WO2019193961A1 - Resin composition, method for manufacturing three-dimensionally shaped article using same, and three-dimensionally shaped article - Google Patents

Resin composition, method for manufacturing three-dimensionally shaped article using same, and three-dimensionally shaped article Download PDF

Info

Publication number
WO2019193961A1
WO2019193961A1 PCT/JP2019/011126 JP2019011126W WO2019193961A1 WO 2019193961 A1 WO2019193961 A1 WO 2019193961A1 JP 2019011126 W JP2019011126 W JP 2019011126W WO 2019193961 A1 WO2019193961 A1 WO 2019193961A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
meth
acrylate
resin
Prior art date
Application number
PCT/JP2019/011126
Other languages
French (fr)
Japanese (ja)
Inventor
有由見 米▲崎▼
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020511686A priority Critical patent/JP7163956B2/en
Publication of WO2019193961A1 publication Critical patent/WO2019193961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a resin composition, a method for producing a three-dimensional structure using the resin composition, and a three-dimensional structure.
  • Patent Documents 4 and 5 a method for continuously or intermittently curing a liquid resin composition containing a photopolymerizable compound has been proposed as a method for producing a new three-dimensional structure.
  • a buffer region in which the resin composition is not cured even when irradiated with active energy and a curing region in which the resin composition is cured by irradiation with active energy are provided in the molded article tank.
  • region is formed so that a buffer area
  • the carrier used as the base point of three-dimensional modeling is arrange
  • active energy is selectively irradiated to the area
  • JP-A-8-174680 Japanese Unexamined Patent Publication No. 7-26060 JP 2016-138180 A Special table 2016-509962 gazette International Publication No. 2017/044381
  • thermopolymerizable compound and a filler to the resin composition for modeling.
  • the initial mechanical strength is improved, but the mechanical strength is lowered due to deterioration over time. This is because the filler is likely to be localized simply by mixing, cracks are generated from the portion where the filler is not present, and the deterioration of the three-dimensional structure is promoted.
  • the dimensional accuracy is improved by mixing the thermopolymerizable compound as compared with the case of only the photopolymerizable compound, there is a problem that it is insufficient when a precision instrument application is assumed.
  • an object of the present invention is to provide a three-dimensionally shaped product that is excellent in mechanical strength and durability, and further excellent in dimensional accuracy, a method for producing the same, and a resin composition used therefor.
  • the first of the present invention is the following resin composition.
  • a resin composition used in a method for producing a three-dimensional structure made of a cured product of the resin composition by selectively irradiating active energy to a liquid resin composition, which is photopolymerizable A resin composition comprising a compound, a thermopolymerizable compound, and a functional group-containing filler having a functional group capable of binding to the thermopolymerizable compound on the surface.
  • thermopolymerizable compound is an epoxy resin or a precursor thereof, or a urethane resin or a precursor thereof.
  • functional group-containing filler is a cellulose nanofiber having a functional group capable of binding to the thermopolymerizable compound.
  • 2nd of this invention exists in the manufacturing method of the following three-dimensional molded items, or a three-dimensional molded item.
  • the manufacturing method of the three-dimensional molded item including the thermosetting process which further thermosets the said primary cured material.
  • the stereolithography step includes the resin composition and oxygen, includes at least a buffer region in which curing of the photopolymerizable compound is inhibited by oxygen, and the resin composition, and the oxygen concentration is higher than that of the buffer region.
  • the second step of curing the photopolymerizable compound in the curing region, in the second step, while moving the formed cured product to the opposite side of the buffer region The method for producing a three-dimensional structure according to [4], wherein the curing region is irradiated with active energy to form the primary cured product.
  • the resin composition of the present invention it is possible to provide a three-dimensional modeled object having high mechanical strength, durability, and dimensional accuracy.
  • FIG. 1 is a schematic diagram of an apparatus for manufacturing a three-dimensional structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a three-dimensional object manufacturing apparatus according to another embodiment of the present invention.
  • the resin composition of the present invention is in a liquid state, and is used in a method for producing a three-dimensional structure by selectively irradiating the resin composition with active energy.
  • a filler or a thermopolymerizable compound it has been studied to add a filler or a thermopolymerizable compound to such a resin composition.
  • the filler is likely to be localized, and the resin in the region not containing the filler is likely to deteriorate over time. It was. Therefore, it was difficult to obtain high mechanical strength over a long period of time.
  • the dimensional accuracy is improved by mixing the thermopolymerizable compound as compared with the case of using only the photopolymerizable compound, there is a problem that it is insufficient when a precision instrument application is assumed.
  • the resin composition of the present invention includes a photopolymerizable compound, a thermopolymerizable compound, and a functional group-containing filler having a functional group capable of binding to the thermopolymerizable compound on the surface.
  • the photopolymerizable compound is polymerized to produce a primary cured product having a desired shape.
  • the thermopolymerizable compound in the primary cured product is polymerized by heating the primary cured product.
  • the functional group of the functional group-containing filler is bonded to the thermopolymerizable compound, whereby the filler is taken into the polymerized product (cured product) of the thermopolymerizable compound via a chemical bond.
  • the filler is uniformly distributed in the three-dimensional structure, the mechanical strength of the three-dimensional structure is increased, and deterioration with time is suppressed.
  • the filler is excellent in strength without any dimensional change due to heat change. Therefore, the dimensional change of the three-dimensional molded article obtained is further suppressed by a filler being taken in into a resin frame
  • the resin composition may contain a photopolymerization initiator, a thermosetting agent, a thermosetting accelerator, various additives, and the like as necessary, as long as the object and effect of the present invention are not impaired. .
  • a photopolymerization initiator e.g., a photopolymerization initiator, a thermosetting agent, a thermosetting accelerator, various additives, and the like as necessary, as long as the object and effect of the present invention are not impaired.
  • a thermosetting agent e.g., a thermosetting accelerator, various additives, and the like
  • Photopolymerizable compound contained in the resin composition may be any compound that can be polymerized and cured by irradiation with active energy.
  • it may be a monomer, an oligomer, a prepolymer, or a mixture thereof.
  • the photopolymerizable compound may be a radical polymerizable compound or a cationic polymerizable compound.
  • CLIP method a method for producing a three-dimensional structure
  • a photopolymerizable compound is used in a resin composition used for a method for producing a three-dimensional structure (hereinafter also referred to as “CLIP method”) while adding a polymerization inhibitor such as oxygen to the resin composition. Needs to be a radically polymerizable compound.
  • the resin composition may contain only one type of photopolymerizable compound or two or more types.
  • the active energy for curing the photopolymerizable compound include ultraviolet rays, X-rays, electron beams, ⁇ rays, visible light, and the like.
  • the type of radically polymerizable compound which is one of the photopolymerizable compounds, is not particularly limited as long as it has a group that can be radically polymerized by irradiation with active energy in the presence of a radical polymerization initiator or the like.
  • Photopolymerizable compounds include, for example, ethylene, propenyl, butenyl, vinylphenyl, allyl ether, vinyl ether, maleyl, maleimide, (meth) acrylamide, acetylvinyl, vinylamide, (meth)
  • a compound having one or more acryloyl groups and the like in the molecule can be obtained.
  • the unsaturated carboxylic acid ester compound containing one or more unsaturated carboxylic acid ester structures in the molecule or the unsaturated carboxylic acid amide compound containing one or more unsaturated carboxylic acid amide structures in the molecule.
  • (meth) acryl represents methacryl and / or acryl
  • description “(meth) acryloyl” represents methacryloyl and / or acryloyl
  • (meth) acrylate” "Represents methacrylate and / or acrylate.
  • Examples of the “compound having an allyl ether group” which is one of the above radical polymerizable compounds include phenyl allyl ether, o-, m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl -4-ol monoallyl ether, butyl allyl ether, cyclohexyl allyl ether, cyclohexane methanol monoallyl ether, phthalic acid diallyl ether, isophthalic acid diallyl ether, dimethanol tricyclodecane diallyl ether, 1,4-cyclohexanedimethanol diallyl ether, Alkylene (2-5 carbon atoms) glycol diallyl ether, polyethylene glycol diallyl ether, glycerol diallyl ether, trimethylolpropane diallyl ether, pentaerythritol Diallyl ether, polyglycerin (degree of polymer
  • Examples of the “compound having a vinyl ether group” include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, 1,4-butanediol divinyl ether, ethyl hexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy.
  • Examples of the “compound having a vinyl phenyl group” include divinyl resorcin, divinyl hydroquinone and the like.
  • Examples of the “compound having a maleimide group” include phenylmaleimide, cyclohexylmaleimide, n-hexylmaleimide and the like.
  • Examples of the “compound having a (meth) acrylamide group” include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-hydroxy. Ethyl (meth) acrylamide, N-butyl (meth) acrylamide, isobutoxymethyl (meth) acrylamide, diacetone (meth) acrylamide, bismethylene acrylamide, di (ethyleneoxy) bispropylacrylamide, and tri (ethyleneoxy) bispropylacrylamide , (Meth) acryloylmorpholine and the like.
  • examples of the above-mentioned “compound having a (meth) acryloyl group” include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, octyl (Meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, tridecyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dimethylamin
  • the “compound having a (meth) acryloyl group” may be a product obtained by further modifying various (meth) acrylate monomers or oligomers thereof (modified product).
  • modified products include triethylene glycol diacrylate, polyethylene glycol diacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified pentaerythritol tetraacrylate, ethylene oxide modified bisphenol A di (meth) acrylate, ethylene Ethylene oxide modified (meth) acrylate monomers such as oxide modified nonylphenol (meth) acrylate; tripropylene glycol diacrylate, polypropylene glycol diacrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified pentaerythritol tetraacrylate, propylene Oxide-modified glycerin tri (meth) ac Propylene oxide modified (meth) acryl
  • the “compound having a (meth) acryloyl group” may further be a compound obtained by (meth) acrylate-converting various oligomers (hereinafter also referred to as “modified (meth) acrylate-based compound”).
  • modified (meth) acrylate compounds include polybutadiene (meth) acrylate compounds, polyisoprene (meth) acrylate compounds, epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, silicone ( A meth) acrylate compound, a polyester (meth) acrylate compound, a linear (meth) acrylic compound, and the like are included.
  • epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, and silicone (meth) acrylate compounds can be preferably used.
  • an epoxy (meth) acrylate compound, a urethane (meth) acrylate compound, or a silicone (meth) acrylate compound is included in the resin composition, the strength of the three-dimensional structure to be obtained is likely to increase.
  • the functional group-containing filler described later bonds not only to the thermopolymerizable compound but also to the photopolymerizable compound.
  • the cured product of the thermopolymerizable compound and the cured product of the photopolymerizable compound are bonded via the filler, and a three-dimensional modeled product having higher strength is obtained.
  • the epoxy (meth) acrylate compound may be a compound containing at least one epoxy group and one (meth) acrylate group in one molecule.
  • examples thereof include bisphenol A type epoxy (meth) acrylate and bisphenol.
  • Novolak type epoxies such as F type epoxy (meth) acrylate, bisphenyl type epoxy (meth) acrylate, triphenolmethane type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate, etc. (Meth) acrylate and the like are included.
  • a urethane (meth) acrylate compound is obtained by reacting an aliphatic polyisocyanate compound having two isocyanate groups or an aromatic polyisocyanate compound having two isocyanate groups with a (meth) acrylic acid derivative having a hydroxyl group. And a compound having a urethane bond and a (meth) acryloyl group.
  • Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4 , 4'-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (Isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantri Isocyanate and the like.
  • MDI isophorone
  • Examples of the isocyanate compound that is a raw material for the urethane (meth) acrylate compound include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and the like. Also included are chain-extended isocyanate compounds obtained by reaction of polyols with excess isocyanate compounds.
  • examples of the (meth) acrylic acid derivative having a hydroxyl group as a raw material for the urethane (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy Hydroxyalkyl (meth) acrylates such as butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, Mono (meth) acrylates of dihydric alcohols such as polyethylene glycol; mono (meth) acrylates and di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin; It includes epoxy (meth) acrylate of rates.
  • the urethane (meth) acrylate compound having the above structure may be commercially available, and examples thereof include M-1100, M-1200, M-1210, and M-1600 (all manufactured by Toagosei Co., Ltd.). ), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 (all manufactured by Daicel-Orunekusu Co., Ltd.) Art resin UN-330, Art Resin SH-500B, Art Resin UN-12 0TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9
  • the urethane (meth) acrylate compound may be a blocked isocyanate obtained by blocking the isocyanate group of isocyanate or polyisocyanate with a blocking agent having a (meth) acrylate group.
  • the isocyanate used for obtaining the blocked isocyanate may be the above-mentioned “isocyanate compound”, and the polyisocyanate may be a polymer of the “isocyanate compound”. These compounds and polyols or polyamines may be used. The compound etc. which made this react may be sufficient.
  • the polyol include conventionally known polyether polyols, polyester polyols, polymer polyols, vegetable oil polyols, and flame retardant polyols such as phosphorus-containing polyols and halogen-containing polyols. One of these polyols may be contained in the blocked isocyanate, or two or more thereof may be contained.
  • polyether polyol to be reacted with isocyanate and the like examples include compounds having at least two active hydrogen groups (specifically, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc.)
  • a compound prepared by an addition reaction of an alkylene oxide specifically, ethylene oxide, propylene oxide, etc.
  • an amine such as ethylenediamine
  • an alkanolamine such as ethanolamine or diethanolamine
  • polyester polyol examples include a condensation reaction product of a polyvalent carboxylic acid such as adipic acid or phthalic acid and a polyhydric alcohol such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol, or nylon.
  • a polyvalent carboxylic acid such as adipic acid or phthalic acid
  • a polyhydric alcohol such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol, or nylon.
  • polymer polyol examples include a polymer polyol obtained by reacting the polyether polyol with an ethylenically unsaturated monomer (for example, butadiene, acrylonitrile, styrene, etc.) in the presence of a radical polymerization catalyst.
  • the polymer polyol preferably has a molecular weight of about 5000 to 12000.
  • Examples of vegetable oil polyols include hydroxyl group-containing vegetable oils such as castor oil and palm oil.
  • a castor oil derivative polyol obtained using castor oil or hydrogenated castor oil as a raw material can also be suitably used.
  • the castor oil derivative polyol includes castor oil polyester obtained by reaction of castor oil, polyvalent carboxylic acid and short chain diol, and an alkylene oxide adduct of castor oil and castor oil polyester.
  • flame retardant polyols examples include phosphorus-containing polyols obtained by adding alkylene oxide to phosphoric acid compounds; halogen-containing polyols obtained by ring-opening polymerization of epichlorohydrin and trichlorobutylene oxide; alkylenes for active hydrogen compounds having aromatic rings An aromatic ether polyol obtained by adding an oxide; an aromatic ester polyol obtained by a condensation reaction of a polyvalent carboxylic acid having an aromatic ring and a polyhydric alcohol;
  • the hydroxyl value of the polyol to be reacted with isocyanate or the like is preferably 5 to 300 mgKOH / g, and more preferably 10 to 250 mgKOH / g.
  • the hydroxyl value can be measured by the method defined in JIS-K0070.
  • polyamines to be reacted with isocyanates examples include ethylenediamine, diethylenetriamine, triethylenetetraamine, hexamethylenepentamine, bisaminopropylpiperazine, tris (2-aminoethyl) amine, isophoronediamine, polyoxyalkylenepolyamine, diethanolamine. , Triethanolamine and the like.
  • the blocking agent for blocking the isocyanate group of the polyisocyanate may be any one that has a (meth) acryloyl group, reacts with the isocyanate group, and can be eliminated by heating.
  • blocking agents include t-butylaminoethyl methacrylate (TBAEMA), t-pentylaminoethyl methacrylate (TPAEMA), t-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TPAEMA). , T-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TBAPMA) and the like.
  • the blocking reaction of polyisocyanate can be generally carried out at ⁇ 20 to 150 ° C., preferably 0 to 100 ° C. If it is 150 ° C. or lower, side reactions can be prevented, while if it is ⁇ 20 ° C. or higher, the reaction rate can be in an appropriate range.
  • the blocking reaction between the polyisocyanate compound and the blocking agent can be performed regardless of the presence or absence of a solvent. When using a solvent, it is preferable to use a solvent inert to the isocyanate group.
  • a reaction catalyst can be used. Specific examples of the reaction catalyst include organometallic salts such as tin, zinc and lead, metal alcoholates, and tertiary amines.
  • the blocked isocyanate prepared as described above is used as a radical polymerizable compound, first, the acryloyl group portion is polymerized by irradiation with active energy. Thereafter, by removing the blocking agent by heating, the produced isocyanate compound can be newly polymerized with polyol, polyamine, or the like, and a three-dimensional structure including polyurethane, polyurea, or a mixture thereof can be obtained.
  • the silicone (meth) acrylate compound can be a compound in which (meth) acrylic acid is added to the terminal and / or side chain of the silicone having a polysiloxane bond in the main chain.
  • the silicone used as a raw material for the silicone (meth) acrylate compound is an organopolysiloxane obtained by polymerizing a known monofunctional, bifunctional, trifunctional, or tetrafunctional silane compound (for example, alkoxysilane) in any combination. Can do.
  • silicone acrylate compound examples include a commercially available TEGORAD 2500 (trade name: manufactured by Tego Chemie Service GmbH) and an —OH group such as X-22-4015 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.).
  • An organically modified silicone and acrylic acid esterified under an acid catalyst; an organically modified silane compound such as epoxy silane such as KBM402 and KBM403 (both trade names: manufactured by Shin-Etsu Chemical Co., Ltd.) and acrylic acid are reacted. Etc. are included.
  • the type of the cationically polymerizable compound which is another example of the photopolymerizable compound, is not particularly limited as long as it has a group that can be cationically polymerized by irradiation with active energy in the presence of an acid catalyst.
  • examples thereof include a cyclic hetero compound, and a compound having a cyclic ether group is preferable from the viewpoint of reactivity and the like.
  • cationic polymerizable compound examples include oxirane compounds such as oxirane, methyl oxirane, phenyl oxirane, and 1,2-diphenyl oxirane, or a hydrogen atom of an oxirane ring such as glycidyl ether, glycidyl ester, and glycidyl amine.
  • oxirane compounds such as oxirane, methyl oxirane, phenyl oxirane, and 1,2-diphenyl oxirane
  • a hydrogen atom of an oxirane ring such as glycidyl ether, glycidyl ester, and glycidyl amine.
  • epoxy group-containing compounds substituted with a methine linking group 2- (cyclohexylmethyl) oxirane, 2-ethoxy-3- (cyclohexylmethyl) oxirane, [(cyclohexyloxy) methyl] oxirane, 1,4-bis ( Epoxy group-containing compounds having a cycloalkane ring, such as oxiranylmethoxymethyl) cyclohexane, 7-oxabicyclo [4.1.0] heptane, 3-methyl-7-oxabicyclo [4.1.0] heptane, 7-Oxabicyclo [4.1 0] heptan-3-ylmethanol, 7-oxabicyclo [4.1.0] heptane-3-methoxymethyl and the like alicyclic epoxy group-containing compounds having no aromatic ring; 3-phenyl-7-oxa Bicyclo [4.1.0] heptane-3-carboxylate, 4-ethylphenyl 7-oxabicyclo
  • the total amount of the photopolymerizable compound contained in the resin composition is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, and more preferably 40 to 60% by mass with respect to the total mass of the resin composition. % Is more preferable. When the amount of the photopolymerizable compound is within the above range, the curability of the primary cured product described later is improved.
  • thermopolymerizable compound contained in the resin composition may be any compound that can be polymerized and cured by heating. Usually, the thermopolymerizable compound is used in combination with a curing agent described later.
  • thermally polymerizable compounds examples include cyanate ester compounds, urethane resins or precursors thereof, epoxy resins or precursors thereof, silicone resins, unsaturated polyester resins, and phenol resins.
  • Examples of the urethane resin that is a thermopolymerizable compound or a precursor thereof include a known urethane resin having one or more urethane bonds in the molecule, or a precursor thereof.
  • examples of the urethane resin include a polyester urethane resin, a polyether urethane resin, a polycarbonate urethane resin, and the like.
  • examples of the precursor of the urethane resin include polyisocyanate, polyol, polyether polyol, polyester polyol, polymer polyol, and the like.
  • examples of the epoxy resin that is a thermally polymerizable compound or a precursor thereof include a known epoxy resin having one or more epoxy groups in the molecule or a precursor thereof.
  • examples of epoxy resins include biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, stilbene type epoxy resins, hydroquinone type epoxy resins and the like; cresol novolak type epoxy resins, phenol novolak type epoxy resins Resin, novolak type epoxy resin such as naphthol novolak type epoxy resin; phenol aralkyl type epoxy resin such as phenylene skeleton containing phenol aralkyl type epoxy resin, biphenylene skeleton containing phenol aralkyl type epoxy resin, phenylene skeleton containing naphthol aralkyl type epoxy resin; Methane type epoxy resin, alkyl-modified triphenol methane type epoxy resin, glycidylamine, tetrafunctional naphthalene type epoxy resin
  • modified phenolic epoxy resin such as dicyclopentadiene modified phenolic epoxy resin, terpene modified phenolic epoxy resin, silicone modified epoxy resin; heterocyclic ring containing epoxy resin such as triazine nucleus-containing epoxy resin; naphthylene ether type Epoxy and the like are included.
  • the silicone resin that is a thermopolymerizable compound may be any resin having an organopolysiloxane structure, and examples thereof include the following addition-curable silicone resins.
  • a typical addition-curable liquid silicone resin contains a silicone containing a vinylsilyl group, a silicone containing a hydrosilyl group, and an addition reaction catalyst as essential components. A cross-linked structure is formed and cured by an addition reaction occurring between them.
  • silicones having vinyl silyl groups include polydimethylsiloxane having vinyl groups substituted at each terminal silicon atom, dimethylsiloxane-diphenylsiloxane copolymer having vinyl groups substituted at each terminal silicon atom, and vinyl groups at each terminal silicon atom.
  • silicones having vinyl silyl groups include polydimethylsiloxane having vinyl groups substituted at each terminal silicon atom, dimethylsiloxane-diphenylsiloxane copolymer having vinyl groups substituted at each terminal silicon atom, and vinyl groups at each terminal silicon atom.
  • silicones having vinyl silyl groups include polydimethylsiloxane having vinyl groups substituted at each terminal silicon atom, dimethylsiloxane-diphenylsiloxane copolymer having vinyl groups substituted at each terminal silicon atom, and vinyl groups at each terminal silicon atom.
  • silicones containing hydrosilyl groups include methylhydrosiloxane-dimethylsiloxane copolymers having trimethylsilyl groups at each end. Further, polydimethylsiloxane having a hydrogen atom bonded to each end can be used in combination.
  • addition reaction catalyst examples include platinum black, secondary platinum chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chloroplatinic acid and olefins, a platinum catalyst such as platinum bisacetoacetate, Platinum group metal catalysts such as palladium catalysts and rhodium catalysts are mainly used.
  • examples of the unsaturated polyester resin that is a thermopolymerizable compound include trade names PC-740, PC-184-C, PC-350-C (all manufactured by DIC Materials) and the like.
  • thermopolymerizable compound examples include trade names MEH-8000H, MEH-8005 (both manufactured by Meiwa Kasei Co., Ltd.) and the like.
  • thermopolymerizable compound may be an epoxy resin or a precursor thereof, or a urethane resin or a precursor thereof from the viewpoint of easy chemical bonding with a functional group-containing filler described later and easy handling. preferable.
  • thermopolymerizable compound is preferably contained in an amount of 10 to 90% by mass, more preferably 30 to 70% by mass, and further preferably 40 to 60% by mass with respect to the total amount of the resin composition.
  • the heat-polymerizable compound is included in the range, the heat resistance and the like of the obtained three-dimensional structure are easily increased.
  • the functional group-containing filler only needs to have a functional group capable of binding to the above-described thermopolymerizable compound on the surface, and the resin composition may contain only one kind of filler. More than one species may be included.
  • the functional group-containing filler is a surface of a known organic filler or inorganic filler by a surface modifier having a “functional group capable of binding to a thermally polymerizable compound” and a “functional group capable of binding or adsorbing to a filler”. It is obtained by processing.
  • An example of the surface treatment method includes a method in which the following surface modifier and filler are dispersed in a solvent and the solution is stirred.
  • “Functional group capable of binding to thermopolymerizable compound” included in the surface modifier is a functional group that can be bonded to the functional group of the thermopolymerizable compound by ionic bond or covalent bond, or that can interact by intermolecular force. Any functional group may be used, and the functional group may be chemically bonded to a part of the functional group of the photopolymerizable compound.
  • “functional group that can be bonded to the thermally polymerizable compound” examples include amino group, imino group, epoxy group, glycidyl group, oxetanyl group, isocyanate group, cyanate group, vinyl group, styryl group, hydrosilyl group, mercapto group, A ureido group, a (meth) acryloyl group, a hydroxy group, a phenyl group and the like are included.
  • the “functional group that can be bonded to the thermopolymerizable compound” is appropriately selected according to the type of the functional group of the thermopolymerizable compound.
  • the functional group-containing filler preferably has an amino group or a thiol group on the surface.
  • a thermopolymerizable compound is an isocyanate ester type compound, it is preferable that a functional group containing filler has an amino group or a hydroxyl group on the surface.
  • the functional group-containing filler preferably has an isocyanate group, a hydroxy group, or an amino group on the surface. Furthermore, when the thermopolymerizable compound is a silicone resin, it is preferable that the functional group-containing filler has a phenyl group or a hydroxy group on the surface. Moreover, when a thermopolymerizable compound is unsaturated polyester resin, it is preferable that a functional group containing filler has a (meth) acryloyl group and a phenyl group on the surface. Furthermore, when the thermopolymerizable compound is a phenol resin, the functional group-containing filler preferably has an amino group and a hydroxy group on the surface.
  • examples of the “group that can be bonded to or adsorbed to the filler” included in the surface modifier include Si atom, Ti atom, Zr atom, carboxyl group, amino group, imino group, cyano group, azo group, An azido group, a thiol group, a sulfo group, a (meth) acryloyl group, an epoxy group, an isocyanate group and the like are included.
  • Si atoms, Ti atoms, and Zr atoms are preferable, and Si atoms are particularly preferable from the viewpoint of reactivity to the filler.
  • the surface modifier include a silane coupling agent, a titanium coupling agent, or a zirconium coupling agent, and among these, a silane coupling agent is particularly preferable.
  • silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyl Trimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N -2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propyl Amine,
  • examples of the silane coupling agent include not only a silane compound having a reactive functional group such as a vinyl group or an epoxy group, but also an amino group, an imino group, a glycidyl group, an oxetanyl group, an isocyanate.
  • a silane compound having a reactive functional group such as a group, a cyanate group, a styryl group, a hydrosilyl group, a mercapto group, a ureido group, a (meth) acryloyl group, a phenyl group or a hydroxy group, or a silazane is also included.
  • titanium coupling agent examples include phenyltrimethoxytitanium, 3-aminopropyltrimethoxytitanium, 3-aminopropyltriethoxytitanium, 3- (2-aminoethyl) -aminopropyltrimethoxytitanium, 3- (2-aminoethyl) -aminopropyltriethoxytitanium, 3- (2-aminoethyl) -aminopropylmethyldimethoxytitanium, 3-anilinopropyltrimethoxytitanium, 3-mercaptopropyltriethoxytitanium, 3-isocyanatopropyltri Examples include trialkoxytitanium diphenyldimethoxytitanium such as methoxytitanium, 3-glycidoxypropyltriethoxytitanium, and 3-ureidopropyltrimethoxytitanium.
  • zirconium-based coupling agent examples include tri-n-butoxy ethylacetoacetate zirconium, di-n-butoxy bis (ethylacetoacetate) zirconium, n-butoxy tris (ethylacetoacetate) zirconium, Tetrakis (n-propylacetoacetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, di-n-butoxy bis (acetylacetonate) zirconium and the like are included.
  • examples of fillers treated with the surface modifier include glass fillers made of soda-lime glass, silicate glass, borosilicate glass, aluminosilicate glass, quartz glass, etc .; alumina, zirconium oxide, titanium oxide, titanate Ceramic filler composed of lead zirconate, silicon carbide, silicon nitride, aluminum nitride, tin oxide, magnesium sulfate, etc .; simple metals such as iron, titanium, gold, silver, copper, tin, lead, bismuth, cobalt, antimony, cadmium, Or a metal filler made of these alloys, etc .; a carbon filler made of graphite, graphene, carbon nanotubes, etc .; an organic polymer fiber made of polyester, polyamide, polyaramid, polyparaphenylene benzobisoxazole, polysaccharides, etc .; potassium titanate whisker Whisker-like inorganic compounds composed of silicone carbide whisker, silicon nit
  • talc including the needle-shaped single crystal of the above ceramic filler
  • talc including the needle-shaped single crystal of the above ceramic filler
  • mica including the needle-shaped single crystal of the above ceramic filler
  • clay including the needle-shaped single crystal of the above ceramic filler
  • wollastonite including the needle-shaped single crystal of the above ceramic filler
  • hectorite including the needle-shaped single crystal of the above ceramic filler
  • saponite stevensite, hydride, montmorillonite, nontrite
  • bentonite Na-type tetralithic fluoric mica
  • Li-type Examples include tetrasilicic fluorine mica, swelling mica such as Na-type fluorine teniolite, Li-type fluorine teniolite, and clay mineral made of vermiculite.
  • fillers examples include polyolefin fillers made of polyethylene, polypropylene, etc .; FEP (tetrafluoroethylene-hexafluoropropylene copolymer), PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer), A fluororesin filler made of ETFE (tetrafluoroethylene-ethylene copolymer) or the like is also included.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • magnesium sulfate and organic polymer fibers are used from the viewpoint that the aspect ratio is high and the strength of the resulting three-dimensional molded article is likely to be increased, and that the dimensional change of the resulting three-dimensional molded article is likely to be reduced.
  • Nanofibers made of polysaccharides are particularly preferable. Examples of polysaccharides include cellulose, hemicellulose, lignocellulose, chitin and chitosan. Among these, cellulose and chitin are preferable from the viewpoint that the strength of the obtained three-dimensional model is further increased, and cellulose is more preferable from the viewpoint that availability and the strength of the three-dimensional model are easily increased.
  • a fibrous filler composed of cellulose ie, cellulose nanofiber (hereinafter also simply referred to as “nanocellulose”), is a plant-derived fiber or mechanical defibrillation of plant cell walls, biosynthesis by acetic acid bacteria, 2, Cellulose nanofibers mainly composed of fibrous nanofibrils obtained by oxidation with an N-oxyl compound such as 2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) or electrospinning may be used. .
  • Nanocellulose is cellulose mainly composed of nanofibrils crystallized in whisker-like (needle-like) obtained by mechanically defibrating plant-derived fibers or plant cell walls. It may be a nanocrystal or any other shape.
  • Nanocellulose should just have cellulose as a main component and may contain lignin, hemicellulose, etc. Nanocellulose containing lignin which is hydrophobic without performing delignification treatment is preferable because of its high affinity with photopolymerizable compounds and thermopolymerizable compounds.
  • the shape of the filler is not particularly limited, and may be, for example, fibrous (including whisker-like) or particulate, but is fibrous from the viewpoint of improving the strength of the three-dimensional model. Is preferred.
  • the average particle size is preferably 0.005 to 200 ⁇ m, more preferably 0.01 to 100 ⁇ m, and further preferably 0.1 to 50 ⁇ m.
  • the average particle size of the particulate filler is 0.1 ⁇ m or more, the strength of the three-dimensional structure is easily increased.
  • the average particle size is 50 ⁇ m or less, it becomes easy to form a three-dimensional modeled object with high definition.
  • the average particle diameter can be measured by analyzing an image obtained by imaging the resin composition with a transmission electron microscope (TEM).
  • the average fiber diameter is preferably 0.002 ⁇ m or more and 20 ⁇ m or less.
  • the average fiber diameter is 0.002 ⁇ m or more, the strength of the three-dimensional structure is easily increased.
  • the filler does not excessively increase the viscosity of the resin composition, and the accuracy of the three-dimensional structure tends to be good.
  • the average fiber diameter of the filler is more preferably 0.005 ⁇ m or more and 10 ⁇ m or less, further preferably 0.01 ⁇ m or more and 8 ⁇ m or less, and particularly preferably 0.02 ⁇ m or more and 5 ⁇ m or less.
  • the average fiber length of the filler is preferably 0.2 ⁇ m or more and 200 ⁇ m or less. When the average fiber length is 0.2 ⁇ m or more, the strength of the three-dimensional structure is easily increased. When the average fiber length is 100 ⁇ m or less, the filler is less likely to settle due to the entanglement between the fillers.
  • the average fiber length of the filler is more preferably from 0.5 ⁇ m to 100 ⁇ m, further preferably from 1 ⁇ m to 60 ⁇ m, and particularly preferably from 1 ⁇ m to 40 ⁇ m.
  • the aspect ratio of the filler is preferably 10 or more and 10,000 or less. If the aspect ratio is 10 or more, the strength of the three-dimensional structure tends to be higher. When the aspect ratio is 10,000 or less, the filler is hardly precipitated due to the entanglement between the fillers.
  • the aspect ratio of the filler is more preferably 12 or more and 8000 or less, further preferably 15 or more and 2000 or less, and particularly preferably 18 or more and 800 or less.
  • the average fiber diameter, average fiber length, and aspect ratio of the filler can be measured by analyzing an image obtained by imaging the resin composition with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the amount of the functional group-containing filler contained in the resin composition is preferably 1 to 70% by mass, more preferably 5 to 60% by mass with respect to the total mass of the resin composition. Most preferred is ⁇ 40 mass%. When the amount of the functional group-containing filler is within the above range, a three-dimensional model with high strength is easily obtained.
  • Thermosetting agent and thermosetting accelerator The resin composition usually further includes a thermosetting agent and a thermosetting accelerator for curing the above-mentioned thermopolymerizable compound.
  • the kind of thermosetting agent or thermosetting accelerator is appropriately selected according to the kind of the above-mentioned thermopolymerizable compound.
  • thermosetting agents and accelerators include linear aliphatic diamines having 2 to 20 carbon atoms such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, metaphenylenediamine, paraphenylenediamine, and paraxylene.
  • Acid anhydrides including aromatic acid anhydrides; Polymercaptan compounds such as polysulfides, thioesters and thioethers; Isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; Organic acids such as carboxylic acid-containing polyester resins; Zinc naphthenates and naphthenic acids Organic metal salts such as cobalt, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), and zinc acetylacetonate are included.
  • the resin composition may contain only one kind of thermosetting agent or thermosetting accelerator, or may contain two or more kinds. The amount of the thermosetting agent and the thermosetting accelerator is appropriately selected according to the type and amount of the thermopolymerizable compound.
  • the amount of the thermosetting agent and the thermosetting accelerator is appropriately selected according to the amount of the above-mentioned thermopolymerizable compound, and is, for example, 30 to 100 parts by mass with respect to 100 parts by mass of the thermopolymerizable compound.
  • the amount is preferably 40 to 90 parts by mass, more preferably 50 to 80 parts by mass.
  • the resin composition usually contains a photopolymerization initiator for initiating the polymerization of the photopolymerizable compound.
  • the type of the photopolymerization initiator is appropriately selected according to the type of the photopolymerizable compound. For example, when the photopolymerizable compound is a radical polymerizable compound, a radical polymerization initiator is included. On the other hand, when the photopolymerizable compound is a cationic polymerizable compound, a cationic polymerization initiator such as a photoacid generator is included.
  • the radical polymerization initiator is not particularly limited as long as it is a compound capable of generating radicals by irradiation with active energy, and can be a known radical polymerization initiator.
  • radical polymerization initiators examples include 2-hydroxy-2-methyl-1-phenylpropan-1-one (manufactured by BASF, IRGACURE 1173 (“IRGACURE” is a registered trademark of the company), etc.), 2-hydroxy-1 - ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one (manufactured by BASF, IRGACURE 127 etc.), 1- [4- (2 -Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (BASF, IRGACURE 2959, etc.), 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF) (IRGACURE 651, etc.), benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-hy Roxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2
  • the radical polymerization initiator is preferably contained in an amount of 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total amount of the photopolymerizable compound (radical polymerizable compound). More preferably 5 to 3% by mass is contained. When the radical polymerization initiator is included in the range, the above-described photopolymerizable compound can be polymerized sufficiently efficiently.
  • the cationic polymerization initiator is not particularly limited as long as it is a compound capable of generating an acid by irradiation of active energy and polymerizing a photopolymerizable compound (cationic polymerizable compound).
  • An agent can be used.
  • the photoacid generator include sulfonium salt-based or iodonium salt-based onium salt-based photoacid generators.
  • anionic component in the onium salt photoacid generator examples include phosphate ions such as PF 6 ⁇ and PF 4 (CF 2 CF 3 ) 2 — , antimonate ions such as SbF 6 — , trifluoromethanesulfonate, and the like. Fluoroalkylsulfonic acid ions, perfluoroalkylsulfonamides, perfluoroalkylsulfone methides and the like.
  • the cation component in the onium salt photoacid generator for example, sulfonium such as aromatic sulfonium, iodonium such as aromatic iodonium, phosphonium such as aromatic phosphonium, sulfoxonium such as aromatic sulfoxonium, etc. Is included.
  • onium salt photoacid generators examples include sulfonium salts such as aromatic sulfonium salts, iodonium salts such as aromatic iodonium salts, phosphonium salts such as aromatic phosphonium salts, having an anion component as a counter anion, Examples include sulfoxonium salts such as aromatic sulfoxonium salts.
  • the photoacid generator is preferably contained in an amount of 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total amount of the photopolymerizable compound (cationic polymerizable compound). More preferably 5 to 3% by mass is contained. When the photoacid generator is included in this range, the above-mentioned photopolymerizable compound (cationic polymerizable compound) can be polymerized sufficiently efficiently.
  • a photosensitizer In the resin composition, a photosensitizer, a polymerization inhibitor, and the like, as long as it enables formation of a three-dimensional structure by irradiation of active energy and does not cause unevenness in strength in the resulting three-dimensional structure.
  • Optional additives such as antioxidants, coloring materials such as dyes and pigments, antifoaming agents, and surfactants may be further included.
  • the resin composition of the present invention has a viscosity at 25 ° C. of 0.2 to 100 Pa ⁇ s as measured using a rotary viscometer in accordance with JIS K-7117-1. It is preferably 1 to 10 Pa ⁇ s.
  • Viscosity of the resin composition is within the above range, moderate fluidity can be obtained in the method for producing a three-dimensional structure to be described later. As a result, the modeling speed can be improved, and the functional group-containing filler or the like is less likely to settle in the resin composition, and as a result, the strength of the three-dimensional model is easily increased.
  • the resin composition is composed of the photopolymerizable compound, the thermopolymerizable compound, the functional group-containing filler, the photopolymerization initiator, the thermosetting agent and the thermosetting accelerator, and optionally added as necessary. It can be prepared by mixing agents in any order.
  • a known apparatus can be used.
  • Ultra Turrax manufactured by IKA Japan
  • TK homomixer manufactured by Primix
  • TK pipeline homomixer manufactured by Primics
  • TK Philmix manufactured by Primix
  • Claremix manufactured by M Technique
  • Medialess stirrers such as Claire SS5 (manufactured by M Technique), Cavitron (manufactured by Eurotech), Fine Flow Mill (manufactured by Taiheiyo Kiko), Viscomill (manufactured by IMEX), Apex Mill (manufactured by Kotobuki Industries), Star mill (Ashizawa, manufactured by Finetech), DCP Super Flow (manufactured by Nihon Eirich), MP Mill (manufactured by Inoue Mfg.), Spike mill (manufactured by Inoue Mfg.), Mighty mill (manufactured by Inou
  • revolving mixers such as Awatori Nerita (Shinky) and Kaku Hunter (Photochemical)
  • planetary mixers such as Hibismix (Primics) and Hibis Disper (Primics)
  • Nanouptor An ultrasonic dispersion apparatus such as (manufactured by Sonic Bio) can also be suitably used.
  • the liquid resin composition described above includes a step of selectively irradiating active energy to form a primary cured product including a cured product of the photopolymerizable compound. It can be used for manufacturing methods.
  • the resin composition is selectively irradiated with active energy, and the above-mentioned photopolymerizable compound is cured into a desired shape to form a primary cured product.
  • An optical modeling process is performed.
  • the thermosetting process which thermally polymerizes the thermopolymerizable compound contained in the said primary hardened
  • FIG. 1 is a schematic diagram illustrating an example of an apparatus (manufacturing apparatus for a three-dimensional structure) for producing a primary cured product by an additive manufacturing method.
  • the manufacturing apparatus 500 supports the modeling tank 510 that can store the liquid resin composition 550, the modeling stage 520 that can reciprocate in the vertical direction (depth direction) inside the modeling tank 510, and the modeling stage 520.
  • a base 521, an active energy irradiation source 530, and a galvano mirror 531 that guides the active energy into the modeling tank 510 are included.
  • the modeling tank 510 only needs to have a size that can accommodate the primary cured product to be manufactured.
  • a well-known thing can be used for the light source 530 for irradiating active energy.
  • examples of the light source 530 for irradiating ultraviolet rays include a semiconductor laser, a metal halide lamp, a mercury arc lamp, a xenon arc lamp, a fluorescent lamp, a carbon arc lamp, a tungsten-halogen copying lamp, and sunlight.
  • the resin composition 550 is filled in the modeling tank 510.
  • the modeling stage 520 is disposed below the liquid surface of the resin composition 550 by the thickness of the modeled object layer (first modeled object layer) to be produced.
  • the active energy emitted from the irradiation source 530 is guided and scanned by the galvano mirror 531 or the like, and irradiated to the resin composition 550 on the modeling stage 520.
  • the first shaped article layer is formed in a desired shape by selectively irradiating the active energy only to the region where the first shaped article layer is formed.
  • the modeling stage 520 is lowered (moved in the depth direction) by the thickness of one layer (the thickness of the second modeling object layer to be produced next), and the first modeling object layer is placed in the resin composition 550. Let it sink. Thereby, the resin composition is supplied onto the first modeled object layer.
  • the active energy emitted from the irradiation source 530 is guided by the galvanometer mirror 531 or the like, and irradiated to the resin composition 550 positioned above the first modeled object layer. Also at this time, active energy is selectively irradiated only to the area
  • the primary cured product is formed into a desired shape by repeatedly lowering the modeling stage 520 (supplying the resin composition) and irradiating with active energy.
  • the shape of the primary cured material produced by the said method be the same as the shape of the three-dimensional molded item finally produced.
  • the obtained primary cured product may be further irradiated with active energy. Irradiation of active energy may be performed only in a desired range or may be performed on the entire primary cured product. When irradiation of such active energy is performed, the polymerizability increases to the inside of the primary cured product, and warpage of the resulting three-dimensional model is easily suppressed.
  • the primary cured product is heated by a known method to polymerize the thermopolymerizable compound contained in the primary cured product, or to react the functional group-containing filler with the functional group of the thermopolymerizable compound.
  • the primary cured product is preferably heated at a temperature at which the primary cured product is not deformed.
  • the temperature is preferably lower than the glass transition temperature (Tg) of the cured product of the photopolymerizable compound.
  • FIG. 2 is a schematic diagram illustrating an example of an apparatus (manufacturing apparatus for a three-dimensional model) for producing a primary cured product by a continuous modeling method.
  • the manufacturing apparatus 600 irradiates a modeling tank 610 capable of storing a liquid resin composition, a stage 620 capable of reciprocating in the vertical direction (depth direction), and active energy.
  • Light source 660 and the like The modeling tank 610 has a window portion 615 that does not allow the resin composition to pass therethrough but allows the active energy and oxygen to pass therethrough.
  • the modeling tank 610 has a width
  • the material of the window portion 615 is not particularly limited as long as it does not impair the purpose and curing of the present embodiment.
  • a known light source 660 for irradiating active energy can be used, and can be the same as the light source used in the additive manufacturing method. Further, by using an SLM projection optical system having a spatial light modulator (SLM) such as a liquid crystal panel or a digital mirror device (DMD) as the light source 660, even if the active energy is surface-irradiated to a desired region, Good.
  • SLM spatial light modulator
  • DMD digital mirror device
  • the molding tank 610 is filled with the above-described resin composition. And oxygen is introduce
  • FIG. The method for introducing oxygen is not particularly limited, and for example, the outside of the modeling tank 610 may be an atmosphere having a high oxygen concentration and a pressure may be applied to the atmosphere.
  • the oxygen concentration increases, and the buffer region 642 where the photopolymerizable compound does not cure even when irradiated with active energy. Is formed.
  • the oxygen concentration is sufficiently lower than that of the buffer region 642, and the photopolymerizable compound can be cured by the irradiation with active energy.
  • a step of selectively irradiating active energy from the buffer region side 642 to form a cured product of the photopolymerizable compound in the curing region 644 is performed.
  • a stage 620 serving as a base point for producing the primary cured product is disposed in the vicinity of the interface between the curing region 644 and the buffer region 642.
  • active energy is selectively irradiated to the bottom surface side of the stage 620 from the light source 660 disposed on the buffer region 642 side.
  • the photopolymerizable compound in the vicinity of the bottom surface of the stage 620 (curing region 644) is cured, and the uppermost portion of the primary cured product is formed.
  • the stage 620 is moved up (moved away from the buffer area 642). Thereby, the uncured resin composition 650 is newly supplied from the cured product 651 to the curing region 644 on the bottom side of the modeling tank 610. Then, while continuously or intermittently raising the stage 620 and the cured product 651, the active energy is irradiated from the light source 660 continuously or intermittently and selectively (a region to be cured). As a result, a cured product is continuously formed from the bottom surface of the stage 620 to the bottom side of the modeling tank 610, and a primary modeled object having no seam and high strength is manufactured. In this embodiment as well, the shape of the primary cured product is the same as the shape of the three-dimensional model to be finally produced.
  • the obtained primary cured product may be further irradiated with active energy as necessary. Irradiation of active energy may be performed only in a desired range or may be performed on the entire primary cured product. As described above, when such active energy irradiation is performed, the polymerizability of the photopolymerizable compound inside the primary cured product is increased, and warpage of the resulting three-dimensional model is easily suppressed.
  • the primary cured product is heated by a known method to polymerize the thermopolymerizable compound contained in the primary cured product, or to react the functional group-containing filler with the functional group of the thermopolymerizable compound.
  • the primary cured product is preferably heated at a temperature at which the primary cured product is not deformed.
  • the temperature is preferably lower than the glass transition temperature (Tg) of the cured product of the photopolymerizable compound.
  • Resin Composition [Comparative Example 1] 360 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600; bisphenol A type epoxy acrylate), and photopolymerization initiator (BASF, IRGACURE TPO; diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide) 5 0.0 g was mixed to prepare a resin composition.
  • photopolymerizable resin Diicel Ornex, EBECRYL 600; bisphenol A type epoxy acrylate
  • BASF IRGACURE TPO; diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide
  • a photopolymerizable resin (Daicel Ornex Corporation, EBECRYL 600), the above-mentioned 3-acryloxypropyltrimethoxysilane-modified glass beads 40 g, and a photopolymerization initiator (BASF, IRGACURE TPO) 5.0 g were added.
  • a resin composition was prepared.
  • thermopolymerizable resin Mitsubishi Chemical Corporation, jER806; bisphenol F type epoxy resin
  • curing accelerator Mitsubishi Chemical Corporation, jER Cure 113; modified alicyclic amine
  • thermopolymerizable resin manufactured by Mitsubishi Chemical Corporation, jER806
  • 120 g of a curing accelerator manufactured by Mitsubishi Chemical Corporation, jER Cure 113
  • 40 g of glass beads were mixed to prepare a resin composition.
  • thermopolymerizable resin Mitsubishi Chemical Corporation, jER806
  • 120 g of a curing accelerator Mitsubishi Chemical Corporation, jER Cure 113
  • 40 g of the above 3-aminopropyltrimethoxysilane-modified glass beads were mixed to obtain a resin composition.
  • a product was prepared.
  • Example 1 180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( A resin composition was prepared by mixing 60 g of jER Cure 113) manufactured by Mitsubishi Chemical Corporation and 40 g of 3-aminopropyltrimethoxysilane-modified glass beads prepared in the same manner as in Comparative Example 6.
  • Example 2 60 g of glass beads, 0.6 g of surface modification agent 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone, KBM-503), and 1.0 g of hydrochloric acid (concentration 35 mass%) were added to 40 g of an aqueous ethanol solution. And stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray, and dried at 120 ° C. for 90 minutes. After drying, it was crushed with a ball mill to obtain 3-methacryloxypropyltrimethoxysilane-modified glass beads.
  • Example 3 180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 180 g of thermopolymerizable resin (Maywa Kasei, MEH-8000H; phenol resin), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO) Then, 40 g of 3-aminopropyltrimethoxysilane-modified glass beads produced by the same method as in Comparative Example 6 were mixed to prepare a resin composition.
  • photopolymerizable resin Daicel Ornex, EBECRYL 600
  • thermopolymerizable resin Maywa Kasei, MEH-8000H; phenol resin
  • BASF IRGACURE TPO
  • Example 4 180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 60 g of thermopolymerizable resin (Sanyu REC, UF-110-1A), 120 g of thermopolymerizable resin (Sanyu REC, UF-110-1B), A resin composition was prepared by mixing 2.5 g of a photopolymerization initiator (manufactured by BASF, IRGACURE TPO) and 40 g of 3-aminopropyltrimethoxysilane-modified glass beads prepared in the same manner as in Comparative Example 6.
  • a photopolymerization initiator manufactured by BASF, IRGACURE TPO
  • Example 9 While stirring 1000 g of a cellulose nanofiber 2 mass% dispersion (Sugino Machine, BiNFi-s) with a stirrer, 0.3 g of 3-aminopropyltrimethoxysilane (Shin-Etsu Silicone, KBM-903) was added. Thereafter, stirring was continued for 20 minutes, and the solvent was replaced with ethanol. Thereafter, the solvent was further replaced with acetone to produce amino group-modified cellulose nanofibers.
  • a cellulose nanofiber 2 mass% dispersion Sudno Machine, BiNFi-s
  • KBM-903 3-aminopropyltrimethoxysilane
  • Example 10 While stirring 1000 g of cellulose nanofiber 2 mass% dispersion (Sugino Machine, BiNFi-s) with a stirrer, 0.3 g of 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone, KBM-503) was added. . Thereafter, stirring was continued for 20 minutes, and the solvent was replaced with ethanol. Thereafter, the solvent was further replaced with acetone to prepare methacrylic group-modified cellulose nanofibers.
  • Example 11 120 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Maywa Kasei, MEH-8000H; phenol resin), 1.7 g of photopolymerization initiator (BASF, IRGACURE TPO) Then, 300 g of an amino group-modified cellulose nanofiber 5 mass% acetone dispersion prepared in the same manner as in Example 9 was mixed to prepare a resin composition. The obtained resin composition was stirred with a stirrer in an environment of 50 ° C. for 3 hours to volatilize acetone sufficiently.
  • Example 12 120 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 40 g of thermopolymerizable resin (Sanyu REC, UF-110-1A), 80 g of thermopolymerizable resin (Sanyu REC, UF-110-1B), A resin composition was prepared by mixing 1.7 g of a photopolymerization initiator (IRGACURE TPO) and 300 g of an amino group-modified cellulose nanofiber 5 mass% acetone dispersion. The obtained resin composition was stirred with a stirrer in an environment of 50 ° C. for 3 hours to volatilize acetone sufficiently.
  • IRGACURE TPO photopolymerization initiator
  • Example 13 60 g of magnesium sulfate, 0.6 g of 3-aminopropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-903) as a surface modifier and 1.0 g of hydrochloric acid (concentration 35 mass%) were added to 40 g of an aqueous ethanol solution. And stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray, and dried at 120 ° C. for 90 minutes. After drying, it was pulverized with a ball mill to produce 3-aminopropyltrimethoxysilane-modified magnesium sulfate.
  • thermopolymerizable resin 180 g
  • thermopolymerizable resin 120 g
  • thermopolymerizable resin 2 g
  • photopolymerization initiator BASF, IRGACURE TPO
  • curing accelerator A resin composition was prepared by mixing 60 g of jER Cure 113) manufactured by Mitsubishi Chemical Corporation and 40 g of the above 3-aminopropyltrimethoxysilane-modified magnesium sulfate.
  • Example 14 Add 60 g of magnesium sulfate, 0.6 g of 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-503) and 1.0 g of hydrochloric acid (concentration 35% by mass) to 40 g of an aqueous ethanol solution. And stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray, and dried at 120 ° C. for 90 minutes. After drying, it was pulverized with a ball mill to produce 3-methacryloxypropyltrimethoxysilane-modified magnesium sulfate.
  • Example 15 180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 180 g of thermopolymerizable resin (Maywa Kasei, MEH-8000H; phenol resin), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO) And 40 g of 3-aminopropyltrimethoxysilane-modified magnesium sulfate prepared in the same manner as in Example 13 was mixed to prepare a resin composition.
  • photopolymerizable resin Daicel Ornex, EBECRYL 600
  • thermopolymerizable resin Maywa Kasei, MEH-8000H; phenol resin
  • BASF IRGACURE TPO
  • 40 g of 3-aminopropyltrimethoxysilane-modified magnesium sulfate prepared in the same manner as in Example 13 was mixed to prepare a resin composition.
  • Example 16 180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 60 g of thermopolymerizable resin (Sanyu REC, UF-110-1A), 120 g of thermopolymerizable resin (Sanyu REC, UF-110-1B), A resin composition was prepared by mixing 2.5 g of a photopolymerization initiator (manufactured by BASF, IRGACURE TPO) and 40 g of 3-aminopropyltrimethoxysilane-modified magnesium sulfate prepared in the same manner as in Example 13.
  • a photopolymerization initiator manufactured by BASF, IRGACURE TPO
  • a buffer region 642 containing the resin composition 650 and oxygen was formed on the bottom side of the modeling tank 610, and a curing region 644 having a lower oxygen concentration than the buffer region was formed above the buffer region 642.
  • the stage 620 was raised while irradiating light in a planar shape from an ultraviolet ray source: LED projector (DLP (VISITECH LE4910H UV-388) manufactured by Texas Instruments).
  • LED projector LED projector
  • the irradiation intensity of ultraviolet rays was 5 mW / cm 2 .
  • the stage pulling speed was 50 mm / hr.
  • a primary cured product of JIS K7161-2 (ISO 527-2) type 1A test piece shape was produced.
  • the longitudinal direction of the tensile test piece was set to the modeling direction (the pulling direction of the stage 620).
  • Tensile strength A tensile test was performed in accordance with JIS K7161. Specifically, the tensile strength was specified by a tensile tester, Tensilon RTC-1250, manufactured by A & D, and evaluated as follows. ⁇ : When the tensile strength is 70 MPa or more ⁇ : When the tensile strength is 50 MPa or more and less than 70 MPa ⁇ : When the tensile strength is 30 MPa or more and less than 50 MPa ⁇ : When the tensile strength is 10 MPa or more and less than 30 MPa ⁇ : Tensile strength is less than 10 MPa in the case of
  • When the tensile strength after the light resistance test is 70 MPa or more ⁇ : When the tensile strength after the light resistance test is 50 MPa or more and less than 70 MPa ⁇ : When the tensile strength after the light resistance test is 30 MPa or more and less than 50 MPa ⁇ : Light resistance When tensile strength after property test is 10 MPa or more and less than 30 MPa ⁇ : When tensile strength after light resistance test is less than 10 MPa
  • B and H are each less than 0.1 mm O: When either B or H is less than 0.1 mm and the other is 0.1 mm or more and less than 0.2 mm ⁇ : B When both of H and H are 0.1 mm or more and less than 0.2 mm ⁇ : When either B or H is 0.2 mm or more, or when a model is not obtained
  • the resin composition contains a photopolymerizable compound, a thermopolymerizable compound, and a filler having a functional group capable of reacting with the thermopolymerizable compound, curability, tensile strength, durability, and dimensional accuracy.
  • the tensile strength was increased in the case where the three-dimensional object was prepared by the CLIP method (Examples 5 to 16) compared to the case where the three-dimensional object was prepared by the SLA method (Examples 1 to 4). According to the CLIP method, it is surmised that the three-dimensional model without a joint is produced, so that the tensile strength is increased.
  • the filler is cellulose nanofiber or magnesium sulfate
  • the filler when the filler is present in parallel to the tensile direction due to the high aspect ratio, the effect of reinforcing the molded product is produced, and the tensile strength is likely to increase (implementation). Examples 9-16).
  • the resin composition of the present invention it is possible to provide a three-dimensionally shaped object having high dimensional accuracy and durability and high mechanical strength. Therefore, the present invention is expected to broaden the application range of the three-dimensional structure using the resin composition and contribute to the progress and spread of the technology in the same field.

Abstract

The present invention addresses the problem of providing: a three-dimensionally shaped article which has high mechanical strength, and excellent durability and dimensional accuracy; a method for manufacturing the same; and a resin composition which is used for same. To solve the problem, this resin composition is used in a method for manufacturing a three-dimensionally shaped article comprising a cured product of the resin composition by selectively irradiating a liquid resin composition with active energy. Said resin composition includes a photopolymerizable compound, a thermopolymerizable compound, and a functional group-containing filler having a functional group capable of binding to the thermally polymerizable compound at the surface.

Description

樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物Resin composition, manufacturing method of three-dimensional model using the same, and three-dimensional model
 本発明は、樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物に関する。 The present invention relates to a resin composition, a method for producing a three-dimensional structure using the resin composition, and a three-dimensional structure.
 近年、複雑な形状の立体造形物を比較的容易に製造できる様々な方法が開発されている。立体造形物を製造する方法の一つとして、活性エネルギーによって硬化する樹脂組成物に活性エネルギーを選択的に照射して、所望の形状に樹脂組成物を硬化させる方法が知られている(例えば、特許文献1)。そして近年、このような方法で作製される立体造形物を、各種最終製品とすることが試みられている。 In recent years, various methods have been developed that can manufacture a three-dimensional object having a complicated shape relatively easily. As one of the methods for producing a three-dimensional model, there is known a method of selectively irradiating a resin composition that is cured by active energy with active energy to cure the resin composition into a desired shape (for example, Patent Document 1). In recent years, attempts have been made to make various three-dimensional shaped objects produced by such a method into various final products.
 しかしながら、光重合性化合物を主に含む樹脂組成物を用いて立体造形を行うと、機械的強度が十分でなかったり、硬化収縮によって、所望の寸法精度が得られないことがあった。そこで、得られる立体造形物の機械的強度向上や、寸法精度の向上を目的として、ガラスビーズ等のフィラーを添加することが知られている(例えば、特許文献2および3)。しかしながら、フィラーを添加しただけでは、最終製品に要求される十分な機械的強度を得ることは難しい、との課題があった。 However, when three-dimensional modeling is performed using a resin composition mainly containing a photopolymerizable compound, the mechanical strength may not be sufficient, or desired dimensional accuracy may not be obtained due to curing shrinkage. Therefore, it is known to add fillers such as glass beads for the purpose of improving the mechanical strength and improving the dimensional accuracy of the three-dimensional structure to be obtained (for example, Patent Documents 2 and 3). However, there is a problem that it is difficult to obtain sufficient mechanical strength required for the final product only by adding a filler.
 また近年、新たな立体造形物の製造方法として、光重合性化合物を含む液体状の樹脂組成物を連続的または断続的に硬化させる方法が提案されている(特許文献4および5)。当該方法では、まず造形物槽内に、活性エネルギーを照射しても樹脂組成物が硬化しないバッファ領域と、活性エネルギーの照射によって樹脂組成物が硬化する硬化用領域とを設ける。このとき、バッファ領域が造形槽底部側、硬化用領域が造形槽上部側に位置するよう、それぞれの領域を形成する。そして、硬化用領域に立体造形の基点となるキャリアを配置し、バッファ領域(造形槽底部)側から硬化用領域に活性エネルギーを選択的に照射する。これにより、キャリア表面に立体造形物の一部(樹脂組成物の硬化物)が形成される。そしてさらに、当該キャリアを造形槽上部側に引き上げながら、活性エネルギーを照射することで、キャリアの下方に、樹脂組成物の硬化物が連続的に形成され、継ぎ目のない立体造形物が作製される。 In recent years, a method for continuously or intermittently curing a liquid resin composition containing a photopolymerizable compound has been proposed as a method for producing a new three-dimensional structure (Patent Documents 4 and 5). In the method, first, a buffer region in which the resin composition is not cured even when irradiated with active energy and a curing region in which the resin composition is cured by irradiation with active energy are provided in the molded article tank. At this time, each area | region is formed so that a buffer area | region may be located in the modeling tank bottom part side, and the area | region for hardening may be located in the modeling tank upper part side. And the carrier used as the base point of three-dimensional modeling is arrange | positioned in the area | region for hardening, and active energy is selectively irradiated to the area | region for hardening from the buffer area | region (modeling tank bottom part) side. Thereby, a part of solid modeling thing (hardened material of a resin composition) is formed in the career surface. Further, by irradiating active energy while pulling up the carrier to the upper side of the modeling tank, a cured product of the resin composition is continuously formed below the carrier, and a seamless three-dimensional modeled object is produced. .
特開平8-174680号公報JP-A-8-174680 特開平7-26060号公報Japanese Unexamined Patent Publication No. 7-26060 特開2016-138180号公報JP 2016-138180 A 特表2016-509962号公報Special table 2016-509962 gazette 国際公開第2017/044381号International Publication No. 2017/044381
 ここで、立体造形物の機械的強度を高めるため、造形用の樹脂組成物に熱重合性化合物およびフィラーを添加することが検討されている。しかしながら、単に熱重合性化合物にフィラーを混合するだけでは、初期の機械的強度は向上するものの、経時劣化により機械的強度が低下してしまう。これは単に混合するだけではフィラーが局在化しやすく、フィラーが存在しない部分からクラックが生じ、立体造形物の劣化が促進されるためである。また、熱重合性化合物を混合することにより、光重合性化合物のみの場合より寸法精度は向上するが、精密機器用途を想定した場合には不十分である、との課題があった。 Here, in order to increase the mechanical strength of the three-dimensional structure, it has been studied to add a thermopolymerizable compound and a filler to the resin composition for modeling. However, when the filler is simply mixed with the thermopolymerizable compound, the initial mechanical strength is improved, but the mechanical strength is lowered due to deterioration over time. This is because the filler is likely to be localized simply by mixing, cracks are generated from the portion where the filler is not present, and the deterioration of the three-dimensional structure is promoted. Moreover, although the dimensional accuracy is improved by mixing the thermopolymerizable compound as compared with the case of only the photopolymerizable compound, there is a problem that it is insufficient when a precision instrument application is assumed.
 本発明は、このような課題を鑑みてなされたものである。すなわち本発明は、機械的強度および耐久性に優れ、さらには寸法精度に優れる立体造形物や、その製造方法、これに用いる樹脂組成物の提供を目的とする。 The present invention has been made in view of such problems. That is, an object of the present invention is to provide a three-dimensionally shaped product that is excellent in mechanical strength and durability, and further excellent in dimensional accuracy, a method for producing the same, and a resin composition used therefor.
 本発明の第1は、以下の樹脂組成物にある。
 [1]液体状の樹脂組成物に活性エネルギーを選択的に照射して、前記樹脂組成物の硬化物からなる立体造形物を製造する方法に使用される樹脂組成物であって、光重合性化合物と、熱重合性化合物と、前記熱重合性化合物に結合可能な官能基を表面に有する官能基含有フィラーと、を含む、樹脂組成物。
The first of the present invention is the following resin composition.
[1] A resin composition used in a method for producing a three-dimensional structure made of a cured product of the resin composition by selectively irradiating active energy to a liquid resin composition, which is photopolymerizable A resin composition comprising a compound, a thermopolymerizable compound, and a functional group-containing filler having a functional group capable of binding to the thermopolymerizable compound on the surface.
 [2]前記熱重合性化合物が、エポキシ樹脂またはその前駆体、もしくはウレタン樹脂またはその前駆体である、[1]に記載の樹脂組成物。
 [3]前記官能基含有フィラーが、前記熱重合性化合物に結合可能な官能基を有する、セルロースナノファイバーである、[1]または[2]に記載の樹脂組成物。
[2] The resin composition according to [1], wherein the thermopolymerizable compound is an epoxy resin or a precursor thereof, or a urethane resin or a precursor thereof.
[3] The resin composition according to [1] or [2], wherein the functional group-containing filler is a cellulose nanofiber having a functional group capable of binding to the thermopolymerizable compound.
 本発明の第2は、以下の立体造形物の製造方法、または立体造形物にある。
 [4]上記[1]~[3]のいずれかに記載の樹脂組成物に活性エネルギーを選択的に照射して、前記光重合性化合物の硬化物を含む一次硬化物を形成する光造形工程と、前記一次硬化物を、さらに熱硬化させる熱硬化工程を含む、立体造形物の製造方法。
 [5]前記光造形工程が、前記樹脂組成物および酸素を含み、酸素により前記光重合性化合物の硬化が阻害されるバッファ領域、ならびに前記樹脂組成物を少なくとも含み、前記バッファ領域より酸素濃度が低く、前記光重合性化合物の硬化が可能な硬化用領域を、造形物槽内に隣接して形成する第1の工程と、前記バッファ領域側から前記樹脂組成物に活性エネルギーを選択的に照射して、前記硬化用領域で前記光重合性化合物を硬化させる第2の工程と、を含み、前記第2の工程では、形成された硬化物を前記バッファ領域とは反対側に移動させながら、前記硬化用領域に活性エネルギーを照射し、前記一次硬化物を形成する、[4]に記載の立体造形物の製造方法。
 [6]上記[1]~[3]のいずれかに記載の樹脂組成物の硬化物である、立体造形物。
2nd of this invention exists in the manufacturing method of the following three-dimensional molded items, or a three-dimensional molded item.
[4] An optical modeling step of selectively irradiating the resin composition according to any one of [1] to [3] with active energy to form a primary cured product including a cured product of the photopolymerizable compound. And the manufacturing method of the three-dimensional molded item including the thermosetting process which further thermosets the said primary cured material.
[5] The stereolithography step includes the resin composition and oxygen, includes at least a buffer region in which curing of the photopolymerizable compound is inhibited by oxygen, and the resin composition, and the oxygen concentration is higher than that of the buffer region. A first step of forming a low curing region capable of curing the photopolymerizable compound adjacent to the molded article tank, and selectively irradiating the resin composition with active energy from the buffer region side Then, the second step of curing the photopolymerizable compound in the curing region, in the second step, while moving the formed cured product to the opposite side of the buffer region, The method for producing a three-dimensional structure according to [4], wherein the curing region is irradiated with active energy to form the primary cured product.
[6] A three-dimensionally shaped article, which is a cured product of the resin composition according to any one of [1] to [3].
 本発明の樹脂組成物によれば、高い機械的強度、耐久性、および寸法精度を兼ね備える立体造形物の提供が可能である。 According to the resin composition of the present invention, it is possible to provide a three-dimensional modeled object having high mechanical strength, durability, and dimensional accuracy.
図1は、本発明の一実施形態に係る立体造形物の製造装置の模式図である。FIG. 1 is a schematic diagram of an apparatus for manufacturing a three-dimensional structure according to an embodiment of the present invention. 図2は、本発明の他の実施形態に係る立体造形物の製造装置の模式図である。FIG. 2 is a schematic view of a three-dimensional object manufacturing apparatus according to another embodiment of the present invention.
 1.樹脂組成物
 本発明の樹脂組成物は、液体状であり、当該樹脂組成物に活性エネルギーを選択的に照射して、立体造形物を製造する方法に使用される。前述のように、このような樹脂組成物に、フィラーを添加したり、熱重合性化合物を添加したりすることが検討されてきた。しかしながら、フィラーの添加のみでは、立体造形物の初期の機械的強度を高めることは可能であったとしても、フィラーが局在化しやすく、フィラーの含まれていない領域の樹脂が経時で劣化しやすかった。そのため、長期間に亘って高い機械的強度得ることは難しかった。また、熱重合性化合物を混合することにより、光重合性化合物のみの場合より寸法精度は向上するが、精密機器用途を想定した場合には不十分である、という課題があった。
1. Resin Composition The resin composition of the present invention is in a liquid state, and is used in a method for producing a three-dimensional structure by selectively irradiating the resin composition with active energy. As described above, it has been studied to add a filler or a thermopolymerizable compound to such a resin composition. However, even if the addition of the filler alone can increase the initial mechanical strength of the three-dimensional structure, the filler is likely to be localized, and the resin in the region not containing the filler is likely to deteriorate over time. It was. Therefore, it was difficult to obtain high mechanical strength over a long period of time. Moreover, although the dimensional accuracy is improved by mixing the thermopolymerizable compound as compared with the case of using only the photopolymerizable compound, there is a problem that it is insufficient when a precision instrument application is assumed.
 これに対し、本発明の樹脂組成物には、光重合性化合物と、熱重合性化合物と、熱重合性化合物に結合可能な官能基を表面に有する官能基含有フィラーと、が含まれる。当該樹脂組成物に活性エネルギーを選択的に照射すると、光重合性化合物が重合し、所望の形状の一次硬化物が作製される。そしてさらに、当該一次硬化物を加熱することで、一次硬化物内の熱重合性化合物が重合する。またこのとき、官能基含有フィラーの官能基が、熱重合性化合物に結合することで、熱重合性化合物の重合物(硬化物)内に、フィラーが化学結合を介して取り込まれる。その結果、フィラーが立体造形物内に均一に分布し、立体造形物の機械的強度が高まったり、経時劣化が抑制されたりする。また、フィラーは熱変化による寸法変化がなく強度に優れる。したがって、フィラーが樹脂骨格中に化学結合を介して取り込まれることで、得られる立体造型物の寸法変化がさらに抑制されたりする。 On the other hand, the resin composition of the present invention includes a photopolymerizable compound, a thermopolymerizable compound, and a functional group-containing filler having a functional group capable of binding to the thermopolymerizable compound on the surface. When the resin composition is selectively irradiated with active energy, the photopolymerizable compound is polymerized to produce a primary cured product having a desired shape. Furthermore, the thermopolymerizable compound in the primary cured product is polymerized by heating the primary cured product. At this time, the functional group of the functional group-containing filler is bonded to the thermopolymerizable compound, whereby the filler is taken into the polymerized product (cured product) of the thermopolymerizable compound via a chemical bond. As a result, the filler is uniformly distributed in the three-dimensional structure, the mechanical strength of the three-dimensional structure is increased, and deterioration with time is suppressed. Further, the filler is excellent in strength without any dimensional change due to heat change. Therefore, the dimensional change of the three-dimensional molded article obtained is further suppressed by a filler being taken in into a resin frame | skeleton via a chemical bond.
 なお、樹脂組成物には、本発明の目的および効果を損なわない範囲において、光重合開始剤や、熱硬化剤、熱硬化促進剤、各種添加剤等が必要に応じて含まれていてもよい。以下、各成分について説明する。 The resin composition may contain a photopolymerization initiator, a thermosetting agent, a thermosetting accelerator, various additives, and the like as necessary, as long as the object and effect of the present invention are not impaired. . Hereinafter, each component will be described.
 1-1.光重合性化合物
 樹脂組成物に含まれる光重合性化合物は、活性エネルギーの照射によって重合し、硬化可能な化合物であればよい。例えば、モノマーであってもよく、オリゴマーであってもよく、プレポリマーであってもよく、これらの混合物であってもよい。また、光重合性化合物は、ラジカル重合性化合物であってもよく、カチオン重合性化合物であってもよい。ただし、後述するように、樹脂組成物に酸素等の重合禁止剤を添加しながら、立体造形物を作製する方法(以下、「CLIP法」とも称する)に用いる樹脂組成物では、光重合性化合物がラジカル重合性化合物である必要がある。
1-1. Photopolymerizable compound The photopolymerizable compound contained in the resin composition may be any compound that can be polymerized and cured by irradiation with active energy. For example, it may be a monomer, an oligomer, a prepolymer, or a mixture thereof. The photopolymerizable compound may be a radical polymerizable compound or a cationic polymerizable compound. However, as will be described later, in a resin composition used for a method for producing a three-dimensional structure (hereinafter also referred to as “CLIP method”) while adding a polymerization inhibitor such as oxygen to the resin composition, a photopolymerizable compound is used. Needs to be a radically polymerizable compound.
 樹脂組成物には、光重合性化合物が1種のみ含まれていてもよく、2種以上含まれていてもよい。また、光重合性化合物を硬化させる活性エネルギーの例には、紫外線、X線、電子線、γ線、可視光線等が含まれる。 The resin composition may contain only one type of photopolymerizable compound or two or more types. Examples of the active energy for curing the photopolymerizable compound include ultraviolet rays, X-rays, electron beams, γ rays, visible light, and the like.
 光重合性化合物の一つである、ラジカル重合性化合物は、ラジカル重合開始剤等の存在下、活性エネルギーの照射によってラジカル重合可能な基を有していればその種類は特に制限されない。光重合性化合物は、例えば、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、アリルエーテル基、ビニルエーテル基、マレイル基、マレイミド基、(メタ)アクリルアミド基、アセチルビニル基、ビニルアミド基、(メタ)アクリロイル基、等を分子内に1つ以上有する化合物とすることができる。これらの中でも、分子内に不飽和カルボン酸エステル構造を1つ以上含む不飽和カルボン酸エステル化合物、または分子内に不飽和カルボン酸アミド構造を1つ以上含む不飽和カルボン酸アミド化合物であることが好ましい。より具体的には、後述の、(メタ)アクリロイル基を含む(メタ)アクリレート系化合物および/または(メタ)アクリルアミド系化合物であることが特に好ましい。なお、本明細書において、「(メタ)アクリル」との記載は、メタクリルおよび/またはアクリルを表し、「(メタ)アクリロイル」との記載は、メタクリロイルおよび/またはアクリロイルを表し、「(メタ)アクリレート」との記載は、メタクリレートおよび/またはアクリレートを表す。 The type of radically polymerizable compound, which is one of the photopolymerizable compounds, is not particularly limited as long as it has a group that can be radically polymerized by irradiation with active energy in the presence of a radical polymerization initiator or the like. Photopolymerizable compounds include, for example, ethylene, propenyl, butenyl, vinylphenyl, allyl ether, vinyl ether, maleyl, maleimide, (meth) acrylamide, acetylvinyl, vinylamide, (meth) A compound having one or more acryloyl groups and the like in the molecule can be obtained. Among these, the unsaturated carboxylic acid ester compound containing one or more unsaturated carboxylic acid ester structures in the molecule, or the unsaturated carboxylic acid amide compound containing one or more unsaturated carboxylic acid amide structures in the molecule. preferable. More specifically, a (meth) acrylate-based compound and / or (meth) acrylamide-based compound containing a (meth) acryloyl group, which will be described later, is particularly preferable. In the present specification, the description “(meth) acryl” represents methacryl and / or acryl, the description “(meth) acryloyl” represents methacryloyl and / or acryloyl, and “(meth) acrylate” "Represents methacrylate and / or acrylate.
 上記ラジカル重合性化合物の一つである「アリルエーテル基を有する化合物」の例には、フェニルアリルエーテル、o-,m-,p-クレゾールモノアリルエーテル、ビフェニル-2-オールモノアリルエーテル、ビフェニル-4-オールモノアリルエーテル、ブチルアリルエーテル、シクロヘキシルアリルエーテル、シクロヘキサンメタノールモノアリルエーテル、フタル酸ジアリルエーテル、イソフタル酸ジアリルエーテル、ジメタノールトリシクロデカンジアリルエーテル、1,4-シクロヘキサンジメタノールジアリルエーテル、アルキレン(炭素数2~5)グリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ポリグリセリン(重合度2~5)ジアリルエーテル、トリメチロールプロパントリアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル及びテトラアリルオキシエタン、ペンタエリスリトールトリアリルエーテル、ジグリセリントリアリルエーテル、ソルビトールトリアリルエーテルおよびポリグリセリン(重合度3~13)ポリアリルエーテル等が含まれる。 Examples of the “compound having an allyl ether group” which is one of the above radical polymerizable compounds include phenyl allyl ether, o-, m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl -4-ol monoallyl ether, butyl allyl ether, cyclohexyl allyl ether, cyclohexane methanol monoallyl ether, phthalic acid diallyl ether, isophthalic acid diallyl ether, dimethanol tricyclodecane diallyl ether, 1,4-cyclohexanedimethanol diallyl ether, Alkylene (2-5 carbon atoms) glycol diallyl ether, polyethylene glycol diallyl ether, glycerol diallyl ether, trimethylolpropane diallyl ether, pentaerythritol Diallyl ether, polyglycerin (degree of polymerization 2-5) diallyl ether, trimethylolpropane triallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether and tetraallyloxyethane, pentaerythritol triallyl ether, diglyceryl triallyl ether, Examples include sorbitol triallyl ether and polyglycerin (polymerization degree 3 to 13) polyallyl ether.
 また、上記「ビニルエーテル基を有する化合物」の例には、ブチルビニルエーテル、ブチルプロペニルエーテル、ブチルブテニルエーテル、ヘキシルビニルエーテル、1,4-ブタンジオールジビニルエーテル、エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、エチルエトキシビニルエーテル、アセチルエトキシエトキシビニルエーテル、シクロヘキシルビニルエーテル、トリシクロデカンビニルエーテル、アダマンチルビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリシクロデカンジメタノールジビニルエーテル、ビスフェノールAのEO付加物ジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロペンタジエンビニルエーテル、ノルボルニルジメタノールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールビニルエーテル、ブチレンジビニルエーテル、ジブチレングリコールジビニルエーテル、4-シクロヘキサンジビニルエーテル、オキサノルボナンジビニルエーテル、ネオペンチルグリコールジビニルエーテル、グリセリントリビニルエーテル、オキセタンジビニルエーテル、グリセリンエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数6)、トリメチロールプロパントリビニルエーテル、トリビニルエーテルエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数3)、ペンタエリスリトールトリビニルエーテル、ジトリメチロールプロパンヘキサビニルエーテルおよびそれらのオキシエチレン付加物等が含まれる。 Examples of the “compound having a vinyl ether group” include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, 1,4-butanediol divinyl ether, ethyl hexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy. Vinyl ether, acetylethoxyethoxy vinyl ether, cyclohexyl vinyl ether, tricyclodecane vinyl ether, adamantyl vinyl ether, cyclohexanedimethanol divinyl ether, tricyclodecane dimethanol divinyl ether, EO adduct divinyl ether of bisphenol A, cyclohexanediol divinyl ether, cyclopentadiene vinyl ether, Norbornyl dimethanol di Nyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether, 4-cyclohexane divinyl ether, oxanorbonane divinyl ether, neo Pentyl glycol divinyl ether, glycerin trivinyl ether, oxetane divinyl ether, glycerin ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (ethylene oxide addition mole number 3), Penta Risuri tall trivinyl ether, includes such ditrimethylolpropane hexa ether and their oxyethylene adduct.
 上記「ビニルフェニル基を有する化合物」の例には、ジビニルレゾルシン、ジビニルハイドロキノン等が含まれる。 Examples of the “compound having a vinyl phenyl group” include divinyl resorcin, divinyl hydroquinone and the like.
 上記「マレイミド基を有する化合物」の例には、フェニルマレイミド、シクロヘキシルマレイミド、n-ヘキシルマレイミド等が含まれる。 Examples of the “compound having a maleimide group” include phenylmaleimide, cyclohexylmaleimide, n-hexylmaleimide and the like.
 上記「(メタ)アクリルアミド基を有する化合物」の例には、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ビスメチレンアクリルアミド、ジ(エチレンオキシ)ビスプロピルアクリルアミド、およびトリ(エチレンオキシ)ビスプロピルアクリルアミド、(メタ)アクリロイルモルホリン等が含まれる。 Examples of the “compound having a (meth) acrylamide group” include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-hydroxy. Ethyl (meth) acrylamide, N-butyl (meth) acrylamide, isobutoxymethyl (meth) acrylamide, diacetone (meth) acrylamide, bismethylene acrylamide, di (ethyleneoxy) bispropylacrylamide, and tri (ethyleneoxy) bispropylacrylamide , (Meth) acryloylmorpholine and the like.
 一方、上述の「(メタ)アクリロイル基を有する化合物」の例には、イソアミル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミルスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-エチルヘキシル-ジグリコール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、メトキシエトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、グリセリン(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、およびt-ブチルシクロヘキシル(メタ)アクリレート等を含む単官能の(メタ)アクリレートモノマー;
 トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、シクロヘキサンジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジイルジメチレンジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、およびトリシクロデカンジメタノールジ(メタ)アクリレート等を含む2官能の(メタ)アクリレートモノマー;
 トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、およびペンタエリスリトールエトキシテトラ(メタ)アクリレート等を含む3官能以上の(メタ)アクリレートモノマー;
 およびこれらのオリゴマー等が含まれる。
On the other hand, examples of the above-mentioned “compound having a (meth) acryloyl group” include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, octyl (Meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, tridecyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (Meth) acrylate, 2-ethylhexyl-diglycol (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, methoxyethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) Acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, pentachlorophenyl (meth) acrylate, pentabromophenyl (meth) acrylate, tetrahydrofurfuryl (Meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobol (Meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, glycerin (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, 2-hydroxyethyl (meth) Acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, benzyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) ) Acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethylphthalic acid, 2- (meth) acryloyloxyethyl-2- Monofunctional (meth) acrylate monomers including hydroxyethyl-phthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, and t-butylcyclohexyl (meth) acrylate;
Triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, cyclohexanedi (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, neopentylglycol di ( (Meth) acrylate, tricyclodecanediyldimethylene di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, polyester di (meth) acrylate, bisphenol PO adduct di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate , And bifunctional (meth) acrylate monomers including tricyclodecane dimethanol di (meth) acrylate and the like;
Trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) A tri- or higher functional (meth) acrylate monomer including acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, glycerin propoxytri (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, and the like;
And oligomers thereof.
 また、「(メタ)アクリロイル基を有する化合物」は、各種(メタ)アクリレートモノマーやそのオリゴマーをさらに変性したもの(変性物)であってもよい。変性物の例には、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート等のエチレンオキサイド変性(メタ)アクリレートモノマー;トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性グリセリントリ(メタ)アクリレート等のプロピレンオキサイド変性(メタ)アクリレートモノマー;カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート等のカプロラクトン変性(メタ)アクリレートモノマー;カプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のカプロラクタム変性(メタ)アクリレートモノマー;等が含まれる。 Further, the “compound having a (meth) acryloyl group” may be a product obtained by further modifying various (meth) acrylate monomers or oligomers thereof (modified product). Examples of modified products include triethylene glycol diacrylate, polyethylene glycol diacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified pentaerythritol tetraacrylate, ethylene oxide modified bisphenol A di (meth) acrylate, ethylene Ethylene oxide modified (meth) acrylate monomers such as oxide modified nonylphenol (meth) acrylate; tripropylene glycol diacrylate, polypropylene glycol diacrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified pentaerythritol tetraacrylate, propylene Oxide-modified glycerin tri (meth) ac Propylene oxide modified (meth) acrylate monomers such as caprate; Caprolactone modified (meth) acrylate monomers such as caprolactone modified trimethylolpropane tri (meth) acrylate; Caprolactam modified (meth) acrylates such as caprolactam modified dipentaerythritol hexa (meth) acrylate Monomer; and the like.
 「(メタ)アクリロイル基を有する化合物」はさらに、各種オリゴマーを(メタ)アクリレート化した化合物(以下、「変性(メタ)アクリレート系化合物」とも称する)であってもよい。このような変性(メタ)アクリレート系化合物の例には、ポリブタジエン(メタ)アクリレート系化合物、ポリイソプレン(メタ)アクリレート系化合物、エポキシ(メタ)アクリレート系化合物、ウレタン(メタ)アクリレート系化合物、シリコーン(メタ)アクリレート系化合物、ポリエステル(メタ)アクリレート系化合物、および直鎖(メタ)アクリル系化合物等が含まれる。 The “compound having a (meth) acryloyl group” may further be a compound obtained by (meth) acrylate-converting various oligomers (hereinafter also referred to as “modified (meth) acrylate-based compound”). Examples of such modified (meth) acrylate compounds include polybutadiene (meth) acrylate compounds, polyisoprene (meth) acrylate compounds, epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, silicone ( A meth) acrylate compound, a polyester (meth) acrylate compound, a linear (meth) acrylic compound, and the like are included.
 これらの中でも特に、エポキシ(メタ)アクリレート系化合物、ウレタン(メタ)アクリレート系化合物、およびシリコーン(メタ)アクリレート系化合物を好適に用いることができる。樹脂組成物にエポキシ(メタ)アクリレート系化合物や、ウレタン(メタ)アクリレート系化合物、シリコーン(メタ)アクリレート系化合物が含まれると、得られる立体造形物の強度が高まりやすい。また、これらの樹脂を用いると、後述の官能基含有フィラーが、熱重合性化合物だけでなく、光重合性化合物にも結合する。その結果、熱重合性化合物の硬化物と光重合性化合物の硬化物とが、フィラーを介して結合され、より強度の高い立体造形物が得られる。 Among these, epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, and silicone (meth) acrylate compounds can be preferably used. When an epoxy (meth) acrylate compound, a urethane (meth) acrylate compound, or a silicone (meth) acrylate compound is included in the resin composition, the strength of the three-dimensional structure to be obtained is likely to increase. Moreover, when these resins are used, the functional group-containing filler described later bonds not only to the thermopolymerizable compound but also to the photopolymerizable compound. As a result, the cured product of the thermopolymerizable compound and the cured product of the photopolymerizable compound are bonded via the filler, and a three-dimensional modeled product having higher strength is obtained.
 エポキシ(メタ)アクリレート系化合物は、一分子内にエポキシ基と、(メタ)アクリレート基とをそれぞれ1つ以上含む化合物であればよく、その例には、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェニル型エポキシ(メタ)アクリレート、トリフェノールメタン型エポキシ(メタ)アクリレートや、クレゾールノボラック型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート等のノボラック型エポキシ(メタ)アクリレート等が含まれる。 The epoxy (meth) acrylate compound may be a compound containing at least one epoxy group and one (meth) acrylate group in one molecule. Examples thereof include bisphenol A type epoxy (meth) acrylate and bisphenol. Novolak type epoxies such as F type epoxy (meth) acrylate, bisphenyl type epoxy (meth) acrylate, triphenolmethane type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate, etc. (Meth) acrylate and the like are included.
 ウレタン(メタ)アクリレート系化合物は、2つのイソシアネート基を有する脂肪族ポリイソシアネート化合物または2つのイソシアネート基を有する芳香族ポリイソシアネート化合物と、水酸基を有する(メタ)アクリル酸誘導体等とを反応させて得られる、ウレタン結合および(メタ)アクリロイル基を有する化合物とすることができる。 A urethane (meth) acrylate compound is obtained by reacting an aliphatic polyisocyanate compound having two isocyanate groups or an aromatic polyisocyanate compound having two isocyanate groups with a (meth) acrylic acid derivative having a hydroxyl group. And a compound having a urethane bond and a (meth) acryloyl group.
 上記ウレタン(メタ)アクリレート系化合物の原料となるイソシアネート化合物の例には、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が含まれる。 Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4 , 4'-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (Isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantri Isocyanate and the like.
 また、上記ウレタン(メタ)アクリレート系化合物の原料となるイソシアネート化合物の例には、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も含まれる。 Examples of the isocyanate compound that is a raw material for the urethane (meth) acrylate compound include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and the like. Also included are chain-extended isocyanate compounds obtained by reaction of polyols with excess isocyanate compounds.
 一方、上記ウレタン(メタ)アクリレート系化合物の原料となる、水酸基を有する(メタ)アクリル酸誘導体の例には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート;トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレートやジ(メタ)アクリレート;ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が含まれる。 On the other hand, examples of the (meth) acrylic acid derivative having a hydroxyl group as a raw material for the urethane (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy Hydroxyalkyl (meth) acrylates such as butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, Mono (meth) acrylates of dihydric alcohols such as polyethylene glycol; mono (meth) acrylates and di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin; It includes epoxy (meth) acrylate of rates.
 上記構造のウレタン(メタ)アクリレート系化合物は、市販されているものであってもよく、その例には、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260(いずれもダイセル・オルネクス社製)、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が含まれる。 The urethane (meth) acrylate compound having the above structure may be commercially available, and examples thereof include M-1100, M-1200, M-1210, and M-1600 (all manufactured by Toagosei Co., Ltd.). ), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 (all manufactured by Daicel-Orunekusu Co., Ltd.) Art resin UN-330, Art Resin SH-500B, Art Resin UN-12 0TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9000A, Art Resin UN-9000H (all manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA, U- 3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA-4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all Shin-Nakamura Chemical Co., Ltd.), AH-600, AI-600, AT-600, UA-101I, UA-1 1T, UA-306H, UA-306I, include UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
 一方、ウレタン(メタ)アクリレート系化合物は、イソシアネートもしくはポリイソシアネートのイソシアネート基を(メタ)アクリレート基を有するブロック剤によりブロック化して得られるブロックイソシアネートであってもよい。 On the other hand, the urethane (meth) acrylate compound may be a blocked isocyanate obtained by blocking the isocyanate group of isocyanate or polyisocyanate with a blocking agent having a (meth) acrylate group.
 ブロックイソシアネートを得るために用いられるイソシアネートは、前述の「イソシアネート化合物」であってもよく、ポリイソシアネートは、当該「イソシアネート化合物」の重合体等であってもよく、これらの化合物とポリオールやポリアミンとを反応させた化合物等であってもよい。ポリオールの例には、従来公知のポリエーテルポリオール、ポリエステルポリオール、ポリマーポリオール、植物油ポリオール、さらには含リンポリオールやハロゲン含有ポリオール等の難燃ポリオール等が含まれる。これらのポリオールは、ブロックイソシアネート中に1種のみ含まれていてもよく、2種以上が含まれていてもよい。 The isocyanate used for obtaining the blocked isocyanate may be the above-mentioned “isocyanate compound”, and the polyisocyanate may be a polymer of the “isocyanate compound”. These compounds and polyols or polyamines may be used. The compound etc. which made this react may be sufficient. Examples of the polyol include conventionally known polyether polyols, polyester polyols, polymer polyols, vegetable oil polyols, and flame retardant polyols such as phosphorus-containing polyols and halogen-containing polyols. One of these polyols may be contained in the blocked isocyanate, or two or more thereof may be contained.
 イソシアネート等と反応させる上記ポリエーテルポリオールの例には、少なくとも2個以上の活性水素基を有する化合物(具体的には、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール類;エチレンジアミン等のアミン類;エタノールアミン、ジエタノールアミン等のアルカノールアミン類;等)とアルキレンオキサイド(具体的には、エチレンオキシド、プロピレンオキシド等)との付加反応により調製される化合物が含まれる。ポリエーテルポリオールの調製方法は、例えば、Gunter Oertel,“Polyurethane Handbook”(1985) Hanser Publishers社(ドイツ),p.42-53に記載の方法とすることができる。 Examples of the polyether polyol to be reacted with isocyanate and the like include compounds having at least two active hydrogen groups (specifically, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc.) A compound prepared by an addition reaction of an alkylene oxide (specifically, ethylene oxide, propylene oxide, etc.) with an amine such as ethylenediamine; an alkanolamine such as ethanolamine or diethanolamine; For example, Gunter Oertel, “Polyurethane Handbook” (1985), Hanser Publishers (Germany), p. 42-53.
 上記ポリエステルポリオールの例には、アジピン酸、フタル酸等の多価カルボン酸と、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等の多価アルコールとの縮合反応物や、ナイロン製造時の廃物、トリメチロールプロパン、ペンタエリストールの廃物、フタル酸系ポリエステルの廃物、廃品を処理し誘導したポリエステルポリオール等が含まれる(例えば、岩田敬治「ポリウレタン樹脂ハンドブック」(1987)日刊工業新聞社 p.117の記載参照)。 Examples of the polyester polyol include a condensation reaction product of a polyvalent carboxylic acid such as adipic acid or phthalic acid and a polyhydric alcohol such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol, or nylon. Includes waste from manufacturing, waste from trimethylolpropane, pentaerythritol, waste from phthalic polyester, polyester polyol derived from the treatment of waste (eg, Keiji Iwata “Polyurethane Resin Handbook” (1987) Nikkan Kogyo Shimbun) (Refer to description of company p.117).
 上記ポリマーポリオールの例には、上記ポリエーテルポリオールとエチレン性不飽和単量体(例えば、ブタジエン、アクリロニトリル、スチレン等)とをラジカル重合触媒の存在下に反応させた重合体ポリオールが含まれる。ポリマーポリオールは、分子量が5000~12000程度であることがより好ましい。 Examples of the polymer polyol include a polymer polyol obtained by reacting the polyether polyol with an ethylenically unsaturated monomer (for example, butadiene, acrylonitrile, styrene, etc.) in the presence of a radical polymerization catalyst. The polymer polyol preferably has a molecular weight of about 5000 to 12000.
 植物油ポリオールの例には、ひまし油、やし油等のヒドロキシル基含有植物油等が含まれる。また、ひまし油又は水添ひまし油を原料として得られるひまし油誘導体ポリオールも好適に用いることができる。ひまし油誘導体ポリオールとしては、ひまし油、多価カルボン酸及び短鎖ジオールの反応で得られるひまし油ポリエステル、ひまし油やひまし油ポリエステルのアルキレンオキシド付加物等が含まれる。 Examples of vegetable oil polyols include hydroxyl group-containing vegetable oils such as castor oil and palm oil. A castor oil derivative polyol obtained using castor oil or hydrogenated castor oil as a raw material can also be suitably used. The castor oil derivative polyol includes castor oil polyester obtained by reaction of castor oil, polyvalent carboxylic acid and short chain diol, and an alkylene oxide adduct of castor oil and castor oil polyester.
 難燃ポリオールの例には、リン酸化合物にアルキレンオキシドを付加して得られるリン含有ポリオール;エピクロルヒドリンやトリクロロブチレンオキシドを開環重合して得られるハロゲン含有ポリオール;芳香環を有する活性水素化合物にアルキレンオキシドを付加して得られる芳香族系エーテルポリオール;芳香環を有する多価カルボン酸と多価アルコールの縮合反応で得られる芳香族系エステルポリオール;等が含まれる。 Examples of flame retardant polyols include phosphorus-containing polyols obtained by adding alkylene oxide to phosphoric acid compounds; halogen-containing polyols obtained by ring-opening polymerization of epichlorohydrin and trichlorobutylene oxide; alkylenes for active hydrogen compounds having aromatic rings An aromatic ether polyol obtained by adding an oxide; an aromatic ester polyol obtained by a condensation reaction of a polyvalent carboxylic acid having an aromatic ring and a polyhydric alcohol;
 イソシアネート等と反応させるポリオールの水酸基価としては、5~300mgKOH/gであることが好ましく、10~250mgKOH/gであることがより好ましい。水酸基価は、JIS-K0070に規定された方法で測定できる。 The hydroxyl value of the polyol to be reacted with isocyanate or the like is preferably 5 to 300 mgKOH / g, and more preferably 10 to 250 mgKOH / g. The hydroxyl value can be measured by the method defined in JIS-K0070.
 また、イソシアネート等と反応させるポリアミンの例には、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、ヘキサメチレンペンタアミン、ビスアミノプロピルピペラジン、トリス(2-アミノエチル)アミン、イソホロンジアミン、ポリオキシアルキレンポリアミン、ジエタノールアミン、トリエタノールアミン等が含まれる。 Examples of polyamines to be reacted with isocyanates include ethylenediamine, diethylenetriamine, triethylenetetraamine, hexamethylenepentamine, bisaminopropylpiperazine, tris (2-aminoethyl) amine, isophoronediamine, polyoxyalkylenepolyamine, diethanolamine. , Triethanolamine and the like.
 一方、ポリイソシアネートのイソシアネート基をブロックするためのブロック剤としては、(メタ)アクリロイル基を有し、かつ、イソシアネート基と反応し、加熱により脱離できるものであればよい。 On the other hand, the blocking agent for blocking the isocyanate group of the polyisocyanate may be any one that has a (meth) acryloyl group, reacts with the isocyanate group, and can be eliminated by heating.
 このようなブロック剤の具体例には、t-ブチルアミノエチルメタクリレート(TBAEMA)、t-ペンチルアミノエチルメタクリレート(TPAEMA)、t-ヘキシルアミノエチルメタクリレート(THAEMA)、t-ブチルアミノプロピルメタクリレート(TPAEMA)、t-ヘキシルアミノエチルメタクリレート(THAEMA)、t-ブチルアミノプロピルメタクリレート(TBAPMA)等が含まれる。 Specific examples of such blocking agents include t-butylaminoethyl methacrylate (TBAEMA), t-pentylaminoethyl methacrylate (TPAEMA), t-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TPAEMA). , T-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TBAPMA) and the like.
 ポリイソシアネートのブロック化反応は、一般に-20~150℃で行うことができるが、好ましくは0~100℃である。150℃以下であれば副反応を防止することができ、他方、-20℃以上であれば反応速度を適度な範囲とすることができる。ポリイソシアネート化合物とブロック剤のブロック化反応は、溶剤の存在の有無に関わらず、行うことができる。溶剤を用いる場合は、イソシアネート基に対して不活性な溶剤を用いるのが好ましい。ブロック化反応においては、反応触媒を使用することができる。具体的な反応触媒の例には、錫、亜鉛、鉛等の有機金属塩、金属アルコラート、及び3級アミン等が含まれる。 The blocking reaction of polyisocyanate can be generally carried out at −20 to 150 ° C., preferably 0 to 100 ° C. If it is 150 ° C. or lower, side reactions can be prevented, while if it is −20 ° C. or higher, the reaction rate can be in an appropriate range. The blocking reaction between the polyisocyanate compound and the blocking agent can be performed regardless of the presence or absence of a solvent. When using a solvent, it is preferable to use a solvent inert to the isocyanate group. In the blocking reaction, a reaction catalyst can be used. Specific examples of the reaction catalyst include organometallic salts such as tin, zinc and lead, metal alcoholates, and tertiary amines.
 上述のように調製されるブロックイソシアネートをラジカル重合性化合物として用いる場合、まず、活性エネルギー照射によりアクリロイル基部分を重合させる。その後、加熱によってブロック剤を外すことで、生成したイソシアネート化合物を新たにポリオールやポリアミン等と重合させることができ、ポリウレタンやポリウレアまたはこれらの混合物を含む立体造形物を得ることができる。 When the blocked isocyanate prepared as described above is used as a radical polymerizable compound, first, the acryloyl group portion is polymerized by irradiation with active energy. Thereafter, by removing the blocking agent by heating, the produced isocyanate compound can be newly polymerized with polyol, polyamine, or the like, and a three-dimensional structure including polyurethane, polyurea, or a mixture thereof can be obtained.
 一方、シリコーン(メタ)アクリレート系化合物は、主鎖にポリシロキサン結合を有するシリコーンの末端および/または側鎖に(メタ)アクリル酸を付加した化合物とすることができる。シリコーン(メタ)アクリレート系化合物の原料となるシリコーンは、公知の1官能、2官能、3官能、または4可能のシラン化合物(例えばアルコキシシラン等)が任意の組み合わせで重合したオルガノポリシロキサンとすることができる。シリコーンアクリレート系化合物の具体例には、市販のTEGORad2500(商品名:テゴケミーサービスGmbH社製)の他、X-22-4015(商品名:信越化学工業社製)の様な-OH基を有する有機変性シリコーンとアクリル酸とを酸触媒下でエステル化させたもの;KBM402、KBM403(商品名:いずれも信越化学工業社製)の様なエポキシシラン等の有機変性シラン化合物とアクリル酸を反応させたもの;等が含まれる。 On the other hand, the silicone (meth) acrylate compound can be a compound in which (meth) acrylic acid is added to the terminal and / or side chain of the silicone having a polysiloxane bond in the main chain. The silicone used as a raw material for the silicone (meth) acrylate compound is an organopolysiloxane obtained by polymerizing a known monofunctional, bifunctional, trifunctional, or tetrafunctional silane compound (for example, alkoxysilane) in any combination. Can do. Specific examples of the silicone acrylate compound include a commercially available TEGORAD 2500 (trade name: manufactured by Tego Chemie Service GmbH) and an —OH group such as X-22-4015 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.). An organically modified silicone and acrylic acid esterified under an acid catalyst; an organically modified silane compound such as epoxy silane such as KBM402 and KBM403 (both trade names: manufactured by Shin-Etsu Chemical Co., Ltd.) and acrylic acid are reacted. Etc. are included.
 一方、光重合性化合物の他の例である、カチオン重合性化合物は、酸触媒の存在下、活性エネルギーの照射によってカチオン重合可能な基を有していれば、その種類は特に制限されない。その例には、環状ヘテロ化合物が含まれ、環状エーテル基を有する化合物であることが、その反応性等の観点から好ましい。 On the other hand, the type of the cationically polymerizable compound, which is another example of the photopolymerizable compound, is not particularly limited as long as it has a group that can be cationically polymerized by irradiation with active energy in the presence of an acid catalyst. Examples thereof include a cyclic hetero compound, and a compound having a cyclic ether group is preferable from the viewpoint of reactivity and the like.
 カチオン重合性化合物の具体例には、オキシラン、メチルオキシラン、フェニルオキシラン、1,2-ジフェニルオキシラン等のオキシラン化合物類、あるいは、グリシジルエーテル、グリシジルエステル、グリシジルアミン等のオキシラン環の水素原子がメチレン結合基やメチン結合基で置換されているエポキシ基含有化合物;2-(シクロヘキシルメチル)オキシラン、2-エトキシ-3-(シクロヘキシルメチル)オキシラン、[(シクロヘキシルオキシ)メチル]オキシラン、1,4-ビス(オキシラニルメトキシメチル)シクロヘキサン、等のシクロアルカン環を有するエポキシ基含有化合物;7-オキサビシクロ[4.1.0]ヘプタン、3-メチル-7-オキサビシクロ[4.1.0]ヘプタン、7-オキサビシクロ[4.1.0]ヘプタン-3-イルメタノール、7-オキサビシクロ[4.1.0]ヘプタン-3-メトキシメチル等の芳香環を有さない脂環族系エポキシ基含有化合物;3-フェニル-7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート、4-エチルフェニル7-オキサビシクロ[4.1.0]ヘプタン、ベンジル7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート、4-エチルフェニル7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート等の芳香環を有する脂環族系エポキシ基含有化合物;
 3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、ジ(1-エチル-3-オキセタニル)メチルエーテル、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、フェノールノボラックオキセタン、3‐エチル-{(3-トリエトキシシリルプロポキシ)メチル}オキセタン等のオキセタニル基含有化合物;
 2-メチルテトラヒドロフラン、2,5-ジエトキシテトラヒドロフラン、テトラヒドロフラン-2,2-ジメタノール3-メチル-2,4(3H、5H)-フランジオン、2,4-ジオキソテトラヒドロフラン-3-カルボキシラート、プロパン酸1,5-ジ(テトラヒドロフラン-2-イル)ペンタン-3-イル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、メトキシテトラヒドロピラン等の5員環以上の環状エーテル化合物等が含まれる。
Specific examples of the cationic polymerizable compound include oxirane compounds such as oxirane, methyl oxirane, phenyl oxirane, and 1,2-diphenyl oxirane, or a hydrogen atom of an oxirane ring such as glycidyl ether, glycidyl ester, and glycidyl amine. And epoxy group-containing compounds substituted with a methine linking group; 2- (cyclohexylmethyl) oxirane, 2-ethoxy-3- (cyclohexylmethyl) oxirane, [(cyclohexyloxy) methyl] oxirane, 1,4-bis ( Epoxy group-containing compounds having a cycloalkane ring, such as oxiranylmethoxymethyl) cyclohexane, 7-oxabicyclo [4.1.0] heptane, 3-methyl-7-oxabicyclo [4.1.0] heptane, 7-Oxabicyclo [4.1 0] heptan-3-ylmethanol, 7-oxabicyclo [4.1.0] heptane-3-methoxymethyl and the like alicyclic epoxy group-containing compounds having no aromatic ring; 3-phenyl-7-oxa Bicyclo [4.1.0] heptane-3-carboxylate, 4-ethylphenyl 7-oxabicyclo [4.1.0] heptane, benzyl 7-oxabicyclo [4.1.0] heptane-3-carboxylate An alicyclic epoxy group-containing compound having an aromatic ring such as 4-ethylphenyl 7-oxabicyclo [4.1.0] heptane-3-carboxylate;
3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, di (1-ethyl-3-oxetanyl) methyl ether, 3-ethyl-3- ( Oxetanyl group-containing compounds such as phenoxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, phenol novolac oxetane, 3-ethyl-{(3-triethoxysilylpropoxy) methyl} oxetane;
2-methyltetrahydrofuran, 2,5-diethoxytetrahydrofuran, tetrahydrofuran-2,2-dimethanol 3-methyl-2,4 (3H, 5H) -furandone, 2,4-dioxotetrahydrofuran-3-carboxylate, 1,5-di (tetrahydrofuran-2-yl) pentan-3-yl propanoate, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2 -5 or more-membered cyclic ether compounds such as dicarboxylic acid anhydride and methoxytetrahydropyran are included.
 樹脂組成物に含まれる光重合性化合物の総量は、樹脂組成物の全質量に対して10~90質量%であることが好ましく、30~70質量%であることがより好ましく、40~60質量%であることがさらに好ましい。光重合性化合物の量が当該範囲であると、後述の一次硬化物の硬化性が良好になる。 The total amount of the photopolymerizable compound contained in the resin composition is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, and more preferably 40 to 60% by mass with respect to the total mass of the resin composition. % Is more preferable. When the amount of the photopolymerizable compound is within the above range, the curability of the primary cured product described later is improved.
 1-2.熱重合性化合物
 樹脂組成物に含まれる熱重合性化合物は、加熱によって重合し、硬化可能な化合物であればよい。通常、熱重合性化合物は、後述の硬化剤と組み合わせて用いられる。
1-2. Thermopolymerizable compound The thermopolymerizable compound contained in the resin composition may be any compound that can be polymerized and cured by heating. Usually, the thermopolymerizable compound is used in combination with a curing agent described later.
 このような熱重合性化合物の例には、シアネートエステル系化合物、ウレタン樹脂またはその前駆体、エポキシ樹脂またはその前駆体、シリコーン樹脂、不飽和ポリエステル樹脂、およびフェノール樹脂等が含まれる。 Examples of such thermally polymerizable compounds include cyanate ester compounds, urethane resins or precursors thereof, epoxy resins or precursors thereof, silicone resins, unsaturated polyester resins, and phenol resins.
 熱重合性化合物であるシアネートエステル系化合物の例には、1,3-または1,4-ジシアナトベンゼン;1,3,5-トリシアナトベンゼン;1,3-、1,4-、1,6-、1,8-、2,6-、または2,7-ジシアナトナフタレン;1,3,6-トリシアナトナフタレン;2,2’-または4,4’-ジシアナトビフェニル;ビス(4-シアナトフェニル)メタン;2,2-ビス(4-シアナトフェニル)プロパン;2,2-ビス(3,5-ジクロロ-4-シアナトフェニル)プロパン;2,2-ビス(3-ジブロモ-4-ジシアナトフェニル)プロパン;ビス(4-シアナトフェニル)エーテル;ビス(4-シアナトフェニル)チオエーテル;ビス(4-シアナトフェニル)スルホン;トリス(4-シアナトフェニル)フォスファイト;トリス(4-シアナトフェニル)フォスフェート;ビス(3-クロロ-4-シアナトフェニル)メタン:4-シアナトビフェニル;4-クミルシアナトベンゼン;2-t-ブチル-1,4-ジシアナトベンゼン;2,4-ジメチル-1,3-ジシアナトベンゼン;2,5-ジ-t-ブチル-l,4-ジシアナトベンゼン;テトラメチル-1,4-ジシアナトベンゼン;4-クロロ-1,3-ジシアナトベンゼン;3,3’,5,5’-テトラメチル-4,4’ジシアナトジフェニルビス(3-クロロ-4-シアナトフェニル)メタン:1,1,1-トリス(4-シアナトフェニル)エタン;1,1-ビス(4-シアナトフェニル)エタン;2,2-ビス(3,5-ジクロロ-4-シアナトフェニル)プロパン;2,2-ビス(3,5-ジブロモ-4-シアナトフェニル)プロパン;ビス(p-シアノフェノキシフェノキシ)ベンゼン;ジ(4-シアナトフェニル)ケトン;シアン酸化ノボラック;シアン酸化ビスフェノールポリカーボネートオリゴマー等が含まれる。 Examples of cyanate ester compounds that are thermopolymerizable compounds include 1,3- or 1,4-dicyanatobenzene; 1,3,5-tricyanatobenzene; 1,3-, 1,4-, 1, 6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene; 1,3,6-tricyanatonaphthalene; 2,2'- or 4,4'-dicyanatobiphenyl; bis (4 -Cyanatophenyl) methane; 2,2-bis (4-cyanatophenyl) propane; 2,2-bis (3,5-dichloro-4-cyanatophenyl) propane; 2,2-bis (3-dibromo Bis (4-cyanatophenyl) ether; bis (4-cyanatophenyl) thioether; bis (4-cyanatophenyl) sulfone; tris (4-cyanatophenyl) phos Tris (4-cyanatophenyl) phosphate; bis (3-chloro-4-cyanatophenyl) methane: 4-cyanatobiphenyl; 4-cumylcyanatobenzene; 2-t-butyl-1,4- Dicyanatobenzene; 2,4-dimethyl-1,3-dicyanatobenzene; 2,5-di-t-butyl-1,4-dicyanatobenzene; tetramethyl-1,4-dicyanatobenzene; 4-chloro -1,3-dicyanatobenzene; 3,3 ′, 5,5′-tetramethyl-4,4 ′ dicyanatodiphenylbis (3-chloro-4-cyanatophenyl) methane: 1,1,1-tris 1,4-bis (4-cyanatophenyl) ethane; 2,2-bis (3,5-dichloro-4-cyanatophenyl) propane; 2,2-bis (3 , 5 Dibromo-4-cyanatophenyl) propane, bis (p- cyanophenoxy aminophenoxy) benzene; di (4-cyanatophenyl) ketone; cyan oxide novolak; cyan oxide bisphenol polycarbonate oligomer is contained.
 熱重合性化合物であるウレタン樹脂またはその前駆体の例には、分子内に1つまたは2つ以上のウレタン結合を有する公知のウレタン樹脂、またはその前駆体が含まれる。具体的には、ウレタン樹脂の例には、ポリエステル系ウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ウレタン樹脂等が含まれる。一方ウレタン樹脂の前駆体の例には、ポリイソシアネート、ポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリマーポリオール等が含まれる。 Examples of the urethane resin that is a thermopolymerizable compound or a precursor thereof include a known urethane resin having one or more urethane bonds in the molecule, or a precursor thereof. Specifically, examples of the urethane resin include a polyester urethane resin, a polyether urethane resin, a polycarbonate urethane resin, and the like. On the other hand, examples of the precursor of the urethane resin include polyisocyanate, polyol, polyether polyol, polyester polyol, polymer polyol, and the like.
 また、熱重合性化合物であるエポキシ樹脂またはその前駆体の例には、分子内に1つまたは2つ以上のエポキシ基を有する公知のエポキシ樹脂またはその前駆体が含まれる。エポキシ樹脂の例には、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、グリシジルアミン、4官能ナフタレン型エポキシ樹脂等の多官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂、シリコーン変性エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂;ナフチレンエーテル型エポキシ等が含まれる。 In addition, examples of the epoxy resin that is a thermally polymerizable compound or a precursor thereof include a known epoxy resin having one or more epoxy groups in the molecule or a precursor thereof. Examples of epoxy resins include biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, stilbene type epoxy resins, hydroquinone type epoxy resins and the like; cresol novolak type epoxy resins, phenol novolak type epoxy resins Resin, novolak type epoxy resin such as naphthol novolak type epoxy resin; phenol aralkyl type epoxy resin such as phenylene skeleton containing phenol aralkyl type epoxy resin, biphenylene skeleton containing phenol aralkyl type epoxy resin, phenylene skeleton containing naphthol aralkyl type epoxy resin; Methane type epoxy resin, alkyl-modified triphenol methane type epoxy resin, glycidylamine, tetrafunctional naphthalene type epoxy resin, etc. Functional epoxy resin; modified phenolic epoxy resin such as dicyclopentadiene modified phenolic epoxy resin, terpene modified phenolic epoxy resin, silicone modified epoxy resin; heterocyclic ring containing epoxy resin such as triazine nucleus-containing epoxy resin; naphthylene ether type Epoxy and the like are included.
 また、熱重合性化合物であるシリコーン樹脂は、オルガノポリシロキサン構造を有する樹脂であればよく、その例には、以下のような付加硬化型のシリコーン樹脂が含まれる。 Further, the silicone resin that is a thermopolymerizable compound may be any resin having an organopolysiloxane structure, and examples thereof include the following addition-curable silicone resins.
 典型的な付加硬化型の液状シリコーン樹脂は、ビニルシリル基を含有するシリコーンと、ヒドロシリル基を含有するシリコーンと、付加反応触媒とを必須成分として含有しており、加熱するとビニルシリル基とヒドロシリル基との間で生じる付加反応により架橋構造が形成されて硬化する。 A typical addition-curable liquid silicone resin contains a silicone containing a vinylsilyl group, a silicone containing a hydrosilyl group, and an addition reaction catalyst as essential components. A cross-linked structure is formed and cured by an addition reaction occurring between them.
 ビニルシリル基を有するシリコーンの例には、各末端ケイ素原子にビニル基が置換されたポリジメチルシロキサン、各末端ケイ素原子にビニル基が置換されたジメチルシロキサン-ジフェニルシロキサンコポリマー、各末端ケイ素原子にビニル基が置換されたポリフェニルメチルシロキサン、各末端にトリメチルシリル基を有するビニルメチルシロキサン-ジメチルシロキサンコポリマーなどが用いられる。 Examples of silicones having vinyl silyl groups include polydimethylsiloxane having vinyl groups substituted at each terminal silicon atom, dimethylsiloxane-diphenylsiloxane copolymer having vinyl groups substituted at each terminal silicon atom, and vinyl groups at each terminal silicon atom. Are substituted polyphenylmethylsiloxane, vinylmethylsiloxane-dimethylsiloxane copolymer having a trimethylsilyl group at each end, and the like.
 ヒドロシリル基を含有するシリコーンの例には、各末端にトリメチルシリル基を有するメチルヒドロシロキサン-ジメチルシロキサンコポリマー等が含まれる。また、各末端に水素原子が結合したポリジメチルシロキサンを併用することもできる。 Examples of silicones containing hydrosilyl groups include methylhydrosiloxane-dimethylsiloxane copolymers having trimethylsilyl groups at each end. Further, polydimethylsiloxane having a hydrogen atom bonded to each end can be used in combination.
 付加反応触媒としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が主に使用される。 Examples of the addition reaction catalyst include platinum black, secondary platinum chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chloroplatinic acid and olefins, a platinum catalyst such as platinum bisacetoacetate, Platinum group metal catalysts such as palladium catalysts and rhodium catalysts are mainly used.
 さらに、熱重合性化合物である、不飽和ポリエステル樹脂の例には、商品名PC-740、PC-184-C、PC-350-C(いずれもDICマテリアル社製)等が含まれる。 Furthermore, examples of the unsaturated polyester resin that is a thermopolymerizable compound include trade names PC-740, PC-184-C, PC-350-C (all manufactured by DIC Materials) and the like.
 また、熱重合性化合物である、フェノール樹脂の例には、商品名MEH-8000H、MEH-8005(いずれも明和化成社製)等が含まれる。 Further, examples of the phenol resin which is a thermopolymerizable compound include trade names MEH-8000H, MEH-8005 (both manufactured by Meiwa Kasei Co., Ltd.) and the like.
 上記の中でも、熱重合性化合物は、後述の官能基含有フィラーと化学結合しやすく、また取り扱いが容易であるという観点から、エポキシ樹脂またはその前駆体、もしくはウレタン樹脂またはその前駆体であることが好ましい。 Among the above, the thermopolymerizable compound may be an epoxy resin or a precursor thereof, or a urethane resin or a precursor thereof from the viewpoint of easy chemical bonding with a functional group-containing filler described later and easy handling. preferable.
 上記熱重合性化合物は、樹脂組成物の総量に対して10~90質量%含まれることが好ましく、30~70質量%含まれることがより好ましく、40~60質量%含まれることがさらに好ましい。熱重合性化合物が当該範囲含まれると、得られる立体造形物の耐熱性等が高まりやすくなる。 The thermopolymerizable compound is preferably contained in an amount of 10 to 90% by mass, more preferably 30 to 70% by mass, and further preferably 40 to 60% by mass with respect to the total amount of the resin composition. When the heat-polymerizable compound is included in the range, the heat resistance and the like of the obtained three-dimensional structure are easily increased.
 1-3.官能基含有フィラー
 官能基含有フィラーは、上述の熱重合性化合物に結合可能な官能基を表面に有するものであればよく、樹脂組成物には、フィラーが一種のみ含まれていてもよく、二種以上含まれていてもよい。
1-3. Functional group-containing filler The functional group-containing filler only needs to have a functional group capable of binding to the above-described thermopolymerizable compound on the surface, and the resin composition may contain only one kind of filler. More than one species may be included.
 ここで、官能基含有フィラーは、「熱重合性化合物に結合可能な官能基」および「フィラーに結合または吸着可能な官能基」を有する表面改質剤によって、公知の有機フィラーもしくは無機フィラーを表面処理すること等で得られる。表面処理方法の一例としては、下記の表面改質剤およびフィラーを溶媒中に分散させて、当該溶液を攪拌する方法等が挙げられる。 Here, the functional group-containing filler is a surface of a known organic filler or inorganic filler by a surface modifier having a “functional group capable of binding to a thermally polymerizable compound” and a “functional group capable of binding or adsorbing to a filler”. It is obtained by processing. An example of the surface treatment method includes a method in which the following surface modifier and filler are dispersed in a solvent and the solution is stirred.
 表面改質剤が含む、「熱重合性化合物に結合可能な官能基」は、熱重合性化合物が有する官能基とイオン結合や共有結合等により結合可能、または分子間力により相互作用可能な官能基であればよく、当該官能基は、光重合性化合物が有する官能基の一部と化学結合してもよい。「熱重合性化合物に結合可能な官能基」の例には、アミノ基、イミノ基、エポキシ基、グリシジル基、オキセタニル基、イソシアネート基、シアネート基、ビニル基、スチリル基、ヒドロシリル基、メルカプト基、ウレイド基、(メタ)アクリロイル基、ヒドロキシ基、フェニル基等が含まれる。 “Functional group capable of binding to thermopolymerizable compound” included in the surface modifier is a functional group that can be bonded to the functional group of the thermopolymerizable compound by ionic bond or covalent bond, or that can interact by intermolecular force. Any functional group may be used, and the functional group may be chemically bonded to a part of the functional group of the photopolymerizable compound. Examples of “functional group that can be bonded to the thermally polymerizable compound” include amino group, imino group, epoxy group, glycidyl group, oxetanyl group, isocyanate group, cyanate group, vinyl group, styryl group, hydrosilyl group, mercapto group, A ureido group, a (meth) acryloyl group, a hydroxy group, a phenyl group and the like are included.
 なお、「熱重合性化合物に結合可能な官能基」は、上記熱重合性化合物が有する官能基の種類に応じて適宜選択されることが好ましい。例えば、熱重合性化合物が、エポキシ基を有する場合には、官能基含有フィラーがアミノ基またはチオール基を表面に有することが好ましい。また、熱重合性化合物が、イソシアネートエステル系化合物である場合には、官能基含有フィラーが、アミノ基またはヒドロキシ基を表面に有することが好ましい。熱重合性化合物が、ウレタン樹脂またはその前駆体である場合には、官能基含有フィラーがイソシアネート基、ヒドロキシ基、アミノ基を表面に有することが好ましい。さらに、熱重合性化合物がシリコーン樹脂である場合には、官能基含有フィラーがフェニル基またはヒドロキシ基を、表面に有することが好ましい。また、熱重合性化合物が不飽和ポリエステル樹脂である場合には、官能基含有フィラーが、(メタ)アクリロイル基、フェニル基を表面に有することが好ましい。さらに、熱重合性化合物がフェノール樹脂である場合には、官能基含有フィラーが、アミノ基、ヒドロキシ基を表面に有することが好ましい。 In addition, it is preferable that the “functional group that can be bonded to the thermopolymerizable compound” is appropriately selected according to the type of the functional group of the thermopolymerizable compound. For example, when the thermally polymerizable compound has an epoxy group, the functional group-containing filler preferably has an amino group or a thiol group on the surface. Moreover, when a thermopolymerizable compound is an isocyanate ester type compound, it is preferable that a functional group containing filler has an amino group or a hydroxyl group on the surface. When the thermopolymerizable compound is a urethane resin or a precursor thereof, the functional group-containing filler preferably has an isocyanate group, a hydroxy group, or an amino group on the surface. Furthermore, when the thermopolymerizable compound is a silicone resin, it is preferable that the functional group-containing filler has a phenyl group or a hydroxy group on the surface. Moreover, when a thermopolymerizable compound is unsaturated polyester resin, it is preferable that a functional group containing filler has a (meth) acryloyl group and a phenyl group on the surface. Furthermore, when the thermopolymerizable compound is a phenol resin, the functional group-containing filler preferably has an amino group and a hydroxy group on the surface.
 一方、上記表面改質剤が含む、「フィラーに結合または吸着可能な基」の例には、Si原子や、Ti原子、Zr原子、カルボキシル基、アミノ基、イミノ基、シアノ基、アゾ基、アジ基、チオール基、スルホ基、(メタ)アクリロイル基、エポキシ基、イソシアネート基等が含まれる。これらの中でも、フィラーに対する反応性等の観点から、Si原子、Ti原子、Zr原子が好ましく、特にSi原子が好ましい。 On the other hand, examples of the “group that can be bonded to or adsorbed to the filler” included in the surface modifier include Si atom, Ti atom, Zr atom, carboxyl group, amino group, imino group, cyano group, azo group, An azido group, a thiol group, a sulfo group, a (meth) acryloyl group, an epoxy group, an isocyanate group and the like are included. Of these, Si atoms, Ti atoms, and Zr atoms are preferable, and Si atoms are particularly preferable from the viewpoint of reactivity to the filler.
 上記表面改質剤の具体例には、シランカップリング剤、チタンカップリング剤、またはジルコニウム系カップリング剤等が含まれ、これらの中でもシランカップリング剤が特に好ましい。 Specific examples of the surface modifier include a silane coupling agent, a titanium coupling agent, or a zirconium coupling agent, and among these, a silane coupling agent is particularly preferable.
 シランカップリング剤の例には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン等の反応性官能基を有する化合物が含まれる。 Examples of silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyl Trimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N -2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propyl Amine, N-phenyl-3- Minopropyltrimethoxysilane, tris- (trimethoxysilylpropyl) isocyanurate, 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3 -Compounds having reactive functional groups such as (meth) acryloxypropyltrimethoxysilane are included.
 なお、本明細書において、シランカップリング剤の例には、例えばビニル基やエポキシ基等の反応性官能基を有するシラン系化合物だけでなく、アミノ基、イミノ基、グリシジル基、オキセタニル基、イソシアネート基、シアネート基、スチリル基、ヒドロシリル基、メルカプト基、ウレイド基、(メタ)アクリロイル基、フェニル基、ヒドロキシ基等の反応性官能基を有するシラン系化合物や、シラザン等も含むものとする。 In this specification, examples of the silane coupling agent include not only a silane compound having a reactive functional group such as a vinyl group or an epoxy group, but also an amino group, an imino group, a glycidyl group, an oxetanyl group, an isocyanate. A silane compound having a reactive functional group such as a group, a cyanate group, a styryl group, a hydrosilyl group, a mercapto group, a ureido group, a (meth) acryloyl group, a phenyl group or a hydroxy group, or a silazane is also included.
 また、チタンカップリング剤の具体例には、フェニルトリメトキシチタン、3-アミノプロピルトリメトキシチタン、3-アミノプロピルトリエトキシチタン、3-(2-アミノエチル)-アミノプロピルトリメトキシチタン、3-(2-アミノエチル)-アミノプロピルトリエトキシチタン、3-(2-アミノエチル)-アミノプロピルメチルジメトキシチタン、3-アニリノプロピルトリメトキシチタン、3-メルカプトプロピルトリエトキシチタン、3-イソシアネートプロピルトリメトキシチタン、3-グリシドキシプロピルトリエトキシチタン、3-ウレイドプロピルトリメトキシチタンなどのトリアルコキシチタン類ジフェニルジメトキシチタン等が含まれる。 Specific examples of the titanium coupling agent include phenyltrimethoxytitanium, 3-aminopropyltrimethoxytitanium, 3-aminopropyltriethoxytitanium, 3- (2-aminoethyl) -aminopropyltrimethoxytitanium, 3- (2-aminoethyl) -aminopropyltriethoxytitanium, 3- (2-aminoethyl) -aminopropylmethyldimethoxytitanium, 3-anilinopropyltrimethoxytitanium, 3-mercaptopropyltriethoxytitanium, 3-isocyanatopropyltri Examples include trialkoxytitanium diphenyldimethoxytitanium such as methoxytitanium, 3-glycidoxypropyltriethoxytitanium, and 3-ureidopropyltrimethoxytitanium.
 さらに、ジルコニウム系カップリング剤の具体例には、トリ-n-ブトキシ・エチルアセトアセテートジルコニウム、ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(n-プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム等が含まれる。 Furthermore, specific examples of the zirconium-based coupling agent include tri-n-butoxy ethylacetoacetate zirconium, di-n-butoxy bis (ethylacetoacetate) zirconium, n-butoxy tris (ethylacetoacetate) zirconium, Tetrakis (n-propylacetoacetate) zirconium, tetrakis (acetylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, di-n-butoxy bis (acetylacetonate) zirconium and the like are included.
 一方、上記表面改質剤によって処理されるフィラーの例には、ソーダ石灰ガラス、珪酸ガラス、硼珪酸ガラス、アルミノ珪酸ガラス、石英ガラス等からなるガラスフィラー;アルミナ、酸化ジルコニウム、酸化チタン、チタン酸ジルコン酸鉛、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化スズ、硫酸マグネシウム等からなるセラミックフィラー;鉄、チタン、金、銀、銅、スズ、鉛、ビスマス、コバルト、アンチモン、カドミウム等の金属単体、あるいはこれらの合金等からなる金属フィラー;グラファイト、グラフェン、カーボンナノチューブ等からなるカーボンフィラー;ポリエステル、ポリアミド、ポリアラミド、ポリパラフェニレンベンゾビスオキサゾール、多糖類等からなる有機高分子繊維;チタン酸カリウムウィスカー、シリコーンカーバイトウィスカー、シリコンナイトライドウィスカー、α-アルミナウィスカー、酸化亜鉛ウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、水酸化マグネシウムウィスカー、塩基性硫酸マグネシウムウィスカー、ケイ酸カルシウムウィスカー等からなるウィスカー状無機化合物(上記セラミックフィラーの針状の単結晶も含む);タルク、マイカ、クレイ、ワラストナイト、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母、バーミキュラライト等からなる粘土鉱物等が含まれる。 On the other hand, examples of fillers treated with the surface modifier include glass fillers made of soda-lime glass, silicate glass, borosilicate glass, aluminosilicate glass, quartz glass, etc .; alumina, zirconium oxide, titanium oxide, titanate Ceramic filler composed of lead zirconate, silicon carbide, silicon nitride, aluminum nitride, tin oxide, magnesium sulfate, etc .; simple metals such as iron, titanium, gold, silver, copper, tin, lead, bismuth, cobalt, antimony, cadmium, Or a metal filler made of these alloys, etc .; a carbon filler made of graphite, graphene, carbon nanotubes, etc .; an organic polymer fiber made of polyester, polyamide, polyaramid, polyparaphenylene benzobisoxazole, polysaccharides, etc .; potassium titanate whisker Whisker-like inorganic compounds composed of silicone carbide whisker, silicon nitride whisker, α-alumina whisker, zinc oxide whisker, aluminum borate whisker, calcium carbonate whisker, magnesium hydroxide whisker, basic magnesium sulfate whisker, calcium silicate whisker, etc. (Including the needle-shaped single crystal of the above ceramic filler); talc, mica, clay, wollastonite, hectorite, saponite, stevensite, hydride, montmorillonite, nontrite, bentonite, Na-type tetralithic fluoric mica, Li-type Examples include tetrasilicic fluorine mica, swelling mica such as Na-type fluorine teniolite, Li-type fluorine teniolite, and clay mineral made of vermiculite.
 またさらに、フィラーの例には、ポリエチレンやポリプロピレン等からなるポリオレフィンフィラー;FEP(四フッ化エチレン-六フッ化プロピレン共重合体)、PFA(四フッ化エチレン-パーフルオロアルコキシエチレン共重合体)、ETFE(四フッ化エチレン-エチレン共重合体)等からなるフッ素樹脂フィラー等も含まれる。 Furthermore, examples of fillers include polyolefin fillers made of polyethylene, polypropylene, etc .; FEP (tetrafluoroethylene-hexafluoropropylene copolymer), PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer), A fluororesin filler made of ETFE (tetrafluoroethylene-ethylene copolymer) or the like is also included.
 上記の中でも、アスペクト比が高く、得られる立体造型物の強度が高まりやすいとの観点、さらには得られる立体造形物の寸法変化が少なくなりやすいとの観点から硫酸マグネシウム、および有機高分子繊維が好ましく、特に多糖類からなるナノファイバーであることが好ましい。多糖類の例には、セルロース、ヘミセルロース、リグノセルロース、キチンおよびキトサン等が含まれる。これらのうち、得られる立体造形物の強度がより高まるとの観点からは、セルロースおよびキチンが好ましく、入手性や、立体造形物の強度が高まりやすいとの観点から、セルロースがより好ましい。 Among these, magnesium sulfate and organic polymer fibers are used from the viewpoint that the aspect ratio is high and the strength of the resulting three-dimensional molded article is likely to be increased, and that the dimensional change of the resulting three-dimensional molded article is likely to be reduced. Nanofibers made of polysaccharides are particularly preferable. Examples of polysaccharides include cellulose, hemicellulose, lignocellulose, chitin and chitosan. Among these, cellulose and chitin are preferable from the viewpoint that the strength of the obtained three-dimensional model is further increased, and cellulose is more preferable from the viewpoint that availability and the strength of the three-dimensional model are easily increased.
 セルロースからなる繊維状のフィラー、すなわちセルロースナノファイバー(以下、単に「ナノセルロース」ともいう。)は、植物由来の繊維質もしくは植物の細胞壁の機械的な解繊、酢酸菌による生合成、2,2,6,6-tetramethylpiperidine-1-oxyl radical(TEMPO)等のN-オキシル化合物による酸化または電解紡糸法等によって得られる、繊維状のナノフィブリルを主成分とするセルロースナノファイバーであってもよい。また、ナノセルロースは、植物由来の繊維質もしくは植物の細胞壁を機械的に解繊した後に酸処理等をして得られる、ウィスカー状(針状)に結晶化したナノフィブリルを主成分とするセルロースナノクリスタルであってもよく、その他の形状であってもよい。ナノセルロースは、セルロースを主成分とすればよく、リグニンおよびヘミセルロース等を含んでいてもよい。脱リグニン処理を行わず、疎水性であるリグニンを含有するナノセルロースは、光重合性化合物や熱重合性化合物との親和性が高いため好ましい。 A fibrous filler composed of cellulose, ie, cellulose nanofiber (hereinafter also simply referred to as “nanocellulose”), is a plant-derived fiber or mechanical defibrillation of plant cell walls, biosynthesis by acetic acid bacteria, 2, Cellulose nanofibers mainly composed of fibrous nanofibrils obtained by oxidation with an N-oxyl compound such as 2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) or electrospinning may be used. . Nanocellulose is cellulose mainly composed of nanofibrils crystallized in whisker-like (needle-like) obtained by mechanically defibrating plant-derived fibers or plant cell walls. It may be a nanocrystal or any other shape. Nanocellulose should just have cellulose as a main component and may contain lignin, hemicellulose, etc. Nanocellulose containing lignin which is hydrophobic without performing delignification treatment is preferable because of its high affinity with photopolymerizable compounds and thermopolymerizable compounds.
 上記フィラーの形状は特に制限されず、例えば繊維状(ウィスカー状を含む)であってもよく、粒子状であってもよいが、立体造形物の強度向上との観点から、繊維状であることが好ましい。 The shape of the filler is not particularly limited, and may be, for example, fibrous (including whisker-like) or particulate, but is fibrous from the viewpoint of improving the strength of the three-dimensional model. Is preferred.
 なお、フィラーが粒子状である場合、その平均粒径は0.005~200μmであることが好ましく、0.01~100μmであることがより好ましく、0.1~50μmであることがさらに好ましい。粒子状のフィラーの平均粒径が0.1μm以上であると、立体造形物の強度が高まりやすくなる。一方、平均粒径が50μm以下であると、立体造形物を高精細に形成しやすくなる。なお、平均粒径は、樹脂組成物を透過型電子顕微鏡(TEM)で撮像して得られた画像を解析して、測定することができる。 When the filler is particulate, the average particle size is preferably 0.005 to 200 μm, more preferably 0.01 to 100 μm, and further preferably 0.1 to 50 μm. When the average particle size of the particulate filler is 0.1 μm or more, the strength of the three-dimensional structure is easily increased. On the other hand, when the average particle size is 50 μm or less, it becomes easy to form a three-dimensional modeled object with high definition. The average particle diameter can be measured by analyzing an image obtained by imaging the resin composition with a transmission electron microscope (TEM).
 一方、フィラーが繊維状である場合、その平均繊維径は、0.002μm以上20μm以下であることが好ましい。上記平均繊維径が0.002μm以上であると、立体造形物の強度が高まりやすくなる。平均繊維径が20μm以下であると、フィラーが樹脂組成物の粘度を高めすぎず、立体造形物の精度が良好になりやすい。フィラーの平均繊維径は、0.005μm以上10μm以下であることがより好ましく、0.01μm以上8μm以下であることがさらに好ましく、0.02μm以上5μm以下であることが特に好ましい。 On the other hand, when the filler is fibrous, the average fiber diameter is preferably 0.002 μm or more and 20 μm or less. When the average fiber diameter is 0.002 μm or more, the strength of the three-dimensional structure is easily increased. When the average fiber diameter is 20 μm or less, the filler does not excessively increase the viscosity of the resin composition, and the accuracy of the three-dimensional structure tends to be good. The average fiber diameter of the filler is more preferably 0.005 μm or more and 10 μm or less, further preferably 0.01 μm or more and 8 μm or less, and particularly preferably 0.02 μm or more and 5 μm or less.
 フィラーの平均繊維長は、0.2μm以上200μm以下であることが好ましい。上記平均繊維長が0.2μm以上であると、立体造形物の強度が高まりやすくなる。上記平均繊維長が100μm以下であると、フィラー同士が絡み合うことによって生じるフィラーの沈降が生じにくい。フィラーの平均繊維長は、0.5μm以上100μm以下であることがより好ましく、1μm以上60μm以下であることがさらに好ましく、1μm以上40μm以下であることが特に好ましい。 The average fiber length of the filler is preferably 0.2 μm or more and 200 μm or less. When the average fiber length is 0.2 μm or more, the strength of the three-dimensional structure is easily increased. When the average fiber length is 100 μm or less, the filler is less likely to settle due to the entanglement between the fillers. The average fiber length of the filler is more preferably from 0.5 μm to 100 μm, further preferably from 1 μm to 60 μm, and particularly preferably from 1 μm to 40 μm.
 フィラーのアスペクト比は、10以上10000以下であることが好ましい。アスペクト比が10以上であると、立体造形物の強度がより高くなりやすい。アスペクト比が10000以下であると、フィラー同士が絡み合って生じるフィラーの沈降が生じにくい。フィラーのアスペクト比は、12以上8000以下であることがより好ましく、15以上2000以下であることがさらに好ましく、18以上800以下であることが特に好ましい。 The aspect ratio of the filler is preferably 10 or more and 10,000 or less. If the aspect ratio is 10 or more, the strength of the three-dimensional structure tends to be higher. When the aspect ratio is 10,000 or less, the filler is hardly precipitated due to the entanglement between the fillers. The aspect ratio of the filler is more preferably 12 or more and 8000 or less, further preferably 15 or more and 2000 or less, and particularly preferably 18 or more and 800 or less.
 フィラーの平均繊維径、平均繊維長およびアスペクト比は、樹脂組成物を透過型電子顕微鏡(TEM)で撮像して得られた画像を解析して、測定することができる。 The average fiber diameter, average fiber length, and aspect ratio of the filler can be measured by analyzing an image obtained by imaging the resin composition with a transmission electron microscope (TEM).
 ここで、樹脂組成物に含まれる官能基含有フィラーの量は、樹脂組成物の全質量に対して1~70質量%であることが好ましく、5~60質量%であることがより好ましく、10~40質量%が最も好ましい。官能基含有フィラーの量が当該範囲であると、強度の高い立体造形物が得られやすくなる。 Here, the amount of the functional group-containing filler contained in the resin composition is preferably 1 to 70% by mass, more preferably 5 to 60% by mass with respect to the total mass of the resin composition. Most preferred is ˜40 mass%. When the amount of the functional group-containing filler is within the above range, a three-dimensional model with high strength is easily obtained.
 1-4.熱硬化剤および熱硬化促進剤
 樹脂組成物には、通常、上述の熱重合性化合物を硬化させるための熱硬化剤や熱硬化促進剤がさらに含まれる。熱硬化剤や熱硬化促進剤の種類は、上述の熱重合性化合物の種類等に応じて適宜選択される。
1-4. Thermosetting agent and thermosetting accelerator The resin composition usually further includes a thermosetting agent and a thermosetting accelerator for curing the above-mentioned thermopolymerizable compound. The kind of thermosetting agent or thermosetting accelerator is appropriately selected according to the kind of the above-mentioned thermopolymerizable compound.
 熱硬化剤や熱硬化促進剤の例には、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2~20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、N,N-ジメチル-n-オクチルアミン、ジシアノジアミド等のアミノ類;アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂;ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物を含む酸無水物;ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物;カルボン酸含有ポリエステル樹脂等の有機酸類;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)、アセチルアセトナート亜鉛等の有機金属塩が含まれる。樹脂組成物には熱硬化剤や熱硬化促進剤が1種のみ含まれていてもよく、2種以上含まれていてもよい。当該熱硬化剤や熱硬化促進剤の量は、熱重合性化合物の種類や量に合わせて適宜選択される。 Examples of thermosetting agents and accelerators include linear aliphatic diamines having 2 to 20 carbon atoms such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, metaphenylenediamine, paraphenylenediamine, and paraxylene. Diamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodicyclohexane, bis (4-amino Phenyl) phenylmethane, 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, N, N-dimethyl-n-octylamine, aminos such as dicyanodiamide Aniline modified resole resin Resol type phenol resins such as dimethyl ether resol resin; Novolak type phenol resins such as phenol novolak resin, cresol novolak resin, tert-butylphenol novolak resin, nonylphenol novolak resin; Phenol such as phenylene skeleton-containing phenol aralkyl resin and biphenylene skeleton-containing phenol aralkyl resin Aralkyl resins; Phenol resins having a condensed polycyclic structure such as naphthalene skeleton and anthracene skeleton; Polyoxystyrenes such as polyparaoxystyrene; Alicyclics such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Good acid anhydride, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA), etc. Acid anhydrides including aromatic acid anhydrides; Polymercaptan compounds such as polysulfides, thioesters and thioethers; Isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; Organic acids such as carboxylic acid-containing polyester resins; Zinc naphthenates and naphthenic acids Organic metal salts such as cobalt, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), and zinc acetylacetonate are included. The resin composition may contain only one kind of thermosetting agent or thermosetting accelerator, or may contain two or more kinds. The amount of the thermosetting agent and the thermosetting accelerator is appropriately selected according to the type and amount of the thermopolymerizable compound.
 熱硬化剤や熱硬化促進剤の量は、上述の熱重合性化合物の量に合わせて適宜選択されるが、例えば熱重合性化合物100質量部に対して、30~100質量部であることが好ましく、40~90質量部であることがより好ましく、50~80質量部であることがさらに好ましい。 The amount of the thermosetting agent and the thermosetting accelerator is appropriately selected according to the amount of the above-mentioned thermopolymerizable compound, and is, for example, 30 to 100 parts by mass with respect to 100 parts by mass of the thermopolymerizable compound. The amount is preferably 40 to 90 parts by mass, more preferably 50 to 80 parts by mass.
 1-5.光重合開始剤
 樹脂組成物には、通常、上記光重合性化合物の重合を開始するための光重合開始剤が含まれる。光重合開始剤の種類は、光重合性化合物の種類に応じて適宜選択され、例えば光重合性化合物がラジカル重合性化合物である場合には、ラジカル重合開始剤が含まれる。一方、光重合性化合物がカチオン重合性化合物である場合には、光酸発生剤等のカチオン重合開始剤が含まれる。
1-5. Photopolymerization initiator The resin composition usually contains a photopolymerization initiator for initiating the polymerization of the photopolymerizable compound. The type of the photopolymerization initiator is appropriately selected according to the type of the photopolymerizable compound. For example, when the photopolymerizable compound is a radical polymerizable compound, a radical polymerization initiator is included. On the other hand, when the photopolymerizable compound is a cationic polymerizable compound, a cationic polymerization initiator such as a photoacid generator is included.
 ラジカル重合開始剤は、活性エネルギーの照射によってラジカルを発生させることが可能な化合物であれば特に制限されず、公知のラジカル重合開始剤とすることができる。 The radical polymerization initiator is not particularly limited as long as it is a compound capable of generating radicals by irradiation with active energy, and can be a known radical polymerization initiator.
 ラジカル重合開始剤の例には、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(BASF社製、IRGACURE 1173(「IRGACURE」は同社の登録商標)等)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン(BASF社製、IRGACURE 127等)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(BASF社製、IRGACURE 2959等)、2,2-ジメトキシー1,2-ジフェニルエタンー1-オン(BASF社製、IRGACURE 651等)、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ベンジル、メチルフェニルグリオキシエステル、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノンおよび2,4-ジエチルオキサンテン-9-オン等が含まれる。 Examples of radical polymerization initiators include 2-hydroxy-2-methyl-1-phenylpropan-1-one (manufactured by BASF, IRGACURE 1173 (“IRGACURE” is a registered trademark of the company), etc.), 2-hydroxy-1 -{4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one (manufactured by BASF, IRGACURE 127 etc.), 1- [4- (2 -Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (BASF, IRGACURE 2959, etc.), 2,2-dimethoxy-1,2-diphenylethane-1-one (BASF) (IRGACURE 651, etc.), benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-hy Roxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4- Thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, benzoin, benzoin methyl ether, benzoin isopropyl ether, diphenyl (2,4,6-trimethylbenzoyl) ) Phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, benzyl, methylphenylglyoxyester, benzophenone, methyl-4-phenylbenzophenone o-benzoylbenzoate, 4,4'-dichlorobenzo Enone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4- Methoxybenzophenone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, Michler-ketone, 4,4'-diethylaminobenzophenone, 10-butyl-2-chloroacridone 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone, 2,4-diethyloxanthen-9-one and the like.
 ラジカル重合開始剤は、光重合性化合物(ラジカル重合性化合物)の総量に対して0.01~10質量%含まれることが好ましく、0.1~5質量%含まれることがより好ましく、0.5~3質量%含まれることがさらに好ましい。ラジカル重合開始剤が当該範囲含まれると、上述の光重合性化合物を十分に効率よく重合させることが可能となる。 The radical polymerization initiator is preferably contained in an amount of 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total amount of the photopolymerizable compound (radical polymerizable compound). More preferably 5 to 3% by mass is contained. When the radical polymerization initiator is included in the range, the above-described photopolymerizable compound can be polymerized sufficiently efficiently.
 一方、カチオン重合開始剤は、活性エネルギーの照射によって、酸を発生させ、光重合性化合物(カチオン重合性化合物)を重合させることが可能な化合物であれば特に制限されず、公知の光酸発生剤を用いることができる。光酸発生剤の例には、スルホニウム塩系、またはヨードニウム塩系等のオニウム塩系光酸発生剤が含まれる。 On the other hand, the cationic polymerization initiator is not particularly limited as long as it is a compound capable of generating an acid by irradiation of active energy and polymerizing a photopolymerizable compound (cationic polymerizable compound). An agent can be used. Examples of the photoacid generator include sulfonium salt-based or iodonium salt-based onium salt-based photoacid generators.
 上記オニウム塩系光酸発生剤におけるアニオン成分としては、例えば、PF 、PF(CFCF 等のリン酸イオン、SbF 等のアンチモン酸イオン、トリフルオロメタンスルホナート等のフルオロアルキルスルホン酸イオン、パーフルオロアルキルスルホンアミド、パーフルオロアルキルスルホンメチド等が含まれる。 Examples of the anionic component in the onium salt photoacid generator include phosphate ions such as PF 6 and PF 4 (CF 2 CF 3 ) 2 , antimonate ions such as SbF 6 , trifluoromethanesulfonate, and the like. Fluoroalkylsulfonic acid ions, perfluoroalkylsulfonamides, perfluoroalkylsulfone methides and the like.
 一方、上記オニウム塩系光酸発生剤におけるカチオン成分としては、例えば、芳香族スルホニウム等のスルホニウム、芳香族ヨードニウム等のヨードニウム、芳香族ホスホニウム等のホスホニウム、芳香族スルホキソニウム等のスルホキソニウム等が含まれる。 On the other hand, as the cation component in the onium salt photoacid generator, for example, sulfonium such as aromatic sulfonium, iodonium such as aromatic iodonium, phosphonium such as aromatic phosphonium, sulfoxonium such as aromatic sulfoxonium, etc. Is included.
 このようなオニウム塩系光酸発生剤の例には、アニオン成分をカウンターアニオンとして有する、芳香族スルホニウム塩等のスルホニウム塩、芳香族ヨードニウム塩等のヨードニウム塩、芳香族ホスホニウム塩等のホスホニウム塩、芳香族スルホキソニウム塩等のスルホキソニウム塩等が含まれる。 Examples of such onium salt photoacid generators include sulfonium salts such as aromatic sulfonium salts, iodonium salts such as aromatic iodonium salts, phosphonium salts such as aromatic phosphonium salts, having an anion component as a counter anion, Examples include sulfoxonium salts such as aromatic sulfoxonium salts.
 光酸発生剤は、光重合性化合物(カチオン重合性化合物)の総量に対して0.01~10質量%含まれることが好ましく、0.1~5質量%含まれることがより好ましく、0.5~3質量%含まれることがさらに好ましい。光酸発生剤が当該範囲含まれると、上述の光重合性化合物(カチオン重合性化合物)を十分に効率よく重合させることが可能となる。 The photoacid generator is preferably contained in an amount of 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total amount of the photopolymerizable compound (cationic polymerizable compound). More preferably 5 to 3% by mass is contained. When the photoacid generator is included in this range, the above-mentioned photopolymerizable compound (cationic polymerizable compound) can be polymerized sufficiently efficiently.
 1-6.その他の成分
 樹脂組成物には、活性エネルギーの照射による立体造形物の形成を可能にし、かつ得られる立体造形物に強度のムラを顕著に生じさせない限りにおいて、光増感剤、重合阻害剤、酸化防止剤、染料および顔料等の色材、消泡剤ならびに界面活性剤等の任意の添加剤がさらに含まれていてもよい。
1-6. Other components In the resin composition, a photosensitizer, a polymerization inhibitor, and the like, as long as it enables formation of a three-dimensional structure by irradiation of active energy and does not cause unevenness in strength in the resulting three-dimensional structure. Optional additives such as antioxidants, coloring materials such as dyes and pigments, antifoaming agents, and surfactants may be further included.
 1-7.樹脂組成物の物性
 本発明の樹脂組成物は、JIS K-7117-1に準拠する方法で、回転式粘度計を用いて測定される、25℃の粘度が0.2~100Pa・sであることが好ましく、1~10Pa・sであることがより好ましい。樹脂組成物の粘度が当該範囲であると、後述の立体造形物の製造方法において適度な流動性が得られる。その結果、造形速度を向上させることができるとともに、樹脂組成物内で官能基含有フィラー等が沈降し難くなり、ひいては立体造形物の強度が高まりやすくなる。
1-7. Physical Properties of Resin Composition The resin composition of the present invention has a viscosity at 25 ° C. of 0.2 to 100 Pa · s as measured using a rotary viscometer in accordance with JIS K-7117-1. It is preferably 1 to 10 Pa · s. When the viscosity of the resin composition is within the above range, moderate fluidity can be obtained in the method for producing a three-dimensional structure to be described later. As a result, the modeling speed can be improved, and the functional group-containing filler or the like is less likely to settle in the resin composition, and as a result, the strength of the three-dimensional model is easily increased.
 1-8.樹脂組成物の調製方法
 上記樹脂組成物は、上記光重合性化合物、熱重合性化合物、官能基含有フィラー、光重合開始剤、熱硬化剤や熱硬化促進剤と、必要に応じて任意の添加剤等を任意の順で混合することで調製できる。
1-8. Preparation Method of Resin Composition The resin composition is composed of the photopolymerizable compound, the thermopolymerizable compound, the functional group-containing filler, the photopolymerization initiator, the thermosetting agent and the thermosetting accelerator, and optionally added as necessary. It can be prepared by mixing agents in any order.
 樹脂組成物の混合に用いられる装置としては公知のものを使用できる。例えば、ウルトラタラックス(IKAジャパン社製)、TKホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DCPスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、スターバースト(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO 3000(美粒社製)などの高圧衝撃式分散装置が挙げられる。 As the apparatus used for mixing the resin composition, a known apparatus can be used. For example, Ultra Turrax (manufactured by IKA Japan), TK homomixer (manufactured by Primix), TK pipeline homomixer (manufactured by Primics), TK Philmix (manufactured by Primix), Claremix (manufactured by M Technique), Medialess stirrers such as Claire SS5 (manufactured by M Technique), Cavitron (manufactured by Eurotech), Fine Flow Mill (manufactured by Taiheiyo Kiko), Viscomill (manufactured by IMEX), Apex Mill (manufactured by Kotobuki Industries), Star mill (Ashizawa, manufactured by Finetech), DCP Super Flow (manufactured by Nihon Eirich), MP Mill (manufactured by Inoue Mfg.), Spike mill (manufactured by Inoue Mfg.), Mighty mill (manufactured by Inoue Mfg.), SC mill (Mitsui Media stirrers such as mining) and optimizers ( Ginomashin Inc.), manufactured by Starburst (Sugino Machine Limited), Nanomizer (manufactured by Yoshida Kikai), and a high-pressure impact type dispersing device such as NANO 3000 (manufactured by Bitsubusha).
 また、あわとり練太郎(シンキー社製)やカクハンター(写真化学社製)等の自転公転ミキサーや、ハイビスミックス(プライミクス社製)、ハイビスディスパー(プライミクス社製)等の遊星式混合機、Nanoruptor(ソニック・バイオ社製)等の超音波分散装置も好適に用いることが可能である。 Also, revolving mixers such as Awatori Nerita (Shinky) and Kaku Hunter (Photochemical), planetary mixers such as Hibismix (Primics) and Hibis Disper (Primics), Nanouptor An ultrasonic dispersion apparatus such as (manufactured by Sonic Bio) can also be suitably used.
 2.立体造形物の製造方法
 上述した液体状の樹脂組成物は、活性エネルギーを選択的に照射して、前記光重合性化合物の硬化物を含む一次硬化物を形成する工程を含む、立体造形物の製造方法に使用することができる。
2. Manufacturing method of three-dimensional molded article The liquid resin composition described above includes a step of selectively irradiating active energy to form a primary cured product including a cured product of the photopolymerizable compound. It can be used for manufacturing methods.
 上述の樹脂組成物を用いた立体造形物の製造方法では、まず樹脂組成物に選択的に活性エネルギーを照射し、上述の光重合性化合物を所望の形状に硬化させて、一次硬化物を形成する光造形工程を行う。そして一次硬化物の形成後、当該一次硬化物内に含まれる熱重合性化合物を熱重合させる熱硬化工程を行い、立体造形物を得る。なお、一次硬化物の作製後、さらに活性エネルギーを照射する活性エネルギー照射工程を行ってもよい。 In the manufacturing method of the three-dimensional molded article using the above-mentioned resin composition, first, the resin composition is selectively irradiated with active energy, and the above-mentioned photopolymerizable compound is cured into a desired shape to form a primary cured product. An optical modeling process is performed. And after formation of a primary hardened | cured material, the thermosetting process which thermally polymerizes the thermopolymerizable compound contained in the said primary hardened | cured material is performed, and a three-dimensional molded item is obtained. In addition, you may perform the active energy irradiation process of irradiating active energy after preparation of a primary cured material.
 このような立体造形物の製造方法の例には、以下の2つの実施形態が含まれるが、本発明の方法は、これらの方法に限定されない。 The following two embodiments are included in examples of the manufacturing method of such a three-dimensional structure, but the method of the present invention is not limited to these methods.
 2-1.積層造形法(SLA法)
 図1は、積層造形法により一次硬化物を作製するための装置(立体造形物の製造装置)の一例を示す模式図である。製造装置500は、液体状の樹脂組成物550を貯留可能な造形槽510と、造形槽510の内部で上下方向(深さ方向)に往復移動可能な造形ステージ520と、造形ステージ520を支持するベース521と、活性エネルギーの照射源530と、活性エネルギーを造形槽510の内部に導くガルバノミラー531等を有する。
2-1. Additive manufacturing method (SLA method)
FIG. 1 is a schematic diagram illustrating an example of an apparatus (manufacturing apparatus for a three-dimensional structure) for producing a primary cured product by an additive manufacturing method. The manufacturing apparatus 500 supports the modeling tank 510 that can store the liquid resin composition 550, the modeling stage 520 that can reciprocate in the vertical direction (depth direction) inside the modeling tank 510, and the modeling stage 520. A base 521, an active energy irradiation source 530, and a galvano mirror 531 that guides the active energy into the modeling tank 510 are included.
 造形槽510は、製造しようとする一次硬化物を収容可能な大きさを有していればよい。また、活性エネルギーを照射するための光源530には、公知のものを使用することができる。例えば紫外線を照射する光源530の例には、半導体レーザー、メタルハライドランプ、水銀アークランプ、キセノンアークランプ、蛍光ランプ、炭素アークランプ、タングステン-ハロゲン複写ランプ、および太陽光等が含まれる。 The modeling tank 510 only needs to have a size that can accommodate the primary cured product to be manufactured. Moreover, a well-known thing can be used for the light source 530 for irradiating active energy. For example, examples of the light source 530 for irradiating ultraviolet rays include a semiconductor laser, a metal halide lamp, a mercury arc lamp, a xenon arc lamp, a fluorescent lamp, a carbon arc lamp, a tungsten-halogen copying lamp, and sunlight.
 当該方法ではまず、樹脂組成物550を造形槽510内に充填する。またこのとき、樹脂組成物550の液面から、作製する造形物層(第1造形物層)の厚み分だけ下方に造形ステージ520を配置する。この状態で、照射源530から出射された活性エネルギーを、ガルバノミラー531等で導いて走査し、造形ステージ520上の樹脂組成物550に照射する。このとき、第1造形物層を形成する領域にのみ選択的に活性エネルギーを照射することで、所望の形状に第1造形物層が形成される。 In this method, first, the resin composition 550 is filled in the modeling tank 510. At this time, the modeling stage 520 is disposed below the liquid surface of the resin composition 550 by the thickness of the modeled object layer (first modeled object layer) to be produced. In this state, the active energy emitted from the irradiation source 530 is guided and scanned by the galvano mirror 531 or the like, and irradiated to the resin composition 550 on the modeling stage 520. At this time, the first shaped article layer is formed in a desired shape by selectively irradiating the active energy only to the region where the first shaped article layer is formed.
 その後、造形ステージ520を1層分の厚み(次に作製する第2造形物層の厚み分)だけ降下(深さ方向へ移動)させて、第1造形物層を樹脂組成物550の中に沈下させる。これにより、上記第1造形物層上に樹脂組成物が供給される。続いて上記と同様に、照射源530から出射された活性エネルギーを、ガルバノミラー531等で導き、第1造形物層より上方に位置する樹脂組成物550に照射する。このときも、第2造形物層を形成する領域にのみ選択的に活性エネルギーを照射する。これにより、前述の第1造形物層上に第2造形物層が積層される。 Thereafter, the modeling stage 520 is lowered (moved in the depth direction) by the thickness of one layer (the thickness of the second modeling object layer to be produced next), and the first modeling object layer is placed in the resin composition 550. Let it sink. Thereby, the resin composition is supplied onto the first modeled object layer. Subsequently, in the same manner as described above, the active energy emitted from the irradiation source 530 is guided by the galvanometer mirror 531 or the like, and irradiated to the resin composition 550 positioned above the first modeled object layer. Also at this time, active energy is selectively irradiated only to the area | region which forms a 2nd molded article layer. Thereby, a 2nd modeling thing layer is laminated | stacked on the above-mentioned 1st modeling thing layer.
 その後、造形ステージ520の降下(樹脂組成物の供給)、および活性エネルギーの照射、を繰り返すことで、所望の形状に一次硬化物が形成される。なお、上記方法で作製する一次硬化物の形状は、最終的に作製する立体造形物の形状と同様とする。 Thereafter, the primary cured product is formed into a desired shape by repeatedly lowering the modeling stage 520 (supplying the resin composition) and irradiating with active energy. In addition, let the shape of the primary cured material produced by the said method be the same as the shape of the three-dimensional molded item finally produced.
 得られた一次硬化物に対し、必要に応じて、さらに活性エネルギーを照射してもよい。活性エネルギーの照射は、所望の範囲のみ行ってもよく、一次硬化物全体に対して行ってもよい。このような活性エネルギーの照射を行うと、一次硬化物の内部まで重合性が高まり、得られる立体造形物の反りが抑制されやすくなる。 If necessary, the obtained primary cured product may be further irradiated with active energy. Irradiation of active energy may be performed only in a desired range or may be performed on the entire primary cured product. When irradiation of such active energy is performed, the polymerizability increases to the inside of the primary cured product, and warpage of the resulting three-dimensional model is easily suppressed.
 その後、一次硬化物を公知の方法で加熱し、当該一次硬化物に含まれる熱重合性化合物を重合させたり、官能基含有フィラーを熱重合性化合物が有する官能基と反応させる。上記一次硬化物の加熱は、一次硬化物が変形しない温度で行うことが好ましく、例えば光重合性化合物の硬化物のガラス転移温度(Tg)より低い温度とすることが好ましい。 Thereafter, the primary cured product is heated by a known method to polymerize the thermopolymerizable compound contained in the primary cured product, or to react the functional group-containing filler with the functional group of the thermopolymerizable compound. The primary cured product is preferably heated at a temperature at which the primary cured product is not deformed. For example, the temperature is preferably lower than the glass transition temperature (Tg) of the cured product of the photopolymerizable compound.
 2-2.連続造形法(CLIP法)
 図2は、連続造形法により一次硬化物を作製するための装置(立体造形物の製造装置)の一例を示す模式図である。図2に示すように、製造装置600は、液体状の樹脂組成物を貯留可能な造形槽610と、上下方向(深さ方向)に往復移動可能なステージ620と、活性エネルギーを照射するための光源660等と、を有する。造形槽610は、その底部に、樹脂組成物を透過させず、活性エネルギーおよび酸素は透過させる窓部615を有する。なお、造形槽610は、製造しようとする立体造形物よりも広い幅を有し、かつ樹脂組成物と相互作用しないものであれば、その材質等は特に制限されない。また、窓部615の材質も、本実施形態の目的および硬化を損なわない範囲であれば特に制限されない。
2-2. Continuous molding method (CLIP method)
FIG. 2 is a schematic diagram illustrating an example of an apparatus (manufacturing apparatus for a three-dimensional model) for producing a primary cured product by a continuous modeling method. As shown in FIG. 2, the manufacturing apparatus 600 irradiates a modeling tank 610 capable of storing a liquid resin composition, a stage 620 capable of reciprocating in the vertical direction (depth direction), and active energy. Light source 660 and the like. The modeling tank 610 has a window portion 615 that does not allow the resin composition to pass therethrough but allows the active energy and oxygen to pass therethrough. In addition, the material etc. will not be restrict | limited especially if the modeling tank 610 has a width | variety wider than the three-dimensional molded item to manufacture, and does not interact with a resin composition. Further, the material of the window portion 615 is not particularly limited as long as it does not impair the purpose and curing of the present embodiment.
 また、活性エネルギーを照射するための光源660は公知のものを使用することができ、積層造形法に用いる光源と同様とすることができる。また、光源660に液晶パネルやデジタルミラーデバイス(DMD)等の空間光変調器(Spatial Light Modulator:SLM)を有するSLM投影光学系を用いることで、活性エネルギーを所望の領域に面照射してもよい。 Further, a known light source 660 for irradiating active energy can be used, and can be the same as the light source used in the additive manufacturing method. Further, by using an SLM projection optical system having a spatial light modulator (SLM) such as a liquid crystal panel or a digital mirror device (DMD) as the light source 660, even if the active energy is surface-irradiated to a desired region, Good.
 当該方法では、まず、造形槽610に上述の樹脂組成物を充填する。そして、造形槽610の底部に設けられた窓部615から、造形槽610の底部側に酸素を導入する。酸素の導入方法は特に制限されず、例えば造形槽610の外部を酸素濃度が高い雰囲気とし、当該雰囲気に圧力をかける方法等とすることができる。 In this method, first, the molding tank 610 is filled with the above-described resin composition. And oxygen is introduce | transduced into the bottom part side of the modeling tank 610 from the window part 615 provided in the bottom part of the modeling tank 610. FIG. The method for introducing oxygen is not particularly limited, and for example, the outside of the modeling tank 610 may be an atmosphere having a high oxygen concentration and a pressure may be applied to the atmosphere.
 このように窓部615から造形槽610内に酸素を供給することにより、窓部615側の領域では、酸素濃度が上昇し、活性エネルギーを照射されても光重合性化合物が硬化しないバッファ領域642が形成される。一方で、バッファ領域642より上側の領域では、酸素の濃度がバッファ領域642より十分に低くなり、活性エネルギーの照射によって、光重合性化合物が硬化可能な硬化用領域644となる。 By supplying oxygen from the window 615 into the modeling tank 610 in this way, in the region on the window 615 side, the oxygen concentration increases, and the buffer region 642 where the photopolymerizable compound does not cure even when irradiated with active energy. Is formed. On the other hand, in the region above the buffer region 642, the oxygen concentration is sufficiently lower than that of the buffer region 642, and the photopolymerizable compound can be cured by the irradiation with active energy.
 続いて、前記バッファ領域側642から活性エネルギーを選択的に照射して、硬化用領域644で光重合性化合物の硬化物を形成する工程を行う。具体的には、一次硬化物作製の基点となるステージ620を、硬化用領域644とバッファ領域642との界面近傍に配置する。そして、バッファ領域642側に配置された光源660からステージ620の底面側に、選択的に活性エネルギーを照射する。これにより、ステージ620の底面近傍(硬化用領域644)の光重合性化合物が硬化して、一次硬化物の最上部が形成される。 Subsequently, a step of selectively irradiating active energy from the buffer region side 642 to form a cured product of the photopolymerizable compound in the curing region 644 is performed. Specifically, a stage 620 serving as a base point for producing the primary cured product is disposed in the vicinity of the interface between the curing region 644 and the buffer region 642. Then, active energy is selectively irradiated to the bottom surface side of the stage 620 from the light source 660 disposed on the buffer region 642 side. Thereby, the photopolymerizable compound in the vicinity of the bottom surface of the stage 620 (curing region 644) is cured, and the uppermost portion of the primary cured product is formed.
 その後、ステージ620を上昇(バッファ領域642から離れる方向に移動)させる。これにより、硬化物651より造形槽610底部側の硬化用領域644に、未硬化の樹脂組成物650が新たに供給される。そして、ステージ620および硬化物651を連続的または断続的に上昇させながら、光源660から活性エネルギーを連続的または断続的に、かつ選択的(硬化させる領域)に照射する。これにより、ステージ620底面から造形槽610の底部側にかけて硬化物が連続して形成され、継ぎ目がなく、強度の高い一次造形物が製造される。なお、本実施形態においても、一次硬化物の形状は、最終的に作製する立体造形物の形状と同様とする。 Thereafter, the stage 620 is moved up (moved away from the buffer area 642). Thereby, the uncured resin composition 650 is newly supplied from the cured product 651 to the curing region 644 on the bottom side of the modeling tank 610. Then, while continuously or intermittently raising the stage 620 and the cured product 651, the active energy is irradiated from the light source 660 continuously or intermittently and selectively (a region to be cured). As a result, a cured product is continuously formed from the bottom surface of the stage 620 to the bottom side of the modeling tank 610, and a primary modeled object having no seam and high strength is manufactured. In this embodiment as well, the shape of the primary cured product is the same as the shape of the three-dimensional model to be finally produced.
 その後、得られた一次硬化物に対し、必要に応じて、さらに活性エネルギーを照射してもよい。活性エネルギーの照射は、所望の範囲のみ行ってもよく、一次硬化物全体に対して行ってもよい。上述のように、このような活性エネルギー照射を行うと、一次硬化物内部の光重合性化合物の重合性が高まり、得られる立体造形物の反りが抑制されやすくなる。 Thereafter, the obtained primary cured product may be further irradiated with active energy as necessary. Irradiation of active energy may be performed only in a desired range or may be performed on the entire primary cured product. As described above, when such active energy irradiation is performed, the polymerizability of the photopolymerizable compound inside the primary cured product is increased, and warpage of the resulting three-dimensional model is easily suppressed.
 その後、一次硬化物を、公知の方法で加熱し、当該一次硬化物に含まれる熱重合性化合物を重合させたり、官能基含有フィラーを熱重合性化合物が有する官能基と反応させる。上記一次硬化物の加熱は、一次硬化物が変形しない温度で行うことが好ましく、例えば光重合性化合物の硬化物のガラス転移温度(Tg)より低い温度とすることが好ましい。 Thereafter, the primary cured product is heated by a known method to polymerize the thermopolymerizable compound contained in the primary cured product, or to react the functional group-containing filler with the functional group of the thermopolymerizable compound. The primary cured product is preferably heated at a temperature at which the primary cured product is not deformed. For example, the temperature is preferably lower than the glass transition temperature (Tg) of the cured product of the photopolymerizable compound.
 以下において、本発明の具体的な実施例を説明する。なお、これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, specific examples of the present invention will be described. These examples do not limit the scope of the present invention.
 1-1.樹脂組成物の作製
 [比較例1]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600;ビスフェノールAタイプエポキシアクリレート)360g、および光重合開始剤(BASF社製、IRGACURE TPO;ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド)5.0gを混合し、樹脂組成物を調製した。
1-1. Preparation of Resin Composition [Comparative Example 1]
360 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600; bisphenol A type epoxy acrylate), and photopolymerization initiator (BASF, IRGACURE TPO; diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide) 5 0.0 g was mixed to prepare a resin composition.
 [比較例2]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)360g、ガラスビーズ40g、および光重合開始剤(BASF社製、IRGACURE TPO)5.0gを混合し、樹脂組成物を調製した。
[Comparative Example 2]
360 g of a photopolymerizable resin (Daicel Ornex, EBECRYL 600), 40 g of glass beads, and 5.0 g of a photopolymerization initiator (BASF, IRGACURE TPO) were mixed to prepare a resin composition.
 [比較例3]
 ガラスビーズ60g、表面改質剤である3-アクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-5103)0.6g、および塩酸(濃度35質量%)1.0gを、エタノール水溶液40gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、濾過物を浅いトレー等に広げて120℃で90分間乾燥させた。乾燥後、乾燥物をボールミルで解砕して、3-アクリロキシプロピルトリメトキシシラン修飾ガラスビーズを得た。
 その後、光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)360g、上述の3-アクリロキシプロピルトリメトキシシラン修飾ガラスビーズ40g、および光重合開始剤(BASF社製、IRGACURE TPO)5.0gを混合し、樹脂組成物を調製した。
[Comparative Example 3]
60 g of glass beads, 0.6 g of 3-acryloxypropyltrimethoxysilane (Shin-Etsu Silicone, KBM-5103) as a surface modifier, and 1.0 g of hydrochloric acid (concentration 35 mass%) were added to 40 g of an aqueous ethanol solution. And stirred for 30 minutes at room temperature. After stirring, the reaction solution was filtered, and the filtrate was spread on a shallow tray or the like and dried at 120 ° C. for 90 minutes. After drying, the dried product was crushed with a ball mill to obtain 3-acryloxypropyltrimethoxysilane-modified glass beads.
Thereafter, 360 g of a photopolymerizable resin (Daicel Ornex Corporation, EBECRYL 600), the above-mentioned 3-acryloxypropyltrimethoxysilane-modified glass beads 40 g, and a photopolymerization initiator (BASF, IRGACURE TPO) 5.0 g were added. By mixing, a resin composition was prepared.
 [比較例4]
 熱重合性樹脂(三菱ケミカル社製、jER806;ビスフェノールF型エポキシ樹脂)240g、および硬化促進剤(三菱ケミカル社製、jERキュア113;変性脂環式アミン)120gを混合し、樹脂組成物を調製した。
[Comparative Example 4]
240 g of thermopolymerizable resin (Mitsubishi Chemical Corporation, jER806; bisphenol F type epoxy resin) and 120 g of curing accelerator (Mitsubishi Chemical Corporation, jER Cure 113; modified alicyclic amine) are mixed to prepare a resin composition. did.
 [比較例5]
 熱重合性樹脂(三菱ケミカル社製、jER806)240g、硬化促進剤(三菱ケミカル社製、jERキュア113)120g、およびガラスビーズ40gを混合し、樹脂組成物を調製した。
[Comparative Example 5]
240 g of thermopolymerizable resin (manufactured by Mitsubishi Chemical Corporation, jER806), 120 g of a curing accelerator (manufactured by Mitsubishi Chemical Corporation, jER Cure 113), and 40 g of glass beads were mixed to prepare a resin composition.
 [比較例6]
 ガラスビーズ60g、表面改質剤である3-アミノプロピルトリメトキシシラン(信越シリコーン社製、KBM-903)0.6g、および塩酸(濃度35質量%)1.0gをエタノール水溶液40gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕して、3-アミノプロピルトリメトキシシラン修飾ガラスビーズを得た。
 その後、熱重合性樹脂(三菱ケミカル社製、jER806)240g、硬化促進剤(三菱ケミカル社製、jERキュア113)120g、および上記3-アミノプロピルトリメトキシシラン修飾ガラスビーズ40gを混合し、樹脂組成物を調製した。
[Comparative Example 6]
60 g of glass beads, 0.6 g of 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., KBM-903) and 1.0 g of hydrochloric acid (concentration 35 mass%) were added to 40 g of an aqueous ethanol solution. And stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray, and dried at 120 ° C. for 90 minutes. After drying, it was crushed with a ball mill to obtain 3-aminopropyltrimethoxysilane-modified glass beads.
Thereafter, 240 g of a thermopolymerizable resin (Mitsubishi Chemical Corporation, jER806), 120 g of a curing accelerator (Mitsubishi Chemical Corporation, jER Cure 113), and 40 g of the above 3-aminopropyltrimethoxysilane-modified glass beads were mixed to obtain a resin composition. A product was prepared.
 [比較例7]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(三菱ケミカル社製、jER806)120g、光重合開始剤(IRGACURE TPO)2.5g、および硬化促進剤(三菱ケミカル社製、jERキュア113)60gを混合し、樹脂組成物を調製した。
[Comparative Example 7]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of heat polymerizable resin (Mitsubishi Chemical, jER806), 2.5 g of photopolymerization initiator (IRGACURE TPO), and curing accelerator (Mitsubishi Chemical) Manufactured by jER Cure 113) and mixed with 60 g to prepare a resin composition.
 [比較例8]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(三菱ケミカル社製、jER806)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、硬化促進剤(三菱ケミカル社製、jERキュア113)60g、およびガラスビーズ40gを混合し、樹脂組成物を調製した。
[Comparative Example 8]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( Mitsubishi Chemical Co., Ltd., jER Cure 113) 60 g and glass beads 40 g were mixed to prepare a resin composition.
 [比較例9]
 ガラスビーズ60g、表面改質剤であるメチルトリエトキシシラン(信越シリコーン社製、KBE-13)0.6g、および塩酸(濃度35質量%)1.0gを、エタノール水溶液40gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、濾過物を浅いトレー等に広げて120℃で90分間乾燥させた。乾燥後、乾燥物をボールミルで解砕して、メチルトリエトキシシラン修飾ガラスビーズを得た。
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(三菱ケミカル社製、jER806)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、硬化促進剤(三菱ケミカル社製、jERキュア113)60g、および上記メチルトリエトキシシラン修飾ガラスビーズ40gを混合し、樹脂組成物を調製した。
[Comparative Example 9]
60 g of glass beads, 0.6 g of methyltriethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., KBE-13) as a surface modifier and 1.0 g of hydrochloric acid (concentration 35 mass%) were added to 40 g of an aqueous ethanol solution at room temperature. For 30 minutes. After stirring, the reaction solution was filtered, and the filtrate was spread on a shallow tray or the like and dried at 120 ° C. for 90 minutes. After drying, the dried product was crushed with a ball mill to obtain methyltriethoxysilane-modified glass beads.
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( Mitsubishi Chemical Co., Ltd., jER Cure 113) 60 g and the above methyltriethoxysilane-modified glass beads 40 g were mixed to prepare a resin composition.
 [実施例1]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(三菱ケミカル社製、jER806)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、硬化促進剤(三菱ケミカル社製、jERキュア113)60g、および比較例6と同様に作製した3-アミノプロピルトリメトキシシラン修飾ガラスビーズ40g、を混合し、樹脂組成物を調製した。
[Example 1]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( A resin composition was prepared by mixing 60 g of jER Cure 113) manufactured by Mitsubishi Chemical Corporation and 40 g of 3-aminopropyltrimethoxysilane-modified glass beads prepared in the same manner as in Comparative Example 6.
 [実施例2]
 ガラスビーズ60g、表面改質剤である3-メタクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-503)0.6g、および塩酸(濃度35質量%)1.0gをエタノール水溶液40gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕し、3-メタクリロキシプロピルトリメトキシシラン修飾ガラスビーズを得た。
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(DICマテリアル社製、PC740;不飽和ポリエステル樹脂)180g、硬化促進剤(DICマテリアル社製、RA;汎用アミン系促進助剤)2.0g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、および上記3-メタクリロキシプロピルトリメトキシシラン修飾ガラスビーズ40gを混合し、樹脂組成物を調製した。
[Example 2]
60 g of glass beads, 0.6 g of surface modification agent 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone, KBM-503), and 1.0 g of hydrochloric acid (concentration 35 mass%) were added to 40 g of an aqueous ethanol solution. And stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray, and dried at 120 ° C. for 90 minutes. After drying, it was crushed with a ball mill to obtain 3-methacryloxypropyltrimethoxysilane-modified glass beads.
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 180 g of thermopolymerizable resin (DIC Material, PC740; unsaturated polyester resin), curing accelerator (DIC Material, RA; general-purpose amine accelerator) 2.0 g of auxiliary agent, 2.5 g of photopolymerization initiator (manufactured by BASF, IRGACURE TPO), and 40 g of the 3-methacryloxypropyltrimethoxysilane-modified glass beads were mixed to prepare a resin composition.
 [実施例3]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(明和化成社製、MEH-8000H;フェノール樹脂)180g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、比較例6と同様の方法で作製した3-アミノプロピルトリメトキシシラン修飾ガラスビーズ40gを混合し、樹脂組成物を調製した。
[Example 3]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 180 g of thermopolymerizable resin (Maywa Kasei, MEH-8000H; phenol resin), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO) Then, 40 g of 3-aminopropyltrimethoxysilane-modified glass beads produced by the same method as in Comparative Example 6 were mixed to prepare a resin composition.
 [実施例4]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(サンユレック社製、UF-110-1A)60g、熱重合性樹脂(サンユレック社製、UF-110-1B)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、および比較例6と同様の方法で作製した3-アミノプロピルトリメトキシシラン修飾ガラスビーズ40gを混合し、樹脂組成物を調製した。
[Example 4]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 60 g of thermopolymerizable resin (Sanyu REC, UF-110-1A), 120 g of thermopolymerizable resin (Sanyu REC, UF-110-1B), A resin composition was prepared by mixing 2.5 g of a photopolymerization initiator (manufactured by BASF, IRGACURE TPO) and 40 g of 3-aminopropyltrimethoxysilane-modified glass beads prepared in the same manner as in Comparative Example 6.
 1-2.立体造形物の作製(SLA法)
 図1に示すような構成を有する立体造形物の製造装置(XYZprinting社製NOBEL1.0)の造形槽510に樹脂組成物(サンプル1~63)をそれぞれ投入した。そして、光源530からの半導体レーザー光(出力100mW、波長405nm)の照射および造形ステージ520の降下を繰り返して、JIS K7161-2(ISO 527-2) 1A形の試験片形状の一次硬化物を得た。なお、作製の際には、引張試験片の長手方向が造形方向(ステージの降下方向)となるようにした。
1-2. Production of 3D objects (SLA method)
The resin compositions (samples 1 to 63) were charged into a modeling tank 510 of a three-dimensional modeled manufacturing apparatus (NOBEL1.0 manufactured by XYZprinting) having a configuration as shown in FIG. Then, irradiation with semiconductor laser light (output 100 mW, wavelength 405 nm) from the light source 530 and lowering of the modeling stage 520 are repeated to obtain a primary cured product of the test piece shape of JIS K7161-2 (ISO 527-2) type 1A. It was. In the production, the longitudinal direction of the tensile test piece was made to be the modeling direction (the descending direction of the stage).
 2-1.樹脂組成物の調製
 [比較例10~12]
 比較例7~9と同様に、それぞれ樹脂組成物を調製した。
2-1. Preparation of Resin Composition [Comparative Examples 10 to 12]
Resin compositions were prepared in the same manner as in Comparative Examples 7-9.
 [実施例5~8]
 実施例1~4と同様に、それぞれ樹脂組成物を調製した。
[Examples 5 to 8]
Resin compositions were prepared in the same manner as in Examples 1 to 4.
 [比較例13]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)120g、熱重合性樹脂(三菱ケミカル社製、jER806)80g、光重合開始剤(BASF社製、IRGACURE TPO)1.7g、硬化促進剤(三菱ケミカル社製、jERキュア113)40g、およびセルロースナノファイバー5質量%アセトン分散液300gを混合し、樹脂組成物を調製した。
 得られた樹脂組成物を50℃の環境下で3時間、スターラー撹拌し、アセトンを十分に揮発させた。
[Comparative Example 13]
120 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 80 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 1.7 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( Mitsubishi Chemical Co., Ltd., jER Cure 113) 40 g and cellulose nanofiber 5 mass% acetone dispersion 300 g were mixed to prepare a resin composition.
The obtained resin composition was stirred with a stirrer in an environment of 50 ° C. for 3 hours to sufficiently evaporate acetone.
 [比較例14]
 セルロースナノファイバー2質量%分散液(スギノマシン社製、BiNFi-s)1000gをスターラーで撹拌しながら、メチルトリエトキシシラン(信越シリコーン社製、KBE-13)を0.3g添加した。その後、20分間撹拌を続け、エタノールで溶媒置換を行い、その後さらにアセトンで溶媒置換を行い、メチル基修飾セルロースナノファイバーを作製した。
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)120g、熱重合性樹脂(三菱ケミカル社製、jER806)80g、光重合開始剤(BASF社製、IRGACURE TPO)1.7g、硬化促進剤(三菱ケミカル社製、jERキュア113)40g、および上記のメチル基修飾セルロースナノファイバー2質量%アセトン分散液750gを混合し、樹脂組成物を調製した。得られた樹脂組成物を50℃の環境下で3時間スターラー撹拌し、アセトンを十分に揮発させた。
[Comparative Example 14]
While stirring 1000 g of a cellulose nanofiber 2 mass% dispersion (Sugino Machine, BiNFi-s) with a stirrer, 0.3 g of methyltriethoxysilane (Shin-Etsu Silicone, KBE-13) was added. Thereafter, stirring was continued for 20 minutes, and the solvent was replaced with ethanol. Thereafter, the solvent was further replaced with acetone to produce methyl group-modified cellulose nanofibers.
120 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 80 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 1.7 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( Mitsubishi Chemical Co., Ltd., jER Cure 113) 40 g and the above methyl group-modified cellulose nanofiber 2% by mass acetone dispersion 750 g were mixed to prepare a resin composition. The obtained resin composition was stirred with a stirrer in an environment of 50 ° C. for 3 hours to volatilize acetone sufficiently.
 [実施例9]
 セルロースナノファイバー2質量%分散液(スギノマシン社製、BiNFi-s)1000gをスターラーで撹拌しながら、3-アミノプロピルトリメトキシシラン(信越シリコーン社製、KBM-903)を0.3g添加した。その後、20分間撹拌を続け、エタノールで溶媒置換を行い、その後さらにアセトンで溶媒置換を行い、アミノ基修飾セルロースナノファイバーを作製した。
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)120g、熱重合性樹脂(三菱ケミカル社製、jER806)80g、光重合開始剤(BASF社製、IRGACURE TPO)1.7g、硬化促進剤(三菱ケミカル社製、jERキュア113)40g、および上記のアミノ基修飾セルロースナノファイバー2質量%アセトン分散液750gを混合し、樹脂組成物を調製した。得られた樹脂組成物を50℃の環境下で3時間スターラー撹拌し、アセトンを十分に揮発させた。
[Example 9]
While stirring 1000 g of a cellulose nanofiber 2 mass% dispersion (Sugino Machine, BiNFi-s) with a stirrer, 0.3 g of 3-aminopropyltrimethoxysilane (Shin-Etsu Silicone, KBM-903) was added. Thereafter, stirring was continued for 20 minutes, and the solvent was replaced with ethanol. Thereafter, the solvent was further replaced with acetone to produce amino group-modified cellulose nanofibers.
120 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 80 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 1.7 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( Mitsubishi Chemical Co., Ltd., jER Cure 113) 40 g and the above amino group-modified cellulose nanofiber 2% by mass acetone dispersion 750 g were mixed to prepare a resin composition. The obtained resin composition was stirred with a stirrer in an environment of 50 ° C. for 3 hours to volatilize acetone sufficiently.
 [実施例10]
 セルロースナノファイバー2質量%分散液(スギノマシン社製、BiNFi-s)1000gをスターラーで撹拌しながら、3-メタクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-503)を0.3g添加した。その後、20分間撹拌を続け、エタノールで溶媒置換を行い、その後さらにアセトンで溶媒置換を行い、メタクリル基修飾セルロースナノファイバーを作製した。
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)120g、熱重合性樹脂(DICマテリアル社製、PC740;不飽和ポリエステル樹脂)120g、硬化促進剤(DICマテリアル社製、RA;汎用アミン系促進助剤)1.5g、光重合開始剤(BASF社製、IRGACURE TPO)1.7g、上記メタクリル基修飾セルロースナノファイバー2質量%アセトン分散液750gを混合し、樹脂組成物を調製した。得られた樹脂組成物を50℃の環境下で3時間スターラー撹拌し、アセトンを十分に揮発させた。
[Example 10]
While stirring 1000 g of cellulose nanofiber 2 mass% dispersion (Sugino Machine, BiNFi-s) with a stirrer, 0.3 g of 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone, KBM-503) was added. . Thereafter, stirring was continued for 20 minutes, and the solvent was replaced with ethanol. Thereafter, the solvent was further replaced with acetone to prepare methacrylic group-modified cellulose nanofibers.
120 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (DIC Material, PC740; unsaturated polyester resin), curing accelerator (DIC Material, RA; general-purpose amine accelerator) Auxiliary agent (1.5 g), a photopolymerization initiator (manufactured by BASF, IRGACURE TPO) (1.7 g), and methacrylic group-modified cellulose nanofiber 2 mass% acetone dispersion liquid (750 g) were mixed to prepare a resin composition. The obtained resin composition was stirred with a stirrer in an environment of 50 ° C. for 3 hours to volatilize acetone sufficiently.
 [実施例11]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)120g、熱重合性樹脂(明和化成社製、MEH-8000H;フェノール樹脂)120g、光重合開始剤(BASF社製、IRGACURE TPO)1.7g、実施例9と同様の方法で作製したアミノ基修飾セルロースナノファイバー5質量%アセトン分散液300gを混合し、樹脂組成物を調製した。得られた樹脂組成物を50℃の環境下で3時間スターラー撹拌し、アセトンを十分に揮発させた。
[Example 11]
120 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Maywa Kasei, MEH-8000H; phenol resin), 1.7 g of photopolymerization initiator (BASF, IRGACURE TPO) Then, 300 g of an amino group-modified cellulose nanofiber 5 mass% acetone dispersion prepared in the same manner as in Example 9 was mixed to prepare a resin composition. The obtained resin composition was stirred with a stirrer in an environment of 50 ° C. for 3 hours to volatilize acetone sufficiently.
 [実施例12]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)120g、熱重合性樹脂(サンユレック社製、UF-110-1A)40g、熱重合性樹脂(サンユレック社製、UF-110-1B)80g、光重合開始剤(IRGACURE TPO)1.7g、アミノ基修飾セルロースナノファイバー5質量%アセトン分散液300gを混合し、樹脂組成物を調製した。得られた樹脂組成物を50℃の環境下で3時間スターラー撹拌し、アセトンを十分に揮発させた。
[Example 12]
120 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 40 g of thermopolymerizable resin (Sanyu REC, UF-110-1A), 80 g of thermopolymerizable resin (Sanyu REC, UF-110-1B), A resin composition was prepared by mixing 1.7 g of a photopolymerization initiator (IRGACURE TPO) and 300 g of an amino group-modified cellulose nanofiber 5 mass% acetone dispersion. The obtained resin composition was stirred with a stirrer in an environment of 50 ° C. for 3 hours to volatilize acetone sufficiently.
 [比較例15]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(三菱ケミカル社製、jER806)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、硬化促進剤(三菱ケミカル社製、jERキュア113)60g、および硫酸マグネシウム(宇部マテリアルズ社製)40gを混合し、樹脂組成物を調製した。
[Comparative Example 15]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( Mitsubishi Chemical Co., Ltd., jER Cure 113) 60 g and magnesium sulfate (Ube Materials Co., Ltd.) 40 g were mixed to prepare a resin composition.
 [比較例16]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(三菱ケミカル社製、jER806)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、硬化促進剤(三菱ケミカル社製、jERキュア113)60g、およびメチル基修飾硫酸マグネシウム(宇部マテリアルズ社製)40gを混合し、樹脂組成物を調製した。
[Comparative Example 16]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( Mitsubishi Chemical Co., Ltd., jER Cure 113) 60 g and methyl group-modified magnesium sulfate (Ube Materials Co., Ltd.) 40 g were mixed to prepare a resin composition.
 [実施例13]
 硫酸マグネシウム60g、表面改質剤である3-アミノプロピルトリメトキシシラン(信越シリコーン社製、KBM-903)0.6g、および塩酸(濃度35質量%)1.0gをエタノール水溶液40gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕して、3-アミノプロピルトリメトキシシラン修飾硫酸マグネシウムを作製した。
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(三菱ケミカル社製、jER806)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、硬化促進剤(三菱ケミカル社製、jERキュア113)60g、および上記3-アミノプロピルトリメトキシシラン修飾硫酸マグネシウム40g、を混合し、樹脂組成物を調製した。
[Example 13]
60 g of magnesium sulfate, 0.6 g of 3-aminopropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-903) as a surface modifier and 1.0 g of hydrochloric acid (concentration 35 mass%) were added to 40 g of an aqueous ethanol solution. And stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray, and dried at 120 ° C. for 90 minutes. After drying, it was pulverized with a ball mill to produce 3-aminopropyltrimethoxysilane-modified magnesium sulfate.
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (Mitsubishi Chemical, jER806), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO), curing accelerator ( A resin composition was prepared by mixing 60 g of jER Cure 113) manufactured by Mitsubishi Chemical Corporation and 40 g of the above 3-aminopropyltrimethoxysilane-modified magnesium sulfate.
 [実施例14]
 硫酸マグネシウム60g、表面改質剤である3-メタクリロキシプロピルトリメトキシシラン(信越シリコーン社製、KBM-503)0.6g、および塩酸(濃度35質量%)1.0gをエタノール水溶液40gに添加して、室温で30分間撹拌した。撹拌後、当該反応液を濾過し、浅いトレー等に広げて120℃で90分間乾燥した。乾燥後、ボールミルで解砕して、3-メタクリロキシプロピルトリメトキシシラン修飾硫酸マグネシウムを作製した。
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(DICマテリアル社製、PC740;不飽和ポリエステル樹脂)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、硬化促進剤(三菱ケミカル社製、jERキュア113)60g、および上記3-メタクリロキシプロピルトリメトキシシラン修飾硫酸マグネシウム40gを混合し、樹脂組成物を調製した。
[Example 14]
Add 60 g of magnesium sulfate, 0.6 g of 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Silicone Co., Ltd., KBM-503) and 1.0 g of hydrochloric acid (concentration 35% by mass) to 40 g of an aqueous ethanol solution. And stirred at room temperature for 30 minutes. After stirring, the reaction solution was filtered, spread on a shallow tray, and dried at 120 ° C. for 90 minutes. After drying, it was pulverized with a ball mill to produce 3-methacryloxypropyltrimethoxysilane-modified magnesium sulfate.
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 120 g of thermopolymerizable resin (DIC Material, PC740; unsaturated polyester resin), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO) Then, 60 g of a curing accelerator (manufactured by Mitsubishi Chemical Co., Ltd., jER Cure 113) and 40 g of 3-methacryloxypropyltrimethoxysilane-modified magnesium sulfate were mixed to prepare a resin composition.
 [実施例15]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(明和化成社製、MEH-8000H;フェノール樹脂)180g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、および実施例13と同様に作製した3-アミノプロピルトリメトキシシラン修飾硫酸マグネシウム40gを混合し、樹脂組成物を調製した。
[Example 15]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 180 g of thermopolymerizable resin (Maywa Kasei, MEH-8000H; phenol resin), 2.5 g of photopolymerization initiator (BASF, IRGACURE TPO) And 40 g of 3-aminopropyltrimethoxysilane-modified magnesium sulfate prepared in the same manner as in Example 13 was mixed to prepare a resin composition.
 [実施例16]
 光重合性樹脂(ダイセル・オルネクス社製、EBECRYL 600)180g、熱重合性樹脂(サンユレック社製、UF-110-1A)60g、熱重合性樹脂(サンユレック社製、UF-110-1B)120g、光重合開始剤(BASF社製、IRGACURE TPO)2.5g、および実施例13と同様に作製した3-アミノプロピルトリメトキシシラン修飾硫酸マグネシウム40gを混合し、樹脂組成物を調製した。
[Example 16]
180 g of photopolymerizable resin (Daicel Ornex, EBECRYL 600), 60 g of thermopolymerizable resin (Sanyu REC, UF-110-1A), 120 g of thermopolymerizable resin (Sanyu REC, UF-110-1B), A resin composition was prepared by mixing 2.5 g of a photopolymerization initiator (manufactured by BASF, IRGACURE TPO) and 40 g of 3-aminopropyltrimethoxysilane-modified magnesium sulfate prepared in the same manner as in Example 13.
 2-2.立体造形物の作製(CLIP法)
 立体造形物の作製には、図2に示す製造装置600の造形槽610に樹脂組成物(サンプル40~42)をそれぞれ投入した。当該造形槽610の底部には、重合阻害剤である酸素の透過が可能なBiogeneral社製の0.0025インチ厚のTeflon(登録商標)AF2400フィルム(窓部615)が配置されている。そして、造形槽610の外側の雰囲気を酸素雰囲気としたうえで、適度に加圧を行った。これにより、造形槽610の底部側に、樹脂組成物650および酸素を含むバッファ領域642が形成され、バッファ領域642より上部は、バッファ領域より酸素濃度が低い硬化用領域644が形成された。
 そして、紫外線源:LEDプロジェクタ(Texas Instruments社製のDLP(VISITECH LE4910H UV-388))から光を面状に照射しながらステージ620を上昇させた。このとき、紫外線の照射強度は5mW/cmとした。また、ステージの引き上げ速度は、50mm/hrとした。そして、JIS K7161-2(ISO 527-2) 1A形の試験片形状の一次硬化物を作製した。なお、作製の際には、引張試験片の長手方向が造形方向(ステージ620の引き上げ方向)となるようにした。
2-2. Production of 3D objects (CLIP method)
For the production of the three-dimensional modeled object, the resin compositions (samples 40 to 42) were respectively added to the modeling tank 610 of the manufacturing apparatus 600 shown in FIG. At the bottom of the modeling tank 610, a Teflon (registered trademark) AF2400 film (window 615) having a thickness of 0.0025 inches manufactured by Biogeneral, which can transmit oxygen as a polymerization inhibitor, is disposed. And after making the atmosphere outside the modeling tank 610 into an oxygen atmosphere, it pressurized moderately. As a result, a buffer region 642 containing the resin composition 650 and oxygen was formed on the bottom side of the modeling tank 610, and a curing region 644 having a lower oxygen concentration than the buffer region was formed above the buffer region 642.
Then, the stage 620 was raised while irradiating light in a planar shape from an ultraviolet ray source: LED projector (DLP (VISITECH LE4910H UV-388) manufactured by Texas Instruments). At this time, the irradiation intensity of ultraviolet rays was 5 mW / cm 2 . The stage pulling speed was 50 mm / hr. Then, a primary cured product of JIS K7161-2 (ISO 527-2) type 1A test piece shape was produced. In the production, the longitudinal direction of the tensile test piece was set to the modeling direction (the pulling direction of the stage 620).
 3.評価
 上述の方法で作製した立体造形物について、硬化性、引張強度、耐久性、および寸法精度を以下の方法で評価した。
3. Evaluation About the three-dimensional molded item produced by the above-mentioned method, sclerosis | hardenability, tensile strength, durability, and dimensional accuracy were evaluated with the following method.
 3-1.硬化性
 得られた立体造形物について、上述のSLA法またはCLIP法で硬化している場合は○、硬化していない場合は×とした。
3-1. Curability About the obtained three-dimensional molded item, it was set as “◯” when cured by the above-mentioned SLA method or CLIP method, and “X” when not cured.
 3-2.引張強度
 JIS K7161に準拠して引張試験を実施した。具体的には、A&D社製引張試験機 テンシロンRTC-1250型によって、引張強度を特定し、以下のように評価した。
 ◎◎:引張強度が70MPa以上の場合
 ◎ :引張強度が50MPa以上70MPa未満の場合
 〇 :引張強度が30MPa以上50MPa未満の場合
 △ :引張強度が10MPa以上30MPa未満の場合
 × :引張強度が10MPa未満の場合
3-2. Tensile strength A tensile test was performed in accordance with JIS K7161. Specifically, the tensile strength was specified by a tensile tester, Tensilon RTC-1250, manufactured by A & D, and evaluated as follows.
◎: When the tensile strength is 70 MPa or more ◎: When the tensile strength is 50 MPa or more and less than 70 MPa 〇: When the tensile strength is 30 MPa or more and less than 50 MPa △: When the tensile strength is 10 MPa or more and less than 30 MPa ×: Tensile strength is less than 10 MPa in the case of
 3-3.耐久性(引張強度の経時変化)
 スーパーキセノンウェザーメーターSX120において、放射照度150W/m(300-400nm)、ブラックパネル温度63℃、槽内湿度50%RHの条件で、1週間耐光性試験を実施し、実施後のサンプルにて引張強度を測定し、以下のように評価した。
 ◎◎:耐光性試験後の引張強度が70MPa以上の場合
 ◎ :耐光性試験後の引張強度が50MPa以上70MPa未満の場合
 〇 :耐光性試験後の引張強度が30MPa以上50MPa未満の場合
 △ :耐光性試験後の引張強度が10MPa以上30MPa未満の場合
 × :耐光性試験後の引張強度が10MPa未満の場合
3-3. Durability (Change in tensile strength over time)
In the super xenon weather meter SX120, a light resistance test was conducted for one week under the conditions of irradiance of 150 W / m 2 (300-400 nm), black panel temperature of 63 ° C., and humidity of the tank of 50% RH. The tensile strength was measured and evaluated as follows.
◎: When the tensile strength after the light resistance test is 70 MPa or more ◎: When the tensile strength after the light resistance test is 50 MPa or more and less than 70 MPa 〇: When the tensile strength after the light resistance test is 30 MPa or more and less than 50 MPa △: Light resistance When tensile strength after property test is 10 MPa or more and less than 30 MPa ×: When tensile strength after light resistance test is less than 10 MPa
 3-4.寸法精度
 立体造形物の寸法精度の評価は、各立体造形物の寸法を測定して行った。具体的には、JIS K7161-2(ISO 527-2)1A形の試験片のつかみ部の幅(b2)の左右寸法差の絶対値をBとし、つかみ部の厚さ(h)の左右寸法差の絶対値をHとし、以下のように評価した。
 ◎:BおよびHが、それぞれ0.1mm未満である場合
 〇:BおよびHのうち、いずれか一方が0.1mm未満であり、他方が0.1mm以上0.2mm未満である場合
 △:BおよびHの両方が、0.1mm以上0.2mm未満である場合
 ×:BおよびHのうちいずれかが0.2mm以上となる場合、もしくは造形物が得られなかった場合
3-4. Dimensional accuracy Evaluation of the dimensional accuracy of the three-dimensional structure was performed by measuring the dimensions of each three-dimensional structure. Specifically, the absolute value of the left-right dimension difference of the width (b2) of the grip part of the JIS K7161-2 (ISO 527-2) type 1A test piece is B, and the left-right dimension of the thickness (h) of the grip part The absolute value of the difference was set as H and evaluated as follows.
A: When B and H are each less than 0.1 mm O: When either B or H is less than 0.1 mm and the other is 0.1 mm or more and less than 0.2 mm Δ: B When both of H and H are 0.1 mm or more and less than 0.2 mm ×: When either B or H is 0.2 mm or more, or when a model is not obtained
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1および表2に示されるように、樹脂組成物に熱重合性化合物を含まない場合には、引張強度が低くなりやすく、耐久性(耐光性試験後の引張強度)も評価が悪かった(比較例1~3)。一方、光重合性化合物を含まない場合には、上述の方法では造形することができなかった(比較例4~6)。 As shown in Tables 1 and 2, when the resin composition does not contain a thermopolymerizable compound, the tensile strength tends to be low, and the durability (tensile strength after the light resistance test) was also poorly evaluated. (Comparative Examples 1 to 3). On the other hand, when the photopolymerizable compound was not included, it was not possible to form by the above method (Comparative Examples 4 to 6).
 一方で、樹脂組成物に光重合性化合物および熱重合性化合物を含んでいたとしても、フィラーを含まない場合には、引張強度が十分に高まらず、さらには寸法精度も低かった(比較例7および比較例10)。またさらに、フィラーを含んでいたとしても、熱重合性樹脂と反応可能な官能基を有さない場合(例えばメチル基等)には、引張強度や寸法精度が十分に高まり難く、耐久性も低かった(比較例8、9、および11~16)。 On the other hand, even if the resin composition contained a photopolymerizable compound and a thermopolymerizable compound, when no filler was contained, the tensile strength was not sufficiently increased and the dimensional accuracy was also low (Comparative Example 7). And Comparative Example 10). Furthermore, even if a filler is included, if it does not have a functional group capable of reacting with a thermopolymerizable resin (for example, a methyl group), it is difficult to sufficiently increase the tensile strength and dimensional accuracy, and the durability is low. (Comparative Examples 8, 9, and 11 to 16).
 これに対し、樹脂組成物に光重合性化合物、熱重合性化合物、および熱重合性化合物と反応可能な官能基を有するフィラーを含む場合には、硬化性、引張強度、耐久性、および寸法精度が、いずれも良好になった(実施例1~16)。また、SLA法で立体造形物を作製した場合(実施例1~4)と比較して、CLIP法で造形物を作製した場合(実施例5~16)に、引張強度が高まった。CLIP法によれば、継ぎ目のない立体造形物が作製されるため、引張強度が高まったと推察される。 On the other hand, when the resin composition contains a photopolymerizable compound, a thermopolymerizable compound, and a filler having a functional group capable of reacting with the thermopolymerizable compound, curability, tensile strength, durability, and dimensional accuracy. However, all became good (Examples 1 to 16). In addition, the tensile strength was increased in the case where the three-dimensional object was prepared by the CLIP method (Examples 5 to 16) compared to the case where the three-dimensional object was prepared by the SLA method (Examples 1 to 4). According to the CLIP method, it is surmised that the three-dimensional model without a joint is produced, so that the tensile strength is increased.
 また特に、フィラーがセルロースナノファイバーもしくは硫酸マグネシウムである場合には、アスペクト比が高いため引張方向に平行にフィラーが存在する場合、造形物を補強する効果が生じ、引張強度が高まりやすかった(実施例9~16)。 In particular, when the filler is cellulose nanofiber or magnesium sulfate, when the filler is present in parallel to the tensile direction due to the high aspect ratio, the effect of reinforcing the molded product is produced, and the tensile strength is likely to increase (implementation). Examples 9-16).
 本出願は、2018年4月2日出願の特願2018-070959号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2018-070959 filed on Apr. 2, 2018. All the contents described in the application specification are incorporated herein by reference.
 本発明の樹脂組成物によれば、寸法精度や耐久性が高く、かつ機械的強度の高い立体造形物を提供できる。したがって、本発明は、樹脂組成物を用いた立体造形物の適用の幅を広げ、同分野の技術の進展および普及に貢献することが期待される。 According to the resin composition of the present invention, it is possible to provide a three-dimensionally shaped object having high dimensional accuracy and durability and high mechanical strength. Therefore, the present invention is expected to broaden the application range of the three-dimensional structure using the resin composition and contribute to the progress and spread of the technology in the same field.
 500、600 製造装置
 510、610 造形槽
 615 窓部
 520、620 (造形)ステージ
 521 ベース
 530、660 光源
 531 ガルバノミラー
 550 樹脂組成物
 642 バッファ領域
 644 硬化用領域
 651 硬化物
500, 600 Manufacturing apparatus 510, 610 Modeling tank 615 Window unit 520, 620 (Modeling) stage 521 Base 530, 660 Light source 531 Galvano mirror 550 Resin composition 642 Buffer area 644 Curing area 651 Cured material

Claims (6)

  1.  液体状の樹脂組成物に活性エネルギーを選択的に照射して、前記樹脂組成物の硬化物からなる立体造形物を製造する方法に使用される樹脂組成物であって、
     光重合性化合物と、
     熱重合性化合物と、
     前記熱重合性化合物に結合可能な官能基を表面に有する官能基含有フィラーと、を含む、
     樹脂組成物。
    A resin composition used in a method for selectively irradiating a liquid resin composition with active energy to produce a three-dimensional structure made of a cured product of the resin composition,
    A photopolymerizable compound;
    A thermopolymerizable compound;
    A functional group-containing filler having a functional group capable of binding to the thermopolymerizable compound on the surface,
    Resin composition.
  2.  前記熱重合性化合物が、エポキシ樹脂またはその前駆体、もしくはウレタン樹脂または前駆体である、
     請求項1に記載の樹脂組成物。
    The thermally polymerizable compound is an epoxy resin or a precursor thereof, or a urethane resin or a precursor,
    The resin composition according to claim 1.
  3.  前記官能基含有フィラーが、前記熱重合性化合物に結合可能な官能基を有する、セルロースナノファイバーである、
     請求項1または2に記載の樹脂組成物。
    The functional group-containing filler is a cellulose nanofiber having a functional group capable of binding to the thermopolymerizable compound,
    The resin composition according to claim 1 or 2.
  4.  請求項1~3のいずれか一項に記載の樹脂組成物に活性エネルギーを選択的に照射して、前記光重合性化合物の硬化物を含む一次硬化物を形成する光造形工程と、
     前記一次硬化物を、さらに熱硬化させる熱硬化工程を含む、
     立体造形物の製造方法。
    An optical modeling step of selectively irradiating the resin composition according to any one of claims 1 to 3 with active energy to form a primary cured product including a cured product of the photopolymerizable compound;
    Including a thermosetting step of further thermosetting the primary cured product,
    Manufacturing method of a three-dimensional molded item.
  5.  前記光造形工程が、
     前記樹脂組成物および酸素を含み、酸素により前記光重合性化合物の硬化が阻害されるバッファ領域、ならびに前記樹脂組成物を少なくとも含み、前記バッファ領域より酸素濃度が低く、前記光重合性化合物の硬化が可能な硬化用領域を、造形物槽内に隣接して形成する第1の工程と、
     前記バッファ領域側から前記樹脂組成物に活性エネルギーを選択的に照射して、前記硬化用領域で前記光重合性化合物を硬化させる第2の工程と、
     を含み、
     前記第2の工程では、形成された硬化物を前記バッファ領域とは反対側に移動させながら、前記硬化用領域に活性エネルギーを照射し、前記一次硬化物を形成する、
     請求項4に記載の立体造形物の製造方法。
    The stereolithography process
    A buffer region containing the resin composition and oxygen, wherein the curing of the photopolymerizable compound is inhibited by oxygen; and at least the resin composition, wherein the oxygen concentration is lower than the buffer region, and the photopolymerizable compound is cured. A first step of forming an area for curing adjacent to the molded article tank;
    A second step of selectively irradiating the resin composition with active energy from the buffer region side to cure the photopolymerizable compound in the curing region;
    Including
    In the second step, while moving the formed cured product to the side opposite to the buffer region, the curing region is irradiated with active energy to form the primary cured product.
    The manufacturing method of the three-dimensional molded item of Claim 4.
  6.  請求項1~3のいずれか一項に記載の樹脂組成物の硬化物である、立体造形物。 A three-dimensionally shaped article, which is a cured product of the resin composition according to any one of claims 1 to 3.
PCT/JP2019/011126 2018-04-02 2019-03-18 Resin composition, method for manufacturing three-dimensionally shaped article using same, and three-dimensionally shaped article WO2019193961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020511686A JP7163956B2 (en) 2018-04-02 2019-03-18 RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018070959 2018-04-02
JP2018-070959 2018-04-02

Publications (1)

Publication Number Publication Date
WO2019193961A1 true WO2019193961A1 (en) 2019-10-10

Family

ID=68100410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011126 WO2019193961A1 (en) 2018-04-02 2019-03-18 Resin composition, method for manufacturing three-dimensionally shaped article using same, and three-dimensionally shaped article

Country Status (2)

Country Link
JP (1) JP7163956B2 (en)
WO (1) WO2019193961A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512201B2 (en) 2021-02-10 2022-11-29 Honeywell Federal Manufacturing & Technologies, Llc Thixotropic polysiloxane pastes for additive manufacturing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224127A (en) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JP2001342204A (en) * 2000-06-02 2001-12-11 Teijin Seiki Co Ltd Photoresist composition for three-dimensional photo- forming
JP2007514805A (en) * 2003-11-06 2007-06-07 ディーエスエム アイピー アセッツ ビー.ブイ. Curable composition and rapid prototyping method using the same
JP2016078284A (en) * 2014-10-14 2016-05-16 花王株式会社 Soluble material for three-dimensional molding
WO2017040883A1 (en) * 2015-09-04 2017-03-09 Carbon, Inc. Cyanate ester dual cure resins for additive manufacturing
JP2018015955A (en) * 2016-07-27 2018-02-01 ケーエスエム株式会社 Resin composition for 3d printers
JP2018504300A (en) * 2015-02-05 2018-02-15 カーボン,インコーポレイテッド Additive manufacturing method by intermittent exposure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224127A (en) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JP2001342204A (en) * 2000-06-02 2001-12-11 Teijin Seiki Co Ltd Photoresist composition for three-dimensional photo- forming
JP2007514805A (en) * 2003-11-06 2007-06-07 ディーエスエム アイピー アセッツ ビー.ブイ. Curable composition and rapid prototyping method using the same
JP2016078284A (en) * 2014-10-14 2016-05-16 花王株式会社 Soluble material for three-dimensional molding
JP2018504300A (en) * 2015-02-05 2018-02-15 カーボン,インコーポレイテッド Additive manufacturing method by intermittent exposure
WO2017040883A1 (en) * 2015-09-04 2017-03-09 Carbon, Inc. Cyanate ester dual cure resins for additive manufacturing
JP2018015955A (en) * 2016-07-27 2018-02-01 ケーエスエム株式会社 Resin composition for 3d printers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512201B2 (en) 2021-02-10 2022-11-29 Honeywell Federal Manufacturing & Technologies, Llc Thixotropic polysiloxane pastes for additive manufacturing
US11680167B2 (en) 2021-02-10 2023-06-20 Honeywell Federal Manufacturing & Technologies, Llc Thixotropic polysiloxane pastes for additive manufacturing

Also Published As

Publication number Publication date
JP7163956B2 (en) 2022-11-01
JPWO2019193961A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
TWI745366B (en) Curable resin composition, dry film, cured product, and printed wiring board
JP5704691B2 (en) Polymerizable diamond and resin composition containing the same
WO2010035459A1 (en) Episulfide compound, episulfide compound-containing mixture, method for producing episulfide compound-containing mixture, curable composition and connection structure
KR20190128086A (en) Composition and obtaining method of radiation curable resin
JP2006265502A (en) Photopolymerizable composition and flame-retardant resin molding
EP3849806B1 (en) Dual cure additive manufacturing resins for production of flame retardant objects
JP7406193B2 (en) Curable resin composition for nanoimprint, method for producing cured product, and method for producing uneven structure
JP7115491B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
JP7309315B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
EP3685989B1 (en) Object-gripping attachment and industrial robot using object-gripping attachment
WO2019193961A1 (en) Resin composition, method for manufacturing three-dimensionally shaped article using same, and three-dimensionally shaped article
TW201927398A (en) Inorganic microparticle dispersion, curable composition, and optical member
JP2021165375A (en) Photocurable resin composition for stereolithography
WO2019167895A1 (en) Resin composition and production method for three dimensional shaped object using same, and three dimensional shaped object
TW202311431A (en) Curable resin composition
JP7163958B2 (en) Polymerizable composition and method for producing three-dimensional shaped article
JP7173137B2 (en) Polymerizable composition for three-dimensional modeling, method for producing three-dimensional object using the same, and three-dimensional object
WO2008075647A1 (en) Radiation curing composition for optical recording medium, and optical recording medium
US11421119B2 (en) Resin composition, and three-dimensional moulding production method
WO2020230678A1 (en) Liquid crystal sealant, liquid crystal display panel using same, and production method therefor
TW202311430A (en) Curable resin composition
JP2006291126A (en) Composition for coating
TW202311409A (en) Curable resin composition
JP2024020799A (en) Active energy ray curable composition, cured product and laminate
TW201915129A (en) Adhesive for display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19782191

Country of ref document: EP

Kind code of ref document: A1