WO2021140926A1 - Electrically conductive adhesive, and joined structure and electronic component using same - Google Patents

Electrically conductive adhesive, and joined structure and electronic component using same Download PDF

Info

Publication number
WO2021140926A1
WO2021140926A1 PCT/JP2020/048338 JP2020048338W WO2021140926A1 WO 2021140926 A1 WO2021140926 A1 WO 2021140926A1 JP 2020048338 W JP2020048338 W JP 2020048338W WO 2021140926 A1 WO2021140926 A1 WO 2021140926A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
conductive adhesive
acid
electronic component
Prior art date
Application number
PCT/JP2020/048338
Other languages
French (fr)
Japanese (ja)
Inventor
茉里 徳武
阿部 真二
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Publication of WO2021140926A1 publication Critical patent/WO2021140926A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to an ultraviolet curable conductive adhesive, an adhesive structure using the same, and an electronic component.
  • thermocompression bonding method As a method of bonding electronic components such as semiconductors and light emitting diodes to electrodes formed on a substrate such as film or paper using a conductive adhesive or an anisotropic conductive adhesive, the electronic components are thermocompression bonded by a face-down method.
  • the method of making the material is widely and generally used (for example, Patent Document 1). Specifically, an anisotropic conductive adhesive is applied onto the electrodes formed on the substrate, and a semiconductor having bumps called protruding electrodes is placed so that the bumps are located on the electrodes.
  • the anisotropic conductive adhesive is cured by sandwiching the substrate on which the semiconductor is placed between the upper heat tool and the lower heat tool heated to 180 ° C., and the semiconductor is electrically connected to the electrodes and at the same time on the substrate. A semiconductor is mounted.
  • Patent Document 2 As a method that does not require heating when mounting a semiconductor on a substrate, a method using an adhesive containing an ultraviolet curable resin is known (for example, Patent Document 2).
  • the adhesive containing the ultraviolet curable resin has a problem of low adhesion, and in order to improve this, a method of containing a phosphoric acid group-containing monomer has been proposed (for example, Patent Document 3 and non-patent). Document 1).
  • a conductive adhesive using an ultraviolet curable resin containing such a phosphate group-containing monomer has a problem that storage stability (pot life) is shortened when it contains a metal, and has adhesion and storage stability.
  • storage stability potential life
  • Japanese Unexamined Patent Publication No. 2003-304003 Japanese Unexamined Patent Publication No. 2015-0533316 Japanese Unexamined Patent Publication No. 09-263744
  • an object of the present invention is to provide a conductive adhesive using an ultraviolet curable resin, which has excellent adhesion and storage stability, and an adhesive structure and electronic components using the conductive adhesive. To provide.
  • the present inventors have made a conductive adhesive using an ultraviolet curable resin containing a phosphate group-containing monomer containing a polyester resin soluble in an organic solvent.
  • the present invention has been completed by finding that it has excellent adhesion and storage stability.
  • the first invention provided by the present invention includes (meth) acrylate (A), photopolymerization initiator (B), phosphate group-containing monomer (C), polyester resin (D) soluble in an organic solvent, and It is a conductive adhesive containing conductive particles (E).
  • the second invention to be provided by the present invention is an adhesive structure in which members to be adhered to each other are adhered to each other via the conductive adhesive of the first invention.
  • the conductive adhesive of the present invention includes a (meth) acrylate (A), a photopolymerization initiator (B), a phosphate group-containing monomer (C), and a polyester resin (D) soluble in an organic solvent (hereinafter, simply “. It may be referred to as “polyester resin (D)") and conductive particles (E).
  • a polyester resin (D) soluble in an organic solvent
  • the (meth) acrylate (A) is cured by irradiation with ultraviolet-visible light and becomes the main agent of the ultraviolet curable resin, and has at least a (meth) acryloyl group. It is a compound having one.
  • the (meth) acrylate (A) may be a monomer or an oligomer, but is preferably a monomer.
  • "(meth) acrylate” is a concept including acrylate and methacrylate, that is, acrylic acid ester and methacrylic acid ester.
  • (meth) acrylate monomer a compound having one (meth) acryloyl group (hereinafter, may be referred to as “monofunctional (meth) acrylic monomer”), and a compound having two or more (meth) acryloyl groups. (Hereinafter, it may be referred to as "polyfunctional (meth) acrylic monomer”).
  • known (meth) acrylates can be used without particular limitation.
  • Examples of the monofunctional (meth) acrylic monomer include a ring structure such as an alkyl (meth) acrylate, an alkoxyalkyl (meth) acrylate, a (meth) acrylate having an amino group, an aliphatic ring, an aromatic ring, and a heterocyclic ring. Examples thereof include (meth) acrylate having (meth) acrylate and (meth) acrylate having a hydroxyl group.
  • alkyl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, and isobutyl (meth) acrylate.
  • alkoxyalkyl (meth) acrylate examples include methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, and ethoxyethoxyethyl (meth) acrylate.
  • Examples of the (meth) acrylate having an amino group include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, dimethylacrylamide, diethylacrylamide, and hydroxy.
  • Examples thereof include ethyl acrylamide, acryloyl morpholine, isopropyl acrylamide, dimethylaminoprolyl acrylamide and the like.
  • Examples of the (meth) acrylate having a ring structure such as an aliphatic ring, an aromatic ring and a heterocyclic ring include tricyclodecane (meth) acrylate, dicyclopentenyl (meth) acrylate, isobolonyl (meth) acrylate, and adamantyl (meth).
  • Examples of the (meth) acrylate having a hydroxyl group include (meth) acrylate in which a hydroxyl group is bonded to an aliphatic group having 2 to 9 carbon atoms. Substituents such as phenoxy groups may be attached to the (meth) acrylate.
  • Examples of the (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate. Can be mentioned.
  • the polyfunctional (meth) acrylic monomer includes a bifunctional (meth) acrylic monomer and a trifunctional or higher functional (meth) acrylic monomer.
  • Examples of the bifunctional (meth) acrylic monomer include (meth) acrylate compounds of aliphatic diols having 4 to 9 carbon atoms, alkylene oxide type (meth) acrylate compounds, and (meth) acrylate compounds having a ring structure. Can be mentioned.
  • Examples of the acrylate compound of the aliphatic diol having 4 to 9 carbon atoms include neopentyl glycol di (meth) acrylate and 1,6-hexanediol di (meth) acrylate.
  • the (meth) acrylate of these aliphatic diols may be modified with an aliphatic ester or an alkylene oxide.
  • Examples of the aliphatic ester-modified (meth) acrylate compound include neopentyl glycol hydroxypivalate di (meth) acrylate and caprolactone-modified neopentyl glycol hydroxypivalate di (meth) acrylate.
  • alkylene oxide-modified (meth) acrylate compound examples include diethylene oxide-modified neopentyl glycol di (meth) acrylate, dipropylene oxide-modified neopentyl glycol di (meth) acrylate, and diethylene oxide-modified 1,6-hexanediol di (meth).
  • Acrylate and dipropylene oxide-modified 1,6-hexanediol di (meth) acrylate and the like can be mentioned.
  • alkylene oxide type (meth) acrylate compound examples include neopentyl glycol-modified trimethylolpropane di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
  • Examples of the (meth) acrylate compound having a ring structure include trimethylolpropane di (meth) acrylate and dicyclopentanyldi (meth) acrylate.
  • trifunctional or higher functional (meth) acrylic monomer examples include trimethylpropantri (meth) acrylate, pentaerythritol tri (meth) acrylate, and aliphatic modified dipentaerythritol penta (meth) acrylate having 2 to 5 carbon atoms.
  • Aliper-modified dipentaerythritol tetra (meth) acrylate having 2 to 5 carbon atoms dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (Meta) Acrylate, Tris [(Meta) Acryloxyethyl] Isocyanurate, Caprolactone Modified Tris [(Meta) Acryloxyethyl] Isocyanurate and Ditrimethylol Propantetra (Meta) Acrylate, Trimethylol Prohantriacrylate, Trimethylol Examples thereof include propanepropylene oxide-modified triacrylate, ethoxylated glycerin triacrylate, and isocyanurate ethylene oxide-modified di and triacrylate.
  • the blending ratio of the polyfunctional (meth) acrylic monomer is preferably 5 to 80 parts by mass with respect to 100 parts by mass of the monofunctional (meth) acrylic monomer, and the flexibility is preferably 10 to 60 parts by mass. It is more preferable from the viewpoint of the balance between shrinkage and shrinkage.
  • the (meth) acrylate monomer and the (meth) acrylate oligomer can be used in combination as the (meth) acrylate (A) in order to improve the adhesion to the substrate.
  • the (meth) acrylate oligomer used in the present invention is preferably one that dissolves in the above (meth) acrylate monomer, and examples of such oligomers include epoxy (meth) acrylate, polyester (meth) acrylate, and urethane (meth) acrylate. And so on.
  • the oligomer means an oligomer having a molecular weight of 500 or more.
  • Epoxy (meth) acrylate is obtained by the reaction of epoxy resin and (meth) acrylic acid.
  • the epoxy resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, and novolak type epoxy resins.
  • Polyester (meth) acrylate is obtained by reacting polyester polyol with (meth) acrylic acid.
  • the polyester polyol is obtained by reacting a polyhydric alcohol with a polybasic acid.
  • the polyhydric alcohol include neopentyl glycol, ethylene glycol, propylene glycol, 1,6-hexanediol, trimethylolpropane, pentaerythritol, tricyclodecanedimethylol and bis (hydroxymethyl) cyclohexane.
  • polybasic acid examples include succinic acid, phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydrophthalic anhydride and the like.
  • Urethane (meth) acrylate is produced by a three-component reaction of a polyol, an organic polyisocyanate, and a hydroxy (meth) acrylate compound, or a two-component reaction of an organic polyisocyanate and a hydroxy (meth) acrylate compound without using a polyol. It is what you get.
  • the polyol include polyether polyols such as polypropylene glycol and polytetramethylene glycol, polyester polyols obtained by reacting the polyhydric alcohol with the polybasic acid, and the polyhydric alcohol, the polybasic acid, and ⁇ -caprolactone.
  • Examples thereof include a caprolactone polyol obtained by the reaction and a polycarbonate polyol (for example, a polycarbonate polyol obtained by the reaction of 1,6-hexanediol and diphenyl carbonate).
  • examples of the organic polyisocyanate include isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4'-diisocyanate and dicyclopentanyl diisocyanate.
  • (meth) acrylate monomers and (meth) acrylate oligomers only one kind may be used, or two or more kinds may be mixed and used at an arbitrary ratio.
  • these (meth) acrylate monomers and (meth) acrylate oligomers include (meth) acrylate having an amino group, N-acryloyloxyethyl hexahydrophthalimide, isocyanurate ethylene oxide-modified di and triacrylate, It is preferable to use a (meth) acrylic monomer containing a nitrogen atom such as urethane (meth) acrylate and / or a (meth) acrylate oligomer in combination from the viewpoint of further improving adhesion, heat resistance and hardness.
  • a nitrogen atom such as urethane (meth) acrylate and / or a (meth) acrylate oligomer
  • the blending ratio of the (meth) acrylic monomer containing a nitrogen atom is 15% by mass in the (meth) acrylate (A). It is preferably about 95% by mass, and preferably 20 to 80% by mass from the viewpoint of further improving the adhesion.
  • the blending amount of the (meth) acrylate (A) in the conductive adhesive is preferably 15 to 95% by mass, more preferably 30 to 90% by mass from the viewpoint of curability and adhesion.
  • the photopolymerization initiator (B) is a component that efficiently photocures the ultraviolet curable resin.
  • the photopolymerization initiator (B) that can be used in the present invention is not particularly limited, and is, for example, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino).
  • Examples thereof include an oxime ester-based photopolymerization initiator and a sulfonium salt-based photopolymerization initiator. Only one of these photopolymerization initiators may be used, or two or more of these photopolymerization initiators may be mixed and used at an arbitrary ratio.
  • an alkylphenone-based photopolymerization initiator as the photopolymerization initiator (B) from the viewpoint of curability, and it is particularly preferable to use 1-hydroxycyclohexyl-phenylketone.
  • the amount of the photopolymerization initiator (B) used is preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the (meth) acrylate (A), and it is preferably 1 to 12 parts by mass from the viewpoint of curability. Therefore, it is more preferable.
  • the phosphoric acid group-containing monomer (C) according to the conductive adhesive of the present invention is a component that contributes to improving the adhesion of the ultraviolet curable resin.
  • the phosphoric acid group-containing monomer (C) that can be used in the present invention is not particularly limited, and may be any monomer that is polymerizable and has a phosphoric acid group.
  • Examples of the phosphoric acid group-containing monomer (C) include 2-methacryloyloxyethyl acid phosphate, di-2-methacryloyloxyethyl acid phosphate, 3-methacryloyloxypropyl acid phosphate, and di-3-methacryloyloxypropyl.
  • Examples thereof include acid phosphate, ethylene oxide-modified dimethacrylate phosphate, phosphate (meth) acrylates such as phosphoric acid-containing epoxy methacrylate, and vinyl phosphate compounds such as vinylphosphonic acid.
  • a phosphoric acid (meth) acrylate represented by the following general formula (1) or (2) is preferable.
  • R 1 represents a hydrogen atom or a methyl group.
  • A represents a linear or branched alkylene group having 1 to 4 carbon atoms.
  • M represents an integer of 1 to 4, preferably 1 to 2. .
  • phosphoric acid group-containing monomers only one kind may be used, or two or more kinds may be mixed and used at an arbitrary ratio.
  • the blending amount of the phosphoric acid group-containing monomer (C) is preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the (meth) acrylate (A), and 3 to 30 parts by mass improves the adhesion. It is more preferable from the viewpoint of making it.
  • the polyester resin (D) according to the conductive adhesive of the present invention is a component that imparts storage stability to the conductive adhesive containing the ultraviolet curable resin and conductive particles.
  • the present inventors have excellent solubility and compatibility of the polyester resin (D) soluble in an organic solvent with respect to the main component (meth) acrylate (A), and further have conductivity with the above-mentioned ultraviolet curable resin. It has been found that an excellent storage stability can be imparted to a conductive adhesive containing particles.
  • the polyester resin that can be used in the present invention may be any one that is soluble in an organic solvent, and can be obtained, for example, by polymerizing a polyvalent carboxylic acid component and a glycol component.
  • the polyvalent carboxylic acid component consists of a group consisting of a divalent or higher polyvalent carboxylic acid and an ester-forming derivative in which the carboxyl group in the polyvalent carboxylic acid is replaced with an ester-forming inducer derived from the carboxyl group. One or more selected.
  • Examples of the polyvalent carboxylic acid component include aromatic dicarboxylic acids and aliphatic dicarboxylic acids.
  • Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, diphenylic acid, naphthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,
  • Examples of the aliphatic dicarboxylic acid include 6-naphthalenedicarboxylic acid and the like, and examples of the aliphatic dicarboxylic acid include linear, branched or alicyclic oxalic acid, malonic acid, succinic acid, maleic acid, itaconic acid, glutaric acid and adipic acid.
  • Pimeric acid 2,2-dimethylglutaric acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, diglycolic acid, thiodipropion Examples include acids.
  • Examples of the polyvalent carboxylic acid component include dicarboxylic acids having a metal sulfonate group, tribasic acid anhydrides, tetravalent or higher polyvalent carboxylic acids such as tetrabasic acid anhydrides, and ester-forming derivatives thereof. Be done.
  • Examples of the dicarboxylic acid having a metal sulfonate group and its ester-forming derivative include 5-sulfoisophthalic acid, 2-sulfoisophthalic acid, and 4-sulfo.
  • Examples thereof include alkali metal salts such as isophthalic acid, sulfoterephthalic acid and 4-sulfonaphthalene-2,6-dicarboxylic acid and ester-forming derivatives thereof.
  • alkali metal salts such as isophthalic acid, sulfoterephthalic acid and 4-sulfonaphthalene-2,6-dicarboxylic acid and ester-forming derivatives thereof.
  • trivalent or higher valent carboxylic acids and ester-forming derivatives thereof include hemmellitic acid, trimellitic acid, trimedic acid, melophonic acid, pyromellitic acid, benzenepentacarboxylic acid, merit acid, and cyclopropane-.
  • Examples thereof include 1,2,3-tricarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid, ethanetetracarboxylic acid and ester-forming derivatives thereof.
  • glycol component examples include polyethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol.
  • polyethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol.
  • Polypropylene glycol such as tetrapropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2-dimethyl- 1,3-Propanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2-isobutyl-1,3-propanediol, 2,2,4-trimethyl-1,6-hexane Diol, 1,2-Cyclohexanedimethanol, 1,3-Cyclohexanedimethanol, 1,4-Cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 4,4'-dihydroxy Biphenol, 4,4'-methylenediphenol, 4,4'-isopropyridenediphenol, 1,5-
  • soluble in an organic solvent means that it dissolves in 5 parts by mass or more with respect to 100 parts by mass of an organic solvent at room temperature (25 ° C.).
  • organic solvent include alcohol solvents such as methanol, ethanol and isopropyl alcohol, ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate and ⁇ -butyrolactone, and ketone solvents such as acetone, cyclohexanone, methyl ethyl ketone and methyl isobutyl ketone.
  • Solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, glycol ester solvents such as ethylene glycol monoethyl ether acetate and propylene glycol monomethyl ether acetate, hexane, heptane, cyclohexane, toluene, Hydrocarbon solvents such as xylene, halogen solvents such as dichloromethane, chloroform, orthodichlorobenzene, tetrahydrofuran, acetonitrile, dimethylsulfoxide, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, etc. Can be mentioned.
  • the polyester resin (D) is UV-cured composed of (meth) acrylate (A), photopolymerization initiator (B) and phosphate group-containing monomer (C). It is preferably soluble in the mold resin.
  • the polyester resin (D) is preferably an amorphous polyester resin from the viewpoint of excellent solubility in (meth) acrylate (A) and excellent transparency.
  • the amorphous polyester resin is a polyester resin that does not have a clear melting point found in crystalline resins because it has almost no regular arrangement of molecular chains and has a low crystallinity.
  • Mw number average molecular weight
  • the glass transition temperature (Tg) of the amorphous polyester is preferably ⁇ 20 ° C.
  • the glass transition temperature is excessively low, the adhesiveness may become strong, and if the glass transition temperature is excessively high, the adhesiveness may decrease.
  • polyester resin (D) As the polyester resin (D), a known one can be used, or a commercially available product may be used. Examples of commercially available products include Toyobo's Byron 550, 670, GK680, GK780, GK810, GK890, BX1001, Unitika's Elitel UE-3220, UE-3300, UE-3500, UE-3210, UE-3320 and the like. Be done.
  • the blending amount of the polyester resin (D) is preferably 10 to 2000 parts by mass, and 50 to 400 parts by mass with respect to 100 parts by mass of the phosphoric acid group-containing monomer (C) from the viewpoint of storage stability and adhesion. Therefore, it is more preferable.
  • the conductive particles (E) according to the conductive adhesive of the present invention are components that impart conductivity.
  • the conductive particles (E) known particles used in a conductive adhesive, an anisotropic conductive film, and an anisotropic conductive adhesive can be used.
  • the conductive particles (E) include metal particles such as gold, silver, copper, nickel, palladium, and solder, those having conductivity by themselves such as carbon particles, and conductive metals on the surface of the core material particles. Examples thereof include conductive particles coated with.
  • the size of the conductive particles may be appropriately selected according to the specific use of the conductive adhesive of the present invention, but when used as a conductive material for connecting an electronic circuit, the particle size is too small. Conduction between the counter electrodes becomes impossible, while if it is too large, a short circuit occurs between the adjacent electrodes. Therefore, the average particle size of the conductive particles is preferably 0.1 to 1000 ⁇ m, particularly preferably 0.5 to 100 ⁇ m, as a value measured by the electric resistance method.
  • the shape of the conductive particles is not particularly limited, but is generally powdery and granular, and may have other shapes such as fibrous, hollow, plate-like, and needle-like, and has a large number of protrusions on the particle surface. It may be a thing or an irregular shape. From the viewpoint of dispersibility, the shape of the conductive particles is preferably spherical.
  • the conductive particles (E) are preferably metal-coated particles in which the surface of the core material particles is coated with a conductive metal.
  • the core material particles can be used without particular limitation regardless of whether they are inorganic or organic.
  • the inorganic core material particles include metal particles such as gold, silver, copper, nickel, palladium, and solder, alloys, glass, ceramics, silica, metal or non-metal oxides (including hydrous substances), and aluminosilicates.
  • metal silicates include metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides and carbons.
  • the organic core particles include thermoplastic resins such as natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylic nitrile, polyacetal, ionomer, and polyester.
  • thermoplastic resins such as natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylic nitrile, polyacetal, ionomer, and polyester.
  • examples thereof include alkyd resin, phenol resin, urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin and diallyl phthalate resin. It is preferable to use a resin as the core material particles because the specific gravity of the metal-coated particles becomes lighter, so that they do not easily settle, the dispersion stability becomes good, and the electrical connection can be maintained by
  • the shape of the core material particles is not particularly limited, but is generally powdery and granular, and may have other shapes such as fibrous, hollow, plate-like, and needle-like, and has a large number of protrusions on the particle surface. It may be a thing or an irregular shape. From the viewpoint of dispersibility, the shape of the conductive particles is preferably spherical.
  • the size of the core material particles is preferably 0.1 to 1000 ⁇ m, particularly preferably 0.5 to 100 ⁇ m, as a value measured by the electric resistance method. If the particle size is too small, conduction between the counter electrodes will not be possible, while if it is too large, a short circuit will occur between the adjacent electrodes.
  • a dry method such as a vapor deposition method, a sputtering method, a mechanochemical method, a hybridization treatment, an electrolytic plating method, a wet method such as an electrolytic plating method, etc. , Or a method combining these can be used.
  • the metal-coated particles are preferably coated with one or more conductive metals selected from gold, silver, copper, nickel, palladium, solder and the like, and in particular, the surface of the core material particles is electroless.
  • Metal-plated particles having a metal film formed by plating are preferable in that the surface of the particles can be uniformly and densely coated, and those in which the metal film is gold or palladium are particularly preferable in that the conductivity can be increased.
  • the metal film may be an alloy (for example, a nickel-phosphorus alloy or a nickel-boron alloy).
  • the blending amount of the conductive particles (E) is preferably 2 to 40 parts by mass, more preferably 3 to 25 parts by mass, still more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylate (A).
  • amount of the conductive particles (E) used is within the above range, the connection resistance is suppressed from being increased and the connection reliability is improved.
  • an additive known in the art can be used, and the amount of the additive can be contained in an amount within a range in which ultraviolet visible light can reach the inside.
  • examples of other additives include a photosensitizer, a defoaming agent, a thixotropic agent, a viscosity modifier, a leveling powder, a silane coupling agent, a stabilizer, an ion exchanger and the like.
  • a solvent can be contained if necessary.
  • the conductive adhesive of the present invention can be cured by irradiating with ultraviolet-visible light.
  • the wavelength range of ultraviolet-visible light is preferably 100 to 700 nm, more preferably 150 to 500 nm, and even more preferably 180 to 400 nm.
  • the conductive adhesive of the present invention is applied to the surface of a transparent substrate on which an electrode is formed. , Slit coater, roll coater, spin coater, screen printing method, metal mask printing method, dispenser, jet dispenser, etc.
  • the electronic component can be adhered by placing the electronic component on the substrate so that a part of the electronic component is located above the electrode and irradiating the transparent substrate side with ultraviolet visible light.
  • Dose of ultraviolet-visible light is preferably 50 ⁇ 20,000mJ / cm 2, particularly preferably 300 ⁇ 10,000mJ / cm 2.
  • the light source does not matter as long as the lamp irradiates ultraviolet to near-ultraviolet rays.
  • the light source include low-voltage, high-pressure or ultra-high-voltage mercury lamps, metal halide lamps, (pulse) xenon lamps, electrodeless lamps, LEDs, and the like.
  • the conductive adhesive according to the present invention can be used as an anisotropic conductive adhesive, and can be connected with high reliability to the electrode connection of electronic parts such as IC chips and light emitting diodes to be miniaturized and circuit boards. ..
  • Examples of the adhesive structure in which the members to be adhered are bonded to each other via the conductive adhesive of the present invention include RFID-related products such as IC cards and IC tags in which an IC chip is bonded to a substrate having an electrode. Examples thereof include light emitting electronic components in which a light emitting diode is adhered to a substrate having an electrode.
  • the electronic component mounted on the substrate shown in FIG. 1 can be exemplified.
  • An aluminum antenna 2 as an electrode is formed on a surface 1a which is one surface of a substrate 1 such as a film or paper.
  • the conductive adhesive 3 of the present invention is applied to the surface 1a in a range including at least the entire aluminum antenna 2, and is cured by ultraviolet-visible light.
  • an electronic component having a metal electrode 5, that is, an IC chip 4, which is a semiconductor is placed on the surface 1a so that the metal electrode 5 is located above the aluminum antenna 2.
  • the IC chip 4 is adhered to the surface 1a side of the substrate 1 by the conductive adhesive 3 (including the conductive particles 6) of the present invention.
  • the aluminum antenna 2 and the metal electrode 5, that is, the IC chip 4 are configured to be energized via the conductive particles 6.
  • FIG. 2 shows an example of an apparatus for mounting an electronic component using the conductive adhesive of the present invention.
  • the device 30 for mounting the electronic component of FIG. 2 has a heat table 31 which is a heating member for mounting the substrate 1 and heating the substrate 1, an irradiation member 32 for irradiating ultraviolet visible light, and a heat table for the irradiation member 32. It includes a drive device 33 that moves toward or away from the heat table 31, and a control unit 34.
  • the control unit 34 is electrically connected to the heat table 31, the irradiation member 32, and the drive device 33, respectively.
  • FIG. 3 shows the configuration of the contact surface 35 in which the irradiation member 32 contacts the substrate 1 (see FIG. 2).
  • the contact surface 35 is composed of a transparent or translucent flat plate member 36 capable of transmitting ultraviolet visible light, and the light source 37 of ultraviolet visible light provided inside the irradiation member 32 can be seen through the plate member 36. It has become like.
  • the light source 37 is adapted to irradiate ultraviolet-visible light by supplying power from the control unit 34 (see FIG. 2).
  • an LED As the light source 37, an LED, a metal halide lamp, a xenon lamp, a pressurized mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a carbon arc lamp, or any other light source that emits light having a light emission distribution at a wavelength of 100 to 700 nm is used. Can be done.
  • the planar shape of the IC chip 4 may be any shape, but here, it will be described as having an elliptical shape as shown in FIG.
  • the IC chip 4 mounted on the substrate 1 is used for RFID-related products such as IC cards and IC tags. Further, the light emitting diode 14 mounted on the substrate 1 is used for a light emitting electronic component.
  • the circumscribing rectangle 20 has two long sides 21 parallel to each other and two short sides 22 parallel to each other, and the length of the short sides 22 is 2 mm or less, preferably 1.5 mm or less. ..
  • the lengths of the long side and the short side are the same, so that the length of one side may be 2 mm or less, preferably 1.5 mm or less. Since the IC chip 4 does not transmit ultraviolet visible light, as shown in FIG.
  • the light emitting diode 14 made of a transparent material when the light emitting diode 14 made of a transparent material is mounted on the substrate 1 as an electronic component, the ultraviolet visible light emitted perpendicularly to the substrate 1 is transmitted through the light emitting diode 14. Then, the conductive adhesive 3 (not shown in FIG. 6) is irradiated with the conductive adhesive 3. However, even if the light emitting diode 14 is transparent, the metal electrode 5 is not transparent, and ultraviolet visible light does not pass through the metal electrode 5, so that the metal electrode 5 becomes a non-transmissive portion and the metal is formed in a direction perpendicular to the substrate 1. The region where the electrode 5 is projected (the shaded area) is the non-irradiated region 23.
  • the substrate 1 is placed on the heat table 31.
  • An aluminum antenna 2 is already formed on the surface 1a of the substrate 1, a conductive adhesive 3 is applied to a range including at least the entire aluminum antenna 2, and an IC is provided so that the metal electrode 5 is located above the aluminum antenna 2.
  • the chip 4 is placed.
  • the control unit 34 may preheat the heat table 31 to an appropriate temperature in the range of 15 to 100 ° C.
  • the control unit 34 activates the drive device 33 to move the irradiation member 32 toward the heat table 31, and moves the substrate 1 to the heat table 31 and the irradiation member 32. Sandwiched by.
  • control unit 34 irradiates the irradiation member 32 with ultraviolet visible light, and pressurizes the substrate 1 by the heat table 31 and the irradiation member 32.
  • the pressure applied at this time is appropriately set in the range of 0.01 to 500 N / mm 2 , more preferably in the range of 0.03 to 300 N / mm 2.
  • the conductive adhesive 3 is cured by irradiating the conductive adhesive 3 with ultraviolet visible light.
  • the control unit 34 moves the irradiation member 32 away from the heat table 31 by the driving device 33, and uses the heat table 31. By completing the heating and irradiation of ultraviolet visible light from the irradiation member 32, the mounting of the IC chip 4 on the substrate 1 is completed.
  • the IC chip 4 and the light emitting diode 14 have been described as examples of electronic components, but the present invention is not limited to these. Any electronic component that is adhered by an adhesive that cures when irradiated with ultraviolet-visible light may be used.
  • control unit 34 moves the irradiation member 32 toward the heat table 31, but the present invention is not limited to this embodiment.
  • the irradiation member 32 may be fixed and the heat table 31 may be moved toward the irradiation member 32, or both may be moved toward each other at the same time or alternately.
  • the conductive adhesive 3 when the conductive adhesive 3 is irradiated with ultraviolet-visible light, it is also heated by the heat table 31, but the present invention is not limited to this embodiment. Since this heating is performed to accelerate the curing reaction of the conductive adhesive 3, instead of the heat table 31, a simple fixing table that does not heat is used to irradiate only ultraviolet visible light. May be good.
  • the substrate 1 is placed on the heat table 31, but the present invention is not limited to this embodiment.
  • the irradiation member 32 may be arranged so that the contact surface 35 faces upward, and the substrate 1 may be placed on the contact surface 35.
  • the heat table 31 may be arranged above the irradiation member 32, and the heat table 31 may be moved toward the irradiation member 32, or the irradiation member 32 may be moved toward the heat table 31. Both may be moved toward each other at the same time or alternately.
  • polyester resin (D) As the polyester resin (D), the following commercially available one was used. All of these were dissolved in an amount of 5 parts by mass or more at 25 ° C. with respect to 100 parts by mass of methyl ethyl ketone.
  • Conductive particles (E) As the conductive particles, gold-plated particles (manufactured by Nippon Kagaku Kogyo Co., Ltd.) having a gold-nickel conductive layer on the surface of the spherical resin particles and having an average particle diameter of 3.0 ⁇ m were used.
  • Examples 1 to 8 and Comparative Examples 1 to 2 With the composition shown in Table 5, (meth) acrylate (A), photopolymerization initiator (B), phosphate group-containing monomer (C), polyester resin (D) and Aerosil RX200 as an additive (thixotropic agent: Japan) (Aerosil) was mixed at 25 ° C. for 1 hour using a rotating / revolving vacuum mixer to prepare conductive adhesives of Examples 1 to 8 and Comparative Examples 1 and 2.
  • the conductive adhesives prepared in Examples and Comparative Examples were applied to a range including the entire aluminum wiring on a substrate (size: length 2.5 cm, width 8 cm) in which aluminum wiring was formed on a PET film. It was applied by the dispense method so as to have a thickness of 50 ⁇ m, and an IC having a gold pump was placed.
  • An adhesive structure for evaluation by irradiating ultraviolet visible light (wavelength 365 nm, illuminance 5,000 mW / cm 2 ) for 2 seconds under a pressure of 25 ° C. and 1 N / mm 2 to cure the conductive adhesive. was produced.
  • the conductive adhesive used was prepared and used within 2 hours.
  • the die shear strength of the conductive adhesive was measured for the produced adhesive structure.
  • the die shear strength was measured by using a digital force gauge to measure the strength (N / mm 2 ) when the IC chip was peeled off from the substrate.
  • the results are also shown in Table 5.
  • the die-share strength results in the table show the following. ⁇ : 20 N / mm 2 or more ⁇ : 20 N / mm less than 2
  • the conductive adhesives of Examples 1 to 8 using the phosphoric acid group-containing monomer (C) and the polyester resin (D) were excellent in the adhesiveness of the adhesive structure and had a good pot life.
  • the conductive adhesive of Comparative Example 1 in which the phosphoric acid group-containing monomer (C) was used and the polyester resin (D) was not used had excellent adhesion of the adhesive structure, but had a problem in pot life.
  • the conductive adhesive of Comparative Example 2 in which the phosphoric acid group-containing monomer (C) was not used had generally good pot life, but was inferior in adhesion of the adhesive structure.
  • Conductive particles 14 Light emitting diode (electronic component) 20 Circumscribed rectangle 21 Long side (of circumscribed rectangle) 22 Short side of (circumscribed rectangle) 23 Non-irradiated area 30 Device 31 Heat table (heating member) 32 Irradiation member 33 Drive device 34 Control unit 35 Contact surface 36 Plate member 37 Light source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided are: an electrically conductive adhesive which exhibits excellent adhesive properties and storage stability and which is obtained using an ultraviolet radiation-curable resin; and a joined structure and electronic component obtained using the electrically conductive adhesive. This electrically conductive adhesive contains a (meth)acrylate (A), a photopolymerization initiator (B), a phosphoric acid group-containing monomer (C), a polyester resin (D) that is soluble in an organic solvent, and electrically conductive particles (E). The phosphoric acid group-containing monomer (C) is preferably a phosphoric acid group-containing (meth)acrylate. The polyester resin (D) is preferably an amorphous polyester resin.

Description

導電性接着剤、それを用いた接着構造体及び電子部品Conductive adhesives, adhesive structures and electronic components using them
 本発明は、紫外線硬化型の導電性接着剤、それを用いた接着構造体及び電子部品に関するものである。 The present invention relates to an ultraviolet curable conductive adhesive, an adhesive structure using the same, and an electronic component.
 半導体や発光ダイオード等の電子部品をフィルムや紙等の基板上に形成された電極に導電性接着剤や異方導電性接着剤を用いて接着する方法として、フェイスダウン方式により電子部品を熱圧着させる方法(熱圧着法)が広く一般的に用いられている(例えば、特許文献1)。具体的には、基板上に形成された電極の上に異方導電性接着剤を塗布し、突起状電極と呼ばれるバンプを有する半導体を当該バンプが電極上に位置するように載置し、約180℃に加熱された上部ヒートツール及び下部ヒートツールで、半導体が載置された基板を挟み込むことにより異方導電性接着剤を硬化させ、半導体を電極に電気的に接続させると同時に基板上に半導体を実装させている。 As a method of bonding electronic components such as semiconductors and light emitting diodes to electrodes formed on a substrate such as film or paper using a conductive adhesive or an anisotropic conductive adhesive, the electronic components are thermocompression bonded by a face-down method. The method of making the material (thermocompression bonding method) is widely and generally used (for example, Patent Document 1). Specifically, an anisotropic conductive adhesive is applied onto the electrodes formed on the substrate, and a semiconductor having bumps called protruding electrodes is placed so that the bumps are located on the electrodes. The anisotropic conductive adhesive is cured by sandwiching the substrate on which the semiconductor is placed between the upper heat tool and the lower heat tool heated to 180 ° C., and the semiconductor is electrically connected to the electrodes and at the same time on the substrate. A semiconductor is mounted.
 しかし、熱圧着法により半導体を基板に実装した場合、ヒートツールの熱により、半導体周辺の基板にゆがみが生じてしまう。このようなゆがみを防ぐための対策として、ヒートツールの温度を下げてゆがみを軽減させる方法も提案されているが、実装時間が延びてしまうため実用的ではない。また、低温硬化接着剤も開発されているが、それでも130℃以上に加熱する必要があるため、基板のゆがみを完全に防止することはできない。 However, when a semiconductor is mounted on a substrate by the thermocompression bonding method, the substrate around the semiconductor is distorted due to the heat of the heat tool. As a measure to prevent such distortion, a method of lowering the temperature of the heat tool to reduce the distortion has been proposed, but it is not practical because the mounting time is extended. Further, although a low-temperature curing adhesive has been developed, it is still necessary to heat it to 130 ° C. or higher, so that it is not possible to completely prevent the distortion of the substrate.
 半導体を基板に実装する際に加熱を必要としない方法としては、紫外線硬化型樹脂を含む接着剤を用いる方法が知られている(例えば、特許文献2)。 As a method that does not require heating when mounting a semiconductor on a substrate, a method using an adhesive containing an ultraviolet curable resin is known (for example, Patent Document 2).
 しかしながら、紫外線硬化型樹脂を含む接着剤には密着性が低いという問題があり、これを改善するためにリン酸基含有モノマーを含有させる方法が提案されている(例えば、特許文献3及び非特許文献1)。しかし、このようなリン酸基含有モノマーを含む紫外線硬化型樹脂を用いた導電性接着剤は、金属を含むと貯蔵安定性(ポットライフ)が短くなるという問題があり、密着性及び貯蔵安定性に優れた、紫外線硬化型樹脂を用いた導電性接着剤の開発が要望されている。 However, the adhesive containing the ultraviolet curable resin has a problem of low adhesion, and in order to improve this, a method of containing a phosphoric acid group-containing monomer has been proposed (for example, Patent Document 3 and non-patent). Document 1). However, a conductive adhesive using an ultraviolet curable resin containing such a phosphate group-containing monomer has a problem that storage stability (pot life) is shortened when it contains a metal, and has adhesion and storage stability. There is a demand for the development of a conductive adhesive using an ultraviolet curable resin, which is excellent in terms of quality.
特開2003-304003号公報Japanese Unexamined Patent Publication No. 2003-304003 特開2015-053316号公報Japanese Unexamined Patent Publication No. 2015-0533316 特開平09-263744号公報Japanese Unexamined Patent Publication No. 09-263744
 したがって、本発明の目的は、密着性に優れ、更に貯蔵安定性にも優れた、紫外線硬化型樹脂を用いた導電性接着剤、並びに該導電性接着剤を用いた接着構造体及び電子部品を提供することにある。 Therefore, an object of the present invention is to provide a conductive adhesive using an ultraviolet curable resin, which has excellent adhesion and storage stability, and an adhesive structure and electronic components using the conductive adhesive. To provide.
 本発明者らは、上記課題に鑑み鋭意研究を重ねた結果、リン酸基含有モノマーを含む紫外線硬化型樹脂を用いた導電性接着剤において、有機溶剤に可溶なポリエステル樹脂を含有させることにより、密着性に優れ、更に貯蔵安定性にも優れたものになることを見出し、本発明を完成するに到った。 As a result of diligent research in view of the above problems, the present inventors have made a conductive adhesive using an ultraviolet curable resin containing a phosphate group-containing monomer containing a polyester resin soluble in an organic solvent. The present invention has been completed by finding that it has excellent adhesion and storage stability.
 すなわち、本発明が提供する第1の発明は、(メタ)アクリレート(A)、光重合開始剤(B)、リン酸基含有モノマー(C)、有機溶剤に可溶なポリエステル樹脂(D)及び導電性粒子(E)を含有する導電性接着剤である。 That is, the first invention provided by the present invention includes (meth) acrylate (A), photopolymerization initiator (B), phosphate group-containing monomer (C), polyester resin (D) soluble in an organic solvent, and It is a conductive adhesive containing conductive particles (E).
 また、本発明が提供しようとする第2の発明は、前記第1の発明の導電性接着剤を介して被接着部材同士が接着されている接着構造体である。 Further, the second invention to be provided by the present invention is an adhesive structure in which members to be adhered to each other are adhered to each other via the conductive adhesive of the first invention.
 本発明によれば、密着性に優れ、更に貯蔵安定性にも優れた、紫外線硬化型樹脂を用いた導電性接着剤を提供することができる。 According to the present invention, it is possible to provide a conductive adhesive using an ultraviolet curable resin, which has excellent adhesion and storage stability.
本発明の導電性接着剤を用いた電子部品の実装方法によって、基板に実装された電子部品の構成を示す断面図である。It is sectional drawing which shows the structure of the electronic component mounted on the substrate by the mounting method of the electronic component using the conductive adhesive of this invention. 本発明の導電性接着剤を用いた電子部品の実装方法に用いる装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the apparatus used in the mounting method of the electronic component using the conductive adhesive of this invention. 本発明の導電性接着剤を用いた電子部品の実装方法に用いる装置の照射部材の底面図である。It is a bottom view of the irradiation member of the apparatus used in the method of mounting an electronic component using the conductive adhesive of this invention. 本発明の導電性接着剤を用いた電子部品の実装方法によって、基板に実装された電子部品の構成を示す平面図である。It is a top view which shows the structure of the electronic component mounted on the substrate by the method of mounting an electronic component using the conductive adhesive of this invention. 本発明の導電性接着剤を用いた電子部品の実装方法によって基板に電子部品を実装する際に、紫外可視光が直接照射されない非照射領域を説明するための断面図である。It is sectional drawing for demonstrating the non-irradiation region which is not directly irradiated with ultraviolet-visible light when mounting an electronic component on a substrate by the method of mounting an electronic component using the conductive adhesive of this invention. 本発明の導電性接着剤を用いた電子部品の実装方法によって基板に別の電子部品を実装する際に、紫外可視光が直接照射されない非照射領域を説明するための断面図である。It is sectional drawing for demonstrating the non-irradiation region which is not directly irradiated with ultraviolet-visible light when another electronic component is mounted on a substrate by the method of mounting an electronic component using the conductive adhesive of this invention.
 以下、本発明を好ましい実施形態に基づいて説明する。
 本発明の導電性接着剤は、(メタ)アクリレート(A)、光重合開始剤(B)、リン酸基含有モノマー(C)、有機溶剤に可溶なポリエステル樹脂(D)(以下、単に「ポリエステル樹脂(D)」という場合がある。)及び導電性粒子(E)を含有することを特徴とするものである。換言すれば、(メタ)アクリレート(A)、光重合開始剤(B)及びリン酸基含有モノマー(C)からなる紫外線硬化型樹脂(以下、単に「紫外線硬化型樹脂」という場合がある。)と、ポリエステル樹脂(D)と、導電性粒子(E)とを含有する導電性接着剤である。
Hereinafter, the present invention will be described based on preferred embodiments.
The conductive adhesive of the present invention includes a (meth) acrylate (A), a photopolymerization initiator (B), a phosphate group-containing monomer (C), and a polyester resin (D) soluble in an organic solvent (hereinafter, simply ". It may be referred to as "polyester resin (D)") and conductive particles (E). In other words, an ultraviolet curable resin composed of (meth) acrylate (A), a photopolymerization initiator (B) and a phosphate group-containing monomer (C) (hereinafter, may be simply referred to as "ultraviolet curable resin"). A conductive adhesive containing the polyester resin (D) and the conductive particles (E).
[(メタ)アクリレート(A)]
 本発明の導電性接着剤に係る(メタ)アクリレート(A)は、紫外可視光が照射されることにより硬化し、上記紫外線硬化型樹脂の主剤となるものであり、(メタ)アクロイル基を少なくとも1つ有する化合物である。(メタ)アクリレート(A)はモノマーであってもオリゴマーであってもよいが、モノマーであることが好ましい。
 なお、本発明において、「(メタ)アクリレート」とは、アクリレート及びメタクリレート、すなわちアクリル酸エステル及びメタクリル酸エステルを包含する概念である。
[(Meta) Acrylate (A)]
The (meth) acrylate (A) according to the conductive adhesive of the present invention is cured by irradiation with ultraviolet-visible light and becomes the main agent of the ultraviolet curable resin, and has at least a (meth) acryloyl group. It is a compound having one. The (meth) acrylate (A) may be a monomer or an oligomer, but is preferably a monomer.
In the present invention, "(meth) acrylate" is a concept including acrylate and methacrylate, that is, acrylic acid ester and methacrylic acid ester.
 (メタ)アクリレートモノマーとしては、1つの(メタ)アクリロイル基を有する化合物(以下、「単官能(メタ)アクリル系モノマー」ということがある)、及び2つ以上の(メタ)アクリロイル基を有する化合物(以下、「多官能(メタ)アクリル系モノマー」ということがある)挙げられる。本発明においては、公知の(メタ)アクリレートを特に制限なく用いることができる。 As the (meth) acrylate monomer, a compound having one (meth) acryloyl group (hereinafter, may be referred to as “monofunctional (meth) acrylic monomer”), and a compound having two or more (meth) acryloyl groups. (Hereinafter, it may be referred to as "polyfunctional (meth) acrylic monomer"). In the present invention, known (meth) acrylates can be used without particular limitation.
 単官能(メタ)アクリル系モノマーとしては、例えば、アルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレート、アミノ基を有する(メタ)アクリレート、脂肪族環、芳香族環及び複素環等の環構造を有する(メタ)アクリレート、水酸基を有する(メタ)アクリレート等が挙げられる。 Examples of the monofunctional (meth) acrylic monomer include a ring structure such as an alkyl (meth) acrylate, an alkoxyalkyl (meth) acrylate, a (meth) acrylate having an amino group, an aliphatic ring, an aromatic ring, and a heterocyclic ring. Examples thereof include (meth) acrylate having (meth) acrylate and (meth) acrylate having a hydroxyl group.
 アルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート等が挙げられる。 Examples of the alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, and isobutyl (meth) acrylate. Acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl ( Meta) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, cetyl (meth) Examples thereof include acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, and isomyristyl (meth) acrylate.
 アルコキシアルキル(メタ)アクリレートとしては、例えば、メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート等が挙げられる。 Examples of the alkoxyalkyl (meth) acrylate include methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, and ethoxyethoxyethyl (meth) acrylate. ) Acrylate, butoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, ethoxyethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxy Polypropylene glycol (meth) acrylate and the like can be mentioned.
 アミノ基を有する(メタ)アクリレートとしては、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、ジメチルアクリルアミド、ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド、アクリロイルモルホリン、イソプロピルアクリルアミド、ジメチルアミノプロリルアクリルアミド等が挙げられる。 Examples of the (meth) acrylate having an amino group include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, dimethylacrylamide, diethylacrylamide, and hydroxy. Examples thereof include ethyl acrylamide, acryloyl morpholine, isopropyl acrylamide, dimethylaminoprolyl acrylamide and the like.
 脂肪族環、芳香族環及び複素環等の環構造を有する(メタ)アクリレートとしては、例えば、トリシクロデカン(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボロニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、モルフォリンアクリレート、フェニルグリシジル(メタ)アクリレート、アクリロイルオキシエチルヘキサヒドロフタルイミド、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート、テトラヒドロフルフリルアクリレート等が挙げられる。
 また、これら(メタ)アクリレートのアルキレンオキサイド変性物も使用することもできる。
Examples of the (meth) acrylate having a ring structure such as an aliphatic ring, an aromatic ring and a heterocyclic ring include tricyclodecane (meth) acrylate, dicyclopentenyl (meth) acrylate, isobolonyl (meth) acrylate, and adamantyl (meth). ) Acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, morpholine acrylate, phenylglycidyl (meth) acrylate, acryloyloxyethyl hexahydrophthalimide, (2-methyl-2-ethyl-) 1,3-Dioxolan-4-yl) methyl acrylate, tetrahydrofurfuryl acrylate and the like can be mentioned.
In addition, alkylene oxide-modified products of these (meth) acrylates can also be used.
 水酸基を有する(メタ)アクリレートとしては、例えば、炭素数が2~9の脂肪族基に水酸基の結合した(メタ)アクリレート等が挙げられる。該(メタ)アクリレートにはフェノキシ基のような置換基が結合していてもよい。上記(メタ)アクリレートとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylate having a hydroxyl group include (meth) acrylate in which a hydroxyl group is bonded to an aliphatic group having 2 to 9 carbon atoms. Substituents such as phenoxy groups may be attached to the (meth) acrylate. Examples of the (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate. Can be mentioned.
 多官能(メタ)アクリル系モノマーには、2官能(メタ)アクリル系モノマーと3官能以上の(メタ)アクリル系モノマーが含まれる。2官能(メタ)アクリル系モノマーとしては、例えば、炭素数が4~9の脂肪族ジオールの(メタ)アクリレート化合物、アルキレンオキサイド型(メタ)アクリレート化合物及び環構造を有する(メタ)アクリレート化合物等が挙げられる。 The polyfunctional (meth) acrylic monomer includes a bifunctional (meth) acrylic monomer and a trifunctional or higher functional (meth) acrylic monomer. Examples of the bifunctional (meth) acrylic monomer include (meth) acrylate compounds of aliphatic diols having 4 to 9 carbon atoms, alkylene oxide type (meth) acrylate compounds, and (meth) acrylate compounds having a ring structure. Can be mentioned.
 炭素数が4~9の脂肪族ジオールのアクリレート化合物としては、例えば、ネオペンチルグリコールジ(メタ)アクリレート及び1,6-ヘキサンジオールジ(メタ)アクリレート等が挙げられる。これら脂肪族ジオールの(メタ)アクリレートは、脂肪族エステルやアルキレンオキサイドによって変性されていてもよい。脂肪族エステル変性(メタ)アクリレート化合物としては、例えば、ネオペンチルグリコールヒドロキシピバリン酸ジ(メタ)アクリレート及びカプロラクトン変性ネオペンチルグリコールヒドロキシピバリン酸ジ(メタ)アクリレート等が挙げられる。アルキレンオキサイド変性(メタ)アクリレート化合物としては、例えば、ジエチレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、ジプロピレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、ジエチレンオキサイド変性1,6-ヘキサンジオールジ(メタ)アクリレート及びジプロピレンオキサイド変性1,6-ヘキサンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the acrylate compound of the aliphatic diol having 4 to 9 carbon atoms include neopentyl glycol di (meth) acrylate and 1,6-hexanediol di (meth) acrylate. The (meth) acrylate of these aliphatic diols may be modified with an aliphatic ester or an alkylene oxide. Examples of the aliphatic ester-modified (meth) acrylate compound include neopentyl glycol hydroxypivalate di (meth) acrylate and caprolactone-modified neopentyl glycol hydroxypivalate di (meth) acrylate. Examples of the alkylene oxide-modified (meth) acrylate compound include diethylene oxide-modified neopentyl glycol di (meth) acrylate, dipropylene oxide-modified neopentyl glycol di (meth) acrylate, and diethylene oxide-modified 1,6-hexanediol di (meth). ) Acrylate and dipropylene oxide-modified 1,6-hexanediol di (meth) acrylate and the like can be mentioned.
 アルキレンオキサイド型(メタ)アクリレート化合物としては、例えば、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート及びポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。 Examples of the alkylene oxide type (meth) acrylate compound include neopentyl glycol-modified trimethylolpropane di (meth) acrylate, polyethylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
 環構造を有する(メタ)アクリレート化合物としては、例えば、トリシクロデカンジメチロールジ(メタ)アクリレート及びジシクロペンタニルジ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylate compound having a ring structure include trimethylolpropane di (meth) acrylate and dicyclopentanyldi (meth) acrylate.
 3官能以上の(メタ)アクリル系モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、炭素数2~5の脂肪族変性ジペンタエリスリトールペンタ(メタ)アクリレート、炭素数2~5の脂肪族変性ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリス〔(メタ)アクリロキシエチル〕イソシアヌレート、カプロラクトン変性トリス〔(メタ)アクリロキシエチル〕イソシアヌレート及びジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化トリメチロールプロハントリアクリレート、トリメチロールプロパンプロピレンオキサイド変性トリアクリレート、エトキシ化グリセリントリアクリレート、並びにイソシアヌル酸エチレンオキサイド変性ジ及びトリアクリレート等が挙げられる。 Examples of the trifunctional or higher functional (meth) acrylic monomer include trimethylpropantri (meth) acrylate, pentaerythritol tri (meth) acrylate, and aliphatic modified dipentaerythritol penta (meth) acrylate having 2 to 5 carbon atoms. Aliper-modified dipentaerythritol tetra (meth) acrylate having 2 to 5 carbon atoms, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (Meta) Acrylate, Tris [(Meta) Acryloxyethyl] Isocyanurate, Caprolactone Modified Tris [(Meta) Acryloxyethyl] Isocyanurate and Ditrimethylol Propantetra (Meta) Acrylate, Trimethylol Prohantriacrylate, Trimethylol Examples thereof include propanepropylene oxide-modified triacrylate, ethoxylated glycerin triacrylate, and isocyanurate ethylene oxide-modified di and triacrylate.
 本発明においては、単官能(メタ)アクリル系モノマーと多官能(メタ)アクリル系モノマーとを併用することが、硬化物の硬度、耐熱性及び収縮性の観点から好ましい。この場合の多官能(メタ)アクリル系モノマーの配合割合は、単官能(メタ)アクリル系モノマー100質量部に対して5~80質量部が好ましく、10~60質量部とすることが、柔軟性と収縮性のバランスの観点から、より好ましい。 In the present invention, it is preferable to use a monofunctional (meth) acrylic monomer and a polyfunctional (meth) acrylic monomer in combination from the viewpoint of hardness, heat resistance and shrinkage of the cured product. In this case, the blending ratio of the polyfunctional (meth) acrylic monomer is preferably 5 to 80 parts by mass with respect to 100 parts by mass of the monofunctional (meth) acrylic monomer, and the flexibility is preferably 10 to 60 parts by mass. It is more preferable from the viewpoint of the balance between shrinkage and shrinkage.
 本発明においては、(メタ)アクリレート(A)として、基材に対する密着性を向上させるため、上記(メタ)アクリレートモノマーと(メタ)アクリレートオリゴマーを併用することができる。 In the present invention, the (meth) acrylate monomer and the (meth) acrylate oligomer can be used in combination as the (meth) acrylate (A) in order to improve the adhesion to the substrate.
 本発明で用いる(メタ)アクリレートオリゴマーは、上記(メタ)アクリレートモノマーに溶解するものが好ましく、このようなオリゴマーとしては、例えば、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート及びウレタン(メタ)アクリレート等が挙げられる。なお、本発明においてオリゴマーとは、分子量500以上のものをいう。 The (meth) acrylate oligomer used in the present invention is preferably one that dissolves in the above (meth) acrylate monomer, and examples of such oligomers include epoxy (meth) acrylate, polyester (meth) acrylate, and urethane (meth) acrylate. And so on. In the present invention, the oligomer means an oligomer having a molecular weight of 500 or more.
 エポキシ(メタ)アクリレートは、エポキシ樹脂と(メタ)アクリル酸との反応によって得られるものである。エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、並びにノボラック型エポキシ樹脂等が挙げられる。 Epoxy (meth) acrylate is obtained by the reaction of epoxy resin and (meth) acrylic acid. Examples of the epoxy resin include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, and novolak type epoxy resins.
 ポリエステル(メタ)アクリレートは、ポリエステルポリオールと(メタ)アクリル酸との反応によって得られるものである。ポリエステルポリオールは、多価アルコールと多塩基酸との反応によって得られるものである。多価アルコールとしては、例えば、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、1,6-ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、トリシクロデカンジメチロール及びビス(ヒドロキシメチル)シクロヘキサン等が挙げられる。多塩基酸としては、例えば、コハク酸、フタル酸、ヘキサヒドロ無水フタル酸、テレフタル酸、アジピン酸、アゼライン酸及びテトラヒドロ無水フタル酸等が挙げられる。 Polyester (meth) acrylate is obtained by reacting polyester polyol with (meth) acrylic acid. The polyester polyol is obtained by reacting a polyhydric alcohol with a polybasic acid. Examples of the polyhydric alcohol include neopentyl glycol, ethylene glycol, propylene glycol, 1,6-hexanediol, trimethylolpropane, pentaerythritol, tricyclodecanedimethylol and bis (hydroxymethyl) cyclohexane. Examples of the polybasic acid include succinic acid, phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydrophthalic anhydride and the like.
 ウレタン(メタ)アクリレートは、ポリオールと有機ポリイソシアネートとヒドロキシ(メタ)アクリレート化合物との3成分の反応、又はポリオールを使用せずに有機ポリイソシアネートとヒドロキシ(メタ)アクリレート化合物との2成分の反応によって得られるものである。ポリオールとしては、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール、前記多価アルコールと前記多塩基酸との反応によって得られるポリエステルポリオール、前記多価アルコールと前記多塩基酸とε-カプロラクトンとの反応によって得られるカプロラクトンポリオール、及びポリカーボネートポリオール(例えば、1,6-ヘキサンジオールとジフェニルカーボネートとの反応によって得られるポリカーボネートポリオール)等が挙げられる。有機ポリイソシアネートとしては、例えばイソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート及びジシクロペンタニルジイソシアネート等が挙げられる。 Urethane (meth) acrylate is produced by a three-component reaction of a polyol, an organic polyisocyanate, and a hydroxy (meth) acrylate compound, or a two-component reaction of an organic polyisocyanate and a hydroxy (meth) acrylate compound without using a polyol. It is what you get. Examples of the polyol include polyether polyols such as polypropylene glycol and polytetramethylene glycol, polyester polyols obtained by reacting the polyhydric alcohol with the polybasic acid, and the polyhydric alcohol, the polybasic acid, and ε-caprolactone. Examples thereof include a caprolactone polyol obtained by the reaction and a polycarbonate polyol (for example, a polycarbonate polyol obtained by the reaction of 1,6-hexanediol and diphenyl carbonate). Examples of the organic polyisocyanate include isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4'-diisocyanate and dicyclopentanyl diisocyanate.
 これらの(メタ)アクリレートモノマー及び(メタ)アクリレートオリゴマーは、1種のみを使用してもよく、2種以上を任意の割合で混合して使用することもできる。 As these (meth) acrylate monomers and (meth) acrylate oligomers, only one kind may be used, or two or more kinds may be mixed and used at an arbitrary ratio.
 また、本発明においては、これらの(メタ)アクリレートモノマー及び(メタ)アクリレートオリゴマーと、アミノ基を有する(メタ)アクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、イソシアヌル酸エチレンオキサイド変性ジ及びトリアクリレート、ウレタン(メタ)アクリレート等の窒素原子を含む(メタ)アクリル系モノマー及び/又は(メタ)アクリレートオリゴマーとを併用することが、更に密着性、耐熱性及び硬度を向上させる観点から好ましい。窒素原子を含む(メタ)アクリル系モノマー及び/又は(メタ)アクリレートオリゴマーを併用する場合、窒素原子を含む(メタ)アクリル系モノマーの配合割合は、(メタ)アクリレート(A)中、15質量%~95質量%であることが好ましく、20~80質量%とすることが、密着性をいっそう向上させる観点から好ましい。 Further, in the present invention, these (meth) acrylate monomers and (meth) acrylate oligomers, (meth) acrylate having an amino group, N-acryloyloxyethyl hexahydrophthalimide, isocyanurate ethylene oxide-modified di and triacrylate, It is preferable to use a (meth) acrylic monomer containing a nitrogen atom such as urethane (meth) acrylate and / or a (meth) acrylate oligomer in combination from the viewpoint of further improving adhesion, heat resistance and hardness. When a (meth) acrylic monomer containing a nitrogen atom and / or a (meth) acrylate oligomer is used in combination, the blending ratio of the (meth) acrylic monomer containing a nitrogen atom is 15% by mass in the (meth) acrylate (A). It is preferably about 95% by mass, and preferably 20 to 80% by mass from the viewpoint of further improving the adhesion.
 (メタ)アクリレート(A)の導電性接着剤中の配合量は15~95質量%が好ましく、30~90質量%とすることが、硬化性及び密着性の観点から、より好ましい。 The blending amount of the (meth) acrylate (A) in the conductive adhesive is preferably 15 to 95% by mass, more preferably 30 to 90% by mass from the viewpoint of curability and adhesion.
[光重合開始剤(B)]
 本発明の導電性接着剤に係る光重合開始剤(B)は、上記紫外線硬化型樹脂を効率的に光硬化させる成分である。本発明で用いることができる光重合開始剤(B)は特に制限されないが、例えば、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、ベンゾフェノン、メチルベンゾフェノン、o-ベンゾイル安息香酸、ベンゾイルエチルエーテル、2,2-ジエトキシアセトフェノン、2,4-ジエチルチオキサントン、ジフェニル-(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、エチル-(2,4,6-トリメチルベンゾイル)フェニルホスフィネート、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、1-ヒドロキシシクロヘキシル-フェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2,2-ジメトキシ-2-フェニルアセトフェノール及び1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のアルキルフェノン系光重合開始剤、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド及びジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド等のアシルフォスフィンオキサイド系光重合開始剤、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]等のオキシムエステル系光重合開始剤、並びにスルホニウム塩系光重合開始剤等が挙げられる。これらの光重合開始剤は、1種のみを使用してもよく、2種以上を任意の割合で混合して使用することもできる。
[Photopolymerization Initiator (B)]
The photopolymerization initiator (B) according to the conductive adhesive of the present invention is a component that efficiently photocures the ultraviolet curable resin. The photopolymerization initiator (B) that can be used in the present invention is not particularly limited, and is, for example, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino). -2-[(4-Methylphenyl) methyl]-[4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1- On, benzophenone, methylbenzophenone, o-benzoylbenzoic acid, benzoylethyl ether, 2,2-diethoxyacetophenone, 2,4-diethylthioxanthone, diphenyl- (2,4,6-trimethylbenzoyl) phosphine oxide, ethyl- ( 2,4,6-trimethylbenzoyl) phenylphosphinate, 4,4'-bis (diethylamino) benzophenone, 1-hydroxycyclohexyl-phenylketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1, -[4- (2-Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one, 2,2-dimethoxy-2-phenylacetophenol and 1- [4- (2-) Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one and other alkylphenone-based photopolymerization initiators, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide and diphenyl (2,4,6-trimethylbenzoyl) Acylphosphine oxide-based photopolymerization initiators such as 2,4,6-trimethylbenzoyl) phosphine oxide, 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], etc. Examples thereof include an oxime ester-based photopolymerization initiator and a sulfonium salt-based photopolymerization initiator. Only one of these photopolymerization initiators may be used, or two or more of these photopolymerization initiators may be mixed and used at an arbitrary ratio.
 本発明においては、光重合開始剤(B)としてアルキルフェノン系光重合開始剤を使用することが、硬化性の観点から好ましく、特に1-ヒドロキシシクロヘキシル-フェニルケトンを使用することが好ましい。 In the present invention, it is preferable to use an alkylphenone-based photopolymerization initiator as the photopolymerization initiator (B) from the viewpoint of curability, and it is particularly preferable to use 1-hydroxycyclohexyl-phenylketone.
 前記光重合開始剤(B)の使用量は、(メタ)アクリレート(A)100質量部に対して0.5~15質量部が好ましく、1~12質量部とすることが、硬化性の観点から、より好ましい。 The amount of the photopolymerization initiator (B) used is preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the (meth) acrylate (A), and it is preferably 1 to 12 parts by mass from the viewpoint of curability. Therefore, it is more preferable.
[リン酸基含有モノマー(C)]
 本発明の導電性接着剤に係るリン酸基含有モノマー(C)は、上記紫外線硬化型樹脂の密着性向上に寄与する成分である。本発明で用いることができるリン酸基含有モノマー(C)は、特に制限されず、重合性を有し、かつリン酸基を有するモノマーであればよい。
[Phosphate group-containing monomer (C)]
The phosphoric acid group-containing monomer (C) according to the conductive adhesive of the present invention is a component that contributes to improving the adhesion of the ultraviolet curable resin. The phosphoric acid group-containing monomer (C) that can be used in the present invention is not particularly limited, and may be any monomer that is polymerizable and has a phosphoric acid group.
 リン酸基含有モノマー(C)としては、例えば、2-メタクリロイロキシエチルアシッドホスフェート、ジ-2-メタクリロイロキシエチルアシッドホスフェート、3-メタクリロイロキシプロピルアシッドホスフェート、ジ-3-メタクリロイロキシプロピルアシッドホスフェート、エチレンオキサイド変性リン酸ジメタクリレート、リン酸含有エポキシメタクリレート等のリン酸(メタ)アクリレート類、ビニルホスホン酸などのリン酸ビニル化合物等が挙げられる。 Examples of the phosphoric acid group-containing monomer (C) include 2-methacryloyloxyethyl acid phosphate, di-2-methacryloyloxyethyl acid phosphate, 3-methacryloyloxypropyl acid phosphate, and di-3-methacryloyloxypropyl. Examples thereof include acid phosphate, ethylene oxide-modified dimethacrylate phosphate, phosphate (meth) acrylates such as phosphoric acid-containing epoxy methacrylate, and vinyl phosphate compounds such as vinylphosphonic acid.
 リン酸基含有モノマー(C)としては、下記一般式(1)又は(2)で表されるリン酸(メタ)アクリレートが好ましい。 As the phosphoric acid group-containing monomer (C), a phosphoric acid (meth) acrylate represented by the following general formula (1) or (2) is preferable.
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子又はメチル基を示す。Aは炭素数1~4の直鎖状又は分岐状のアルキレン基を示す。mは1~4、好ましくは1~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 represents a hydrogen atom or a methyl group. A represents a linear or branched alkylene group having 1 to 4 carbon atoms. M represents an integer of 1 to 4, preferably 1 to 2. .)
 これらのリン酸基含有モノマーは、1種のみを使用してもよく、2種以上を任意の割合で混合して使用することもできる。 As these phosphoric acid group-containing monomers, only one kind may be used, or two or more kinds may be mixed and used at an arbitrary ratio.
 リン酸基含有モノマー(C)の配合量は、(メタ)アクリレート(A)100質量部に対して0.5~50質量部が好ましく、3~30質量部とすることが、密着性を向上させる観点から、より好ましい。 The blending amount of the phosphoric acid group-containing monomer (C) is preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the (meth) acrylate (A), and 3 to 30 parts by mass improves the adhesion. It is more preferable from the viewpoint of making it.
[ポリエステル樹脂(D)]
 本発明の導電性接着剤に係るポリエステル樹脂(D)は、上記紫外線硬化型樹脂と導電性粒子とを含む導電性接着剤に貯蔵安定性を付与する成分である。本発明者らは、有機溶剤に可溶なポリエステル樹脂(D)が、主成分となる(メタ)アクリレート(A)に対して溶解性や相溶性に優れ、更に上記紫外線硬化型樹脂と導電性粒子とを含む導電性接着剤に優れた貯蔵安定性を付与することができることを見出した。
 本発明で用いることができるポリエステル樹脂は、有機溶剤に可溶なものであればよく、例えば、多価カルボン酸成分とグリコール成分との重合により得られる。
[Polyester resin (D)]
The polyester resin (D) according to the conductive adhesive of the present invention is a component that imparts storage stability to the conductive adhesive containing the ultraviolet curable resin and conductive particles. The present inventors have excellent solubility and compatibility of the polyester resin (D) soluble in an organic solvent with respect to the main component (meth) acrylate (A), and further have conductivity with the above-mentioned ultraviolet curable resin. It has been found that an excellent storage stability can be imparted to a conductive adhesive containing particles.
The polyester resin that can be used in the present invention may be any one that is soluble in an organic solvent, and can be obtained, for example, by polymerizing a polyvalent carboxylic acid component and a glycol component.
 多価カルボン酸成分は、二価以上の多価カルボン酸と、多価カルボン酸中のカルボキシル基がカルボキシル基から誘導されるエステル形成性誘導基に置換されたエステル形成性誘導体とからなる群から選択される1種又は2種以上である。 The polyvalent carboxylic acid component consists of a group consisting of a divalent or higher polyvalent carboxylic acid and an ester-forming derivative in which the carboxyl group in the polyvalent carboxylic acid is replaced with an ester-forming inducer derived from the carboxyl group. One or more selected.
 多価カルボン酸成分としては、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸が挙げられる。芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、ジフェン酸、ナフタル酸、1,2-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸等が挙げられ、また、脂肪族ジカルボン酸としては、例えば、直鎖、分岐又は脂環式のシュウ酸、マロン酸、コハク酸、マレイン酸、イタコン酸、グルタール酸、アジピン酸、ピメリン酸、2,2-ジメチルグルタール酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ジグリコール酸、チオジプロピオン酸等が挙げられる。 Examples of the polyvalent carboxylic acid component include aromatic dicarboxylic acids and aliphatic dicarboxylic acids. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, diphenylic acid, naphthalic acid, 1,2-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2, Examples of the aliphatic dicarboxylic acid include 6-naphthalenedicarboxylic acid and the like, and examples of the aliphatic dicarboxylic acid include linear, branched or alicyclic oxalic acid, malonic acid, succinic acid, maleic acid, itaconic acid, glutaric acid and adipic acid. , Pimeric acid, 2,2-dimethylglutaric acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, diglycolic acid, thiodipropion Examples include acids.
 また、多価カルボン酸成分としては、金属スルホネート基を有するジカルボン酸、三塩基酸無水物、四塩基酸無水物等の三価以上の多価カルボン酸、及びそれらのエステル形成性誘導体等が挙げられる。金属スルホネート基を有するジカルボン酸及びそのエステル形成性誘導体(以下、総称して金属スルホネート基を有するジカルボン酸等という。)としては、例えば、5-スルホイソフタル酸、2-スルホイソフタル酸、4-スルホイソフタル酸、スルホテレフタル酸、4-スルホナフタレン-2,6-ジカルボン酸等のアルカリ金属塩及びそれらのエステル形成性誘導体が挙げられる。また、三価以上の多価カルボン酸及びそのエステル形成性誘導体としては、例えば、ヘミメリット酸、トリメリット酸、トリメジン酸、メロファン酸、ピロメリット酸、ベンゼンペンタカルボン酸、メリット酸、シクロプロパン-1,2,3-トリカルボン酸、シクロペンタン-1,2,3,4-テトラカルボン酸、エタンテトラカルボン酸及びそれらのエステル形成性誘導体等が挙げられる。多価カルボン酸成分は、1種単独又は2種以上を組み合わせて使用することができる。 Examples of the polyvalent carboxylic acid component include dicarboxylic acids having a metal sulfonate group, tribasic acid anhydrides, tetravalent or higher polyvalent carboxylic acids such as tetrabasic acid anhydrides, and ester-forming derivatives thereof. Be done. Examples of the dicarboxylic acid having a metal sulfonate group and its ester-forming derivative (hereinafter, collectively referred to as a dicarboxylic acid having a metal sulfonate group) include 5-sulfoisophthalic acid, 2-sulfoisophthalic acid, and 4-sulfo. Examples thereof include alkali metal salts such as isophthalic acid, sulfoterephthalic acid and 4-sulfonaphthalene-2,6-dicarboxylic acid and ester-forming derivatives thereof. Examples of trivalent or higher valent carboxylic acids and ester-forming derivatives thereof include hemmellitic acid, trimellitic acid, trimedic acid, melophonic acid, pyromellitic acid, benzenepentacarboxylic acid, merit acid, and cyclopropane-. Examples thereof include 1,2,3-tricarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid, ethanetetracarboxylic acid and ester-forming derivatives thereof. The polyvalent carboxylic acid component can be used alone or in combination of two or more.
 グリコール成分としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ヘプタエチレングリコール、オクタエチレングリコール等のポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール等のポリプロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-2-イソブチル-1,3-プロパンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、4,4’-ジヒドロキシビフェノール、4,4’-メチレンジフェノール、4,4’-イソプロピリデンジフェノール、1,5-ジヒドロキシナフタリン、2,5-ジヒドロキシナフタリン、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、ビスフェノールS等が挙げられる。グリコール成分は、1種単独又は2種以上を組み合わせて使用することができる。 Examples of the glycol component include polyethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, heptaethylene glycol and octaethylene glycol, propylene glycol, dipropylene glycol and tripropylene glycol. , Polypropylene glycol such as tetrapropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2-dimethyl- 1,3-Propanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2-isobutyl-1,3-propanediol, 2,2,4-trimethyl-1,6-hexane Diol, 1,2-Cyclohexanedimethanol, 1,3-Cyclohexanedimethanol, 1,4-Cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 4,4'-dihydroxy Biphenol, 4,4'-methylenediphenol, 4,4'-isopropyridenediphenol, 1,5-dihydroxynaphthalin, 2,5-dihydroxynaphthalin, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) ), Bisphenol S and the like. The glycol component can be used alone or in combination of two or more.
 本発明において「有機溶剤に可溶」とは、室温(25℃)で有機溶剤100質量部に対して5質量部以上溶解することを意味する。
 有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤、酢酸エチル、酢酸ブチル、酢酸イソブチル、γ-ブチロラクトン等のエステル系溶剤、アセトン、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のセロソルブ系溶剤、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のグリコールエステル系溶剤、ヘキサン、ヘプタン、シクロヘキサン、トルエン、キシレン等の炭化水素系溶剤、ジクロロメタン、クロロホルム、オルトジクロロベンゼン等のハロゲン系溶剤、テトラヒドロフラン、アセトニトリル、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン等が挙げられる。
In the present invention, "soluble in an organic solvent" means that it dissolves in 5 parts by mass or more with respect to 100 parts by mass of an organic solvent at room temperature (25 ° C.).
Examples of the organic solvent include alcohol solvents such as methanol, ethanol and isopropyl alcohol, ester solvents such as ethyl acetate, butyl acetate, isobutyl acetate and γ-butyrolactone, and ketone solvents such as acetone, cyclohexanone, methyl ethyl ketone and methyl isobutyl ketone. Solvents, cellosolve solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, glycol ester solvents such as ethylene glycol monoethyl ether acetate and propylene glycol monomethyl ether acetate, hexane, heptane, cyclohexane, toluene, Hydrocarbon solvents such as xylene, halogen solvents such as dichloromethane, chloroform, orthodichlorobenzene, tetrahydrofuran, acetonitrile, dimethylsulfoxide, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, etc. Can be mentioned.
 本発明においては、密着性及び貯蔵安定性の観点から、ポリエステル樹脂(D)が、(メタ)アクリレート(A)、光重合開始剤(B)及びリン酸基含有モノマー(C)からなる紫外線硬化型樹脂に可溶であることが好ましい。 In the present invention, from the viewpoint of adhesion and storage stability, the polyester resin (D) is UV-cured composed of (meth) acrylate (A), photopolymerization initiator (B) and phosphate group-containing monomer (C). It is preferably soluble in the mold resin.
 本発明においては、(メタ)アクリレート(A)に対して溶解性に優れ、また、透明性にも優れている観点から、ポリエステル樹脂(D)が、非晶性ポリエステル樹脂であることが好ましい。ここで、非晶性ポリエステル樹脂とは、分子鎖の規則的な配列がほとんどなく結晶化度が低いため、結晶性樹脂に見られる明確な融点を持たないポリエステル樹脂である。
 非晶性ポリエステル樹脂としては、数平均分子量(Mw)が1,000~40,000、好ましくは1,500~30,000のものが、(メタ)アクリレート(A)に対する溶解性と、得られる導電性接着剤の密着性の観点から好ましい。
 非晶性ポリエステルのガラス転移温度(Tg)は、-20℃~50℃であることが好ましく、-10℃~20℃のものが、密着性の観点からより好ましい。ガラス転移温度が過度に低いと粘着性が強くなるおそれがあり、ガラス転移温度が過度に高いと密着性が低下するおそれがある。
In the present invention, the polyester resin (D) is preferably an amorphous polyester resin from the viewpoint of excellent solubility in (meth) acrylate (A) and excellent transparency. Here, the amorphous polyester resin is a polyester resin that does not have a clear melting point found in crystalline resins because it has almost no regular arrangement of molecular chains and has a low crystallinity.
As the amorphous polyester resin, one having a number average molecular weight (Mw) of 1,000 to 40,000, preferably 1,500 to 30,000 is obtained with solubility in (meth) acrylate (A). It is preferable from the viewpoint of adhesion of the conductive adhesive.
The glass transition temperature (Tg) of the amorphous polyester is preferably −20 ° C. to 50 ° C., and more preferably −10 ° C. to 20 ° C. from the viewpoint of adhesion. If the glass transition temperature is excessively low, the adhesiveness may become strong, and if the glass transition temperature is excessively high, the adhesiveness may decrease.
 ポリエステル樹脂(D)は、公知のものを使用することができ、また、市販品であってもよい。市販品としては、東洋紡績製のバイロン550、670、GK680、GK780、GK810、GK890、BX1001、ユニチカ製のエリーテルUE-3220、UE-3300、UE-3500,UE-3210、UE-3320等が挙げられる。
 ポリエステル樹脂(D)の配合量は、リン酸基含有モノマー(C)100質量部に対して10~2000質量部が好ましく、50~400質量部とすることが、貯蔵安定性及び密着性の観点から、より好ましい。
As the polyester resin (D), a known one can be used, or a commercially available product may be used. Examples of commercially available products include Toyobo's Byron 550, 670, GK680, GK780, GK810, GK890, BX1001, Unitika's Elitel UE-3220, UE-3300, UE-3500, UE-3210, UE-3320 and the like. Be done.
The blending amount of the polyester resin (D) is preferably 10 to 2000 parts by mass, and 50 to 400 parts by mass with respect to 100 parts by mass of the phosphoric acid group-containing monomer (C) from the viewpoint of storage stability and adhesion. Therefore, it is more preferable.
[導電性粒子(E)]
 本発明の導電性接着剤に係る導電性粒子(E)は、導電性を付与する成分である。本発明においては、導電性粒子(E)として、導電性接着剤、異方性導電膜、異方導電性接着剤に使用されている公知のものを用いることができる。導電性粒子(E)としては、例えば、金、銀、銅、ニッケル、パラジウム、ハンダ等の金属粒子、カーボン粒子のようなそれ自体で導電性を有するもの、芯材粒子の表面を導電性金属で被覆処理した導電性粒子等が挙げられる。
[Conductive particles (E)]
The conductive particles (E) according to the conductive adhesive of the present invention are components that impart conductivity. In the present invention, as the conductive particles (E), known particles used in a conductive adhesive, an anisotropic conductive film, and an anisotropic conductive adhesive can be used. Examples of the conductive particles (E) include metal particles such as gold, silver, copper, nickel, palladium, and solder, those having conductivity by themselves such as carbon particles, and conductive metals on the surface of the core material particles. Examples thereof include conductive particles coated with.
 導電性粒子の大きさは、本発明の導電性接着剤の具体的な用途に応じて適切に選択すればよいが、電子回路接続用の導電材料として用いる場合には、粒径が小さすぎると対向電極間での導通ができなくなり、一方、大きすぎると隣接電極間の短絡が発生する。そのため、導電性粒子の平均粒子径は、電気抵抗法を用いて測定された値で0.1~1000μmが好ましく、0.5~100μmが特に好ましい。 The size of the conductive particles may be appropriately selected according to the specific use of the conductive adhesive of the present invention, but when used as a conductive material for connecting an electronic circuit, the particle size is too small. Conduction between the counter electrodes becomes impossible, while if it is too large, a short circuit occurs between the adjacent electrodes. Therefore, the average particle size of the conductive particles is preferably 0.1 to 1000 μm, particularly preferably 0.5 to 100 μm, as a value measured by the electric resistance method.
 導電性粒子の形状は、特に制限はないが、一般に粉粒状であり、それ以外の形状、例えば繊維状、中空状、板状、針状であってもよく、粒子表面に多数の突起を有するものや不定形のものであってもよい。分散性の観点からは、導電性粒子の形状は球状であることが好ましい。 The shape of the conductive particles is not particularly limited, but is generally powdery and granular, and may have other shapes such as fibrous, hollow, plate-like, and needle-like, and has a large number of protrusions on the particle surface. It may be a thing or an irregular shape. From the viewpoint of dispersibility, the shape of the conductive particles is preferably spherical.
 本発明の導電性接着剤を、異方導電性接着剤として使用する場合、導電性粒子(E)は、芯材粒子の表面を導電性金属で被覆処理した金属被覆粒子であることが好ましい。 When the conductive adhesive of the present invention is used as an anisotropic conductive adhesive, the conductive particles (E) are preferably metal-coated particles in which the surface of the core material particles is coated with a conductive metal.
 芯材粒子としては、無機物であっても有機物であっても特に制限なく用いることができる。無機物の芯材粒子としては、金、銀、銅、ニッケル、パラジウム、ハンダ等の金属粒子、合金、ガラス、セラミックス、シリカ、金属又は非金属の酸化物(含水物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物及び炭素等が挙げられる。有機物の芯材粒子としては、例えば、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリルニトリル、ポリアセタール、アイオノマー、ポリエステルなどの熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、ベンゾグアナミン樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂及びジアリルフタレート樹脂等が挙げられる。芯材粒子として樹脂を用いると、金属被覆粒子の比重が軽くなるために沈降しにくく、分散安定性が良好となり、また、樹脂の弾性による電気接続の維持が可能とため好ましい。 The core material particles can be used without particular limitation regardless of whether they are inorganic or organic. Examples of the inorganic core material particles include metal particles such as gold, silver, copper, nickel, palladium, and solder, alloys, glass, ceramics, silica, metal or non-metal oxides (including hydrous substances), and aluminosilicates. Examples thereof include metal silicates, metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal acid salts, metal halides and carbons. Examples of the organic core particles include thermoplastic resins such as natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylic nitrile, polyacetal, ionomer, and polyester. Examples thereof include alkyd resin, phenol resin, urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin and diallyl phthalate resin. It is preferable to use a resin as the core material particles because the specific gravity of the metal-coated particles becomes lighter, so that they do not easily settle, the dispersion stability becomes good, and the electrical connection can be maintained by the elasticity of the resin.
 芯材粒子の形状は、特に制限はないが、一般に粉粒状であり、それ以外の形状、例えば繊維状、中空状、板状、針状であってもよく、粒子表面に多数の突起を有するものや不定形のものであってもよい。分散性の観点からは、導電性粒子の形状は球状であることが好ましい。 The shape of the core material particles is not particularly limited, but is generally powdery and granular, and may have other shapes such as fibrous, hollow, plate-like, and needle-like, and has a large number of protrusions on the particle surface. It may be a thing or an irregular shape. From the viewpoint of dispersibility, the shape of the conductive particles is preferably spherical.
 芯材粒子の大きさは、電気抵抗法を用いて測定された値で0.1~1000μmが好ましく、0.5~100μmが特に好ましい。粒径が小さすぎると対向電極間での導通ができなくなり、一方、大きすぎると隣接電極間の短絡が発生する。 The size of the core material particles is preferably 0.1 to 1000 μm, particularly preferably 0.5 to 100 μm, as a value measured by the electric resistance method. If the particle size is too small, conduction between the counter electrodes will not be possible, while if it is too large, a short circuit will occur between the adjacent electrodes.
 芯材粒子の表面を導電性金属で被覆処理する方法としては、蒸着法、スパッタ法、メカノケミカル法、ハイブリダイゼーション処理を利用する等の乾式法、電解めっき法、無電解めっき法等の湿式法、あるいはこれらを組み合わせた方法を用いることができる。 As a method of coating the surface of the core material particles with a conductive metal, a dry method such as a vapor deposition method, a sputtering method, a mechanochemical method, a hybridization treatment, an electrolytic plating method, a wet method such as an electrolytic plating method, etc. , Or a method combining these can be used.
 前記金属被覆粒子は、金、銀、銅、ニッケル、パラジウム及びハンダ等から選ばれる1種又は2種以上の導電性金属で被覆処理されていることが好ましく、特に芯材粒子の表面に無電解めっきにより金属皮膜を形成した金属めっき粒子が、粒子表面を均一かつ濃密に被覆できる点で好ましく、とりわけ該金属皮膜が金又はパラジウムであるものが導電性を高くすることができる点で好ましい。なお、前記金属皮膜は合金(例えばニッケル-リン合金やニッケル-ホウ素合金)であってもよい。 The metal-coated particles are preferably coated with one or more conductive metals selected from gold, silver, copper, nickel, palladium, solder and the like, and in particular, the surface of the core material particles is electroless. Metal-plated particles having a metal film formed by plating are preferable in that the surface of the particles can be uniformly and densely coated, and those in which the metal film is gold or palladium are particularly preferable in that the conductivity can be increased. The metal film may be an alloy (for example, a nickel-phosphorus alloy or a nickel-boron alloy).
 導電性粒子(E)の配合量は、(メタ)アクリレート(A)100質量部に対して2~40質量部が好ましく、3~25質量部がより好ましく、5~20質量部が更に好ましい。導電性粒子(E)の使用量が上記範囲内にあることにより、接続抵抗が高くなることが抑制されて接続信頼性が向上する。 The blending amount of the conductive particles (E) is preferably 2 to 40 parts by mass, more preferably 3 to 25 parts by mass, still more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylate (A). When the amount of the conductive particles (E) used is within the above range, the connection resistance is suppressed from being increased and the connection reliability is improved.
 本発明に係る導電性接着剤には、その他に、当該技術分野において、公知の添加剤を使用でき、その添加量も紫外可視光が内部まで到達できる範囲の量で含有させることができる。他の添加剤としては、例えば、光増感剤、脱泡剤、チキソ性付与剤、粘度調整剤、レベリング散剤、シランカップリング剤、安定剤、イオン交換体などを例示することができる。また、必要により溶剤を含有させることができる。 In addition to the conductive adhesive according to the present invention, an additive known in the art can be used, and the amount of the additive can be contained in an amount within a range in which ultraviolet visible light can reach the inside. Examples of other additives include a photosensitizer, a defoaming agent, a thixotropic agent, a viscosity modifier, a leveling powder, a silane coupling agent, a stabilizer, an ion exchanger and the like. In addition, a solvent can be contained if necessary.
 本発明の導電性接着剤は、紫外可視光を照射することにより硬化させることができる。紫外可視光の波長の範囲は、100~700nmが好ましく、150~500nmがより好ましく、180~400nmが更に好ましい。 The conductive adhesive of the present invention can be cured by irradiating with ultraviolet-visible light. The wavelength range of ultraviolet-visible light is preferably 100 to 700 nm, more preferably 150 to 500 nm, and even more preferably 180 to 400 nm.
 本発明の導電性接着剤を用いて電子部品を接着する方法としては、公知の方法を用いることができ、例えば、電極が形成された透明な基板の表面に、本発明の導電性接着剤を、スリットコーター、ロールコーター、スピンコーター、スクリーン印刷法、メタルマスク印刷法、ディスペンサー、ジェットディスペンサー等の塗工装置を用いて、膜厚が0.1~100μmとなるように塗布し、電子部品の一部が前記電極の上方に位置するように前記電子部品を前記基板上に載置して前記透明基板側から紫外可視光を照射することにより、電子部品を接着することができる。 As a method for adhering electronic components using the conductive adhesive of the present invention, a known method can be used. For example, the conductive adhesive of the present invention is applied to the surface of a transparent substrate on which an electrode is formed. , Slit coater, roll coater, spin coater, screen printing method, metal mask printing method, dispenser, jet dispenser, etc. The electronic component can be adhered by placing the electronic component on the substrate so that a part of the electronic component is located above the electrode and irradiating the transparent substrate side with ultraviolet visible light.
 紫外可視光の照射量は、50~20,000mJ/cmが好ましく、特に好ましくは、300~10,000mJ/cmである。紫外可視光の光線照射による硬化においては、紫外~近紫外の光線を照射するランプであれば光源は問わない。光源としては、例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、無電極ランプ及びLED等が挙げられる。 Dose of ultraviolet-visible light is preferably 50 ~ 20,000mJ / cm 2, particularly preferably 300 ~ 10,000mJ / cm 2. In the curing by irradiation with ultraviolet visible light, the light source does not matter as long as the lamp irradiates ultraviolet to near-ultraviolet rays. Examples of the light source include low-voltage, high-pressure or ultra-high-voltage mercury lamps, metal halide lamps, (pulse) xenon lamps, electrodeless lamps, LEDs, and the like.
 本発明に係る導電性接着剤は、異方導電性接着剤として用いることができ、微細化するICチップ、発光ダイオード等の電子部品や回路基板の電極接続に対して信頼性の高い接続ができる。 The conductive adhesive according to the present invention can be used as an anisotropic conductive adhesive, and can be connected with high reliability to the electrode connection of electronic parts such as IC chips and light emitting diodes to be miniaturized and circuit boards. ..
 本発明の導電性接着剤を介して被接着部材同士が接着されている接着構造体としては、例えば、電極を有する基板にICチップを接着した、ICカードやICタグなどのRFID関連製品や、電極を有する基板に発光ダイオードを接着した発光電子部品等が挙げられる。 Examples of the adhesive structure in which the members to be adhered are bonded to each other via the conductive adhesive of the present invention include RFID-related products such as IC cards and IC tags in which an IC chip is bonded to a substrate having an electrode. Examples thereof include light emitting electronic components in which a light emitting diode is adhered to a substrate having an electrode.
 本発明に係る接着構造体としては、例えば、図1に示す、基板に実装された電子部品を例示することができる。
 フィルムや紙のような基板1の一方の面である表面1a上に、電極であるアルミアンテナ2が形成されている。表面1aには、少なくともアルミアンテナ2の全体を含む範囲に、本発明の導電性接着剤3が塗布され紫外可視光により硬化されている。基板1には、表面1a上に、金属電極5を有する電子部品、すなわち半導体であるICチップ4が、金属電極5がアルミアンテナ2の上方に位置するように載置されている。ICチップ4は、本発明の導電性接着剤3(導電性粒子6を含む)によって基板1の表面1a側に接着されている。なお、アルミアンテナ2と、金属電極5すなわちICチップ4とは、導電性粒子6を介して通電するように構成されている。
As the adhesive structure according to the present invention, for example, the electronic component mounted on the substrate shown in FIG. 1 can be exemplified.
An aluminum antenna 2 as an electrode is formed on a surface 1a which is one surface of a substrate 1 such as a film or paper. The conductive adhesive 3 of the present invention is applied to the surface 1a in a range including at least the entire aluminum antenna 2, and is cured by ultraviolet-visible light. On the substrate 1, an electronic component having a metal electrode 5, that is, an IC chip 4, which is a semiconductor, is placed on the surface 1a so that the metal electrode 5 is located above the aluminum antenna 2. The IC chip 4 is adhered to the surface 1a side of the substrate 1 by the conductive adhesive 3 (including the conductive particles 6) of the present invention. The aluminum antenna 2 and the metal electrode 5, that is, the IC chip 4 are configured to be energized via the conductive particles 6.
 本発明の導電性接着剤を用いて電子部品を実装する方法の中で、特に好ましい方法として、電極が形成された基板の表面に、紫外可視光が照射されることにより硬化する樹脂を含む接着剤を塗布するステップと、電子部品の一部が前記電極の上方に位置するように前記電子部品を前記基板上に載置するステップと、前記基板に対して垂直に紫外可視光を照射するステップとを含む、電子部品の実装方法において、前記基板の前記表面側には、前記紫外可視光を透過させない非透過部分が存在し、該非透過部分の外接矩形の短辺の長さが2mm以下とし、前記紫外可視光を照射するステップの前、又はそのステップと同時に、前記紫外可視光が透過可能な透明又は半透明の平坦な板部材で前記基板を加圧する方法が挙げられる(特開2015-53316号公報参照)。 Among the methods for mounting electronic components using the conductive adhesive of the present invention, as a particularly preferable method, adhesion containing a resin that is cured by irradiating the surface of a substrate on which an electrode is formed with ultraviolet visible light. A step of applying the agent, a step of placing the electronic component on the substrate so that a part of the electronic component is located above the electrode, and a step of irradiating the substrate with ultraviolet visible light perpendicularly. In the method for mounting an electronic component including, a non-transmissive portion that does not transmit ultraviolet visible light exists on the surface side of the substrate, and the length of the short side of the circumscribing rectangle of the non-transmissive portion is set to 2 mm or less. , Before the step of irradiating the ultraviolet visible light, or at the same time as the step, a method of pressurizing the substrate with a transparent or translucent flat plate member capable of transmitting the ultraviolet visible light can be mentioned (Japanese Patent Laid-Open No. 2015-). 53316 (see).
 本発明の導電性接着剤を用いて、電子部品を実装する装置の一例を図2に示す。
 図2の電子部品を実装する装置30は、基板1を載置すると共に基板1を加熱する加熱部材であるヒートテーブル31と、紫外可視光を照射する照射部材32と、照射部材32をヒートテーブル31に向かってあるいはヒートテーブル31から離れるように移動させる駆動装置33と、制御部34とを備えている。制御部34は、ヒートテーブル31と、照射部材32と、駆動装置33とのそれぞれに電気的に接続されている。
FIG. 2 shows an example of an apparatus for mounting an electronic component using the conductive adhesive of the present invention.
The device 30 for mounting the electronic component of FIG. 2 has a heat table 31 which is a heating member for mounting the substrate 1 and heating the substrate 1, an irradiation member 32 for irradiating ultraviolet visible light, and a heat table for the irradiation member 32. It includes a drive device 33 that moves toward or away from the heat table 31, and a control unit 34. The control unit 34 is electrically connected to the heat table 31, the irradiation member 32, and the drive device 33, respectively.
 図3に、照射部材32が基板1(図2参照)に接触する接触面35の構成を示す。接触面35は、紫外可視光が透過可能な透明又は半透明の平坦な板部材36から構成されており、板部材36を通して、照射部材32の内部に設けられた紫外可視光の光源37が見えるようになっている。光源37は、制御部34(図2参照)からの給電によって、紫外可視光を照射するようになっている。なお、光源37としては、LED、メタハライドランプ、キセノンランプ、加圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、カーボンアーク灯、その他波長100~700nmに発光分布を有する光を発するものを用いることができる。 FIG. 3 shows the configuration of the contact surface 35 in which the irradiation member 32 contacts the substrate 1 (see FIG. 2). The contact surface 35 is composed of a transparent or translucent flat plate member 36 capable of transmitting ultraviolet visible light, and the light source 37 of ultraviolet visible light provided inside the irradiation member 32 can be seen through the plate member 36. It has become like. The light source 37 is adapted to irradiate ultraviolet-visible light by supplying power from the control unit 34 (see FIG. 2). As the light source 37, an LED, a metal halide lamp, a xenon lamp, a pressurized mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a carbon arc lamp, or any other light source that emits light having a light emission distribution at a wavelength of 100 to 700 nm is used. Can be done.
 次に、上記した電子部品を実装する装置30を用いた実装方法について説明する。
 ICチップ4の平面形状は任意の形状でよいが、ここでは、図4に示されるような楕円形状を有するものとして説明する。なお、基板1に実装されたICチップ4は、ICカードやICタグなどのRFID関連製品に用いられる。また、基板1に実装された発光ダイオード14は、発光電子部品に用いられる。
Next, a mounting method using the device 30 for mounting the above-mentioned electronic components will be described.
The planar shape of the IC chip 4 may be any shape, but here, it will be described as having an elliptical shape as shown in FIG. The IC chip 4 mounted on the substrate 1 is used for RFID-related products such as IC cards and IC tags. Further, the light emitting diode 14 mounted on the substrate 1 is used for a light emitting electronic component.
 ICチップ4を基板1に対して垂直な方向から見たときに、ICチップ4が外接する外接矩形20を想定する。この外接矩形20は、2つの互いに平行な長辺21と、2つの互いに平行な短辺22とを有しているが、短辺22の長さは2mm以下、好ましくは1.5mm以下である。なお、外接矩形が正方形の場合は、長辺及び短辺のそれぞれの長さは等しいので、一辺の長さが2mm以下、好ましくは1.5mm以下であればよい。ICチップ4は紫外可視光を透過させないので、図5に示されるように、基板1に対して垂直な方向にICチップ4を投影した領域(斜線部分の領域)は、紫外可視光を基板1に対して垂直に照射した場合に、紫外可視光が導電性接着剤3(図5に非図示)に直接には照射されない領域、すなわち非照射領域23となる。ICチップ4の外接矩形20の短辺22(図4参照)が2mm以下、好ましくは1.5mm以下であるので、短辺22に平行な方向の非透過部分の幅Wは、ICチップ4全体にわたって2mm以下、好ましくは1.5mm以下となる。 Assume an circumscribed rectangle 20 to which the IC chip 4 circumscribes when the IC chip 4 is viewed from a direction perpendicular to the substrate 1. The circumscribing rectangle 20 has two long sides 21 parallel to each other and two short sides 22 parallel to each other, and the length of the short sides 22 is 2 mm or less, preferably 1.5 mm or less. .. When the circumscribed rectangle is a square, the lengths of the long side and the short side are the same, so that the length of one side may be 2 mm or less, preferably 1.5 mm or less. Since the IC chip 4 does not transmit ultraviolet visible light, as shown in FIG. 5, the region where the IC chip 4 is projected in the direction perpendicular to the substrate 1 (the shaded area) is the region where the ultraviolet visible light is transmitted to the substrate 1. When irradiated perpendicularly to the conductive adhesive 3, the ultraviolet-visible light is not directly irradiated to the conductive adhesive 3 (not shown in FIG. 5), that is, the non-irradiated region 23. Since the short side 22 (see FIG. 4) of the circumscribing rectangle 20 of the IC chip 4 is 2 mm or less, preferably 1.5 mm or less, the width W of the non-transparent portion in the direction parallel to the short side 22 is the entire IC chip 4. It is 2 mm or less, preferably 1.5 mm or less.
 一方、図6に示されるように、電子部品として、透明な材料からなる発光ダイオード14を基板1に実装する場合、基板1に対して垂直に照射された紫外可視光は、発光ダイオード14を透過して導電性接着剤3(図6に非図示)に照射される。ただし、発光ダイオード14が透明であっても金属電極5は透明ではなく、紫外可視光は金属電極5を透過しないので、金属電極5が非透過部分となり、基板1に対して垂直な方向に金属電極5を投影した領域(斜線部分の領域)が非照射領域23となる。この場合、金属電極5の外接矩形の短辺の長さが2mm以下、好ましくは1.5mm以下であれば、金属電極5の外接矩形の短辺に平行な方向の非透過部分の幅W’は、金属電極5全体にわたって2mm以下、好ましくは1.5mm以下となる。すなわち、図5に示されるように、ICチップ4のような紫外可視光を透過させない電子部品を基板1に実装する場合には、ICチップ4が、紫外可視光を透過させない非透過部分となり、図6に示されるように、発光ダイオード14のような紫外可視光を透過させる電子部品を基板1に実装する場合には、発光ダイオード14の金属電極5が、紫外可視光を透過させない非透過部分となる。 On the other hand, as shown in FIG. 6, when the light emitting diode 14 made of a transparent material is mounted on the substrate 1 as an electronic component, the ultraviolet visible light emitted perpendicularly to the substrate 1 is transmitted through the light emitting diode 14. Then, the conductive adhesive 3 (not shown in FIG. 6) is irradiated with the conductive adhesive 3. However, even if the light emitting diode 14 is transparent, the metal electrode 5 is not transparent, and ultraviolet visible light does not pass through the metal electrode 5, so that the metal electrode 5 becomes a non-transmissive portion and the metal is formed in a direction perpendicular to the substrate 1. The region where the electrode 5 is projected (the shaded area) is the non-irradiated region 23. In this case, if the length of the short side of the circumscribing rectangle of the metal electrode 5 is 2 mm or less, preferably 1.5 mm or less, the width W'of the non-transmissive portion in the direction parallel to the short side of the circumscribing rectangle of the metal electrode 5. Is 2 mm or less, preferably 1.5 mm or less over the entire metal electrode 5. That is, as shown in FIG. 5, when an electronic component such as the IC chip 4 that does not transmit ultraviolet visible light is mounted on the substrate 1, the IC chip 4 becomes a non-transmissive portion that does not transmit ultraviolet visible light. As shown in FIG. 6, when an electronic component that transmits ultraviolet visible light such as a light emitting diode 14 is mounted on the substrate 1, the metal electrode 5 of the light emitting diode 14 is a non-transmissive portion that does not transmit ultraviolet visible light. It becomes.
 図2に示されるように、ヒートテーブル31の上に基板1を載置する。基板1には既に、表面1aにアルミアンテナ2が形成され、少なくともアルミアンテナ2の全体を含む範囲に導電性接着剤3が塗布され、金属電極5がアルミアンテナ2の上方に位置するようにICチップ4が載置されている。ヒートテーブル31の上に基板1を載置する前に、制御部34は予めヒートテーブル31を15~100℃の範囲の適切な温度に加熱しておいてもよい。ヒートテーブル31の上に基板1を載置後、制御部34は、駆動装置33を起動することにより、照射部材32をヒートテーブル31に向かって移動させ、基板1をヒートテーブル31と照射部材32とによって挟む。更に制御部34は、照射部材32から紫外可視光を照射させ、基板1をヒートテーブル31と照射部材32とによって加圧する。この際に加える圧力は、0.01~500N/mmの範囲で、より好ましくは0.03~300N/mmの範囲で適宜設定される。この加圧の間に、導電性接着剤3に紫外可視光が照射されることにより導電性接着剤3が硬化する。導電性接着剤3が完全に硬化するのに十分な時間だけ加圧及び加熱した後、制御部34は、駆動装置33によって照射部材32をヒートテーブル31から離れるように移動させ、ヒートテーブル31による加熱及び照射部材32からの紫外可視光の照射を終了することにより、基板1へのICチップ4の実装が完了する。 As shown in FIG. 2, the substrate 1 is placed on the heat table 31. An aluminum antenna 2 is already formed on the surface 1a of the substrate 1, a conductive adhesive 3 is applied to a range including at least the entire aluminum antenna 2, and an IC is provided so that the metal electrode 5 is located above the aluminum antenna 2. The chip 4 is placed. Before placing the substrate 1 on the heat table 31, the control unit 34 may preheat the heat table 31 to an appropriate temperature in the range of 15 to 100 ° C. After placing the substrate 1 on the heat table 31, the control unit 34 activates the drive device 33 to move the irradiation member 32 toward the heat table 31, and moves the substrate 1 to the heat table 31 and the irradiation member 32. Sandwiched by. Further, the control unit 34 irradiates the irradiation member 32 with ultraviolet visible light, and pressurizes the substrate 1 by the heat table 31 and the irradiation member 32. The pressure applied at this time is appropriately set in the range of 0.01 to 500 N / mm 2 , more preferably in the range of 0.03 to 300 N / mm 2. During this pressurization, the conductive adhesive 3 is cured by irradiating the conductive adhesive 3 with ultraviolet visible light. After pressurizing and heating the conductive adhesive 3 for a time sufficient to completely cure, the control unit 34 moves the irradiation member 32 away from the heat table 31 by the driving device 33, and uses the heat table 31. By completing the heating and irradiation of ultraviolet visible light from the irradiation member 32, the mounting of the IC chip 4 on the substrate 1 is completed.
 この実施の形態では、電子部品としてICチップ4及び発光ダイオード14を例にして説明したが、これらに限定するものではない。紫外可視光が照射されることによって硬化する接着剤によって接着される電子部品であれば任意のものであってもよい。 In this embodiment, the IC chip 4 and the light emitting diode 14 have been described as examples of electronic components, but the present invention is not limited to these. Any electronic component that is adhered by an adhesive that cures when irradiated with ultraviolet-visible light may be used.
 この実施の形態では、制御部34が照射部材32をヒートテーブル31に向かって移動させていたが、この形態に限定するものではない。照射部材32を固定しておき、ヒートテーブル31を照射部材32に向かって移動させてもよいし、両者を互いに向かって同時に又は交互に移動させてもよい。 In this embodiment, the control unit 34 moves the irradiation member 32 toward the heat table 31, but the present invention is not limited to this embodiment. The irradiation member 32 may be fixed and the heat table 31 may be moved toward the irradiation member 32, or both may be moved toward each other at the same time or alternately.
 この実施の形態では、導電性接着剤3に紫外可視光を照射させるときに、ヒートテーブル31によって加熱も一緒に行っていたが、この形態に限定するものではない。この加熱は、導電性接着剤3の硬化反応を促進するために行うものであるので、ヒートテーブル31の代わりに、加熱を行わない単なる固定台を用いて、紫外可視光の照射のみを行ってもよい。 In this embodiment, when the conductive adhesive 3 is irradiated with ultraviolet-visible light, it is also heated by the heat table 31, but the present invention is not limited to this embodiment. Since this heating is performed to accelerate the curing reaction of the conductive adhesive 3, instead of the heat table 31, a simple fixing table that does not heat is used to irradiate only ultraviolet visible light. May be good.
 この実施の形態では、ヒートテーブル31の上に基板1を載置していたが、この形態に限定するものではない。接触面35が上方に向くように照射部材32を配置し、基板1を接触面35上に載置する形態であってもよい。この場合、照射部材32の上方にヒートテーブル31が配置され、ヒートテーブル31を照射部材32に向かって移動させてもよいし、照射部材32をヒートテーブル31に向かって移動させてもよいし、両者を互いに向かって同時に又は交互に移動させてもよい。 In this embodiment, the substrate 1 is placed on the heat table 31, but the present invention is not limited to this embodiment. The irradiation member 32 may be arranged so that the contact surface 35 faces upward, and the substrate 1 may be placed on the contact surface 35. In this case, the heat table 31 may be arranged above the irradiation member 32, and the heat table 31 may be moved toward the irradiation member 32, or the irradiation member 32 may be moved toward the heat table 31. Both may be moved toward each other at the same time or alternately.
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるわけではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples.
[(メタ)アクリレート(A)]
 (メタ)アクリレート(A)は、下記の市販のものを使用した。
[(Meta) Acrylate (A)]
As the (meth) acrylate (A), the following commercially available one was used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[光重合開始剤(B)]
 光重合開始剤(B)は、下記の市販のものを使用した。
[Photopolymerization Initiator (B)]
The following commercially available photopolymerization initiator (B) was used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[リン酸基含有モノマー(C)]
 リン酸基含有モノマー(C)は、下記の市販のものを使用した。
[Phosphate group-containing monomer (C)]
As the phosphoric acid group-containing monomer (C), the following commercially available one was used.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[ポリエステル樹脂(D)]
 ポリエステル樹脂(D)は、下記の市販のものを使用した。これらはいずれもメチルエチルケトン100質量部に対して25℃で5質量部以上溶解した。
[Polyester resin (D)]
As the polyester resin (D), the following commercially available one was used. All of these were dissolved in an amount of 5 parts by mass or more at 25 ° C. with respect to 100 parts by mass of methyl ethyl ketone.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[導電性粒子(E)]
 導電性粒子は、球状の樹脂粒子の表面に金-ニッケルの導電層を有する平均粒子径が3.0μmである金めっき粒子(日本化学工業製)を用いた。
[Conductive particles (E)]
As the conductive particles, gold-plated particles (manufactured by Nippon Kagaku Kogyo Co., Ltd.) having a gold-nickel conductive layer on the surface of the spherical resin particles and having an average particle diameter of 3.0 μm were used.
{実施例1~8及び比較例1~2}
 表5に示す組成で、(メタ)アクリレート(A)、光重合開始剤(B)、リン酸基含有モノマー(C)、ポリエステル樹脂(D)及び添加剤としてアエロジルRX200(チキソ性付与剤:日本アエロジル製)を、自転・公転式真空ミキサーを用いて25℃で1時間混合し、実施例1~8及び比較例1~2の導電性接着剤を調製した。
{Examples 1 to 8 and Comparative Examples 1 to 2}
With the composition shown in Table 5, (meth) acrylate (A), photopolymerization initiator (B), phosphate group-containing monomer (C), polyester resin (D) and Aerosil RX200 as an additive (thixotropic agent: Japan) (Aerosil) was mixed at 25 ° C. for 1 hour using a rotating / revolving vacuum mixer to prepare conductive adhesives of Examples 1 to 8 and Comparative Examples 1 and 2.
<貯蔵安定性(ポットライフ)の評価>
 導電性接着剤5gを容器に入れ、その容器を30℃に保ち、1日後及び3日後の状態を目視で観察し、その状態を評価した。結果を表5に併記した。
 なお、表中の貯蔵安定性の評価結果は下記のことを示す。
 ×:1日後には硬化している。
 〇:1日後は状態に変化なし、3日後にはゲルが観察される。
 ◎:1日後及び3日後も状態に変化なし。
<Evaluation of storage stability (pot life)>
5 g of the conductive adhesive was placed in a container, the container was kept at 30 ° C., and the state after 1 day and 3 days was visually observed and the state was evaluated. The results are also shown in Table 5.
The evaluation results of storage stability in the table are as follows.
X: Hardened after 1 day.
〇: No change in condition after 1 day, gel is observed after 3 days.
⊚: No change in condition after 1 day and 3 days.
<密着性の評価>
 PETフィルム上にアルミニウム配線が形成された基板(サイズ:縦2.5cm、横8cm)上のアルミ配線の全体を含む範囲に、実施例及び比較例で調製した導電性接着剤を、硬化後の厚さが50μmとなるようにディスペンス法で塗布し、金パンプを有するICを載置した。温度25℃、1N/mmの加圧下で、紫外可視光(波長365nm、照度5,000mW/cm)を2秒間照射して導電性接着剤を硬化させることにより、評価用の接着構造体を作製した。なお、用いた導電性接着剤は調製して2時間以内のものを使用した。
 作製した接着構造体について、導電性接着剤のダイシェア強度を測定した。ダイシェア強度は、基板からICチップを剥離する際の強度(N/mm)を、デジタルフォースゲージを用いて測定した。結果を表5に併記した。なお、表中のダイシェア強度結果は下記のことを示す。
 ○:20N/mm以上
 ×:20N/mm未満
<Evaluation of adhesion>
After curing, the conductive adhesives prepared in Examples and Comparative Examples were applied to a range including the entire aluminum wiring on a substrate (size: length 2.5 cm, width 8 cm) in which aluminum wiring was formed on a PET film. It was applied by the dispense method so as to have a thickness of 50 μm, and an IC having a gold pump was placed. An adhesive structure for evaluation by irradiating ultraviolet visible light (wavelength 365 nm, illuminance 5,000 mW / cm 2 ) for 2 seconds under a pressure of 25 ° C. and 1 N / mm 2 to cure the conductive adhesive. Was produced. The conductive adhesive used was prepared and used within 2 hours.
The die shear strength of the conductive adhesive was measured for the produced adhesive structure. The die shear strength was measured by using a digital force gauge to measure the strength (N / mm 2 ) when the IC chip was peeled off from the substrate. The results are also shown in Table 5. The die-share strength results in the table show the following.
◯: 20 N / mm 2 or more ×: 20 N / mm less than 2
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 リン酸基含有モノマー(C)及びポリエステル樹脂(D)を使用した実施例1~8の導電性接着剤は、接着構造体の密着性に優れており、ポットライフが良好であった。リン酸基含有モノマー(C)使用し、ポリエステル樹脂(D)を使用しない比較例1の導電性接着剤は、接着構造体の密着性に優れているが、ポットライフに問題があった。リン酸基含有モノマー(C)使用しない比較例2の導電性接着剤は、ポットライフは概ね良好であるが、接着構造体の密着性に劣っていた。 The conductive adhesives of Examples 1 to 8 using the phosphoric acid group-containing monomer (C) and the polyester resin (D) were excellent in the adhesiveness of the adhesive structure and had a good pot life. The conductive adhesive of Comparative Example 1 in which the phosphoric acid group-containing monomer (C) was used and the polyester resin (D) was not used had excellent adhesion of the adhesive structure, but had a problem in pot life. The conductive adhesive of Comparative Example 2 in which the phosphoric acid group-containing monomer (C) was not used had generally good pot life, but was inferior in adhesion of the adhesive structure.
1  基板
1a (基板の)表面
1b (基板の)底面
2  アルミアンテナ(電極)
3  導電性接着剤
4  ICチップ(半導体、電子部品)
5  金属電極
6  導電性粒子
14 発光ダイオード(電子部品)
20 外接矩形
21 (外接矩形の)長辺
22 (外接矩形の)短辺
23 非照射領域
30 装置
31 ヒートテーブル(加熱部材)
32 照射部材
33 駆動装置
34 制御部
35 接触面
36 板部材
37 光源
 
1 Substrate 1a (of the substrate) Surface 1b (of the substrate) Bottom surface 2 Aluminum antenna (electrode)
3 Conductive adhesive 4 IC chip (semiconductor, electronic component)
5 Metal electrode 6 Conductive particles 14 Light emitting diode (electronic component)
20 Circumscribed rectangle 21 Long side (of circumscribed rectangle) 22 Short side of (circumscribed rectangle) 23 Non-irradiated area 30 Device 31 Heat table (heating member)
32 Irradiation member 33 Drive device 34 Control unit 35 Contact surface 36 Plate member 37 Light source

Claims (10)

  1.  (メタ)アクリレート(A)、光重合開始剤(B)、リン酸基含有モノマー(C)、有機溶剤に可溶なポリエステル樹脂(D)及び導電性粒子(E)を含有する導電性接着剤。 (Meta) A conductive adhesive containing an acrylate (A), a photopolymerization initiator (B), a phosphate group-containing monomer (C), a polyester resin (D) soluble in an organic solvent, and conductive particles (E). ..
  2.  リン酸基含有モノマー(C)が、リン酸基含有(メタ)アクリレートである請求項1に記載の導電性接着剤。 The conductive adhesive according to claim 1, wherein the phosphoric acid group-containing monomer (C) is a phosphoric acid group-containing (meth) acrylate.
  3.  リン酸基含有モノマー(C)の含有量が、(メタ)アクリレート(A)100重量部に対して1~50質量部である請求項1に記載の導電性接着剤。 The conductive adhesive according to claim 1, wherein the content of the phosphoric acid group-containing monomer (C) is 1 to 50 parts by mass with respect to 100 parts by weight of the (meth) acrylate (A).
  4.  ポリエステル樹脂(D)が、非晶質ポリエステル樹脂である請求項1に記載の導電性接着剤。 The conductive adhesive according to claim 1, wherein the polyester resin (D) is an amorphous polyester resin.
  5.  ポリエステル樹脂(D)の配合量が、リン酸基含有モノマー(C)100質量部に対して10~2000質量部である請求項1に記載の導電性接着剤。 The conductive adhesive according to claim 1, wherein the blending amount of the polyester resin (D) is 10 to 2000 parts by mass with respect to 100 parts by mass of the phosphoric acid group-containing monomer (C).
  6.  導電性粒子(E)が、芯材粒子の表面を導電性金属で被覆した導電性粒子である請求項1に記載の導電性接着剤。 The conductive adhesive according to claim 1, wherein the conductive particles (E) are conductive particles in which the surface of the core material particles is coated with a conductive metal.
  7.  異方導電性接着剤である請求項1~6のいずれか1項に記載の導電性接着剤。 The conductive adhesive according to any one of claims 1 to 6, which is an anisotropic conductive adhesive.
  8.  請求項1~7のいずれか1項に記載の導電性接着剤を介して被接着部材同士が接着されている接着構造体。 An adhesive structure in which members to be adhered are bonded to each other via the conductive adhesive according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載の導電性接着剤を用いた電子部品。 An electronic component using the conductive adhesive according to any one of claims 1 to 7.
  10.  電子部品が、ICカード、ICタグ及び発光電子部品から選ばれる請求項9に記載の電子部品。 The electronic component according to claim 9, wherein the electronic component is selected from an IC card, an IC tag, and a light emitting electronic component.
PCT/JP2020/048338 2020-01-07 2020-12-24 Electrically conductive adhesive, and joined structure and electronic component using same WO2021140926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-000812 2020-01-07
JP2020000812A JP7413024B2 (en) 2020-01-07 2020-01-07 Conductive adhesive, bonded structures and electronic components using the same

Publications (1)

Publication Number Publication Date
WO2021140926A1 true WO2021140926A1 (en) 2021-07-15

Family

ID=76788672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048338 WO2021140926A1 (en) 2020-01-07 2020-12-24 Electrically conductive adhesive, and joined structure and electronic component using same

Country Status (2)

Country Link
JP (1) JP7413024B2 (en)
WO (1) WO2021140926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013618A1 (en) 2018-07-10 2020-01-16 Samsung Electronics Co., Ltd. Method and system for optimizing the feedback mechanism in data link layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184853B2 (en) * 2020-08-19 2022-12-06 日本化薬株式会社 UV curable adhesive composition, bonding method and article using the same
WO2024010060A1 (en) * 2022-07-08 2024-01-11 積水化学工業株式会社 Conductive paste, rfid inlay, method for producing rfid inlay, use of conductive paste for purpose of bonding chip, and use of conductive paste for purpose of obtaining rfid inlay

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931416A (en) * 1995-04-28 1997-02-04 Nippon Kayaku Co Ltd Ultraviolet light-curable adhesive composition, cured product, article and adhesion
WO2004001498A1 (en) * 2002-06-21 2003-12-31 Bridgestone Corporation Image display and method for manufacturing image display
JP2004043725A (en) * 2002-07-15 2004-02-12 Bridgestone Corp Anisotropically electroconductive film
JP2009147050A (en) * 2007-12-13 2009-07-02 Bridgestone Corp Solar battery and method of manufacturing the same
JP2012041541A (en) * 2011-09-21 2012-03-01 Sony Chemical & Information Device Corp Circuit connecting material, connecting method using the same, and connection structure
JP2017101131A (en) * 2015-11-30 2017-06-08 太陽インキ製造株式会社 Conductive adhesive, cured product and electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043601A (en) 2002-07-10 2004-02-12 Bridgestone Corp Anisotropically electroconductive film
JP2004043602A (en) 2002-07-10 2004-02-12 Bridgestone Corp Anisotropically conductive film
JP2009117738A (en) 2007-11-09 2009-05-28 Bridgestone Corp Solar cell and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931416A (en) * 1995-04-28 1997-02-04 Nippon Kayaku Co Ltd Ultraviolet light-curable adhesive composition, cured product, article and adhesion
WO2004001498A1 (en) * 2002-06-21 2003-12-31 Bridgestone Corporation Image display and method for manufacturing image display
JP2004043725A (en) * 2002-07-15 2004-02-12 Bridgestone Corp Anisotropically electroconductive film
JP2009147050A (en) * 2007-12-13 2009-07-02 Bridgestone Corp Solar battery and method of manufacturing the same
JP2012041541A (en) * 2011-09-21 2012-03-01 Sony Chemical & Information Device Corp Circuit connecting material, connecting method using the same, and connection structure
JP2017101131A (en) * 2015-11-30 2017-06-08 太陽インキ製造株式会社 Conductive adhesive, cured product and electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013618A1 (en) 2018-07-10 2020-01-16 Samsung Electronics Co., Ltd. Method and system for optimizing the feedback mechanism in data link layer

Also Published As

Publication number Publication date
JP2021109889A (en) 2021-08-02
JP7413024B2 (en) 2024-01-15

Similar Documents

Publication Publication Date Title
WO2021140926A1 (en) Electrically conductive adhesive, and joined structure and electronic component using same
JP7302645B2 (en) Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP6364191B2 (en) Conductive material, connection structure, and manufacturing method of connection structure
JP5855459B2 (en) Circuit member connection structure
TW200946633A (en) Conductive adhesive precursor, method of using the same, and article
WO2020184636A1 (en) Adhesive film for circuit connection, method for producing circuit connected structure, and adhesive film housing set
JP2006318990A (en) Circuit connecting material, connection structure of circuit member and method of connecting the same
JP6425899B2 (en) ANISOTROPIC CONDUCTIVE ADHESIVE, METHOD FOR MANUFACTURING CONNECTION AND METHOD FOR CONNECTING ELECTRONIC COMPONENTS
KR20210141953A (en) Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film accommodation set
JP6114557B2 (en) Conductive material and connection structure manufacturing method
WO2008010294A1 (en) Circuit connection material, circuit member connecting structure and method of connecting circuit member
WO2022009846A1 (en) Adhesive film for circuit connection, and circuit connection structure and manufacturing method therefor
JP2018501338A (en) Optical pressure-sensitive adhesive composition and optical pressure-sensitive adhesive film
JP5181220B2 (en) Adhesive film for circuit connection, connection structure and manufacturing method thereof
WO2021079852A1 (en) Conductive adhesive, and adhesive structure and electronic component using same
JP2016031888A (en) Method for manufacturing anisotropic conductive film and connection structure
JP4844677B2 (en) Circuit connection material, circuit member connection structure, and circuit member connection method.
JP2017030219A (en) Production method of joint structure
JP2011204898A (en) Adhesive composition, and connection structure for circuit member
KR20200052287A (en) Circuit connecting adhesive film and its manufacturing method, circuit connecting structure manufacturing method, and adhesive film accommodation set
JP5504225B2 (en) Anisotropic conductive material and connection structure
TWI553089B (en) Coating composition and the use thereof
JP4900490B2 (en) Circuit connection material, circuit member connection structure, and circuit member connection method.
WO2019193961A1 (en) Resin composition, method for manufacturing three-dimensionally shaped article using same, and three-dimensionally shaped article
JP7234032B2 (en) Method for manufacturing adhesive film, method for manufacturing adhesive film, and connected body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912838

Country of ref document: EP

Kind code of ref document: A1