WO2021140960A1 - 通信装置、及び通信方法 - Google Patents

通信装置、及び通信方法 Download PDF

Info

Publication number
WO2021140960A1
WO2021140960A1 PCT/JP2020/048730 JP2020048730W WO2021140960A1 WO 2021140960 A1 WO2021140960 A1 WO 2021140960A1 JP 2020048730 W JP2020048730 W JP 2020048730W WO 2021140960 A1 WO2021140960 A1 WO 2021140960A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
transmission line
training pattern
preamble
data
Prior art date
Application number
PCT/JP2020/048730
Other languages
English (en)
French (fr)
Inventor
菅谷 茂
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US17/758,342 priority Critical patent/US20230037840A1/en
Priority to JP2021570022A priority patent/JPWO2021140960A1/ja
Priority to CN202080091599.8A priority patent/CN114902782A/zh
Priority to EP20912490.8A priority patent/EP4072182A4/en
Publication of WO2021140960A1 publication Critical patent/WO2021140960A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present technology relates to a communication device and a communication method, and particularly to a communication device and a communication method that make it possible to more easily grasp the occupancy status of a transmission line.
  • Patent Document 1 discloses a technique relating to a configuration in which signals having different preamble structures are defined in the first group and the second group, and the transmission of the second group is delayed by the first preamble structure. ing.
  • each wireless communication system since each wireless communication system defines its own preamble signal, it is not possible to detect the preamble signal of another wireless communication system. Therefore, it is not possible to grasp the occupancy status of the transmission line by another wireless communication system, and a technique for more easily grasping the occupancy status of the transmission line has been required.
  • This technology was made in view of such a situation, and makes it possible to more easily grasp the occupancy status of the transmission line.
  • a communication device on one aspect of the present technology includes a control unit that controls transmission of a data signal to another communication device via a transmission line, and the control unit transmits data signals from a plurality of types of training patterns. It is a communication device that controls to select a training pattern according to the occupied time of the road and transmit a signal to which the selected training pattern is added to another communication device via a transmission line.
  • a communication device that controls transmission of a data signal to another communication device via a transmission line is selected from a plurality of types of training patterns according to the occupation time of the transmission line. This is a communication method in which a training pattern is selected and a signal to which the selected training pattern is added is transmitted to another communication device via a transmission line.
  • a training pattern according to the occupied time of the transmission line is selected from a plurality of types of training patterns, and a signal to which the selected training pattern is added is output. , Is transmitted to other communication devices via the transmission line.
  • a communication device on one aspect of the present technology includes a control unit that controls reception of data signals transmitted from other communication devices via a transmission line, and the control unit has a plurality of types of training patterns. It is a communication device that selects a training pattern according to the occupied time of the transmission line from among them, and transmits a signal to which the selected training pattern is added to another communication device via the transmission line.
  • the communication device that controls the reception of data signals transmitted from other communication devices via the transmission line has a transmission line from among a plurality of types of training patterns. This is a communication method in which a training pattern according to an occupied time is selected, and a signal to which the selected training pattern is added is transmitted to another communication device via a transmission line.
  • a training pattern according to the occupied time of the transmission line is selected from a plurality of types of training patterns, and a signal to which the selected training pattern is added is output. , Is transmitted to other communication devices via the transmission line.
  • the communication device on one side of the present technology may be an independent device or an internal block constituting one device.
  • the frequency band used in self-employed wireless communication such as a wireless LAN (Local Area Network) system and the frequency band used in a public wireless communication system have been clearly distinguished, so that both wireless communication systems have been used.
  • a wireless LAN Local Area Network
  • wireless communication systems that operate in the same frequency band are created on the premise that they use the same signal format, and wireless LAN systems were initially operated in the 1990s.
  • the standard was set with the same preamble structure added to the beginning of the signal.
  • wireless LAN systems are supposed to adopt a frame format that follows the old preamble structure, and this legacy preamble signal.
  • the number of generations increased, the amount of information added was gradually increased, resulting in an inefficient frame configuration that could be grasped by communication devices of all these generations.
  • each wireless communication system since each wireless communication system defines its own preamble signal, it is not possible to detect the preamble signal of another wireless communication system.
  • the signal format of either one of the wireless communication systems is defined as the signal format to be used in that frequency band, it becomes a barrier to entry of the other wireless communication system, and the frequencies that can be used in the frequency sharing technology. There was a problem that it was not possible to agree on the use of the band.
  • a method of deciding and operating a completely new signal format that is incompatible with both wireless communication systems can be considered, but in this case, not only the signal format but also the access method, etc. must be unified, and either of them must be unified.
  • One wireless communication system will take the lead, and there will be a problem that it will be difficult to operate as the other wireless communication system.
  • a common preamble signal is determined from a predetermined signal format, and both wireless communication systems transmit the preamble signal by adding it to the beginning of the data to be transmitted. When is detected, it can be determined that the transmission line is in use.
  • a plurality of training pattern formats that can identify the time occupied by the transmission line (wireless transmission line) are prepared, and the training pattern format at the beginning of the data is selectively added and transmitted. suggest.
  • the data receiving side communication device also selects and transmits a training pattern format corresponding to the presence / absence of data to be retransmitted and the transmission line occupancy time according to the amount of information according to the data receipt confirmation result. Propose a configuration to do.
  • FIG. 1 shows an example of a configuration of a wireless communication network by a wireless communication system to which the present technology is applied.
  • the communication device 10 constituting the wireless LAN system 1-1 is indicated by a white circle in the figure, and the communication terminal STA10-1 and the communication terminal STA10-2 are connected to the access point AP10.
  • the solid lines A1 and A2 in the figure indicate that each of the communication devices 10 can communicate in this state.
  • this wireless LAN system 1-1 as a communication device 20 constituting another wireless communication system 1-2 such as a 5th generation wireless communication system (5G), the base station BS20 indicated by a black circle in the figure.
  • the solid line arrow B1 in the figure indicates that the communication terminal TER 20 is in close proximity to each other and that each communication device 20 can communicate with each other.
  • the wireless LAN system 1-1 if the signal formats of the other wireless communication systems 1-2 are not grasped, it is indicated by the arrows C1 to C4 of the broken lines in the figure that these communications are received as interference. It is represented by.
  • a communication terminal is provided with respect to the access point AP30 indicated by a circle with a dot pattern in the figure.
  • the solid line arrow D1 in the figure indicates that the STA 30 is operated in a different frequency band and each communication device 30 can communicate.
  • the wireless LAN system 1-1 and the wireless LAN system 1-3 have conventionally used a communication frame configuration that ensures backward compatibility, even if their versions (generations) are different, they are mutually compatible. It was possible to communicate with.
  • the access points AP10 and AP30 have a configuration in which signals from communication devices existing in the vicinity arrive as interference information.
  • a communication device for transmitting data will be referred to as a transmitting side communication device
  • a communication device for receiving data will be referred to as a receiving side communication device.
  • the data transmitted from the transmitting side communication device 10Tx such as the access point AP10 is received by the receiving side communication device 10Rx such as the communication terminal STA10-1.
  • FIG. 2 shows an example of a configuration of a training pattern format that is common to different wireless communication systems.
  • a in FIG. 2 is a first preamble (PL: Preamble Long), which may occupy a transmission line for a long time, such as when a long data payload is transmitted or when data is transmitted frequently.
  • PL Preamble Long
  • the training pattern added in the case is shown.
  • the training pattern shown in A of FIG. 2 will also be described as the first preamble PL.
  • the first preamble PL can identify that the occupied time T of the transmission line reaches the maximum time (Maximum Duration Time) stipulated by the communication standard or the law from the time exceeding 1 millisecond. It is composed.
  • the configuration of the first preamble PL is such that Short Training-1 is arranged in the first field and Long Training-1 is arranged in the second field.
  • B in FIG. 2 is a second preamble (PM: Preamble Middle), which occupies a transmission line for a medium period of time, such as when transmitting a medium data payload or when transmitting data at a certain level. It shows the training patterns that are added when there is a possibility.
  • the training pattern shown in B of FIG. 2 will also be described as the second preamble PM.
  • the second preamble PM has a configuration capable of identifying that the occupied time T of the transmission line ranges from a time exceeding 100 microseconds to 1 millisecond.
  • the configuration of the second preamble PM is such that Short Training-1 is arranged in the first field and Long Training-0 is arranged in the second field.
  • C in FIG. 2 is a third preamble (PS: Preamble Short) when there is a possibility of using it for communication of one frame, such as when transmitting a short data payload or when transmitting data at a certain level.
  • PS Preamble Short
  • the training pattern to be added is shown.
  • the training pattern shown in C of FIG. 2 will also be described as the third preamble PS.
  • the third preamble PS has a configuration that can identify that the occupied time T of the transmission line is less than 100 microseconds.
  • the configuration of the third preamble PS is such that Short Training-0 is arranged in the first field and Long Training-1 is arranged in the second field.
  • D in FIG. 2 shows a training pattern that is set as the fourth preamble (PE: Preamble End) when the use of the transmission line is completed and the transmission line is opened.
  • PE Preamble End
  • the fourth preamble PE may be configured as a trailer signal at the end of the frame, or may be configured as a training signal that does not include data.
  • the configuration of the fourth preamble PE is such that Short Training-0 is arranged in the first field and Long Training-0 is arranged in the second field.
  • the first preamble PL (Preamble Long), the second preamble PM (Preamble Middle), the third preamble PS (Preamble Short), and the fourth preamble PE (Preamble End) are short training (Short Training) and long. It consists of a combination of multiple training sequences such as training (Long Training).
  • the preamble such as the first preamble PL includes a training pattern to which this technology is applied.
  • the first preamble PL, the second preamble PM, the third preamble PS, and the fourth preamble PE as training patterns will be described.
  • the training patterns described below are the first preamble PL, the second preamble PM, the third preamble PS, and the fourth preamble PE. It may correspond to a preamble.
  • the training pattern corresponds to the combination of frame training (training sequence) specified in the wireless LAN system to which this technology is applied, and corresponds to the frame preamble specified in the 5th generation wireless communication system (5G). ing.
  • training fields such as short training and long training include information for detecting signals.
  • “long”, “medium”, and “short” indicating the length of the data payload are convenient for the relative length when the length of the data payload is compared in three stages. It is represented as.
  • FIG. 3 shows a first example of the configuration of a data frame including a training pattern to which the present technique is applied.
  • a training pattern according to the occupation time of the transmission line is added according to the length of the data payload, and the data payload portion is configured as an A-MPDU (Aggregation-MPDU).
  • A-MPDU Aggregation-MPDU
  • An example is shown. That is, the training pattern is added to the beginning of the data frame.
  • A-MPDU is configured as one frame that aggregates multiple data units (MPDU: MAC Protocol Data Unit).
  • MPDU MAC Protocol Data Unit
  • each of the aggregated MPDUs is a subframe.
  • this A-MPDU including PLCP header information related to a protocol (PLCP: PHY Layer Convergence Protocol) for converting a MAC layer frame into a PHY layer frame is shown.
  • PLCP PHY Layer Convergence Protocol
  • This PLCP header The A-MPDU may be configured without information.
  • a in FIG. 3 shows a configuration when the training pattern is applied to a long data payload, and the data payload (Long Data Payload) to which the first preamble PL is added is configured as an A-MPDU.
  • FIG. 3B shows a configuration when the training pattern is applied to a medium data payload, and the payload data (MiddleDataPayload) to which the second preamble PM is added is configured as an A-MPDU. ..
  • C in FIG. 3 shows a configuration when the training pattern is applied to a short data payload, and the payload (Short Data Payload) to which the third preamble PS is added is configured as an A-MPDU.
  • FIG. 4 shows a second example of the configuration of a data frame including a training pattern to which the present technique is applied.
  • a training pattern according to the occupied time of the transmission line is first added to the beginning according to the length of the data payload, and the frame is formed at the timing when a predetermined length and time elapse.
  • a training pattern according to the remaining occupancy time is inserted in the middle. That is, the training pattern is added in the middle of the data frame.
  • FIG. 4A shows a configuration when the training pattern is applied to a long data payload, in which the first preamble PL is added to the beginning, and here, A-MPDU (1) is used as the data payload of a predetermined length. ) Is configured. Subsequently, a second preamble PM corresponding to the remaining time is added, an A-MPDU (2) is configured as a data payload of a predetermined length, and a third preamble PS corresponding to the remaining time is added. It is added, where the A-MPDU (3) is configured as the remaining data payload.
  • FIG. 4B shows the configuration when the training pattern is applied to a medium data payload, with a second preamble PM added at the beginning, where the A-MPDU is used as a data payload of a predetermined length. (1) is configured. Subsequently, a third preamble PS corresponding to the remaining time is added, and A-MPDU (2) is configured as the remaining data payload.
  • C in FIG. 4 shows a configuration when a training pattern is applied to a short data payload, and shows a configuration in which a training pattern to be inserted in the middle is unnecessary.
  • the third preamble PS is added at the beginning, and only the A-MPDU is configured as a short data payload.
  • the remaining occupancy time of the transmission line can be accurately determined. Even if you can't say it, you can grasp the approximate time (rough time).
  • FIG. 5 shows a third example of the configuration of a data frame including a training pattern to which the present technique is applied.
  • FIG. 5 shows a configuration in which the transmission of a long data payload was initially expected, but when the transmission is completed in a shorter time than expected during communication, the type of training pattern is changed according to the situation. There is. That is, the training pattern is changed according to the amount of communication.
  • A-MPDU (1) when the A-MPDU (1) is transmitted as a data payload of a predetermined length after the first preamble PL, the second preamble corresponding to the remaining time is thereafter. PM is added and A-MPDU (2) is transmitted as the remaining data payload. At this time, if this data payload (A-MPDU (2)) is short and the remaining time is left, a fourth preamble PE indicating the end is transmitted at the end of the data payload (A-MPDU (2)).
  • A-MPDU (1) was transmitted as a data payload of a predetermined length after the first preamble PL, and the subsequent data transmission time was short. If so, a third preamble PS is added and A-MPDU (2) is configured as a short data payload.
  • the communication device of another wireless communication system can grasp the remaining occupancy time of the transmission line in an approximate time. can do.
  • FIG. 6 shows a fourth example of the configuration of a data frame including a training pattern to which the present technique is applied.
  • FIG. 6 shows a configuration in which the transmission line is assumed to be occupied by a medium data payload, but the transmission does not end as expected.
  • a second preamble PM was added, and A-MPDU (1) was configured as the first data payload. If the remaining data payload does not expire within the occupancy time specified in the third preamble PS, it will be as follows.
  • a of FIG. 6 after showing that the occupancy time of the transmission line is extended by adding the second preamble PM again, the A-MPDU (2) is configured as the data payload, and further, the second preamble PM is configured. 3 Preamble PS is added and A-MPDU (3) is transmitted as the remaining data payload.
  • the training patterns showing a medium occupancy time continue, it can be grasped from the state of these training patterns that the occupancy time of the transmission line is extended even in the communication device of the other wireless communication system. be able to.
  • FIG. 7 shows an example of the configuration of a part of the data payload in the data frame transmitted from the transmitting side communication device 10Tx to the receiving side communication device 10Rx.
  • the configuration of this data payload is almost the same as that specified as the configuration of A-MPDU as in the conventional method. That is, the data payload is configured by concatenating a plurality of MPDUs from MPDU # 1 to MPDU # N to a predetermined PLCP header (PLCP Header).
  • a predetermined delimiter is added to each of these MPDUs, and the MPDU is composed of a predetermined MAC header (MAC Header), a data payload (Data Payload), and a frame check sequence (FCS).
  • MAC Header MAC Header
  • Data Payload data payload
  • FCS frame check sequence
  • FIG. 8 shows a first example of the configuration of a data payload including a training pattern to which the present technique is applied.
  • the A-MPDU (1) is configured up to a predetermined number of symbols or a predetermined time timing
  • the A-MPDU (2) is configured up to a predetermined number of symbols or a predetermined time timing.
  • An example is shown in which the remaining time is configured as an A-MPDU (3).
  • a training pattern to which this technology is applied is inserted as a mid amble between A-MPDU (1) and A-MPDU (2), and A-MPDU (2) and A-MPDU (3) are combined. In between, a training pattern applying this technology is inserted as a mid amble.
  • the mid amble is inserted in the middle of the data payload without depending on the boundary of the MPDU, but the data after the mid amble is configured to be discontinuous in the MPDU unit.
  • MPDU # 1 to MPDU # 8 MPDU # 3 is arranged across A-MPDU (1) and A-MPDU (2), and MPDU # 6 is A-MPDU (2).
  • A-MPDU (3) MPDU # 3 is arranged across A-MPDU (1) and A-MPDU (2)
  • MPDU # 6 is A-MPDU (2).
  • A-MPDU (3) is arranged across A-MPDU (1) and A-MPDU (2).
  • FIG. 9 shows a second example of the configuration of the data payload including the training pattern to which the present technique is applied.
  • the boundary between A-MPDU (1), A-MPDU (2), and A-MPDU (3) has a frame structure composed of MPDU units. As a mid amble, a training pattern applying this technology is inserted.
  • A-MPDU (1) is composed of PLCP header, MPDU # 1 and MPDU # 2
  • A-MPDU (2) is composed of MPDU # 3 to MPDU # 5, and A-MPDU (3).
  • the data after this mid amble can be processed independently as the MPDU.
  • the padding required for the signal processing unit may be inserted at the end of these MPDUs.
  • the structure of the training pattern to which this technique is applied is not limited to the data frame, but can be applied to other frames.
  • the configurations of other frames including the structure of the training pattern to which the present technique is applied will be described with reference to FIGS. 10 to 13.
  • FIG. 10 shows a first example of the configuration of another frame including a training pattern to which the present technique is applied.
  • FIG. 10 shows the configuration when the structure of the training pattern to which this technique is applied is applied to a block ACK frame (Block ACK).
  • the block ACK frame is a frame that is returned to the transmitting side communication device 10Tx as a block ACK indicating that the receiving side communication device 10Rx has received all the data.
  • a third preamble PS is added before the block ACK information field, and an end is indicated at the end of the block ACK information field, if necessary. It is configured to transmit 4 preamble PEs.
  • it is a block ACK frame that requires a short occupancy time when occupying the transmission line, and since retransmission is not performed, it is configured to be able to notify that the transmission line is open.
  • FIG. 11 shows a second example of the configuration of another frame including a training pattern to which the present technique is applied.
  • FIG. 11 shows the configuration when the structure of the training pattern to which this technique is applied is applied to the block NACK frame (Block NACK).
  • the block NACK frame is a frame that is returned to the transmitting side communication device 10Tx as a block ACK that can identify undelivered data when the receiving side communication device 10Rx cannot correctly receive some or all the data. is there.
  • the transmission line will be used according to the amount of retransmitted data, so the transmission line will be occupied. It is configured as a block NACK frame with a training pattern selected and added according to the estimated time.
  • the block NACK frame is configured by adding a second preamble PM.
  • the block NACK frame is configured by adding the third preamble PS.
  • the block NACK frame is configured so that the fourth preamble PE indicating the end is not added.
  • FIG. 12 shows a third example of the configuration of another frame including a training pattern to which the present technique is applied.
  • FIG. 12 shows a configuration when the structure of a training pattern to which this technique is applied is applied to a delayed ACK frame (Delay ACK).
  • the delay ACK frame suspends the return of the ACK information when the receiving side communication device 10Rx cannot collect the ACK information by a predetermined time or when it is periodically used in another wireless communication system 1-2. This is a frame that is supposed to be returned to the transmitting side communication device 10Tx in some cases.
  • Training pattern according to the estimated waiting time until the formal block ACK frame or block NACK frame may be returned after the delay ACK frame is returned, and the occupied time of the transmission line. Is configured as a delay ACK frame added by selecting.
  • the delay ACK frame is added with the second preamble PM. Is composed of.
  • the delay ACK frame is added with the third preamble PS. Is composed of.
  • the fourth preamble PE is not added to the delay ACK frame. If there is a periodic transmission line used in the wireless communication system 1-2 of the above, a fourth preamble PE may be added to the configuration.
  • FIG. 13 shows a fourth example of the configuration of another frame including a training pattern to which the present technique is applied.
  • FIG. 13 shows a configuration when the structure of the training pattern to which this technique is applied is applied to a block ACK request (BAR: Block ACK Request) frame.
  • the block ACK request frame is a frame used when the transmitting side communication device 10Tx requests the receiving side communication device 10Rx to return the block ACK frame.
  • the third preamble PS is added to the block ACK request frame.
  • the fourth preamble PE is not added to the end of the block ACK frame.
  • FIG. 14 shows a first example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • FIG. 14 when data is transmitted and received between the transmitting side communication device 10Tx and the receiving side communication device 10Rx in the wireless LAN system 1-1 (FIG. 1), a training pattern from another wireless communication system 1-2 is used.
  • the configuration is such that the usage status of the transmission line is grasped according to the detection status of the type.
  • the transmitting side communication device 10Tx detects the first preamble PL transmitted from the communication device 20 of another wireless communication system 1-2, the transmission line is used for a long time depending on the type of the training pattern. To grasp that (S11).
  • the transmitting side communication device 10Tx when the first preamble PL is detected, a timer for measuring the time until the occupancy time, which is the maximum length of the first preamble PL, expires is activated, and the time measured is the occupancy time.
  • the configuration is such that when the expiration time is reached, it is known that the transmission line has become vacant (S12).
  • the receiving side communication device 10Rx also detects the second preamble PM transmitted from the communication device 20 of the other wireless communication system 1-2, the transmission path takes a medium time due to the type of training pattern. Understand that it will be used for a long time (S17).
  • the receiving side communication device 10Rx when the second preamble PM is detected, a timer that clocks the time until the middle occupancy time expires is activated, and the timed time is the occupancy time expires.
  • the configuration is such that when the time is reached, it is known that the transmission line has become vacant (S18).
  • the receiving side communication device 10Rx when the above-mentioned first preamble PL can be detected, the time until the occupancy time, which is the maximum length thereof, expires is clocked. The timer is started (S16). Then, in the receiving side communication device 10Rx, even if the time counting of the timer corresponding to the detection of the second preamble PM ends, the transmission line is in an empty state until the timing of the timer corresponding to the detection of the first preamble PL ends. It is also possible to take a configuration that does not determine that it has become (S19).
  • FIG. 15 shows a second example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • the transmitting side communication device 10Tx detects the first preamble PL transmitted from the communication device 20 of the other wireless communication system 1-2, and grasps that the transmission line is used for a long time (S21). Later, if the 4th preamble PE is detected at the timing when the timer corresponding to the detection of the 1st preamble PL has not finished, it is grasped that the transmission line is vacant and opened at that time. (S22).
  • the receiving side communication device 10Rx detects the second preamble PM transmitted from the communication device 20 of the other wireless communication system 1-2, and grasps that the transmission line is used for a medium period of time (). After S27), if the 4th preamble PE is detected at a timing when the timing of the timer corresponding to the detection of the 2nd preamble PM has not ended, it is grasped that the transmission line has become empty at that time. It has the configuration of (S28).
  • the receiving side communication device 10Rx when the above-mentioned first preamble PL can be detected, the time until the occupancy time, which is the maximum length thereof, expires is clocked. The timer is started (S26). Then, in the receiving side communication device 10Rx, if only one fourth preamble PE is detected, it may not be a preamble indicating the end from the first preamble PL. Therefore, for example, the second (or third and subsequent) preambles and subsequent devices may not be preambles. ), Or until the time counting of the timer corresponding to the detection of the first preamble PL is completed, it is possible to adopt a configuration in which it is not determined that the transmission line is in an empty state (S29). ).
  • FIG. 16 shows a third example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • FIG. 16 shows a sequence in which a data frame with the first preamble PL added at the beginning is transmitted from the transmitting side communication device 10Tx in the wireless LAN system 1-1 to the receiving side communication device 10Rx.
  • the transmission line is vacant based on the detection status of the training pattern sent from the communication device 20 or the like of the other wireless communication system 1-2 on the transmission line based on the above-mentioned access control sequence. (S31), the transmission path occupancy time of the data frame to be transmitted is calculated (S32), and the training pattern according to the duration is selected.
  • the first preamble PL is selected, added to the beginning of the data frame, and transmitted (S33). After that, Data Payload (# 1) to Data Payload (# 10) are transmitted in order as a data payload in the signal format defined by the wireless LAN system 1-1.
  • the receiving side communication device 10Rx since the receiving side communication device 10Rx has a frame structure defined by the wireless LAN system 1-1 following the first preamble PL transmitted from the transmitting side communication device 10Tx, it is described in the PLCP header or the like.
  • the data payload part (Data Payload (# 1) to Data Payload (# 10)) is decoded according to the parameters.
  • the communication device 20 of the other wireless communication system 1-2 that has detected the first preamble PL, even if the signal format defined by the wireless LAN system 1-1 cannot be decoded, it depends on the type of training pattern. , The configuration is such that the occupied time of the transmission line can be grasped.
  • the transmission line is occupied over the maximum duration specified by the first preamble PL, and the time corresponding to the duration is grasped.
  • the timer for timing the time is activated, and the time when the transmission line is in use can be grasped (S36A, S36B).
  • the transmitting side communication device 10Tx transmits a fourth preamble PE indicating the end (S34).
  • This 4th preamble PE is detected by the communication device 20 of another wireless communication system 1-2, and even if the timer according to the detection of the 1st preamble PL has not ended, the communication ends and the transmission line is opened. It is possible to grasp that the system has become vacant (S37A, S37B).
  • FIG. 17 shows a fourth example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • the transmission line is used as a mid amble in the middle of the transmission line.
  • the sequence of transmitting the data frame to which the 2nd preamble PM or the 3rd preamble PS according to the occupancy time is sequentially added is shown.
  • the transmission line is vacant based on the detection status of the training pattern sent from the communication device 20 or the like of the other wireless communication system 1-2 on the transmission line based on the above-mentioned access control sequence. (S41), the transmission path occupancy time of the data frame to be transmitted is calculated (S42), and the training pattern according to the duration is selected.
  • the first preamble PL is selected, added to the beginning of the data frame, and transmitted (S43). After that, Data Payload (# 1) to Data Payload (# 3) are transmitted in order as a data payload in the signal format defined by the wireless LAN system 1-1.
  • the data payload is changed from Data Payload (# 4) to Data Payload. (# 6) are transmitted in order (S44).
  • the data payload is changed from Data Payload (# 7) to Data Payload ( # 9) are transmitted in order (S45).
  • the data payload transmitted following the first preamble PL, the second preamble PM, and the third preamble PS transmitted from the transmitting side communication device 10Tx is the wireless LAN system 1-1. Since the frame structure is defined in the above, the data payload (Data Payload (# 1) to Data Payload (# 10)) is decoded according to the parameters described in the PLCP header or the like.
  • the wireless LAN system 1- Even if the signal format defined in 1 cannot be decoded, the occupied time of the transmission line can be grasped according to the type of training pattern.
  • the communication device 20 of the other wireless communication system 1-2 occupies the transmission line for the maximum duration specified by the first preamble PL (S46A, S46B), and the second preamble PM. It is possible to grasp that the transmission line is occupied over the medium time specified in (S47A, S47B) and to grasp that the transmission line is occupied in the short time specified by the third preamble PS. Yes (S48A, S48B).
  • a timer that measures the time corresponding to the duration grasped by each training pattern is activated, and the time during which the transmission line is in use for each training pattern is activated. Can be grasped respectively.
  • the transmitting side communication device Tx terminates. It is not necessary to transmit the fourth preamble PE shown.
  • the communication device 20 of the other wireless communication system 1-2 it can be grasped that the transmission line will be vacant soon after the time counting of the timer corresponding to the detection of the third preamble PS ends. (S49A, S49B).
  • FIG. 18 shows a fifth example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • a data frame is transmitted from the transmitting side communication device 10Tx in the wireless LAN system 1-1 to the receiving side communication device 10Rx in small amounts, and is transmitted from the receiving side communication device 10Rx to the transmitting side communication device 10Tx.
  • the sequence of returning the training pattern according to the occupancy of the road is shown.
  • the transmission line is vacant based on the detection status of the training pattern sent from the communication device 20 of the other wireless communication system 1-2 on the transmission line based on the above-mentioned access control sequence.
  • the transmission path occupancy time of the data frame to be transmitted is calculated (S52), and the training pattern according to the duration is selected.
  • the first preamble PL is selected, added to the beginning of the data frame, and transmitted (S53A). After that, Data Payload (# 1) to Data Payload (# 4) are transmitted in order as a data payload in the signal format defined by the wireless LAN system 1-1.
  • the receiving side communication device 10Rx is configured to select and return the second preamble PM indicating the occupied time of the transmission line to the transmitting side communication device 10Tx (S53B).
  • the data payload is changed from Data Payload (# 5) to Data Payload (#). 8) are transmitted in order (S54A).
  • the receiving side communication device 10Rx is configured to select and return the third preamble PS indicating the occupied time of the transmission line to the transmitting side communication device 10Tx (S54B).
  • the transmitting side communication device 10Tx after adding the third preamble PS as a mid amble according to the time for continuously using the transmission line, the data payload is changed from Data Payload (# 9) to Data Payload (# 10). ) Are transmitted in order (S55A).
  • the data payload transmitted following the first preamble PL, the second preamble PM, and the third preamble PS transmitted from the transmitting side communication device 10Tx is defined by the wireless LAN system 1-1. Since it has a frame structure, the data payload (Data Payload (# 1) to Data Payload (# 10)) is decoded according to the parameters described in the PLCP header or the like.
  • the wireless LAN system 1 Even if the signal format specified in -1 cannot be decoded, the occupied time of the transmission line can be grasped according to the type of training pattern.
  • the communication device 20 of the other wireless communication system 1-2 occupies the transmission line for the maximum duration specified by the first preamble PL (S56A, S56B), and the second preamble PM. It is possible to grasp that the transmission line is occupied over the medium time specified in (S57A, S57B) and to grasp that the transmission line is occupied in the short time specified by the third preamble PS. Yes (S58A, S58B).
  • a timer that measures the time corresponding to the duration grasped by each training pattern is activated, and the time during which the transmission line is in use for each training pattern is activated. Can be grasped respectively.
  • FIG. 19 shows a sixth example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • the communication device 20 of the other wireless communication system 1-2 detects the third preamble PS transmitted from the transmission side communication device 10Tx. , It can be grasped that the transmission line is occupied in a short time specified by the third preamble PS (S58A, S58B).
  • the transmitting side communication device 10Tx and the receiving side also with respect to the communication device 20 of another wireless communication system 1-2 that is in contact with the transmitting side communication device 10Tx and the receiving side communication device 10Rx, which should not be accessed originally. Since the training pattern from the communication device 10Rx is detected more effectively, a more reliable access control method can be provided.
  • the fourth preamble PE indicating the end is transmitted from both the receiving side communication device 10Rx and the transmitting side communication device 10Tx (S61, S62).
  • the transmission line was vacant and opened to the communication device 20 of the other wireless communication system 1-2 without waiting for the end of the timer in response to the detection of the third preamble PS. , It is possible to notify more reliably (S66A, S66B).
  • FIG. 20 shows a seventh example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • the receiving side communication device 10Rx when data is transmitted / received between the transmitting side communication device 10Tx and the receiving side communication device 10Rx in the wireless LAN system 1-1, the receiving side communication device 10Rx transmits data to the transmitting side communication device 10Tx. Shows the sequence for returning a confirmation of receipt.
  • the block ACK frame to which the training pattern type to which the present technology is applied is returned to the transmitting side communication device 10Tx is returned. Is shown.
  • the receiving side communication device 10Rx transmits a short ACK frame to the transmitting side communication device 10Tx, the third preamble PS is added to the head and the block ACK frame is transmitted (S71B, S72B).
  • the receiving side communication device 10Rx Since the receiving side communication device 10Rx receives all the data, the data frame is not retransmitted, so that the fourth preamble PE indicating that the transmission line is open is also transmitted. (S73B). Further, the transmitting side communication device 10Tx that has received the block ACK frame may also be configured to transmit the fourth preamble PE indicating that the transmission line is opened (S71A).
  • the wireless LAN system 1- Even if the signal format defined in 1 cannot be decoded, it is possible to grasp the occupied time of the transmission line and the opening of the transmission line according to the type of training pattern.
  • a timer that grasps that the transmission line is occupied in a short time defined by the third preamble PS and clocks the time corresponding to the duration. Can be activated and the time when the transmission line is in use can be grasped (S76A, S76B).
  • the timer corresponding to the detection of the third preamble PS It is possible to grasp that the transmission line is vacant and opened without waiting for the end of the time measurement (S77A, S77B).
  • FIG. 21 shows an eighth example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • the receiving side communication device 10Rx when data is transmitted / received between the transmitting side communication device 10Tx and the receiving side communication device 10Rx in the wireless LAN system, the receiving side communication device 10Rx does not reach the transmitting side communication device 10Tx. It shows a sequence to return the receipt confirmation if it exists.
  • the receiving side communication device 10Rx Since the receiving side communication device 10Rx requests the transmitting side communication device 10Tx to retransmit the data, the occupancy time of the transmission line of the retransmitted data is calculated, and training according to the occupancy time of the transmission line is performed. Select a pattern. For example, the receiving side communication device 10Rx transmits a block NACK frame in which the NACK information is described by adding the second preamble PM to the head when the retransmission is possible with a medium occupancy time (S81B, S82B).
  • the transmitting side communication device 10Tx that has received this block NACK frame identifies the data that needs to be retransmitted, calculates the time required for retransmitting those data, and selects a training pattern according to the occupied time of the transmission line. .. For example, with the third preamble PS added to the beginning, Resend Data (# 1) to Resend Data (# 3) are transmitted in order as retransmission data (S81A).
  • the retransmission data (Resend Data (# 1) to Resend Data (# 3)) is decoded, and when all the data is correctly received, the above-mentioned block ACK It is configured to return the frame.
  • Subsequent block ACK frame transmission sequences (S83B, S84B, S85B, S82A) are the same as the block ACK frame transmission sequences (S71B, S72B, S73B, S71A) of FIG. Omit.
  • the communication device 20 of another wireless communication system 1-2 that sequentially detects the second preamble PM, the third preamble PS, and the fourth preamble PE transmitted from the receiving side communication device 10Rx or the transmitting side communication device 10Tx. Then, even if the signal format specified in the wireless LAN system 1-1 cannot be decoded, it is possible to grasp the occupied time of the transmission line and the opening of the transmission line according to the type of training pattern. There is.
  • the communication device 20 of the other wireless communication system 1-2 occupies the transmission line for a medium time specified by the second preamble PM (S86A, S86B), and the third preamble It can be grasped that the transmission line is occupied in a short time specified by PS (S87A, S87B, S88A, S88B).
  • a timer that measures the time corresponding to the duration grasped by each training pattern is activated, and the time during which the transmission line is in use for each training pattern is activated. Can be grasped respectively.
  • the transmission line becomes empty and opens. It is possible to grasp that (S89A, S89B).
  • FIG. 22 shows a ninth example of a sequence of access control according to the type of training pattern to which the present technique is applied.
  • the receiving side communication device 10Rx when data is transmitted / received between the transmitting side communication device 10Tx and the receiving side communication device 10Rx in the wireless LAN system 1-1, the receiving side communication device 10Rx is a block ACK frame (or a block NACK frame).
  • the receiving side communication device 10Rx When it is difficult to collect ACK information at a predetermined SIFS timing, or when it is periodically used in another wireless communication system 1-2, in order to temporarily delay the return of the ACK frame.
  • the sequence of returning the message to the transmitting side communication device 10Tx is shown.
  • the time for occupying the transmission line is calculated and transmitted as a delay ACK frame with the type of training pattern to which the present technology is applied. Is shown.
  • the receiving side communication device 10Rx transmits a delay ACK frame by adding a second preamble PM to the beginning when the data can be retransmitted to the transmitting side communication device 10Tx in a medium occupancy time. (S91B, S92B).
  • transmission of the fourth preamble PE indicating the end is not required, but when it is periodically used in another wireless communication system 1-2, the fourth preamble PE indicating the end may be transmitted. ..
  • the transmitting side communication device 10Tx that received this delay ACK frame transmits a block ACK request frame with the third preamble PS added to the beginning at the timing when the ACK frame can be returned (S91A, S92A). That is, since the ACK exchange sequence of this block ACK request frame is completed in a short time, the configuration is such that a third preamble PS is added and transmitted.
  • this block ACK request frame is received following the third preamble PS transmitted from the transmitting side communication device 10Tx, the above-mentioned block ACK frame (or block NACK frame) is returned. It has become.
  • Subsequent block ACK frame sequences are the block ACK frame transmission sequences (S71B, S72B, S73B, S71A) of FIG. 20 described above, or the block ACK frame transmission sequence of FIG. 21 (S71B, S72B, S73B, S71A). Since it is the same as S83B, S84B, S85B, S82A), the description thereof will be omitted here.
  • the communication device 20 of another wireless communication system 1-2 that sequentially detects the second preamble PM, the third preamble PS, and the fourth preamble PE transmitted from the receiving side communication device 10Rx or the transmitting side communication device 10Tx. Then, even if the signal format specified in the wireless LAN system 1-1 cannot be decoded, it is possible to grasp the occupied time of the transmission line and the opening of the transmission line according to the type of training pattern. There is.
  • sequence (S96A to S99A, S96B to S99B) in the communication device 20 of the other wireless communication system 1-2 is the same as the sequence (S86A to S89A, S86B to S89B) in the communication device of FIG. 21 described above. , The description thereof is omitted here.
  • FIG. 23 shows a first example of interaction between the transmitting side communication device 10Tx and the receiving side communication device 10Rx during data transmission.
  • the frame transmitted by the transmitting side communication device 10Tx (Transmitter) is described from the upper part in the figure downward, while the receiving side communication device 10Rx (Receiver) transmits from the lower part in the drawing upward.
  • the frame is described.
  • the direction of time is from left to right in the figure. It should be noted that these relationships are the same in other figures described later.
  • the transmitting side communication device 10Tx adds the first preamble PL assuming the occupancy time of the transmission line of the data payload (A-MPDU) transmitted by itself, and transfers the A-MPDU via the transmission line. And send.
  • the receiving side communication device 10Rx returns a block ACK frame according to the reception status of the A-MPDU transmitted from the transmitting side communication device 10Tx via the transmission line.
  • the receiving side communication device 10Rx adds a third preamble PS, transmits a block ACK frame, and notifies that the transmission line has been opened.
  • a fourth preamble PE indicating the end is transmitted.
  • the transmitting side communication device 10Tx that has received the block ACK frame indicates the end in order to notify that the transmission line has been opened because all the data has been correctly received by the receiving side communication device 10Rx.
  • the fourth preamble PE is transmitted.
  • FIG. 24 shows a second example of the interaction between the transmitting side communication device 10Tx and the receiving side communication device 10Rx during data transmission.
  • FIG. 24 shows a flow in which the receiving side communication device 10Rx transmits a block NACK frame to the transmitting side communication device 10Tx when a part or all of the data payload (A-MPDU) cannot be received correctly. ing.
  • the transmitting side communication device 10Tx adds a second preamble PM assuming the occupancy time of the transmission line of the data payload (A-MPDU) transmitted by itself, and transfers the A-MPDU via the transmission line. And send.
  • the receiving side communication device 10Rx calculates the occupancy time of the transmission line of the retransmitted data when a part of the data of the A-MPDU received via the transmission line is not delivered.
  • the second preamble PM corresponding to it is selected, and the block NACK frame is transmitted via the transmission line.
  • the transmitting side communication device 10Tx that received the block NACK frame identifies the data that needs to be retransmitted, calculates the occupied time of the transmission line, selects the third preamble PS that matches it, and retransmits the data (retransmission data ( A-MPDU) is transmitted via a transmission line.
  • the third preamble PS and the fourth preamble PE are added to the receiving side communication device 10Rx according to the reception status of the A-MPDU, as in the case of time t12 and time t13 in FIG.
  • the block ACK frame is returned, and the transmission side communication device 10Tx transmits the fourth preamble PE.
  • FIG. 25 shows a third example of interaction between the transmitting side communication device 10Tx and the receiving side communication device 10Rx during data transmission.
  • FIG. 25 shows a flow in which the receiving side communication device 10Rx returns a delay ACK frame to the transmitting side communication device 10Tx, and then transmits the block ACK frame in response to the receipt of the block ACK request frame. ing.
  • the transmitting side communication device 10Tx adds a second preamble PM assuming the occupancy time of the transmission line of the data payload (A-MPDU) transmitted by itself, and transfers the A-MPDU via the transmission line. And send.
  • the receiving side communication device 10Rx when the receiving side communication device 10Rx cannot determine the reception status of the A-MPDU received via the transmission line, it takes time to collect the ACK information, or in another wireless communication system 1-2. The time used periodically is calculated, the training pattern corresponding to that time is selected, and the training pattern is added to the delay ACK frame and transmitted. In this example, it is determined that a medium amount of time is required and a second preamble PM is added to the delay ACK frame.
  • the transmitting side communication device 10Tx transmits a block ACK request frame to the receiving side communication device 10Rx via the transmission line as necessary at a timing considering the processing time of the receiving side communication device 10Rx. Since this block ACK request frame is a temporary exchange of information, a third preamble PS is added.
  • the third preamble PS and the fourth preamble PE are added to the receiving side communication device 10Rx according to the reception status of the A-MPDU, as in the case of time t12 and time t13 in FIG.
  • the block ACK frame is returned, and the transmission side communication device 10Tx transmits the fourth preamble PE.
  • FIG. 26 shows a fourth example of interaction between the transmitting side communication device 10Tx and the receiving side communication device 10Rx during data transmission.
  • the first preamble PL is added to transmit the first A-MPDU, and the predetermined A-MPDU is transmitted. After transmitting the occupancy time or the amount of data of the data, the flow of selecting and transmitting the training pattern according to the remaining time as a mid amble is shown.
  • the transmitting side communication device 10Tx adds the first preamble PL assuming the occupancy time of the transmission line of the data payload (A-MPDU) transmitted by itself, and sets the first A-MPDU to the transmission line. Send via.
  • the transmitting side communication device 10Tx selects and transmits the second preamble PM according to the remaining time as the mid amble, and continues the data payload ( A-MPDU) is transmitted via the transmission line.
  • the transmitting side communication device 10Tx again transmits the predetermined occupied time or data amount, and then selects and transmits the third preamble PS according to the remaining time as the mid amble, and the remaining data.
  • the payload (A-MPDU) is transmitted via the transmission line.
  • the third preamble PS and the fourth preamble PE are added to the receiving side communication device 10Rx according to the reception status of the A-MPDU, as in the case of time t12 and time t13 in FIG.
  • the block ACK frame is returned, and the transmission side communication device 10Tx transmits the fourth preamble PE.
  • FIG. 27 shows a fifth example of interaction between the transmitting side communication device 10Tx and the receiving side communication device 10Rx during data transmission.
  • the first preamble PL is added to transmit the first A-MPDU, and the predetermined A-MPDU is transmitted.
  • a data frame is transmitted in small amounts according to the occupied time or the amount of data.
  • the transmitting side communication device 10Tx adds the first preamble PL assuming the occupancy time of the transmission line of the data payload (A-MPDU) transmitted by itself, and sets the first A-MPDU to the transmission line. Send via.
  • the training pattern according to the remaining time of the occupied time is selected and transmitted from the receiving side communication device 10Rx, and at time t52, the receiving side communication device 10Rx selects the second preamble PM. Is being sent.
  • the transmitting side communication device 10Tx transmits the remaining data payload (A-MPDU) again in a small amount following the second preamble PM corresponding to the training pattern sent from the receiving side communication device 10Rx.
  • the receiving side communication device 10Rx selects and transmits the third preamble PS according to the remaining time of the occupied time.
  • the transmitting side communication device 10Tx transmits the remaining data payload (A-MPDU) via the transmission line following the third preamble PS according to the training pattern sent from the receiving side communication device 10Rx. ..
  • the third preamble PS and the fourth preamble PE are added to the receiving side communication device 10Rx according to the reception status of the A-MPDU, as in the case of time t12 and time t13 in FIG.
  • the block ACK frame is returned, and the transmission side communication device 10Tx transmits the fourth preamble PE.
  • FIG. 28 shows a sixth example of interaction between the transmitting side communication device 10Tx and the receiving side communication device 10Rx during data transmission.
  • the transmitting side communication device when the receiving side communication device 10Rx detects a training pattern from the communication device 20 of another wireless communication system 1-2, for example, and it becomes difficult to receive data, the transmitting side communication device indicates to that effect.
  • the flow of notifying 10Tx by, for example, the fourth preamble PE indicating the end is shown.
  • the transmitting side communication device 10Tx adds the first preamble PL assuming the occupancy time of the transmission line of the data payload (A-MPDU) transmitted by itself, and transfers the A-MPDU via the transmission line. And send.
  • the receiving side communication device 10Rx selects and transmits the fourth preamble PE when it detects that the transmission line cannot be used due to the use of the communication device 20 of the other wireless communication system 1-2.
  • the transmitting side communication device 10Tx when the transmitting side communication device 10Tx is trying to transmit a large number of data payloads (A-MPDUs) and is transmitting the data payload by the first preamble PL, it receives, for example, as in the sequence of FIG. 25.
  • A-MPDUs data payloads
  • the transmission line When transmitting a training pattern from the side communication device 10Rx, the transmission line cannot be used after that due to the use of another wireless communication system 1-2, by changing the training pattern type to the 4th preamble PE. It is a notification.
  • the transmitting side communication device 10Tx that has detected the 4th preamble PE is configured to interrupt the subsequent transmission of the data payload (A-MPDU). As a result, it becomes possible to inform the transmitting side communication device 10Tx that the receiving side communication device 10Rx cannot receive data satisfactorily due to the influence of the other wireless communication system 1-2.
  • FIG. 29 shows an example of the configuration of a communication device to which the present technology is applied.
  • the communication device 10 shown in FIG. 29 is configured as an access point AP10 or a communication terminal STA10 in the wireless LAN system 1-1 (FIG. 1), that is, a transmission side communication device 10Tx or a reception side communication device 10Rx.
  • the communication device 10 includes a network connection module 11, an information input module 12, a device control module 13, an information output module 14, and a wireless communication module 15.
  • the network connection module 11 is composed of, for example, a circuit having a function of connecting to an Internet network from an optical fiber network or other communication line via a service provider as an access point AP10, its peripheral circuits, a microcontroller, a semiconductor memory, and the like. Will be done.
  • the network connection module 11 performs various processes related to the Internet connection according to the control from the device control module 13.
  • the network connection module 11 is configured to be equipped with a function such as a communication modem for connecting to the Internet network when the communication device 10 operates as an access point AP10.
  • the information input module 12 is composed of input devices such as push buttons, a keyboard, and a touch panel, for example.
  • the information input module 12 has a function of inputting instruction information corresponding to an instruction from the user to the device control module 13.
  • the device control module 13 is composed of, for example, a microprocessor, a microcontroller, or the like.
  • the device control module 13 controls each part (module) in order to operate the communication device 10 as the access point AP10 or the communication terminal STA10.
  • the device control module 13 performs various processes on the information supplied from the network connection module 11, the information input module 12, or the wireless communication module 15. Further, the device control module 13 supplies the information obtained as a result of its own processing to the network connection module 11, the information output module 14, or the wireless communication module 15.
  • the device control module 13 supplies transmission data passed from an application or the like in the upper layer of the protocol to the wireless communication module 15 when transmitting data, or receives data supplied from the wireless communication module 15 when receiving data. Is passed to applications in the upper layer of the module.
  • the information output module 14 is composed of, for example, an output device including a display element such as a liquid crystal display, an organic EL display, and an LED (Light Emitting Diode) display, and a speaker that outputs sound or music.
  • a display element such as a liquid crystal display, an organic EL display, and an LED (Light Emitting Diode) display
  • a speaker that outputs sound or music.
  • the information output module 14 has a function of displaying necessary information to the user based on the information supplied from the device control module 13.
  • the information processed by the information output module 14 includes, for example, the operating state of the communication device 10 and information obtained via the Internet network.
  • the wireless communication module 15 is composed of, for example, a wireless chip, peripheral circuits, a microcontroller, a semiconductor memory, and the like.
  • the wireless communication module 15 performs various processes related to wireless communication in accordance with the control from the device control module 13. Details of the configuration of the wireless communication module 15 will be described later with reference to FIG.
  • a wireless communication module equipped with a wireless communication chip and peripheral circuits will be described as an example, but this technology is applied not only to the wireless communication module but also to, for example, a wireless communication chip and a wireless communication LSI. be able to. Further, in the wireless communication module, it is optional to include the antenna.
  • the device control module 13 and the wireless communication module 15 are indispensable components, but the network connection module 11, the information input module 12, and the information output module 14 excluding them are configured. It is optional to include it in the element.
  • each communication device 10 operating as the access point AP10 or the communication terminal STA10 can be configured to consist of only the required modules, and the unnecessary parts are simplified or not incorporated. Can be.
  • the network connection module 11 can be incorporated only in the access point AP10, and the information input module 12 and the information output module 14 can be incorporated only in the communication terminal STA10.
  • FIG. 30 shows an example of the configuration of the wireless communication module 15 of FIG. 29.
  • the interface 101 for exchanging various information and data with the outside, the transmission buffer 102 for temporarily storing the transmission data, the transmission sequence management unit 103 for managing the sequence of the transmission data, and the transmission data are predetermined.
  • the transmission frame construction unit 104 that converts to the frame format is configured to be used at the time of data transmission.
  • a feature of this technology is that a communication control unit 105, an access control unit 106, a transmission signal processing unit 107, a preamble construction unit 108, a preamble detection unit 110, and a reception signal processing unit 111 are provided for this configuration.
  • the communication control unit 105 controls the execution of data transmission of the wireless LAN system and the execution of transmission data reception.
  • the access control unit 106 grasps the usage status of other wireless communication systems on the wireless transmission path from the detection status of the common training pattern to which the present technology is applied, and executes and receives data frames and ACK frames. To control.
  • the transmission signal processing unit 107 configures the data payload transmitted by the wireless LAN system as a predetermined A-MPDU frame.
  • the preamble construction unit 108 constructs a preamble signal. For example, the preamble construction unit 108 selects a common training pattern to which the present technology is applied, and adds it to the beginning or the middle of the frame as needed.
  • the transmission / reception antenna unit 109 controls an antenna for transmitting a transmission signal or receiving a reception signal.
  • the preamble detection unit 110 detects a predetermined preamble signal added to a signal from another wireless communication system on the transmission path.
  • the reception signal processing unit 111 processes the reception signal of the wireless LAN system following the predetermined preamble signal. For example, the preamble detection unit 110 detects a common training pattern to which the present technology is applied.
  • the reception frame analysis unit 112 that extracts necessary data, the reception sequence management unit 113 that manages the sequence of the received data, and the reception buffer 114 that temporarily stores the received data receive data It is considered to be the configuration used in the case.
  • the arrows between the blocks represent the flow and control of data (signals), and each block cooperates with other blocks connected by the arrows in order to realize its own function. And work.
  • the access control unit 106 follows the control from the communication control unit 105 in order to realize the function related to the present technology (for example, the function related to the construction and detection of the training pattern), and the transmission frame construction unit 104 and the transmission signal processing unit 104. It operates in cooperation with 107, the preamble construction unit 108, the transmission / reception antenna unit 109, the preamble detection unit 110, the reception signal processing unit 111, and the reception frame analysis unit 112.
  • the communication control unit 105 controls the access control unit 106 to perform, for example, the following processing.
  • a plurality of types of training patterns (for example, the first preamble PL, the second preamble PM, and the second preamble PM) are used by the communication control unit 105.
  • a training pattern is selected from the 3 preamble PS and the 4th preamble PE) according to the occupied time of the transmission line, and data such as a signal (for example, a data frame (data payload)) to which the selected training pattern is added.
  • a signal or a request signal such as a block ACK request frame is transmitted to another communication device (for example, a receiving side communication device 10Rx or a communication device 20) via a transmission line.
  • a plurality of types of training patterns (for example, the first preamble PL, the second preamble PM, and the second preamble PM) are used by the communication control unit 105.
  • a training pattern corresponding to the occupied time of the transmission line is selected from the 3 preamble PS and the 4th preamble PE), and a signal to which the selected training pattern is added (for example, the first receipt confirmation of a block ACK frame or the like) is confirmed.
  • a signal, a second receipt confirmation signal such as a block NACK frame, and a third receipt confirmation signal such as a delay ACK frame are transmitted to another communication device (for example, a transmission side communication device 10Tx or a communication device 20) via a transmission line. Will be sent.
  • the transmitting side communication device 10Tx selects the type of training pattern according to the occupied time of the transmission line. It is processed according to the transmission operation.
  • the access control unit 106 determines whether data can be transmitted as the wireless LAN system 1-1 (S101), and communicates with the communication device 30 of another wireless LAN system 1-3 on the transmission path. When the training pattern from the communication device 20 of the other wireless communication system 1-2 is not detected, it is determined that the data can be transmitted (“YES” in S101).
  • the access control unit 106 determines whether or not the receiving side communication device 10Rx is a communication device (function compatible device) capable of grasping the structure of the training pattern to which the present technology is applied (S102), and determines that the device is a function compatible device. If so (“YES” in S102), the processes of steps S103 to S108 are executed.
  • a communication device function compatible device
  • the access control unit 106 acquires information such as the information length of the data to be transmitted and information indicating the communication rate that can be transmitted, and based on the acquired information, the total time required for transmission in wireless communication, that is, the transmission path. Occupancy time is estimated (S103).
  • the preamble construction unit 108 selects the first preamble PL (S105). Further, when the preamble construction unit 108 determines that the occupied time of the transmission line is less than a predetermined medium and exceeds a predetermined short time (“NO” in S104, “YES” in S106), the first 2 When the preamble PM is selected (S107) and it is determined that the occupied time of the transmission line is less than a predetermined short time (“NO” in S104, “NO” in S106), the third preamble PS is selected. (S108).
  • step S102 If it is determined in the determination process of step S102 that the receiving side communication device 10Rx is not a function compatible device, the process proceeds to step S109.
  • the preamble construction unit 108 sets the preamble (legacy preamble) corresponding to the conventional method, assuming that the receiving side communication device 10Rx is a device corresponding to the conventional wireless LAN system.
  • step S110 When the processing of steps S105, S107, S108, or S109 is completed, the processing proceeds to step S110.
  • the transmission signal processing unit 107 performs data transmission processing and transmits a data payload following the selected training pattern or preamble (S110).
  • step S110 When the process of step S110 is completed, the process proceeds to step S111 of FIG. 32, and the access control unit 106 executes the determination process of steps S111 to S113.
  • step S112 when it is determined that a predetermined amount of data has not been transmitted (“NO” in S112) and when it is determined that the addition of the mid amble is unnecessary (“NO” in S113), the processing is performed. , Returning to step S110 in FIG. 31, the configuration is such that data transmission is continued.
  • step S111 when the data is transmitted to the end and it is determined that the remaining amount of data is exhausted (“NO” in S111), the process proceeds to step S114, and the access control unit 106 advances the ACK frame in steps S114 to S116. Wait processing is executed.
  • the block ACK request frame is transmitted (S115) after a predetermined time has elapsed, and the block ACK transmitted from the receiving side communication device 10Rx. Wait for a frame or block NACK frame (S116).
  • the access control unit 106 executes the processing of the undelivered data in steps S117 to S119.
  • the undelivered data is identified based on the block ACK information (S118), and the process is the step of FIG. 31.
  • the data retransmission process is executed.
  • step S119 the fourth preamble PE indicating the end is transmitted as necessary (S119).
  • the transmitting side communication device 10Tx or the transmitting side communication device 10Tx that determines the usage status of the transmission line according to the type of the detected training pattern or The processing is performed according to the operation of the receiving side communication device 10Rx.
  • step S201 when it is determined that the access control unit 106 has detected the preamble signal of the predetermined wireless LAN system (“YES” in S201), or the preamble signal to which the present technology is applied is detected. Even at any time, if it is subsequently determined that the signal format is defined as the frame of the wireless LAN system (“YES” in S201), the processes of steps S202 and S203 are executed.
  • the L-SIG information is acquired from the PLCP header (S202), and the occupancy time of the transmission line is set by estimating the occupancy time of the transmission line (S203).
  • step S201 determines whether the preamble signal of the wireless LAN system has been detected (“NO” in S201). If it is determined in the determination process of step S201 that the preamble signal of the wireless LAN system has not been detected (“NO” in S201), the process proceeds to step S204, and the access control unit 106 steps. The processes of S204 to S210 are executed.
  • the transmission line is set to be occupied over the maximum waiting time as a long waiting time (S205). Further, when only the second preamble PM is detected (“YES” in S206), the transmission line is set to be occupied over a medium waiting time (S207). Further, when only the third preamble PS is detected (“YES” in S208), the transmission line is set to be occupied for a short time (S209).
  • the access control unit 106 acquires the number of these training patterns in the active and active state (hereinafter, referred to as the operation detection preamble number), and the operation detection preamble number is added and managed each time (hereinafter, the operation detection preamble number). S210).
  • step S203 or S210 When the process of step S203 or S210 is completed, the process proceeds to step S211 of FIG. 34, and the access control unit 106 executes the process of steps S211 to S218.
  • step S211 When it is determined in the determination process of step S211 that the set waiting time value becomes larger than the existing waiting time value (“YES” in S211), the waiting time is updated as necessary (“YES” in S211). S212). When the process of step S212 is completed or the determination process of step S211 determines that the process is negative (“NO” in S211), the process proceeds to step S213.
  • processing is performed. Is advanced to step S213 of FIG. 34.
  • step S213 When it is determined in the determination process of step S213 that the fourth preamble PE has been detected (“YES” in S213), the number of operation detection preambles is acquired, and the number of operation detection preambles is subtracted by the detected number (S214). ).
  • step S215 when it is determined in the determination process of step S215 that the number of operations of the preamble such as the first preamble PL has become 0 based on the number of operation detection preambles (“YES” in S215), the access control process is terminated. To do. On the other hand, when it is determined that the number of operating preambles such as the first preamble PL does not become 0 (“NO” in S215), the process proceeds to step S216 and the subtraction operation is continued.
  • step S213 If it is determined in the determination process of step S213 that the fourth preamble PE has not been detected (“NO” in S213), the process proceeds to step S216.
  • step S216 When it is determined in the determination process of step S216 that the preambles such as the first preamble PL, the second preamble PM, the third preamble PS, and the fourth preamble PE have not been detected by the lapse of a predetermined time (“YES” in S216). "), The process proceeds to step S217. Then, the waiting time is sequentially subtracted (S217), and when it is determined that the waiting time becomes 0 (“YES” in S218), the access control process is terminated. On the other hand, if it is determined in the determination process of step S218 that the waiting time does not become 0 (“NO” in S218), the process proceeds to step S201 of FIG. 33, and the subtraction operation is continued.
  • this data reception process operates so as to have a training pattern structure common to other wireless communication systems 1-2
  • information such as an ACK frame is selected by selecting the type of training pattern according to the occupied time of the transmission line. Is processed according to the reception operation of the receiving side communication device 10Rx that transmits the data.
  • the access control unit 106 determines whether or not a data frame addressed to itself has been received by the received signal processing unit 111 after the predetermined preamble signal has been detected by the preamble detection unit 110 (S301), and the data addressed to itself. When it is determined that the frame has been received (“YES” in S301), the processes of steps S302 to S306 are executed.
  • the received signal processing unit 111 acquires the information length (Length) of the data frame (S302), determines whether or not the data is normally received in a predetermined data unit (MPDU unit) (S303), and correctly receives the data. Only the created data is stored in the receive buffer 114 (S304), and the ACK sequence number (No) of the received data (MPDU) is stored (S305).
  • MPDU unit predetermined data unit
  • step S306 If it is determined in the determination process of step S306 that the end of the data has arrived (“YES” in S306), the process proceeds to step S307.
  • the receiving side communication device 10Rx cannot collect the ACK information until a predetermined time, or when it is determined in the determination process of step S307 that the ACK information is processed as a delay ACK frame, or in another wireless communication system 1-2, it is periodic. If there is a use of a transmission line (“YES” in S307), the delay ACK information is constructed (S308), the processing time required to return the delay ACK frame, or the period in another wireless communication system 1-2. The time to be used is calculated (S309). Then, the process proceeds to step S318 of FIG. 36, and shifts to the training pattern selection process.
  • the second preamble PM is selected (S319), while it is calculated.
  • the third preamble PS is selected (S320).
  • step S307 If it is determined in the determination process of step S307 that the frame is not processed as a delay ACK frame, the process proceeds to step S310 of FIG. 36, and the ACK sequence number (No) of the received data is acquired (S310). , The presence or absence of undelivered data is determined (S311).
  • step S311 determines whether there is no undelivered data (“NO” in S311). If it is determined in the determination process of step S311 that there is no undelivered data (“NO” in S311), the process proceeds to step S312, and the processes of steps S312, S313, and S320 are executed.
  • the block ACK information is constructed (S312), and the data received and stored in the receive buffer 114 is output via the interface 101 (S313). Then, the process proceeds to step S320, where the third preamble PS is selected (S320) and the block ACK frame is constructed.
  • step S311 determines whether there is undelivered data (“YES” in S311). If it is determined in the determination process of step S311 that there is undelivered data (“YES” in S311), the process proceeds to step S314, and the processes of steps S314 to S320 are executed.
  • the undelivered data is constructed as block NACK information (S314), and the time required for transmission is calculated from the information amount (unreceived data amount) of the unreceived data (MPDU) (S315), and the calculated time is calculated.
  • a training pattern corresponding to the time required for retransmission is selected according to the time (S316 to S320).
  • the first preamble PL is selected (S317).
  • the second preamble PM is selected (S319), and the calculated time is calculated.
  • the third preamble PS is selected (S320).
  • the response frame is a block ACK frame, a block NACK frame, or a delay ACK frame.
  • step S322 when it is determined in the determination process of step S322 that the block ACK request frame addressed to itself has been received (“YES” in S322), the process returns to step S310 and sets the block ACK frame or the block NACK frame. It is configured to be returned afterwards.
  • step S324 When it is determined that the block ACK request frame addressed to itself has not been received (“NO” in S322), and when it is determined that the transmission line can be opened (“YES” in S323). , The fourth preamble PE indicating the end is set as necessary (S324), and the transmission is performed at the same time. When the process of step S324 is completed, the data reception process is completed.
  • step S324 when it is determined in the determination process of step S324 that the transmission path is not opened by transmitting the block NACK frame and retransmitting the undelivered data (“NO” in S323), the process is performed. , Returning to step S301 of FIG. 35, the configuration is such that the retransmission data is received.
  • the transmitting side communication device 10Tx can be configured as, for example, an access point AP10 (base station), and the receiving side communication device 10Rx can be configured, for example, as a communication terminal STA10 (terminal station).
  • the transmitting side communication device 10Tx or the receiving side communication device 10Rx is configured as a part (for example, a wireless communication module, a wireless chip, etc.) of the devices (parts) constituting the access point AP10 or the communication terminal STA10. May be good.
  • the receiving side communication device 10Rx configured as the communication terminal STA10 is a wireless device for, for example, a smartphone, a tablet terminal, a mobile phone, a personal computer, a digital camera, a game machine, a TV receiver, a wearable terminal, a speaker device, or the like. It can be configured as an electronic device having a communication function.
  • Example of training pattern For example, when the length of the data payload is divided into three stages of "long”, “medium”, and “short", the first preamble PL and the second preamble are according to the length.
  • the case of defining PM and the third preamble PS has been illustrated, but the method of defining the training pattern is arbitrary, for example, the length of the data payload is divided into four or more stages.
  • this technology proposes a training pattern (preamble) and an access control method that can identify the occupancy time (occupancy duration) common to different wireless communication systems.
  • different wireless communication systems define a common training pattern so that one frequency band can be shared and used, and by using different training patterns according to the time occupied by the transmission line, the other wireless communication system can be used. Also, it is possible to sequentially grasp the time when the transmission line becomes available.
  • the transmission line by preparing a plurality of training patterns according to the occupied time of the transmission line, it is possible to roughly grasp the time occupied after the preamble even in other wireless communication systems. Further, for example, in another wireless communication system, even if the duration information of the wireless LAN system cannot be grasped, the usage status of the transmission line can be grasped in a certain time unit.
  • the training pattern can be used to identify whether the communication via this communication channel is transient (transmits a signal indicating the end) or may be used repeatedly. Also, to continue using the data according to the remaining amount of data to be transmitted and the degree of congestion of the transmission line, change the training pattern each time and use it for other wireless communication systems in your own wireless communication system. Provides a training pattern that makes it identifiable.
  • the remaining occupied time can be effectively used when the data is transmitted by occupying the transmission line for a long time or for other wireless communication systems. Can be notified.
  • a training pattern indicating the remaining time can be inserted in the middle of the data. If the training pattern is periodically inserted in the middle of the data, it is possible to grasp in a short time that the transmission is busy even in other wireless communication systems.
  • the block ACK request frame is transmitted from the transmitting side communication device 10Tx, and the block ACK is transmitted from the receiving side communication device 10Rx. It can be used to control the reception of frames.
  • the receiving side communication device 10Rx determines whether or not the data is retransmitted according to the data reception status, and sets the training pattern according to the time to occupy the transmission line, so that the data can be reliably received. it can.
  • the receiving side communication device 10Rx when the data retransmission is completed, the training pattern for notifying the end is notified, so that the transmission line can be effectively used for other wireless communication systems. You can notify. Further, as a derivative of this, the receiving side communication device 10Rx can transmit these training patterns at a predetermined timing to notify the surrounding communication devices that reception is being performed on the transmission path. ..
  • the processing performed by the computer according to the program does not necessarily have to be performed in chronological order in the order described as the flowchart. That is, the processing performed by the computer according to the program also includes processing executed in parallel or individually (for example, parallel processing or processing by an object).
  • the program may be processed by one computer (processor) or may be distributed processed by a plurality of computers.
  • the program may be transferred to a distant computer for execution.
  • system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing.
  • each step described in the above flowchart can be executed by one device or shared by a plurality of devices. Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
  • the control unit Select a training pattern according to the occupied time of the transmission line from multiple types of training patterns.
  • control unit selects a training pattern according to the remaining time required for transmission of the data signal in the middle of the data signal.
  • the control unit selects a training pattern for notifying the opening of the transmission line when the use of the transmission line is terminated.
  • control unit selects a training pattern to be added to a request signal for requesting a receipt confirmation signal according to a reception status of a data signal in another communication device. apparatus.
  • the control unit aggregates a plurality of data to construct a data signal to be transmitted.
  • the communication device according to any one of (1) to (7) above, wherein the training pattern is composed of a combination of a plurality of training sequences.
  • the training pattern is a signal format that can be exchanged with its own wireless communication system or other communication devices constituting another wireless communication system. ..
  • a communication device that controls transmission of a data signal to another communication device via a transmission line Select a training pattern according to the occupied time of the transmission line from multiple types of training patterns.
  • a communication method in which a signal to which the selected training pattern is added is transmitted to another communication device via a transmission line.
  • It is equipped with a control unit that controls reception of data signals transmitted from other communication devices via a transmission line.
  • the control unit Select a training pattern according to the occupied time of the transmission line from multiple types of training patterns.
  • the control unit selects a training pattern according to the remaining amount of the data signal received when the control unit continues to receive the data signal after receiving the predetermined data signal according to the above (11) or (12).
  • Communication device (14) The communication device according to any one of (11) to (13) above, wherein the control unit selects a training pattern for notifying the opening of the transmission line when the use of the transmission line is terminated.
  • control unit selects a training pattern to be added to the first receipt confirmation signal according to the reception status of the data signal.
  • the control unit adds a training pattern for notifying the opening of a transmission line to the end of the first receipt confirmation signal.
  • control unit selects a training pattern to be added to the second receipt confirmation signal according to the occupation time of the transmission path of the data signal to be retransmitted. ..
  • the control unit When the control unit delays and transmits the first receipt confirmation signal according to the reception status of the data signal, the control unit sets the third receipt confirmation signal according to the time required for constructing the first receipt confirmation signal.
  • the communication device according to any one of (11) to (17) above, which selects a training pattern to be added.
  • the training pattern is a signal format that can be exchanged with its own wireless communication system or other communication devices constituting another wireless communication system. .. (20)
  • a communication device that controls the reception of data signals transmitted from other communication devices via a transmission line Select a training pattern according to the occupied time of the transmission line from multiple types of training patterns.
  • a communication method in which a signal to which the selected training pattern is added is transmitted to another communication device via a transmission line.
  • Wireless LAN system 1-1, 1-3 Wireless LAN system, 1-2 Other wireless communication systems, 10, 10Tx, 10Rx communication device, 20 communication device, 30 communication device, 11 network connection module, 12 information input module, 13 device control module , 14 information output module, 15 wireless communication module, 101 interface, 102 transmission buffer, 103 transmission sequence management unit, 104 transmission frame construction unit, 105 communication control unit, 106 access control unit, 107 transmission signal processing unit, 108 preamble construction unit , 109 transmission / reception antenna unit, 110 preamble detection unit, 111 reception signal processing unit, 112 reception frame analysis unit, 113 reception sequence management unit, 114 reception buffer, AP10 access point, STA10 communication terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本技術は、より容易に伝送路の占有状況を把握することができるようにする通信装置、及び通信方法に関する。 伝送路を介してデータ信号を、他の通信装置に送信する制御を行う制御部を備え、制御部は、複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、選択したトレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する制御を行う通信装置が提供される。本技術は、例えば無線LANシステムに適用することができる。

Description

通信装置、及び通信方法
 本技術は、通信装置、及び通信方法に関し、特に、より容易に伝送路の占有状況を把握することができるようにした通信装置、及び通信方法に関する。
 近年、無線LANシステムの爆発的な利用状況に鑑み、周波数共用技術によって、既存の一時システムにおいて、運用がなされない時間や空間では、他の無線通信システムで利用することを可能とする運用技術が注目されている。
 従来の無線通信システムでは、所定のプリアンブル信号を1つ定義することで、その無線通信システムで利用される信号のみを検出する方法が一般的であった。
 また、特許文献1には、第1のグループと第2のグループとで異なるプリアンブル構造の信号を定義し、第1のプリアンブル構造で、第2のグループの送信を遅延させる構成に関する技術が開示されている。
特表2019-520754号公報
 ところで、従来の無線通信システムでは、個々の無線通信システムで独自のプリアンブル信号を規定していたため、他の無線通信システムのプリアンブル信号を検出することができなかった。そのため、他の無線通信システムによる伝送路の占有状況を把握することができず、より容易に伝送路の占有状況を把握するための技術が求められていた。
 本技術はこのような状況に鑑みてなされたものであり、より容易に伝送路の占有状況を把握することができるようにするものである。
 本技術の一側面の通信装置は、伝送路を介してデータ信号を、他の通信装置に送信する制御を行う制御部を備え、前記制御部は、複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する制御を行う通信装置である。
 本技術の一側面の通信方法は、伝送路を介してデータ信号を、他の通信装置に送信する制御を行う通信装置が、複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する通信方法である。
 本技術の一側面の通信装置、及び通信方法においては、複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンが選択され、選択された前記トレーニングパターンを付加した信号が、伝送路を介して他の通信装置に送信される。
 本技術の一側面の通信装置は、他の通信装置から送信されてくるデータ信号を、伝送路を介して受信する制御を行う制御部を備え、前記制御部は、複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する通信装置である。
 本技術の一側面の通信方法は、他の通信装置から送信されてくるデータ信号を、伝送路を介して受信する制御を行う通信装置が、複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する通信方法である。
 本技術の一側面の通信装置、及び通信方法においては、複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンが選択され、選択された前記トレーニングパターンを付加した信号が、伝送路を介して他の通信装置に送信される。
 なお、本技術の一側面の通信装置は、独立した装置であってもよいし、1つの装置を構成している内部ブロックであってもよい。
本技術を適用した無線通信システムによる無線通信ネットワークの構成の例を示す図である。 本技術を適用したトレーニングパターンの形式の構成の例を示す図である。 本技術を適用したトレーニングパターンを含むデータフレームの構成の第1の例を示す図である。 本技術を適用したトレーニングパターンを含むデータフレームの構成の第2の例を示す図である。 本技術を適用したトレーニングパターンを含むデータフレームの構成の第3の例を示す図である。 本技術を適用したトレーニングパターンを含むデータフレームの構成の第4の例を示す図である。 データフレームにおけるデータペイロードの部分の構成の例を示す図である。 本技術を適用したトレーニングパターンを含むデータペイロードの構成の第1の例を示す図である。 本技術を適用したトレーニングパターンを含むデータペイロードの構成の第2の例を示す図である。 本技術を適用したトレーニングパターンを含む他のフレームの構成の第1の例を示す図である。 本技術を適用したトレーニングパターンを含む他のフレームの構成の第2の例を示す図である。 本技術を適用したトレーニングパターンを含む他のフレームの構成の第3の例を示す図である。 本技術を適用したトレーニングパターンを含む他のフレームの構成の第4の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第1の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第2の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第3の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第4の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第5の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第6の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第7の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第8の例を示す図である。 本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第9の例を示す図である。 送信側通信装置と受信側通信装置におけるデータ伝送時の相互動作の第1の例を示す図である。 送信側通信装置と受信側通信装置におけるデータ伝送時の相互動作の第2の例を示す図である。 送信側通信装置と受信側通信装置におけるデータ伝送時の相互動作の第3の例を示す図である。 送信側通信装置と受信側通信装置におけるデータ伝送時の相互動作の第4の例を示す図である。 送信側通信装置と受信側通信装置におけるデータ伝送時の相互動作の第5の例を示す図である。 送信側通信装置と受信側通信装置におけるデータ伝送時の相互動作の第6の例を示す図である。 本技術を適用した通信装置の構成の例を示したブロック図である。 図29の無線通信モジュールの構成の例を示したブロック図である。 データ送信処理の流れを説明するフローチャートである。 データ送信処理の流れを説明するフローチャートである。 アクセス制御処理の流れを説明するフローチャートである。 アクセス制御処理の流れを説明するフローチャートである。 データ受信処理の流れを説明するフローチャートである。 データ受信処理の流れを説明するフローチャートである。
<1.本技術の実施の形態>
 従来、無線LAN(Local Area Network)システムのような自営系無線通信において利用される周波数帯域と、公衆系無線通信システムで利用される周波数帯域は、明確に区別されていたため、双方の無線通信システムが混在する環境になっていなかった。
 近年、無線LANシステムの爆発的な利用状況に鑑み、周波数帯域がひっ迫しており、新たな周波数帯域を利用する技術の実用化が望まれており、周波数共用技術によって、既存の1次無線通信システムにおいて、運用がなされない時間や空間では、他の無線通信システムで利用することを可能とする運用技術が注目されている。
 従来からの無線通信の技術では、同じ周波数帯域で運用する無線通信システムは、同じ信号形式を利用することが前提として作られており、無線LANシステムでは、1990年代に運用が開始された当初の装置と互換性を保つために、信号の先頭に付加されるプリアンブル構造を同じものとして規格が決められていた。
 しかしながら、無線LANシステムでは時代の変遷とともに、より高性能かつ高速な伝送が実用化されるに至っても、旧来のプリアンブル構造を踏襲したフレームフォーマットを採用することになっており、このレガシーなプリアンブル信号を付加してゆく構成が、世代が増すごとに付加される情報が順次増加してきたことで、これらすべての世代の通信装置が把握できる非効率なフレーム構成となっていた。
 また、3GPP(Third Generation Partnership Project)で規格化された、第5世代無線通信システム(5G)などに代表される公衆系無線通信システムでは、通信事業者が独占的に周波数帯域を占用することが可能なため、世代ごとの互換性をとる必要がなく、次の世代の技術に大幅に変更したシステムを導入しやすくなっていた。
 しかしながら、即座に世代を切り替えるためには、一斉に基地局装置や通信端末を入れ替える必要があり、その費用がかさむことから、1世代前の通信規格との互換性を保ちつつ、新たなサービスを逐次導入する方法が取られていた。
 現在、6GHzの周波数帯においては、既存の1次無線通信システムに影響を与えないことを条件に、他の無線通信システムで運用を可能とする技術提案がなされており、この周波数帯域を無線LANシステムと第5世代無線通信システム(5G)の相互で利用することができることが検討されている。
 これらの従来の無線通信システムでは、所定のプリアンブル信号を1つ定義することで、その無線通信システムで利用される信号のみを検出する方法が一般的であった。
 ところで、従来の無線通信システムでは、個々の無線通信システムで独自のプリアンブル信号を規定していたため、他の無線通信システムのプリアンブル信号を検出することができなかった。
 新たな周波数帯域で異なる無線通信システムがほぼ同時にサービスインしてしまうと、他方の無線通信システムの信号を検出できないため、他の無線通信システムで伝送路が利用中であるにもかかわらず、信号を送信してしまう可能性があり、この場合、双方の無線通信システムの通信品質に悪影響を及ぼす可能性があった。
 また、どちらか一方の無線通信システムの信号形式を、その周波数帯域で利用する信号形式として規定してしまうと、他方の無線通信システムの参入障壁になってしまい、周波数共用技術で利用可能な周波数帯域での利用の合意が取れなくなるという問題があった。
 あるいは、双方の無線通信システムと互換性のない、全く新しい信号形式を決めて運用する方法も考えられるが、この場合、信号形式のみならず、アクセス方式なども統一しなければならず、どちらか一方の無線通信システムが主導することになり、他方の無線通信システムとしての運用が難しくなるという問題が生じてしまう。
 そのような問題に対しては、所定の信号形式のうち、共通のプリアンブル信号を決めて、双方の無線通信システムは、プリアンブル信号を送信するデータの先頭に付けて送信することで、このプリアンブル信号を検出した場合に、伝送路が利用中であると定めることができる。
 しかしながら、共通のプリアンブル信号を決めただけでは、そのデータの先頭にしか配置されないため、データの途中からこれらを検出しても、伝送路がどれくらい占有されているのか、即座に判断ができないという問題がある。
 そこで、本技術では、伝送路(無線伝送路)が占有される時間を識別できるトレーニングパターンの形式を複数用意し、データの先頭になるトレーニングパターンの形式を選択的に付加して送信する構成を提案する。
 さらに、長いデータの途中にミッドアンブルとして挿入される信号形式にも、伝送路が占有される残り時間に応じて、トレーニングパターンの形式を選択的に挿入して送信する構成を提案する。
 また、伝送路が占有される残り時間が生じた場合は、伝送終了時示すトレーニングパターンを、いわばトレーラ信号として送信することで、伝送路が開放されたことを通知する構成を提案する。
 さらに、データの受信側通信装置においても、データの受領確認結果に応じて、再送されるデータの有無や、その情報量に応じた伝送路占有時間に相当するトレーニングパターンの形式を選択して送信する構成を提案する。
 以下、図面を参照しながら本技術の実施の形態について説明する。
(ネットワークの構成)
 図1は、本技術を適用した無線通信システムによる無線通信ネットワークの構成の例を示している。
 図1において、無線LANシステム1-1を構成する通信装置10は、図中の白色の丸で示しており、アクセスポイントAP10に対し、通信端末STA10-1と通信端末STA10-2が接続されている状態で、それぞれの通信装置10が通信可能であることを、図中の実線の矢印A1,A2で示している。
 この無線LANシステム1-1の周囲に、第5世代無線通信システム(5G)等の他の無線通信システム1-2を構成する通信装置20として、図中の黒色の丸で示した基地局BS20と、通信端末TER20が近接に存在している状態にあり、それぞれの通信装置20が通信可能であることを、図中の実線の矢印B1で示している。
 また、無線LANシステム1-1では、他の無線通信システム1-2の信号形式を把握していない場合は、これらの通信が干渉として受信されることを、図中の破線の矢印C1乃至C4により表している。
 さらに、無線LANシステム1-1の近隣には、他の無線LANシステム1-3を構成する通信装置30として、図中のドットパターンが付された丸で示したアクセスポイントAP30に対し、通信端末STA30が、異なる周波数帯域で運用されており、それぞれの通信装置30が通信可能であることを、図中の実線の矢印D1で示している。
 ここで、無線LANシステム1-1と無線LANシステム1-3では、従来からは下位互換性を確保した通信フレームの構成が利用されていたので、そのバージョン(世代)が異なっていても、相互に通信をすることが可能となっていた。
 しかしながら、今後、新たな周波数帯域において、互換性のない信号形式が定義された場合、従来からの無線LANシステムと、最新の無線LANシステムとの間で、相互に通信することが難しくなるという問題がある。そのため、この信号形式が異なった場合には、従来の無線LANシステムの信号は、新たな無線LANシステムにおいて干渉として存在してしまうことを、図中の破線の矢印E1乃至E4により表している。
 つまり、アクセスポイントAP10,AP30では、周囲に存在する通信装置からの信号が、干渉情報として届く構成になることを示している。
 なお、以下、データを送信する通信装置を、送信側通信装置と称し、データを受信する通信装置を、受信側通信装置と称して説明する。例えば、無線LANシステム1-1においては、アクセスポイントAP10等の送信側通信装置10Txから送信されたデータが、通信端末STA10-1等の受信側通信装置10Rxにより受信される。
(トレーニングパターン形式の構成)
 図2は、異なる無線通信システムで共通となるトレーニングパターンの形式の構成の例を示している。
 図2のAは、第1プリアンブル(PL:Preamble Long)として、長いデータペイロードを送信する場合や、高頻度にデータを伝送する場合など、伝送路を長い時間に渡って占有する可能性がある場合に付加されるトレーニングパターンを示している。以下、図2のAに示したトレーニングパターンを、第1プリアンブルPLとも記述する。
 具体的には、第1プリアンブルPLは、伝送路の占有時間Tが、1ミリ秒を超える時間から、その通信規格や法令で定められた最大時間(Maximum Duration Time)に至ることを識別可能な構成となっている。第1プリアンブルPLの構成は、第1フィールドに、Short Training-1を配置し、第2フィールドに、Long Training-1を配置した構成とされる。
 図2のBは、第2プリアンブル(PM:Preamble Middle)として、中程度のデータペイロードを送信する場合や、一定程度でデータを伝送する場合など、伝送路を中程度の時間に渡って占有する可能性がある場合に付加されるトレーニングパターンを示している。以下、図2のBに示したトレーニングパターンを、第2プリアンブルPMとも記述する。
 具体的には、第2プリアンブルPMは、伝送路の占有時間Tが、100マイクロ秒を超える時間から、1ミリ秒に至ることを識別可能な構成となっている。第2プリアンブルPMの構成は、第1フィールドに、Short Training-1を配置し、第2フィールドに、Long Training-0を配置した構成とされる。
 図2のCは、第3プリアンブル(PS:Preamble Short)として、短いデータペイロードを送信する場合や、一定程度でデータを伝送する場合など、1つのフレームの通信に利用する可能性がある場合に付加されるトレーニングパターンを示している。以下、図2のCに示したトレーニングパターンを、第3プリアンブルPSとも記述する。
 具体的には、第3プリアンブルPSは、伝送路の占有時間Tが、100マイクロ秒未満であることを識別可能な構成となっている。第3プリアンブルPSの構成は、第1フィールドに、Short Training-0を配置し、第2フィールドに、Long Training-1を配置した構成とされる。
 図2のDは、第4プリアンブル(PE:Preamble End)として、伝送路の利用が終了して開放されたことを示す場合などに設定されるトレーニングパターンを示している。以下、図2のDに示したトレーニングパターンを、第4プリアンブルPEとも記述する。
 具体的には、第4プリアンブルPEは、フレームの末尾にトレーラ信号として構成されてもよく、あるいはデータが含まれないトレーニング信号として構成されてもよい。第4プリアンブルPEの構成は、第1フィールドに、Short Training-0を配置し、第2フィールドに、Long Training-0を配置した構成とされる。
 このように、第1プリアンブルPL(Preamble Long)、第2プリアンブルPM(Preamble Middle)、第3プリアンブルPS(Preamble Short)、及び第4プリアンブルPE(Preamble End)は、ショートトレーニング(Short Training)やロングトレーニング(Long Training)等の複数のトレーニングシーケンスの組み合わせにより構成される。
 換言すれば、第1プリアンブルPL等のプリアンブルは、本技術を適用したトレーニングパターンを含んでいる。以下、トレーニングパターンとしての、第1プリアンブルPL、第2プリアンブルPM、第3プリアンブルPS、及び第4プリアンブルPEをそれぞれ説明する。
 ただし、以下で説明する第1プリアンブルPL、第2プリアンブルPM、第3プリアンブルPS、及び第4プリアンブルPEであるトレーニングパターンが、第5世代無線通信システム(5G)等の他の無線通信システムでは、プリアンブルに相当する場合がある。
 すなわち、トレーニングパターンは、本技術を適用した無線LANシステムで規定されるフレームのトレーニング(トレーニングシーケンス)の組み合わせに相当し、第5世代無線通信システム(5G)で規定されるフレームのプリアンブルに相当している。
 なお、ショートトレーニングやロングトレーニング等のトレーニングのフィールドには、信号を検出するための情報等が含まれる。また、図2において、データペイロードの長さを表す「長い」、「中程度」、「短い」とは、データペイロードの長さを3段階に分けて比較したときの相対的な長さを便宜的に表している。
 以下、図3乃至図6を参照しながら、本技術を適用したトレーニングパターンを含むデータフレームの構成について説明する。
(第1の例)
 図3は、本技術を適用したトレーニングパターンを含むデータフレームの構成の第1の例を示している。
 図3において、データフレームの構成は、伝送路の占有時間に応じたトレーニングパターンが、データペイロードの長さに応じて付加され、データペイロード部分が、A-MPDU(Aggregation-MPDU)として構成される例を示している。すなわち、トレーニングパターンが、データフレームの先頭に付加された構成となる。
 A-MPDUは、複数のデータユニット(MPDU:MAC Protocol Data Unit)をアグリゲートした1つのフレームとして構成されている。ここで、A-MPDUがデータフレームであるとすれば、アグリゲートされるMPDUは、それぞれがサブフレームであるとも言える。
 なお、このA-MPDUには、MACレイヤのフレームをPHYレイヤのフレームに変換するためのプロトコル(PLCP:PHY Layer Convergence Protocol)に関するPLCPヘッダ情報を含んで構成される例を示すが、このPLCPヘッダ情報を含まずにA-MPDUが構成されてもよい。
 図3のAは、トレーニングパターンを、長いデータペイロードに適用する場合の構成を示しており、第1プリアンブルPLが付加されたデータペイロード(Long Data Payload)が、A-MPDUとして構成される。
 図3のBは、トレーニングパターンを、中程度のデータペイロードに適用する場合の構成を示しており、第2プリアンブルPMが付加されたペイロードデータ(Middle Data Payload)が、A-MPDUとして構成される。
 図3のCは、トレーニングパターンを、短いデータペイロードに適用する場合の構成を示しており、第3プリアンブルPSが付加されたペイロード(Short Data Payload)が、A-MPDUとして構成される。
(第2の例)
 図4は、本技術を適用したトレーニングパターンを含むデータフレームの構成の第2の例を示している。
 図4において、データフレームの構成は、伝送路の占有時間に応じたトレーニングパターンが、データペイロードの長さに応じて、まずは先頭に付加され、所定の長さ及び時間が経過するタイミングでフレームの途中にも、残りの占有時間に応じたトレーニングパターンが挿入される構成になっている。すなわち、トレーニングパターンが、データフレームの途中にも付加された構成となる。
 図4のAは、トレーニングパターンを、長いデータペイロードに適用する場合の構成を示しており、先頭に、第1プリアンブルPLが付加され、ここで所定の長さのデータペイロードとしてA-MPDU(1)が構成される。続いて、残りの時間に相当する第2プリアンブルPMが付加され、ここで所定の長さのデータペイロードとしてA-MPDU(2)が構成され、さらに、残りの時間に相当する第3プリアンブルPSが付加され、ここで残りのデータペイロードとしてA-MPDU(3)が構成される。
 図4のBは、トレーニングパターンを、中程度のデータペイロードに適用する場合の構成を示しており、先頭に、第2プリアンブルPMが付加され、ここで所定の長さのデータペイロードとしてA-MPDU(1)が構成される。続いて、残りの時間に相当する第3プリアンブルPSが付加され、ここで残りのデータペイロードとしてA-MPDU(2)が構成される。
 図4のCは、トレーニングパターンを、短いデータペイロードに適用する場合の構成を示しており、途中に挿入するトレーニングパターンが不要な構成を示している。この場合には、第3プリアンブルPSが先頭に付加され、短いデータペイロードとしてA-MPDUのみが構成される。
 このように、長い占有時間を示すトレーニングパターンから、徐々に短い占有時間を示すトレーニングパターンに変化することで、他の無線通信システムの通信装置でも、伝送路の占有残り時間を、正確にとは言えないまでも、おおよその時間(大雑把な時間)を把握することができる。
(第3の例)
 図5は、本技術を適用したトレーニングパターンを含むデータフレームの構成の第3の例を示している。
 図5においては、当初は長いデータペイロードの伝送を見込んでいたが、通信中に想定よりも短時間で伝送が終了した場合に、その状況に応じてトレーニングパターンの種類を変化させる構成を示している。すなわち、トレーニングパターンが、通信量に応じて変化される構成となる。
 図5のAにおいて、当初は、伝送路を長い時間に渡って占有する可能性があることから、第1プリアンブルPLを付加することによって、伝送路の利用が通知される。
 その後、図5のBに示すように、第1プリアンブルPLの後に、短いデータペイロード(A-MPDU)しか伝送されなかった場合には、その末尾に終了を示す第4プリアンブルPEが送信される。これにより、伝送路について、長い占有時間が想定されていたが、短い占有時間しか消費しなかった場合に、占有の終了を通知することができる。
 また、図5のCに示すように、第1プリアンブルPLの後に、所定の長さのデータペイロードとしてA-MPDU(1)が伝送された場合は、その後に残りの時間に相当する第2プリアンブルPMが付加され、これに残りのデータペイロードとしてA-MPDU(2)が伝送される。このとき、このデータペイロード(A-MPDU(2))が短く、残りの時間が余る場合には、その末尾に終了を示す第4プリアンブルPEが送信される。
 また、図5のDに示すように、第1プリアンブルPLの後に、所定の長さのデータペイロードとしてA-MPDU(1)が伝送され、その後のデータ伝送時間が短い時間で済むことが分かっている場合、第3プリアンブルPSが付加され、短いデータペイロードとしてA-MPDU(2)が構成される。
 なお、図5のDの場合、第3プリアンブルPSで規定された所定の占有時間内で、データ伝送が終了していることから、以降に第4プリアンブルPEは、必ずしも送信する必要はない。
 ここでも、長い占有時間を示すトレーニングパターンから、徐々に短い占有時間を示すトレーニングパターンに変化することで、他の無線通信システムの通信装置でも、伝送路の占有残り時間を、おおよその時間で把握することができる。
(第4の例)
 図6は、本技術を適用したトレーニングパターンを含むデータフレームの構成の第4の例を示している。
 図6においては、中程度のデータペイロードによる伝送路の占有を想定していたが、その伝送が想定通りに終了しない場合の構成を示している。
 図6のAでは、当初は、中程度のデータペイロードによる伝送路の占有を想定していたため、第2プリアンブルPMが付加され、最初のデータペイロードとしてA-MPDU(1)が構成されるが、残りのデータペイロードが、第3プリアンブルPSで規定した占有時間内で満了しない場合には、次のようになる。
 すなわち、図6のAでは、再度、第2プリアンブルPMを付加して伝送路の占有時間が延長されることを示した上で、データペイロードとしてA-MPDU(2)を構成し、さらに、第3プリアンブルPSを付加して、残りのデータペイロードとしてA-MPDU(3)を送信する。
 また、図6のBでは、当初は、中程度のデータペイロードによる伝送路の占有を想定していたため、第2プリアンブルPMが付加されて、最初のデータペイロードとしてA-MPDU(1)が構成される。このとき、データ伝送の終了が判別できない場合も、再度、第2プリアンブルPMを付加して伝送路の占有時間が延長されることを示して、データペイロードとしてA-MPDU(2)が構成される。
 そして、図6のBでは、このA-MPDU(2)が想定よりも短い占有時間で伝送された場合には、その末尾に終了を示す第4プリアンブルPEを送信する。
 これにより、中程度の占有時間を示すトレーニングパターンが継続することから、他の無線通信システムの通信装置においても、伝送路の占有時間が延長されたことを、これらのトレーニングパターンの状態から把握することができる。
(データペイロードの構成)
 図7は、送信側通信装置10Txから受信側通信装置10Rxに送信されるデータフレームにおけるデータペイロードの部分の構成の例を示している。
 このデータペイロードの構成は、従来方式と同様に、A-MPDUの構成として規定されるものと、ほぼ同じ構成になっている。つまり、データペイロードは、所定のPLCPヘッダ(PLCP Header)に、MPDU#1からMPDU#Nまで、複数のMPDUが連結して構成される。
 これらの各MPDUは、所定のデリミタ(Delimiter)が付加され、MPDUとしては、所定のMACヘッダ(MAC Header)と、データペイロード(Data Payload)と、フレームチェックシーケンス(FCS)から構成される。
(第1の例)
 図8は、本技術を適用したトレーニングパターンを含むデータペイロードの構成の第1の例を示している。
 図8においては、フレーム構成として、所定のシンボル数又は所定の時間タイミングまでA-MPDU(1)が構成され、それに続いて所定のシンボル数又は所定の時間タイミングまでA-MPDU(2)が構成され、残りの時間をA-MPDU(3)として構成する例が示されている。
 すなわち、A-MPDU(1)とA-MPDU(2)との間に、ミッドアンブルとして、本技術を適用したトレーニングパターンが挿入され、A-MPDU(2)とA-MPDU(3)との間にも、ミッドアンブルとして、本技術を適用したトレーニングパターンが挿入される構成となっている。
 このような構成の場合は、MPDUの境界に依存せずに、データペイロードの途中にミッドアンブルが挿入されるが、ミッドアンブル以降のデータが、MPDU単位では不連続になって構成される。具体的には、MPDU#1乃至MPDU#8のうち、MPDU#3は、A-MPDU(1)とA-MPDU(2)を跨いで配置され、MPDU#6は、A-MPDU(2)とA-MPDU(3)を跨いで配置されている。
(第2の例)
 図9は、本技術を適用したトレーニングパターンを含むデータペイロードの構成の第2の例を示している。
 図9においては、A-MPDU(1)と、A-MPDU(2)と、A-MPDU(3)の境界が、MPDU単位となって構成されるフレーム構成としているが、それぞれの境界に、ミッドアンブルとして、本技術を適用したトレーニングパターンが挿入される構成となっている。
 すなわち、A-MPDU(1)は、PLCPヘッダと、MPDU#1及びMPDU#2から構成され、A-MPDU(2)は、MPDU#3乃至MPDU#5から構成され、A-MPDU(3)は、MPDU#6乃至MPDU#8から構成されている。
 このような構成の場合は、データペイロードの途中にミッドアンブルを挿入するに際して、MPDUの境界に依存しているため、このミッドアンブル以降のデータをMPDUとして単独で処理することができる構成になっている。また、これらのMPDUの末尾には、信号処理単位に必要なパディングが挿入されて構成されてもよい。
(他のフレーム構成)
 本技術を適用したトレーニングパターンの構造は、データフレームに限らず、他のフレームに適用することも可能である。以下、図10乃至図13を参照しながら、本技術を適用したトレーニングパターンの構造を含む他のフレームの構成について説明する。
(第1の例)
 図10は、本技術を適用したトレーニングパターンを含む他のフレームの構成の第1の例を示している。
 図10では、本技術を適用したトレーニングパターンの構造を、ブロックACKフレーム(Block ACK)に適用した場合の構成を示している。ブロックACKフレームは、受信側通信装置10Rxが、全てのデータを受信できたことを示すブロックACKとして、送信側通信装置10Txに向けて返送するフレームである。
 ブロックACKフレームは、伝送路の占有時間が短く、一過性の利用であることから、ブロックACK情報フィールドの前に、第3プリアンブルPSを付加し、必要に応じてその末尾に終了を示す第4プリアンブルPEを送信する構成としてある。
 すなわち、伝送路を占有する際に短い占有時間で済むブロックACKフレームであり、しかも再送が行われないことから、伝送路が開放されることを通知できる構成になっている。
(第2の例)
 図11は、本技術を適用したトレーニングパターンを含む他のフレームの構成の第2の例を示している。
 図11では、本技術を適用したトレーニングパターンの構造を、ブロックNACKフレーム(Block NACK)に適用した場合の構成を示している。ブロックNACKフレームは、受信側通信装置10Rxが、一部又は全てのデータを正しく受信できなかった場合に、未達のデータを特定しうるブロックACKとして送信側通信装置10Txに向けて返送するフレームである。
 ブロックNACKフレームの返送の後に、未達データ(未受信データ)の再送が行われる可能性がある場合は、その再送データ量に応じて、伝送路が利用されることから、その伝送路の占有時間の見積りに応じて、トレーニングパターンを選択して付加したブロックNACKフレームとして構成される。
 すなわち、図11のAに示すように、再送データ量が多く、所定の時間を超過して送られる可能性がある場合において、ブロックNACKフレームは、第2プリアンブルPMが付加されて構成される。
 また、図11のBに示すように、再送データ量が少なく、所定の時間内で送られる可能性が高い場合において、ブロックNACKフレームは、第3プリアンブルPSが付加されて構成される。
 なお、このブロックNACKフレームの送信後に、データが再送される可能性があるので、ブロックNACKフレームには、終了を示す第4プリアンブルPEが、付加されない構成としてある。
(第3の例)
 図12は、本技術を適用したトレーニングパターンを含む他のフレームの構成の第3の例を示している。
 図12では、本技術を適用したトレーニングパターンの構造を、ディレイACKフレーム(Delay ACK)に適用した場合の構成を示している。ディレイACKフレームは、受信側通信装置10Rxが、所定の時間までにACK情報を収集できない場合や、他の無線通信システム1-2において周期的に利用される場合など、ACK情報の返送をペンディングする場合に送信側通信装置10Txに返送されることを想定したフレームである。
 ディレイACKフレームの返送の後に、正式なブロックACKフレーム、又はブロックNACKフレームの返送が行われる可能性があるタイミングに至るまでの待ち時間と、その伝送路の占有時間の見積りに応じて、トレーニングパターンを選択して付加したディレイACKフレームとして構成される。
 すなわち、図12のAでは、ブロックACKフレーム、又はブロックNACKフレームの返送までの待ち時間が所定の時間を超過して送られる可能性がある場合において、ディレイACKフレームは、第2プリアンブルPMが付加されて構成される。
 また、図12のBでは、ブロックACKフレーム、又はブロックNACKフレームの返送までの待ち時間が短く、所定の時間内で送られる可能性が高い場合において、ディレイACKフレームは、第3プリアンブルPSが付加されて構成される。
 なおここでも、このディレイACKフレームの送信後に、ブロックACKフレーム、又はブロックNACKフレームが送信される可能性があるので、ディレイACKフレームには、第4プリアンブルPEが、付加されない構成としてあるが、他の無線通信システム1-2において周期的な伝送路の利用が存在する場合には、第4プリアンブルPEが付加されて構成されてもよい。
(第4の例)
 図13は、本技術を適用したトレーニングパターンを含む他のフレームの構成の第4の例を示している。
 図13では、本技術を適用したトレーニングパターンの構造を、ブロックACKリクエスト(BAR:Block ACK Request)フレームに適用した場合の構成を示している。ブロックACKリクエストフレームは、送信側通信装置10Txから、受信側通信装置10Rxに対して、ブロックACKフレームの返送を要求する場合に利用されるフレームである。
 ブロックACKリクエストフレームは、その送信の直後に、ブロックACKフレーム、又はブロックNACKフレームを受信する構成になることから、第3プリアンブルPSが付加されて構成される。
 なお、ブロックACKリクエストフレームの送信の直後にブロックACKフレーム、又はブロックNACKフレームが返送されるため、その末尾に第4プリアンブルPEが、付加されない構成になっている。
(アクセス制御)
 次に、図14乃至図22のシーケンス図を参照しながら、本技術を適用したトレーニングパターンの種類によるアクセス制御について説明する。
(第1の例)
 図14は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第1の例を示している。
 図14においては、無線LANシステム1-1(図1)における送信側通信装置10Txと受信側通信装置10Rxとの間で、データを送受信するに際して、他の無線通信システム1-2からのトレーニングパターンの種類の検出状況に応じて、伝送路の利用状況を把握する構成としている。
 まず、送信側通信装置10Txが、他の無線通信システム1-2の通信装置20から送信された第1プリアンブルPLを検出した場合、そのトレーニングパターンの種類から、伝送路が長い時間に渡り利用されることを把握する(S11)。
 このとき、他の無線通信システム1-2からの信号が送信され続けていると想定されるが、この無線LANシステム1-1で規定された信号形式とは異なるため、信号を正しく復号することはできず、送信側通信装置10Tx等では、ノイズとして検出する可能性が高い。
 ここで、送信側通信装置10Txでは、第1プリアンブルPLを検出した場合、その最大長である占有時間が満了するまでの時刻を計時するタイマが起動され、その計時される時刻が、占有時間が満了する時刻となったとき、伝送路が空き状態になったことを把握する(S12)構成になっている。
 同様にして、受信側通信装置10Rxでも、他の無線通信システム1-2の通信装置20から送信された第2プリアンブルPMを検出した場合、そのトレーニングパターンの種類から、伝送路が中程度の時間に渡り利用されることを把握する(S17)。
 ここで、受信側通信装置10Rxでは、第2プリアンブルPMを検出した場合、その中程度の占有時間が満了するまでの時刻を計時するタイマが起動され、その計時される時刻が、占有時間が満了する時刻となったとき、伝送路が空き状態になったことを把握する(S18)構成になっている。
 さらに、受信側通信装置10Rxでは、図中の破線の枠で囲ったように、上述の第1プリアンブルPLを検出できた場合には、その最大長である占有時間が満了するまでの時刻を計時するタイマが起動される(S16)。そして、受信側通信装置10Rxでは、第2プリアンブルPMの検出に応じたタイマの計時が終了しても、第1プリアンブルPLの検出に応じたタイマの計時が終了するまでは、伝送路が空き状態になったと判断しない構成をとることも可能である(S19)。
(第2の例)
 図15は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第2の例を示している。
 図15においては、図14に示した第1の例と途中までは同様のシーケンスであるのでその説明を省略するが、他の無線通信システム1-2の通信装置20が伝送路の利用を終了した後に、その終了を示す第4プリアンブルPEを付加して送信したとき、送信側通信装置10Txで、そのトレーニングパターンを検出した場合のシーケンスを示している。
 まず、送信側通信装置10Txが、他の無線通信システム1-2の通信装置20から送信された第1プリアンブルPLを検出して伝送路が長い時間に渡り利用されることを把握した(S21)後に、まだ第1プリアンブルPLの検出に応じたタイマの計時が終了していないタイミングで、第4プリアンブルPEを検出した場合、その時点で、伝送路が空き状態になって開放されたことを把握する(S22)構成になっている。
 また、受信側通信装置10Rxが、他の無線通信システム1-2の通信装置20から送信された第2プリアンブルPMを検出して伝送路が中程度の時間に渡り利用されることを把握した(S27)後に、まだ第2プリアンブルPMの検出に応じたタイマの計時が終了していないタイミングで、第4プリアンブルPEを検出した場合、その時点で、伝送路が空き状態になったことを把握する(S28)構成になっている。
 さらに、受信側通信装置10Rxでは、図中の破線の枠で囲ったように、上述の第1プリアンブルPLを検出できた場合には、その最大長である占有時間が満了するまでの時刻を計時するタイマが起動される(S26)。そして、受信側通信装置10Rxでは、第4プリアンブルPEを1つ検出しただけでは、第1プリアンブルPLからの終了を示すプリアンブルではない可能性があるので、例えば、2つ目(若しくは3つ目以降)の第4プリアンブルPEを検出するまで、又は第1プリアンブルPLの検出に応じたタイマの計時が終了するまでは、伝送路が空き状態になったと判断しない構成をとることも可能である(S29)。
(第3の例)
 図16は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第3の例を示している。
 図16においては、無線LANシステム1-1における送信側通信装置10Txから受信側通信装置10Rxに対し、第1プリアンブルPLを先頭に付加したデータフレームを伝送するシーケンスを示している。
 まず、送信側通信装置10Txでは、上述のアクセス制御のシーケンスに基づき、伝送路上での他の無線通信システム1-2の通信装置20等から送られるトレーニングパターンの検出状況から、伝送路が空き状態にあることを把握した場合(S31)、送信すべきデータフレームの伝送路占有時間を算出し(S32)、その持続時間に応じたトレーニングパターンを選択する。
 ここでは、伝送路の占有時間が長い場合に、第1プリアンブルPLが選択され、データフレームの先頭に付加されて送信される(S33)。それ以降は、無線LANシステム1-1で規定された信号形式のデータペイロードとして、Data Payload(#1)からData Payload(#10)が順に送信される。
 一方で、受信側通信装置10Rxでは、送信側通信装置10Txから送信される第1プリアンブルPLに続いて、無線LANシステム1-1で規定されたフレーム構造であることから、PLCPヘッダ等に記載のパラメータに従い、データペイロードの部分(Data Payload(#1)乃至Data Payload(#10))が復号される。
 また、この第1プリアンブルPLを検出した他の無線通信システム1-2の通信装置20では、無線LANシステム1-1で規定された信号形式を復号できなくても、トレーニングパターンの種類に応じて、伝送路の占有時間を把握できる構成となっている。
 すなわち、他の無線通信システム1-2の通信装置20では、第1プリアンブルPLで規定された最大持続時間に渡って、伝送路が占有されることを把握するとともに、その持続時間に相当する時間を計時するタイマが起動され、伝送路が利用中となる時間を把握することができる(S36A,S36B)。
 その後、送信側通信装置10Txは、データ伝送が終了した場合に、終了を示す第4プリアンブルPEを送信する(S34)。この第4プリアンブルPEは、他の無線通信システム1-2の通信装置20により検出され、第1プリアンブルPLの検出に応じたタイマの計時が終了していなくとも、通信が終了して伝送路が空き状態になったことを把握することができる(S37A,S37B)。
(第4の例)
 図17は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第4の例を示している。
 図17においては、無線LANシステム1-1における送信側通信装置10Txから受信側通信装置10Rxに対し、第1プリアンブルPLを先頭に付加するのに加えて、その途中のミッドアンブルとして、伝送路の占有時間に応じた第2プリアンブルPM又は第3プリアンブルPSを逐次付加したデータフレームを伝送するシーケンスを示している。
 まず、送信側通信装置10Txでは、上述のアクセス制御のシーケンスに基づき、伝送路上での他の無線通信システム1-2の通信装置20等から送られるトレーニングパターンの検出状況から、伝送路が空き状態にあることを把握した場合(S41)、送信すべきデータフレームの伝送路占有時間を算出し(S42)、その持続時間に応じたトレーニングパターンを選択する。
 ここでは、伝送路の占有時間が長い場合に、第1プリアンブルPLが選択され、データフレームの先頭に付加されて送信される(S43)。それ以降は、無線LANシステム1-1で規定された信号形式のデータペイロードとして、Data Payload(#1)からData Payload(#3)が順に送信される。
 続いて、送信側通信装置10Txでは、伝送路を継続して利用する時間に応じて、ミッドアンブルとして、第2プリアンブルPMが付加された後に、データペイロードとして、Data Payload(#4)からData Payload(#6)が順に送信される(S44)。
 さらに、送信側通信装置10Txでは、伝送路を継続して利用する時間に応じて、ミッドアンブルとして、第3プリアンブルPSが付加された後に、データペイロードとして、Data Payload(#7)からData Payload(#9)が順に送信される(S45)。
 一方で、受信側通信装置10Rxでは、送信側通信装置10Txから送信される第1プリアンブルPLと、第2プリアンブルPMと、第3プリアンブルPSに続いて送られるデータペイロードが、無線LANシステム1-1で規定されたフレーム構造であることから、PLCPヘッダ等に記載のパラメータに従い、データペイロード(Data Payload(#1)乃至Data Payload(#10))の部分が復号される。
 また、送信側通信装置10Txから送信される第1プリアンブルPLと、第2プリアンブルPMと、第3プリアンブルPSを逐次検出した他の無線通信システム1-2の通信装置20では、無線LANシステム1-1で規定された信号形式を復号できなくても、トレーニングパターンの種類に応じて、伝送路の占有時間を把握できる構成となっている。
 すなわち、他の無線通信システム1-2の通信装置20では、第1プリアンブルPLで規定された最大持続時間に渡って伝送路が占有されることを把握し(S46A,S46B)、第2プリアンブルPMで規定された中程度の時間に渡って伝送路が占有されることを把握し(S47A,S47B)、第3プリアンブルPSで規定された短い時間に伝送路が占有されることを把握することができる(S48A,S48B)。
 そして、他の無線通信システム1-2の通信装置20では、各トレーニングパターンにより把握された持続時間に相当する時間を計時するタイマが起動され、トレーニングパターンごとに、伝送路が利用中となる時間をそれぞれ把握することができる。
 その後、送信側通信装置Txは、データ伝送が終了した場合に、例えば、第3プリアンブルPSを送信してから、相当の時間が経過して間もなく起動したタイマの計時が終了するときは、終了を示す第4プリアンブルPEを送信しなくてもよい。このとき、他の無線通信システム1-2の通信装置20では、第3プリアンブルPSの検出に応じたタイマの計時が終了することで、間もなく伝送路が空き状態になることを把握することができる(S49A,S49B)。
(第5の例)
 図18は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第5の例を示している。
 図18においては、無線LANシステム1-1における送信側通信装置10Txから受信側通信装置10Rxに対し、小出しにデータフレームを送信するとともに、受信側通信装置10Rxから送信側通信装置10Txに対し、伝送路の占有状況に応じたトレーニングパターンを返送するシーケンスを示している。
 まず、送信側通信装置10Txでは、上述のアクセス制御のシーケンスに基づき、伝送路上で他の無線通信システム1-2の通信装置20から送られるトレーニングパターンの検出状況から、伝送路が空き状態にあることを把握した場合(S51)、送信すべきデータフレームの伝送路占有時間を算出し(S52)、その持続時間に応じたトレーニングパターンを選択する。
 ここでは、トータルで伝送路を占有する時間が長いので、まず、第1プリアンブルPLが選択され、データフレームの先頭に付加されて送信される(S53A)。それ以降は、無線LANシステム1-1で規定された信号形式のデータペイロードとして、Data Payload(#1)からData Payload(#4)が順に送信される。
 このとき、受信側通信装置10Rxは、送信側通信装置10Txに対し、伝送路の占有時間を示した第2プリアンブルPMを選択して返送する構成になっている(S53B)。
 続いて、送信側通信装置10Txでは、伝送路を継続して利用する時間に応じて、ミッドアンブルとして第2プリアンブルPMを付加した後に、データペイロードとして、Data Payload(#5)からData Payload(#8)が順に送信される(S54A)。
 このとき、受信側通信装置10Rxは、送信側通信装置10Txに対し、伝送路の占有時間を示した第3プリアンブルPSを選択して返送する構成になっている(S54B)。
 さらに、送信側通信装置10Txでは、伝送路を継続して利用する時間に応じて、ミッドアンブルとして第3プリアンブルPSを付加した後に、データペイロードとして、Data Payload(#9)からData Payload(#10)が順に送信される(S55A)。
 受信側通信装置10Rxでは、送信側通信装置10Txから送信される第1プリアンブルPLと、第2プリアンブルPMと、第3プリアンブルPSに続いて送られるデータペイロードが、無線LANシステム1-1で規定されたフレーム構造であることから、PLCPヘッダ等に記載のパラメータに従い、データペイロード(Data Payload(#1)乃至Data Payload(#10))の部分が復号される。
 一方で、送信側通信装置10Txから送信される第1プリアンブルPLと、第2プリアンブルPMと、第3プリアンブルPSを逐次検出した他の無線通信システム1-2の通信装置20では、無線LANシステム1-1で規定された信号形式を復号できなくても、トレーニングパターンの種類に応じて、伝送路の占有時間を把握できる構成となっている。
 すなわち、他の無線通信システム1-2の通信装置20では、第1プリアンブルPLで規定された最大持続時間に渡って伝送路が占有されることを把握し(S56A,S56B)、第2プリアンブルPMで規定された中程度の時間に渡って伝送路が占有されることを把握し(S57A,S57B)、第3プリアンブルPSで規定された短い時間に伝送路が占有されることを把握することができる(S58A,S58B)。
 そして、他の無線通信システム1-2の通信装置20では、各トレーニングパターンにより把握された持続時間に相当する時間を計時するタイマが起動され、トレーニングパターンごとに、伝送路が利用中となる時間をそれぞれ把握することができる。
 その後、他の無線通信システム1-2の通信装置20では、第3プリアンブルPSの検出に応じたタイマの計時が終了することで、伝送路が空き状態になることを把握することができる(S59A,S59B)。
(第6の例)
 図19は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第6の例を示している。
 図19においては、図18に示したアクセス制御のシーケンスに示したように、他の無線通信システム1-2の通信装置20では、送信側通信装置10Txから送信される第3プリアンブルPSを検出し、この第3プリアンブルPSで規定された短い時間に伝送路が占有されることを把握することができる(S58A,S58B)。
 ここでは、本来アクセスしないことが望ましい、送信側通信装置10Txと受信側通信装置10Rxに接している他の無線通信システム1-2の通信装置20に対しても、送信側通信装置10Txと受信側通信装置10Rxからのトレーニングパターンがより効果的に検出されるようにしているため、より確実なアクセス制御方法が提供できる構成となっている。
 すなわち、無線LANシステム1-1において、データ伝送が終了した場合に、受信側通信装置10Rxと送信側通信装置10Txの双方から、終了を示す第4プリアンブルPEを送信する(S61,S62)ことで、第3プリアンブルPSの検出に応じたタイマの計時の終了を待つことなく、他の無線通信システム1-2の通信装置20に対しても、伝送路が空き状態となって開放されたことを、より確実に通知することができる(S66A,S66B)。
(第7の例)
 図20は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第7の例を示している。
 図20においては、無線LANシステム1-1における送信側通信装置10Txと受信側通信装置10Rxとの間で、データを送受信するに際して、受信側通信装置10Rxが、送信側通信装置10Txに対し、データの受領確認を返送するシーケンスを示している。
 ここでは、例えば、受信側通信装置10Rxにおいて、全てのデータフレームを受信できた場合に、送信側通信装置10Txに対し、本技術を適用したトレーニングパターンの種類を付加したブロックACKフレームを返送する構成を示している。
 受信側通信装置10Rxは、送信側通信装置10Txに対し、短いACKフレームを送信することから、第3プリアンブルPSを先頭に付加して、ブロックACKフレームを送信する(S71B,S72B)。
 なお、受信側通信装置10Rxでは、全てのデータを受領しているため、データフレームが再送されることはないので、伝送路が開放されていることを示す第4プリアンブルPEを併せて送信する構成としてもよい(S73B)。さらに、このブロックACKフレームを受信した送信側通信装置10Txでも、伝送路が開放されることを示す第4プリアンブルPEを送信する構成としてもよい(S71A)。
 一方で、受信側通信装置10Rx又は送信側通信装置10Txから送信される第3プリアンブルPSと第4プリアンブルPEを逐次検出した他の無線通信システム1-2の通信装置20では、無線LANシステム1-1で規定された信号形式を復号できなくても、トレーニングパターンの種類に応じて、伝送路の占有時間と、伝送路が開放されたことを把握できる構成となっている。
 すなわち、他の無線通信システム1-2の通信装置20では、第3プリアンブルPSで規定された短い時間に伝送路が占有されることを把握して、その持続時間に相当する時間を計時するタイマが起動され、伝送路が利用中となる時間を把握することができる(S76A,S76B)。
 また、他の無線通信システム1-2の通信装置20では、受信側通信装置10Rx又は送信側通信装置10Txから送信される第4プリアンブルPEを検出した場合、第3プリアンブルPSの検出に応じたタイマの計時の終了を待つことなく、伝送路が空き状態となって開放されたことを把握することができる(S77A,S77B)。
(第8の例)
 図21は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第8の例を示している。
 図21においては、無線LANシステムにおける送信側通信装置10Txと受信側通信装置10Rxとの間で、データを送受信するに際して、受信側通信装置10Rxが、送信側通信装置10Txに対し、未達データが存在する場合にその受領確認を返送するシーケンスを示している。
 ここでは、受信側通信装置10Rxにおいて、一部又は全てのデータを受信できなかった場合に、送信側通信装置10Txに対し、本技術を適用したトレーニングパターンの種類を付加したブロックNACKフレームとして返送する構成を示している。
 受信側通信装置10Rxは、送信側通信装置10Txに対し、データの再送を要求することになるので、再送されるデータの伝送路の占有時間を算出し、その伝送路の占有時間に応じたトレーニングパターンを選択する。例えば、受信側通信装置10Rxは、中程度の占有時間で再送が可能であった場合に、第2プリアンブルPMを先頭に付加して、NACK情報が記載されたブロックNACKフレームを送信する(S81B,S82B)。
 なお、その後にデータの再送が行われるので、終了を示す第4プリアンブルPEの送信は不要である。
 このブロックNACKフレームを受信した送信側通信装置10Txでは、再送が必要なデータを特定してそれらのデータの再送に必要な時間を算出し、その伝送路の占有時間に応じたトレーニングパターンを選択する。例えば、第3プリアンブルPSを先頭に付加して、再送データとして、Resend Data(#1)からResend Data(#3)が順に送信される(S81A)。
 受信側通信装置10Rxでは、第3プリアンブルPSに続いて、再送データ(Resend Data(#1)からResend Data(#3))を復号し、全てのデータを正しく受け取れた場合に、上述のブロックACKフレームを返送する構成になっている。
 以降のブロックACKフレームの送信シーケンス(S83B,S84B,S85B,S82A)は、上述した図20のブロックACKフレームの送信シーケンス(S71B,S72B,S73B,S71A)と同様であるため、ここではその説明は省略する。
 一方で、受信側通信装置10Rx又は送信側通信装置10Txから送信される第2プリアンブルPMと、第3プリアンブルPSと、第4プリアンブルPEを逐次検出した他の無線通信システム1-2の通信装置20では、無線LANシステム1-1で規定された信号形式を復号できなくても、トレーニングパターンの種類に応じて、伝送路の占有時間と、伝送路が開放されたことを把握できる構成となっている。
 すなわち、他の無線通信システム1-2の通信装置20では、第2プリアンブルPMで規定された中程度の時間に渡って伝送路が占有されることを把握し(S86A,S86B)、第3プリアンブルPSで規定された短い時間に伝送路が占有されることを把握することができる(S87A,S87B,S88A,S88B)。
 そして、他の無線通信システム1-2の通信装置20では、各トレーニングパターンにより把握された持続時間に相当する時間を計時するタイマが起動され、トレーニングパターンごとに、伝送路が利用中となる時間をそれぞれ把握することができる。
 その後、他の無線通信システム1-2の通信装置20では、受信側通信装置10Rx又は送信側通信装置10Txから送信される第4プリアンブルPEを検出した場合、伝送路が空き状態となって開放されたことを把握することができる(S89A,S89B)。
(第9の例)
 図22は、本技術を適用したトレーニングパターンの種類によるアクセス制御のシーケンスの第9の例を示している。
 図22においては、無線LANシステム1-1における送信側通信装置10Txと受信側通信装置10Rxとの間で、データを送受信するに際して、受信側通信装置10Rxが、ブロックACKフレーム(又はブロックNACKフレーム)を返送するにあたり、所定のSIFSタイミングでACK情報の収集が難しい場合、又は他の無線通信システム1-2において周期的に利用される場合に、一時的にACKフレームの返送を遅らせるために、その旨を送信側通信装置10Txに返送するシーケンスを示している。
 ここでは、受信側通信装置10RxにおけるブロックACKフレームの判定に関する時間を考慮して、伝送路を占有する時間を算出し、本技術を適用したトレーニングパターンの種類を付加したディレイACKフレームとして送信する構成を示している。
 例えば、受信側通信装置10Rxは、送信側通信装置10Txに対し、中程度の占有時間でデータの再送が可能であった場合に、第2プリアンブルPMを先頭に付加して、ディレイACKフレームを送信する(S91B,S92B)。このとき、終了を示す第4プリアンブルPEの送信は不要とされるが、他の無線通信システム1-2において周期的に利用される場合は、終了を示す第4プリアンブルPEを送信してもよい。
 このディレイACKフレームを受信した送信側通信装置10Txでは、ACKフレームの返送が可能なタイミングを見計らって、第3プリアンブルPSを先頭に付加したブロックACKリクエストフレームを送信する(S91A,S92A)。すなわち、このブロックACKリクエストフレームのACK交換シーケンスは、短い時間で完了するので、第3プリアンブルPSを付加して送信する構成になっている。
 受信側通信装置10Rxでは、送信側通信装置10Txから送信されてくる第3プリアンブルPSに続いて、このブロックACKリクエストフレームを受信した場合、上述したブロックACKフレーム(又はブロックNACKフレーム)を返送する構成になっている。
 以降のブロックACKフレームのシーケンス(S93B,S94B,S95B,S93A)は、上述した図20のブロックACKフレームの送信シーケンス(S71B,S72B,S73B,S71A)、又は図21のブロックACKフレームの送信シーケンス(S83B,S84B,S85B,S82A)と同様であるため、ここではその説明は省略する。
 一方で、受信側通信装置10Rx又は送信側通信装置10Txから送信される第2プリアンブルPMと、第3プリアンブルPSと、第4プリアンブルPEを逐次検出した他の無線通信システム1-2の通信装置20では、無線LANシステム1-1で規定された信号形式を復号できなくても、トレーニングパターンの種類に応じて、伝送路の占有時間と、伝送路が開放されたことを把握できる構成となっている。
 なお、他の無線通信システム1-2の通信装置20におけるシーケンス(S96A乃至S99A,S96B乃至S99B)は、上述した図21の通信装置におけるシーケンス(S86A乃至S89A,S86B乃至S89B)と同様であるため、ここではその説明は省略する。
(データ伝送の相互動作)
 次に、図23乃至図28のタイミングチャートを参照しながら、送信側通信装置10Txと受信側通信装置10Rxにおけるデータ伝送時の相互動作について説明する。
(第1の例)
 図23は、送信側通信装置10Txと受信側通信装置10Rxにおけるデータ伝送時の相互動作の第1の例を示している。
 図23においては、図中の上段から下向きに、送信側通信装置10Tx(Transmitter)が送信するフレームを記載する一方で、図中の下段から上向きに、受信側通信装置10Rx(Receiver)が送信するフレームを記載している。また、時間の方向は、図中の左から右に向かう方向とされる。なお、これらの関係は、後述する他の図でも同様とされる。
 時刻t11において、送信側通信装置10Txは、自己が送信するデータペイロード(A-MPDU)の伝送路の占有時間を想定して第1プリアンブルPLを付加し、当該A-MPDUを、伝送路を介して送信する。
 時刻t12において、受信側通信装置10Rxは、伝送路を介して送信側通信装置10Txから送信されるA-MPDUの受信状況に応じて、ブロックACKフレームを返送している。
 すなわち、受信側通信装置10Rxは、全てのデータを正しく受信できていれば、第3プリアンブルPSを付加して、ブロックACKフレームを送信するとともに、伝送路が開放されたことを通知するために、終了を示す第4プリアンブルPEを送信する。
 時刻t13において、ブロックACKフレームを受信した送信側通信装置10Txは、受信側通信装置10Rxにより全てのデータが正しく受領されたことから、伝送路が開放されたことを通知するために、終了を示す第4プリアンブルPEを送信する。
(第2の例)
 図24は、送信側通信装置10Txと受信側通信装置10Rxにおけるデータ伝送時の相互動作の第2の例を示している。
 図24においては、データペイロード(A-MPDU)の一部又は全てを正しく受信できなかった場合に、受信側通信装置10Rxが、送信側通信装置10Txに対し、ブロックNACKフレームを送信する流れを示している。
 時刻t21において、送信側通信装置10Txは、自己が送信するデータペイロード(A-MPDU)の伝送路の占有時間を想定して第2プリアンブルPMを付加し、当該A-MPDUを、伝送路を介して送信する。
 時刻t22において、受信側通信装置10Rxは、伝送路を介して受信されるA-MPDUの一部のデータが未達であった場合、その再送されるデータの伝送路の占有時間を算出し、それに見合った第2プリアンブルPMを選択してブロックNACKフレームを、伝送路を介して送信する。
 時刻t23において、ブロックNACKフレームを受信した送信側通信装置10Txは、再送が必要なデータを特定して伝送路の占有時間を算出し、それに見合った第3プリアンブルPSを選択して、再送データ(A-MPDU)を、伝送路を介して送信する。
 その後、時刻t24,時刻t25においては、図23の時刻t12,時刻t13と同様に、受信側通信装置10Rxでは、A-MPDUの受信状況に応じて、第3プリアンブルPSと第4プリアンブルPEが付加されたブロックACKフレームが返送され、送信側通信装置10Txでは、第4プリアンブルPEが送信される。
(第3の例)
 図25は、送信側通信装置10Txと受信側通信装置10Rxにおけるデータ伝送時の相互動作の第3の例を示している。
 図25においては、受信側通信装置10Rxが、送信側通信装置10Txに対し、ディレイACKフレームを返送して、その後に、ブロックACKリクエストフレームの受領に応じて、ブロックACKフレームを送信する流れを示している。
 時刻t31において、送信側通信装置10Txは、自己が送信するデータペイロード(A-MPDU)の伝送路の占有時間を想定して第2プリアンブルPMを付加し、当該A-MPDUを、伝送路を介して送信する。
 時刻t32において、受信側通信装置10Rxは、伝送路を介して受信されるA-MPDUの受信状況を判断できない場合、ACK情報を収集できるまでにかかる時間、あるいは他の無線通信システム1-2において周期的に利用される時間を算出し、その時間に相当するトレーニングパターンを選択し、ディレイACKフレームに付加して送信する。この例では、中程度の時間が必要であると判断され、第2プリアンブルPMがディレイACKフレームに付加されている。
 時刻t33において、送信側通信装置10Txは、受信側通信装置10Rxでの処理時間を考慮したタイミングに必要に応じてブロックACKリクエストフレームを、伝送路を介して受信側通信装置10Rxに送信する。このブロックACKリクエストフレームは、一時的な情報の交換になるので、第3プリアンブルPSが付加されている。
 その後、時刻t34,時刻t35においては、図23の時刻t12,時刻t13と同様に、受信側通信装置10Rxでは、A-MPDUの受信状況に応じて、第3プリアンブルPSと第4プリアンブルPEが付加されたブロックACKフレームが返送され、送信側通信装置10Txでは、第4プリアンブルPEが送信される。
(第4の例)
 図26は、送信側通信装置10Txと受信側通信装置10Rxにおけるデータ伝送時の相互動作の第4の例を示している。
 図26においては、送信側通信装置10Txが送信するデータペイロード(A-MPDU)の伝送路の占有時間を想定して、第1プリアンブルPLを付加して最初のA-MPDUを送信するとともに、所定の占有時間又はデータ量を送信した後に、ミッドアンブルとして、その残り時間に応じたトレーニングパターンを選択して送信する流れを示している。
 時刻t41において、送信側通信装置10Txは、自己が送信するデータペイロード(A-MPDU)の伝送路の占有時間を想定して第1プリアンブルPLを付加し、最初のA-MPDUを、伝送路を介して送信する。
 時刻t42において、送信側通信装置10Txは、所定の占有時間又はデータ量を送信した後に、ミッドアンブルとして、その残り時間に応じた第2プリアンブルPMを選択して送信するとともに、続きのデータペイロード(A-MPDU)を、伝送路を介して送信する。
 時刻t43において、送信側通信装置10Txは、再度、所定の占有時間又はデータ量を送信した後に、ミッドアンブルとして、その残り時間に応じた第3プリアンブルPSを選択して送信するとともに、残りのデータペイロード(A-MPDU)を、伝送路を介して送信する。
 その後、時刻t44,時刻t45においては、図23の時刻t12,時刻t13と同様に、受信側通信装置10Rxでは、A-MPDUの受信状況に応じて、第3プリアンブルPSと第4プリアンブルPEが付加されたブロックACKフレームが返送され、送信側通信装置10Txでは、第4プリアンブルPEが送信される。
(第5の例)
 図27は、送信側通信装置10Txと受信側通信装置10Rxにおけるデータ伝送時の相互動作の第5の例を示している。
 図27においては、送信側通信装置10Txが送信するデータペイロード(A-MPDU)の伝送路の占有時間を想定して、第1プリアンブルPLを付加して最初のA-MPDUを送信するとともに、所定の占有時間又はデータ量で小出しにデータフレームを送信する。
 時刻t51において、送信側通信装置10Txは、自己が送信するデータペイロード(A-MPDU)の伝送路の占有時間を想定して第1プリアンブルPLを付加し、最初のA-MPDUを、伝送路を介して送信する。
 その後に、受信側通信装置10Rxから占有時間の残り時間に応じたトレーニングパターンが選択されて送信される構成になっており、時刻t52において、受信側通信装置10Rxは、第2プリアンブルPMを選択して送信している。
 時刻t53において、送信側通信装置10Txは、受信側通信装置10Rxから送られるトレーニングパターンに応じた第2プリアンブルPMに続いて、残りのデータペイロード(A-MPDU)を、再度小出しに送信する。
 時刻t54において、受信側通信装置10Rxは、占有時間の残り時間に応じた第3プリアンブルPSを選択して送信する。
 時刻t55において、送信側通信装置10Txは、受信側通信装置10Rxから送られるトレーニングパターンに応じた第3プリアンブルPSに続いて、残りのデータペイロード(A-MPDU)を、伝送路を介して送信する。
 その後、時刻t56,時刻t57においては、図23の時刻t12,時刻t13と同様に、受信側通信装置10Rxでは、A-MPDUの受信状況に応じて、第3プリアンブルPSと第4プリアンブルPEが付加されたブロックACKフレームが返送され、送信側通信装置10Txでは、第4プリアンブルPEが送信される。
(第6の例)
 図28は、送信側通信装置10Txと受信側通信装置10Rxにおけるデータ伝送時の相互動作の第6の例を示している。
 図28においては、受信側通信装置10Rxが、例えば他の無線通信システム1-2の通信装置20からのトレーニングパターンを検出し、データ受信が困難になった場合に、その旨を送信側通信装置10Txに対して、例えば終了を示す第4プリアンブルPEによって通知する流れを示している。
 時刻t61において、送信側通信装置10Txは、自己が送信するデータペイロード(A-MPDU)の伝送路の占有時間を想定して第1プリアンブルPLを付加し、当該A-MPDUを、伝送路を介して送信する。
 時刻t62において、受信側通信装置10Rxは、他の無線通信システム1-2の通信装置20の利用によって伝送路が利用できなくなることを検出した場合に、第4プリアンブルPEを選択して送信する。
 すなわち、送信側通信装置10Txが、多数のデータペイロード(A-MPDU)を送信しようとして、第1プリアンブルPLによってデータペイロードを送信している場合に、例えば、図25のシーケンス等のように、受信側通信装置10Rxからトレーニングパターンを送信するとき、他の無線通信システム1-2の利用によって、その後に伝送路が利用できなくなることを、トレーニングパターンの種類を、第4プリアンブルPEに変更することで通知するものである。
 この第4プリアンブルPEを検出した送信側通信装置10Txは、以降のデータペイロード(A-MPDU)の送信を中断する構成となっている。これにより、受信側通信装置10Rxが、他の無線通信システム1-2の影響で満足にデータを受信できなくなることを、送信側通信装置10Txに伝えることが可能となる。
(通信装置の構成の例)
 図29は、本技術を適用した通信装置の構成の例を示している。
 図29に示した通信装置10は、無線LANシステム1-1(図1)におけるアクセスポイントAP10又は通信端末STA10、すなわち、送信側通信装置10Tx又は受信側通信装置10Rxとして構成される。
 図29において、通信装置10は、ネットワーク接続モジュール11、情報入力モジュール12、機器制御モジュール13、情報出力モジュール14、及び無線通信モジュール15を含んで構成される。
 ネットワーク接続モジュール11は、例えば、アクセスポイントAP10として光ファイバ網やその他の通信回線からサービスプロバイダを介してインターネット網に接続するための機能を有する回路やその周辺回路、マイクロコントローラ、半導体メモリなどから構成される。
 ネットワーク接続モジュール11は、機器制御モジュール13からの制御に従い、インターネット接続に関する各種の処理を行う。例えば、ネットワーク接続モジュール11は、通信装置10がアクセスポイントAP10として動作する場合に、インターネット網へ接続するための通信モデム等の機能が実装される構成となっている。
 情報入力モジュール12は、例えば、押しボタンやキーボード、タッチパネル等の入力デバイスから構成される。情報入力モジュール12は、ユーザからの指示に対応する指示情報を、機器制御モジュール13に入力する機能を有する。
 機器制御モジュール13は、例えばマイクロプロセッサやマイクロコントローラ等から構成される。機器制御モジュール13は、通信装置10をアクセスポイントAP10又は通信端末STA10として動作させるために各部(モジュール)の制御を行う。
 機器制御モジュール13は、ネットワーク接続モジュール11、情報入力モジュール12、又は無線通信モジュール15から供給される情報に対する各種の処理を行う。また、機器制御モジュール13は、自己の処理の結果得られる情報を、ネットワーク接続モジュール11、情報出力モジュール14、又は無線通信モジュール15に供給する。
 例えば、機器制御モジュール13は、データの送信時に、プロトコル上位層のアプリケーション等から渡される送信データを、無線通信モジュール15に供給したり、データの受信時に、無線通信モジュール15から供給される受信データを、プロトコル上位層のアプリケーション等に渡したりする。
 情報出力モジュール14は、例えば、液晶ディスプレイ、有機ELディスプレイ、LED(Light Emitting Diode)表示器などの表示素子や、音声や音楽を出力するスピーカなどを含む出力デバイスから構成される。
 情報出力モジュール14は、機器制御モジュール13から供給される情報に基づき、ユーザに対して必要な情報を表示する機能を有する。ここで、情報出力モジュール14で処理される情報には、例えば、通信装置10の動作状態やインターネット網を介して得られる情報などが含まれる。
 無線通信モジュール15は、例えば、無線チップや周辺回路、マイクロコントローラ、半導体メモリなどから構成される。無線通信モジュール15は、機器制御モジュール13からの制御に従い、無線通信に関する各種の処理を行う。無線通信モジュール15の構成の詳細は、図30を参照して後述する。
 なお、ここでは、無線通信チップや周辺回路などが搭載された無線通信モジュールを一例に説明するが、本技術は、無線通信モジュールに限らず、例えば、無線通信チップや無線通信LSIなどに適用することができる。さらに、無線通信モジュールにおいて、アンテナを含めるかどうかは任意である。
 また、図29の通信装置10において、機器制御モジュール13及び無線通信モジュール15は、必須の構成要素となるが、それらを除いたネットワーク接続モジュール11、情報入力モジュール12、及び情報出力モジュール14を構成要素に含めるかどうかは任意である。
 すなわち、アクセスポイントAP10又は通信端末STA10として動作する通信装置10ごとに、必要とされるモジュールのみで構成されるようにすることができ、不要な部分は簡素化されるか、又は組み込まれない構成とすることができる。
 より具体的には、例えば、ネットワーク接続モジュール11は、アクセスポイントAP10にのみ組み込まれ、情報入力モジュール12や情報出力モジュール14は、通信端末STA10にのみ組み込まれるようにすることができる。
(無線通信モジュールの構成の例)
 図30は、図29の無線通信モジュール15の構成の例を示している。
 無線通信モジュール15において、各種の情報やデータを外部とやり取りするインターフェース101と、送信データを一時格納する送信バッファ102と、送信データのシーケンスを管理する送信シーケンス管理部103と、送信データを所定のフレームフォーマットに変換する送信フレーム構築部104とが、データ送信の際に用いられる構成とされる。
 この構成に対し、通信制御部105、アクセス制御部106、送信信号処理部107、プリアンブル構築部108、プリアンブル検出部110、及び受信信号処理部111が設けられることが本技術の特徴である。
 通信制御部105は、無線LANシステムのデータ送信の実施、及び送信されたデータ受信の実施を制御する。
 アクセス制御部106は、本技術を適用した共通のトレーニングパターンの検出状況から、無線伝送路上で他の無線通信システムの利用状況を把握して、データフレームやACKフレームの送信の実施及び受信の実施を制御する。
 送信信号処理部107は、無線LANシステムで伝送するデータペイロードを、所定のA-MPDUフレームとして構成する。プリアンブル構築部108は、プリアンブル信号を構築する。例えば、プリアンブル構築部108は、本技術を適用した共通のトレーニングパターンを選択して、必要に応じてフレームの先頭やその途中に付加する。
 送受信アンテナ部109は、送信信号の送信又は受信信号の受信を行うためのアンテナを制御する。
 プリアンブル検出部110は、伝送路上で他の無線通信システムからの信号に付加されている所定のプリアンブル信号を検出する。受信信号処理部111は、所定のプリアンブル信号に続いて無線LANシステムの受信信号を処理する。例えば、プリアンブル検出部110は、本技術を適用した共通のトレーニングパターンを検出する。
 また、無線通信モジュール15において、必要なデータを抽出する受信フレーム解析部112と、受信データのシーケンスを管理する受信シーケンス管理部113と、受信データを一時格納する受信バッファ114とが、データ受信の際に用いられる構成とされる。
 なお、図30において、各ブロック間の矢印は、データ(信号)の流れや制御を表しており、各ブロックは、自己の機能を実現するために、矢印で接続された他のブロックと協働して動作する。
 すなわち、例えば、アクセス制御部106は、本技術に関する機能(例えばトレーニングパターンの構築と検出に関する機能)を実現するために、通信制御部105からの制御に従い、送信フレーム構築部104、送信信号処理部107、プリアンブル構築部108、送受信アンテナ部109、プリアンブル検出部110、受信信号処理部111、及び受信フレーム解析部112のそれぞれと協働して動作する。
 以上のように構成される無線通信モジュール15においては、特に、通信制御部105が、アクセス制御部106を制御することによって、例えば、次のような処理が実施される。
 すなわち、通信装置10(例えばアクセスポイントAP10等の送信側通信装置10Tx)の無線通信モジュール15では、通信制御部105によって、複数の種類のトレーニングパターン(例えば第1プリアンブルPL、第2プリアンブルPM、第3プリアンブルPS、及び第4プリアンブルPE)の中から、伝送路の占有時間に応じたトレーニングパターンが選択され、選択されたトレーニングパターンを付加した信号(例えば、データフレーム(のデータペイロード)等のデータ信号や、ブロックACKリクエストフレーム等の要求信号)が、伝送路を介して他の通信装置(例えば受信側通信装置10Rxや通信装置20)に送信される。
 また、通信装置10(例えば通信端末STA10等の受信側通信装置10Rx)の無線通信モジュール15では、通信制御部105によって、複数の種類のトレーニングパターン(例えば第1プリアンブルPL、第2プリアンブルPM、第3プリアンブルPS、及び第4プリアンブルPE)の中から、伝送路の占有時間に応じたトレーニングパターンが選択され、選択されたトレーニングパターンを付加した信号(例えば、ブロックACKフレーム等の第1の受領確認信号、ブロックNACKフレーム等の第2の受領確認信号、ディレイACKフレーム等の第3の受領確認信号)が、伝送路を介して他の通信装置(例えば送信側通信装置10Txや通信装置20)に送信される。
(データ送信処理の流れ)
 次に、図31と、図32のフローチャートを参照して、通信装置10により実行されるデータ送信処理の流れを説明する。
 このデータ送信処理は、他の無線通信システム1-2と共通のトレーニングパターン構造となるように動作する場合に、伝送路の占有時間に応じてトレーニングパターンの種類を選択する送信側通信装置10Txの送信動作に応じた処理とされる。
 まず、アクセス制御部106は、無線LANシステム1-1として、データを送信可能であるかを判定し(S101)、伝送路上に、他の無線LANシステム1-3の通信装置30による通信や、他の無線通信システム1-2の通信装置20からのトレーニングパターンを検出していない場合に、データの送信が可能であると判定する(S101の「YES」)。
 アクセス制御部106は、受信側通信装置10Rxが、本技術を適用したトレーニングパターンの構造を把握できる通信装置(機能対応装置)であるかどうかを判定し(S102)、機能対応装置であると判定された場合(S102の「YES」)、ステップS103乃至S108の処理が実行される。
 すなわち、アクセス制御部106では、送信するデータの情報長や、伝送可能な通信レートを示す情報などが取得され、取得した情報に基づき、無線通信での伝送に必要な総時間、つまり、伝送路の占有時間が見積もられる(S103)。
 そして、プリアンブル構築部108では、伝送路の占有時間が、所定の中程度の持続時間を超えたと判定された場合(S104の「YES」)、第1プリアンブルPLを選択する(S105)。また、プリアンブル構築部108では、伝送路の占有時間が、所定の中程度未満で、かつ、所定の短い時間を超えたと判定された場合(S104の「NO」,S106の「YES」)、第2プリアンブルPMを選択し(S107)、伝送路の占有時間が、所定の短い時間未満であると判定された場合(S104の「NO」,S106の「NO」)、第3プリアンブルPSを選択する(S108)。
 なお、ステップS102の判定処理で、受信側通信装置10Rxが機能対応装置ではないと判定された場合、処理は、ステップS109に進められる。この場合、プリアンブル構築部108では、受信側通信装置10Rxが従来からの無線LANシステムに対応した装置であるとして、従来方式に対応したプリアンブル(レガシプリアンブル)の設定を行う。
 ステップS105,S107,S108,又はS109の処理が終了すると、処理は、ステップS110に進められる。
 送信信号処理部107は、データ送信処理を行い、選択したトレーニングパターン又はプリアンブルに続いて、データペイロードを送信する(S110)。
 ステップS110の処理が終了すると、処理は、図32のステップS111に進められ、アクセス制御部106では、ステップS111乃至S113の判定処理が実行される。
 すなわち、送信するデータの残量があると判定され(S111の「YES」)、さらに所定量のデータを送信したと判定された場合(S112の「YES」)に、データの途中にミッドアンブルの付加が必要なフレーム構造として送信すると判定されたとき(S113の「YES」)、処理は、図31のステップS103に戻り、データの残量に応じたトレーニングパターンの種類を設定して継続してデータを送信する。
 また、所定量のデータを送信していないと判定された場合(S112の「NO」)と、ミッドアンブルの付加が不要であると判定された場合(S113の「NO」)には、処理は、図31のステップS110に戻り、データ送信を継続する構成になっている。
 そして、データを末尾まで送信してデータの残量がなくなったと判定された場合(S111の「NO」)、処理は、ステップS114に進められ、アクセス制御部106では、ステップS114乃至S116のACKフレーム待ち処理が実行される。
 すなわち、ディレイACKフレームを受信したと判定された場合(S114の「YES」)、所定の時間の経過後に、ブロックACKリクエストフレームを送信し(S115)、受信側通信装置10Rxから送信されるブロックACKフレーム又はブロックNACKフレームを待ち受ける(S116)。
 そして、自己宛てのブロックACKフレーム又はブロックNACKフレームを受信したと判定された場合(S116の「YES」)、アクセス制御部106では、ステップS117乃至S119の未達データの処理が実行される。
 すなわち、ブロックNACKフレームが受信されて未達データがあると判定された場合(S117の「YES」)、ブロックACK情報に基づき、未達データが特定され(S118)、処理は、図31のステップS103に戻り、データの再送処理が実行される。
 また、ブロックACKフレームが受信されて未達データがないと判定された場合(S117の「NO」)、必要に応じて終了を示す第4プリアンブルPEが送信される(S119)。ステップS119の処理が終了すると、データ送信処理を終了する。
(アクセス制御処理)
 次に、図33と、図34のフローチャートを参照して、通信装置10により実行されるアクセス制御処理の流れを説明する。
 このアクセス制御処理では、他の無線通信システム1-2と共通のトレーニングパターン構造として動作する場合に、検出したトレーニングパターンの種類に応じて、伝送路の利用状況を判定する送信側通信装置10Tx又は受信側通信装置10Rxの動作に応じた処理とされる。
 まず、ステップS201の判定処理で、アクセス制御部106では、所定の無線LANシステムのプリアンブル信号を検出したと判定された場合(S201の「YES」)、又は本技術を適用したプリアンブル信号を検出したときでも、以降に無線LANシステムのフレームとして規定された信号形式であると判定された場合(S201の「YES」)、ステップS202,S203の処理が実行される。
 すなわち、PLCPヘッダから、L-SIG情報が取得され(S202)、伝送路の占有時間見積もることで、伝送路の占有時間が設定される(S203)。
 一方で、ステップS201の判定処理で、無線LANシステムのプリアンブル信号が未検出であると判定された場合(S201の「NO」)、処理は、ステップS204に進められ、アクセス制御部106では、ステップS204乃至S210の処理が実行される。
 すなわち、第1プリアンブルPLのみが検出された場合(S204の「YES」)、長い待ち時間として、その最大の待ち時間に渡って伝送路が占有される設定がなされる(S205)。また、第2プリアンブルPMのみが検出された場合(S206の「YES」)、中程度の待ち時間に渡って伝送路が占有される設定がなされる(S207)。さらに、第3プリアンブルPSのみが検出された場合(S208の「YES」)、短い時間に渡って伝送路が占有される設定がなされる(S209)。
 そして、アクセス制御部106では、これら稼働してアクティブな状態にあるトレーニングパターンの数(以下、稼働検出プリアンブル数という)が取得され、当該稼働検出プリアンブル数が、その都度加算されて管理される(S210)。
 ステップS203又はS210の処理が終了すると、処理は、図34のステップS211に進められ、アクセス制御部106では、ステップS211乃至S218の処理が実行される。
 ステップS211の判定処理で、設定された待ち時間の値が、既存の待ち時間の値よりも大きくなると判定された場合(S211の「YES」)、必要に応じてその待ち時間が更新される(S212)。ステップS212の処理が終了するか、又はステップS211の判定処理で否定であると判定された場合(S211の「NO」)、処理は、ステップS213に進められる。
 なお、第1プリアンブルPL、第2プリアンブルPM、及び第3プリアンブルPSのいずれも未検出であると判定された場合(S204の「NO」,S206の「NO」,S208の「NO」)、処理は、図34のステップS213に進められる。
 ステップS213の判定処理で、第4プリアンブルPEを検出したと判定された場合(S213の「YES」)、稼働検出プリアンブル数が取得され、稼働検出プリアンブル数が検出された数だけ減算される(S214)。
 そして、ステップS215の判定処理で、稼働検出プリアンブル数に基づき、第1プリアンブルPL等のプリアンブルの稼働数が0になったと判定された場合(S215の「YES」)には、アクセス制御処理を終了する。一方で、第1プリアンブルPL等のプリアンブルの稼働数が0にならないと判定された場合(S215の「NO」)、処理は、ステップS216に進められ、減算動作が継続される。
 また、ステップS213の判定処理で、第4プリアンブルPEが未検出であると判定された場合(S213の「NO」)、処理は、ステップS216に進められる。
 ステップS216の判定処理で、所定時間の経過までに第1プリアンブルPL、第2プリアンブルPM、第3プリアンブルPS、第4プリアンブルPE等のプリアンブルが未検出であると判定された場合(S216の「YES」)には、処理は、ステップS217に進められる。そして、待ち時間を逐次減算する(S217)とともに、その待ち時間が0になったと判定されたとき(S218の「YES」)、アクセス制御処理を終了する。一方で、ステップS218の判定処理で、その待ち時間が0にならないと判定された場合(S218の「NO」)、処理は、図33のステップS201に進められ、減算動作が継続される。
(データ受信処理の流れ)
 次に、図35と、図36のフローチャートを参照して、通信装置10により実行されるデータ受信処理の流れを説明する。
 このデータ受信処理は、他の無線通信システム1-2と共通のトレーニングパターン構造となるように動作する場合に、伝送路の占有時間に応じてトレーニングパターンの種類を選択してACKフレームなどの情報を送信する受信側通信装置10Rxの受信動作に応じた処理とされる。
 まず、アクセス制御部106は、プリアンブル検出部110により所定のプリアンブル信号が検出された後に、受信信号処理部111により自己宛てのデータフレームが受信されたかどうかを判定し(S301)、自己宛てのデータフレームが受信されたと判定された場合(S301の「YES」)、ステップS302乃至S306の処理が実行される。
 すなわち、受信信号処理部111では、データフレームの情報長(Length)が取得され(S302)、所定のデータ単位(MPDU単位)でデータが正常に受信されたかどうかが判定され(S303)、正しく受信できたデータのみが受信バッファ114に格納される(S304)とともに、受信できたデータ(MPDU)のACKシーケンス番号(No)が記憶される(S305)。
 そして、これらの一連の受信処理が、データ(A-MPDUフレーム)の末尾が到来するまで実行される(S306)。ステップS306の判定処理で、データの末尾が到来したと判定された場合(S306の「YES」)、処理は、ステップS307に進められる。
 また、受信側通信装置10Rxで所定の時刻までACK情報を収集できない場合など、ステップS307の判定処理で、ディレイACKフレームとして処理すると判定された場合、又は他の無線通信システム1-2において周期的な伝送路の利用が存在する場合(S307の「YES」)、そのディレイACK情報が構築され(S308)、ディレイACKフレームの返送に必要な処理時間、又は他の無線通信システム1-2において周期的に利用される時間が算出される(S309)。そして、処理は、図36のステップS318に進められ、トレーニングパターンの選択処理に移行される。
 すなわち、算出された時間が、所定の短い待ち時間よりも長い時間が想定されると判定された場合(S318の「YES」)、第2プリアンブルPMが選択される(S319)一方で、算出された時間が、所定の短い待ち時間よりも短いと判定された場合(S318の「NO」)、第3プリアンブルPSが選択される(S320)。
 また、ステップS307の判定処理で、ディレイACKフレームとして処理しないと判定された場合、処理は、図36のステップS310に進められ、受信できたデータのACKシーケンス番号(No)が取得され(S310)、未達データの有無が判定される(S311)。
 ここで、ステップS311の判定処理で、未達データがないと判定された場合(S311の「NO」)、処理は、ステップS312に進められ、ステップS312,S313,S320の処理が実行される。
 すなわち、ブロックACK情報が構築され(S312)、受信されて受信バッファ114に格納されたデータが、インターフェース101を介して出力される(S313)。そして、処理は、ステップS320に進められ、ここでは、第3プリアンブルPSが選択されて(S320)、ブロックACKフレームが構築される。
 一方で、ステップS311の判定処理で、未達データがあると判定された場合(S311の「YES」)、処理は、ステップS314に進められ、ステップS314乃至S320の処理が実行される。
 すなわち、未達データが、ブロックNACK情報として構築され(S314)、未受信のデータ(MPDU)の情報量(未受信データ量)から伝送に必要な時間が算出され(S315)、その算出された時間に応じて再送に必要な時間に相当するトレーニングパターンが選択される(S316乃至S320)。
 具体的には、算出された時間が、所定の中程度の待ち時間よりも長い待ち時間が想定されると判定された場合(S316の「YES」)、第1プリアンブルPLを選択し(S317)、算出された時間が所定の中程度の時間未満で、かつ、所定の短い時間を超えると判定された場合(S318の「YES」)、第2プリアンブルPMを選択し(S319)、算出された時間が所定の中程度の時間未満で、かつ、所定の短い時間未満であると判定された場合(S318の「NO」)、第3プリアンブルPSを選択する(S320)。
 ステップS317,S319,S320の処理が終了すると、処理は、ステップS321に進められる。
 そして、これらの選択されたトレーニングパターンを付加した応答フレームが送信される(S321)。ここでの応答フレームは、ブロックACKフレーム、ブロックNACKフレーム、又はディレイACKフレームとされる。
 さらに、ステップS322の判定処理で、自己宛てのブロックACKリクエストフレームを受信したと判定された場合(S322の「YES」)、処理は、ステップS310に戻って、ブロックACKフレーム、又はブロックNACKフレームを以降に返送する構成となっている。
 なお、自己宛てのブロックACKリクエストフレームが未受信であると判定された場合(S322の「NO」)には、伝送路が開放可能であると判定されたとき(S323の「YES」)には、必要に応じて終了を示す第4プリアンブルPEを設定して(S324)、併せて送信する構成になっている。ステップS324の処理が終了すると、データ受信処理を終了する。
 また、ブロックNACKフレームを送信して未達データの再送などが行われることで、ステップS324の判定処理で、伝送路が開放されないと判定された場合(S323の「NO」)には、処理は、図35のステップS301に戻り、再送データの受信を行う構成になっている。
<2.変形例>
(他の構成の例)
 上述したように、送信側通信装置10Txは、例えばアクセスポイントAP10(基地局)として構成され、受信側通信装置10Rxは、例えば通信端末STA10(端末局)として構成することができる。ただし、送信側通信装置10Tx又は受信側通信装置10Rxは、アクセスポイントAP10又は通信端末STA10を構成する装置(部品)の一部(例えば、無線通信モジュールや無線チップ等)として構成されるようにしてもよい。
 また、例えば、通信端末STA10として構成される受信側通信装置10Rxは、例えば、スマートフォン、タブレット型端末、携帯電話機、パーソナルコンピュータ、デジタルカメラ、ゲーム機、テレビ受像機、ウェアラブル端末、スピーカ装置などの無線通信機能を有する電子機器として構成することができる。
(トレーニングパターンの例)
 上述した説明では、例えば、データペイロードの長さを、「長い」、「中程度」、「短い」の3段階に分けた場合にその長さに応じて、第1プリアンブルPLと、第2プリアンブルPMと、第3プリアンブルPSを定義する場合を例示したが、例えば、データペイロードの長さを4段階以上に分けるなど、トレーニングパターンの定義の仕方は任意である。
 以上のように、本技術では、異なる無線通信システムで共通となる占有時間(占有持続時間)を識別可能なトレーニングパターン(プリアンブル)とアクセス制御方法を提案している。
 つまり、異なる無線通信システムで共有して運用される周波数帯域において、他方の無線通信システムで通信が行われていることを識別可能な共通のトレーニングパターンとして定義し、その無線通信システムにおける伝送路の占有時間に相当するトレーニングパターン(の種類)を選択して、フレームを構成して通知するアクセス制御方法を提案している。これにより、より容易に伝送路の占有状況を把握(認識)することができる。
 また、異なる無線通信システムが、1つの周波数帯域を共用して利用するために共通のトレーニングパターンを定義し、伝送路を占有する時間に応じて異なるトレーニングパターンを用いることで、他方の無線通信システムにおいても、伝送路が利用可能となる時間を逐次把握することができる。
 例えば、伝送路の占有時間に応じて、複数のトレーニングパターンを用意することで、他の無線通信システムでも、プリアンブル以降に占有される時間を大雑把に把握することができる。また、例えば、他の無線通信システムにおいて、無線LANシステムのDuration情報を把握できなくとも、ある程度の時間単位で伝送路の利用状況を把握させることができる。
 トレーニングパターンにより、この通信チャネルによる通信が一過性のもの(終了を示す信号を送信するもの)であるか、繰り返して利用される可能性があるものかを識別することができる。また、送信すべきデータの残量や、伝送路の混雑度に応じて利用を継続することを、トレーニングパターンをその都度変化させて、他の無線通信システムに、自己の無線通信システムでの利用を識別可能とさせるトレーニングパターンを提供している。
 また、データの途中に残り時間を示すトレーニングパターンを挿入することで、長時間伝送路を占有してデータ送信をしている場合や、他の無線通信システムに対して、残りの占有時間を効果的に通知できる。データの途中にミッドアンブルとして、データの途中に残り時間を示すトレーニングパターンを挿入することができる。データの途中にトレーニングパターンが定期的に挿入されると、他の無線通信システムでも伝送がビジー状態にある事を短時間のうちに把握できる。
 さらに、データ伝送が終了した場合に、終了を通知するトレーニングパターンを通知することで、他の無線通信システムに対して、伝送路が利用可能になったことを効果的に通知することができる。たとえより多くのデータ伝送の実施を計画していた場合でも、データ伝送の中止を、他の無線通信システムに通知することができるため、その結果として、周波数利用効率を向上させることができる。
 また、データフレームのみならず、ACKフレーム等の制御フレームに対しても、このトレーニングパターンを適用することで、送信側通信装置10TxからブロックACKリクエストフレームを送信し、受信側通信装置10RxからブロックACKフレームを受信する制御に利用することができる。
 さらには、受信側通信装置10Rxがデータの受領状況に応じたデータ再送の有無を判断して、伝送路を占有する時間時応じたトレーニングパターンを設定することで、確実にデータを受信することができる。
 受信側通信装置10Rxでも、データの再送が終了した場合に、終了を通知するトレーニングパターンを通知することで、他の無線通信システムに対して、伝送路が利用可能になったことを効果的に通知することができる。さらにこの派生として、受信側通信装置10Rxが、あらかじめ決められたタイミングに、これらのトレーニングパターンを送信することで、伝送路上で受信が行われていることを周囲の通信装置に通知することができる。
(コンピュータの構成)
 上述したフローチャートの各ステップの処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、各装置のコンピュータにインストールされる。
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであってもよいし、複数のコンピュータによって分散処理されるものであってもよい。さらに、プログラムは、遠方のコンピュータに転送されて実行されてもよい。
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 なお、本技術は、以下のような構成をとることができる。
(1)
 伝送路を介してデータ信号を、他の通信装置に送信する制御を行う制御部を備え、
 前記制御部は、
  複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、
  選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する
 制御を行う
 通信装置。
(2)
 前記制御部は、他の通信装置から送信されてくるトレーニングパターンの検出状況に応じて、アクセス制御を実施する
 前記(1)に記載の通信装置。
(3)
 前記制御部は、所定のデータ信号を送信した後に、さらにデータ信号の送信を継続する場合、伝送路の利用状況に応じて、トレーニングパターンを選択する
 前記(1)又は(2)に記載の通信装置。
(4)
 前記制御部は、データ信号の途中で、当該データ信号の伝送に要する残り時間に応じたトレーニングパターンを選択する
 前記(1)乃至(3)のいずれかに記載の通信装置。
(5)
 前記制御部は、伝送路の利用を終了する場合、当該伝送路の開放を通知するトレーニングパターンを選択する
 前記(1)乃至(4)のいずれかに記載の通信装置。
(6)
 前記制御部は、他の通信装置でのデータ信号の受信状況に応じた受領確認信号を要求する要求信号に付加するトレーニングパターンを選択する
 前記(1)乃至(5)のいずれかに記載の通信装置。
(7)
 前記制御部は、複数のデータをアグリゲートして、送信するデータ信号を構築する
 前記(1)乃至(6)のいずれかに記載の通信装置。
(8)
 前記トレーニングパターンは、複数のトレーニングシーケンスの組み合わせにより構成される
 前記(1)乃至(7)のいずれかに記載の通信装置。
(9)
 前記トレーニングパターンは、自己の無線通信システム又は他の無線通信システムを構成する他の通信装置との間で交換可能な信号形式である
 前記(1)乃至(8)のいずれかに記載の通信装置。
(10)
 伝送路を介してデータ信号を、他の通信装置に送信する制御を行う通信装置が、
 複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、
 選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する
 通信方法。
(11)
 他の通信装置から送信されてくるデータ信号を、伝送路を介して受信する制御を行う制御部を備え、
 前記制御部は、
  複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、
  選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する
 通信装置。
(12)
 前記制御部は、他の通信装置から送信されてくるトレーニングパターンの検出状況に応じて、アクセス制御を実施する
 前記(11)に記載の通信装置。
(13)
 前記制御部は、所定のデータ信号を受信した後に、さらにデータ信号の受信を継続する場合、当該データ信号の受信残量に応じたトレーニングパターンを選択する
 前記(11)又は(12)に記載の通信装置。
(14)
 前記制御部は、伝送路の利用を終了する場合、当該伝送路の開放を通知するトレーニングパターンを選択する
 前記(11)乃至(13)のいずれかに記載の通信装置。
(15)
 前記制御部は、データ信号の受信状況に応じて、第1の受領確認信号に付加するトレーニングパターンを選択する
 前記(11)乃至(14)のいずれかに記載の通信装置。
(16)
 前記制御部は、前記第1の受領確認信号の末尾に、伝送路の開放を通知するトレーニングパターンを付加する
 前記(15)に記載の通信装置。
(17)
 前記制御部は、再送されるデータ信号の伝送路の占有時間に応じて、第2の受領確認信号に付加するトレーニングパターンを選択する
 前記(11)乃至(16)のいずれかに記載の通信装置。
(18)
 前記制御部は、データ信号の受信状況に応じた第1の受領確認信号を遅延させて送信する場合、前記第1の受領確認信号の構築に要する時間に応じて、第3の受領確認信号に付加するトレーニングパターンを選択する
 前記(11)乃至(17)のいずれかに記載の通信装置。
(19)
 前記トレーニングパターンは、自己の無線通信システム又は他の無線通信システムを構成する他の通信装置との間で交換可能な信号形式である
 前記(11)乃至(18)のいずれかに記載の通信装置。
(20)
 他の通信装置から送信されてくるデータ信号を、伝送路を介して受信する制御を行う通信装置が、
 複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、
 選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する
 通信方法。
 1-1,1-3 無線LANシステム, 1-2 他の無線通信システム, 10,10Tx,10Rx 通信装置, 20 通信装置, 30 通信装置, 11 ネットワーク接続モジュール, 12 情報入力モジュール, 13 機器制御モジュール, 14 情報出力モジュール, 15 無線通信モジュール, 101 インターフェース, 102 送信バッファ, 103 送信シーケンス管理部, 104 送信フレーム構築部, 105 通信制御部, 106 アクセス制御部, 107 送信信号処理部, 108 プリアンブル構築部, 109 送受信アンテナ部, 110 プリアンブル検出部, 111 受信信号処理部, 112 受信フレーム解析部, 113 受信シーケンス管理部, 114 受信バッファ, AP10 アクセスポイント, STA10 通信端末

Claims (20)

  1.  伝送路を介してデータ信号を、他の通信装置に送信する制御を行う制御部を備え、
     前記制御部は、
      複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、
      選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する
     制御を行う
     通信装置。
  2.  前記制御部は、他の通信装置から送信されてくるトレーニングパターンの検出状況に応じて、アクセス制御を実施する
     請求項1に記載の通信装置。
  3.  前記制御部は、所定のデータ信号を送信した後に、さらにデータ信号の送信を継続する場合、伝送路の利用状況に応じて、トレーニングパターンを選択する
     請求項1に記載の通信装置。
  4.  前記制御部は、データ信号の途中で、当該データ信号の伝送に要する残り時間に応じたトレーニングパターンを選択する
     請求項1に記載の通信装置。
  5.  前記制御部は、伝送路の利用を終了する場合、当該伝送路の開放を通知するトレーニングパターンを選択する
     請求項1に記載の通信装置。
  6.  前記制御部は、他の通信装置でのデータ信号の受信状況に応じた受領確認信号を要求する要求信号に付加するトレーニングパターンを選択する
     請求項1に記載の通信装置。
  7.  前記制御部は、複数のデータをアグリゲートして、送信するデータ信号を構築する
     請求項1に記載の通信装置。
  8.  前記トレーニングパターンは、複数のトレーニングシーケンスの組み合わせにより構成される
     請求項1に記載の通信装置。
  9.  前記トレーニングパターンは、自己の無線通信システム又は他の無線通信システムを構成する他の通信装置との間で交換可能な信号形式である
     請求項1に記載の通信装置。
  10.  伝送路を介してデータ信号を、他の通信装置に送信する制御を行う通信装置が、
     複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、
     選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する
     通信方法。
  11.  他の通信装置から送信されてくるデータ信号を、伝送路を介して受信する制御を行う制御部を備え、
     前記制御部は、
      複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、
      選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する
     通信装置。
  12.  前記制御部は、他の通信装置から送信されてくるトレーニングパターンの検出状況に応じて、アクセス制御を実施する
     請求項11に記載の通信装置。
  13.  前記制御部は、所定のデータ信号を受信した後に、さらにデータ信号の受信を継続する場合、当該データ信号の受信残量に応じたトレーニングパターンを選択する
     請求項11に記載の通信装置。
  14.  前記制御部は、伝送路の利用を終了する場合、当該伝送路の開放を通知するトレーニングパターンを選択する
     請求項11に記載の通信装置。
  15.  前記制御部は、データ信号の受信状況に応じて、第1の受領確認信号に付加するトレーニングパターンを選択する
     請求項11に記載の通信装置。
  16.  前記制御部は、前記第1の受領確認信号の末尾に、伝送路の開放を通知するトレーニングパターンを付加する
     請求項15に記載の通信装置。
  17.  前記制御部は、再送されるデータ信号の伝送路の占有時間に応じて、第2の受領確認信号に付加するトレーニングパターンを選択する
     請求項11に記載の通信装置。
  18.  前記制御部は、データ信号の受信状況に応じた第1の受領確認信号を遅延させて送信する場合、前記第1の受領確認信号の構築に要する時間に応じて、第3の受領確認信号に付加するトレーニングパターンを選択する
     請求項11に記載の通信装置。
  19.  前記トレーニングパターンは、自己の無線通信システム又は他の無線通信システムを構成する他の通信装置との間で交換可能な信号形式である
     請求項11に記載の通信装置。
  20.  他の通信装置から送信されてくるデータ信号を、伝送路を介して受信する制御を行う通信装置が、
     複数の種類のトレーニングパターンの中から、伝送路の占有時間に応じたトレーニングパターンを選択し、
     選択した前記トレーニングパターンを付加した信号を、伝送路を介して他の通信装置に送信する
     通信方法。
PCT/JP2020/048730 2020-01-10 2020-12-25 通信装置、及び通信方法 WO2021140960A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/758,342 US20230037840A1 (en) 2020-01-10 2020-12-25 Communication device and communication method
JP2021570022A JPWO2021140960A1 (ja) 2020-01-10 2020-12-25
CN202080091599.8A CN114902782A (zh) 2020-01-10 2020-12-25 通信设备和通信方法
EP20912490.8A EP4072182A4 (en) 2020-01-10 2020-12-25 COMMUNICATION DEVICE AND COMMUNICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020002712 2020-01-10
JP2020-002712 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021140960A1 true WO2021140960A1 (ja) 2021-07-15

Family

ID=76788428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048730 WO2021140960A1 (ja) 2020-01-10 2020-12-25 通信装置、及び通信方法

Country Status (5)

Country Link
US (1) US20230037840A1 (ja)
EP (1) EP4072182A4 (ja)
JP (1) JPWO2021140960A1 (ja)
CN (1) CN114902782A (ja)
WO (1) WO2021140960A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536850A (ja) * 2004-05-04 2007-12-13 アイピーワイヤレス,インコーポレイテッド 信号生成方法、信号処理方法、信号生成装置
WO2019069670A1 (ja) * 2017-10-02 2019-04-11 ソニー株式会社 無線通信装置および方法、並びにプログラム
JP2019092199A (ja) * 2014-11-18 2019-06-13 クゥアルコム・インコーポレイテッドQualcomm Incorporated 免許不要無線周波数スペクトル帯域上でプリアンブルを送信するための技法
JP2019520754A (ja) 2016-06-21 2019-07-18 マーベル ワールド トレード リミテッド 送信のための方法および装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100290449A1 (en) * 2008-08-20 2010-11-18 Qualcomm Incorporated Preamble extensions
CN110892750B (zh) * 2017-07-06 2023-11-28 索尼公司 无线通信装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536850A (ja) * 2004-05-04 2007-12-13 アイピーワイヤレス,インコーポレイテッド 信号生成方法、信号処理方法、信号生成装置
JP2019092199A (ja) * 2014-11-18 2019-06-13 クゥアルコム・インコーポレイテッドQualcomm Incorporated 免許不要無線周波数スペクトル帯域上でプリアンブルを送信するための技法
JP2019520754A (ja) 2016-06-21 2019-07-18 マーベル ワールド トレード リミテッド 送信のための方法および装置
WO2019069670A1 (ja) * 2017-10-02 2019-04-11 ソニー株式会社 無線通信装置および方法、並びにプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4072182A4

Also Published As

Publication number Publication date
EP4072182A1 (en) 2022-10-12
US20230037840A1 (en) 2023-02-09
EP4072182A4 (en) 2022-12-28
JPWO2021140960A1 (ja) 2021-07-15
CN114902782A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
KR100779753B1 (ko) 무선 통신 시스템에서 송신 상태를 폴링하는 방법 및 장치
US8281202B2 (en) Method and apparatus for improving transmission time interval bundling
CN103329609B (zh) 一种无线通信方法、无线发送器和无线接收器
RU2016110093A (ru) Способы и системы для планирования ресурсов в телекоммуникационной системе
CA2454987C (en) Efficient polled frame exchange on a shared-communications channel
US20170164231A1 (en) Data transmission method and base station
CN101588230A (zh) 无线通讯系统的同步混合式自动重复请求的操作方法
RU2758080C2 (ru) Способ связи, сетевое устройство и терминал
KR100714675B1 (ko) 데이터 프레임 재전송 방법 및 상기 방법을 사용하는네트워크 장치
CN111615196A (zh) 资源配置方法、数据的接收方法及相关设备
CN110351757A (zh) 一种调度请求传输方法、终端及网络侧设备
CN103618694A (zh) 基于数字无线电窄带系统的r2udp协议设计
EP3902348A1 (en) Communication device and communication method
WO2021140960A1 (ja) 通信装置、及び通信方法
JP2008028430A (ja) 送信装置
KR100947530B1 (ko) 무선통신시스템에서 데이터 전송상태를 폴링하는 방법 및장치
EP1505759A3 (en) Method and device for transmitting/receiving data using acknowledged transport layer protocols
JP4023264B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP5058072B2 (ja) 無線通信装置
US20080192664A1 (en) Method and related apparatus for enhancing resource utility rate in a wireless communications system
KR20210126557A (ko) 통신 장치 및 통신 방법
JP2005094429A (ja) 無線通信装置
JP2011135255A (ja) 無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570022

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020912490

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020912490

Country of ref document: EP

Effective date: 20220707

NENP Non-entry into the national phase

Ref country code: DE