粘機能を有するセルロースナノファイバーを含まなくても塗料用組成物に適度な粘度を付与し得るが、セルロースナノファイバーは、例えばラテックスや水溶性ポリマーなどの樹脂(結着剤)や、一般的な高分子系増粘剤または増粘多糖類と比較して、塗料用組成物に配合した際にサブミクロン活性炭の細孔閉塞を引き起こし難いため、塗料用組成物の粘度を制御する粘度調整剤として好適である。本発明の塗料用組成物においては、比較的少量のセルロースナノファイバーによって、サブミクロン活性炭の吸着性能に大きな影響を及ぼすことなく容易に粘度調整することが可能である。 The coating composition of the present invention preferably contains cellulose nanofibers. By including the cellulose nanofibers, the fine structure of the fibrillated fibers of the cellulose nanofibers firmly entangles and holds the fine particles of the submicron activated carbon, so that the coating film formed from the coating composition is contacted or rubbed. The effect of suppressing the shedding of submicron activated carbon and the transfer to other articles is improved. Further, in the coating composition of the present invention, since the submicron activated charcoal that functions to impart adsorption performance can also function as a viscosity modifier, the coating material does not contain cellulose nanofibers having a thickening function. Although it is possible to impart an appropriate viscosity to the composition for use, cellulose nanofibers are compared with resins (binding agents) such as latex and water-soluble polymers, and general polymer-based thickeners or thickening polysaccharides. As a result, it is unlikely to cause pore clogging of the submicron activated carbon when blended in the coating composition, and therefore, it is suitable as a viscosity modifier for controlling the viscosity of the coating composition. In the coating composition of the present invention, the viscosity can be easily adjusted by using a relatively small amount of cellulose nanofibers without significantly affecting the adsorption performance of the submicron activated carbon.
 本発明において、セルロースナノファイバーの平均繊維径は、好ましくは500nm以下、より好ましくは300nm以下、さらに好ましくは100nm以下である。セルロースナノファイバーの平均繊維径が上記上限以下であると、塗料用組成物中においてセルロースナノファイバーが沈降し難く、良好な分散性を確保しやすい。セルロースナノファイバーの平均繊維径の下限値は特に限定されるものではないが、サブミクロン活性炭の補足力の低下の観点からは、通常1nm以上であり、好ましくは5nm以上、より好ましくは10nm以上である。 In the present invention, the average fiber diameter of the cellulose nanofibers is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 100 nm or less. When the average fiber diameter of the cellulose nanofibers is not more than the above upper limit, the cellulose nanofibers are less likely to settle in the coating composition, and good dispersibility can be easily ensured. The lower limit of the average fiber diameter of the cellulose nanofibers is not particularly limited, but from the viewpoint of reducing the catching power of the submicron activated carbon, it is usually 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more. is there.
 セルロースナノファイバーの平均繊維径は、例えば、原子間力顕微鏡(AFM、特に径が20nm以下の測定に適する)や電界放出型走査電子顕微鏡(FE-SEM、特に径が20nm以上の場合の測定に適する)を用いて測定することができ、ランダムに選んだ200本の繊維について解析し、平均を算出することにより求めることができる。 The average fiber diameter of cellulose nanofibers can be measured, for example, by an atomic force microscope (AFM, particularly suitable for measurement with a diameter of 20 nm or less) or a field emission scanning electron microscope (FE-SEM, especially when the diameter is 20 nm or more). It can be measured using (suitable), and can be obtained by analyzing 200 randomly selected fibers and calculating the average.
 セルロースナノファイバーは、公知の製造方法により製造することができる。セルロースナノファイバーの製造方法としては、例えば、特開2010-37200号公報に記載されるような、セルロースを分散させた分散液に次亜ハロゲン酸等の共酸化剤を添加して酸化反応を行い、その後、精製および微細化処理する方法;特開2019-127490号公報や特開2019-99758号公報に記載されるような、セルロースのカルボキシメチル化において、水を主とする溶媒下でマーセル化(セルロースのアルカリ処理)を行った後、水と有機溶媒との混合溶媒下でカルボキシル化(エーテル化ともいう)を行う方法;特開2008-1728号公報に記載されるような、木材繊維にTEMPO触媒を作用させ、機械的に解繊する方法等が挙げられ、このような方法に従い作製したセルロースナノファイバーを本発明の塗料用組成物に用いることができる。 Cellulose nanofibers can be produced by a known production method. As a method for producing cellulose nanofibers, for example, as described in Japanese Patent Application Laid-Open No. 2010-37200, an oxidation reaction is carried out by adding a copolymer such as hypohalous acid to a dispersion liquid in which cellulose is dispersed. After that, a method for purifying and refining the cellulose; as described in JP-A-2019-127490 and JP-A-2019-997758, in carboxymethylation of cellulose, mercellization under a solvent mainly containing water. (Alkaline treatment of cellulose) and then carboxylation (also referred to as etherification) in a mixed solvent of water and an organic solvent; Examples thereof include a method in which a TEMPO catalyst is allowed to act to mechanically defibrate, and cellulose nanofibers produced according to such a method can be used in the coating composition of the present invention.
 また、セルロースナノファイバーとして商業的に入手可能なセルロースナノファイバーを使用してもよい。そのような市販品としては、例えば、レオクリスタ(第一工業製薬(株)製)、セレンピア(日本製紙(株)製)等が挙げられる。 Alternatively, commercially available cellulose nanofibers may be used as the cellulose nanofibers. Examples of such commercially available products include Leocrysta (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and Serenpia (manufactured by Nippon Paper Industries, Ltd.).
 本発明の塗料用組成物がセルロースナノファイバーを含む場合、本発明の塗料用組成物において、サブミクロン活性炭に対するセルロースナノファイバーの質量比(セルロースナノファイバー/サブミクロン活性炭)は、0を超え、好ましくは0.4未満であり、より好ましくは0.3以下、さらに好ましくは0.17以下、特に好ましくは0.12以下である。活性炭を分散した溶液の粘度は、活性炭の粒子径や濃度により変化するが、中心粒子径D50が1000nm以下となるサブミクロン活性炭を用いる場合、一般的な粉末活性炭(中心粒子径D50が数μm~数十μmであるもの)を同じ濃度で分散する場合と比較して、分散溶液の粘度は高くなりやすい。したがって、サブミクロン活性炭を含む塗料用組成物にセルロースナノファイバーを加える場合、サブミクロン活性炭による溶液粘度の上昇とセルロースナノファイバーによる粘度の上昇とをバランスよく制御することが好ましい。サブミクロン活性炭に対するセルロースナノファイバーの質量比が上記上限以下であると、サブミクロン活性炭による十分に高い吸着性能を確保しながら、塗料用組成物の粘度を制御しやすく、均一で薄く、外観的に優れる塗膜を簡便に形成しやすくなる。 When the coating composition of the present invention contains cellulose nanofibers, in the coating composition of the present invention, the mass ratio of cellulose nanofibers to submicron activated carbon (cellulose nanofibers / submicron activated carbon) exceeds 0, which is preferable. Is less than 0.4, more preferably 0.3 or less, still more preferably 0.17 or less, and particularly preferably 0.12 or less. The viscosity of the solution in which activated carbon is dispersed varies depending on the particle size and concentration of the activated carbon, but when submicron activated carbon having a central particle size D 50 of 1000 nm or less is used, general powdered activated carbon (center particle size D 50 is several μm). The viscosity of the dispersion solution tends to be higher than that in the case of dispersing (with a thickness of several tens of μm) at the same concentration. Therefore, when cellulose nanofibers are added to a coating composition containing submicron activated carbon, it is preferable to control the increase in solution viscosity due to submicron activated carbon and the increase in viscosity due to cellulose nanofibers in a well-balanced manner. When the mass ratio of the cellulose nanofibers to the submicron activated carbon is not more than the above upper limit, it is easy to control the viscosity of the coating composition while ensuring sufficiently high adsorption performance by the submicron activated carbon, and it is uniform, thin and visually appealing. It becomes easy to easily form an excellent coating film.
 本発明の塗料用組成物がセルロースナノファイバーを含む場合、その含有量は、塗料用組成物の総質量に対して、好ましくは0.5質量%以下、より好ましくは0.4質量%以下、さらに好ましくは0.35質量%以下、特に好ましくは0.3質量%以下であり、また、好ましくは0.01質量%以上、より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上である。セルロースナノファイバーの含有量が上記範囲内であると、塗料用組成物から形成される塗膜において、基材等の塗膜形成面に対するサブミクロン活性炭の密着性を高めることができ、こすれ等に起因するサブミクロン活性炭の脱落を効果的に抑制し得るとともに、サブミクロン活性炭の吸着性能を維持したまま塗料用組成物に適度な粘度を付与しやすい。特に、塗料用組成物をスプレー製剤として用いる場合には、スプレー噴霧時の液詰まりを防止しながら、液だれを抑制する効果も得られやすく、スプレー斑の発生を抑制して外観的に優れる薄膜均一な塗膜を形成し得る。 When the coating composition of the present invention contains cellulose nanofibers, the content thereof is preferably 0.5% by mass or less, more preferably 0.4% by mass or less, based on the total mass of the coating composition. It is more preferably 0.35% by mass or less, particularly preferably 0.3% by mass or less, and preferably 0.01% by mass or more, more preferably 0.03% by mass or more, still more preferably 0.05% by mass. % Or more. When the content of the cellulose nanofibers is within the above range, the adhesion of the submicron activated carbon to the coating film-forming surface of the base material or the like can be enhanced in the coating film formed from the coating composition, which causes rubbing or the like. It is possible to effectively suppress the resulting shedding of the submicron activated carbon, and it is easy to impart an appropriate viscosity to the coating composition while maintaining the adsorption performance of the submicron activated carbon. In particular, when the composition for paint is used as a spray formulation, it is easy to obtain the effect of suppressing dripping while preventing liquid clogging at the time of spray spraying, and it is a thin film that suppresses the occurrence of spray spots and is excellent in appearance. A uniform coating film can be formed.
 なお、本発明の一態様においてセルロースナノファイバーの含有量は0質量%であってもよい。本発明の塗料用組成物においては、吸着性能を付与するために機能するサブミクロン活性炭が粘度調整剤としての機能も果たし得るため、増粘機能を有するセルロースナノファイバーを含まなくても塗料用組成物の粘度を適度な範囲に制御しやすい。このような塗料用組成物は、活性炭による十分な吸着性能を確保しながら、塗膜形成対象物(基材)に対して薄く均一で外観的に優れる塗膜を形成することができる。一方、形成された塗膜に対して接触やこすれ等が起こった場合、セルロースナノファイバーを含む処方と比較して、少量のサブミクロン活性炭の脱落や他の物品等への転写が生じやすくなる傾向がある。これを防ぐために、例えば、セルロースナノファイバーを含む溶液を、本発明の塗料用組成物から形成された塗膜上に重ねて塗工してもよい。セルロースナノファイバーを含む溶液としては、例えばセルロースナノファイバー水溶液が挙げられる。塗工方法は特に限定されず、はけ塗り、ローラー塗り、スプレーなどの種々の塗工方法を用いることができる。
 なお、このようなセルロースナノファイバーを含む溶液を重ねて塗工することは、本発明の塗料用組成物がセルロースナノファイバーを含有する場合においても行ってよい。
In one aspect of the present invention, the content of cellulose nanofibers may be 0% by mass. In the coating composition of the present invention, since the submicron activated carbon that functions to impart adsorption performance can also function as a viscosity modifier, the coating composition does not include cellulose nanofibers having a thickening function. It is easy to control the viscosity of an object within an appropriate range. Such a coating composition can form a thin, uniform, and visually excellent coating film with respect to a coating film-forming object (base material) while ensuring sufficient adsorption performance by activated carbon. On the other hand, when contact or rubbing occurs on the formed coating film, a small amount of submicron activated carbon tends to fall off or transfer to other articles, etc., as compared with the formulation containing cellulose nanofibers. There is. In order to prevent this, for example, a solution containing cellulose nanofibers may be applied over a coating film formed from the coating composition of the present invention. Examples of the solution containing cellulose nanofibers include an aqueous solution of cellulose nanofibers. The coating method is not particularly limited, and various coating methods such as brush coating, roller coating, and spraying can be used.
It should be noted that such a solution containing cellulose nanofibers may be applied in layers even when the coating composition of the present invention contains cellulose nanofibers.
 本発明の塗料組成物は、塗料用組成物に所望の機能を付与したり、塗料用組成物の物性を調整したりするために機能し得る添加剤を含んでいてもよい。添加剤は、塗料用組成物の用途等に応じて適宜選択することができるが、本発明の一態様において、本発明の塗料用組成物は、添加剤として、防虫剤、殺虫剤、抗菌剤、分散剤、調湿剤、光触媒材料、顔料、活性炭以外の吸着剤、添着剤、樹脂(結着剤)、湿潤剤、増粘剤(セルロースナノファイバー以外)、沈降防止剤、表面調整剤、皮ばり防止剤、たれ止め剤、レベリング剤、はじき防止剤、わき防止剤、硬化触媒、可塑剤、つや消し剤、すり傷防止剤、紫外線吸収剤、光安定剤、防腐剤、養藻剤、帯電防止剤、難燃剤、防汚剤、酸化防止剤、pH調整剤、消泡剤および乳化剤からなる群より選択される少なくとも1種を含む。これらの添加剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The coating composition of the present invention may contain an additive that can function to impart a desired function to the coating composition or adjust the physical properties of the coating composition. The additive can be appropriately selected depending on the intended use of the coating composition, etc., but in one aspect of the present invention, the coating composition of the present invention can be used as an additive such as an insect repellent, an insecticide, or an antibacterial agent. , Dispersants, humidity control agents, photocatalyst materials, pigments, adsorbents other than activated charcoal, excipients, resins (binding agents), wetting agents, thickeners (other than cellulose nanofibers), sedimentation inhibitors, surface conditioners, Anti-skin agent, anti-slip agent, leveling agent, anti-repellent agent, anti-armpit agent, curing catalyst, plasticizer, matte agent, anti-scratch agent, UV absorber, light stabilizer, preservative, algae nourishing agent, charging It contains at least one selected from the group consisting of antioxidants, flame retardants, antifouling agents, antioxidants, pH regulators, antifoaming agents and emulsifiers. These additives may be used alone or in combination of two or more.
 前記防虫剤および殺虫剤としては、例えば、エンペントリン、トランスフルスリン、アレスリン、フェノトリン、エミネンス、プロフルトリン等のピレスロイド系防虫・殺虫成分、パラジクロロベンゼン、ナフタリン、樟脳、2-フェノキシエタノール等が挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the insect repellent and insecticide include pyrethroid insect repellent / insecticide components such as empentrin, transfluthrin, allethrin, phenothrin, eminence, and profluthrin, paradichlorobenzene, naphthalin, camphor, and 2-phenoxyethanol. These may be used alone or in combination of two or more.
 抗菌剤としては、有機化合物系または無機化合物系の抗菌剤を用いることができる。具体的には、有機化合物系の抗菌剤としては、フェノール系化合物、ピリジン系化合物、チアゾリン系化合物、イミダゾール系化合物が好ましい。無機化合物系の抗菌剤としては、銀および塩化銀、炭酸銀などの銀化合物、銅および銅化合物、亜鉛および亜鉛化合物などが好ましい。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the antibacterial agent, an organic compound-based or inorganic compound-based antibacterial agent can be used. Specifically, as the organic compound-based antibacterial agent, a phenol-based compound, a pyridine-based compound, a thiazolin-based compound, and an imidazole-based compound are preferable. As the inorganic compound-based antibacterial agent, silver and silver chloride, silver compounds such as silver carbonate, copper and copper compounds, zinc and zinc compounds and the like are preferable. These may be used alone or in combination of two or more.
 分散剤を用いることにより、活性炭粒子の凝集防止効果を期待できる。分散剤としては、例えば、低分子分散剤として界面活性剤が挙げられる。界面活性剤としては、非イオン性界面活性剤、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤が好ましく、より具体的には、例えば、ポリカルボン酸アンモニウム、ポリアクリル酸ナトリウム、ポリメタクリル酸ナトリウム、ジイソブチレン・無水マレイン酸共重合ナトリウム、縮合ナフタレンスルホン酸ナトリウム、ポリスチレンスルホン酸ナトリウム、ポリスチレン・アクリル酸ナトリウム、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩、アルキルポリオキシエチレン硫酸塩、モノアルキル硫酸塩、セッケン、アルキルジメチルアミンオキシド、アルキルカルボキシベタイン、カルボキシメチルセルロース、ポリビニルアルコール等を用いることができる。高分子分散剤としては、例えば、ホモポリマー、ランダムポリマー、ブロックポリマーが挙げられる。より具体的には、例えばSMA樹脂、ポリアクリル酸などを用いることができる。中でも、活性炭粒子の凝集防止効果の観点から、塩基性の界面活性剤が好ましく、アンカー部として芳香族アミノ基または4級アンモニウム基若しくはそれらの塩を有する分散剤がより好ましい。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 By using a dispersant, the effect of preventing the aggregation of activated carbon particles can be expected. Examples of the dispersant include a surfactant as a low molecular weight dispersant. As the surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant are preferable, and more specifically, for example, ammonium polycarboxylate and polyacrylic acid. Sodium, sodium polymethacrylate, sodium diisobutylene / maleic anhydride, condensed sodium sodium phthalene sulfonate, sodium polystyrene sulfonate, sodium polystyrene / acrylate, alkylbenzene sulfonate, monoalkyl phosphate, alkylpolyoxyethylene sulfate Salts, monoalkylsulfates, sucroses, alkyldimethylamine oxides, alkylcarboxybetaines, carboxymethyl celluloses, polyvinyl alcohols and the like can be used. Examples of the polymer dispersant include homopolymers, random polymers, and block polymers. More specifically, for example, SMA resin, polyacrylic acid and the like can be used. Among them, a basic surfactant is preferable from the viewpoint of the effect of preventing aggregation of the activated carbon particles, and a dispersant having an aromatic amino group or a quaternary ammonium group or a salt thereof as an anchor portion is more preferable. These may be used alone or in combination of two or more.
 分散剤として、商業的に入手可能なものを使用してもよく、市販の界面活性剤として、例えばデモールNL、エマルゲンA-60、エマルゲンB-66、サニゾール(以上、花王(株)製)、エスリームAD-3172M(日油(株)製)、アデカプルロニックL-64((株)アデカ製)等が挙げられる。 Commercially available dispersants may be used, and commercially available surfactants include, for example, Demor NL, Emargen A-60, Emargen B-66, Sanizol (all manufactured by Kao Corporation). Eslim AD-3172M (manufactured by Nichiyu Co., Ltd.), Adeka Purlonic L-64 (manufactured by Adeka Corporation), and the like can be mentioned.
 調湿剤としては、例えば、シリカゲル、炭酸カルシウム、塩化カルシウムなどを好適に使用できる。 As the humidity control agent, for example, silica gel, calcium carbonate, calcium chloride and the like can be preferably used.
 顔料としては、例えば、ハンザエロー、ペリレンレッド、フタロシアニンブルーなどの有機着色顔料、酸化チタン、酸化亜鉛、カーボンブラックなどの無機着色顔料、シリカ、カオリン、タルク、炭酸カルシウム、沈降性硫酸バリウム、クレー等の体質顔料の他、蛍光顔料、示温顔料、導電性顔料、断熱・遮熱顔料、光触媒顔料、防錆顔料などが挙げられる。 Examples of pigments include organic coloring pigments such as Hansaello, perylene red, and phthalocyanine blue, inorganic coloring pigments such as titanium oxide, zinc oxide, and carbon black, silica, kaolin, talc, calcium carbonate, precipitated barium sulfate, clay, and the like. In addition to extender pigments, fluorescent pigments, temperature indicating pigments, conductive pigments, heat insulating / heat insulating pigments, photocatalyst pigments, rust preventive pigments and the like can be mentioned.
 活性炭以外の吸着剤としては、例えば、ゼオライト、チタノシリケート、シリカゲル、ハイドロタルサイト、キトサン等が使用できる。 As the adsorbent other than activated carbon, for example, zeolite, titanosilicate, silica gel, hydrotalcite, chitosan and the like can be used.
 添着剤として、一般的な添着炭に使用されている添着剤を配合することにより、サブミクロン活性炭をサブミクロン添着活性炭として使用することができる。具体的にはアンモニアなどの塩基性ガス用としてリン酸、クエン酸、リンゴ酸などの酸性化合物、SOxなどガス用として炭酸カリウム、水酸化カリウム、炭酸カルシウム、水酸化カルシウムなどの塩類、アルデヒドガス用としてエチレン尿素、p-アミノ安息香酸、スルファニル酸などのアミノ化合物、エチレンガス用としてパラジウムなどの貴金属類、メルカプタンなど悪臭物質用として硫酸銅、硫酸マンガンなどの銅、マンガン化合物を使用できる。 The submicron activated carbon can be used as the submicron activated carbon by blending the coating agent used for general impregnated charcoal as the adhering agent. Specifically, for basic gases such as ammonia, acidic compounds such as phosphoric acid, citric acid, and malic acid, for gases such as SOx, salts such as potassium carbonate, potassium hydroxide, calcium carbonate, and calcium hydroxide, and for aldehyde gas. Amino compounds such as ethylene urea, p-aminobenzoic acid and sulfanilic acid, precious metals such as palladium for ethylene gas, copper sulfate such as copper sulfate and manganese sulfate, and manganese compounds can be used for malodorous substances such as mercaptan.
 塗料用組成物を適用する対象物が、被塗物表面に凹凸の少ないプラスチック、金属、ガラス等である場合、塗料用組成物に樹脂(結着剤)を配合することによって、塗膜形成面に対するサブミクロン活性炭の密着性が高まりやすくなる。そのような樹脂としては、例えば、一般的な塗料に使用されるロジン、ニトロセルロース、塩化ビニル、塩化ゴム、ポリスチレン、酢酸ビニルエマルジョン、アクリル、(メタ)アクリル酸エステル、ポリアクリルニトリル、ポリメタクリル酸メチル、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、アクリルエマルジョン、アルキド、不飽和ポリエステル、オイルフリーポリエステル、メラニン、ポリエステル/メラニン、ポリエステル/ポリイソシアネート、アクリル/メラニン、ポリイソシアネート、ポリウレタン、アクリル/ポリイソシアネート、フェノール、エポキシ、エポキシ/ポリアミン、塗料用フッ素樹脂、フッ素/ビニル、シリコン樹脂、シリコン変性アクリル、エポキシポリオール樹脂、その他合成樹脂ラテックスなどが挙げられる。しかし、これらの樹脂(結着剤)を多量に配合すると、サブミクロン活性炭の細孔閉塞を起こしやすくなり、所望の吸着性能が得られない場合がある。従って、これらの樹脂(結着剤)を含む場合、その含有量は、塗料用組成物の総質量に対して総量で、好ましくは5質量%未満、より好ましくは4%以下、さらに好ましくは3%以下、特に好ましくは2.5%以下である。 When the object to which the coating composition is applied is plastic, metal, glass, etc. with less unevenness on the surface of the object to be coated, the coating film forming surface is formed by blending the resin (binding agent) with the coating composition. The adhesion of the submicron activated carbon to the resin tends to increase. Examples of such resins include rosin, nitrocellulose, vinyl chloride, rubber chloride, polystyrene, vinyl acetate emulsion, acrylic, (meth) acrylic acid ester, polyacrylic nitrile, and polymethacrylic acid used in general paints. Methyl, acrylic acid alkyl ester, methacrylic acid alkyl ester, acrylic emulsion, alkyd, unsaturated polyester, oil-free polyester, melanin, polyester / melanin, polyester / polyisocyanate, acrylic / melanin, polyisocyanate, polyurethane, acrylic / polyisocyanate, Examples thereof include phenol, epoxy, epoxy / polyamine, fluororesin for paint, fluorine / vinyl, silicon resin, silicon-modified acrylic, epoxy polyol resin, and other synthetic resin latex. However, when a large amount of these resins (binding agents) is blended, pore clogging of the submicron activated carbon is likely to occur, and the desired adsorption performance may not be obtained. Therefore, when these resins (binding agents) are contained, the content thereof is the total amount based on the total mass of the coating composition, preferably less than 5% by mass, more preferably 4% or less, still more preferably 3. % Or less, particularly preferably 2.5% or less.
 本発明の塗料用組成物は、セルロースナノファイバー以外の増粘剤(粘度調整物質)を含んでいてもよい。増粘剤としては、代表的には、メチルセルロース、カルボキシメチルセルロース、ペクチン、カラナギン、キサンタンガム、ガラクトマンナン類などの増粘多糖類、アクリルポリマー、カルボキシビニルポリマーなどの一般的な高分子増粘剤が挙げられる。本発明の塗料用組成物がセルロースナノファイバー以外の増粘剤(以下、「他の粘度調整物質」ともいう)を含む場合、その含有量は、塗料用組成物の総質量に対して総量で、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは1質量%以下である。セルロースナノファイバー以外の増粘剤の含有量が上記上限以下であると、サブミクロン活性炭の細孔を閉塞することによるサブミクロン活性炭の吸着性能の低下を抑制しながら、塗料用組成物に適度な粘度を付与することができる。 The coating composition of the present invention may contain a thickener (viscosity adjusting substance) other than cellulose nanofibers. Typical examples of the thickener include thickening polysaccharides such as methyl cellulose, carboxymethyl cellulose, pectin, caranagin, xanthan gum and galactomannans, and general polymer thickeners such as acrylic polymer and carboxyvinyl polymer. Be done. When the coating composition of the present invention contains a thickener other than cellulose nanofibers (hereinafter, also referred to as "other viscosity adjusting substance"), the content thereof is the total amount with respect to the total mass of the coating composition. It is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, and particularly preferably 1% by mass or less. When the content of the thickener other than the cellulose nanofibers is not more than the above upper limit, it is suitable for the composition for coating materials while suppressing the deterioration of the adsorption performance of the submicron activated carbon due to the blockage of the pores of the submicron activated carbon. Viscosity can be imparted.
 本発明の塗料用組成物における添加剤の含有量は、用いる添加剤の種類、所望する機能や物理的特性等に応じて適宜決定すればよい。本発明の塗料用組成物が添加剤を含む場合、その含有量は、塗料用組成物の総質量に対して総量で、好ましくは30質量%以下であり、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。添加剤の含有量が上記上限以下であると、本発明の効果や塗料用組成物の物理的特性に影響を与えることなく、添加剤による所望の機能を発揮しやすい。本発明の塗料用組成物における添加剤の含有量の下限値は、特に限定されるものではなく、塗料用組成物の総質量に対して0質量%であってもよい。 The content of the additive in the coating composition of the present invention may be appropriately determined according to the type of the additive used, the desired function, the physical properties, and the like. When the coating composition of the present invention contains an additive, the content thereof is, preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 20% by mass or less, based on the total mass of the coating composition. It is preferably 10% by mass or less. When the content of the additive is not more than the above upper limit, the desired function of the additive can be easily exhibited without affecting the effect of the present invention and the physical properties of the coating composition. The lower limit of the content of the additive in the coating composition of the present invention is not particularly limited, and may be 0% by mass with respect to the total mass of the coating composition.
 本発明の塗料用組成物における固形分濃度は、塗料用組成物の総質量に対して、1質量%以上20質量%以下であることが好ましい。塗料用組成物における固形分濃度が上記範囲内であると、塗料用組成物における良好な吸着性能を確保しやすく、かつ、塗料用組成物に薄く均一な塗膜の形成に適した粘度を付与しやすくなる。前記固形分濃度は、吸着性能向上の観点から、より好ましくは1.5質量%以上、さらに好ましくは2質量%以上であり、また、吸着性能の確保と良好な塗布性とのより良好なバランスの観点から、より好ましくは18質量%以下、さらに好ましくは15質量%以下、特に好ましくは12質量%以下である。 The solid content concentration in the coating composition of the present invention is preferably 1% by mass or more and 20% by mass or less with respect to the total mass of the coating composition. When the solid content concentration in the coating composition is within the above range, it is easy to secure good adsorption performance in the coating composition, and the coating composition is imparted with a viscosity suitable for forming a thin and uniform coating film. It will be easier to do. From the viewpoint of improving the adsorption performance, the solid content concentration is more preferably 1.5% by mass or more, further preferably 2% by mass or more, and a better balance between ensuring the adsorption performance and good coatability. From the above viewpoint, it is more preferably 18% by mass or less, further preferably 15% by mass or less, and particularly preferably 12% by mass or less.
 塗料用組成物中の固形分濃度とは、塗料用組成物から液状分散媒(溶媒)等の揮発性物質を除いた成分の合計量を意味する。塗料用組成物中の固形分濃度は、例えば、塗料用組成物の調製時の液状分散媒(溶媒)等の揮発性物質を除いた成分の仕込み量の合計量を塗料用組成物の総質量で除して100を乗じることにより算出できる。あるいは、電子天秤を用いて測定対象とする塗料用組成物100gをガラス製のビーカーに量り入れ、120℃に調整した乾燥機にて16時間乾燥後、直ちに電子天秤で乾燥後の重量値Xgを測定し、下記式:
 固形分濃度(%)=乾燥後重量X(g)/100(g)×100
に従い、算出することができる。
The solid content concentration in the coating composition means the total amount of the components excluding volatile substances such as a liquid dispersion medium (solvent) from the coating composition. For the solid content concentration in the coating composition, for example, the total amount of the components excluding volatile substances such as the liquid dispersion medium (solvent) at the time of preparing the coating composition is the total amount of the coating composition. It can be calculated by dividing by and multiplying by 100. Alternatively, 100 g of the paint composition to be measured using an electronic balance is weighed in a glass beaker, dried in a dryer adjusted to 120 ° C. for 16 hours, and immediately measured with an electronic balance to measure the weight value Xg. Measure and formula:
Solid content concentration (%) = weight after drying X (g) / 100 (g) x 100
It can be calculated according to.
 本発明の塗料用組成物の粘度は、塗料用組成物の用途、塗料用組成物を塗布する対象物の形状や材質、被塗物表面の凹凸の程度、目的に応じた塗料の必要塗布量等に応じて適宜決定すればよい。本発明の塗料用組成物においては、吸着性能を付与するために機能するサブミクロン活性炭が粘度調整剤としての機能も果たし得るため、サブミクロン活性炭の中心粒子径D50やサブミクロン活性炭の含有量を調整することにより、少量のセルロースナノファイバー等の粘度調整物質で、または、粘度調整物質を用いることなく、塗料用組成物を所望の粘度範囲に容易に制御することができる。これにより、はけ塗り、ローラー塗り、こて塗り、カーテンフロー、ロールコーター、浸漬塗り、エアレススプレー、静電スプレー、電着塗装、インクジェット法などの種々の塗布方法を用いて、種々の形状や材質からなる塗膜形成対象物(基材)に対して、薄く均一であり、外観的に優れる塗膜を簡便に形成することが可能な塗料用組成物となり得る。 The viscosity of the coating composition of the present invention determines the use of the coating composition, the shape and material of the object to which the coating composition is applied, the degree of unevenness on the surface of the object to be coated, and the required amount of coating according to the purpose. It may be decided as appropriate according to the above. In the coating composition of the present invention, since the sub-micron activated carbon which acts to impart adsorption performance it can also serve as a viscosity modifier, the content of the central particle diameter D 50 and the sub-micron activated carbon submicron activated carbon By adjusting the above, the composition for coating can be easily controlled to a desired viscosity range with a small amount of viscosity adjusting substance such as cellulose nanofibers or without using a viscosity adjusting substance. As a result, various shapes and shapes can be obtained by using various coating methods such as brush coating, roller coating, trowel coating, curtain flow, roll coater, immersion coating, airless spray, electrostatic spray, electrodeposition coating, and inkjet method. It can be a coating composition capable of easily forming a coating film which is thin and uniform with respect to a coating film forming object (base material) made of a material and has an excellent appearance.
 本発明の一態様において、本発明の塗料用組成物は、B型粘度計を用いて5×10-3-1のずり速度において20℃で測定される粘度η(a)が8×10mPa・s以上1.2×10mPa・s以下であることが好ましい。粘度η(a)が上記範囲であると、塗料用組成物の良好な塗布性を確保しながら、塗膜形成対象物に塗布した際の液だれを抑制しやすくなり、微細または複雑な形状の対象物においても外観的に優れる薄膜の塗膜を得ることができる。本発明において、塗料用組成物の粘度η(a)は、より好ましくは1.5×10mPa・s以上、さらに好ましくは3×10mPa・s以上であり、また、より好ましくは1.0×10mPa・s以下、さらに好ましくは8×10mPa・s以下である。 In one aspect of the present invention, the coating composition of the present invention has a viscosity η (a) of 8 × 10 measured at 20 ° C. at a shear rate of 5 × 10 -3 s -1 using a B-type viscometer. It is preferably 2 mPa · s or more and 1.2 × 10 4 mPa · s or less. When the viscosity η (a) is in the above range, it becomes easy to suppress dripping when applied to the coating film-forming object while ensuring good coatability of the coating composition, and the shape is fine or complicated. It is possible to obtain a thin film coating film having an excellent appearance even in the object. In the present invention, the viscosity η (a) of the coating composition is more preferably 1.5 × 10 3 mPa · s or more, further preferably 3 × 10 3 mPa · s or more, and more preferably 1 It is 0.0 × 10 4 mPa · s or less, more preferably 8 × 10 3 mPa · s or less.
 また、本発明の別の一態様において、本発明の塗料用組成物は、B型粘度計を用いて1s-1のずり速度において20℃で測定される粘度η(b)が3×10mPa・s以下であることが好ましい。粘度η(b)が上記上限以下であると、比較的小さな吐出口から吐出する組成物として適し、噴霧法やインクジェット法により吐出される場合に良好な噴霧性/吐出性を実現し得る。本発明において、塗料用組成物の粘度η(b)は、より好ましくは2×10mPa・s以下、さらに好ましくは1×10mPa・s以下である。塗料用組成物の粘度η(b)の下限値は、特に限定されるものではないが、例えば1mPa・s以上である。 Further, in another aspect of the present invention, the coating composition of the present invention has a viscosity η (b) of 3 × 10 2 measured at 20 ° C. at a shear rate of 1s -1 using a B-type viscometer. It is preferably mPa · s or less. When the viscosity η (b) is not more than the above upper limit, it is suitable as a composition to be discharged from a relatively small discharge port, and good sprayability / discharge property can be realized when discharged by a spray method or an inkjet method. In the present invention, the viscosity η (b) of the coating composition is more preferably 2 × 10 2 mPa · s or less, still more preferably 1 × 10 2 mPa · s or less. The lower limit of the viscosity η (b) of the coating composition is not particularly limited, but is, for example, 1 mPa · s or more.
 本発明の塗料用組成物は、例えば、
 3~30μmの中心粒子径D50を有する原料活性炭と液状分散媒とを、混合物中の原料活性炭の濃度が1~30質量%になるよう混合して混合物を得る工程(1)、および
 前記工程(1)で得られた混合物に、粒子径が0.2~1mmであるジルコニアビーズを用いたビーズミルにて湿式粉砕を施して、1000nm以下の中心粒子径D50を有する活性炭と液状分散媒との混合物を得る工程(2)
を含む製造方法により製造することができる。
The coating composition of the present invention is, for example,
A step (1) of mixing a raw material activated charcoal having a central particle diameter D 50 of 3 to 30 μm and a liquid dispersion medium so that the concentration of the raw material activated charcoal in the mixture is 1 to 30% by mass to obtain a mixture, and the above-mentioned step. The mixture obtained in (1) is wet-ground with a bead mill using zirconia beads having a particle size of 0.2 to 1 mm, and the activated charcoal having a central particle size D 50 of 1000 nm or less and a liquid dispersion medium are used. Step of obtaining a mixture of (2)
It can be manufactured by a manufacturing method including.
 工程(1)および工程(2)は、原料活性炭から本発明の塗料用組成物を構成するサブミクロン活性炭を得るための工程である。
 工程(1)は、最終的に所望するサブミクロン活性炭の粒子径よりも大きな粒子径を有する原料活性炭を、該原料活性炭を分散させるための液状分散媒と混合して、原料活性炭と液状分散媒との混合物を得る工程である。
Steps (1) and (2) are steps for obtaining the submicron activated carbon constituting the coating composition of the present invention from the raw material activated carbon.
In step (1), the raw material activated carbon having a particle size larger than the particle size of the finally desired submicron activated carbon is mixed with a liquid dispersion medium for dispersing the raw material activated carbon, and the raw material activated carbon and the liquid dispersion medium are mixed. It is a step of obtaining a mixture with.
 本発明の塗料用組成物を構成するサブミクロン活性炭を得るために適する原料活性炭の中心粒子径D50は、好ましくは3~30μmであり、より好ましくは5~15μmである。上記中心粒子径D50を有する活性炭を原料とすることで、30μm以上の大きな粒度の活性炭を原料とする場合に比べてサブミクロン活性炭を効率的に得ることができ。また、わずかではあるが得られたサブミクロン活性炭において1μm以上の粒子の残留を防止することができる。なお、原料活性炭の中心粒子径D50はレーザー回析測定法によって測定、算出することができる。 The core particle size D 50 of the raw material activated carbon suitable for obtaining the submicron activated carbon constituting the coating composition of the present invention is preferably 3 to 30 μm, more preferably 5 to 15 μm. By using the activated carbon having the central particle size D 50 as a raw material, it is possible to efficiently obtain the submicron activated carbon as compared with the case where the activated carbon having a large particle size of 30 μm or more is used as a raw material. In addition, it is possible to prevent the residue of particles having a size of 1 μm or more in the obtained submicron activated carbon, although the amount is small. The central particle size D 50 of the raw material activated carbon can be measured and calculated by a laser diffraction measurement method.
 工程(1)において、原料活性炭と液状分散媒との混合は、得られる混合物中の原料活性炭の濃度が、好ましくは1~30質量%、より好ましくは10~25質量%になるように行う。混合物中の原料活性炭の濃度が上記範囲内であると、サブミクロン活性炭をビーズミルなどで粉砕する条件において効率がよい。また、塗料として使用するために、サブミクロン活性炭の含有量を塗料用組成物の総質量に対して1質量%以上10質量%以下に調整することが、他の添加剤とさらに混合する場合においても容易である。 In the step (1), the raw material activated carbon and the liquid dispersion medium are mixed so that the concentration of the raw material activated carbon in the obtained mixture is preferably 1 to 30% by mass, more preferably 10 to 25% by mass. When the concentration of the raw material activated carbon in the mixture is within the above range, the efficiency is high under the condition that the submicron activated carbon is pulverized by a bead mill or the like. Further, in the case of further mixing with other additives, adjusting the content of the submicron activated carbon to 1% by mass or more and 10% by mass or less with respect to the total mass of the coating composition for use as a coating material. Is also easy.
 原料活性炭と液状分散媒との混合物中に、必要に応じて分散剤として界面活性剤を加えてもよい。分散剤として適量の界面活性剤を用いることにより、塗料用組成物の分散状態を向上させ、サブミクロン活性炭等の成分が組成物中で沈降することを効果的に抑制し得る。その場合の界面活性剤の量は、得られる混合物の総質量に対して、好ましくは0.1~2.0質量%であり、より好ましくは0.2~0.5質量%である。 A surfactant may be added as a dispersant to the mixture of the raw material activated carbon and the liquid dispersion medium, if necessary. By using an appropriate amount of the surfactant as the dispersant, the dispersed state of the coating composition can be improved, and the precipitation of components such as submicron activated carbon in the composition can be effectively suppressed. The amount of the surfactant in that case is preferably 0.1 to 2.0% by mass, more preferably 0.2 to 0.5% by mass, based on the total mass of the obtained mixture.
 原料活性炭と液状分散媒との混合条件は、特に限定されるものではなく、原料活性炭の粒子径、濃度、液状分散媒の種類、混合に用いる機器や設備等に応じて、均一な混合物が得られるよう適宜決定すればよい。例えば、撹拌機として、ディソルバーやバタフライミキサー等を用いてもよい。 The mixing conditions of the raw material activated carbon and the liquid dispersion medium are not particularly limited, and a uniform mixture can be obtained depending on the particle size and concentration of the raw material activated carbon, the type of the liquid dispersion medium, the equipment and facilities used for mixing, and the like. It may be decided as appropriate. For example, a dissolver, a butterfly mixer, or the like may be used as the stirrer.
 工程(2)は、湿式粉砕により原料活性炭を中心粒子径D501000nm以下のサブミクロン活性炭へ粉砕する工程である。
 原料活性炭の粉砕は、ロールミル、ジェットミル、ボールミル、ビーズミル等の公知の微粉砕機を用いて行うことができる。中でも、短時間で効率的にサブミクロン活性炭を得やすい観点から、ビーズミルを用いることが好ましい。これらの機器は、必要に応じて組み合わせて用いてもよく、また、篩機や風力分級機によって分級を行ってもよい。
Step (2) is a step of pulverizing the raw material activated carbon into submicron activated carbon having a central particle size of D 50 1000 nm or less by wet pulverization.
The raw material activated carbon can be pulverized using a known fine pulverizer such as a roll mill, a jet mill, a ball mill, or a bead mill. Above all, it is preferable to use a bead mill from the viewpoint that it is easy to efficiently obtain submicron activated carbon in a short time. These devices may be used in combination as needed, or may be classified by a sieve or a wind classifier.
 粉砕機としてボールミルやビーズミルを使用する場合、そのメディア(ボールまたはビーズ)の材質は、特に限定されず、例えばガラス、アルミナ、ジルコン、シリカ、セラミックス、チタニア、ジルコニア、スチールなどを使用することができる。メディアからのコンタミが生じにくく、粉砕時間を短縮しやすい観点から、メディアはジルコニアビーズであることが好ましい。ジルコニアビーズを用いる場合、サブミクロン活性炭への微細化をより効率的に行う観点から、ビーズの粒子径は0.2~1mmであることが好ましく、0.2~0.5mmであることがより好ましい。粉砕機へのメディアの充填率は特に限定されないが、粉砕時の異型化を抑制しやすい観点から、好ましくは50~95%であり、より好ましくは70~90%である。粉砕時間は所望の粒子径に粉砕し得るよう、原料活性炭の粒子径や用いる粉砕機の種類等に応じて適宜決定すればよい。例えば、ビーズ径を小さくしたり、粉砕時間を長くしたりすることで、より小さな粒子径を得やすくなる。 When a ball mill or a bead mill is used as the crusher, the material of the medium (ball or bead) is not particularly limited, and for example, glass, alumina, zircon, silica, ceramics, titania, zirconia, steel and the like can be used. .. The media is preferably zirconia beads from the viewpoint of preventing contamination from the media and easily shortening the crushing time. When zirconia beads are used, the particle size of the beads is preferably 0.2 to 1 mm, more preferably 0.2 to 0.5 mm, from the viewpoint of more efficiently refining to submicron activated carbon. preferable. The filling rate of the media in the crusher is not particularly limited, but is preferably 50 to 95%, more preferably 70 to 90%, from the viewpoint of easily suppressing deformation during crushing. The crushing time may be appropriately determined according to the particle size of the raw material activated carbon, the type of crusher used, and the like so that the crushing time can be crushed to a desired particle size. For example, by reducing the bead diameter or lengthening the crushing time, it becomes easier to obtain a smaller particle size.
 液状分散媒中に原料活性炭を分散させた状態で粉砕を行う湿式粉砕を採用することにより、乾式粉砕では得ることが難しい1000nm以下の中心粒子径を有するサブミクロン活性炭を効率的に得ることができる。
 湿式粉砕後、得られるサブミクロン活性炭と液状分散媒とを含む混合物に、濃度調整のための濃縮処理を施してもよい。濃縮処理の方法としては、例えば、フィルタープレス、ロータリーフィルター、ドラム型乾燥機、シリンダー型乾燥機、棚段型熱風乾燥機、伝導加熱型乾燥機等を用いて、所望の濃度になるよう液状分散媒を低減または除去する方法が挙げられる。
By adopting wet pulverization in which the raw material activated carbon is dispersed in a liquid dispersion medium, submicron activated carbon having a central particle size of 1000 nm or less, which is difficult to obtain by dry pulverization, can be efficiently obtained. ..
After wet pulverization, the obtained mixture containing the submicron activated carbon and the liquid dispersion medium may be subjected to a concentration treatment for adjusting the concentration. As a method of concentration treatment, for example, a filter press, a rotary filter, a drum type dryer, a cylinder type dryer, a shelf type hot air dryer, a conduction heating type dryer, or the like is used to disperse the liquid to a desired concentration. Examples include methods for reducing or removing the medium.
 本発明においては、上記工程(1)および(2)を経て得られたサブミクロン活性炭と液状分散媒との混合物またはその濃縮物をそのまま塗料用組成物として用いてもよく、該混合物または濃縮物を、必要に応じて添加剤等の他の成分とともに、さらなる液状分散媒(溶媒)に混合、分散したものを塗料用組成物としてもよい。後者の場合、サブミクロン活性炭と液状分散媒との混合物等を分散させる液状分散媒としては、湿式粉砕時に原料活性炭を分散させるために使用した液状分散媒と同じであっても異なっていてもよい。 In the present invention, the mixture of the submicron activated charcoal and the liquid dispersion medium obtained through the above steps (1) and (2) or a concentrate thereof may be used as it is as a coating composition, and the mixture or concentrate may be used as it is. May be mixed and dispersed in a further liquid dispersion medium (solvent) together with other components such as additives, if necessary, as a coating composition. In the latter case, the liquid dispersion medium for dispersing the mixture of the submicron activated carbon and the liquid dispersion medium may be the same as or different from the liquid dispersion medium used for dispersing the raw material activated carbon during wet pulverization. ..
 サブミクロン活性炭と液状分散媒との混合物等をさらなる液状分散媒に混合、分散させるために、ビーズミルの他、ロールミル、ボールミル、ホモジナイザー、ハイシアーミキサー、ジェネレーター方式分散機、乳化分散機、超音波分散機等の公知の分散機を用いることができる。また、撹拌機として、ディソルバーやバタフライミキサー等を用いてもよい。混合および分散時の条件は、特に限定されず、塗料用組成物の組成、用いる機器等に応じて適宜決定すればよい。 In addition to bead mills, roll mills, ball mills, homogenizers, high shear mixers, generator-type dispersers, emulsification dispersers, and ultrasonic dispersions are used to mix and disperse a mixture of submicron activated charcoal and a liquid dispersion medium in a further liquid dispersion medium. A known disperser such as a machine can be used. Further, as the stirrer, a dissolver, a butterfly mixer or the like may be used. The conditions for mixing and dispersing are not particularly limited, and may be appropriately determined depending on the composition of the coating composition, the equipment used, and the like.
 本発明の塗料用組成物は、サブミクロン活性炭と液状分散媒、および、必要に応じてセルロースナノファイバーや添加剤を混合、分散することにより調製され、良好なチクソトロピー性を有し得る。これにより、スプレー製剤や液滴として吐出されるインクジェットインクなどとして用いた場合に、スプレー噴霧や液滴吐出時においては低粘度化して良好な噴霧/吐出を実施できるが、噴霧/吐出後は、塗布面に液滴が定着する程度に粘度が回復するため、塗布面へ固着した後の液だれが起こり難い。
 したがって、本発明は、本発明の塗料用組成物を含むスプレー製剤も対象とする。
The coating composition of the present invention is prepared by mixing and dispersing submicron activated carbon, a liquid dispersion medium, and cellulose nanofibers and additives as required, and can have good thixotropy. As a result, when used as a spray preparation or inkjet ink ejected as droplets, the viscosity can be reduced during spray spraying or droplet ejection to achieve good spraying / ejection, but after spraying / ejection, Since the viscosity is restored to the extent that the droplets are fixed on the coated surface, dripping after sticking to the coated surface is unlikely to occur.
Therefore, the present invention also covers a spray preparation containing the composition for a paint of the present invention.
 例えば、本発明の塗料用組成物を噴霧装置に収容することにより、本発明のスプレー製剤を得ることができる。噴霧装置としては、本発明の塗料用組成物を充填することができ、これを噴霧可能なものであれば特に限定されず、用途等に応じて適宜選択すればよい。例えば、ポンプ式噴霧器、トリガー式噴霧器、エアゾール式噴霧器、蓄圧式噴霧器、手押し型噴霧器、電気式噴霧器、蓄電式噴霧器、エンジン式噴霧器、重力式エアースプレーガン、吸上式エアースプレーガン、電動式エアースプレーガン、コンプレッサー付エアブラシ、充電式エアブラシ等を挙げることができる。 For example, the spray preparation of the present invention can be obtained by accommodating the coating composition of the present invention in a spraying device. The spraying device can be filled with the composition for paint of the present invention, and is not particularly limited as long as it can be sprayed, and may be appropriately selected depending on the intended use and the like. For example, pump sprayer, trigger sprayer, aerosol sprayer, accumulator sprayer, hand-push sprayer, electric sprayer, power storage sprayer, engine sprayer, gravity air spray gun, suction air spray gun, electric air Examples include a spray gun, an air brush with a compressor, and a rechargeable air brush.
 本発明の塗料用組成物は、薄く均一な塗膜を形成するのに適している。塗布方法にもよるが、例えばスプレー製剤として本発明の塗料用組成物を塗布する場合、サブミクロン活性炭による十分な吸着性能を確保しながら、例えば25~100μ、好ましくは20~50μm、より好ましくは15~25μmの厚みで塗布することが可能である。 The coating composition of the present invention is suitable for forming a thin and uniform coating film. Although it depends on the coating method, for example, when the coating composition of the present invention is applied as a spray formulation, for example, 25 to 100 μm, preferably 20 to 50 μm, more preferably, while ensuring sufficient adsorption performance by the submicron activated carbon. It can be applied with a thickness of 15 to 25 μm.
 本発明の塗料用組成物は、例えば、消臭剤、芳香剤、防虫剤、殺虫剤、抗菌剤等として利用することができ、マンション・戸建て住宅・教育施設・商業施設・病院などのVOC(揮発性有機化合物)対策や臭気対策が求められる建物内部壁面や床下の、下駄箱の内壁、冷蔵庫の内壁や冷蔵庫用脱臭容器、台所用品、トイレ用品や壁面、ごみ箱の内側面や蓋の裏側等の一般家庭用品、医療用機器、医療用品、介護用品、ベッド、収納ケース、各種包装材などを対象物として塗布することができる。さらに、ファクシミリやハードディスクなどの精密機器、電子機器において、内部から発生するガスや外部から侵入するガスを防御するためにこれらの機器の内壁やそのケースの内壁に本発明の塗料用組成物を塗布することで、従来必要とされてきた活性炭の焼結体や成形体を収容するためのスペースを確保する必要がなくなり、精密機器や電子機器のさらなる小型化や薄型化に貢献できる。また、発泡ウレタンシート、発泡ポリエチレンシート、発泡ポリエチレンビーズ、各種プラスチックビーズ、布、織物、不織布、糸または繊維など種々の材質からなる成形体や加工品にも、本発明の塗料用組成物をそのまま塗布することができ、消臭や吸着性能を付与することができる。さらに、本発明の塗料用組成物は、カーボンブラックの代替品として着色剤等にも利用でき、例えばヘアカラーリング剤等として使用できる。 The coating composition of the present invention can be used as, for example, a deodorant, a fragrance, an insect repellent, an insecticide, an antibacterial agent, etc., and can be used as a VOC for apartments, detached houses, educational facilities, commercial facilities, hospitals, etc. Volatile organic compounds) Countermeasures against odors and odors are required on the inner walls of buildings and under the floor, the inner walls of clog boxes, the inner walls of refrigerators and deodorant containers for refrigerators, kitchen utensils, toilet supplies and walls, the inner surface of trash cans and the back of lids, etc. General household products, medical equipment, medical products, nursing care products, beds, storage cases, various packaging materials, etc. can be applied as objects. Further, in precision instruments such as facsimiles and hard disks, and electronic devices, the coating composition of the present invention is applied to the inner wall of these devices and the inner wall of the case in order to protect against gas generated from the inside and gas invading from the outside. By doing so, it is not necessary to secure a space for accommodating the sintered body or molded body of activated carbon, which has been conventionally required, and it is possible to contribute to further miniaturization and thinning of precision equipment and electronic equipment. Further, the composition for coating of the present invention can be used as it is for molded articles and processed products made of various materials such as urethane foam sheets, polyethylene foam sheets, polyethylene foam beads, various plastic beads, cloths, woven fabrics, non-woven fabrics, threads or fibers. It can be applied, and deodorant and adsorption performance can be imparted. Further, the coating composition of the present invention can be used as a colorant or the like as a substitute for carbon black, and can be used as a hair coloring agent or the like, for example.
 以下に実施例に基づいて本発明をより詳細に述べるが、以下の実施例は、本発明を限定するものではない。実施例および比較例における各物性値は以下の方法により測定した。 The present invention will be described in more detail below based on the examples, but the following examples do not limit the present invention. Each physical property value in Examples and Comparative Examples was measured by the following method.
 <粒子径の測定>
・原料活性炭並びに比較例1および2の活性炭の中心粒子径(D50)の測定
 測定対象である活性炭を界面活性剤と共にイオン交換水中に入れ、超音波振動を与え均一分散液を作製し、レーザー回折測定法による粒子径分布測定装置(マイクロトラック・ベル社製「Microtrac MT3300EX-II」)を用いて測定した。界面活性剤には、和光純薬工業株式会社製の「ポリオキシエチレン(10)オクチルフェニルエーテル」を用いた。
・サブミクロン活性炭の中心粒子径(D50)および累積99%径(D99)の測定
 測定対象である活性炭を界面活性剤と共にイオン交換水中に入れ、超音波振動を与え均一分散液を作製し、動的光散乱法による粒子径分布測定装置(マイクロトラック・ベル社製「ナノトラックUPA150」)を用いて、中心粒子径(D50)および累積99%径(D99)を計測した。界面活性剤には、和光純薬工業株式会社製の「ポリオキシエチレン(10)オクチルフェニルエーテル」を用いた 。
<Measurement of particle size>
-Measurement of the central particle size (D 50 ) of the raw material activated carbon and the activated carbons of Comparative Examples 1 and 2 The activated carbon to be measured was put into ion-exchanged water together with a surfactant, and ultrasonic vibration was applied to prepare a uniform dispersion liquid, and a laser was prepared. The measurement was performed using a particle size distribution measuring device (“Microtrac MT3300EX-II” manufactured by Microtrac Bell Co., Ltd.) by a diffraction measurement method. As the surfactant, "polyoxyethylene (10) octylphenyl ether" manufactured by Wako Pure Chemical Industries, Ltd. was used.
-Measurement of central particle size (D 50 ) and cumulative 99% diameter (D 99 ) of submicron activated charcoal The activated charcoal to be measured is placed in ion-exchanged water together with a surfactant and subjected to ultrasonic vibration to prepare a uniform dispersion. , The central particle size (D 50 ) and the cumulative 99% diameter (D 99 ) were measured using a particle size distribution measuring device (“Nanotrack UPA150” manufactured by Microtrac Bell) by a dynamic light scattering method. As the surfactant, "polyoxyethylene (10) octylphenyl ether" manufactured by Wako Pure Chemical Industries, Ltd. was used.
 <BET比表面積の測定>
 マイクロトラック・ベル(株)製のBELSORP-MAXを使用し、測定対象である活性炭を減圧下(真空度:0.1kPa以下)にて300℃で5時間加熱した後、77Kにおける窒素吸着等温線を測定した。得られた窒素吸着等温線からBET式により多点法による解析を行い、得られた曲線の相対圧P/P=0.01~0.1の領域での直線からBET比表面積を算出した。
<Measurement of BET specific surface area>
Using BELSORP-MAX manufactured by Microtrac Bell Co., Ltd., the activated carbon to be measured is heated at 300 ° C. for 5 hours under reduced pressure (vacuum degree: 0.1 kPa or less), and then nitrogen adsorption isotherm at 77 K. Was measured. The obtained nitrogen adsorption isotherm was analyzed by the multipoint method by the BET formula, and the BET specific surface area was calculated from the straight line in the region of the relative pressure P / P 0 = 0.01 to 0.1 of the obtained curve. ..
1.塗料用組成物の調製
 実施例1
 原料活性炭としてヤシ殻粉末活性炭(クラレ製PGW-BF、中心粒子径D50:8μm)を用い、これをイオン交換水に混合して、原料活性炭を10質量%の濃度で含む混合物を調製した。この混合物をビーズミル(アイメックス製NAM-1型、ジルコニアビーズ、ビーズ径:0.2mm)にて16時間湿式粉砕することで、中心粒子径(累積平均径)D50=323nm、累積99%径D99=947nm、BET比表面積=1100m/gのサブミクロン活性炭の10質量%スラリーを得た。このスラリーにイオン交換水(表1中の液状分散媒、表1において小数点第二位を四捨五入して記載、以下同じ)を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
1. 1. Preparation of paint composition Example 1
As the raw material activated carbon, coconut shell powder activated carbon (PGW-BF manufactured by Kuraray, center particle size D 50 : 8 μm) was used and mixed with ion-exchanged water to prepare a mixture containing the raw material activated carbon at a concentration of 10% by mass. By wet pulverizing this mixture with a bead mill (NAM-1 type manufactured by IMEX, zirconia beads, bead diameter: 0.2 mm) for 16 hours, the center particle diameter (cumulative average diameter) D 50 = 323 nm, cumulative 99% diameter D. A 10% by mass slurry of submicron activated carbon having 99 = 947 nm and a BET specific surface area = 1100 m 2 / g was obtained. Ion-exchanged water (liquid dispersion medium in Table 1, rounded to the first decimal place in Table 1, the same applies hereinafter) is mixed with this slurry according to the formulation shown in Table 1, and a composition for coating of submicron activated carbon is mixed. Got
 実施例2~7
 実施例1の方法で得られたサブミクロン活性炭の10質量%スラリーに、セルロースナノファイバー(日本製紙社製セレンピア)(表1中のCNF、表1において小数点第三位を四捨五入して記載、以下同じ)とイオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Examples 2-7
Cellulose nanofibers (Serenpia manufactured by Nippon Paper Industries, Ltd.) (CNF in Table 1, rounded off to the third decimal place in Table 1, are described in a 10% by mass slurry of submicron activated carbon obtained by the method of Example 1. The same) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 実施例8
 実施例1の方法で得られたサブミクロン活性炭の10質量%スラリーにセルロースナノファイバー(日本製紙社製セレンピア)、樹脂(結着剤)としてラテックス(日本ゼオン製LX812)(表1中の添加剤1)、増粘剤としてカルボキシメチルセルロース(第一工業製薬製セロゲンWSA)(表1中の添加剤2)、イオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 8
Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and latex (LX812 manufactured by Nippon Zeon) as a resin (binding agent) (additives in Table 1) in a 10 mass% slurry of submicron activated carbon obtained by the method of Example 1. 1), Carboxymethyl cellulose (cellogen WSA manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (additive 2 in Table 1) as a thickener, and ion-exchanged water are mixed according to the formulation shown in Table 1, and a composition for coating of submicron activated carbon is mixed. Got
 実施例9
 実施例1の方法で得られたサブミクロン活性炭の10質量%スラリーにセルロースナノファイバー(日本製紙社製セレンピア)と、分散剤として陰イオン性界面活性剤β-ナフタレンスルホン酸ホルマリン縮合物ナトリウム塩(花王製デモールNL)(表1中の添加剤1)、イオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 9
Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and sodium salt of anionic surfactant β-naphthalene sulfonic acid formalin condensate as a dispersant were added to a 10% by mass slurry of submicron activated carbon obtained by the method of Example 1. Kao Demol NL) (additive 1 in Table 1) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 実施例10
 実施例1の方法で得られたサブミクロン活性炭の10質量%スラリーにセルロースナノファイバー(日本製紙社製セレンピア)と、分散剤として非イオン性界面活性剤ポリオキシエチレンジスチレン化フェニルエーテル(花王製エマルゲンA-60)(表1中の添加剤1)、イオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 10
Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and a nonionic surfactant polyoxyethylene distyrene phenyl ether (manufactured by Kao) as a dispersant are added to a 10 mass% slurry of submicron activated carbon obtained by the method of Example 1. Emulgen A-60) (additive 1 in Table 1) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 実施例11
 実施例1の方法で得られたサブミクロン活性炭の10質量%スラリーにセルロースナノファイバー(日本製紙社製セレンピア)と、分散剤として陽イオン性界面活性剤アルキルベンジルジメチルアンモニウムクロライド(花王製サニゾール)(表1中の添加剤1)、イオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 11
Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and a cationic surfactant alkylbenzyldimethylammonium chloride (Sanisol manufactured by Kao) as a dispersant are added to a 10% by mass slurry of submicron activated carbon obtained by the method of Example 1 (Sanisol manufactured by Kao). Additives 1) in Table 1 and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 実施例12
 実施例1の方法で得られたサブミクロン活性炭の10質量%スラリーにセルロースナノファイバー(日本製紙社製セレンピア)と、分散剤としてポリアルキレングリコール誘導体(日油製エスリームAD-3172M)(表1中の添加剤1)、イオン交換水を表1の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 12
Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and a polyalkylene glycol derivative (Esleam AD-3172M manufactured by Nippon Paper Industries) as a dispersant were added to a 10 mass% slurry of submicron activated carbon obtained by the method of Example 1 (Table 1). Additive 1) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 実施例13
 実施例1の方法で得られたサブミクロン活性炭の10質量%スラリーにセルロースナノファイバー(日本製紙社製セレンピア)と、分散剤として非イオン性界面活性剤ポリオキシエチレンーポリオキシプロピレン縮合物(ADEKA製アデカプルロニックL-64)(表1中の添加剤1)、イオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 13
Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and a nonionic surfactant polyoxyethylene-polyoxypropylene condensate (ADEKA) as a dispersant are added to a 10% by mass slurry of submicron activated carbon obtained by the method of Example 1. Adeka Purronic L-64) (additive 1 in Table 1) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 実施例14
実施例1の方法で得られたサブミクロン活性炭の10質量%スラリーにセルロースナノファイバー(日本製紙社製セレンピア)、光触媒剤として酸化チタン(石原産業製ST-21)(表1中の添加剤1)、イオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 14
Cellulose nanofibers (Selenpia manufactured by Nippon Paper Co., Ltd.) and titanium oxide (ST-21 manufactured by Ishihara Sangyo Co., Ltd.) as a photocatalyst (additive 1 in Table 1) in a 10 mass% slurry of submicron activated carbon obtained by the method of Example 1. ), Ion-exchanged water was mixed according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 実施例16
 原料活性炭としてヤシ殻粉末活性炭(クラレ製PGW-BF、中心粒子径D50:8μm)を用い、これをイオン交換水に混合して、原料活性炭を10質量%の濃度で含む混合物を調製した。この混合物をビーズミル(アイメックス製NAM-1型、ジルコニアビーズ、ビーズ径:0.2mm)にて30分間湿式粉砕することで、中心粒子径(累積平均径)D50=900nm、累積99%径D99=4383nm、BET比表面積=1100m/gのサブミクロン活性炭の10質量%スラリーを得た。このスラリーにセルロースナノファイバー(日本製紙社製セレンピア)とイオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 16
As the raw material activated carbon, coconut shell powder activated carbon (PGW-BF manufactured by Kuraray, center particle size D 50 : 8 μm) was used and mixed with ion-exchanged water to prepare a mixture containing the raw material activated carbon at a concentration of 10% by mass. By wet pulverizing this mixture with a bead mill (NAM-1 type manufactured by IMEX, zirconia beads, bead diameter: 0.2 mm) for 30 minutes, the center particle diameter (cumulative average diameter) D 50 = 900 nm, cumulative 99% diameter D. A 10% by mass slurry of submicron activated carbon having 99 = 4383 nm and a BET specific surface area = 1100 m 2 / g was obtained. Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed with this slurry according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 実施例17
 原料活性炭としてヤシ殻粉末活性炭(クラレ製PGW-BF、中心粒子径D50:8μm)を用い、これをイオン交換水に混合して、原料活性炭を10質量%の濃度で含む混合物を調製した。この混合物をビーズミル(アイメックス製NAM-1型、ジルコニアビーズ、ビーズ径:0.2mm)にて10時間湿式粉砕することで、中心粒子径(累積平均径)D50=500nm、累積99%径D99=1921nm、BET比表面積=1100m/gのサブミクロン活性炭の10質量%スラリーを得た。このスラリーにセルロースナノファイバー(日本製紙社製セレンピア)とイオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Example 17
As the raw material activated carbon, coconut shell powder activated carbon (PGW-BF manufactured by Kuraray, center particle size D 50 : 8 μm) was used and mixed with ion-exchanged water to prepare a mixture containing the raw material activated carbon at a concentration of 10% by mass. By wet pulverizing this mixture with a bead mill (NAM-1 type manufactured by IMEX, zirconia beads, bead diameter: 0.2 mm) for 10 hours, the center particle diameter (cumulative average diameter) D 50 = 500 nm, cumulative 99% diameter D. A 10% by mass slurry of submicron activated carbon having 99 = 1921 nm and a BET specific surface area = 1100 m 2 / g was obtained. Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed with this slurry according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 比較例1
 クラレ製PGW-BF(中心粒子径D50:8μm)とセルロースナノファイバー(日本製紙社製セレンピア)とイオン交換水とを表1に記載の配合に従い混合し、活性炭の塗料用組成物を得た。
Comparative Example 1
PGW-BF manufactured by Kuraray (center particle size D 50 : 8 μm), cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed according to the formulation shown in Table 1 to obtain a coating composition of activated carbon. ..
 比較例2
 原料活性炭としてヤシ殻粉末活性炭(クラレ製PGW-BF、中心粒子径D50:8μm)をイオン交換水に混合し、10質量%水溶液を調製した。この水溶液をビーズミル(アイメックス製NAM-1型、ジルコニアビーズ、ビーズ径:1.0mm)にて湿式粉砕を行うことで、中心粒子径D50=3.0μm、BET比表面積=1100m/gの活性炭の10質量%スラリーを得た。このスラリーにセルロースナノファイバー(日本製紙社製セレンピア)とイオン交換水を表1に記載の配合に従い混合し、活性炭の塗料用組成物を得た。
Comparative Example 2
As the raw material activated carbon, coconut shell powder activated carbon (PGW-BF manufactured by Kuraray, center particle size D 50 : 8 μm) was mixed with ion-exchanged water to prepare a 10% by mass aqueous solution. By wet pulverizing this aqueous solution with a bead mill (NAM-1 type manufactured by IMEX, zirconia beads, bead diameter: 1.0 mm), the center particle diameter D 50 = 3.0 μm and the BET specific surface area = 1100 m 2 / g. A 10% by mass slurry of activated carbon was obtained. Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed with this slurry according to the formulation shown in Table 1 to obtain a coating composition of activated carbon.
 比較例3
 原料活性炭としてヤシ殻粉末活性炭(クラレ製PGW-BF、中心粒子径D50:8μm)をイオン交換水に混合し、10質量%水溶液を調製した。この水溶液をビーズミル(アイメックス製NAM-1型、ジルコニアビーズ、ビーズ径:0.2mm)にて湿式粉砕を行うことで、中心粒子径D50=323nm、累積99%径D99=947nm、BET比表面積=1100m/gのサブミクロン活性炭の10質量%スラリーを得た。このスラリーを、セラミックロータリーフィルターCRF-0(広島メタル&マシナリー製)を用いて17質量%まで濃縮した。この濃縮液にセルロースナノファイバー(日本製紙社製セレンピア)とイオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Comparative Example 3
As the raw material activated carbon, coconut shell powder activated carbon (PGW-BF manufactured by Kuraray, center particle size D 50 : 8 μm) was mixed with ion-exchanged water to prepare a 10% by mass aqueous solution. By wet pulverizing this aqueous solution with a bead mill (NAM-1 type manufactured by IMEX, zirconia beads, bead diameter: 0.2 mm), the center particle diameter D 50 = 323 nm, the cumulative 99% diameter D 99 = 947 nm, BET ratio. A 10% by mass slurry of submicron activated carbon having a surface area of 1100 m 2 / g was obtained. This slurry was concentrated to 17% by mass using a ceramic rotary filter CRF-0 (manufactured by Hiroshima Metal & Machinery). Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed with this concentrate according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 比較例4
 原料活性炭としてヤシ殻粉末活性炭(クラレ製PGW-BF、中心粒子径D50:8μm)をイオン交換水に混合し、10質量%水溶液を調製した。この水溶液をビーズミル(アイメックス製NAM-1型、ジルコニアビーズ、ビーズ径:0.2mm)にて湿式粉砕を行うことで、中心粒子径D50=323nm、累積99%径D99=947nm、BET比表面積=1100m/gのサブミクロン活性炭の10質量%スラリーを得た。このスラリーを、コンパクトディスクドライヤー(西村鐵工所製)を用いて30質量%まで濃縮した。この濃縮液にセルロースナノファイバー(日本製紙社製セレンピア)とイオン交換水を表1に記載の配合に従い混合し、サブミクロン活性炭の塗料用組成物を得た。
Comparative Example 4
As the raw material activated carbon, coconut shell powder activated carbon (PGW-BF manufactured by Kuraray, center particle size D 50 : 8 μm) was mixed with ion-exchanged water to prepare a 10% by mass aqueous solution. By wet pulverizing this aqueous solution with a bead mill (NAM-1 type manufactured by IMEX, zirconia beads, bead diameter: 0.2 mm), the center particle diameter D 50 = 323 nm, the cumulative 99% diameter D 99 = 947 nm, BET ratio. A 10% by mass slurry of submicron activated carbon having a surface area of 1100 m 2 / g was obtained. This slurry was concentrated to 30% by mass using a compact disc dryer (manufactured by Nishimura Works Co., Ltd.). Cellulose nanofibers (Selenpia manufactured by Nippon Paper Industries, Ltd.) and ion-exchanged water were mixed with this concentrate according to the formulation shown in Table 1 to obtain a coating composition of submicron activated carbon.
 比較例5
 原料活性炭としてヤシ殻粉末活性炭(クラレ製PGW-BF、中心粒子径D50:8μm)をイオン交換水に混合し、11質量%水溶液を調製した。この水溶液をビーズミル(アイメックス製NAM-1型、ジルコニアビーズ、ビーズ径:0.2mm)にて湿式粉砕を行うことで、中心粒子径D50=323nm、累積99%径D99=947nm、BET比表面積=1100m/gのサブミクロン活性炭の11質量%のサブミクロン活性炭の塗料用組成物を得た。
Comparative Example 5
As a raw material activated carbon, coconut shell powder activated carbon (PGW-BF manufactured by Kuraray, center particle size D 50 : 8 μm) was mixed with ion-exchanged water to prepare an 11% by mass aqueous solution. By wet pulverizing this aqueous solution with a bead mill (NAM-1 type manufactured by IMEX, zirconia beads, bead diameter: 0.2 mm), the center particle diameter D 50 = 323 nm, the cumulative 99% diameter D 99 = 947 nm, BET ratio. A coating composition of 11% by mass of submicron activated carbon having a surface area of 1100 m 2 / g was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.塗料用組成物の粘度測定
 上記実施例1~14および比較例1~5で得られた塗料用組成物の粘度η(a)およびη(b)並びに固形分濃度を以下の方法に従い、それぞれ測定した。結果を表1に記載する。なお、表1中の粘度の欄における「-」は計測不能であったことを意味する。
2. Viscosity measurement of coating composition The viscosity η (a) and η (b) and solid content concentration of the coating composition obtained in Examples 1 to 14 and Comparative Examples 1 to 5 are measured according to the following methods, respectively. did. The results are shown in Table 1. In addition, "-" in the column of viscosity in Table 1 means that measurement was not possible.
 (1)粘度η(a)
 B型粘度計(Brookfield製ModelDV-II+PRO粘度計、Spindle:SC4-34、Chamber:SC4-13R)を用いて、20℃、5×10-3-1のずり速度において粘度を測定した。
(1) Viscosity η (a)
Viscosity was measured using a B-type viscometer (Model DV-II + PRO viscometer manufactured by Brookfield, Spindle: SC4-34, Chamber: SC4-13R) at a shear rate of 20 ° C. and 5 × 10 -3 s -1.
 (2)粘度η(b)
 B型粘度計(Brookfield製ModelDV-II+PRO粘度計、Spindle:SC4-34、Chamber:SC4-13R)を用いて、20℃、1s-1のずり速度において粘度を測定した。
(2) Viscosity η (b)
The viscosity was measured using a B-type viscometer (Model DV-II + PRO viscometer manufactured by Brookfield, Spindle: SC4-34, Chamber: SC4-13R) at a shear rate of 20 ° C. and 1s -1.
 (3)固形分濃度
 塗料用組成物の調製時の液状分散媒(溶媒)を除いた成分の仕込み量の合計量を塗料用組成物の総質量で除して100を乗じて算出した値を固形分濃度として表1に記載する。
(3) Solid content concentration The value calculated by dividing the total amount of the components charged excluding the liquid dispersion medium (solvent) at the time of preparing the coating composition by the total mass of the coating composition and multiplying by 100. Table 1 shows the solid content concentration.
3.塗料用組成物および塗膜の特性評価
 (1)分散性試験
 実施例1~14、16、17および比較例1~5で得られた塗料用組成物を、それぞれ、外径25mm、高さ50mmのスチロールねじ瓶(マルエム製)の透明容器に20cc充填した。これを静置して24時間後、塗料用組成物の分散状態を目視にて確認し、下記の基準に従い評価した。結果を表2に示す。
 <評価基準>
◎:全く沈降していない
○:塗料液体高さの3/4の高さまで沈降している
△:塗料液体高さの1/2の高さまで沈降している
×:塗料液体高さの1/4の高さまで沈降している
3. 3. Characteristic evaluation of coating composition and coating film (1) Dispersibility test The coating compositions obtained in Examples 1 to 14, 16 and 17 and Comparative Examples 1 to 5 have an outer diameter of 25 mm and a height of 50 mm, respectively. The transparent container of the styrene screw bottle (manufactured by Maruem) was filled with 20 cc. After allowing this to stand for 24 hours, the dispersed state of the coating composition was visually confirmed and evaluated according to the following criteria. The results are shown in Table 2.
<Evaluation criteria>
⊚: Not settled at all ○: Settled to a height of 3/4 of the paint liquid height Δ: Settled to a height of 1/2 of the paint liquid height ×: 1 / of the paint liquid height It has settled to a height of 4.
 (2)噴霧性、液だれ評価
 実施例1~14、16、17および比較例1~5で得られた塗料用組成物を、それぞれ市販の充電式エアブラシに充填し、以下の試験を行った。結果を表2に示す。
 なおスプレー塗布は、対象物に対して30mm離れた位置から1プッシュにつき約1秒間の噴霧を3回繰り返すことを基準とする(一連の噴霧でスプレー塗布1回と数える)。塗布範囲は、塗布対象物の中心から半径10~15mmの範囲に同心円状に塗布される範囲とする。充電式エアブラシは、コンプレッサーの最大圧力17.4PSI、吐出量5L/分、ノズル直径0.3mmφのエアブラシを使用した。
(2) Sprayability and dripping evaluation The paint compositions obtained in Examples 1 to 14, 16 and 17 and Comparative Examples 1 to 5 were filled in commercially available rechargeable airbrushes, and the following tests were performed. .. The results are shown in Table 2.
The spray application is based on repeating spraying for about 1 second three times per push from a position 30 mm away from the object (a series of sprays is counted as one spray application). The coating range is a range in which the coating is concentrically applied in a radius of 10 to 15 mm from the center of the object to be coated. As the rechargeable airbrush, an airbrush having a maximum compressor pressure of 17.4 PSI, a discharge rate of 5 L / min, and a nozzle diameter of 0.3 mmφ was used.
 (a)噴霧性
 実施例1~14、16、17および比較例1~5で得られた塗料用組成物を、水平面から斜め45°に傾けたアクリル板(住友化学製アクリルシート:SUMIPEX E)の上面に1回スプレー塗布した。その際の噴霧状態を確認し、下記の基準に従い評価した。
 <評価基準>
◎:全く液詰まりを生じない
○:やや噴霧にムラがあるが液詰まりは生じない
△:断続的に液詰まりを生じるが噴霧を継続できる
×:液詰まりにより噴霧ができない
(A) Sprayability Acrylic plates (Sumitomo Chemical Acrylic Sheet: SUMIPEX E) obtained by tilting the coating compositions obtained in Examples 1 to 14, 16 and 17 and Comparative Examples 1 to 5 at an angle of 45 ° from a horizontal plane. The upper surface of the water was spray-applied once. The spraying condition at that time was confirmed and evaluated according to the following criteria.
<Evaluation criteria>
⊚: No liquid clogging occurs ○: Slightly uneven spraying but no liquid clogging △: Intermittent liquid clogging occurs but spraying can be continued ×: Spraying is not possible due to liquid clogging
 (b)液だれ試験
 実施例1~14、16、17および比較例1~5で得られた塗料用組成物を、水平面から斜め45°に傾けたアクリル板(住友化学製アクリルシート:SUMIPEX E)の上面に1回スプレー塗布して24時間後、塗料の垂れ具合を目視にて確認し、下記の基準に従い評価した。
 <評価基準>
◎:全く垂れていない
○:10mm以内に垂れが収まっている
△:10mmより長く50mm以内に垂れが収まっている
×:50mmを超えて垂れている
(B) Dripping test An acrylic plate (Sumitomo Chemical acrylic sheet: SUMPEX E) obtained by tilting the coating composition obtained in Examples 1 to 14, 16 and 17 and Comparative Examples 1 to 5 at an angle of 45 ° from a horizontal plane. ) Was spray-applied once, and 24 hours later, the degree of dripping of the paint was visually confirmed and evaluated according to the following criteria.
<Evaluation criteria>
⊚: No dripping at all ○: Dripping within 10 mm Δ: Dripping within 50 mm longer than 10 mm ×: Dripping over 50 mm
 (3)噴霧むら、脱落性評価
 (c)噴霧むら試験
 実施例1~14、16、17および比較例1~5で得られた塗料用組成物を、水平面から斜め45°に傾けた写真用紙(キャノン製キャノン写真用紙・光沢、厚手:0.27mm、L版:89×127mm)の表面に、塗布厚みが20~40μmになり、できるだけ均一の厚みになるよう充電用エアスプレーで噴霧した。これらを室温で24時間放置した後、塗料の噴霧むら具合を目視にて確認し、下記の基準に従い評価した。
 <評価基準>
◎:噴霧むらがない
○:噴霧むらがほとんどない
△:噴霧むらがややある
×:噴霧むらがある
(3) Evaluation of spray unevenness and shedding property (c) Spray unevenness test Photographic paper obtained by tilting the coating composition obtained in Examples 1 to 14, 16 and 17 and Comparative Examples 1 to 5 at an angle of 45 ° from a horizontal plane. The surface of (Canon photographic paper made by Canon, glossy, thick: 0.27 mm, L version: 89 × 127 mm) was sprayed with a charging air spray so that the coating thickness became 20 to 40 μm and the thickness was as uniform as possible. After leaving these at room temperature for 24 hours, the degree of spray unevenness of the paint was visually confirmed and evaluated according to the following criteria.
<Evaluation criteria>
◎: No uneven spraying ○: Almost no uneven spraying △: Some uneven spraying ×: Uneven spraying
 (d)脱落性試験
 実施例1~14、16、17および比較例1~5で得られた塗料用組成物を、それぞれ2g、水平面から斜め45°に傾けた写真用紙(キャノン製キャノン写真用紙・光沢、厚手:0.27mm、L版:89×127mm)の表面に、塗布厚みが20~40μmになり、できるだけ均一の厚みになるよう充電用エアスプレーで噴霧した。また、実施例15として、実施例1の塗料用組成物を上記方法でスプレー塗布し十分に乾燥した後、得られた塗膜上に、0.2質量%のセルロースナノファイバー水溶液1gを、上記方法と同様にしてスプレー塗布することにより塗膜を得た。これらを室温で24時間放置した後、乾燥した塗布膜を手でさわり、活性炭の脱落の程度を下記の基準に従い評価した。結果を表2に示す。
 <評価基準>
◎:手に全く付着しない
○:手にやや付着する
△:手にかなり付着する
×:振動によって脱落する
(D) Drop-off property test 2 g of each of the paint compositions obtained in Examples 1 to 14, 16 and 17 and Comparative Examples 1 to 5 was tilted at an angle of 45 ° from a horizontal plane (Canon photo paper made by Canon). -Glossy, thick: 0.27 mm, L plate: 89 x 127 mm) was sprayed with a charging air spray so that the coating thickness was 20 to 40 μm and the thickness was as uniform as possible. Further, as Example 15, the coating composition of Example 1 was spray-coated by the above method and sufficiently dried, and then 1 g of a 0.2 mass% cellulose nanofiber aqueous solution was applied onto the obtained coating film. A coating film was obtained by spray coating in the same manner as the method. After leaving these at room temperature for 24 hours, the dried coating film was touched by hand, and the degree of shedding of activated carbon was evaluated according to the following criteria. The results are shown in Table 2.
<Evaluation criteria>
◎: Does not adhere to the hand at all ○: Slightly adheres to the hand △: Adheres considerably to the hand ×: Drops off due to vibration
 (4)吸着性能試験
 実施例1~14、16、17および比較例1~5で得られた塗料用組成物を、それぞれ2g、水平面から斜め45°に傾けた写真用紙(キャノン製キャノン写真用紙・光沢、厚手:0.27mm、L版:89×127mm)の表面に、塗布厚みができるだけ均一になるよう充電用エアスプレーで噴霧した。また、実施例15として、実施例1の塗料用組成物を上記方法でスプレー塗布し十分に乾燥した後、得られた塗膜上に、0.2質量%のセルロースナノファイバー水溶液1gを、上記方法と同様にしてスプレー塗布することにより塗膜を得た。これらを室温で24時間放置した後、吸着性能を、塗料用組成物を塗布した写真用紙のベンゼン吸着量を測定することにより、下記の基準に従い評価した。なお、ベンゼン吸着量の測定方法は、JIS K 1474に準ずる。結果を表2に示す。
 <評価基準>
◎:10%以上
○:5%以上~10%未満
△:1%以上~5%未満
×:1%未満
(4) Adsorption Performance Test 2 g of each of the paint compositions obtained in Examples 1 to 14, 16 and 17 and Comparative Examples 1 to 5 was tilted at an angle of 45 ° from a horizontal plane (Canon photographic paper made by Canon). -Glossy, thick: 0.27 mm, L plate: 89 x 127 mm) was sprayed with a charging air spray so that the coating thickness was as uniform as possible. Further, as Example 15, the coating composition of Example 1 was spray-coated by the above method and sufficiently dried, and then 1 g of a 0.2 mass% cellulose nanofiber aqueous solution was applied onto the obtained coating film. A coating film was obtained by spray coating in the same manner as the method. After allowing these to stand at room temperature for 24 hours, the adsorption performance was evaluated according to the following criteria by measuring the amount of benzene adsorbed on the photographic paper coated with the coating composition. The method for measuring the amount of benzene adsorbed is based on JIS K 1474. The results are shown in Table 2.
<Evaluation criteria>
⊚: 10% or more ○: 5% or more to less than 10% Δ: 1% or more to less than 5% ×: less than 1%
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に従う実施例1~14、16および17の塗料用組成物は、噴霧時には良好な噴霧性を示し、噴霧後は液だれし難い適度な粘度を有しており、活性炭による吸着性能を確保しながら、噴霧むらのない、または抑制された薄く均一で外観性に優れる塗膜を形成できることが確認された。一方、活性炭の中心粒子径が1000nmを超える場合には、分散性が悪く、薄く均一で外観性に優れる塗膜を得ることはできなかった(比較例1および2)。また、サブミクロン活性炭の量が多くなると粘度が上昇し、噴霧性が低下し、エアスプレーによる塗膜形成はできなかった(比較例3~5)。 The coating compositions of Examples 1 to 14, 16 and 17 according to the present invention show good sprayability at the time of spraying, have an appropriate viscosity that prevents dripping after spraying, and ensure adsorption performance by activated carbon. However, it was confirmed that a thin, uniform and excellent appearance coating film having no or suppressed spray unevenness could be formed. On the other hand, when the central particle size of the activated carbon exceeds 1000 nm, the dispersibility is poor, and a thin, uniform and excellent coating film cannot be obtained (Comparative Examples 1 and 2). Further, as the amount of submicron activated carbon increased, the viscosity increased, the sprayability decreased, and the coating film could not be formed by air spray (Comparative Examples 3 to 5).

Claims (11)

  1.  活性炭と液状分散媒とを含む塗料用組成物であって、
     前記活性炭が1000nm以下の中心粒子径D50を有する活性炭であり、該活性炭の含有量が、塗料用組成物の総質量に対して1質量%以上10質量%以下である塗料用組成物。
    A composition for paints containing activated carbon and a liquid dispersion medium.
    A coating composition in which the activated carbon is an activated carbon having a central particle size D 50 of 1000 nm or less, and the content of the activated carbon is 1% by mass or more and 10% by mass or less with respect to the total mass of the coating composition.
  2.  セルロースナノファイバーをさらに含み、活性炭に対するセルロースナノファイバーの質量比(セルロースナノファイバー/活性炭)が0.4未満である、請求項1に記載の塗料用組成物。 The coating composition according to claim 1, further comprising cellulose nanofibers, wherein the mass ratio of cellulose nanofibers to activated carbon (cellulose nanofibers / activated carbon) is less than 0.4.
  3.  前記セルロースナノファイバーの含有量が、塗料用組成物の総質量に対して0.5質量%以下である、請求項2に記載の塗料用組成物。 The coating composition according to claim 2, wherein the content of the cellulose nanofibers is 0.5% by mass or less with respect to the total mass of the coating composition.
  4.  B型粘度計を用いて、5×10-3-1のずり速度において20℃で測定される粘度η(a)が8×10mPa・s以上1.2×10mPa・s以下である、請求項1~3のいずれかに記載の塗料用組成物。 Viscosity η (a) measured at 20 ° C. at a shear rate of 5 × 10 -3 s -1 using a B-type viscometer is 8 × 10 2 mPa · s or more and 1.2 × 10 4 mPa · s or less. The coating composition according to any one of claims 1 to 3.
  5.  B型粘度計を用いて、1s-1のずり速度において20℃で測定される粘度η(b)が3×10mPa・s以下である、請求項1~4のいずれかに記載の塗料用組成物。 The coating material according to any one of claims 1 to 4, wherein the viscosity η (b) measured at 20 ° C. at a shear rate of 1s-1 using a B-type viscometer is 3 × 10 2 mPa · s or less. Composition for.
  6.  添加剤をさらに含む、請求項1~5のいずれかに記載の塗料用組成物。 The coating composition according to any one of claims 1 to 5, further comprising an additive.
  7.  添加剤が、防虫剤、殺虫剤、抗菌剤、分散剤、調湿剤、光触媒材料、顔料、活性炭以外の吸着剤、添着剤、樹脂、湿潤剤、セルロースナノファイバー以外の増粘剤、沈降防止剤、表面調整剤、皮ばり防止剤、たれ止め剤、レベリング剤、はじき防止剤、わき防止剤、硬化触媒、可塑剤、つや消し剤、すり傷防止剤、紫外線吸収剤、光安定剤、防腐剤、養藻剤、帯電防止剤、難燃剤、防汚剤、酸化防止剤、pH調整剤、消泡剤および乳化剤からなる群より選択される少なくとも1種を含む、請求項6に記載の塗料用組成物。 Additives are insect repellents, pesticides, antibacterial agents, dispersants, humidity control agents, photocatalyst materials, pigments, adsorbents other than activated charcoal, binders, resins, wetting agents, thickeners other than cellulose nanofibers, sedimentation prevention Agents, surface regulators, anti-skin agents, anti-dripping agents, leveling agents, anti-repellent agents, anti-armpit agents, curing catalysts, plasticizers, matting agents, anti-scratch agents, UV absorbers, light stabilizers, preservatives The paint according to claim 6, which comprises at least one selected from the group consisting of algae, antistatic agent, flame retardant, antifouling agent, antioxidant, pH adjuster, antifoaming agent and emulsifier. Composition.
  8.  添加剤の含有量が、塗料用組成物の総質量に対して30質量%以下である、請求項6または7に記載の塗料用組成物。 The coating composition according to claim 6 or 7, wherein the content of the additive is 30% by mass or less with respect to the total mass of the coating composition.
  9.  塗料組成物中の固形分濃度が塗料用組成物の総質量に対して、1質量%以上20質量%以下である、請求項1~8のいずれかに記載の塗料用組成物。 The coating composition according to any one of claims 1 to 8, wherein the solid content concentration in the coating composition is 1% by mass or more and 20% by mass or less with respect to the total mass of the coating composition.
  10.  3~30μmの中心粒子径D50を有する原料活性炭と液状分散媒とを、混合物中の原料活性炭の濃度が1~30質量%になるよう混合して混合物を得る工程(1)、および
     前記工程(1)で得られた混合物に、粒子径が0.2~1mmであるジルコニアビーズを用いたビーズミルにて湿式粉砕を施して、1000nm以下の中心粒子径D50を有する活性炭と液状分散媒との混合物を得る工程(2)
    を含む、請求項1~9のいずれかに記載の塗料用組成物の製造方法。
    A step (1) of mixing a raw material activated charcoal having a central particle diameter D 50 of 3 to 30 μm and a liquid dispersion medium so that the concentration of the raw material activated charcoal in the mixture is 1 to 30% by mass to obtain a mixture, and the above-mentioned step. The mixture obtained in (1) is wet-ground with a bead mill using zirconia beads having a particle size of 0.2 to 1 mm, and the activated charcoal having a central particle size D 50 of 1000 nm or less and a liquid dispersion medium are used. Step of obtaining a mixture of (2)
    The method for producing a coating composition according to any one of claims 1 to 9, which comprises.
  11.  請求項1~9のいずれかに記載の塗料用組成物を含むスプレー製剤。 A spray preparation containing the coating composition according to any one of claims 1 to 9.
PCT/JP2020/048776 2020-01-06 2020-12-25 Paint composition and production method therefor WO2021140965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021570025A JPWO2021140965A1 (en) 2020-01-06 2020-12-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020000369 2020-01-06
JP2020-000369 2020-01-06

Publications (1)

Publication Number Publication Date
WO2021140965A1 true WO2021140965A1 (en) 2021-07-15

Family

ID=76787501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048776 WO2021140965A1 (en) 2020-01-06 2020-12-25 Paint composition and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2021140965A1 (en)
TW (1) TW202134355A (en)
WO (1) WO2021140965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085237A1 (en) * 2021-11-12 2023-05-19 日本ペイント株式会社 Antiviral aqueous overcoat composition and article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188021A (en) * 1986-02-13 1987-08-17 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2003284435A (en) * 2002-03-29 2003-10-07 Dainichiseika Color & Chem Mfg Co Ltd Coating liquid for black colored paper mulch, method for producing black colored paper mulch and black colored paper mulch
JP2006083363A (en) * 2004-04-26 2006-03-30 Showa Denko Kk Coating material and use of the same
JP2008530311A (en) * 2005-02-16 2008-08-07 ミードウエストベコ・コーポレーション Adsorbent paint formulation
JP2009209327A (en) * 2008-03-06 2009-09-17 Hinomaru Carbo Techno Co Ltd Charcoal powder-containing coating agent and its use
JP2019167497A (en) * 2018-03-26 2019-10-03 大建工業株式会社 Aqueous coating composition
JP2019537643A (en) * 2016-11-28 2019-12-26 Cqv株式会社Cqv Co., Ltd. Black pearlescent pigment using natural charcoal and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188021A (en) * 1986-02-13 1987-08-17 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2003284435A (en) * 2002-03-29 2003-10-07 Dainichiseika Color & Chem Mfg Co Ltd Coating liquid for black colored paper mulch, method for producing black colored paper mulch and black colored paper mulch
JP2006083363A (en) * 2004-04-26 2006-03-30 Showa Denko Kk Coating material and use of the same
JP2008530311A (en) * 2005-02-16 2008-08-07 ミードウエストベコ・コーポレーション Adsorbent paint formulation
JP2009209327A (en) * 2008-03-06 2009-09-17 Hinomaru Carbo Techno Co Ltd Charcoal powder-containing coating agent and its use
JP2019537643A (en) * 2016-11-28 2019-12-26 Cqv株式会社Cqv Co., Ltd. Black pearlescent pigment using natural charcoal and method for producing the same
JP2019167497A (en) * 2018-03-26 2019-10-03 大建工業株式会社 Aqueous coating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085237A1 (en) * 2021-11-12 2023-05-19 日本ペイント株式会社 Antiviral aqueous overcoat composition and article

Also Published As

Publication number Publication date
JPWO2021140965A1 (en) 2021-07-15
TW202134355A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP3963941B2 (en) Sustained release thermoplastic polymer composition and product comprising the same
WO2021140965A1 (en) Paint composition and production method therefor
CN101985536B (en) Fluorocarbon paint and preparation method thereof
JP5291293B2 (en) Hydrophobic coating film forming composition, hydrophobic coating film, method for forming the same, and functional material including the same
JP4942222B2 (en) Coating film removing agent and coating film removing method using the same
JP2017088509A (en) Antibacterial member
JP6794618B2 (en) Electret filter
JP2010285592A5 (en)
JP2004008357A (en) Deodorizing pasty dispersion liquid
JP4879523B2 (en) Powder coating composition, coating film forming method and coated article
JP2007320977A (en) Chitosan powder and water-based coating agent
JP6706222B2 (en) Antibacterial and antifungal paint, and method for producing antibacterial and antifungal member using the paint
JP5441255B2 (en) Method for fixing photocatalyst particles to fiber surface
CN101641398B (en) Method for coating water-absorbent polymer particles
JP2011183318A (en) Discharge pin material and electrostatic atomizer using the same
US20190262490A1 (en) Composite particles, dispersion liquid, film, deodorizing material, wet wiper, and spray
JP6918574B2 (en) Composition for spraying and spray formulation using it
JP5130206B2 (en) Visible light responsive titanium oxide photocatalyst dispersion composition and method for producing the same
TWI376408B (en) Composition for forming antifogging coating and fabric textile applying the same and method of forming the antifogging coating
WO2017057148A1 (en) Electret and electret filter
JP6389335B2 (en) ENVIRONMENTAL HORMONE DECOMPOSING COMPOSITION, COATED STEEL STEEL USING THE SAME, AND PRODUCTION METHOD
JP7404163B2 (en) Photocatalyst spray and deodorizing method
JP5347169B2 (en) Spray product for quick-drying air-conditioning fin and cleaning method for air-conditioning fin
JP2002194296A (en) Coating composition
TWM651660U (en) Insect repelling spray device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912161

Country of ref document: EP

Kind code of ref document: A1