JP2017088509A - Antibacterial member - Google Patents

Antibacterial member Download PDF

Info

Publication number
JP2017088509A
JP2017088509A JP2015216840A JP2015216840A JP2017088509A JP 2017088509 A JP2017088509 A JP 2017088509A JP 2015216840 A JP2015216840 A JP 2015216840A JP 2015216840 A JP2015216840 A JP 2015216840A JP 2017088509 A JP2017088509 A JP 2017088509A
Authority
JP
Japan
Prior art keywords
cuprous oxide
oxide nanoparticles
antibacterial
colloidal dispersion
antibacterial member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015216840A
Other languages
Japanese (ja)
Other versions
JP6832058B2 (en
Inventor
丸山 睦弘
Mutsuhiro Maruyama
睦弘 丸山
栄一 大野
Eiichi Ono
栄一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2015216840A priority Critical patent/JP6832058B2/en
Publication of JP2017088509A publication Critical patent/JP2017088509A/en
Application granted granted Critical
Publication of JP6832058B2 publication Critical patent/JP6832058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antibacterial member capable of killing bacteria at a short time compared with a time required for killing bacteria in prior arts, and maintaining the effect.SOLUTION: There are provided the antibacterial member comprising a base material and cuprous oxide nanoparticles arranged on the base material surface and having an average primary particle diameter equal to or less than 100 nm, and a production method of the antibacterial member comprising a step for preparing a colloidal dispersion of the cuprous oxide nanoparticles, and a step for coating the colloidal dispersion to the substrate and drying the coated colloidal dispersion.SELECTED DRAWING: None

Description

本発明は、様々な菌やウイルスを抑える効果を発揮することが可能な酸化第一銅ナノ粒子を有効成分として含有する抗菌性部材に関する。   The present invention relates to an antibacterial member containing cuprous oxide nanoparticles capable of exerting an effect of suppressing various bacteria and viruses as an active ingredient.

近年の衛生思想の高まりによって、食品や医薬品の工場、病院や養護施設等の建物、食品厨房器具、医療器具、医療機器等の装置において、又は一般家庭用品においてまでも、細菌、かび等の真菌、ウイルスの拡大・感染防止のため、抗菌剤、抗かび剤、消毒剤、抗ウイルス剤等が使用されている。
また近年、MARS、SARS(重症急性呼吸器症候群)、ノロウイルス、鳥インフルエンザ等ウイルス感染による死者が報告されており、現在、交通の発達やウイルスの突然変異によって、世界中にウイルス感染が短時間のうちに広がるパンデミックの危険が叫ばれている。
そのため、公共施設のみならず一般家庭においても、様々な部材に抗菌性や抗ウイルス性を付与することが望まれている。
Due to the recent increase in hygiene ideas, fungi such as bacteria and fungi in food and pharmaceutical factories, buildings such as hospitals and nursing homes, food kitchen utensils, medical utensils, medical devices and even general household goods Antibacterial agents, antifungal agents, disinfectants, antiviral agents and the like are used for the spread and prevention of viruses.
In recent years, deaths due to viral infections such as MARS, SARS (severe acute respiratory syndrome), norovirus, avian influenza, etc. have been reported. The danger of a pandemic spreading out is screaming.
Therefore, it is desired to impart antibacterial and antiviral properties to various members not only in public facilities but also in general households.

これらの問題を解決するものとして、有機系又は無機系抗菌剤が提案されている。
特に、無機系抗菌剤については、従来、銀イオン(Ag+)、亜鉛イオン(Zn2+)、及び二価銅イオン(Cu2+)等の金属イオンが微生物の増殖を抑制し、又は微生物に対して殺菌的に作用することが知られている。この知見に基づいて、これらの金属イオンをゼオライトやシリカゲル等の物質に担持させた抗微生物材料や、上記金属と光触媒作用を有する酸化チタンと組み合わせた抗微生物材料等も多数開発されている。
かかる材料としては、例えば、カルシウムやマグネシウムの酸化物又は水酸化物を含む抗ウイルス成分を含有する塗料(特許文献1)や、無機酸化物に金属イオンを担持した微粒子を含有する塗料(特許文献2)が例示される。
In order to solve these problems, organic or inorganic antibacterial agents have been proposed.
In particular, for inorganic antibacterial agents, conventionally, metal ions such as silver ions (Ag + ), zinc ions (Zn 2+ ), and divalent copper ions (Cu 2+ ) suppress the growth of microorganisms, or microorganisms It is known to act against bacteria. Based on this knowledge, a number of antimicrobial materials in which these metal ions are supported on a substance such as zeolite or silica gel, and antimicrobial materials combining the above metals with titanium oxide having a photocatalytic action have been developed.
Examples of such a material include a paint containing an antiviral component containing calcium or magnesium oxide or hydroxide (Patent Document 1), and a paint containing fine particles carrying metal ions on an inorganic oxide (Patent Document). 2) is exemplified.

特開2007−106876号公報JP 2007-106876 A 特開2003−221304号公報JP 2003-221304 A

しかしながら、カルシウムやマグネシウムの酸化物又は水酸化物を用いる方法では、抗菌成分の含有量が塗料樹脂成分に対して50質量%以上と多量でないと抗菌性の発現が困難である。このように多量カルシウムやマグネシウムの酸化物又は水酸化物に含有させた場合、塗料の塗布乾燥によって形成される塗膜は、硬いものとなり、使用用途が限られる。
また、無機酸化物に金属イオンを担持した微粒子を含有する塗料の場合、金属イオンを他の物質と混合することによって安定化させることが必要であるため、その組成物に含まれる銅イオンの割合が制限されてしまい、そして、金属イオンの安定剤を含むことが必須となるため、組成物の設計自由度が小さくなってしまう。また、この場合、所望の効果を発現するためには多量の微粒子を添加する必要があるため、塗膜の安定性が犠牲になる場合がある。
However, in the method using calcium or magnesium oxide or hydroxide, it is difficult to develop antibacterial properties unless the content of the antibacterial component is 50 mass% or more with respect to the coating resin component. Thus, when it is contained in a large amount of oxide or hydroxide of calcium or magnesium, the coating film formed by coating and drying of the paint becomes hard, and its usage is limited.
In addition, in the case of a coating containing fine particles carrying metal ions on an inorganic oxide, it is necessary to stabilize the metal ions by mixing with other substances, so the ratio of copper ions contained in the composition However, since it is essential to include a metal ion stabilizer, the degree of freedom in designing the composition is reduced. In this case, since a large amount of fine particles need to be added in order to exhibit a desired effect, the stability of the coating film may be sacrificed.

そこで本発明は、上記課題を解決するために、従来技術と比較して短時間で菌を死滅させ、かつその効果を持続することが可能な抗菌性部材を提供することを目的とする。   Then, in order to solve the said subject, this invention aims at providing the antibacterial member which can kill a microbe in a short time compared with a prior art, and can maintain the effect.

すなわち、本発明の要旨は、以下の通りである。
本発明の抗菌性部材は、基材と、該基材表面に配置された平均一次粒径が100nm以下である酸化第一銅ナノ粒子とを含むことを特徴とする。
ここで、前記平均一次粒径は20nm以下であることが好ましい。また、前記基材は、繊維状であることが好ましい。更に、前記基材は、前記酸化第一銅ナノ粒子に対して水素結合可能な官能基を、その表面に有することが好ましい。更に、前記基材は、セルロース系樹脂であることが好ましい。
That is, the gist of the present invention is as follows.
The antibacterial member of the present invention includes a base material and cuprous oxide nanoparticles having an average primary particle size of 100 nm or less arranged on the surface of the base material.
Here, the average primary particle size is preferably 20 nm or less. Moreover, it is preferable that the said base material is fibrous form. Furthermore, it is preferable that the base material has a functional group capable of hydrogen bonding to the cuprous oxide nanoparticles on the surface thereof. Furthermore, the substrate is preferably a cellulose resin.

本発明の抗菌性部材の製造方法は、酸化第一銅ナノ粒子のコロイド分散液を準備する工程と、前記コロイド分散液を基材に塗布・乾燥する工程と、を含むことを特徴とする。   The method for producing an antibacterial member of the present invention includes a step of preparing a colloidal dispersion of cuprous oxide nanoparticles, and a step of applying and drying the colloidal dispersion on a substrate.

本発明の抗菌性部材は、従来技術と比較して短時間で菌の生育を抑制させることができ、また、かかる抑制効果を安定的に得ることができる。   The antibacterial member of the present invention can suppress the growth of bacteria in a shorter time than the prior art, and can stably obtain such an inhibitory effect.

以下、本発明を実施するための形態(以下、「本実施形態」ともいう)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施形態の抗菌性部材は、基材と、該基材表面に配置された平均一次粒径が100nm以下である酸化第一銅ナノ粒子とを含むことを特徴とする。   The antibacterial member of the present embodiment includes a base material and cuprous oxide nanoparticles having an average primary particle size of 100 nm or less arranged on the surface of the base material.

ここで、酸化第一銅ナノ粒子と基材とは、酸化第一銅ナノ粒子が基材表面に配置されている限り特に限定されないが、より具体的には、水素結合や分子間力等の相互作用により、付着、接着、吸着、担持等されていてよい。
特に、酸化第一銅ナノ粒子の含有量を保持する観点から、酸化第一銅ナノ粒子と基材が有する水酸基との間での水素結合による付着(後述)が好ましい。
Here, the cuprous oxide nanoparticles and the substrate are not particularly limited as long as the cuprous oxide nanoparticles are disposed on the substrate surface, but more specifically, such as hydrogen bonding and intermolecular force. It may be attached, adhered, adsorbed, supported, etc. by interaction.
In particular, from the viewpoint of maintaining the content of cuprous oxide nanoparticles, adhesion (described later) by hydrogen bonding between the cuprous oxide nanoparticles and the hydroxyl group of the substrate is preferable.

なお、平均一次粒径とは、画像解析により複数の一次粒子について求めた一次粒径の平均値をいう。ここで、一次粒径とは、分散媒中に分散させた酸化第一銅ナノ粒子を透過型電子顕微鏡(TEM)を用いて観察したときに、取得される画像データから求められる一次粒子の粒子径をいい、通常、画像の任意の箇所を切り取り、この箇所に含まれる100個以上の粒子について、その一次粒径の平均値を求めて、平均一次粒径を算出する。   The average primary particle size means an average value of primary particle sizes obtained for a plurality of primary particles by image analysis. Here, the primary particle diameter means particles of primary particles obtained from image data obtained when observing cuprous oxide nanoparticles dispersed in a dispersion medium using a transmission electron microscope (TEM). An average primary particle size is calculated by cutting out an arbitrary portion of an image and calculating an average value of primary particle sizes of 100 or more particles contained in the portion.

酸化第一銅ナノ粒子の平均一次粒径は、100nm以下であれば特に制限はないが、好ましくは50nm以下であり、特に好ましくは20nm以下であり、最も好ましくは15nm以下である。
平均一次粒径が100nmを超えると、樹脂との密着性が低下し、抗菌性が早期に劣化する傾向がある。
特に、平均一次粒径が20nm以下であると、樹脂への密着性が顕著に向上する。密着性が向上する理由は、必ずしも明らかではないが、酸化第一銅ナノ粒子表面に生じ得る水酸基と基材との間で水素結合が形成され得るためと推察される。
The average primary particle size of the cuprous oxide nanoparticles is not particularly limited as long as it is 100 nm or less, but is preferably 50 nm or less, particularly preferably 20 nm or less, and most preferably 15 nm or less.
When the average primary particle size exceeds 100 nm, the adhesion with the resin is lowered, and the antibacterial property tends to deteriorate early.
In particular, when the average primary particle size is 20 nm or less, the adhesion to the resin is significantly improved. The reason why the adhesion is improved is not necessarily clear, but it is presumed that a hydrogen bond can be formed between the hydroxyl group that can be formed on the surface of the cuprous oxide nanoparticles and the substrate.

本実施形態の抗菌性部材において、酸化第一銅ナノ粒子が二次粒子を形成している場合、酸化第一銅ナノ粒子の平均二次粒径は、基材への密着性の観点から、1μm以下であることが好ましく、より好ましくは500nm以下であり、特に好ましくは200nm以下である。
なお、平均二次粒径とは、画像解析により複数の二次粒子について求めた二次粒径の平均値をいう。ここで、二次粒径とは、ジエチレングリコール中に分散させた酸化第一銅ナノ粒子を透過型電子顕微鏡(TEM)を用いて観察したときに、取得される画像データから求められる二次粒子の粒子径をいい、通常、画像の任意の箇所を切り取り、この箇所に含まれる100個以上の粒子について、その二次粒径の平均値を求めて、平均二次粒径を算出する。
In the antibacterial member of the present embodiment, when the cuprous oxide nanoparticles form secondary particles, the average secondary particle size of the cuprous oxide nanoparticles is from the viewpoint of adhesion to the substrate, The thickness is preferably 1 μm or less, more preferably 500 nm or less, and particularly preferably 200 nm or less.
The average secondary particle size means an average value of secondary particle sizes obtained for a plurality of secondary particles by image analysis. Here, the secondary particle diameter means the secondary particles obtained from image data obtained when observing cuprous oxide nanoparticles dispersed in diethylene glycol using a transmission electron microscope (TEM). This refers to the particle diameter. Usually, an arbitrary portion of an image is cut out, and the average secondary particle size is calculated by calculating the average value of the secondary particle sizes of 100 or more particles contained in this portion.

本実施形態の抗菌性部材において用いられる酸化第一銅は、例えば、気相法や液相法等の公知の方法で調製することができ、粒径及び凝集性を制御する観点から、酸化第一銅の原料となる銅化合物を溶媒に分散・溶解させて、その後、銅化合物を化学変換させる、液相法による手法を用いることが好ましい。   The cuprous oxide used in the antibacterial member of the present embodiment can be prepared by a known method such as a gas phase method or a liquid phase method, and from the viewpoint of controlling the particle size and cohesiveness, It is preferable to use a method by a liquid phase method in which a copper compound as a raw material of monocopper is dispersed and dissolved in a solvent, and then the copper compound is chemically converted.

本実施形態で用いられる基材の素材としては、樹脂、樹脂組成物、セラミックス、金属等が挙げられ、加工性の容易さ等の観点から、樹脂、樹脂組成物が好ましい。
樹脂としては、セルロース系樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリイミド樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル系樹脂、フッ素樹脂、シリコーン樹脂、ポリエーテル樹脂等が挙げられ、側鎖に水素結合可能な官能基を備えるセルロース系樹脂が好ましい。
Examples of the base material used in the present embodiment include resins, resin compositions, ceramics, metals, and the like, and resins and resin compositions are preferable from the viewpoint of ease of workability.
Examples of the resin include cellulose resin, polyester resin, polyamide resin, polyolefin resin, polyimide resin, polyurethane resin, acrylic resin, vinyl resin, fluororesin, silicone resin, polyether resin, etc., which can be hydrogen bonded to the side chain. Cellulosic resins having various functional groups are preferred.

本実施形態で用いられる基材の形状としては、特に限定されることなく、繊維状、フィルム状、プレート状、複雑な3次元構造状等が挙げられ、繊維状が特に好ましい。   The shape of the substrate used in the present embodiment is not particularly limited, and examples thereof include a fiber shape, a film shape, a plate shape, a complicated three-dimensional structure shape, and the like, and a fiber shape is particularly preferable.

上記基材は、酸化第一銅ナノ粒子に対して水素結合可能な官能基を、その表面に有することが特に好ましく、かかる水素結合可能な官能基としては、水酸基、アミド基、イミド基、ウレタン基が挙げられる。
なお、酸化第一銅ナノ粒子に対して水素結合可能な官能基は、基材(好適には、樹脂)の分子構造中に内在していてもよいし、基材表面に表面反応等により導入されたものであってもよい。
基材の分子構造中に内在している水素結合可能な官能基としては、セルロース系樹脂中の水酸基、ポリエステル樹脂中のエステル基、ポリアミド樹脂中のアミド基、ポリイミド樹脂のイミド基、ポリウレタン樹脂中のウレタン基等が挙げられる。中でも好ましいのは、密着性等の観点で、セルロース系樹脂中の水酸基である。
基材表面に水素結合可能な官能基を導入する手法としては、酸やアルカリ等の化学薬品を用いるエッチング処理、コロナ処理、大気プラズマ処理、火炎処理、オゾン処理、シランカップリング剤による処理等が挙げられる。
It is particularly preferable that the base material has a functional group capable of hydrogen bonding with respect to cuprous oxide nanoparticles on its surface. Examples of the functional group capable of hydrogen bonding include a hydroxyl group, an amide group, an imide group, and a urethane. Groups.
In addition, the functional group capable of hydrogen bonding to the cuprous oxide nanoparticles may be inherent in the molecular structure of the base material (preferably a resin) or introduced into the surface of the base material by a surface reaction or the like. It may be what was done.
Examples of functional groups capable of hydrogen bonding in the molecular structure of the substrate include hydroxyl groups in cellulosic resins, ester groups in polyester resins, amide groups in polyamide resins, imide groups in polyimide resins, and polyurethane resins. Of urethane groups. Among these, a hydroxyl group in the cellulosic resin is preferable from the viewpoint of adhesion and the like.
Techniques for introducing functional groups capable of hydrogen bonding to the substrate surface include etching treatment using chemicals such as acid and alkali, corona treatment, atmospheric plasma treatment, flame treatment, ozone treatment, treatment with a silane coupling agent, etc. Can be mentioned.

本実施形態の抗菌性部材における酸化第一銅ナノ粒子の含有量は、抗菌性を十分に得る観点から、抗菌性部材を100質量%として、0.001〜20質量%であることが好ましく、より好ましくは0.1〜10質量%である。   The content of the cuprous oxide nanoparticles in the antibacterial member of the present embodiment is preferably 0.001 to 20% by mass, with the antibacterial member being 100% by mass, from the viewpoint of sufficiently obtaining antibacterial properties. More preferably, it is 0.1-10 mass%.

(抗菌性部材の製造方法)
本実施形態の抗菌性部材の製造方法は、酸化第一銅ナノ粒子のコロイド分散液を準備する工程と、コロイド分散液を基材に塗布・乾燥する工程と、を含むことを特徴とする。
(Method for producing antibacterial member)
The method for producing an antibacterial member of this embodiment is characterized by including a step of preparing a colloidal dispersion of cuprous oxide nanoparticles and a step of applying and drying the colloidal dispersion on a substrate.

ここで、酸化第一銅ナノ粒子のコロイド分散液とは、酸化第一銅ナノ粒子が液体中で沈降することなく浮遊している状態の混合物のことをいい、このときの上記液体を分散媒という。   Here, the colloidal dispersion of cuprous oxide nanoparticles refers to a mixture in which the cuprous oxide nanoparticles are floating without being settled in the liquid, and the liquid at this time is used as a dispersion medium. That's it.

本実施形態において用いられる分散媒としては、酸化第一銅ナノ粒子のコロイド性を損なわないものである限り特に限定されないが、一価アルコール及び多価アルコールを含むアルコールが特に好ましい。
一価アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール等が例示され、また、多価アルコールとしては、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、ペンタンジオール、ヘキサンジオール等が例示される。これらは、1種単独で用いても、2種以上を混合して用いてもよい。
また、本実施形態では、酸化第一銅ナノ粒子のコロイド性を損なわない範囲で、アルコールに代えて又はアルコールに加えて、アルコールとは別の分散媒を用いてもよい。
かかるアルコールとは別の分散剤としては、エーテル、n−ヘキサン、ジエチルエーテル、n−ヘプタン、ジイソブチルケトン、メチルシクロヘキサン、ジイソプロピルケトン、イソブチルクロリド、シクロヘキサン、エチルアミルケトン、酢酸イソブチル、ベンゾニトリル、酢酸イソプロピル、メチルイソブチルケトン、酢酸アミル、酢酸ブチル、酢酸セロソルブ、ジエチルカルボネート、ジエチルケトン、エチルベンゼン、キシレン、ブチルカルビトール、トルエン、酢酸エチル、ダイアセトンアルコール、ベンゼン、クロロホルム、メチルエチルケトン、スチレン、エチルカルビトール、酢酸メチル、アニソール、セロソルブ、ジエチルアセトアミド、ジエチルカルボネート、ジオキサン、アセトン、メチルイソブチルカルビノール、ニトロベンゼン、アクリロニトリル、ジエチルホルムアミド、ジメチルアセトアミド、ブタノール、シクロヘキサノール、アセトニトリル、プロピルアルコール、ベンジルアルコール、ブチレンカルボネート、ジメチルホルムアミド、エチレンカルボネート、メチルホルムアミド等が挙げられる。
The dispersion medium used in the present embodiment is not particularly limited as long as it does not impair the colloidal properties of cuprous oxide nanoparticles, but alcohols including monohydric alcohols and polyhydric alcohols are particularly preferable.
Examples of the monohydric alcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol and the like, and examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propane. Examples include diol, 1,2-butanediol, 1,3-butanediol, pentanediol, and hexanediol. These may be used alone or in combination of two or more.
In the present embodiment, a dispersion medium other than alcohol may be used instead of alcohol or in addition to alcohol as long as the colloidal properties of cuprous oxide nanoparticles are not impaired.
Dispersants other than such alcohols include ether, n-hexane, diethyl ether, n-heptane, diisobutyl ketone, methylcyclohexane, diisopropyl ketone, isobutyl chloride, cyclohexane, ethyl amyl ketone, isobutyl acetate, benzonitrile, isopropyl acetate. , Methyl isobutyl ketone, amyl acetate, butyl acetate, cellosolve acetate, diethyl carbonate, diethyl ketone, ethylbenzene, xylene, butyl carbitol, toluene, ethyl acetate, diacetone alcohol, benzene, chloroform, methyl ethyl ketone, styrene, ethyl carbitol, Methyl acetate, anisole, cellosolve, diethyl acetamide, diethyl carbonate, dioxane, acetone, methyl isobutyl carbinol, Toro benzene, acrylonitrile, diethyl formamide, dimethyl acetamide, butanol, cyclohexanol, acetonitrile, propyl alcohol, benzyl alcohol, butylene carbonate, dimethyl formamide, ethylene carbonate, and methyl formamide.

酸化第一銅ナノ粒子コロイド分散液中の酸化第一銅ナノ粒子の含有量は、酸化第一銅ナノ粒子コロイド分散液を100質量%として、通常、0.1〜60質量%としてよく、好ましくは0.1〜30質量%であり、より好ましくは0.1〜20質量%である。
酸化第一銅ナノ粒子の含有量が60質量%を超えると、分散液の粘度が上がる傾向があり、樹脂等の基材への塗布が困難になる場合があり、また、0.1質量%よりも小さいと、一度の塗布で塗布できる酸化第一銅ナノ粒子の量が少なくなり、塗布工程を何度も繰り返す必要が生じ、コスト上昇のおそれがある。
The content of cuprous oxide nanoparticles in the cuprous oxide nanoparticle colloidal dispersion may be usually 0.1 to 60% by mass, preferably 100% by mass of the cuprous oxide nanoparticle colloidal dispersion. Is 0.1-30 mass%, More preferably, it is 0.1-20 mass%.
When the content of cuprous oxide nanoparticles exceeds 60% by mass, the viscosity of the dispersion tends to increase, which may make it difficult to apply to a substrate such as a resin, and 0.1% by mass. If it is smaller than that, the amount of cuprous oxide nanoparticles that can be applied by one application decreases, and the application process needs to be repeated many times, which may increase the cost.

また、本実施形態において、酸化第一銅ナノ粒子のコロイド分散液には、必要に応じて、添加剤を加えてもよい。
添加剤としては、可塑剤、乾燥剤、硬化剤、皮張り防止剤、平坦化剤、たれ防止剤、防カビ剤、抗菌剤、紫外線吸収剤、熱線吸収剤、潤滑剤、界面活性剤、分散剤、増粘剤、粘性調整剤、安定剤、乾燥調整剤等が挙げられ、さらに、別種の抗ウイルス組成物、抗菌組成物、防かび組成物、抗アレルゲン組成物、触媒、反射防止材料、遮熱特性を備える材料等も挙げられる。
Moreover, in this embodiment, you may add an additive to the colloid dispersion liquid of cuprous oxide nanoparticle as needed.
Additives include plasticizers, desiccants, curing agents, anti-skinning agents, leveling agents, anti-sagging agents, anti-fungal agents, antibacterial agents, ultraviolet absorbers, heat ray absorbers, lubricants, surfactants, dispersions Agents, thickeners, viscosity modifiers, stabilizers, drying modifiers, and the like, and further antiviral compositions, antibacterial compositions, antifungal compositions, antiallergen compositions, catalysts, antireflection materials, Examples thereof include materials having heat shielding properties.

本実施形態において、酸化第一銅ナノ粒子のコロイド分散液を基材に塗布・乾燥する方法は、特に限定されない。
塗布方法としては、例えば、ディップコート法、浸漬法、スプレー法、ロールコーター法、バーコーター法、スピンコート法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット法等の方法が挙げられる。
乾燥方法としては、加熱乾燥や自然乾燥等が挙げられ、必要に応じて、乾燥時に、紫外線、赤外線、電子線、γ線等の照射を行ってもよい。
In the present embodiment, the method for applying and drying the colloidal dispersion of cuprous oxide nanoparticles on a substrate is not particularly limited.
Examples of the coating method include a dip coating method, a dipping method, a spray method, a roll coater method, a bar coater method, a spin coating method, a gravure printing method, an offset printing method, a screen printing method, and an ink jet method.
Examples of the drying method include heat drying and natural drying. If necessary, irradiation with ultraviolet rays, infrared rays, electron beams, γ rays, or the like may be performed during drying.

本実施形態の抗菌性部材の用途としては、特に限定されないが、例えば、織物や不織布等が挙げられ、より具体的に、応用例としては、マスク;エアコン用フィルター、空気清浄機用フィルター、掃除機用フィルター、換気扇用フィルター、車両用フィルター、空調用フィルター等のフィルター;衣類用、寝具用、網戸用ネットや鶏舎用ネット等のネット;壁紙、窓用、天井用、車両用シート等のシート・フィルム;ドア、ブラインド、椅子、ソファー、床材等の各種設備(ウイルスを扱う設備、電車・車両、病院、ビル一般)用内装材等;が挙げられる。   Although it does not specifically limit as an application of the antibacterial member of this embodiment, For example, a textile fabric, a nonwoven fabric, etc. are mentioned, More specifically, an application example is a mask; a filter for an air conditioner, a filter for an air cleaner, a cleaning Machine filters, ventilation fan filters, vehicle filters, air conditioning filters, etc .; nets for clothes, bedding, nets for screen doors, nets for poultry houses, etc .; sheets for wallpaper, windows, ceilings, vehicle seats, etc. -Films: Interior materials for various facilities such as doors, blinds, chairs, sofas, flooring (virus handling facilities, trains / vehicles, hospitals, buildings in general), etc.

次に、実施例を挙げて本発明をより具体的に説明する。但し、本発明はこれらの実施例のみに限定されるものではない。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

[実施例1]
<酸化第一銅ナノ粒子のコロイド分散液の調整>
SUS製反応器に、無水酢酸銅(日本化学産業製)80gを加え、ここに、精製水700mLを加えた。反応器の温度を40℃に上げて撹拌しながら、酢酸銅を溶解させた。その後、この溶液を−15℃に冷却した。次に、反応器内の酢酸銅に対するヒドラジンの割合(モル)が1.2になるように、40重量%ヒドラジン溶液を調整し、これを、15分かけて上記反応器に加えた。添加完了後、反応器の温度を25℃に上げて、反応器内の撹拌を1時間継続した。
得られた反応液について、遠心分離機を用いた固液分離を行うことによって、酸化第一銅ナノ粒子を得た。
次に、得られた酸化第一銅ナノ粒子を、SUS製タンクに投入し、ここに、ジエチレングリコール100mLを加え、混合物に超音波分散することによって、酸化第一銅ナノ粒子のコロイド分散液(コロイド分散液に対する酸化第一銅ナノ粒子の含有量:10質量%)を得た。この分散液における酸化第一銅ナノ粒子の平均一次粒径は15nm、平均二次粒径は80nmであった。
[Example 1]
<Preparation of colloidal dispersion of cuprous oxide nanoparticles>
80 g of anhydrous copper acetate (manufactured by Nippon Kagaku Sangyo) was added to a SUS reactor, and 700 mL of purified water was added thereto. The temperature of the reactor was raised to 40 ° C. and copper acetate was dissolved while stirring. The solution was then cooled to -15 ° C. Next, a 40 wt% hydrazine solution was adjusted so that the ratio (mol) of hydrazine to copper acetate in the reactor was 1.2, and this was added to the reactor over 15 minutes. After the addition was complete, the reactor temperature was raised to 25 ° C. and stirring in the reactor was continued for 1 hour.
About the obtained reaction liquid, the cuprous oxide nanoparticle was obtained by performing solid-liquid separation using a centrifuge.
Next, the obtained cuprous oxide nanoparticles are put into a SUS tank, and 100 mL of diethylene glycol is added thereto, and ultrasonically dispersed in the mixture, whereby a colloidal dispersion of cuprous oxide nanoparticles (colloid) The content of cuprous oxide nanoparticles with respect to the dispersion: 10% by mass) was obtained. The average primary particle size of the cuprous oxide nanoparticles in this dispersion was 15 nm, and the average secondary particle size was 80 nm.

<コロイド分散液のセルロース繊維への塗布・乾燥>
セルロース繊維からなる不織布として、旭化成せんい(株)製ベンリーゼを用いた。ベンリーゼを10cm×10cmサイズに切り出し、これを、得られた酸化第一銅ナノ粒子のコロイド分散液に浸漬させた。
酸化第一銅を付着させた後の不織布を、コロイド分散液中から引き上げ、エタノールで余剰の分散液を洗い流した。
洗浄後の不織布を真空乾燥機にて100℃まで加温して乾燥させ、エタノールを除去した。
こうして、抗菌シート(セルロース繊維に対する酸化第一銅ナノ粒子の含有量:3質量%)を得た。
<Application and drying of colloidal dispersion on cellulose fiber>
As a non-woven fabric made of cellulose fibers, Benise manufactured by Asahi Kasei Fibers Co., Ltd. was used. Benlyse was cut into a size of 10 cm × 10 cm and immersed in a colloidal dispersion of the obtained cuprous oxide nanoparticles.
The nonwoven fabric after the cuprous oxide was adhered was pulled out of the colloidal dispersion, and the excess dispersion was washed away with ethanol.
The washed nonwoven fabric was heated to 100 ° C. with a vacuum dryer and dried to remove ethanol.
Thus, an antibacterial sheet (content of cuprous oxide nanoparticles with respect to cellulose fibers: 3% by mass) was obtained.

(抗菌性の評価)
得られた抗菌シートの抗菌性を、JIS L 1902:2008「菌液吸収法」により、評価した。試験菌種には、黄色ぶどう球菌(Staphylococcus aureus、NBRC番号:12732)を用いた。
評価基準を下記に示す。
A:18時間培養後の生菌数の常用対数値が1.3未満
B:18時間培養後の生菌数の常用対数値が1.3以上、接種直後の値未満
C:18時間培養後の生菌数の常用対数値が接種直後の値以上のもの
実施例1の抗菌シート存在時には、接種直後の生菌数の常用対数値は3.7であったのに対し、18時間培養後の常用対数値は感度以下の<1.3にまで顕著に減少した。この結果から、実施例1の抗菌シートは高い抗菌性を備えることが見出された。結果を表1に示す。
(Antimicrobial evaluation)
The antibacterial properties of the obtained antibacterial sheet were evaluated according to JIS L 1902: 2008 “bacterial solution absorption method”. Staphylococcus aureus (NBRC number: 12732) was used as the test strain.
The evaluation criteria are shown below.
A: Common logarithm of the number of viable cells after 18 hours of culture is less than 1.3 B: Common logarithm of the number of viable cells after 18 hours of culture is 1.3 or more, less than the value immediately after inoculation C: After 18 hours of culture When the antibacterial sheet of Example 1 is present, the common logarithm of the number of viable bacteria immediately after inoculation was 3.7, whereas after 18 hours of cultivation The common logarithm of was significantly reduced to <1.3 below the sensitivity. From this result, it was found that the antibacterial sheet of Example 1 has high antibacterial properties. The results are shown in Table 1.

(抗かび性の評価)
得られた抗菌シートの抗かび性を、JIS Z 2911:2010「7.繊維製品の試験」を準用して、評価した。
試験菌種には、アスペルギルス・ニガー(Aspergillus niger、NBRC番号:105649)、ペニシリウム・シトリヌム(Penicillium citrinum、NBRC番号:6352)、ケトミウム・グラボサム(Chaetomium globosum、NBRC番号:6347)、ミロテシウム・ベルカリア(Myrothecium verrucaria、NBRC番号:6113)の4種を用いた。
評価基準を下記に示す。
A:試験片の接種した部分に菌糸の発育が認められない。
B:試験片の接種した部分に認められる菌糸の発育部分の面積が、全面積の1/3を超えない。
C:試験片の接種した部分に認められる菌糸の発育部分の面積が、全面積の1/3を超える。
湿式法2週間後のかび抵抗性、乾式法4週間後のかび抵抗性を併せて確認したが、いずれも、実施例1の抗菌シートの接種部分には菌糸の発育は認められなかった。この結果から、実施例1の抗菌シートは高い抗カビ性を備えることが確認された。結果を表1に示す。
(Evaluation of antifungal properties)
The antifungal property of the obtained antibacterial sheet was evaluated by applying JIS Z 2911: 2010 “7.
The test strains include Aspergillus niger (NBRC number: 105649), Penicillium citrinum (NBRC number: 6352), Ketomium globosum (MBRC), NBRC number, 47 4 types of verrucaria, NBRC number: 6113) were used.
The evaluation criteria are shown below.
A: Mycelium growth is not observed in the inoculated part of the test piece.
B: The area of the growth part of the mycelium recognized in the inoculated part of the test piece does not exceed 1/3 of the total area.
C: The area of the growth part of the mycelium recognized in the inoculated part of the test piece exceeds 1/3 of the total area.
The fungi resistance after 2 weeks of the wet method and the fungus resistance after 4 weeks of the dry method were confirmed together, but no hyphal growth was observed in the inoculated portion of the antibacterial sheet of Example 1. From this result, it was confirmed that the antibacterial sheet of Example 1 has high antifungal properties. The results are shown in Table 1.

(安定性の評価)
得られた抗菌シートの安定性を、得られた抗菌シートの表面にスコッチテープを貼り付け、その後、テープを剥離したときの、テープへの酸化第一銅の付着の程度によって、評価した。
評価基準を下記に示す。
A:酸化第一銅の転写なし
B:酸化第一銅の一部が転写
C:酸化第一銅の全部が転写
実施例1の抗菌シートでは、テープに酸化第一銅の転写は確認されなかった。結果を表1に示す。
(Evaluation of stability)
The stability of the obtained antibacterial sheet was evaluated by the degree of adhesion of cuprous oxide to the tape when a scotch tape was applied to the surface of the obtained antibacterial sheet and then the tape was peeled off.
The evaluation criteria are shown below.
A: No transfer of cuprous oxide B: A portion of cuprous oxide is transferred C: All of cuprous oxide is transferred In the antibacterial sheet of Example 1, transfer of cuprous oxide is not confirmed on the tape. It was. The results are shown in Table 1.

また、この安定性の評価後の実施例1の抗菌シートについて、前述の通り、抗菌性の評価及び抗かび性の評価を行ったところ、スコッチテープの貼り付け及び剥離を行っていない抗菌シートの場合と同等の抗菌性及び抗かび性が維持されていた。   Further, as described above, the antibacterial evaluation and the antifungal evaluation of the antibacterial sheet of Example 1 after the evaluation of the stability were conducted. The same antibacterial and antifungal properties were maintained.

Figure 2017088509
Figure 2017088509

(実施例2)
<酸化第一銅ナノ粒子のコロイド分散液の調整>
SUS製反応器に、無水酢酸銅(日本化学産業製)40gを加え、ここに、精製水700mLを加えた。反応器の温度を40℃に上げて撹拌しながら、酢酸銅を溶解させた。その後、この溶液を−15℃に冷却した。次に、反応器内の酢酸銅に対するヒドラジンの割合(モル)が0.2になるように、64重量%ヒドラジン溶液を調整し、これを、15分かけて上記反応器に加えた。添加完了後、反応器の温度を25℃に上げて、反応器内の撹拌を1時間継続した。
得られた反応液について、遠心分離機を用いた固液分離を行うことによって、酸化第一銅ナノ粒子を得た。
次に、得られた酸化第一銅ナノ粒子を、SUS製タンクに投入し、ここに、ジエチレングリコール100mLを加え、混合物に超音波分散することによって、酸化第一銅ナノ粒子のコロイド分散液(コロイド分散液に対する酸化第一銅ナノ粒子の含有量:10質量%)を得た。実施例2におけるこの分散液には沈降成分が認められた。この分散液における酸化第一銅ナノ粒子の平均一次粒径は50nm、平均二次粒径は300nmであった。
(Example 2)
<Preparation of colloidal dispersion of cuprous oxide nanoparticles>
To a SUS reactor, 40 g of anhydrous copper acetate (manufactured by Nippon Kagaku Sangyo) was added, and 700 mL of purified water was added thereto. The temperature of the reactor was raised to 40 ° C. and copper acetate was dissolved while stirring. The solution was then cooled to -15 ° C. Next, a 64 wt% hydrazine solution was adjusted so that the ratio (mol) of hydrazine to copper acetate in the reactor was 0.2, and this was added to the reactor over 15 minutes. After the addition was complete, the reactor temperature was raised to 25 ° C. and stirring in the reactor was continued for 1 hour.
About the obtained reaction liquid, the cuprous oxide nanoparticle was obtained by performing solid-liquid separation using a centrifuge.
Next, the obtained cuprous oxide nanoparticles are put into a SUS tank, and 100 mL of diethylene glycol is added thereto, and ultrasonically dispersed in the mixture, whereby a colloidal dispersion of cuprous oxide nanoparticles (colloid) The content of cuprous oxide nanoparticles with respect to the dispersion: 10% by mass) was obtained. Precipitation components were observed in this dispersion in Example 2. The average primary particle size of the cuprous oxide nanoparticles in this dispersion was 50 nm, and the average secondary particle size was 300 nm.

<コロイド分散液のセルロース繊維への塗布・乾燥>
分散液中の沈降成分を遍在させるため、撹拌子を用いて分散液を撹拌させながら、実施例1で使用のセルロース繊維からなる不織布(旭化成せんい(株)製ベンリーゼ)を、10cm×10cmサイズに切り出し、これを、得られた酸化第一銅ナノ粒子のコロイド分散液に浸漬させた。
酸化第一銅を付着させた後の不織布を、コロイド分散液中から引き上げ、エタノールで余剰の分散液を洗い流した。
洗浄後の不織布を真空乾燥機にて100℃まで加温して乾燥させ、エタノールを除去した。
こうして、抗菌シート(セルロース繊維に対する酸化第一銅ナノ粒子の含有量:5質量%)を得た。
<Application and drying of colloidal dispersion on cellulose fiber>
In order to make the sediment component in the dispersion ubiquitous, a nonwoven fabric made of cellulose fibers used in Example 1 (Benlyse manufactured by Asahi Kasei Fibers Co., Ltd.) used in Example 1 is 10 cm × 10 cm in size while stirring the dispersion using a stir bar. And was immersed in a colloidal dispersion of the obtained cuprous oxide nanoparticles.
The nonwoven fabric after the cuprous oxide was adhered was pulled out of the colloidal dispersion, and the excess dispersion was washed away with ethanol.
The washed nonwoven fabric was heated to 100 ° C. with a vacuum dryer and dried to remove ethanol.
Thus, an antibacterial sheet (content of cuprous oxide nanoparticles with respect to cellulose fibers: 5% by mass) was obtained.

実施例2の抗菌シートについて、実施例1の抗菌シートの場合と同様に、抗菌性の評価、抗かび性の評価、安定性の評価を行った。結果を表1に示す。
実施例2の抗菌シートは、実施例1の抗菌シートの場合と同様に、高い抗菌性及び抗かび性を示す一方で、スコッチテープテストにおいてテープへの若干の酸化第一銅の付着が見られた。
About the antibacterial sheet of Example 2, as in the case of the antibacterial sheet of Example 1, antibacterial evaluation, antifungal evaluation, and stability evaluation were performed. The results are shown in Table 1.
The antibacterial sheet of Example 2 showed high antibacterial and antifungal properties as in the case of the antibacterial sheet of Example 1, while some adhesion of cuprous oxide to the tape was observed in the Scotch tape test. It was.

(比較例1)
<酸化第一銅ナノ粒子のコロイド分散液の調整>
SUS製反応器に、無水酢酸銅(日本化学産業製)10gを加え、ここに、精製水700mLを加えた。反応器の温度を40℃に上げて撹拌しながら、酢酸銅を溶解させた。その後、この溶液を−15℃に冷却した。次に、反応器内の酢酸銅に対するヒドラジンの割合(モル)が0.1になるように、20重量%ヒドラジン溶液を調整し、これを、15分かけて上記反応器に加えた。添加完了後、反応器の温度を25℃に上げて、反応器内の撹拌を1時間継続した。
得られた反応液について、遠心分離機を用いた固液分離を行うことによって、酸化第一銅ナノ粒子を得た。
次に、得られた酸化第一銅ナノ粒子を、SUS製タンクに投入し、ここに、ジエチレングリコール100mLを加え、混合物に超音波分散することによって、酸化第一銅ナノ粒子のコロイド分散液(コロイド分散液に対する酸化第一銅ナノ粒子の含有量:10質量%)を得た。比較例1におけるこの分散液には沈降成分が認められた。この分散液における酸化第一銅ナノ粒子の平均一次粒径は200nm、平均二次粒径は2000nmであった。
(Comparative Example 1)
<Preparation of colloidal dispersion of cuprous oxide nanoparticles>
To a SUS reactor, 10 g of anhydrous copper acetate (manufactured by Nippon Chemical Industry Co., Ltd.) was added, and 700 mL of purified water was added thereto. The temperature of the reactor was raised to 40 ° C. and copper acetate was dissolved while stirring. The solution was then cooled to -15 ° C. Next, a 20 wt% hydrazine solution was prepared so that the ratio (mol) of hydrazine to copper acetate in the reactor was 0.1, and this was added to the reactor over 15 minutes. After the addition was complete, the reactor temperature was raised to 25 ° C. and stirring in the reactor was continued for 1 hour.
About the obtained reaction liquid, the cuprous oxide nanoparticle was obtained by performing solid-liquid separation using a centrifuge.
Next, the obtained cuprous oxide nanoparticles are put into a SUS tank, and 100 mL of diethylene glycol is added thereto, and ultrasonically dispersed in the mixture, whereby a colloidal dispersion of cuprous oxide nanoparticles (colloid) The content of cuprous oxide nanoparticles with respect to the dispersion: 10% by mass) was obtained. A sedimentation component was observed in this dispersion in Comparative Example 1. The average primary particle size of the cuprous oxide nanoparticles in this dispersion was 200 nm, and the average secondary particle size was 2000 nm.

<コロイド分散液のセルロース繊維への塗布・乾燥>
分散液中の沈降成分を遍在させるため、撹拌子を用いて分散液を撹拌させながら、実施例1で使用のセルロース繊維からなる不織布(旭化成せんい(株)製ベンリーゼ)を、10cm×10cmサイズに切り出し、これを、得られた酸化第一銅ナノ粒子のコロイド分散液に浸漬させた。
酸化第一銅を付着させた後の不織布を、コロイド分散液中から引き上げ、エタノールで余剰の分散液を洗い流した。
洗浄後の不織布を真空乾燥機にて100℃まで加温して乾燥させ、エタノールを除去した。
こうして、抗菌シート(セルロース繊維に対する酸化第一銅ナノ粒子の含有量:5質量%)を得た。
<Application and drying of colloidal dispersion on cellulose fiber>
In order to make the sediment component in the dispersion ubiquitous, a nonwoven fabric made of cellulose fibers used in Example 1 (Benlyse manufactured by Asahi Kasei Fibers Co., Ltd.) used in Example 1 is 10 cm × 10 cm size while stirring the dispersion using a stir bar And was immersed in a colloidal dispersion of the obtained cuprous oxide nanoparticles.
The nonwoven fabric after the cuprous oxide was adhered was pulled out of the colloidal dispersion, and the excess dispersion was washed away with ethanol.
The washed nonwoven fabric was heated to 100 ° C. with a vacuum dryer and dried to remove ethanol.
Thus, an antibacterial sheet (content of cuprous oxide nanoparticles with respect to cellulose fibers: 5% by mass) was obtained.

比較例1の抗菌シートについて、実施例1の抗菌シートの場合と同様に、抗菌性の評価、抗かび性の評価、安定性の評価を行った。結果を表1に示す。
比較例1の抗菌シートは、実施例1の抗菌シートの場合と同様に、高い抗菌性及び抗かび性を示す一方で、スコッチテープテストにおいてテープへの酸化第一銅の付着が見られた。
For the antibacterial sheet of Comparative Example 1, as in the case of the antibacterial sheet of Example 1, antibacterial evaluation, antifungal evaluation, and stability evaluation were performed. The results are shown in Table 1.
The antibacterial sheet of Comparative Example 1 showed high antibacterial and antifungal properties as in the case of the antibacterial sheet of Example 1, while adhesion of cuprous oxide to the tape was observed in the Scotch tape test.

そして、実施例1の抗菌シートの場合と同様に、安定性の評価後の比較例1の抗菌シートについて、前述の通り、抗菌性の評価及び抗かび性の評価を行ったところ、乾式法4週間後のかび抵抗性の評価において、菌糸の発育が認められた。   As in the case of the antibacterial sheet of Example 1, the antibacterial property and the antifungal property were evaluated as described above for the antibacterial sheet of Comparative Example 1 after the stability evaluation. In the evaluation of mold resistance after a week, hyphal growth was observed.

(比較例2)
酸化第一銅ナノ粒子のコロイド分散液の代わりに、銀ナノ粒子(和光純薬製)(銀ナノ粒子の平均一次粒径:10nm、平均二次粒径:100nm)のコロイド分散液を用いた以外は、実施例1の場合と同様にして、比較例2の抗菌シートを得た。
比較例2の抗菌シートについて、実施例1の抗菌シートの場合と同様に、抗菌性の評価、抗かび性の評価を行った。結果を表1に示す。
比較例2の抗菌シートは、乾式法4週間後のかび抵抗性の評価において、菌糸の全面積の1/3を超える程度にまでの発育が認められ、抗かび性が劣ることがわかった。
(Comparative Example 2)
Instead of the colloidal dispersion of cuprous oxide nanoparticles, a colloidal dispersion of silver nanoparticles (manufactured by Wako Pure Chemical Industries, Ltd.) (average primary particle size of silver nanoparticles: 10 nm, average secondary particle size: 100 nm) was used. Except for the points , the antibacterial sheet of Comparative Example 2 was obtained in the same manner as in Example 1.
About the antimicrobial sheet of the comparative example 2, antimicrobial evaluation and antifungal evaluation were performed similarly to the case of the antimicrobial sheet of Example 1. The results are shown in Table 1.
In the antibacterial sheet of Comparative Example 2, in the evaluation of mold resistance after 4 weeks of the dry method, growth to a level exceeding 1/3 of the total area of the mycelium was recognized, and it was found that the antifungal property was inferior.

本発明の抗菌性部材は、従来技術と比較して短時間で菌の生育を抑制させることができ、また、かかる抑制効果を安定的に得ることができる。
また、本発明の抗菌性部材によれば、銅の皮膚活性作用を利用して、皮膚皺の改善や傷の治癒の効果も得ることが可能である。
The antibacterial member of the present invention can suppress the growth of bacteria in a shorter time than the prior art, and can stably obtain such an inhibitory effect.
In addition, according to the antibacterial member of the present invention, it is possible to obtain skin wrinkle improvement and wound healing effects by utilizing the skin active action of copper.

Claims (6)

基材と、該基材表面に配置された平均一次粒径が100nm以下である酸化第一銅ナノ粒子とを含むことを特徴とする、抗菌性部材。   An antibacterial member comprising: a base material; and cuprous oxide nanoparticles having an average primary particle size of 100 nm or less arranged on the surface of the base material. 前記平均一次粒径が20nm以下である、請求項1に記載の抗菌性部材。   The antibacterial member according to claim 1, wherein the average primary particle size is 20 nm or less. 前記基材が、繊維状である、請求項1又は2に記載の抗菌性部材。   The antibacterial member according to claim 1 or 2, wherein the substrate is fibrous. 前記基材が、前記酸化第一銅ナノ粒子に対して水素結合可能な官能基を、その表面に有する、請求項1〜3のいずれか一項に記載の抗菌性部材。   The antibacterial member according to any one of claims 1 to 3, wherein the base material has a functional group capable of hydrogen bonding to the cuprous oxide nanoparticles on the surface thereof. 前記基材が、セルロース系樹脂である、請求項1〜4のいずれか一項に記載の抗菌性部材。   The antibacterial member according to any one of claims 1 to 4, wherein the base material is a cellulose resin. 酸化第一銅ナノ粒子のコロイド分散液を準備する工程と、
前記コロイド分散液を基材に塗布・乾燥する工程と、
を含むことを特徴とする、請求項1〜5のいずれか一項に記載の抗菌性部材の製造方法。
Preparing a colloidal dispersion of cuprous oxide nanoparticles;
Applying and drying the colloidal dispersion on a substrate;
The method for producing an antibacterial member according to claim 1, comprising:
JP2015216840A 2015-11-04 2015-11-04 Antibacterial member Active JP6832058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015216840A JP6832058B2 (en) 2015-11-04 2015-11-04 Antibacterial member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015216840A JP6832058B2 (en) 2015-11-04 2015-11-04 Antibacterial member

Publications (2)

Publication Number Publication Date
JP2017088509A true JP2017088509A (en) 2017-05-25
JP6832058B2 JP6832058B2 (en) 2021-02-24

Family

ID=58769737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015216840A Active JP6832058B2 (en) 2015-11-04 2015-11-04 Antibacterial member

Country Status (1)

Country Link
JP (1) JP6832058B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6874897B1 (en) * 2020-08-31 2021-05-19 凸版印刷株式会社 Decorative sheet and manufacturing method of decorative material and decorative sheet using it
WO2021153684A1 (en) * 2020-01-28 2021-08-05 旭化成株式会社 Cellulose composite and method for producing same
JP6989042B1 (en) * 2021-03-29 2022-01-05 凸版印刷株式会社 How to manufacture decorative sheets, decorative materials, and decorative sheets
CN114232326A (en) * 2021-11-17 2022-03-25 广东粤港澳大湾区国家纳米科技创新研究院 Antibacterial non-woven fabric and preparation method thereof
CN114763676A (en) * 2022-03-24 2022-07-19 圣山集团有限公司 Fluoride-free waterproof breathable antibacterial finishing agent and preparation method and application thereof
US20230011248A1 (en) * 2021-07-09 2023-01-12 The United States Of America, As Represented By The Secretary Of Agriculture Cellulosic fibers comprising internally dispersed cuprous oxide nanoparticles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797767A (en) * 1993-09-28 1995-04-11 Daiso Co Ltd Antifungal organic polymeric material
JPH08209531A (en) * 1995-02-07 1996-08-13 Daiso Co Ltd Antimicrobial fiber or fiber product and its production
WO2004050559A1 (en) * 2002-12-03 2004-06-17 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particle
JP2011001213A (en) * 2009-06-17 2011-01-06 Murata Mfg Co Ltd Method for producing cuprous oxide nanoparticle dispersion solution and cuprous oxide nanoparticle dispersion solution
JP2011190192A (en) * 2010-03-12 2011-09-29 Univ Of Tokyo Microorganism-inactivating agent
JP2014519504A (en) * 2011-05-24 2014-08-14 アジエニック,インコーポレイテッド Composition and method of antibacterial metal nanoparticles
WO2014132606A1 (en) * 2013-02-27 2014-09-04 パナソニック株式会社 Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
JP2015117187A (en) * 2013-12-17 2015-06-25 パナソニックIpマネジメント株式会社 Antiviral resin composition and antiviral member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797767A (en) * 1993-09-28 1995-04-11 Daiso Co Ltd Antifungal organic polymeric material
JPH08209531A (en) * 1995-02-07 1996-08-13 Daiso Co Ltd Antimicrobial fiber or fiber product and its production
WO2004050559A1 (en) * 2002-12-03 2004-06-17 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particle
JP2011001213A (en) * 2009-06-17 2011-01-06 Murata Mfg Co Ltd Method for producing cuprous oxide nanoparticle dispersion solution and cuprous oxide nanoparticle dispersion solution
JP2011190192A (en) * 2010-03-12 2011-09-29 Univ Of Tokyo Microorganism-inactivating agent
JP2014519504A (en) * 2011-05-24 2014-08-14 アジエニック,インコーポレイテッド Composition and method of antibacterial metal nanoparticles
WO2014132606A1 (en) * 2013-02-27 2014-09-04 パナソニック株式会社 Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
JP2015117187A (en) * 2013-12-17 2015-06-25 パナソニックIpマネジメント株式会社 Antiviral resin composition and antiviral member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153684A1 (en) * 2020-01-28 2021-08-05 旭化成株式会社 Cellulose composite and method for producing same
JPWO2021153684A1 (en) * 2020-01-28 2021-08-05
JP6874897B1 (en) * 2020-08-31 2021-05-19 凸版印刷株式会社 Decorative sheet and manufacturing method of decorative material and decorative sheet using it
JP2022041103A (en) * 2020-08-31 2022-03-11 凸版印刷株式会社 Decorative sheet, decorative material using the same, and decorative sheet manufacturing method
JP6989042B1 (en) * 2021-03-29 2022-01-05 凸版印刷株式会社 How to manufacture decorative sheets, decorative materials, and decorative sheets
WO2022209957A1 (en) * 2021-03-29 2022-10-06 凸版印刷株式会社 Cosmetic sheet, cosmetic material, and method for producing cosmetic sheet
JP2022152194A (en) * 2021-03-29 2022-10-12 凸版印刷株式会社 Decorative sheet, decorative material, and manufacturing method of decorative sheet
US20230011248A1 (en) * 2021-07-09 2023-01-12 The United States Of America, As Represented By The Secretary Of Agriculture Cellulosic fibers comprising internally dispersed cuprous oxide nanoparticles
CN114232326A (en) * 2021-11-17 2022-03-25 广东粤港澳大湾区国家纳米科技创新研究院 Antibacterial non-woven fabric and preparation method thereof
CN114232326B (en) * 2021-11-17 2024-02-20 广东粤港澳大湾区国家纳米科技创新研究院 Antibacterial non-woven fabric and preparation method thereof
CN114763676A (en) * 2022-03-24 2022-07-19 圣山集团有限公司 Fluoride-free waterproof breathable antibacterial finishing agent and preparation method and application thereof

Also Published As

Publication number Publication date
JP6832058B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6832058B2 (en) Antibacterial member
JP6838184B2 (en) Antiviral substrate
KR20180029581A (en) Antimicrobial composition consisting main of zinc oxide, functional film using the same
JP2009013376A (en) Water paint for interior finish
JP2018100255A (en) Dispersion liquid, method for producing the same, and copper compound particles
JP6512255B2 (en) Metal copper fine particles and method for producing the same
JP2019072974A (en) Laminate and filter medium using the same
JP2012096133A (en) Deodorizing rutile type titanium oxide fine particle, coating liquid for forming deodorizing coating film containing the fine particle, and substrate with deodorizing coating film
KR20150101151A (en) Coating composition comprising photocatalyst for visible rays and articles comprising same
JP2018197290A (en) Antibacterial and antifungal coating, and method for producing antibacterial and antifungal member using the coating
TW202043491A (en) Powder of metallic copper fine particles and method for producing the same
JP6764889B2 (en) Antibacterial and antifungal paint, algae-proof paint, antibacterial and antifungal member manufacturing method, and algae-proof member manufacturing method
JP6635329B2 (en) Organic base material with photocatalyst layer
JP6696957B2 (en) Antibacterial and antifungal paint, and method for producing antibacterial and antifungal member using the paint
KR20200058475A (en) Metal copper fine particles and manufacturing method thereof
WO2020045413A1 (en) Antiviral composition, anti-norovirus composition, spray, and wiper
JP7086548B2 (en) Antibacterial / antiviral vinyl chloride member
JP2010222427A (en) Aqueous coating agent
JP2010222427A5 (en)
WO2017203299A1 (en) Self-sanitising compositions and method for the production thereof
JP2020169387A (en) Metal copper fine particle powder and method for producing the same
JP2017171608A (en) Aqueous composition and powder composition
JPH0614979A (en) Antibacterial film composition
JP2020040984A (en) Aqueous composition and powder composition
JP2022017610A (en) Composition, modified base material, wet wiper, and spray

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6832058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150