WO2019167895A1 - Resin composition and production method for three dimensional shaped object using same, and three dimensional shaped object - Google Patents

Resin composition and production method for three dimensional shaped object using same, and three dimensional shaped object Download PDF

Info

Publication number
WO2019167895A1
WO2019167895A1 PCT/JP2019/007101 JP2019007101W WO2019167895A1 WO 2019167895 A1 WO2019167895 A1 WO 2019167895A1 JP 2019007101 W JP2019007101 W JP 2019007101W WO 2019167895 A1 WO2019167895 A1 WO 2019167895A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
meth
compound
acrylate
visible light
Prior art date
Application number
PCT/JP2019/007101
Other languages
French (fr)
Japanese (ja)
Inventor
小嶋 健
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020503497A priority Critical patent/JP7180666B2/en
Publication of WO2019167895A1 publication Critical patent/WO2019167895A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin composition, a method for producing a three-dimensional structure using the resin composition, and a three-dimensional structure.
  • One of the methods for producing a three-dimensional model is a method of selectively irradiating a resin composition that is cured by active energy rays with active energy rays (for example, ultraviolet light) to cure the resin composition to a desired shape.
  • active energy rays for example, ultraviolet light
  • Patent Documents 2 and 3 a method of continuously or intermittently curing a liquid resin composition containing a photopolymerizable compound has been proposed as a method for producing a new three-dimensional structure.
  • a buffer region in which the resin composition is not cured even when irradiated with active energy rays and a curing region in which the resin composition is cured by irradiation with active energy rays are provided in the molded article tank.
  • region is formed so that a buffer area
  • a carrier serving as a base point for three-dimensional modeling is disposed in the curing region, and active energy rays are selectively irradiated from the buffer region (modeling tank bottom) side to the curing region. Thereby, a part of solid modeling thing (hardened material of a resin composition) is formed in the career surface. Further, by continuously irradiating the active energy rays while pulling up the carrier to the upper side of the modeling tank, a cured product of the resin composition is continuously formed below the carrier, and the three-dimensional modeled product is seamless. Is produced.
  • thermopolymerizable compounds often have a molecular structure that is easily decomposed or cut by ultraviolet light or the like. Therefore, as in Patent Document 1 described above, when a photopolymerizable compound and a thermopolymerizable compound are mixed and the resin composition is cured with ultraviolet light, the thermopolymerizable compound is easily decomposed, and a desired warpage suppressing effect is obtained. It was difficult to obtain. Moreover, in order to improve the light resistance of a thermopolymerizable resin, it is possible to add an ultraviolet light absorber to a resin composition.
  • the resin composition is required to have high sensitivity to active energy rays. Therefore, when an ultraviolet light absorber is included in the resin composition, there is a problem that the curing of the photopolymerizable compound tends to be insufficient, and the strength of the three-dimensional structure to be obtained is likely to be reduced.
  • an object of the present invention is to provide a shaped article with less warpage, high strength, and good light resistance.
  • the first of the present invention is the following resin composition.
  • a resin composition comprising a compound, a thermally polymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorber.
  • the photopolymerizable compound and / or the thermopolymerizable compound includes in its molecule at least one structure selected from the group consisting of an aromatic ring, a triazine ring, an ester bond, a urethane bond, and a urea bond.
  • the resin composition according to [1]. [3] The resin composition according to [1] or [2], wherein the visible light polymerization initiator has an absorption maximum in a wavelength region of 400 nm or more. [4] The resin composition according to any one of [1] to [3], further comprising a light stabilizer. [5] The resin composition according to any one of [1] to [4], further comprising a filler.
  • 2nd of this invention exists in the manufacturing method of the following three-dimensional molded items, and a three-dimensional molded item.
  • the manufacturing method of the three-dimensional molded item containing.
  • the method for manufacturing a three-dimensional structure according to [7] further including a light irradiation step of irradiating the primary cured product with visible light before the thermosetting step.
  • the stereolithography step includes the resin composition and oxygen, includes at least a buffer region in which curing of the photopolymerizable compound is inhibited by oxygen, and the resin composition, and the oxygen concentration is higher than that of the buffer region.
  • the second step of curing the photopolymerizable compound in the curing region, in the second step, while moving the formed cured product to the opposite side of the buffer region The method for producing a three-dimensional structure according to any one of [6] to [8], wherein visible light is continuously applied to the curing region to form the primary cured product.
  • the resin composition of the present invention it is possible to provide a three-dimensionally shaped article with less warpage, high strength, and excellent light resistance.
  • FIG. 1 is a schematic diagram of an apparatus for manufacturing a three-dimensional structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a three-dimensional object manufacturing apparatus according to another embodiment of the present invention.
  • the resin composition of the present invention is in a liquid form and is used in a method for producing a three-dimensional model by selectively irradiating visible light to the resin composition.
  • visible light refers to a wavelength range of 400 nm to 780 nm.
  • thermopolymerizable resin it has also been proposed to add a thermopolymerizable resin to such a resin composition.
  • the thermopolymerizable resin deteriorates due to ultraviolet light irradiation at the time of modeling, etc. The warp could not be sufficiently suppressed.
  • the resin composition of the present invention contains a photopolymerizable compound, a thermopolymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorber. Since the visible light polymerization initiator is contained in the resin composition, it can be cured with visible light. At this time, light for curing (visible light) is not easily absorbed by the ultraviolet light absorber, and the photocurability tends to be good. Also, even if the thermopolymerizable compound or the like has a structure that is easily photodegraded, it is difficult to photodegrade by irradiation with visible light, so that it is easy to obtain a desired warpage suppressing effect, and three-dimensional modeling with high dimensional accuracy. A thing is obtained. Moreover, since the ultraviolet light absorber is contained in the resin composition of this invention, it is also possible to suppress the light degradation with time after a three-dimensional molded item.
  • the photopolymerizable compound and / or the thermopolymerizable compound has a structure selected from the group consisting of an aromatic ring, a triazine ring, an ester bond, a urethane bond, and a urea bond in the molecule, Things are subject to light degradation.
  • the photopolymerizable compound and / or the thermopolymerizable compound has a structure selected from the group consisting of an aromatic ring, a triazine ring, an ester bond, a urethane bond, and a urea bond in the molecule.
  • the resin composition contains components other than a curing agent, a light stabilizer, a filler, a photopolymerizable compound, a thermopolymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorber as necessary. May be. Hereinafter, each component will be described.
  • the photopolymerizable compound contained in the resin composition may be a compound that is liquid at room temperature and can be polymerized by irradiation with visible light, and may be a monomer or an oligomer. It may be a prepolymer or a mixture thereof.
  • the photopolymerizable compound may be a radical polymerizable compound or a cationic polymerizable compound.
  • the photopolymerizable compound is a radical polymerizable compound. Need to be.
  • the resin composition may contain only one type of photopolymerizable compound, or may contain two or more types.
  • the radically polymerizable compound is not particularly limited as long as it has a group capable of radical polymerization by irradiation with visible light in the presence of a visible light polymerization initiator (radical polymerization initiator) described later.
  • examples of radically polymerizable compounds include ethylene group, propenyl group, butenyl group, vinylphenyl group, allyl ether group, vinyl ether group, maleyl group, maleimide group, (meth) acrylamide group, acetyl vinyl group, vinyl amide group, (meta ) Compounds having one or more acryloyl groups in the molecule are included.
  • the radical polymerizable compound is an unsaturated carboxylic acid ester compound containing one or more unsaturated carboxylic acid ester structures in the molecule or an unsaturated compound described later containing one or more unsaturated carboxylic acid amide structures in the molecule.
  • a carboxylic acid amide compound is preferred.
  • a (meth) acrylate-based compound and / or a (meth) acrylamide-based compound containing a (meth) acryloyl group, which will be described later, are particularly preferable.
  • (meth) acryl represents methacryl and / or acryl
  • description “(meth) acryloyl” represents methacryloyl and / or acryloyl
  • (meth) acrylate” "Represents methacrylate and / or acrylate.
  • Examples of “compound having an allyl ether group” which is one of radically polymerizable compounds include phenyl allyl ether, o-, m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl- 4-ol monoallyl ether, butyl allyl ether, cyclohexyl allyl ether, cyclohexanemethanol monoallyl ether, phthalic acid diallyl ether, isophthalic acid diallyl ether, dimethanol tricyclodecane diallyl ether, 1,4-cyclohexanedimethanol diallyl ether, alkylene (C2-5) Glycol diallyl ether, polyethylene glycol diallyl ether, glycerol diallyl ether, trimethylolpropane diallyl ether, pentaerythritol dia Ether, polyglycerol (degree of polymerization 2-5) diallyl ether
  • Examples of the “compound having a vinyl ether group” include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, 1,4-butanediol divinyl ether, ethyl hexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy vinyl ether.
  • Examples of the “compound having a maleimide group” include phenylmaleimide, cyclohexylmaleimide, n-hexylmaleimide and the like.
  • Examples of “compounds having a (meth) acrylamide group”, that is, (meth) acrylamide compounds include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl (meth) acrylamide, N- Isopropyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-butyl (meth) acrylamide, isobutoxymethyl (meth) acrylamide, diacetone (meth) acrylamide, bismethyleneacrylamide, di (ethyleneoxy) bispropylacrylamide, And tri (ethyleneoxy) bispropylacrylamide, (meth) acryloylmorpholine, and the like.
  • examples of the above-mentioned “compound having a (meth) acryl group”, that is, a (meth) acrylate-based compound include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, butyl (meth) acrylate, Pentyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, tridecyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (Meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2-ethylhexyl (
  • the “(meth) acrylate compound” may be a product obtained by further modifying various (meth) acrylate monomers or oligomers thereof (modified product).
  • modified products include triethylene glycol diacrylate, polyethylene glycol diacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified pentaerythritol tetraacrylate, ethylene oxide modified bisphenol A di (meth) acrylate, ethylene Ethylene oxide modified (meth) acrylate monomers such as oxide modified nonylphenol (meth) acrylate; tripropylene glycol diacrylate, polypropylene glycol diacrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified pentaerythritol tetraacrylate, propylene Oxide-modified glycerin tri (meth) ac Propylene oxide modified (meth) acrylate monomers such as caprate
  • the “(meth) acrylate-based compound” may be a compound (hereinafter also referred to as “modified (meth) acrylate-based compound”) in which various oligomers are (meth) acrylated.
  • modified (meth) acrylate compounds include polybutadiene (meth) acrylate compounds, polyisoprene (meth) acrylate compounds, epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, silicone ( A meth) acrylate compound, a polyester (meth) acrylate compound, a linear (meth) acrylic compound, and the like are included.
  • epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, and silicone (meth) acrylate compounds can be preferably used.
  • an epoxy (meth) acrylate compound, a urethane (meth) acrylate compound, or a silicone (meth) acrylate compound is included in the resin composition, the strength of the three-dimensional structure to be obtained easily increases.
  • the epoxy (meth) acrylate compound may be a compound containing at least one epoxy group and one (meth) acrylate group in one molecule.
  • examples thereof include bisphenol A type epoxy (meth) acrylate and bisphenol.
  • Novolak type epoxy such as F type epoxy (meth) acrylate, bisphenyl type epoxy (meth) acrylate, triphenolmethane type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate, etc. (Meth) acrylate and the like are included.
  • a urethane (meth) acrylate compound is obtained by reacting an aliphatic polyisocyanate compound having two isocyanate groups or an aromatic polyisocyanate compound having two isocyanate groups with a (meth) acrylic acid derivative having a hydroxyl group. And a compound having a urethane bond and a (meth) acryloyl group.
  • Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4 , 4'-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (Isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantri Isocyanate and the like.
  • MDI isophorone
  • Examples of the isocyanate compound that is a raw material for the urethane (meth) acrylate compound include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and the like. Also included are chain-extended isocyanate compounds obtained by reaction of polyols with excess isocyanate compounds.
  • examples of the (meth) acrylic acid derivative having a hydroxyl group as a raw material for the urethane (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy Hydroxyalkyl (meth) acrylates such as butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, Mono (meth) acrylates of dihydric alcohols such as polyethylene glycol; mono (meth) acrylates and di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin; It includes epoxy (meth) acrylate of rates.
  • the urethane (meth) acrylate compound having the above structure may be commercially available, and examples thereof include M-1100, M-1200, M-1210, and M-1600 (all manufactured by Toagosei Co., Ltd.). ), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 (all manufactured by Daicel-Orunekusu Co., Ltd.), Art resin UN-330, Art Resin SH-500B, Art Resin UN-12 0TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9
  • the urethane (meth) acrylate compound may be a blocked isocyanate obtained by blocking the isocyanate group of polyisocyanate with a blocking agent having a (meth) acrylate group.
  • the polyisocyanate used for obtaining the blocked isocyanate may be the aforementioned “isocyanate compound”, or a compound obtained by reacting these compounds with a polyol or polyamine.
  • the polyol include conventionally known polyether polyols, polyester polyols, polymer polyols, vegetable oil polyols, and flame retardant polyols such as phosphorus-containing polyols and halogen-containing polyols.
  • One of these polyols may be contained in the blocked isocyanate, or two or more thereof may be contained.
  • polyether polyol to be reacted with isocyanate and the like examples include compounds having at least two active hydrogen groups (specifically, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc.)
  • a compound prepared by an addition reaction of an alkylene oxide specifically, ethylene oxide, propylene oxide, etc.
  • an amine such as ethylenediamine
  • an alkanolamine such as ethanolamine or diethanolamine
  • Methods for preparing polyether polyols are described, for example, in Gunter Oertel, “Polyurethane Handbook” (1985) Hanser u Publishers (Germany), p. 42-53.
  • polyester polyol examples include a condensation reaction product of a polyvalent carboxylic acid such as adipic acid or phthalic acid and a polyhydric alcohol such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol, or nylon.
  • a polyvalent carboxylic acid such as adipic acid or phthalic acid
  • a polyhydric alcohol such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol, or nylon.
  • polymer polyol examples include a polymer polyol obtained by reacting the polyether polyol with an ethylenically unsaturated monomer (for example, butadiene, acrylonitrile, styrene, etc.) in the presence of a radical polymerization catalyst.
  • the polymer polyol preferably has a molecular weight of about 5000 to 12000.
  • Examples of vegetable oil polyols include hydroxyl group-containing vegetable oils such as castor oil and palm oil.
  • a castor oil derivative polyol obtained using castor oil or hydrogenated castor oil as a raw material can also be suitably used.
  • the castor oil derivative polyol includes castor oil polyester obtained by reaction of castor oil, polyvalent carboxylic acid and short chain diol, and an alkylene oxide adduct of castor oil and castor oil polyester.
  • flame retardant polyols examples include phosphorus-containing polyols obtained by adding alkylene oxide to phosphoric acid compounds; halogen-containing polyols obtained by ring-opening polymerization of epichlorohydrin and trichlorobutylene oxide; alkylenes for active hydrogen compounds having aromatic rings An aromatic ether polyol obtained by adding an oxide; an aromatic ester polyol obtained by a condensation reaction of a polyvalent carboxylic acid having an aromatic ring and a polyhydric alcohol;
  • the hydroxyl value of the polyol to be reacted with isocyanate or the like is preferably 5 to 300 mgKOH / g, and more preferably 10 to 250 mgKOH / g.
  • the hydroxyl value can be measured by the method defined in JIS-K0070.
  • polyamines to be reacted with isocyanates examples include ethylenediamine, diethylenetriamine, triethylenetetraamine, hexamethylenepentamine, bisaminopropylpiperazine, tris (2-aminoethyl) amine, isophoronediamine, polyoxyalkylenepolyamine, diethanolamine. , Triethanolamine and the like.
  • the blocking agent for blocking the isocyanate group of the polyisocyanate may be any one that has a (meth) acryloyl group, reacts with the isocyanate group, and can be eliminated by heating.
  • blocking agents include t-butylaminoethyl methacrylate (TBAEMA), t-pentylaminoethyl methacrylate (TPAEMA), t-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TPAEMA). ), T-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TBAPMA) and the like.
  • the blocking reaction of polyisocyanate can be generally carried out at ⁇ 20 to 150 ° C., preferably 0 to 100 ° C. If it is 150 ° C. or lower, side reactions can be prevented, while if it is ⁇ 20 ° C. or higher, the reaction rate can be in an appropriate range.
  • the blocking reaction between the polyisocyanate compound and the blocking agent can be performed regardless of the presence or absence of a solvent. When using a solvent, it is preferable to use a solvent inert to the isocyanate group.
  • a reaction catalyst can be used. Specific examples of the reaction catalyst include organometallic salts such as tin, zinc and lead, metal alcoholates, and tertiary amines.
  • the blocked isocyanate prepared as described above is used as a radical polymerizable compound, first, the acryloyl group portion is polymerized by light irradiation. Thereafter, by removing the blocking agent by heating, the produced isocyanate compound can be newly polymerized with polyol, polyamine, or the like, and a three-dimensional structure including polyurethane, polyurea, or a mixture thereof can be obtained.
  • the silicone (meth) acrylate compound can be a compound in which (meth) acrylic acid is added to the terminal and / or side chain of the silicone having a polysiloxane bond in the main chain.
  • the silicone used as a raw material for the silicone (meth) acrylate compound is an organopolysiloxane obtained by polymerizing a known monofunctional, bifunctional, trifunctional, or tetrafunctional silane compound (for example, alkoxysilane) in any combination. Can do.
  • silicone acrylates include commercially available TEGORad 2500 (trade name: manufactured by Tego Chemie Service GmbH) and organic compounds having —OH groups such as X-22-4015 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.).
  • TEGORad 2500 trade name: manufactured by Tego Chemie Service GmbH
  • organic compounds having —OH groups such as X-22-4015 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.).
  • a product obtained by esterifying a modified silicone and acrylic acid in the presence of an acid catalyst; reacting an organically modified silane compound such as epoxy silane such as KBM402 and KBM403 (both trade names: manufactured by Shin-Etsu Chemical Co., Ltd.) with acrylic acid Etc. are included.
  • the type of the cationically polymerizable compound which is another example of the photopolymerizable compound, is not particularly limited as long as it has a group capable of cationic polymerization by irradiation with visible light in the presence of an acid catalyst.
  • examples thereof include a cyclic hetero compound, and a compound having a cyclic ether group is preferable from the viewpoint of reactivity and the like.
  • cationic polymerizable compound examples include oxirane compounds such as oxirane, methyl oxirane, phenyl oxirane, and 1,2-diphenyl oxirane, or a hydrogen atom of an oxirane ring such as glycidyl ether, glycidyl ester, and glycidyl amine.
  • oxirane compounds such as oxirane, methyl oxirane, phenyl oxirane, and 1,2-diphenyl oxirane
  • a hydrogen atom of an oxirane ring such as glycidyl ether, glycidyl ester, and glycidyl amine.
  • epoxy group-containing compounds substituted with a methine linking group 2- (cyclohexylmethyl) oxirane, 2-ethoxy-3- (cyclohexylmethyl) oxirane, [(cyclohexyloxy) methyl] oxirane, 1,4-bis
  • Aliphatic epoxy group-containing compounds having no aromatic ring such as rumethanol and 7-oxabicyclo [4.1.0] heptane-3-methoxymethyl; 3-phenyl-7-oxabicyclo [4.1.
  • heptane-3-carboxylate 4-ethylphenyl 7-oxabicyclo [4.1.0] heptane, benzyl 7-oxabicyclo [4.1.0] heptane-3-carboxylate, 4-ethylphenyl 7 An alicyclic epoxy group-containing compound having an aromatic ring such as oxabicyclo [4.1.0] heptane-3-carboxylate; 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, di (1-ethyl-3-oxetanyl) methyl ether, 3-ethyl-3- ( Oxetanyl group-containing compounds such as phenoxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, phenol novolac oxetane
  • the total amount of the photopolymerizable compound contained in the resin composition is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, and more preferably 40 to 60% by mass with respect to the total mass of the resin composition. % Is more preferable. When the amount of the photopolymerizable compound is within the above range, a three-dimensional model with high strength is easily obtained.
  • thermopolymerizable compound contained in the resin composition may be any compound that can be polymerized and cured by heating. Usually, the thermopolymerizable compound is used in combination with a curing agent described later.
  • thermally polymerizable compound examples include a compound containing at least one group selected from the group consisting of a cyclic ether group, a cyanate group, an isocyanate group, and a hydrosilyl group.
  • Examples of “compound having a cyclic ether group” include compounds containing epoxide, oxetane, tetrahydrofuran, tetrahydropyran and the like. Among these, from the viewpoint of polymerizability and the like, a compound having an epoxy group (hereinafter also referred to as “epoxy compound”) is preferable.
  • Examples of the epoxy compound include an epoxy compound having one or more epoxy groups in the molecule.
  • epoxy compounds include biphenyl type epoxy compounds, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, stilbene type epoxy compounds, hydroquinone type epoxy compounds, and the like; cresol novolac type epoxy compounds, phenol novolac type Novolak type epoxy compounds such as epoxy compounds and naphthol novolak type epoxy compounds; Phenol aralkyl type epoxy compounds such as phenylene skeleton-containing phenol aralkyl type epoxy compounds, biphenylene skeleton containing phenol aralkyl type epoxy compounds, phenylene skeleton containing naphthol aralkyl type epoxy compounds; Phenolmethane type epoxy compound, alkyl-modified triphenolmethane type epoxy compound, glycidylamine, Polyfunctional epoxy compounds such as functional naphthalene type epoxy compounds; modified phenol type epoxy compounds such as dicyclopentadiene modified phenol type epoxy compounds, terpene modified phenol type epoxy compounds, silicone modified epoxy compounds; heterocycles such as triazin
  • the “compound having a cyanate group” may be a compound having one or more cyanate groups in the molecule.
  • Examples include 1,3- or 1,4-dicyanatobenzene; 1,3,5-tricyanatobenzene; 1,3-, 1,4-, 1,6-, 1,8-, 2, 6- or 2,7-dicyanatonaphthalene; 1,3,6-tricyanatonaphthalene; 2,2′- or 4,4′-dicyanatobiphenyl; bis (4-cyanatophenyl) methane; 2,2 -Bis (4-cyanatophenyl) propane; 2,2-bis (3,5-dichloro-4-cyanatophenyl) propane; 2,2-bis (3-dibromo-4-dicyanatophenyl) propane; bis (4-cyanatophenyl) ether; bis (4-cyanatophenyl) thioether; bis (4-cyanatophenyl) sulfone; tris (4-cyanatophenyl) phosphit
  • the “compound having an isocyanate group” is not particularly limited as long as it is a compound having one or more isocyanate groups in the molecule, and examples thereof include tolylene diisocyanate, xylylene diisocyanate, naphthylene diisocyanate, diphenylmethane.
  • Aromatic diisocyanates such as diisocyanates; alicyclic diisocyanates such as isophorone diisocyanate, dicyclohexylmethane diisocyanate, cyclohexylene diisocyanate, diisocyanate methylcyclohexane; aliphatic diisocyanates such as hexamethylene diisocyanate; triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate 1 to 3 adduct of trimethylolpropane and hexamethylene diisocyanate, hexa Trifunctional or higher functional polyisocyanates such as cyclic trimers of tylene diisocyanate; blocking agents for isocyanate groups of these compounds (for example, alcohols, phenols, lactams, oximes, alkyl acetoacetates, alkyl malonates) , Phthalimides, imidazoles, hydrogen chloride, hydrogen
  • the “compound having a hydrosilyl group” may be a compound having one or more hydrosilyl groups in the molecule, and examples thereof include a methylhydrosiloxane-dimethylsiloxane copolymer and the like.
  • These “compounds having a hydrosilyl group” can be obtained by addition reaction with a polyorganosiloxane having a vinyl group at the terminal or side chain.
  • polysiloxanes having vinyl groups include polydimethylsiloxanes in which vinyl groups are substituted at each terminal silicon atom, dimethylsiloxane-diphenylsiloxane copolymers in which vinyl groups are substituted at each terminal silicon atom, and vinyls at each terminal silicon atom.
  • Examples include polyphenylmethylsiloxane having a substituted group, vinylmethylsiloxane-dimethylsiloxane copolymer having a trimethylsilyl group at each end, and the like.
  • the total amount of the thermopolymerizable compound and the curing agent described below is preferably 20 to 90% by mass, more preferably 30 to 80% by mass, and more preferably 40 to 40% by mass with respect to the total amount in the resin composition. More preferably, 60% by mass is contained.
  • the total amount of the thermopolymerizable compound and the curing agent is included in the range, the dimensional accuracy of the three-dimensional structure to be obtained is likely to be increased.
  • Visible light polymerization initiator A visible light polymerization initiator will not be restrict
  • the resin composition may contain only one type of visible light polymerization initiator, or two or more types of visible light polymerization initiators.
  • visible light polymerization initiators for radical polymerization include ⁇ -diketones (for example, camphorquinone, 9,10-phenanthrenequinone, 1-phenyl-propane-1,2-dione, diacetyl, 4,4′- Dichlorobenzyl or derivatives thereof), hydrogen abstraction-type initiators such as aromatic ketones and ketocoumarins; halogen compounds such as tris (trichloromethyl) triazine, organic peroxide-based initiators such as benzoyl peroxide; hexaaryls Bisimidazole compounds, boron compounds such as cyanine borate, organometallic compound initiators such as bispentadienyltitanium-di (pentafluorophenyl); 2-methylthioxanthone, 2,4-diethylthioxanthone, 2,4,6- Trimethylbenzoyl and diphenylphosphine oxide, mono Silgermanium compounds and diacylgermanium compounds (
  • camphorquinone and 9,10-phenanthrenequinone are preferred from the viewpoint of absorbance in the visible region.
  • the visible light polymerization initiator preferably has an absorption maximum at a wavelength of 400 nm or more, more preferably in a wavelength range of 420 to 550 nm, and even more preferably in a range of 450 to 500 nm.
  • the maximum absorption wavelength of the visible light polymerization initiator is within this range, the wavelength of visible light that is irradiated when the three-dimensional model is manufactured can be set to a relatively long wavelength side. Therefore, deterioration of a thermopolymerizable compound etc. at the time of three-dimensional molded item preparation can be suppressed.
  • the visible light polymerization initiator is preferably contained in an amount of 0.025 to 5% by mass, more preferably 0.05 to 1% by mass, and more preferably 0.25 to 1% by mass with respect to the total amount in the resin composition. More preferably it is included. In particular, it is preferably contained in an amount of 0.1 to 3 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the photopolymerizable compound. When the visible light polymerization initiator is included in the range, the photocurability of the resin composition tends to be good.
  • the ultraviolet light absorber is not particularly limited as long as it is a compound capable of absorbing ultraviolet light.
  • the ultraviolet light is light having a wavelength of less than 400 nm.
  • the ultraviolet light absorber is particularly preferably a compound capable of absorbing light having a wavelength of 260 to 380 nm, and more preferably a compound capable of absorbing light having a wavelength of 300 to 360 nm.
  • the said ultraviolet light absorber has little absorption of light with a wavelength of 400 nm or more, and it is more preferable not to absorb light with a wavelength of 400 nm or more substantially.
  • the ultraviolet light absorber may be an organic ultraviolet light absorber or an inorganic ultraviolet light absorber. Moreover, these may be combined.
  • the resin composition may contain only one type of ultraviolet light absorber, or two or more types.
  • organic ultraviolet light absorbers examples include thiazolidone-based, benzotriazole-based, acrylonitrile-based, benzophenone-based, aminobutadiene-based, triazine-based, phenyl salicylate-based, benzoate-based compounds, and the like.
  • triazine-based, benzotriazole-based, and benzophenone-based organic ultraviolet light absorbers are preferable from the viewpoint of sufficiently absorbing ultraviolet light and hardly inhibiting excitation of the visible light polymerization initiator. .
  • Examples of the thiazolidone-based ultraviolet light absorber include thiazolidone or a derivative thereof.
  • benzotriazole ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzo Triazole, 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1 , 1,3,3-tetramethylbutyl) phenol] (molecular weight 659; for example LA31 from ADEKA), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenyl) Ethyl) phenol (molecular weight 447.6; for example, Tinuvin 234 from BASF Japan Ltd.) and the like.
  • Examples of the acrylonitrile ultraviolet absorber include e
  • benzophenone ultraviolet absorbers examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone 2-hydroxy-4-octadecyloxy-benzophenone, 2,2′-dihydroxy-4-methoxy-benzophenone, 2,2′-dihydroxy-4,4′-dimethoxy-benzophenone, 2,2 ′, 4,4 '-Tetrahydroxy-benzophenone and the like are included.
  • aminobutadiene-based ultraviolet absorbers examples include known aminobutadiene-based ultraviolet absorbers.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy -4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy -4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphen
  • phenyl salicylate ultraviolet light absorbers examples include phenylsulcylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • benzoate ultraviolet light absorbers examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; for example, Sumisorb 400 from Sumitomo Chemical Co., Ltd.) Is included.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate and the like.
  • the organic photopolymerization initiator is preferably a compound having a molecular weight of 400 or more.
  • the molecular weight is 400 or more, it is difficult to volatilize from the resin composition, and it is difficult to volatilize even during heat curing. Therefore, it is possible to improve light resistance with a relatively small amount.
  • examples of inorganic ultraviolet light absorbers include metal oxide pigments. Specifically, titanium oxide, zirconium oxide, tin oxide, zinc oxide, antimony oxide, or a mixture thereof can be used.
  • the ultraviolet light absorber is preferably contained in an amount of 0.05 to 5% by weight, more preferably 0.1 to 2% by weight, and more preferably 0.2 to 1% by weight based on the total amount in the resin composition. More preferably. When the ultraviolet light absorber is included in the above range, the light resistance of the three-dimensional structure to be obtained tends to be good.
  • the resin composition usually further includes a curing agent and a curing accelerator for curing the above-mentioned thermopolymerizable compound.
  • the kind of the curing agent and the curing accelerator is appropriately selected according to the kind of the above-mentioned thermopolymerizable compound.
  • curing agents and curing accelerators include linear aliphatic diamines having 2 to 20 carbon atoms such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodicyclohexane, bis (4-aminophenyl) Aminos such as phenylmethane, 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, N, N-dimethyl-n-octy
  • the amount of the curing agent and curing accelerator is appropriately selected according to the amount of the above-mentioned thermopolymerizable compound.
  • the resin composition may contain a light stabilizer.
  • the light stabilizer include a photo-antioxidant, a photo-aging inhibitor, a singlet oxygen quencher, a superoxide anion quencher, an ozone quencher, and an infrared absorber.
  • hindered amine light stabilizers are preferably used.
  • poly [[6- (N-morpholino) -1,3,5-triazine-2,4-diyl] [(2,2,6,6- Tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino] (Sumitomo Chemical Co., Sumisolv 500), 1,2,3,4-butane Tetracarboxylic acid tetra (2,2,6,6-tetramethyl-4-piperidyl) (manufactured by Adeka Argus), poly [[6-1,1,3,3-tetramethylbutyl) imino-1,3 5-triazine-2,4-diyl] (2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino] ( Ciba
  • the light stabilizer is preferably contained in an amount of 0.05 to 5% by weight, more preferably 0.1 to 2% by weight, and more preferably 0.2 to 1% by weight based on the total amount in the resin composition. More preferably. When the light stabilizer is included in the above range, the light resistance of the resulting three-dimensional structure tends to be good.
  • the filler contained in the resin composition is not particularly limited, and may be an organic filler or an inorganic filler.
  • the resin composition may contain only one kind of filler, or may contain two or more kinds.
  • fillers include glass fillers made of soda-lime glass, silicate glass, borosilicate glass, aluminosilicate glass, quartz glass, etc .; alumina, zirconium oxide, titanium oxide, lead zirconate titanate, silicon carbide, silicon nitride, nitriding Ceramic filler made of aluminum, tin oxide, etc .; Metal filler made of simple metals such as iron, titanium, gold, silver, copper, tin, lead, bismuth, cobalt, antimony, cadmium, or alloys thereof; graphite, graphene, Carbon filler made of carbon nanotubes; organic polymer fiber made of polyester, polyamide, polyaramid, polyparaphenylenebenzobisoxazole, polysaccharides, etc .; potassium titanate whisker, silicone carbide whisker, silicon nitride Whisker-like inorganic compounds (such as the above-mentioned ceramic filler needles) composed of scallers, ⁇ -alumina whiskers
  • talc Including single crystals
  • mica Including single crystals
  • clay excluding single crystals
  • wollastonite hectorite, saponite
  • stevensite hydelite
  • montmorillonite nontrinite
  • bentonite Na-type tetralithic fluoromica
  • Li-type tetralithic fluoromica Na-type
  • examples include swellable mica such as fluorine teniolite and Li-type fluorine teniolite, clay mineral made of vermiculite, and the like.
  • fillers examples include polyolefin fillers made of polyethylene, polypropylene, etc .; FEP (tetrafluoroethylene-hexafluoropropylene copolymer), PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer), A fluororesin filler made of ETFE (tetrafluoroethylene-ethylene copolymer) or the like is also included.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • organic polymer fibers are preferable, and nanofibers made of polysaccharides are particularly preferable.
  • polysaccharides include cellulose, hemicellulose, lignocellulose, chitin and chitosan.
  • cellulose and chitin are preferable, and cellulose is more preferable from the viewpoint of further increasing the strength of the three-dimensional structure to be obtained.
  • a fibrous filler composed of cellulose ie, cellulose nanofiber (hereinafter also simply referred to as “nanocellulose”), is a plant-derived fiber or mechanical defibrillation of plant cell walls, biosynthesis by acetic acid bacteria, 2, Cellulose nanofibers mainly composed of fibrous nanofibrils obtained by oxidation with an N-oxyl compound such as 2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) or electrospinning may be used. .
  • Nanocellulose is cellulose mainly composed of nanofibrils crystallized in whisker-like (needle-like) obtained by mechanically defibrating plant-derived fibers or plant cell walls. It may be a nanocrystal or any other shape.
  • Nanocellulose should just have cellulose as a main component and may contain lignin, hemicellulose, etc. Nanocellulose containing lignin which is hydrophobic without performing delignification treatment is preferable because of its high affinity with photopolymerizable compounds and thermopolymerizable compounds.
  • the shape of the filler is not particularly limited, and may be, for example, fibrous (including whisker-like) or particulate, but is fibrous from the viewpoint of improving the strength of the three-dimensional model. Is preferred.
  • the average particle size is preferably 0.005 to 200 ⁇ m, more preferably 0.01 to 100 ⁇ m, and further preferably 0.1 to 50 ⁇ m.
  • the average particle size of the particulate filler is 0.1 ⁇ m or more, the strength of the three-dimensional structure is easily increased.
  • the average particle size is 50 ⁇ m or less, it becomes easy to form a three-dimensional modeled object with high definition.
  • the average particle diameter can be measured by analyzing an image obtained by imaging the resin composition with a transmission electron microscope (TEM).
  • the average fiber diameter is preferably 0.002 ⁇ m or more and 20 ⁇ m or less.
  • the average fiber diameter is 0.002 ⁇ m or more, the strength of the three-dimensional structure is easily increased.
  • the filler does not excessively increase the viscosity of the resin composition, and the accuracy of the three-dimensional structure tends to be good.
  • the average fiber diameter of the filler is more preferably 0.005 ⁇ m or more and 10 ⁇ m or less, further preferably 0.01 ⁇ m or more and 8 ⁇ m or less, and particularly preferably 0.02 ⁇ m or more and 5 ⁇ m or less.
  • the average fiber length of the filler is preferably 0.2 ⁇ m or more and 200 ⁇ m or less. When the average fiber length is 0.2 ⁇ m or more, the strength of the three-dimensional structure is easily increased. When the average fiber length is 100 ⁇ m or less, the filler is less likely to settle due to the entanglement between the fillers.
  • the average fiber length of the filler is more preferably from 0.5 ⁇ m to 100 ⁇ m, further preferably from 1 ⁇ m to 60 ⁇ m, and particularly preferably from 1 ⁇ m to 40 ⁇ m.
  • the aspect ratio of the filler is preferably 10 or more and 10,000 or less. If the aspect ratio is 10 or more, the strength of the three-dimensional structure tends to be higher. When the aspect ratio is 10,000 or less, the filler is hardly precipitated due to the entanglement between the fillers.
  • the aspect ratio of the filler is more preferably 12 or more and 8000 or less, further preferably 15 or more and 2000 or less, and particularly preferably 18 or more and 800 or less.
  • the average fiber diameter, average fiber length, and aspect ratio of the filler can be measured by analyzing an image obtained by imaging the resin composition with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the amount of the filler contained in the resin composition is preferably 1 to 50% by mass, and more preferably 5 to 40% by mass with respect to the total mass of the resin composition.
  • the amount of the filler is within the above range, a three-dimensional model with high strength is easily obtained.
  • the filler may be surface-treated with various surface treatment agents such as a known silane coupling agent.
  • various surface treatment agents such as a known silane coupling agent.
  • a photosensitizer for a three-dimensional structure by irradiation with visible light, and the resulting three-dimensional structure does not significantly cause unevenness in strength
  • a photosensitizer for a three-dimensional structure by irradiation with visible light, and the resulting three-dimensional structure does not significantly cause unevenness in strength
  • a polymerization inhibitor for a polymerization inhibitor
  • Optional additives such as antioxidants, coloring materials such as dyes and pigments, antifoaming agents, and surfactants may be further included.
  • the resin composition of the present invention has a viscosity at 25 ° C. of 0.2 to 100 Pa ⁇ s as measured using a rotary viscometer in accordance with JIS K-7117-1. It is preferably 1 to 10 Pa ⁇ s.
  • Viscosity of the resin composition is within the above range, moderate fluidity can be obtained in the method for producing a three-dimensional structure to be described later. As a result, it is possible to improve the modeling speed, and it is difficult for the filler or the like to settle in the resin composition, and as a result, the strength of the three-dimensional model is easily increased.
  • the resin composition contains the photopolymerizable compound, the thermopolymerizable compound, a visible light polymerization initiator, an ultraviolet light absorber, and a filler, a curing agent, a light stabilizer and the like as necessary. It can be prepared by mixing in any order.
  • a known apparatus can be used.
  • Ultra Turrax manufactured by IKA Japan
  • TK homomixer manufactured by Primix
  • TK pipeline homomixer manufactured by Primics
  • TK Philmix manufactured by Primix
  • Claremix manufactured by M Technique
  • Medialess stirrers such as Claire SS5 (manufactured by M Technique), Cavitron (manufactured by Eurotech), Fine Flow Mill (manufactured by Taiheiyo Kiko), Viscomill (manufactured by IMEX), Apex Mill (manufactured by Kotobuki Industries), Star mill (Ashizawa, manufactured by Finetech), DCP Super Flow (manufactured by Nihon Eirich), MP Mill (manufactured by Inoue Mfg.), Spike mill (manufactured by Inoue Mfg.), Mighty mill (manufactured by Inou
  • revolving mixers such as Awatori Nerita (Shinky) and Kaku Hunter (Photochemical)
  • planetary mixers such as Hibismix (Primics) and Hibis Disper (Primics)
  • Nanouptor An ultrasonic dispersion apparatus such as (manufactured by Sonic Bio) can also be suitably used.
  • the liquid resin composition described above includes a step of selectively irradiating visible light to form a primary cured product including a cured product of the photopolymerizable compound. It can be used for manufacturing methods.
  • the resin composition is selectively irradiated with visible light, and the above-mentioned photopolymerizable compound is cured into a desired shape to form a primary cured product.
  • An optical modeling process is performed.
  • the thermosetting process which heat-polymerizes the thermopolymerizable compound contained in the said primary hardened
  • FIG. 1 is a schematic diagram illustrating an example of an apparatus (manufacturing apparatus for a three-dimensional structure) for producing a primary cured product by an additive manufacturing method.
  • the manufacturing apparatus 500 supports the modeling tank 510 that can store the liquid resin composition 550, the modeling stage 520 that can reciprocate in the vertical direction (depth direction) inside the modeling tank 510, and the modeling stage 520.
  • a base 521, a visible light source 530, and a galvano mirror 531 for guiding visible light to the inside of the modeling tank 510 are included.
  • the modeling tank 510 only needs to have a size that can accommodate the primary cured product to be manufactured.
  • a well-known thing can be used for the light source 530 for irradiating visible light.
  • Examples of light sources for irradiating visible light include metal halide lamps, halogen lamps, xenon lamps, LEDs, sunlight, ultra-high pressure mercury lamps, and the like.
  • an LED is particularly preferable because an arbitrary wavelength can be selected.
  • light sources other than LED since ultraviolet light is contained, it is preferable to remove ultraviolet light through a filter.
  • the wavelength of visible light to be irradiated is preferably 400 to 550 nm, and more preferably 420 to 500 nm.
  • the resin composition 550 is filled in the modeling tank 510.
  • the modeling stage 520 is disposed below the liquid surface of the resin composition 550 by the thickness of the modeled object layer (first modeled object layer) to be produced.
  • the visible light emitted from the light source 530 is guided and scanned by the galvano mirror 531 or the like, and is irradiated to the resin composition 550 on the modeling stage 520.
  • a 1st model object layer is formed in a desired shape by selectively irradiating visible light only to the field which forms the 1st model object layer.
  • the modeling stage 520 is lowered (moved in the depth direction) by the thickness of one layer (the thickness of the second modeling object layer to be produced next), and the first modeling object layer is placed in the resin composition 550. Let it sink. Thereby, the resin composition is supplied onto the first modeled object layer. Subsequently, in the same manner as described above, the visible light emitted from the light source 530 is guided by the galvano mirror 531 or the like, and irradiated to the resin composition 550 positioned above the first modeled object layer. Also at this time, visible light is selectively irradiated only to the region where the second shaped article layer is formed. Thereby, a 2nd modeling thing layer is laminated
  • the primary cured product is formed into a desired shape by repeating the lowering of the modeling stage 520 (supply of the resin composition) and irradiation with visible light.
  • the shape of the primary cured material produced by the said method be the same as the shape of the three-dimensional molded item finally produced.
  • the obtained primary cured product may be further irradiated with visible light. Irradiation with visible light may be performed only in a desired range or may be performed on the entire primary cured product. When such visible light irradiation is performed, the polymerizability increases to the inside of the primary cured product, and warpage of the resulting three-dimensional model is easily suppressed.
  • the reason why the warpage is suppressed when cured to the inside is that the thermosetting component in the primary cured product is in an uncured state, and curing shrinkage occurs in the process of polymerization by heating. At this time, if the primary cured product is subjected to shrinkage stress at a high temperature, warping tends to occur.
  • the strength of the primary cured product is increased and deformation due to curing shrinkage of the thermosetting component can be reduced, so that warpage is suppressed.
  • thermopolymerizable compound contained in the primary cured product is heated and cured by a known method.
  • the temperature is preferably such that the primary cured product is not deformed.
  • the temperature is preferably lower than the glass transition temperature (Tg) of the cured product of the photopolymerizable compound.
  • FIG. 2 is a schematic diagram illustrating an example of an apparatus (manufacturing apparatus for a three-dimensional model) for producing a primary cured product by a continuous modeling method.
  • the manufacturing apparatus 600 irradiates visible light with a modeling tank 610 that can store a liquid resin composition, a modeling stage 620 that can reciprocate in the vertical direction (depth direction), and the like.
  • the modeling tank 610 has a window portion 615 that does not allow the resin composition to pass therethrough and allows visible light and oxygen to pass therethrough.
  • the modeling tank 610 has a width
  • the material of the window portion 615 is not particularly limited as long as it does not impair the purpose and curing of the present embodiment.
  • a known light source 660 for irradiating visible light can be used, and can be the same as the light source used in the additive manufacturing method. Further, by using an SLM projection optical system having a spatial light modulator (SLM) such as a liquid crystal panel or a digital mirror device (DMD) as the light source 660, even if a desired area is irradiated with visible light, Good.
  • SLM spatial light modulator
  • DMD digital mirror device
  • a light source capable of irradiating light with a wavelength of 420 to 550 nm is preferable, and a light source capable of irradiating light with a wavelength of 440 to 500 nm is more preferable.
  • the molding tank 610 is filled with the above-described resin composition. And oxygen is introduce
  • FIG. The method for introducing oxygen is not particularly limited, and for example, the outside of the modeling tank 610 may be an atmosphere having a high oxygen concentration and a pressure may be applied to the atmosphere.
  • the oxygen concentration increases, and the buffer region 642 where the photopolymerizable compound is not cured even when irradiated with visible light. Is formed.
  • the concentration of oxygen is sufficiently lower than that of the buffer region 642, and becomes a curing region 644 where the photopolymerizable compound can be cured by irradiation with visible light.
  • a step of selectively irradiating visible light from the buffer region side 642 to form a cured product of the photopolymerizable compound in the curing region 644 is performed.
  • the modeling stage 620 that is the base point for producing the primary cured product is disposed in the vicinity of the interface between the curing region 644 and the buffer region 642.
  • visible light is selectively irradiated from the light source 660 arranged on the buffer region 642 side to the bottom surface side of the modeling stage 620.
  • the photopolymerizable compound in the vicinity of the bottom surface of the modeling stage 620 (curing region 644) is cured, and the uppermost portion of the primary cured product is formed.
  • the modeling stage 620 is raised (moved away from the buffer area 642).
  • the uncured resin composition is newly supplied from the cured product 651 to the curing region 644 on the bottom side of the modeling tank 610.
  • visible light is irradiated continuously and selectively (a region to be cured) from the light source 660 while the modeling stage 620 and the cured product 651 are continuously raised.
  • a cured product is continuously formed from the bottom surface of the modeling stage 620 to the bottom side of the modeling tank 610, and a primary modeled object having no seam and high strength is manufactured.
  • the shape of the primary cured product is the same as the shape of the three-dimensional model to be finally produced.
  • the obtained primary cured product may be further irradiated with visible light. Irradiation with visible light may be performed only in a desired range or may be performed on the entire primary cured product. As described above, when such visible light irradiation is performed, the polymerizability of the photopolymerizable compound inside the primary cured product is increased, and warping of the resulting three-dimensional model is easily suppressed.
  • thermopolymerizable compound contained in the primary cured product is heated and cured by a known method.
  • the temperature is preferably such that the primary cured product is not deformed.
  • the temperature is preferably lower than the glass transition temperature (Tg) of the cured product of the photopolymerizable compound.
  • the viscosity of the resin composition is high, it is difficult to fill the curing region 644 of the modeling tank 610 with a new resin composition. For this reason, it may be difficult to lift the formed cured product 651, or the resin composition may not be uniformly filled in the curing region 644 if it is forcibly lifted, and the strength of the resulting three-dimensional model may be reduced.
  • the thickness of the buffer region 642 is increased, it is considered that the curing region 644 is easily filled with a new resin composition.
  • conventional light having a short wavelength such as ultraviolet light, cannot reach the curing region 644 sufficiently when the thickness of the buffer region 642 is increased, and conventionally the thickness of the buffer region 642 cannot be increased.
  • the wavelength of visible light is long, even if the buffer region 642 is thick, it can easily reach the curing region 644. Therefore, according to the manufacturing method of the present invention, it is possible to increase the thickness of the buffer region 642, and it is possible to produce a three-dimensional model with high strength.
  • Epoxy compound poly [2- (chloromethyl) oxirane-alt-4,4 ′-(propane-2,2-diyl) diphenol] (Araldite 506 manufactured by Huntsman) and its curing agent (4, 4 '-Methylenebis (2,6-dimethylaniline)
  • Silicone compound One-component addition-curable silicone (manufactured by Shin-Etsu Chemical Co., Ltd., KE-1056) and its curing agent (N, N-dimethyloctylamine) -Urethane compounds: isophorone diisocyanate and its curing agent (polytetramethylene oxide)
  • Cyanate ester compounds 1-bis (4-cyanatophenyl) ethane and its curing agent (isobornyl acrylate solution containing 1500 ppm of zinc (II) acetylacetonate monohydrate and 2- (5-chloro -2-benzotriazolyl)
  • UV absorber (Ultraviolet light absorber) Benzophenone ultraviolet absorber: ADEKA, ADK STAB 1413 Benzotriazole ultraviolet absorber: ADEKA, ADK STAB LA-32 Triazine ultraviolet light absorber: ADEKA, ADK STAB LA-46 ⁇ Benzoate UV absorber: Sumitomo Chemical 400, manufactured by Sumitomo Chemical Co., Ltd.
  • Hindered amine light stabilizer Sumitomo Chemical Co., Ltd.
  • Magnesium sulfate whisker Ube Materials, Moss Eat ⁇ Cellulose nanofiber: Sugino Machine, BiNFis
  • Example 4 For the production of the three-dimensional model, the resin composition was put into the model tank 610 of the manufacturing apparatus 600 shown in FIG. At the bottom of the modeling tank 610, a Teflon (registered trademark) AF2400 film (window 615) having a thickness of 0.0025 inches manufactured by Biogeneral, which can transmit oxygen as a polymerization inhibitor, is disposed. And after making the atmosphere outside the modeling tank 610 into an oxygen atmosphere, it pressurized moderately. Thereby, the buffer region 642 containing the resin composition and oxygen was formed on the bottom side of the modeling tank 610, and the upper part of the buffer region 642 became a curing region 644 having a lower oxygen concentration than the buffer region.
  • a Teflon (registered trademark) AF2400 film windshield 615) having a thickness of 0.0025 inches manufactured by Biogeneral, which can transmit oxygen as a polymerization inhibitor
  • the modeling stage 620 was raised while irradiating light from a visible light source 660: DLP projector (HD 142X manufactured by Optoma) in a planar shape. At this time, the irradiation intensity of visible light was 5 mW / cm 2 . The pulling speed of the modeling stage 620 was 50 mm / hr. Then, a three-dimensionally shaped object was prepared so as to have a test piece shape of JIS K7161-2 (ISO 527-2) type 1A.
  • curing material from which the longitudinal direction of a tensile test piece becomes horizontal in a modeling direction Were prepared.
  • the obtained three-dimensional model was washed with isopropyl alcohol.
  • the primary cured products of Examples 4, 5, and 7 to 9 were thermally cured under the conditions shown in Table 1 below.
  • Example 6 On the other hand, the primary cured product of Example 6 was irradiated with light of a wavelength of 400 to 700 nm from a xenon lamp on both surfaces of the three-dimensional structure (test piece) for 5 minutes so that the irradiation intensity was 5 mW / cm 2. did. Thereafter, it was thermoset under the conditions shown in Table 1 below.
  • Tensile strength was evaluated by a tensile test in accordance with JIS K7161-1 for a three-dimensional object whose longitudinal direction is the modeling direction and a three-dimensional object whose longitudinal direction is horizontal to the modeling direction. At this time, the distance between the gripping tools was 115 mm, and the test speed was 5 mm / min. Moreover, the value which divided the stress at the time of a fracture
  • A Horizontal tensile strength is 100 MPa or more.
  • O Horizontal tensile strength is 20 MPa or more and less than 100 MPa.
  • X Horizontal tensile strength is less than 20 MPa.
  • Modeling direction strength ratio Tensile strength in the modeling direction / Tensile strength in the horizontal direction in the modeling direction ⁇ : Modeling direction strength ratio is 0.9 or more ⁇ : Modeling direction strength ratio is 0.6 or more and less than 0.9 ⁇ : Modeling direction strength Ratio is less than 0.6
  • Light resistance A light resistance test was performed on the above-mentioned three-dimensional modeled object (the longitudinal direction is horizontal to the modeling direction) using a 7.5 kW super xenon weather meter SX75 manufactured by Suga Test Instruments Co., Ltd. according to JIS D0205.
  • the light resistance test was performed using a xenon arc lamp in an environment of a black panel temperature of 60 ° C. and a relative humidity of 50%. Further, light having a wavelength range of 300 to 400 nm was irradiated for 300 hours through an outer glass filter made of silicate glass and an inner filter made of quartz glass so that the sample surface radiation intensity became 75 W / m 2 . Thereafter, the strength retention after the light resistance test was calculated and evaluated as follows.
  • Strength retention ratio tensile strength after light resistance test / tensile strength before light resistance test ⁇ : Strength retention ratio is 0.9 or more ⁇ : Strength retention ratio is 0.8 or more and less than 0.9 ⁇ : Strength retention ratio is 0 .6 or more and less than 0.8 ⁇ : Strength retention ratio of 0.4 or more and less than 0.6 XX: Strength retention ratio of less than 0.4
  • thermopolymerizable resin when the thermopolymerizable resin was not included, the obtained three-dimensional model was easy to warp (Comparative Examples 1 and 4). Moreover, when a heat-polymerizable resin was included and an ultraviolet light absorber was not included (Comparative Examples 2 and 5), the light resistance was likely to be low. In particular, in Comparative Example 2 cured with ultraviolet light, the evaluation of warpage was low. Since this deteriorated by light at the time of producing the primary cured product, it is considered that the effect of adding the thermopolymerizable compound could not be obtained. On the other hand, when the resin composition containing an ultraviolet light absorber was cured with ultraviolet light, the resin composition could not be sufficiently cured and the strength was very low (Comparative Example 3).
  • a resin composition containing a photopolymerizable compound, a thermopolymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorber had high light resistance and high strength in both the horizontal direction and the molding direction. Even if an ultraviolet light absorber was included, it was presumed that since it was cured with visible light, the curing was hardly inhibited and the strength was high (Examples 1 to 9). Moreover, since these Examples contained a thermopolymerizable compound, it was difficult for warpage to occur.
  • the CLIP method had higher strength in the modeling direction than the SLA method. In the CLIP method, it is considered that the strength in the modeling direction is increased because a three-dimensional model is produced without a seam.
  • the present invention is expected to broaden the application range of the three-dimensional structure using the resin composition and contribute to the progress and spread of the technology in the same field.

Abstract

The present invention addresses the problem of providing a three dimensional shaped object having few warps, high strength, and good light resistance. To solve the aforementioned problem, this resin composition is used in a production method for a three-dimensional shaped object comprising a cured product of the resin composition obtained by selectively irradiating a liquid form of the resin composition with visible light. The resin composition includes a photopolymerizable compound, a thermally polymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorbent.

Description

樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物Resin composition, manufacturing method of three-dimensional model using the same, and three-dimensional model
 本発明は、樹脂組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物に関する。 The present invention relates to a resin composition, a method for producing a three-dimensional structure using the resin composition, and a three-dimensional structure.
 近年、複雑な形状の立体造形物を比較的容易に製造できる様々な方法が開発されている。立体造形物を製造する方法の一つとして、活性エネルギー線によって硬化する樹脂組成物に活性エネルギー線(例えば紫外光)を選択的に照射して、所望の形状に樹脂組成物を硬化させる方法が知られている。 In recent years, various methods have been developed that can manufacture a three-dimensional object having a complicated shape relatively easily. One of the methods for producing a three-dimensional model is a method of selectively irradiating a resin composition that is cured by active energy rays with active energy rays (for example, ultraviolet light) to cure the resin composition to a desired shape. Are known.
 しかしながら、光重合性化合物を主に含む樹脂組成物を用いて立体造形を行うと、硬化時に収縮しやすく、反りが発生しやすいとの課題があった。このような課題に対し、例えば光重合性化合物と熱重合性化合物とを混合し、光硬化後にさらに熱硬化を行うことで、反りを抑制することが提案されている(例えば、特許文献1)。 However, when three-dimensional modeling is performed using a resin composition mainly containing a photopolymerizable compound, there is a problem that it is easily contracted during curing and warpage is likely to occur. For such problems, for example, it has been proposed to suppress warpage by mixing a photopolymerizable compound and a thermopolymerizable compound and further performing thermosetting after photocuring (for example, Patent Document 1). .
 また近年、新たな立体造形物の製造方法として、光重合性化合物を含む液体状の樹脂組成物を連続的または断続的に硬化させる方法が提案されている(特許文献2および3)。当該方法では、まず造形物槽内に、活性エネルギー線を照射しても樹脂組成物が硬化しないバッファ領域と、活性エネルギー線の照射によって樹脂組成物が硬化する硬化用領域とを設ける。このとき、バッファ領域が造形槽底部側、硬化用領域が造形槽上部側に位置するよう、それぞれの領域を形成する。そして、硬化用領域に立体造形の基点となるキャリアを配置し、バッファ領域(造形槽底部)側から硬化用領域に活性エネルギー線を選択的に照射する。これにより、キャリア表面に立体造形物の一部(樹脂組成物の硬化物)が形成される。そしてさらに、当該キャリアを造形槽上部側に引き上げながら、連続的に活性エネルギー線を照射することで、キャリアの下方に、樹脂組成物の硬化物が連続的に形成され、継ぎ目のない立体造形物が作製される。 In recent years, a method of continuously or intermittently curing a liquid resin composition containing a photopolymerizable compound has been proposed as a method for producing a new three-dimensional structure (Patent Documents 2 and 3). In this method, first, a buffer region in which the resin composition is not cured even when irradiated with active energy rays and a curing region in which the resin composition is cured by irradiation with active energy rays are provided in the molded article tank. At this time, each area | region is formed so that a buffer area | region may be located in the modeling tank bottom part side, and the area | region for hardening may be located in the modeling tank upper part side. Then, a carrier serving as a base point for three-dimensional modeling is disposed in the curing region, and active energy rays are selectively irradiated from the buffer region (modeling tank bottom) side to the curing region. Thereby, a part of solid modeling thing (hardened material of a resin composition) is formed in the career surface. Further, by continuously irradiating the active energy rays while pulling up the carrier to the upper side of the modeling tank, a cured product of the resin composition is continuously formed below the carrier, and the three-dimensional modeled product is seamless. Is produced.
特開平2-24127号公報Japanese Patent Laid-Open No. 2-24127 特表2016-509962号公報Special table 2016-509962 gazette 特表2016-509964号公報Special table 2016-509964
 一般的に、熱重合性化合物は、紫外光等によって分解や切断等されやすい分子構造を有することが多い。そのため、上述の特許文献1のように、光重合性化合物と熱重合性化合物とを混合し、樹脂組成物を紫外光で硬化させると、熱重合性化合物が分解しやすく、所望の反り抑制効果が得られ難かった。また、熱重合性樹脂の耐光性を改善するために、樹脂組成物に紫外光吸収剤を添加することが考えられる。しかしながら、例えば特許文献2および特許文献3のような、選択的に活性エネルギー線を照射して立体造形物を作製する方法では、樹脂組成物に活性エネルギー線に対する感度が高いことが求められる。そのため、樹脂組成物に紫外光吸収剤を含めると、光重合性化合物の硬化が不十分になりやすく、得られる立体造形物の強度が低下しやすいとの課題があった。 Generally, thermopolymerizable compounds often have a molecular structure that is easily decomposed or cut by ultraviolet light or the like. Therefore, as in Patent Document 1 described above, when a photopolymerizable compound and a thermopolymerizable compound are mixed and the resin composition is cured with ultraviolet light, the thermopolymerizable compound is easily decomposed, and a desired warpage suppressing effect is obtained. It was difficult to obtain. Moreover, in order to improve the light resistance of a thermopolymerizable resin, it is possible to add an ultraviolet light absorber to a resin composition. However, in the method of producing a three-dimensional structure by selectively irradiating active energy rays such as Patent Literature 2 and Patent Literature 3, the resin composition is required to have high sensitivity to active energy rays. Therefore, when an ultraviolet light absorber is included in the resin composition, there is a problem that the curing of the photopolymerizable compound tends to be insufficient, and the strength of the three-dimensional structure to be obtained is likely to be reduced.
 本発明は、このような課題を鑑みてなされたものである。すなわち本発明は、反りが少なく、強度が高く、かつ耐光性が良好な造形物の提供を目的とする。 The present invention has been made in view of such problems. That is, an object of the present invention is to provide a shaped article with less warpage, high strength, and good light resistance.
 本発明の第1は、以下の樹脂組成物にある。
 [1]液体状の樹脂組成物に可視光を選択的に照射して、前記樹脂組成物の硬化物からなる立体造形物を製造する方法に使用される樹脂組成物であって、光重合性化合物と、熱重合性化合物と、可視光重合開始剤と、紫外光吸収剤と、を含む樹脂組成物。
The first of the present invention is the following resin composition.
[1] A resin composition used in a method for producing a three-dimensional structure made of a cured product of the resin composition by selectively irradiating a liquid resin composition with visible light, which is photopolymerizable. A resin composition comprising a compound, a thermally polymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorber.
 [2]前記光重合性化合物および/または前記熱重合性化合物が、芳香環、トリアジン環、エステル結合、ウレタン結合、およびウレア結合からなる群から選ばれる少なくとも一種の構造を、分子内に含む、[1]に記載の樹脂組成物。
 [3]前記可視光重合開始剤が、波長400nm以上の領域に吸収極大を有する、[1]または[2]に記載の樹脂組成物。
 [4]光安定剤をさらに含む、[1]~[3]のいずれかに記載の樹脂組成物。
 [5]フィラーをさらに含む、[1]~[4]のいずれかに記載の樹脂組成物。
[2] The photopolymerizable compound and / or the thermopolymerizable compound includes in its molecule at least one structure selected from the group consisting of an aromatic ring, a triazine ring, an ester bond, a urethane bond, and a urea bond. The resin composition according to [1].
[3] The resin composition according to [1] or [2], wherein the visible light polymerization initiator has an absorption maximum in a wavelength region of 400 nm or more.
[4] The resin composition according to any one of [1] to [3], further comprising a light stabilizer.
[5] The resin composition according to any one of [1] to [4], further comprising a filler.
 本発明の第2は、以下の立体造形物の製造方法、および立体造形物にある。
 [6]上記[1]~[5]のいずれかに記載の樹脂組成物に可視光を選択的に照射して、前記光重合性化合物の硬化物を含む一次硬化物を形成する光造形工程を含む、立体造形物の製造方法。
 [7]前記一次硬化物を、さらに熱硬化させる熱硬化工程を含む、[6]に記載の立体造形物の製造方法。
 [8]前記熱硬化工程前に、前記一次硬化物にさらに可視光を照射する光照射工程を含む、[7]に記載の立体造形物の製造方法。
2nd of this invention exists in the manufacturing method of the following three-dimensional molded items, and a three-dimensional molded item.
[6] An optical modeling step of selectively irradiating the resin composition according to any one of [1] to [5] with visible light to form a primary cured product including a cured product of the photopolymerizable compound. The manufacturing method of the three-dimensional molded item containing.
[7] The manufacturing method of the three-dimensional molded item according to [6], further including a thermosetting step of thermosetting the primary cured product.
[8] The method for manufacturing a three-dimensional structure according to [7], further including a light irradiation step of irradiating the primary cured product with visible light before the thermosetting step.
 [9]前記光造形工程が、前記樹脂組成物および酸素を含み、酸素により前記光重合性化合物の硬化が阻害されるバッファ領域、ならびに前記樹脂組成物を少なくとも含み、前記バッファ領域より酸素濃度が低く、前記光重合性化合物の硬化が可能な硬化用領域を、造形物槽内に隣接して形成する第1の工程と、前記バッファ領域側から前記樹脂組成物に可視光を選択的に照射して、前記硬化用領域で前記光重合性化合物を硬化させる第2の工程と、を含み、前記第2の工程では、形成された硬化物を前記バッファ領域とは反対側に移動させながら、前記硬化用領域に連続的に可視光を照射し、前記一次硬化物を形成する、[6]~[8]のいずれかに記載の立体造形物の製造方法。
 [10]上記[1]~[5]のいずれかに記載の樹脂組成物の硬化物である、立体造形物。
[9] The stereolithography step includes the resin composition and oxygen, includes at least a buffer region in which curing of the photopolymerizable compound is inhibited by oxygen, and the resin composition, and the oxygen concentration is higher than that of the buffer region. A first step of forming a low curing region capable of curing the photopolymerizable compound adjacent to the inside of the molded article tank, and selectively irradiating the resin composition with visible light from the buffer region side Then, the second step of curing the photopolymerizable compound in the curing region, in the second step, while moving the formed cured product to the opposite side of the buffer region, The method for producing a three-dimensional structure according to any one of [6] to [8], wherein visible light is continuously applied to the curing region to form the primary cured product.
[10] A three-dimensionally shaped article, which is a cured product of the resin composition according to any one of [1] to [5].
 本発明の樹脂組成物によれば、反りが少なく、強度が高く、さらには耐光性に優れる立体造形物の提供が可能である。 According to the resin composition of the present invention, it is possible to provide a three-dimensionally shaped article with less warpage, high strength, and excellent light resistance.
図1は、本発明の一実施形態に係る立体造形物の製造装置の模式図である。FIG. 1 is a schematic diagram of an apparatus for manufacturing a three-dimensional structure according to an embodiment of the present invention. 図2は、本発明の他の実施形態に係る立体造形物の製造装置の模式図である。FIG. 2 is a schematic view of a three-dimensional object manufacturing apparatus according to another embodiment of the present invention.
 1.樹脂組成物
 本発明の樹脂組成物は、液体状であり、当該樹脂組成物に可視光を選択的に照射して、立体造形物を製造する方法に使用される。本発明では、可視光は波長400nm~780nmの範囲をいう。前述のように、このような樹脂組成物に、光重合性化合物が主に含まれると、得られる立体造形物に反りが生じやすいとの課題があった。また従来、このような樹脂組成物に熱重合性樹脂を添加することも提案されているが、熱重合性樹脂が、造形時の紫外光照射によって劣化してしまうこと等から、立体造形物の反りを十分に抑制できなかった。また、このような樹脂組成物に紫外光吸収剤を添加した場合には、光重合性化合物の硬化が阻害されてしまい、得られる立体造形物の強度が低くなりやすかった。したがって、反りが少なく、高い強度を有し、さらには耐光性が良好な立体造形物を製造可能な樹脂組成物の提供が望まれていた。
1. Resin Composition The resin composition of the present invention is in a liquid form and is used in a method for producing a three-dimensional model by selectively irradiating visible light to the resin composition. In the present invention, visible light refers to a wavelength range of 400 nm to 780 nm. As described above, when the photopolymerizable compound is mainly contained in such a resin composition, there is a problem that the resulting three-dimensional structure is likely to be warped. Conventionally, it has also been proposed to add a thermopolymerizable resin to such a resin composition. However, since the thermopolymerizable resin deteriorates due to ultraviolet light irradiation at the time of modeling, etc. The warp could not be sufficiently suppressed. In addition, when an ultraviolet light absorber is added to such a resin composition, the curing of the photopolymerizable compound is hindered, and the strength of the three-dimensional structure to be obtained tends to be lowered. Therefore, it has been desired to provide a resin composition that can produce a three-dimensional structure with little warpage, high strength, and good light resistance.
 これに対し、本発明の樹脂組成物には、光重合性化合物と、熱重合性化合物と、可視光重合開始剤と、紫外光吸収剤と、が含まれる。当該樹脂組成物には、可視光重合開始剤が含まれることから、可視光で硬化させることが可能である。またこのとき、硬化のための光(可視光)が紫外光吸収剤によって吸収され難く、光硬化性が良好になりやすい。またたとえ、熱重合性化合物等が光劣化しやすい構造を有していたとしても、可視光照射によっては光劣化し難いことから、所望の反り抑制効果が得られやすく、寸法精度の高い立体造形物が得られる。また、本発明の樹脂組成物には、紫外光吸収剤が含まれることから、立体造形物後の経時の光劣化も抑制することが可能である。 In contrast, the resin composition of the present invention contains a photopolymerizable compound, a thermopolymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorber. Since the visible light polymerization initiator is contained in the resin composition, it can be cured with visible light. At this time, light for curing (visible light) is not easily absorbed by the ultraviolet light absorber, and the photocurability tends to be good. Also, even if the thermopolymerizable compound or the like has a structure that is easily photodegraded, it is difficult to photodegrade by irradiation with visible light, so that it is easy to obtain a desired warpage suppressing effect, and three-dimensional modeling with high dimensional accuracy. A thing is obtained. Moreover, since the ultraviolet light absorber is contained in the resin composition of this invention, it is also possible to suppress the light degradation with time after a three-dimensional molded item.
 なお、上記光重合性化合物および/または熱重合性化合物が、その分子中に、芳香環、トリアジン環、エステル結合、ウレタン結合、およびウレア結合からなる群から選ばれる構造を有する場合に、立体造形物が光劣化しやすくなる。これに対し、本発明の樹脂組成物の組成であれば、光重合性化合物や熱重合性化合物が、このような構造を有していたとしても、長期間に亘って立体造形物の耐光性が良好になるとの利点がある。 When the photopolymerizable compound and / or the thermopolymerizable compound has a structure selected from the group consisting of an aromatic ring, a triazine ring, an ester bond, a urethane bond, and a urea bond in the molecule, Things are subject to light degradation. On the other hand, if it is a composition of the resin composition of this invention, even if a photopolymerizable compound and a thermopolymerizable compound have such a structure, the light resistance of a three-dimensional molded item over a long period of time. Has the advantage of becoming better.
 なお、樹脂組成物には、硬化剤や光安定剤、フィラー等、光重合性化合物、熱重合性化合物、可視光重合開始剤、および紫外光吸収剤以外の成分が必要に応じて含まれていてもよい。以下、各成分について説明する。 The resin composition contains components other than a curing agent, a light stabilizer, a filler, a photopolymerizable compound, a thermopolymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorber as necessary. May be. Hereinafter, each component will be described.
 1-1.光重合性化合物
 樹脂組成物に含まれる光重合性化合物は、常温で液体状であり、可視光の照射によって重合可能な化合物であればよく、モノマーであってもよく、オリゴマーであってもよく、プレポリマーであってもよく、これらの混合物であってもよい。また、光重合性化合物は、ラジカル重合性化合物であっても、カチオン重合性化合物であってもよい。ただし、後述するように、樹脂組成物に酸素を添加しながら、立体造形物を作製する方法(以下、「CLIP法」とも称する)に用いる樹脂組成物では、光重合性化合物がラジカル重合性化合物である必要がある。樹脂組成物には、光重合性化合物が1種のみ含まれていてもよく、2種以上含まれていてもよい。
1-1. Photopolymerizable compound The photopolymerizable compound contained in the resin composition may be a compound that is liquid at room temperature and can be polymerized by irradiation with visible light, and may be a monomer or an oligomer. It may be a prepolymer or a mixture thereof. The photopolymerizable compound may be a radical polymerizable compound or a cationic polymerizable compound. However, as will be described later, in a resin composition used for a method of producing a three-dimensional structure (hereinafter also referred to as “CLIP method”) while adding oxygen to the resin composition, the photopolymerizable compound is a radical polymerizable compound. Need to be. The resin composition may contain only one type of photopolymerizable compound, or may contain two or more types.
 ラジカル重合性化合物は、後述の可視光重合開始剤(ラジカル重合開始剤)の存在下、可視光の照射によってラジカル重合可能な基を有していればその種類は特に制限されない。ラジカル重合性化合物の例には、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、アリルエーテル基、ビニルエーテル基、マレイル基、マレイミド基、(メタ)アクリルアミド基、アセチルビニル基、ビニルアミド基、(メタ)アクリロイル基を分子内に1つ以上有する化合物が含まれる。 The radically polymerizable compound is not particularly limited as long as it has a group capable of radical polymerization by irradiation with visible light in the presence of a visible light polymerization initiator (radical polymerization initiator) described later. Examples of radically polymerizable compounds include ethylene group, propenyl group, butenyl group, vinylphenyl group, allyl ether group, vinyl ether group, maleyl group, maleimide group, (meth) acrylamide group, acetyl vinyl group, vinyl amide group, (meta ) Compounds having one or more acryloyl groups in the molecule are included.
 これらの中でも、ラジカル重合性化合物は、分子内に不飽和カルボン酸エステル構造を1つ以上含む不飽和カルボン酸エステル化合物、または分子内に不飽和カルボン酸アミド構造を1つ以上含む後述の不飽和カルボン酸アミド化合物であることが好ましい。さらには、後述の、(メタ)アクリロイル基を含む(メタ)アクリレート系化合物および/または(メタ)アクリルアミド系化合物であることが特に好ましい。なお、本明細書において、「(メタ)アクリル」との記載は、メタクリルおよび/またはアクリルを表し、「(メタ)アクリロイル」との記載は、メタクリロイルおよび/またはアクリロイルを表し、「(メタ)アクリレート」との記載は、メタクリレートおよび/またはアクリレートを表す。 Among these, the radical polymerizable compound is an unsaturated carboxylic acid ester compound containing one or more unsaturated carboxylic acid ester structures in the molecule or an unsaturated compound described later containing one or more unsaturated carboxylic acid amide structures in the molecule. A carboxylic acid amide compound is preferred. Furthermore, a (meth) acrylate-based compound and / or a (meth) acrylamide-based compound containing a (meth) acryloyl group, which will be described later, are particularly preferable. In the present specification, the description “(meth) acryl” represents methacryl and / or acryl, the description “(meth) acryloyl” represents methacryloyl and / or acryloyl, and “(meth) acrylate” "Represents methacrylate and / or acrylate.
 ラジカル重合性化合物の一つである「アリルエーテル基を有する化合物」の例には、フェニルアリルエーテル、o-,m-,p-クレゾールモノアリルエーテル、ビフェニル-2-オールモノアリルエーテル、ビフェニル-4-オールモノアリルエーテル、ブチルアリルエーテル、シクロヘキシルアリルエーテル、シクロヘキサンメタノールモノアリルエーテル、フタル酸ジアリルエーテル、イソフタル酸ジアリルエーテル、ジメタノールトリシクロデカンジアリルエーテル、1,4-シクロヘキサンジメタノールジアリルエーテル、アルキレン(炭素数2~5)グリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ポリグリセリン(重合度2~5)ジアリルエーテル、トリメチロールプロパントリアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル及びテトラアリルオキシエタン、ペンタエリスリトールトリアリルエーテル、ジグリセリントリアリルエーテル、ソルビトールトリアリルエーテルおよびポリグリセリン(重合度3~13)ポリアリルエーテル等が含まれる。 Examples of “compound having an allyl ether group” which is one of radically polymerizable compounds include phenyl allyl ether, o-, m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl- 4-ol monoallyl ether, butyl allyl ether, cyclohexyl allyl ether, cyclohexanemethanol monoallyl ether, phthalic acid diallyl ether, isophthalic acid diallyl ether, dimethanol tricyclodecane diallyl ether, 1,4-cyclohexanedimethanol diallyl ether, alkylene (C2-5) Glycol diallyl ether, polyethylene glycol diallyl ether, glycerol diallyl ether, trimethylolpropane diallyl ether, pentaerythritol dia Ether, polyglycerol (degree of polymerization 2-5) diallyl ether, trimethylolpropane triallyl ether, glycerol triallyl ether, pentaerythritol tetraallyl ether and tetraallyloxyethane, pentaerythritol triallyl ether, diglycerol triallyl ether, sorbitol Triallyl ether and polyglycerin (degree of polymerization 3 to 13) polyallyl ether and the like are included.
 また、「ビニルエーテル基を有する化合物」の例には、ブチルビニルエーテル、ブチルプロペニルエーテル、ブチルブテニルエーテル、ヘキシルビニルエーテル、1,4-ブタンジオールジビニルエーテル、エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、エチルエトキシビニルエーテル、アセチルエトキシエトキシビニルエーテル、シクロヘキシルビニルエーテル、トリシクロデカンビニルエーテル、アダマンチルビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリシクロデカンジメタノールジビニルエーテル、ビスフェノールAのEO付加物ジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロペンタジエンビニルエーテル、ノルボルニルジメタノールジビニルエーテル、ジビニルレゾルシン、ジビニルハイドロキノン、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールビニルエーテル、ブチレンジビニルエーテル、ジブチレングリコールジビニルエーテル、4-シクロヘキサンジビニルエーテル、オキサノルボナンジビニルエーテル、ネオペンチルグリコールジビニルエーテル、グリセリントリビニルエーテル、オキセタンジビニルエーテル、グリセリンエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数6)、トリメチロールプロパントリビニルエーテル、トリビニルエーテルエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数3)、ペンタエリスリトールトリビニルエーテル、ジトリメチロールプロパンヘキサビニルエーテルおよびそれらのオキシエチレン付加物等が含まれる。 Examples of the “compound having a vinyl ether group” include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, 1,4-butanediol divinyl ether, ethyl hexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy vinyl ether. , Acetylethoxyethoxy vinyl ether, cyclohexyl vinyl ether, tricyclodecane vinyl ether, adamantyl vinyl ether, cyclohexane dimethanol divinyl ether, tricyclodecane dimethanol divinyl ether, EO adduct divinyl ether of bisphenol A, cyclohexanediol divinyl ether, cyclopentadiene vinyl ether, nor Bornyldimethanol divini Ether, divinyl resorcin, divinyl hydroquinone, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether, 4-cyclohexane divinyl ether, oxa Norbonane divinyl ether, neopentyl glycol divinyl ether, glycerin trivinyl ether, oxetane divinyl ether, glycerin ethylene oxide adduct trivinyl ether (addition mole number of ethylene oxide 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether ( Added mole number 3 Chiren'okishido), pentaerythritol trivinyl ether, includes such ditrimethylolpropane hexa ether and their oxyethylene adduct.
 上記「マレイミド基を有する化合物」の例には、フェニルマレイミド、シクロヘキシルマレイミド、n-ヘキシルマレイミド等が含まれる。 Examples of the “compound having a maleimide group” include phenylmaleimide, cyclohexylmaleimide, n-hexylmaleimide and the like.
 また、「(メタ)アクリルアミド基を有する化合物」、すなわち(メタ)アクリルアミド系化合物の例には、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ビスメチレンアクリルアミド、ジ(エチレンオキシ)ビスプロピルアクリルアミド、およびトリ(エチレンオキシ)ビスプロピルアクリルアミド、(メタ)アクリロイルモルホリン等が含まれる。 Examples of “compounds having a (meth) acrylamide group”, that is, (meth) acrylamide compounds include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl (meth) acrylamide, N- Isopropyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-butyl (meth) acrylamide, isobutoxymethyl (meth) acrylamide, diacetone (meth) acrylamide, bismethyleneacrylamide, di (ethyleneoxy) bispropylacrylamide, And tri (ethyleneoxy) bispropylacrylamide, (meth) acryloylmorpholine, and the like.
 一方、上述の「(メタ)アクリル基を有する化合物」すなわち(メタ)アクリレート系化合物の例には、イソアミル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミルスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-エチルヘキシル-ジグリコール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、メトキシエトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、グリセリン(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、およびt-ブチルシクロヘキシル(メタ)アクリレート等を含む単官能の(メタ)アクリレートモノマー;
 トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、シクロヘキサンジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジイルジメチレンジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、およびトリシクロデカンジメタノールジ(メタ)アクリレート等を含む2官能の(メタ)アクリレートモノマー;
 トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、およびペンタエリスリトールエトキシテトラ(メタ)アクリレート等を含む3官能以上の(メタ)アクリレートモノマー;
 およびこれらのオリゴマー等が含まれる。
On the other hand, examples of the above-mentioned “compound having a (meth) acryl group”, that is, a (meth) acrylate-based compound include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, butyl (meth) acrylate, Pentyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, tridecyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (Meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dimethylaminoethyl (meth) acrylate Lilate, diethylaminoethyl (meth) acrylate, 2-ethylhexyl-diglycol (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, methoxyethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxy Diethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, pentachlorophenyl (meth) acrylate, pentabromophenyl (meth) acrylate , Tetrahydrofurfuryl (meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyl ( (Meth) acrylate, isobornyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, glycerin (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, 2-hydroxy Ethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, benzyl (meth) acrylate, 2- (2-ethoxyethoxy) ) Ethyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) Acryloyloxyethyl-2-hydroxyethyl - phthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, and t- butyl cyclohexyl (meth) monofunctional containing acrylate (meth) acrylate monomer;
Triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, cyclohexanedi (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, neopentylglycol di ( (Meth) acrylate, tricyclodecanediyldimethylene di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, polyester di (meth) acrylate, bisphenol PO adduct di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate , And bifunctional (meth) acrylate monomers including tricyclodecane dimethanol di (meth) acrylate and the like;
Trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) A tri- or higher functional (meth) acrylate monomer including acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, glycerin propoxytri (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, and the like;
And oligomers thereof.
 また、「(メタ)アクリレート系化合物」は、各種(メタ)アクリレートモノマーやそのオリゴマーをさらに変性したもの(変性物)であってもよい。変性物の例には、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート等のエチレンオキサイド変性(メタ)アクリレートモノマー;トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性グリセリントリ(メタ)アクリレート等のプロピレンオキサイド変性(メタ)アクリレートモノマー;カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート等のカプロラクトン変性(メタ)アクリレートモノマー;カプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のカプロラクタム変性(メタ)アクリレートモノマー;等が含まれる。 Further, the “(meth) acrylate compound” may be a product obtained by further modifying various (meth) acrylate monomers or oligomers thereof (modified product). Examples of modified products include triethylene glycol diacrylate, polyethylene glycol diacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, ethylene oxide modified pentaerythritol tetraacrylate, ethylene oxide modified bisphenol A di (meth) acrylate, ethylene Ethylene oxide modified (meth) acrylate monomers such as oxide modified nonylphenol (meth) acrylate; tripropylene glycol diacrylate, polypropylene glycol diacrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified pentaerythritol tetraacrylate, propylene Oxide-modified glycerin tri (meth) ac Propylene oxide modified (meth) acrylate monomers such as caprate; Caprolactone modified (meth) acrylate monomers such as caprolactone modified trimethylolpropane tri (meth) acrylate; Caprolactam modified (meth) acrylates such as caprolactam modified dipentaerythritol hexa (meth) acrylate Monomer; and the like.
 「(メタ)アクリレート系化合物」はさらに、各種オリゴマーを(メタ)アクリレート化した化合物(以下、「変性(メタ)アクリレート系化合物」とも称する)であってもよい。このような変性(メタ)アクリレート系化合物の例には、ポリブタジエン(メタ)アクリレート系化合物、ポリイソプレン(メタ)アクリレート系化合物、エポキシ(メタ)アクリレート系化合物、ウレタン(メタ)アクリレート系化合物、シリコーン(メタ)アクリレート系化合物、ポリエステル(メタ)アクリレート系化合物、および直鎖(メタ)アクリル系化合物等が含まれる。これらの中でも特に、エポキシ(メタ)アクリレート系化合物、ウレタン(メタ)アクリレート系化合物、およびシリコーン(メタ)アクリレート系化合物を好適に用いることができる。樹脂組成物にエポキシ(メタ)アクリレート系化合物や、ウレタン(メタ)アクリレート系化合物やシリコーン(メタ)アクリレート系化合物が含まれると、得られる立体造形物の強度が高まりやすくなる。 The “(meth) acrylate-based compound” may be a compound (hereinafter also referred to as “modified (meth) acrylate-based compound”) in which various oligomers are (meth) acrylated. Examples of such modified (meth) acrylate compounds include polybutadiene (meth) acrylate compounds, polyisoprene (meth) acrylate compounds, epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, silicone ( A meth) acrylate compound, a polyester (meth) acrylate compound, a linear (meth) acrylic compound, and the like are included. Among these, epoxy (meth) acrylate compounds, urethane (meth) acrylate compounds, and silicone (meth) acrylate compounds can be preferably used. When an epoxy (meth) acrylate compound, a urethane (meth) acrylate compound, or a silicone (meth) acrylate compound is included in the resin composition, the strength of the three-dimensional structure to be obtained easily increases.
 エポキシ(メタ)アクリレート系化合物は、一分子内にエポキシ基と、(メタ)アクリレート基とをそれぞれ1つ以上含む化合物であればよく、その例には、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェニル型エポキシ(メタ)アクリレート、トリフェノールメタン型エポキシ(メタ)アクリレートや、クレゾールノボラック型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート等のノボラック型エポキシ(メタ)アクリレート等が含まれる。 The epoxy (meth) acrylate compound may be a compound containing at least one epoxy group and one (meth) acrylate group in one molecule. Examples thereof include bisphenol A type epoxy (meth) acrylate and bisphenol. Novolak type epoxy such as F type epoxy (meth) acrylate, bisphenyl type epoxy (meth) acrylate, triphenolmethane type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate, etc. (Meth) acrylate and the like are included.
 ウレタン(メタ)アクリレート系化合物は、2つのイソシアネート基を有する脂肪族ポリイソシアネート化合物または2つのイソシアネート基を有する芳香族ポリイソシアネート化合物と、水酸基を有する(メタ)アクリル酸誘導体等とを反応させて得られる、ウレタン結合および(メタ)アクリロイル基を有する化合物とすることができる。 A urethane (meth) acrylate compound is obtained by reacting an aliphatic polyisocyanate compound having two isocyanate groups or an aromatic polyisocyanate compound having two isocyanate groups with a (meth) acrylic acid derivative having a hydroxyl group. And a compound having a urethane bond and a (meth) acryloyl group.
 上記ウレタン(メタ)アクリレート系化合物の原料となるイソシアネート化合物の例には、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が含まれる。 Examples of the isocyanate compound used as a raw material for the urethane (meth) acrylate compound include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4 , 4'-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (Isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantri Isocyanate and the like.
 また、上記ウレタン(メタ)アクリレート系化合物の原料となるイソシアネート化合物の例には、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も含まれる。 Examples of the isocyanate compound that is a raw material for the urethane (meth) acrylate compound include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and the like. Also included are chain-extended isocyanate compounds obtained by reaction of polyols with excess isocyanate compounds.
 一方、上記ウレタン(メタ)アクリレート系化合物の原料となる、水酸基を有する(メタ)アクリル酸誘導体の例には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート;トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレートやジ(メタ)アクリレート;ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が含まれる。 On the other hand, examples of the (meth) acrylic acid derivative having a hydroxyl group as a raw material for the urethane (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy Hydroxyalkyl (meth) acrylates such as butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, Mono (meth) acrylates of dihydric alcohols such as polyethylene glycol; mono (meth) acrylates and di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin; It includes epoxy (meth) acrylate of rates.
 上記構造のウレタン(メタ)アクリレート系化合物は、市販されているものであってもよく、その例には、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260(いずれもダイセル・オルネクス社製)、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が含まれる。 The urethane (meth) acrylate compound having the above structure may be commercially available, and examples thereof include M-1100, M-1200, M-1210, and M-1600 (all manufactured by Toagosei Co., Ltd.). ), EBECRYL210, EBECRYL220, EBECRYL230, EBECRYL270, EBECRYL1290, EBECRYL2220, EBECRYL4827, EBECRYL4842, EBECRYL4858, EBECRYL5129, EBECRYL6700, EBECRYL8402, EBECRYL8803, EBECRYL8804, EBECRYL8807, EBECRYL9260 (all manufactured by Daicel-Orunekusu Co., Ltd.), Art resin UN-330, Art Resin SH-500B, Art Resin UN-12 0TPK, Art Resin UN-1255, Art Resin UN-3320HB, Art Resin UN-7100, Art Resin UN-9000A, Art Resin UN-9000H (all manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA, U- 3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA-4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all Shin-Nakamura Chemical Co., Ltd.), AH-600, AI-600, AT-600, UA-101I, UA-1 1T, UA-306H, UA-306I, include UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
 一方、ウレタン(メタ)アクリレート系化合物は、ポリイソシアネートのイソシアネート基を(メタ)アクリレート基を有するブロック剤によりブロック化して得られるブロックイソシアネートであってもよい。 On the other hand, the urethane (meth) acrylate compound may be a blocked isocyanate obtained by blocking the isocyanate group of polyisocyanate with a blocking agent having a (meth) acrylate group.
 ブロックイソシアネートを得るために用いられるポリイソシアネートは、前述の「イソシアネート化合物」であってもよく、これらの化合物とポリオールやポリアミンとを反応させた化合物であってもよい。ポリオールの例には、従来公知のポリエーテルポリオール、ポリエステルポリオール、ポリマーポリオール、植物油ポリオール、さらには含リンポリオールやハロゲン含有ポリオール等の難燃ポリオール等が含まれる。これらのポリオールは、ブロックイソシアネート中に1種のみ含まれていてもよく、2種以上が含まれていてもよい。 The polyisocyanate used for obtaining the blocked isocyanate may be the aforementioned “isocyanate compound”, or a compound obtained by reacting these compounds with a polyol or polyamine. Examples of the polyol include conventionally known polyether polyols, polyester polyols, polymer polyols, vegetable oil polyols, and flame retardant polyols such as phosphorus-containing polyols and halogen-containing polyols. One of these polyols may be contained in the blocked isocyanate, or two or more thereof may be contained.
 イソシアネート等と反応させる上記ポリエーテルポリオールの例には、少なくとも2個以上の活性水素基を有する化合物(具体的には、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール類;エチレンジアミン等のアミン類;エタノールアミン、ジエタノールアミン等のアルカノールアミン類;等)とアルキレンオキサイド(具体的には、エチレンオキシド、プロピレンオキシド等)との付加反応により調製される化合物が含まれる。ポリエーテルポリオールの調製方法は、例えば、Gunter Oertel,“Polyurethane Handbook”(1985) Hanser Publishers社(ドイツ),p.42-53に記載の方法とすることができる。 Examples of the polyether polyol to be reacted with isocyanate and the like include compounds having at least two active hydrogen groups (specifically, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol, etc.) A compound prepared by an addition reaction of an alkylene oxide (specifically, ethylene oxide, propylene oxide, etc.) with an amine such as ethylenediamine; an alkanolamine such as ethanolamine or diethanolamine; Methods for preparing polyether polyols are described, for example, in Gunter Oertel, “Polyurethane Handbook” (1985) Hanser u Publishers (Germany), p. 42-53.
 上記ポリエステルポリオールの例には、アジピン酸、フタル酸等の多価カルボン酸と、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等の多価アルコールとの縮合反応物や、ナイロン製造時の廃物、トリメチロールプロパン、ペンタエリストールの廃物、フタル酸系ポリエステルの廃物、廃品を処理し誘導したポリエステルポリオール等が含まれる(例えば、岩田敬治「ポリウレタン樹脂ハンドブック」(1987)日刊工業新聞社 p.117の記載参照)。 Examples of the polyester polyol include a condensation reaction product of a polyvalent carboxylic acid such as adipic acid or phthalic acid and a polyhydric alcohol such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol, or nylon. Includes waste from manufacturing, waste from trimethylolpropane, pentaerythritol, waste from phthalic polyester, polyester polyol derived from the treatment of waste (eg, Keiji Iwata “Polyurethane Resin Handbook” (1987) Nikkan Kogyo Shimbun) (See description of company p. 117).
 上記ポリマーポリオールの例には、上記ポリエーテルポリオールとエチレン性不飽和単量体(例えば、ブタジエン、アクリロニトリル、スチレン等)とをラジカル重合触媒の存在下に反応させた重合体ポリオールが含まれる。ポリマーポリオールは、分子量が5000~12000程度であることがより好ましい。 Examples of the polymer polyol include a polymer polyol obtained by reacting the polyether polyol with an ethylenically unsaturated monomer (for example, butadiene, acrylonitrile, styrene, etc.) in the presence of a radical polymerization catalyst. The polymer polyol preferably has a molecular weight of about 5000 to 12000.
 植物油ポリオールの例には、ひまし油、やし油等のヒドロキシル基含有植物油等が含まれる。また、ひまし油又は水添ひまし油を原料として得られるひまし油誘導体ポリオールも好適に用いることができる。ひまし油誘導体ポリオールとしては、ひまし油、多価カルボン酸及び短鎖ジオールの反応で得られるひまし油ポリエステル、ひまし油やひまし油ポリエステルのアルキレンオキシド付加物等が含まれる。 Examples of vegetable oil polyols include hydroxyl group-containing vegetable oils such as castor oil and palm oil. A castor oil derivative polyol obtained using castor oil or hydrogenated castor oil as a raw material can also be suitably used. The castor oil derivative polyol includes castor oil polyester obtained by reaction of castor oil, polyvalent carboxylic acid and short chain diol, and an alkylene oxide adduct of castor oil and castor oil polyester.
 難燃ポリオールの例には、リン酸化合物にアルキレンオキシドを付加して得られるリン含有ポリオール;エピクロルヒドリンやトリクロロブチレンオキシドを開環重合して得られるハロゲン含有ポリオール;芳香環を有する活性水素化合物にアルキレンオキシドを付加して得られる芳香族系エーテルポリオール;芳香環を有する多価カルボン酸と多価アルコールの縮合反応で得られる芳香族系エステルポリオール;等が含まれる。 Examples of flame retardant polyols include phosphorus-containing polyols obtained by adding alkylene oxide to phosphoric acid compounds; halogen-containing polyols obtained by ring-opening polymerization of epichlorohydrin and trichlorobutylene oxide; alkylenes for active hydrogen compounds having aromatic rings An aromatic ether polyol obtained by adding an oxide; an aromatic ester polyol obtained by a condensation reaction of a polyvalent carboxylic acid having an aromatic ring and a polyhydric alcohol;
 イソシアネート等と反応させるポリオールの水酸基価としては、5~300mgKOH/gであることが好ましく、10~250mgKOH/gであることがより好ましい。水酸基価は、JIS-K0070に規定された方法で測定できる。 The hydroxyl value of the polyol to be reacted with isocyanate or the like is preferably 5 to 300 mgKOH / g, and more preferably 10 to 250 mgKOH / g. The hydroxyl value can be measured by the method defined in JIS-K0070.
 また、イソシアネート等と反応させるポリアミンの例には、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、ヘキサメチレンペンタアミン、ビスアミノプロピルピペラジン、トリス(2-アミノエチル)アミン、イソホロンジアミン、ポリオキシアルキレンポリアミン、ジエタノールアミン、トリエタノールアミン等が含まれる。 Examples of polyamines to be reacted with isocyanates include ethylenediamine, diethylenetriamine, triethylenetetraamine, hexamethylenepentamine, bisaminopropylpiperazine, tris (2-aminoethyl) amine, isophoronediamine, polyoxyalkylenepolyamine, diethanolamine. , Triethanolamine and the like.
 一方、ポリイソシアネートのイソシアネート基をブロックするためのブロック剤としては、(メタ)アクリロイル基を有し、かつ、イソシアネート基と反応し、加熱により脱離できるものであればよい。 On the other hand, the blocking agent for blocking the isocyanate group of the polyisocyanate may be any one that has a (meth) acryloyl group, reacts with the isocyanate group, and can be eliminated by heating.
 このようなブロック剤の具体的例には、t-ブチルアミノエチルメタクリレート(TBAEMA)、t-ペンチルアミノエチルメタクリレート(TPAEMA)、t-ヘキシルアミノエチルメタクリレート(THAEMA)、t-ブチルアミノプロピルメタクリレート(TPAEMA)、t-ヘキシルアミノエチルメタクリレート(THAEMA)、t-ブチルアミノプロピルメタクリレート(TBAPMA)等が含まれる。 Specific examples of such blocking agents include t-butylaminoethyl methacrylate (TBAEMA), t-pentylaminoethyl methacrylate (TPAEMA), t-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TPAEMA). ), T-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TBAPMA) and the like.
 ポリイソシアネートのブロック化反応は、一般に-20~150℃で行うことができるが、好ましくは0~100℃である。150℃以下であれば副反応を防止することができ、他方、-20℃以上であれば反応速度を適度な範囲とすることができる。ポリイソシアネート化合物とブロック剤のブロック化反応は、溶剤の存在の有無に関わらず、行うことができる。溶剤を用いる場合は、イソシアネート基に対して不活性な溶剤を用いるのが好ましい。ブロック化反応においては、反応触媒を使用することができる。具体的な反応触媒の例には、錫、亜鉛、鉛等の有機金属塩、金属アルコラート、及び3級アミン等が含まれる。 The blocking reaction of polyisocyanate can be generally carried out at −20 to 150 ° C., preferably 0 to 100 ° C. If it is 150 ° C. or lower, side reactions can be prevented, while if it is −20 ° C. or higher, the reaction rate can be in an appropriate range. The blocking reaction between the polyisocyanate compound and the blocking agent can be performed regardless of the presence or absence of a solvent. When using a solvent, it is preferable to use a solvent inert to the isocyanate group. In the blocking reaction, a reaction catalyst can be used. Specific examples of the reaction catalyst include organometallic salts such as tin, zinc and lead, metal alcoholates, and tertiary amines.
 上述のように調製されるブロックイソシアネートをラジカル重合性化合物として用いる場合、まず、光照射によりアクリロイル基部分を重合させる。その後、加熱によってブロック剤を外すことで、生成したイソシアネート化合物を新たにポリオールやポリアミン等と重合させることができ、ポリウレタンやポリウレアまたはこれらの混合物を含む立体造形物を得ることができる。 When the blocked isocyanate prepared as described above is used as a radical polymerizable compound, first, the acryloyl group portion is polymerized by light irradiation. Thereafter, by removing the blocking agent by heating, the produced isocyanate compound can be newly polymerized with polyol, polyamine, or the like, and a three-dimensional structure including polyurethane, polyurea, or a mixture thereof can be obtained.
 一方、シリコーン(メタ)アクリレート系化合物は、主鎖にポリシロキサン結合を有するシリコーンの末端および/または側鎖に(メタ)アクリル酸を付加した化合物とすることができる。シリコーン(メタ)アクリレート系化合物の原料となるシリコーンは、公知の1官能、2官能、3官能、または4可能のシラン化合物(例えばアルコキシシラン等)が任意の組み合わせで重合したオルガノポリシロキサンとすることができる。シリコーンアクリレートの具体例には、市販のTEGORad2500(商品名:テゴケミーサービスGmbH社製)の他、X-22-4015(商品名:信越化学工業株式会社製)の様な-OH基を有する有機変性シリコーンとアクリル酸とを酸触媒下でエステル化させたもの;KBM402、KBM403(商品名:いずれも信越化学工業株式会社製)の様なエポキシシラン等の有機変性シラン化合物とアクリル酸を反応させたもの;等が含まれる。 On the other hand, the silicone (meth) acrylate compound can be a compound in which (meth) acrylic acid is added to the terminal and / or side chain of the silicone having a polysiloxane bond in the main chain. The silicone used as a raw material for the silicone (meth) acrylate compound is an organopolysiloxane obtained by polymerizing a known monofunctional, bifunctional, trifunctional, or tetrafunctional silane compound (for example, alkoxysilane) in any combination. Can do. Specific examples of silicone acrylates include commercially available TEGORad 2500 (trade name: manufactured by Tego Chemie Service GmbH) and organic compounds having —OH groups such as X-22-4015 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.). A product obtained by esterifying a modified silicone and acrylic acid in the presence of an acid catalyst; reacting an organically modified silane compound such as epoxy silane such as KBM402 and KBM403 (both trade names: manufactured by Shin-Etsu Chemical Co., Ltd.) with acrylic acid Etc. are included.
 一方、光重合性化合物の他の例である、カチオン重合性化合物は、酸触媒の存在下、可視光の照射によってカチオン重合可能な基を有していれば、その種類は特に制限されない。その例には、環状ヘテロ化合物が含まれ、環状エーテル基を有する化合物であることが、その反応性等の観点から好ましい。 On the other hand, the type of the cationically polymerizable compound, which is another example of the photopolymerizable compound, is not particularly limited as long as it has a group capable of cationic polymerization by irradiation with visible light in the presence of an acid catalyst. Examples thereof include a cyclic hetero compound, and a compound having a cyclic ether group is preferable from the viewpoint of reactivity and the like.
 カチオン重合性化合物の具体例には、オキシラン、メチルオキシラン、フェニルオキシラン、1,2-ジフェニルオキシラン等のオキシラン化合物類、あるいは、グリシジルエーテル、グリシジルエステル、グリシジルアミン等のオキシラン環の水素原子がメチレン結合基やメチン結合基で置換されているエポキシ基含有化合物;2-(シクロヘキシルメチル)オキシラン、2-エトキシ-3-(シクロヘキシルメチル)オキシラン、[(シクロヘキシルオキシ)メチル]オキシラン、1,4-ビス(オキシラニルメトキシメチル)シクロヘキサン、等のシクロアルカン環を有するエポキシ基含有化合物;7-オキサビシクロ[4.1.0]ヘプタン、3-メチル-7-オキサビシクロ[4.1.0]ヘプタン、7-オキサビシクロ[4.1.0]ヘプタン-3-イルメタノール、7-オキサビシクロ[4.1.0]ヘプタン-3-メトキシメチル等の芳香環を有さない脂環族系エポキシ基含有化合物;3-フェニル-7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート、4-エチルフェニル7-オキサビシクロ[4.1.0]ヘプタン、ベンジル7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート、4-エチルフェニル7-オキサビシクロ[4.1.0]ヘプタン-3-カルボキシレート等の芳香環を有する脂環族系エポキシ基含有化合物;
 3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、ジ(1-エチル-3-オキセタニル)メチルエーテル、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、フェノールノボラックオキセタン、3‐エチル-{(3-トリエトキシシリルプロポキシ)メチル}オキセタン等のオキセタニル基含有化合物;
 2-メチルテトラヒドロフラン、2,5-ジエトキシテトラヒドロフラン、テトラヒドロフラン-2,2-ジメタノール3-メチル-2,4(3H、5H)-フランジオン、2,4-ジオキソテトラヒドロフラン-3-カルボキシラート、プロパン酸1,5-ジ(テトラヒドロフラン-2-イル)ペンタン-3-イル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、メトキシテトラヒドロピラン等の5員環以上の環状エーテル化合物等が含まれる。
Specific examples of the cationic polymerizable compound include oxirane compounds such as oxirane, methyl oxirane, phenyl oxirane, and 1,2-diphenyl oxirane, or a hydrogen atom of an oxirane ring such as glycidyl ether, glycidyl ester, and glycidyl amine. And epoxy group-containing compounds substituted with a methine linking group; 2- (cyclohexylmethyl) oxirane, 2-ethoxy-3- (cyclohexylmethyl) oxirane, [(cyclohexyloxy) methyl] oxirane, 1,4-bis ( An epoxy group-containing compound having a cycloalkane ring, such as oxiranylmethoxymethyl) cyclohexane, 7-oxabicyclo [4.1.0] heptane, 3-methyl-7-oxabicyclo [4.1.0] heptane, 7-Oxabicyclo [4.1.0] heptane-3-y Aliphatic epoxy group-containing compounds having no aromatic ring, such as rumethanol and 7-oxabicyclo [4.1.0] heptane-3-methoxymethyl; 3-phenyl-7-oxabicyclo [4.1. 0] heptane-3-carboxylate, 4-ethylphenyl 7-oxabicyclo [4.1.0] heptane, benzyl 7-oxabicyclo [4.1.0] heptane-3-carboxylate, 4-ethylphenyl 7 An alicyclic epoxy group-containing compound having an aromatic ring such as oxabicyclo [4.1.0] heptane-3-carboxylate;
3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, di (1-ethyl-3-oxetanyl) methyl ether, 3-ethyl-3- ( Oxetanyl group-containing compounds such as phenoxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, phenol novolac oxetane, 3-ethyl-{(3-triethoxysilylpropoxy) methyl} oxetane;
2-methyltetrahydrofuran, 2,5-diethoxytetrahydrofuran, tetrahydrofuran-2,2-dimethanol 3-methyl-2,4 (3H, 5H) -furandone, 2,4-dioxotetrahydrofuran-3-carboxylate, 1,5-di (tetrahydrofuran-2-yl) pentan-3-yl propanoate, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2 -5 or more-membered cyclic ether compounds such as dicarboxylic acid anhydride and methoxytetrahydropyran are included.
 樹脂組成物に含まれる光重合性化合物の総量は、樹脂組成物の全質量に対して10~90質量%であることが好ましく、30~70質量%であることがより好ましく、40~60質量%であることがさらに好ましい。光重合性化合物の量が当該範囲であると、強度の高い立体造形物が得られやすくなる。 The total amount of the photopolymerizable compound contained in the resin composition is preferably 10 to 90% by mass, more preferably 30 to 70% by mass, and more preferably 40 to 60% by mass with respect to the total mass of the resin composition. % Is more preferable. When the amount of the photopolymerizable compound is within the above range, a three-dimensional model with high strength is easily obtained.
 1-2.熱重合性化合物
 樹脂組成物に含まれる熱重合性化合物は、加熱によって重合し、硬化可能な化合物であればよい。通常、熱重合性化合物は、後述の硬化剤と組み合わせて用いられる。
1-2. Thermopolymerizable compound The thermopolymerizable compound contained in the resin composition may be any compound that can be polymerized and cured by heating. Usually, the thermopolymerizable compound is used in combination with a curing agent described later.
 このような熱重合性化合物の例には、環状エーテル基、シアネート基、イソシアネート基、およびヒドロシリル基からなる群から選ばれる少なくとも一種の基を含む化合物が含まれる。 Examples of such a thermally polymerizable compound include a compound containing at least one group selected from the group consisting of a cyclic ether group, a cyanate group, an isocyanate group, and a hydrosilyl group.
 「環状エーテル基を有する化合物」の例には、エポキシドやオキセタン、テトラヒドロフラン、テトラヒドロピラン等を含む化合物が含まれる。これらの中でも、重合性等の観点から、エポキシ基を有する化合物(以下、「エポキシ系化合物」とも称する)が好ましい。エポキシ系化合物の例には、分子内に1つまたは2つ以上のエポキシ基を有するエポキシ系化合物が含まれる。エポキシ系化合物の例には、ビフェニル型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、スチルベン型エポキシ化合物、ハイドロキノン型エポキシ化合物等の結晶性エポキシ化合物;クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、ナフトールノボラック型エポキシ化合物等のノボラック型エポキシ化合物;フェニレン骨格含有フェノールアラルキル型エポキシ化合物、ビフェニレン骨格含有フェノールアラルキル型エポキシ化合物、フェニレン骨格含有ナフトールアラルキル型エポキシ化合物等のフェノールアラルキル型エポキシ化合物;トリフェノールメタン型エポキシ化合物、アルキル変性トリフェノールメタン型エポキシ化合物、グリシジルアミン、4官能ナフタレン型エポキシ化合物等の多官能型エポキシ化合物;ジシクロペンタジエン変性フェノール型エポキシ化合物、テルペン変性フェノール型エポキシ化合物、シリコーン変性エポキシ化合物等の変性フェノール型エポキシ化合物;トリアジン核含有エポキシ化合物等の複素環含有エポキシ化合物;ナフチレンエーテル型エポキシ等が含まれる。 Examples of “compound having a cyclic ether group” include compounds containing epoxide, oxetane, tetrahydrofuran, tetrahydropyran and the like. Among these, from the viewpoint of polymerizability and the like, a compound having an epoxy group (hereinafter also referred to as “epoxy compound”) is preferable. Examples of the epoxy compound include an epoxy compound having one or more epoxy groups in the molecule. Examples of epoxy compounds include biphenyl type epoxy compounds, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, stilbene type epoxy compounds, hydroquinone type epoxy compounds, and the like; cresol novolac type epoxy compounds, phenol novolac type Novolak type epoxy compounds such as epoxy compounds and naphthol novolak type epoxy compounds; Phenol aralkyl type epoxy compounds such as phenylene skeleton-containing phenol aralkyl type epoxy compounds, biphenylene skeleton containing phenol aralkyl type epoxy compounds, phenylene skeleton containing naphthol aralkyl type epoxy compounds; Phenolmethane type epoxy compound, alkyl-modified triphenolmethane type epoxy compound, glycidylamine, Polyfunctional epoxy compounds such as functional naphthalene type epoxy compounds; modified phenol type epoxy compounds such as dicyclopentadiene modified phenol type epoxy compounds, terpene modified phenol type epoxy compounds, silicone modified epoxy compounds; heterocycles such as triazine nucleus-containing epoxy compounds Containing epoxy compound; naphthylene ether type epoxy and the like are included.
 また、「シアネート基を有する化合物」は、分子内に1つまたは2つ以上のシアネート基を有する化合物であればよい。その例には、1,3-または1,4-ジシアナトベンゼン;1,3,5-トリシアナトベンゼン;1,3-、1,4-、1,6-、1,8-、2,6-、または2,7-ジシアナトナフタレン;1,3,6-トリシアナトナフタレン;2,2’-または4,4’-ジシアナトビフェニル;ビス(4-シアナトフェニル)メタン;2,2-ビス(4-シアナトフェニル)プロパン;2,2-ビス(3,5-ジクロロ-4-シアナトフェニル)プロパン;2,2-ビス(3-ジブロモ-4-ジシアナトフェニル)プロパン;ビス(4-シアナトフェニル)エーテル;ビス(4-シアナトフェニル)チオエーテル;ビス(4-シアナトフェニル)スルホン;トリス(4-シアナトフェニル)フォスファイト;トリス(4-シアナトフェニル)フォスフェート;ビス(3-クロロ-4-シアナトフェニル)メタン:4-シアナトビフェニル;4-クミルシアナトベンゼン;2-t-ブチル-1,4-ジシアナトベンゼン;2,4-ジメチル-1,3-ジシアナトベンゼン;2,5-ジ-t-ブチル-l,4-ジシアナトベンゼン;テトラメチル-1,4-ジシアナトベンゼン;4-クロロ-1,3-ジシアナトベンゼン;3,3’,5,5’-テトラメチル-4,4’ジシアナトジフェニルビス(3-クロロ-4-シアナトフェニル)メタン:1,1,1-トリス(4-シアナトフェニル)エタン;1,1-ビス(4-シアナトフェニル)エタン;2,2-ビス(3,5-ジクロロ-4-シアナトフェニル)プロパン;2,2-ビス(3,5-ジブロモ-4-シアナトフェニル)プロパン;ビス(p-シアノフェノキシフェノキシ)ベンゼン;ジ(4-シアナトフェニル)ケトン;シアン酸化ノボラック;シアン酸化ビスフェノールポリカーボネートオリゴマー等が含まれる。 In addition, the “compound having a cyanate group” may be a compound having one or more cyanate groups in the molecule. Examples include 1,3- or 1,4-dicyanatobenzene; 1,3,5-tricyanatobenzene; 1,3-, 1,4-, 1,6-, 1,8-, 2, 6- or 2,7-dicyanatonaphthalene; 1,3,6-tricyanatonaphthalene; 2,2′- or 4,4′-dicyanatobiphenyl; bis (4-cyanatophenyl) methane; 2,2 -Bis (4-cyanatophenyl) propane; 2,2-bis (3,5-dichloro-4-cyanatophenyl) propane; 2,2-bis (3-dibromo-4-dicyanatophenyl) propane; bis (4-cyanatophenyl) ether; bis (4-cyanatophenyl) thioether; bis (4-cyanatophenyl) sulfone; tris (4-cyanatophenyl) phosphite; tris (4-cyanatophenyl) phos Bis (3-chloro-4-cyanatophenyl) methane: 4-cyanatobiphenyl; 4-cumylcyanatobenzene; 2-t-butyl-1,4-dicyanatobenzene; 2,4-dimethyl-1 2,5-dicyanatobenzene; 2,5-di-tert-butyl-1,4-dicyanatobenzene; tetramethyl-1,4-dicyanatobenzene; 4-chloro-1,3-dicyanatobenzene; 3 ′, 5,5′-tetramethyl-4,4 ′ dicyanatodiphenylbis (3-chloro-4-cyanatophenyl) methane: 1,1,1-tris (4-cyanatophenyl) ethane; 1-bis (4-cyanatophenyl) ethane; 2,2-bis (3,5-dichloro-4-cyanatophenyl) propane; 2,2-bis (3,5-dibromo-4-cyanatophenyl) Propane; bi (P- cyanophenoxy aminophenoxy) benzene; di (4-cyanatophenyl) ketone; cyan oxide novolak; cyan oxide bisphenol polycarbonate oligomer is contained.
 「イソシアネート基を有する化合物」は、分子内に1つまたは2つ以上のイソシアネート基を有する化合物であれば特に制限されず、その例には、トリレンジイソシアネート、キシリレンジイソシアネート、ナフチレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート;イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキシレンジイソシアネート、ジイソシアネートメチルシクロヘキサン等の脂環族ジイソシアネート;ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、トリメチロールプロパンとヘキサメチレンジイソシアネートの1対3付加物、ヘキサメチレンジイソシアネートの環状3量体等の3官能以上のポリイソシアネート;これらの化合物のイソシアネート基をブロック剤(例えば、アルコール類、フェノール類、ラクタム類、オキシム類、アセト酢酸アルキルエステル類、マロン酸アルキルエステル類、フタルイミド類、イミダゾール類、塩化水素、シアン化水素、亜硫酸水素ナトリウム等)で保護したブロックイソシアネート基を有するブロックイソシアネート;等が含まれる。 The “compound having an isocyanate group” is not particularly limited as long as it is a compound having one or more isocyanate groups in the molecule, and examples thereof include tolylene diisocyanate, xylylene diisocyanate, naphthylene diisocyanate, diphenylmethane. Aromatic diisocyanates such as diisocyanates; alicyclic diisocyanates such as isophorone diisocyanate, dicyclohexylmethane diisocyanate, cyclohexylene diisocyanate, diisocyanate methylcyclohexane; aliphatic diisocyanates such as hexamethylene diisocyanate; triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate 1 to 3 adduct of trimethylolpropane and hexamethylene diisocyanate, hexa Trifunctional or higher functional polyisocyanates such as cyclic trimers of tylene diisocyanate; blocking agents for isocyanate groups of these compounds (for example, alcohols, phenols, lactams, oximes, alkyl acetoacetates, alkyl malonates) , Phthalimides, imidazoles, hydrogen chloride, hydrogen cyanide, sodium hydrogen sulfite and the like) and the like.
 また、「ヒドロシリル基を有する化合物」は、分子内に1つまたは2つ以上のヒドロシリル基を有する化合物であればよく、その例には、メチルヒドロシロキサン-ジメチルシロキサンコポリマー等が含まれる。これらの「ヒドロシリル基を有する化合物」は、末端または側鎖にビニル基を有するポリオルガノシロキサンと付加反応することにより得られる。ビニル基を有するポリシロキサンの例には、各末端ケイ素原子にビニル基が置換されたポリジメチルシロキサン、各末端ケイ素原子にビニル基が置換されたジメチルシロキサン-ジフェニルシロキサンコポリマー、各末端ケイ素原子にビニル基が置換されたポリフェニルメチルシロキサン、各末端にトリメチルシリル基を有するビニルメチルシロキサン-ジメチルシロキサンコポリマー等が含まれる。 In addition, the “compound having a hydrosilyl group” may be a compound having one or more hydrosilyl groups in the molecule, and examples thereof include a methylhydrosiloxane-dimethylsiloxane copolymer and the like. These “compounds having a hydrosilyl group” can be obtained by addition reaction with a polyorganosiloxane having a vinyl group at the terminal or side chain. Examples of polysiloxanes having vinyl groups include polydimethylsiloxanes in which vinyl groups are substituted at each terminal silicon atom, dimethylsiloxane-diphenylsiloxane copolymers in which vinyl groups are substituted at each terminal silicon atom, and vinyls at each terminal silicon atom. Examples include polyphenylmethylsiloxane having a substituted group, vinylmethylsiloxane-dimethylsiloxane copolymer having a trimethylsilyl group at each end, and the like.
 上記熱重合性化合物と後述の硬化剤との合計量は、樹脂組成物中の総量に対して20~90質量%含まれることが好ましく、30~80質量%含まれることがより好ましく、40~60質量%含まれることがさらに好ましい。熱重合性化合物と硬化剤との合計量が当該範囲含まれると、得られる立体造形物の寸法精度が高まりやすくなる。 The total amount of the thermopolymerizable compound and the curing agent described below is preferably 20 to 90% by mass, more preferably 30 to 80% by mass, and more preferably 40 to 40% by mass with respect to the total amount in the resin composition. More preferably, 60% by mass is contained. When the total amount of the thermopolymerizable compound and the curing agent is included in the range, the dimensional accuracy of the three-dimensional structure to be obtained is likely to be increased.
 1-3.可視光重合開始剤
 可視光重合開始剤は、可視光によって励起されて、上記光重合性化合物を重合させることが可能な化合物であれば特に制限されない。樹脂組成物には、可視光重合開始剤が、1種のみ含まれていてもよく、2種以上含まれていてもよい。
1-3. Visible light polymerization initiator A visible light polymerization initiator will not be restrict | limited especially if it is a compound which can be excited by visible light and can superpose | polymerize the said photopolymerizable compound. The resin composition may contain only one type of visible light polymerization initiator, or two or more types of visible light polymerization initiators.
 ラジカル重合用の可視光重合開始剤の具体例には、α-ジケトン(例えば、カンファーキノン、9,10-フェナントレンキノン、1-フェニル-プロパン-1,2-ジオン、ジアセチル、4,4’-ジクロロベンジル、もしくはこれらの誘導体等)、芳香族ケトン、ケトクマリン等の水素引き抜き型の開始剤;トリス(トリクロロメチル)トリアジン等のハロゲン化合物、過酸化ベンゾイル等の有機過酸化物系開始剤;ヘキサアリールビスイミダゾール化合物、シアニンボレート等のホウ素化合物、ビスペンタジエニルチタニウムージ(ペンタフルオロフェニル)等の有機金属化合物系開始剤;2-メチルチオキサントン、2,4-ジエチルチオキサントン、2,4,6-トリメチルベンゾイルおよびジフェニルホスフィンオキサイド、モノアシルゲルマニウム化合物およびジアシルゲルマニウム化合物(例えば、ベンゾイルトリメチルゲルマニウム、ジベンゾイルジエチルゲルマニウムもしくはビス(4-メトキシベンゾイル)-ジエチルゲルマニウム等)、チタノセン(例えば、ビス-(η5-2,4-シクロペンタジエン-1-イル)-ビス-[2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル]-チタン等)、N-フェニルグリシン等が含まれる。カチオン重合用の可視光重合開始剤の具体例には、9,10-ジブトキシアントラセン等が含まれる。 Specific examples of visible light polymerization initiators for radical polymerization include α-diketones (for example, camphorquinone, 9,10-phenanthrenequinone, 1-phenyl-propane-1,2-dione, diacetyl, 4,4′- Dichlorobenzyl or derivatives thereof), hydrogen abstraction-type initiators such as aromatic ketones and ketocoumarins; halogen compounds such as tris (trichloromethyl) triazine, organic peroxide-based initiators such as benzoyl peroxide; hexaaryls Bisimidazole compounds, boron compounds such as cyanine borate, organometallic compound initiators such as bispentadienyltitanium-di (pentafluorophenyl); 2-methylthioxanthone, 2,4-diethylthioxanthone, 2,4,6- Trimethylbenzoyl and diphenylphosphine oxide, mono Silgermanium compounds and diacylgermanium compounds (for example, benzoyltrimethylgermanium, dibenzoyldiethylgermanium or bis (4-methoxybenzoyl) -diethylgermanium), titanocene (for example, bis- (η5-2,4-cyclopentadiene-1- Yl) -bis- [2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl] -titanium, etc.), N-phenylglycine and the like. Specific examples of the visible light polymerization initiator for cationic polymerization include 9,10-dibutoxyanthracene.
 上記の中でも、可視領域での吸光度の観点から、カンファーキノン、9,10-フェナントレンキノン等が好ましい。 Of these, camphorquinone and 9,10-phenanthrenequinone are preferred from the viewpoint of absorbance in the visible region.
 上記可視光重合開始剤は、吸収極大が波長400nm以上にあることが好ましく、波長420~550nmの範囲にあることがより好ましく、450~500nmの範囲であることがより好ましい。可視光重合開始剤の最大吸収波長が当該範囲であると、立体造形物作製時に照射する可視光の波長を、比較的長波長側に設定することができる。そのため、立体造形物作製時における、熱重合性化合物等の劣化を抑制することができる。 The visible light polymerization initiator preferably has an absorption maximum at a wavelength of 400 nm or more, more preferably in a wavelength range of 420 to 550 nm, and even more preferably in a range of 450 to 500 nm. When the maximum absorption wavelength of the visible light polymerization initiator is within this range, the wavelength of visible light that is irradiated when the three-dimensional model is manufactured can be set to a relatively long wavelength side. Therefore, deterioration of a thermopolymerizable compound etc. at the time of three-dimensional molded item preparation can be suppressed.
 可視光重合開始剤は、樹脂組成物中の総量に対して0.025~5質量%含まれることが好ましく、0.05~1質量%含まれることがより好ましく、0.25~1質量%含まれることがさらに好ましい。また特に、上記光重合性化合物100質量部に対して0.1~3質量部含まれることが好ましく、0.5~2質量部含まれることがより好ましい。可視光重合開始剤が当該範囲含まれると、樹脂組成物の光硬化性が良好になりやすい。 The visible light polymerization initiator is preferably contained in an amount of 0.025 to 5% by mass, more preferably 0.05 to 1% by mass, and more preferably 0.25 to 1% by mass with respect to the total amount in the resin composition. More preferably it is included. In particular, it is preferably contained in an amount of 0.1 to 3 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the photopolymerizable compound. When the visible light polymerization initiator is included in the range, the photocurability of the resin composition tends to be good.
 1-4.紫外光吸収剤
 紫外光吸収剤は、紫外光を紫外光吸収可能な化合物であれば特に制限されない。なお、本明細書において、紫外光とは特に波長400nm未満の光とする。紫外光吸収剤は特に波長260~380nmの光を吸収可能な化合物であることが好ましく、波長300~360nmの光を吸収可能な化合物であることがより好ましい。また、当該紫外光吸収剤は、波長400nm以上の光の吸収が少ないことが好ましく、波長400nm以上の光を実質的に吸収しないことがより好ましい。
1-4. Ultraviolet light absorber The ultraviolet light absorber is not particularly limited as long as it is a compound capable of absorbing ultraviolet light. In this specification, the ultraviolet light is light having a wavelength of less than 400 nm. The ultraviolet light absorber is particularly preferably a compound capable of absorbing light having a wavelength of 260 to 380 nm, and more preferably a compound capable of absorbing light having a wavelength of 300 to 360 nm. Moreover, it is preferable that the said ultraviolet light absorber has little absorption of light with a wavelength of 400 nm or more, and it is more preferable not to absorb light with a wavelength of 400 nm or more substantially.
 紫外光吸収剤は、有機紫外光吸収剤であってもよく、無機紫外光吸収剤であってもよい。また、これらが組み合わされていてもよい。樹脂組成物には、紫外光吸収剤が1種のみ含まれていてもよく、2種以上含まれていてもよい。 The ultraviolet light absorber may be an organic ultraviolet light absorber or an inorganic ultraviolet light absorber. Moreover, these may be combined. The resin composition may contain only one type of ultraviolet light absorber, or two or more types.
 有機紫外光吸収剤の例には、チアゾリドン系、ベンゾトリアゾール系、アクリロニトリル系、ベンゾフェノン系、アミノブタジエン系、トリアジン系、サリチル酸フェニル系、ベンゾエート系の化合物等が含まれる。これらの中でも、トリアジン系、ベンゾトリアゾール系、およびベンゾフェノン系の有機紫外光吸収剤であることが、紫外光を十分に吸収し、かつ可視光重合開始剤の励起を阻害し難いとの観点から好ましい。 Examples of organic ultraviolet light absorbers include thiazolidone-based, benzotriazole-based, acrylonitrile-based, benzophenone-based, aminobutadiene-based, triazine-based, phenyl salicylate-based, benzoate-based compounds, and the like. Among these, triazine-based, benzotriazole-based, and benzophenone-based organic ultraviolet light absorbers are preferable from the viewpoint of sufficiently absorbing ultraviolet light and hardly inhibiting excitation of the visible light polymerization initiator. .
 チアゾリドン系紫外光吸収剤の例には、チアゾリドンまたはその誘導体が含まれる。
 ベンゾトリアゾール系紫外光吸収剤の例には、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;例えばADEKA社のLA31)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(分子量447.6;例えばBASFジャパン社のチヌビン234)等が含まれる。
 アクリロニトリル系紫外光吸収剤の例には、2-シアノ-3,3-ジフェニルアクリル酸エチル、2-シアノ-3,3-ジフェニルアクリル酸2-エチルヘキシル等が含まれる。
Examples of the thiazolidone-based ultraviolet light absorber include thiazolidone or a derivative thereof.
Examples of benzotriazole ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzo Triazole, 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1 , 1,3,3-tetramethylbutyl) phenol] (molecular weight 659; for example LA31 from ADEKA), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenyl) Ethyl) phenol (molecular weight 447.6; for example, Tinuvin 234 from BASF Japan Ltd.) and the like.
Examples of the acrylonitrile ultraviolet absorber include ethyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, and the like.
 ベンゾフェノン系紫外光吸収剤の例には、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-ベンゾフェノン、2,2’,4,4’-テトラヒドロキシ-ベンゾフェノン等が含まれる。
 アミノブタジエン系紫外光吸収剤の例には、公知のアミノブタジエン系紫外光吸収剤が含まれる。
Examples of benzophenone ultraviolet absorbers include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone 2-hydroxy-4-octadecyloxy-benzophenone, 2,2′-dihydroxy-4-methoxy-benzophenone, 2,2′-dihydroxy-4,4′-dimethoxy-benzophenone, 2,2 ′, 4,4 '-Tetrahydroxy-benzophenone and the like are included.
Examples of aminobutadiene-based ultraviolet absorbers include known aminobutadiene-based ultraviolet absorbers.
 トリアジン系紫外光吸収剤の例には、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、〔2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシフェノール〕(例えばBASFジャパン社製のチヌビン1577FF)、〔2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール〕(例えばサイテックインダストリーズ社製のCYASORB UV-1164)等が含まれる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy -4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy -4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine, [2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol] (for example, Tinuvin 1577FF manufactured by BASF Japan), [2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol] (for example, CYASORB UV-1164 manufactured by Cytec Industries, Inc. ) Etc. are included.
 サリチル酸フェニル系紫外光吸収剤の例には、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が含まれる。 Examples of phenyl salicylate ultraviolet light absorbers include phenylsulcylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
 ベンゾエート系紫外光吸収剤の例には、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(分子量438.7;例えば住友化学社のSumisorb400)等が含まれる。    Examples of benzoate ultraviolet light absorbers include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; for example, Sumisorb 400 from Sumitomo Chemical Co., Ltd.) Is included.
 ヒンダードアミン系紫外光吸収剤の例には、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が含まれる。 Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate and the like.
 有機系の光重合開始剤は、上記のなかでも、分子量が400以上である化合物が好ましい。分子量が400以上であると、樹脂組成物から揮発し難く、加熱硬化時にも揮発し難い。そのため、比較的少量で耐光性を高めることが可能である。 Among the above, the organic photopolymerization initiator is preferably a compound having a molecular weight of 400 or more. When the molecular weight is 400 or more, it is difficult to volatilize from the resin composition, and it is difficult to volatilize even during heat curing. Therefore, it is possible to improve light resistance with a relatively small amount.
 一方、無機紫外光吸収剤の例には、金属酸化物顔料等が含まれる。具体的には、酸化チタン、酸化ジルコニウム、酸化スズ、酸化亜鉛、酸化アンチモン、またはこれらの混合物等とすることができる。 On the other hand, examples of inorganic ultraviolet light absorbers include metal oxide pigments. Specifically, titanium oxide, zirconium oxide, tin oxide, zinc oxide, antimony oxide, or a mixture thereof can be used.
 紫外光吸収剤は、樹脂組成物中の総量に対して0.05~5質量%含まれることが好ましく、0.1~2質量%含まれることがより好ましく、0.2~1質量%含まれることがさらに好ましい。紫外光吸収剤が上記範囲含まれると、得られる立体造形物の耐光性が良好になりやすい。 The ultraviolet light absorber is preferably contained in an amount of 0.05 to 5% by weight, more preferably 0.1 to 2% by weight, and more preferably 0.2 to 1% by weight based on the total amount in the resin composition. More preferably. When the ultraviolet light absorber is included in the above range, the light resistance of the three-dimensional structure to be obtained tends to be good.
 1-5.硬化剤
 樹脂組成物には、通常、上述の熱重合性化合物を硬化させるための硬化剤や硬化促進剤がさらに含まれる。硬化剤や硬化促進剤の種類は、上述の熱重合性化合物の種類等に応じて適宜選択される。
1-5. Curing Agent The resin composition usually further includes a curing agent and a curing accelerator for curing the above-mentioned thermopolymerizable compound. The kind of the curing agent and the curing accelerator is appropriately selected according to the kind of the above-mentioned thermopolymerizable compound.
 硬化剤や硬化促進剤の例には、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2~20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、N,N-ジメチル-n-オクチルアミン、ジシアノジアミド等のアミノ類;アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂;ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂;ポリパラオキシスチレン等のポリオキシスチレン;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物を含む酸無水物等;ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物;カルボン酸含有ポリエステル樹脂等の有機酸類等;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)、アセチルアセトナート亜鉛等の有機金属塩が含まれる。樹脂組成物には硬化剤や硬化促進剤が1種のみ含まれていてもよく、2種以上含まれていてもよい。当該硬化剤や硬化促進剤の量は、熱重合性の種類や量に合わせて適宜選択される。 Examples of curing agents and curing accelerators include linear aliphatic diamines having 2 to 20 carbon atoms such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodicyclohexane, bis (4-aminophenyl) Aminos such as phenylmethane, 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis (4-aminophenyl) cyclohexane, N, N-dimethyl-n-octylamine, dicyanodiamide; aniline Modified resole resin and di Resol type phenol resins such as chill ether resol resin; Novolak type phenol resins such as phenol novolak resin, cresol novolak resin, tert-butylphenol novolak resin, nonylphenol novolak resin; phenylene skeleton containing phenol aralkyl resin, biphenylene skeleton containing phenol aralkyl resin Phenol aralkyl resin; phenol resin having a condensed polycyclic structure such as naphthalene skeleton and anthracene skeleton; polyoxystyrene such as polyparaoxystyrene; alicyclic ring such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Aromatics such as aromatic anhydride, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA) Acid anhydrides including acid anhydrides; Polymercaptan compounds such as polysulfides, thioesters, thioethers; Isocyanate compounds such as isocyanate prepolymers and blocked isocyanates; Organic acids such as carboxylic acid-containing polyester resins; Zinc naphthenate, Naphthenic acid Organic metal salts such as cobalt, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), and zinc acetylacetonate are included. The resin composition may contain only one type of curing agent or curing accelerator, or two or more types. The amount of the curing agent and curing accelerator is appropriately selected according to the type and amount of thermal polymerization.
 硬化剤や硬化促進剤の量は、上述の熱重合性化合物の量に合わせて適宜選択される。 The amount of the curing agent and curing accelerator is appropriately selected according to the amount of the above-mentioned thermopolymerizable compound.
 1-6.光安定剤
 樹脂組成物には、光安定剤が含まれていてもよい。光安定剤の例には、光酸化防止剤、光老化防止剤、一重項酸素消光剤、スーパーオキシドアニオン消光剤、オゾン消光剤、および赤外線吸収剤等が含まれる。
1-6. Light Stabilizer The resin composition may contain a light stabilizer. Examples of the light stabilizer include a photo-antioxidant, a photo-aging inhibitor, a singlet oxygen quencher, a superoxide anion quencher, an ozone quencher, and an infrared absorber.
 そのうち、ヒンダードアミン系光安定剤が好適に用いられ、例えば、ポリ〔〔6-(N-モルホリノ)-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕(住友化学工業社製、スミソルブ500)、1,2,3,4-ブタンテトラカルボン酸テトラ(2,2,6,6-テトラメチル-4-ピペリジル)(アデカアーガス社製)、ポリ〔〔6-1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2、4-ジイル〕(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕(チバガイギー社製、チヌビン944-LD)、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物(チバガイギー社製、チヌビン622LD)、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタチル-4-ピペリジル)(チバガイギー社製、チヌビン144)、N、N,-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス〔N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ〕-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(三共社製、サノールLS770)、ビス(N-メチル-2,2,6,6-テトラメチル-4-ピペリジル)セバケート(三共社製、サノールLS292)、4-ベンゾイルオキシ-2,2,6,6-テトラメチル-4-ピペリジン(三共社製、サノールLS-744)、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ〔4.5〕デカン-2,4-ジオン(三共社製、サノールLS-440)、1-〔2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン(三共社製)、2,2,4,4-テトラメチル-20-(βーラウリル-オキシカルボニル)-エチル-7-オキサ-3,20-ディアザデイスピオ(5,1,11,2)ヘンエイコサン-21-オン(サンド社製、Sanduvor305)、〔N-(2,2,6,6-テトラメチル-4-ピペリジル)-β-アラニン〕ドデシルエステル、ミリスチルエステル混合物(サンド社製、Sanduvor3052)、5-ノルボルネン-2,3-ジカルボキシリックアシドビス(2,2,6,6-テトラメチル-4-ピペリジル)エステル、5-ノルボルネン-2,3-ジカルボキシリックアシドビス(N-メチル-2,2,6,6-テトラメチル-4-ピペリジル)エステル等が含まれる。 Of these, hindered amine light stabilizers are preferably used. For example, poly [[6- (N-morpholino) -1,3,5-triazine-2,4-diyl] [(2,2,6,6- Tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino] (Sumitomo Chemical Co., Sumisolv 500), 1,2,3,4-butane Tetracarboxylic acid tetra (2,2,6,6-tetramethyl-4-piperidyl) (manufactured by Adeka Argus), poly [[6-1,1,3,3-tetramethylbutyl) imino-1,3 5-triazine-2,4-diyl] (2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino] ( Ciba Geigy, Nubin 944-LD), dimethyl succinate-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate (Ciba Geigy, Tinuvin 622LD), 2- (3 , 5-Di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentyl-4-piperidyl) (manufactured by Ciba Geigy, Tinuvin 144), N N, -bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1 , 3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (Sankyo LS770), bis (N-methyl-2,2,6,6- Te Ramethyl-4-piperidyl) sebacate (Sankyo LS292), 4-benzoyloxy-2,2,6,6-tetramethyl-4-piperidine (Sankyo LS-744), 8-acetyl- 3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro [4.5] decane-2,4-dione (manufactured by Sankyo, Sanol LS-440), 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3-3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2 , 2,6,6-tetramethylpiperidine (manufactured by Sankyo), 2,2,4,4-tetramethyl-20- (β-lauryl-oxycarbonyl) -ethyl-7-oxa-3,20-diazaday Pio (5,1,11,2) heneicosan-21-one (Sanduvor 305, manufactured by Sand Corp.), [N- (2,2,6,6-tetramethyl-4-piperidyl) -β-alanine] dodecyl ester, Myristyl ester mixture (Sanduvor 3052 manufactured by Sand Corp.), 5-norbornene-2,3-dicarboxylic acid bis (2,2,6,6-tetramethyl-4-piperidyl) ester, 5-norbornene-2,3- And dicarboxylic acid bis (N-methyl-2,2,6,6-tetramethyl-4-piperidyl) ester.
 光安定剤は、樹脂組成物中の総量に対して0.05~5質量%含まれることが好ましく、0.1~2質量%含まれることがより好ましく、0.2~1質量%含まれることがさらに好ましい。光安定剤が上記範囲含まれると、得られる立体造形物の耐光性が良好になりやすい。 The light stabilizer is preferably contained in an amount of 0.05 to 5% by weight, more preferably 0.1 to 2% by weight, and more preferably 0.2 to 1% by weight based on the total amount in the resin composition. More preferably. When the light stabilizer is included in the above range, the light resistance of the resulting three-dimensional structure tends to be good.
 1-7.フィラー
 樹脂組成物に含まれるフィラーは特に制限されず、有機フィラーであってもよく、無機フィラーであってもよい。樹脂組成物には、フィラーが一種のみ含まれていてもよく、二種以上含まれていてもよい。
1-7. Filler The filler contained in the resin composition is not particularly limited, and may be an organic filler or an inorganic filler. The resin composition may contain only one kind of filler, or may contain two or more kinds.
 従来、活性光線エネルギーを選択的に照射して硬化させるための樹脂組成物中にフィラーが含まれると、紫外光のような短波長の光は散乱されやすく、硬化性が低下したり、得られる立体造形物の寸法精度が低下したりしやすかった。これに対し、本発明の樹脂組成物は、可視光により硬化させるため、フィラーが比較的大量に含まれていても、このような光の散乱が生じ難い。したがって、フィラー量を十分に多くすることができ、立体造形物の強度を高くすることが可能である。 Conventionally, when a filler is included in a resin composition for selectively irradiating and curing actinic light energy, light having a short wavelength such as ultraviolet light is likely to be scattered, resulting in reduced or obtained curability. The dimensional accuracy of the three-dimensional model was easy to decrease. On the other hand, since the resin composition of the present invention is cured by visible light, such light scattering hardly occurs even if a relatively large amount of filler is contained. Therefore, the amount of filler can be increased sufficiently, and the strength of the three-dimensional structure can be increased.
 フィラーの例には、ソーダ石灰ガラス、珪酸ガラス、硼珪酸ガラス、アルミノ珪酸ガラス、石英ガラス等からなるガラスフィラー;アルミナ、酸化ジルコニウム、酸化チタン、チタン酸ジルコン酸鉛、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化スズ等からなるセラミックフィラー;鉄、チタン、金、銀、銅、スズ、鉛、ビスマス、コバルト、アンチモン、カドミウム等の金属単体、あるいはこれらの合金等からなる金属フィラー;グラファイト、グラフェン、カーボンナノチューブ等からなるカーボンフィラー;ポリエステル、ポリアミド、ポリアラミド、ポリパラフェニレンベンゾビスオキサゾール、多糖類等からなる有機高分子繊維;チタン酸カリウムウィスカー、シリコーンカーバイトウィスカー、シリコンナイトライドウィスカー、α-アルミナウィスカー、酸化亜鉛ウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、水酸化マグネシウムウィスカー、塩基性硫酸マグネシウムウィスカー、ケイ酸カルシウムウィスカー等からなるウィスカー状無機化合物(上記セラミックフィラーの針状の単結晶も含む);タルク、マイカ、クレイ、ワラストナイト、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母、バーミキュラライト等からなる粘土鉱物等が含まれる。またさらに、フィラーの例には、ポリエチレンやポリプロピレン等からなるポリオレフィンフィラー;FEP(四フッ化エチレン-六フッ化プロピレン共重合体)、PFA(四フッ化エチレン-パーフルオロアルコキシエチレン共重合体)、ETFE(四フッ化エチレン-エチレン共重合体)等からなるフッ素樹脂フィラー等も含まれる。 Examples of fillers include glass fillers made of soda-lime glass, silicate glass, borosilicate glass, aluminosilicate glass, quartz glass, etc .; alumina, zirconium oxide, titanium oxide, lead zirconate titanate, silicon carbide, silicon nitride, nitriding Ceramic filler made of aluminum, tin oxide, etc .; Metal filler made of simple metals such as iron, titanium, gold, silver, copper, tin, lead, bismuth, cobalt, antimony, cadmium, or alloys thereof; graphite, graphene, Carbon filler made of carbon nanotubes; organic polymer fiber made of polyester, polyamide, polyaramid, polyparaphenylenebenzobisoxazole, polysaccharides, etc .; potassium titanate whisker, silicone carbide whisker, silicon nitride Whisker-like inorganic compounds (such as the above-mentioned ceramic filler needles) composed of scallers, α-alumina whiskers, zinc oxide whiskers, aluminum borate whiskers, calcium carbonate whiskers, magnesium hydroxide whiskers, basic magnesium sulfate whiskers, calcium silicate whiskers, etc. Including single crystals); talc, mica, clay, wollastonite, hectorite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, Na-type tetralithic fluoromica, Li-type tetralithic fluoromica, Na-type Examples include swellable mica such as fluorine teniolite and Li-type fluorine teniolite, clay mineral made of vermiculite, and the like. Furthermore, examples of fillers include polyolefin fillers made of polyethylene, polypropylene, etc .; FEP (tetrafluoroethylene-hexafluoropropylene copolymer), PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer), A fluororesin filler made of ETFE (tetrafluoroethylene-ethylene copolymer) or the like is also included.
 上記の中でも、有機高分子繊維が好ましく、特に多糖類からなるナノファイバーであることが好ましい。多糖類の例には、セルロース、ヘミセルロース、リグノセルロース、キチンおよびキトサン等が含まれる。これらのうち、得られる立体造形物の強度をより高める観点からは、セルロースおよびキチンが好ましく、セルロースがより好ましい。 Among these, organic polymer fibers are preferable, and nanofibers made of polysaccharides are particularly preferable. Examples of polysaccharides include cellulose, hemicellulose, lignocellulose, chitin and chitosan. Among these, cellulose and chitin are preferable, and cellulose is more preferable from the viewpoint of further increasing the strength of the three-dimensional structure to be obtained.
 セルロースからなる繊維状のフィラー、すなわちセルロースナノファイバー(以下、単に「ナノセルロース」ともいう。)は、植物由来の繊維質もしくは植物の細胞壁の機械的な解繊、酢酸菌による生合成、2,2,6,6-tetramethylpiperidine-1-oxyl radical(TEMPO)等のN-オキシル化合物による酸化または電解紡糸法等によって得られる、繊維状のナノフィブリルを主成分とするセルロースナノファイバーであってもよい。また、ナノセルロースは、植物由来の繊維質もしくは植物の細胞壁を機械的に解繊した後に酸処理等をして得られる、ウィスカー状(針状)に結晶化したナノフィブリルを主成分とするセルロースナノクリスタルであってもよく、その他の形状であってもよい。ナノセルロースは、セルロースを主成分とすればよく、リグニンおよびヘミセルロース等を含んでいてもよい。脱リグニン処理を行わず、疎水性であるリグニンを含有するナノセルロースは、光重合性化合物や熱重合性化合物との親和性が高いため好ましい。 A fibrous filler composed of cellulose, ie, cellulose nanofiber (hereinafter also simply referred to as “nanocellulose”), is a plant-derived fiber or mechanical defibrillation of plant cell walls, biosynthesis by acetic acid bacteria, 2, Cellulose nanofibers mainly composed of fibrous nanofibrils obtained by oxidation with an N-oxyl compound such as 2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) or electrospinning may be used. . Nanocellulose is cellulose mainly composed of nanofibrils crystallized in whisker-like (needle-like) obtained by mechanically defibrating plant-derived fibers or plant cell walls. It may be a nanocrystal or any other shape. Nanocellulose should just have cellulose as a main component and may contain lignin, hemicellulose, etc. Nanocellulose containing lignin which is hydrophobic without performing delignification treatment is preferable because of its high affinity with photopolymerizable compounds and thermopolymerizable compounds.
 上記フィラーの形状は特に制限されず、例えば繊維状(ウィスカー状を含む)であってもよく、粒子状であってもよいが、立体造形物の強度向上との観点から、繊維状であることが好ましい。 The shape of the filler is not particularly limited, and may be, for example, fibrous (including whisker-like) or particulate, but is fibrous from the viewpoint of improving the strength of the three-dimensional model. Is preferred.
 なお、フィラーが粒子状である場合、その平均粒径は0.005~200μmであることが好ましく、0.01~100μmであることがより好ましく、0.1~50μmであることがさらに好ましい。粒子状のフィラーの平均粒径が0.1μm以上であると、立体造形物の強度が高まりやすくなる。一方、平均粒径が50μm以下であると、立体造形物を高精細に形成しやすくなる。なお、平均粒径は、樹脂組成物を透過型電子顕微鏡(TEM)で撮像して得られた画像を解析して、測定することができる。 When the filler is particulate, the average particle size is preferably 0.005 to 200 μm, more preferably 0.01 to 100 μm, and further preferably 0.1 to 50 μm. When the average particle size of the particulate filler is 0.1 μm or more, the strength of the three-dimensional structure is easily increased. On the other hand, when the average particle size is 50 μm or less, it becomes easy to form a three-dimensional modeled object with high definition. The average particle diameter can be measured by analyzing an image obtained by imaging the resin composition with a transmission electron microscope (TEM).
 一方、フィラーが繊維状である場合、その平均繊維径は、0.002μm以上20μm以下であることが好ましい。上記平均繊維径が0.002μm以上であると、立体造形物の強度が高まりやすくなる。平均繊維径が20μm以下であると、フィラーが樹脂組成物の粘度を高めすぎず、立体造形物の精度が良好になりやすい。フィラーの平均繊維径は、0.005μm以上10μm以下であることがより好ましく、0.01μm以上8μm以下であることがさらに好ましく、0.02μm以上5μm以下であることが特に好ましい。 On the other hand, when the filler is fibrous, the average fiber diameter is preferably 0.002 μm or more and 20 μm or less. When the average fiber diameter is 0.002 μm or more, the strength of the three-dimensional structure is easily increased. When the average fiber diameter is 20 μm or less, the filler does not excessively increase the viscosity of the resin composition, and the accuracy of the three-dimensional structure tends to be good. The average fiber diameter of the filler is more preferably 0.005 μm or more and 10 μm or less, further preferably 0.01 μm or more and 8 μm or less, and particularly preferably 0.02 μm or more and 5 μm or less.
 フィラーの平均繊維長は、0.2μm以上200μm以下であることが好ましい。上記平均繊維長が0.2μm以上であると、立体造形物の強度が高まりやすくなる。上記平均繊維長が100μm以下であると、フィラー同士が絡み合うことによって生じるフィラーの沈降が生じにくい。フィラーの平均繊維長は、0.5μm以上100μm以下であることがより好ましく、1μm以上60μm以下であることがさらに好ましく、1μm以上40μm以下であることが特に好ましい。 The average fiber length of the filler is preferably 0.2 μm or more and 200 μm or less. When the average fiber length is 0.2 μm or more, the strength of the three-dimensional structure is easily increased. When the average fiber length is 100 μm or less, the filler is less likely to settle due to the entanglement between the fillers. The average fiber length of the filler is more preferably from 0.5 μm to 100 μm, further preferably from 1 μm to 60 μm, and particularly preferably from 1 μm to 40 μm.
 フィラーのアスペクト比は、10以上10000以下であることが好ましい。アスペクト比が10以上であると、立体造形物の強度がより高くなりやすい。アスペクト比が10000以下であると、フィラー同士が絡み合って生じるフィラーの沈降が生じにくい。フィラーのアスペクト比は、12以上8000以下であることがより好ましく、15以上2000以下であることがさらに好ましく、18以上800以下であることが特に好ましい。 The aspect ratio of the filler is preferably 10 or more and 10,000 or less. If the aspect ratio is 10 or more, the strength of the three-dimensional structure tends to be higher. When the aspect ratio is 10,000 or less, the filler is hardly precipitated due to the entanglement between the fillers. The aspect ratio of the filler is more preferably 12 or more and 8000 or less, further preferably 15 or more and 2000 or less, and particularly preferably 18 or more and 800 or less.
 フィラーの平均繊維径、平均繊維長およびアスペクト比は、樹脂組成物を透過型電子顕微鏡(TEM)で撮像して得られた画像を解析して、測定することができる。 The average fiber diameter, average fiber length, and aspect ratio of the filler can be measured by analyzing an image obtained by imaging the resin composition with a transmission electron microscope (TEM).
 ここで、樹脂組成物に含まれるフィラーの量は、樹脂組成物の全質量に対して1~50質量%であることが好ましく、5~40質量%であることがより好ましい。フィラーの量が当該範囲であると、強度の高い立体造形物が得られやすくなる。 Here, the amount of the filler contained in the resin composition is preferably 1 to 50% by mass, and more preferably 5 to 40% by mass with respect to the total mass of the resin composition. When the amount of the filler is within the above range, a three-dimensional model with high strength is easily obtained.
 ここで、上記フィラーは、公知のシランカップリング剤等、各種表面処理剤によって表面処理されていてもよい。フィラーが表面処理されていると、フィラーと光重合性化合物や熱重合性化合物との密着性が高まり、より強度の高い立体造形物が得られやすくなる。 Here, the filler may be surface-treated with various surface treatment agents such as a known silane coupling agent. When the filler is surface-treated, the adhesion between the filler and the photopolymerizable compound or the thermopolymerizable compound is increased, and a three-dimensional molded article with higher strength is easily obtained.
 1-8.その他の成分
 樹脂組成物には、可視光の照射による立体造形物の形成を可能にし、かつ得られる立体造形物に強度のムラを顕著に生じさせない限りにおいて、光増感剤、重合阻害剤、酸化防止剤、染料および顔料等の色材、消泡剤ならびに界面活性剤等の任意の添加剤がさらに含まれていてもよい。
1-8. Other components In the resin composition, as long as it enables formation of a three-dimensional structure by irradiation with visible light, and the resulting three-dimensional structure does not significantly cause unevenness in strength, a photosensitizer, a polymerization inhibitor, Optional additives such as antioxidants, coloring materials such as dyes and pigments, antifoaming agents, and surfactants may be further included.
 1-9.樹脂組成物の物性
 本発明の樹脂組成物は、JIS K-7117-1に準拠する方法で、回転式粘度計を用いて測定される、25℃の粘度が0.2~100Pa・sであることが好ましく、1~10Pa・sであることがより好ましい。樹脂組成物の粘度が当該範囲であると、後述の立体造形物の製造方法において適度な流動性が得られる。その結果、造形速度を向上させることができるとともに、樹脂組成物内でフィラー等が沈降し難くなり、ひいては立体造形物の強度が高まりやすくなる。
1-9. Physical Properties of Resin Composition The resin composition of the present invention has a viscosity at 25 ° C. of 0.2 to 100 Pa · s as measured using a rotary viscometer in accordance with JIS K-7117-1. It is preferably 1 to 10 Pa · s. When the viscosity of the resin composition is within the above range, moderate fluidity can be obtained in the method for producing a three-dimensional structure to be described later. As a result, it is possible to improve the modeling speed, and it is difficult for the filler or the like to settle in the resin composition, and as a result, the strength of the three-dimensional model is easily increased.
 1-10.樹脂組成物の調製方法
 上記樹脂組成物は、上記光重合性化合物、熱重合性化合物、可視光重合開始剤と、紫外光吸収剤と、必要に応じてフィラーや硬化剤、光安定剤等を任意の順で混合することで調製できる。
1-10. Preparation method of resin composition The resin composition contains the photopolymerizable compound, the thermopolymerizable compound, a visible light polymerization initiator, an ultraviolet light absorber, and a filler, a curing agent, a light stabilizer and the like as necessary. It can be prepared by mixing in any order.
 樹脂組成物の混合に用いられる装置としては公知のものを使用できる。例えば、ウルトラタラックス(IKAジャパン社製)、TKホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DCPスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、スターバースト(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO 3000(美粒社製)などの高圧衝撃式分散装置が挙げられる。 As the apparatus used for mixing the resin composition, a known apparatus can be used. For example, Ultra Turrax (manufactured by IKA Japan), TK homomixer (manufactured by Primix), TK pipeline homomixer (manufactured by Primics), TK Philmix (manufactured by Primix), Claremix (manufactured by M Technique), Medialess stirrers such as Claire SS5 (manufactured by M Technique), Cavitron (manufactured by Eurotech), Fine Flow Mill (manufactured by Taiheiyo Kiko), Viscomill (manufactured by IMEX), Apex Mill (manufactured by Kotobuki Industries), Star mill (Ashizawa, manufactured by Finetech), DCP Super Flow (manufactured by Nihon Eirich), MP Mill (manufactured by Inoue Mfg.), Spike mill (manufactured by Inoue Mfg.), Mighty mill (manufactured by Inoue Mfg.), SC mill (Mitsui Media stirrers such as mining) and optimizers ( Ginomashin Inc.), manufactured by Starburst (Sugino Machine Limited), Nanomizer (manufactured by Yoshida Kikai), and a high-pressure impact type dispersing device such as NANO 3000 (manufactured by Bitsubusha).
 また、あわとり練太郎(シンキー社製)やカクハンター(写真化学社製)等の自転公転ミキサーや、ハイビスミックス(プライミクス社製)、ハイビスディスパー(プライミクス社製)等の遊星式混合機、Nanoruptor(ソニック・バイオ社製)等の超音波分散装置も好適に用いることが可能である。 Also, revolving mixers such as Awatori Nerita (Shinky) and Kaku Hunter (Photochemical), planetary mixers such as Hibismix (Primics) and Hibis Disper (Primics), Nanouptor An ultrasonic dispersion apparatus such as (manufactured by Sonic Bio) can also be suitably used.
 2.立体造形物の製造方法
 上述した液体状の樹脂組成物は、可視光を選択的に照射して、前記光重合性化合物の硬化物を含む一次硬化物を形成する工程を含む、立体造形物の製造方法に使用することができる。
2. Manufacturing method of three-dimensional molded article The liquid resin composition described above includes a step of selectively irradiating visible light to form a primary cured product including a cured product of the photopolymerizable compound. It can be used for manufacturing methods.
 上述の樹脂組成物を用いた立体造形物の製造方法では、まず樹脂組成物に選択的に可視光を照射し、上述の光重合性化合物を所望の形状に硬化させて、一次硬化物を形成する光造形工程を行う。そして一次硬化物の形成後、当該一次硬化物内に含まれる熱重合性化合物を、熱重合させる熱硬化工程を行い、立体造形物を得る。なお、一次硬化物の作製後、さらに可視光を照射する可視光照射工程を行ってもよい。 In the manufacturing method of the three-dimensional molded article using the above-mentioned resin composition, first, the resin composition is selectively irradiated with visible light, and the above-mentioned photopolymerizable compound is cured into a desired shape to form a primary cured product. An optical modeling process is performed. And after formation of a primary hardened | cured material, the thermosetting process which heat-polymerizes the thermopolymerizable compound contained in the said primary hardened | cured material is performed, and a three-dimensional molded item is obtained. In addition, you may perform the visible light irradiation process of irradiating visible light after preparation of a primary cured material.
 このような立体造形物の製造方法の例には、以下の2つの実施形態が含まれるが、本発明の方法は、これらの方法に限定されない。 The following two embodiments are included in examples of the manufacturing method of such a three-dimensional structure, but the method of the present invention is not limited to these methods.
 2-1.積層造形法(SLA法)
 図1は、積層造形法により一次硬化物を作製するための装置(立体造形物の製造装置)の一例を示す模式図である。製造装置500は、液体状の樹脂組成物550を貯留可能な造形槽510と、造形槽510の内部で上下方向(深さ方向)に往復移動可能な造形ステージ520と、造形ステージ520を支持するベース521と、可視光の光源530と、可視光を造形槽510の内部に導くガルバノミラー531等を有する。
2-1. Additive manufacturing method (SLA method)
FIG. 1 is a schematic diagram illustrating an example of an apparatus (manufacturing apparatus for a three-dimensional structure) for producing a primary cured product by an additive manufacturing method. The manufacturing apparatus 500 supports the modeling tank 510 that can store the liquid resin composition 550, the modeling stage 520 that can reciprocate in the vertical direction (depth direction) inside the modeling tank 510, and the modeling stage 520. A base 521, a visible light source 530, and a galvano mirror 531 for guiding visible light to the inside of the modeling tank 510 are included.
 造形槽510は、製造しようとする一次硬化物を収容可能な大きさを有していればよい。また、可視光を照射するための光源530には、公知のものを使用することができる。可視光を照射するための光源の例には、メタルハライドランプ、ハロゲンランプ、キセノンランプ、LED、太陽光、超高圧水銀灯等が含まれる。これらの光源のなかでも、任意の波長を選択できることからLEDが特に好ましい。LED以外の光源については、紫外光が含まれるため、フィルターを介して紫外光を除去することが好ましい。照射する可視光の波長は、400~550nmであることが好ましく、420~500nmであることがより好ましい。 The modeling tank 510 only needs to have a size that can accommodate the primary cured product to be manufactured. Moreover, a well-known thing can be used for the light source 530 for irradiating visible light. Examples of light sources for irradiating visible light include metal halide lamps, halogen lamps, xenon lamps, LEDs, sunlight, ultra-high pressure mercury lamps, and the like. Among these light sources, an LED is particularly preferable because an arbitrary wavelength can be selected. About light sources other than LED, since ultraviolet light is contained, it is preferable to remove ultraviolet light through a filter. The wavelength of visible light to be irradiated is preferably 400 to 550 nm, and more preferably 420 to 500 nm.
 当該方法ではまず、樹脂組成物550を造形槽510内に充填する。またこのとき、樹脂組成物550の液面から、作製する造形物層(第1造形物層)の厚み分だけ下方に造形ステージ520を配置する。この状態で、光源530から出射された可視光を、ガルバノミラー531等で導いて走査し、造形ステージ520上の樹脂組成物550に照射する。このとき、第1造形物層を形成する領域にのみ選択的に可視光を照射することで、所望の形状に第1造形物層が形成される。 In this method, first, the resin composition 550 is filled in the modeling tank 510. At this time, the modeling stage 520 is disposed below the liquid surface of the resin composition 550 by the thickness of the modeled object layer (first modeled object layer) to be produced. In this state, the visible light emitted from the light source 530 is guided and scanned by the galvano mirror 531 or the like, and is irradiated to the resin composition 550 on the modeling stage 520. At this time, a 1st model object layer is formed in a desired shape by selectively irradiating visible light only to the field which forms the 1st model object layer.
 その後、造形ステージ520を1層分の厚み(次に作製する第2造形物層の厚み分)だけ降下(深さ方向へ移動)させて、第1造形物層を樹脂組成物550の中に沈下させる。これにより、上記第1造形物層上に樹脂組成物が供給される。続いて上記と同様に、光源530から出射された可視光を、ガルバノミラー531等で導き、第1造形物層より上方に位置する樹脂組成物550に照射する。このときも、第2造形物層を形成する領域にのみ選択的に可視光を照射する。これにより、前述の第1造形物層上に第2造形物層が積層される。 Thereafter, the modeling stage 520 is lowered (moved in the depth direction) by the thickness of one layer (the thickness of the second modeling object layer to be produced next), and the first modeling object layer is placed in the resin composition 550. Let it sink. Thereby, the resin composition is supplied onto the first modeled object layer. Subsequently, in the same manner as described above, the visible light emitted from the light source 530 is guided by the galvano mirror 531 or the like, and irradiated to the resin composition 550 positioned above the first modeled object layer. Also at this time, visible light is selectively irradiated only to the region where the second shaped article layer is formed. Thereby, a 2nd modeling thing layer is laminated | stacked on the above-mentioned 1st modeling thing layer.
 その後、造形ステージ520の降下(樹脂組成物の供給)、および可視光の照射、を繰り返すことで、所望の形状に一次硬化物が形成される。なお、上記方法で作製する一次硬化物の形状は、最終的に作製する立体造形物の形状と同様とする。 Then, the primary cured product is formed into a desired shape by repeating the lowering of the modeling stage 520 (supply of the resin composition) and irradiation with visible light. In addition, let the shape of the primary cured material produced by the said method be the same as the shape of the three-dimensional molded item finally produced.
 得られた一次硬化物に対し、必要に応じて、さらに可視光を照射してもよい。可視光の照射は、所望の範囲のみ行ってもよく、一次硬化物全体に対して行ってもよい。このような可視光照射を行うと、一次硬化物の内部まで重合性が高まり、得られる立体造形物の反りが抑制されやすくなる。内部まで硬化させると反りが抑制される理由としては、一次硬化物中の熱硬化成分は未硬化状態であり、加熱により重合する過程で硬化収縮が生じる。そしてこのとき、一次硬化物が高温下で収縮応力を受けると、反りが発生しやすくなる。そこで、一次硬化物にさらに可視光照射を行い、内部の重合度を高めておくことにより、一次硬化物の強度が増し、熱硬化成分の硬化収縮による変形を低減できることから、反りが抑制される。 If necessary, the obtained primary cured product may be further irradiated with visible light. Irradiation with visible light may be performed only in a desired range or may be performed on the entire primary cured product. When such visible light irradiation is performed, the polymerizability increases to the inside of the primary cured product, and warpage of the resulting three-dimensional model is easily suppressed. The reason why the warpage is suppressed when cured to the inside is that the thermosetting component in the primary cured product is in an uncured state, and curing shrinkage occurs in the process of polymerization by heating. At this time, if the primary cured product is subjected to shrinkage stress at a high temperature, warping tends to occur. Therefore, by further irradiating the primary cured product with visible light and increasing the internal polymerization degree, the strength of the primary cured product is increased and deformation due to curing shrinkage of the thermosetting component can be reduced, so that warpage is suppressed. .
 その後、一次硬化物に含まれる熱重合性化合物を、公知の方法で加熱し、硬化させる。一次硬化物を加熱する際には、一次硬化物が変形しない温度とすることが好ましく、例えば光重合性化合物の硬化物のガラス転移温度(Tg)より低い温度とすることが好ましい。 Thereafter, the thermopolymerizable compound contained in the primary cured product is heated and cured by a known method. When heating the primary cured product, the temperature is preferably such that the primary cured product is not deformed. For example, the temperature is preferably lower than the glass transition temperature (Tg) of the cured product of the photopolymerizable compound.
 2-2.連続造形法(CLIP法)
 図2は、連続造形法により一次硬化物を作製するための装置(立体造形物の製造装置)の一例を示す模式図である。図2に示すように、製造装置600は、液体状の樹脂組成物を貯留可能な造形槽610と、上下方向(深さ方向)に往復移動可能な造形ステージ620と、可視光を照射するための光源660等と、を有する。造形槽610は、その底部に、樹脂組成物を透過させず、可視光および酸素は透過させる窓部615を有する。なお、造形槽610は、製造しようとする立体造形物よりも広い幅を有し、かつ樹脂組成物と相互作用しないものであれば、その材質等は特に制限されない。また、窓部615の材質も、本実施形態の目的および硬化を損なわない範囲であれば特に制限されない。
2-2. Continuous molding method (CLIP method)
FIG. 2 is a schematic diagram illustrating an example of an apparatus (manufacturing apparatus for a three-dimensional model) for producing a primary cured product by a continuous modeling method. As shown in FIG. 2, the manufacturing apparatus 600 irradiates visible light with a modeling tank 610 that can store a liquid resin composition, a modeling stage 620 that can reciprocate in the vertical direction (depth direction), and the like. Light source 660 and the like. The modeling tank 610 has a window portion 615 that does not allow the resin composition to pass therethrough and allows visible light and oxygen to pass therethrough. In addition, the material etc. will not be restrict | limited especially if the modeling tank 610 has a width | variety wider than the three-dimensional molded item to manufacture, and does not interact with a resin composition. Further, the material of the window portion 615 is not particularly limited as long as it does not impair the purpose and curing of the present embodiment.
 また、可視光を照射するための光源660は公知のものを使用することができ、積層造形法に用いる光源と同様とすることができる。また、光源660に液晶パネルやデジタルミラーデバイス(DMD)等の空間光変調器(Spatial Light Modulator:SLM)を有するSLM投影光学系を用いることで、可視光を所望の領域に面照射してもよい。なお、CLIP法では特に、波長420~550nmの光を照射できる光源であることが好ましく、波長440~500nmの光を照射できる光源であることがさらに好ましい。 Further, a known light source 660 for irradiating visible light can be used, and can be the same as the light source used in the additive manufacturing method. Further, by using an SLM projection optical system having a spatial light modulator (SLM) such as a liquid crystal panel or a digital mirror device (DMD) as the light source 660, even if a desired area is irradiated with visible light, Good. In the CLIP method, in particular, a light source capable of irradiating light with a wavelength of 420 to 550 nm is preferable, and a light source capable of irradiating light with a wavelength of 440 to 500 nm is more preferable.
 当該方法では、まず、造形槽610に上述の樹脂組成物を充填する。そして、造形槽610の底部に設けられた窓部615から、造形槽610の底部側に酸素を導入する。酸素の導入方法は特に制限されず、例えば造形槽610の外部を酸素濃度が高い雰囲気とし、当該雰囲気に圧力をかける方法等とすることができる。 In this method, first, the molding tank 610 is filled with the above-described resin composition. And oxygen is introduce | transduced into the bottom part side of the modeling tank 610 from the window part 615 provided in the bottom part of the modeling tank 610. FIG. The method for introducing oxygen is not particularly limited, and for example, the outside of the modeling tank 610 may be an atmosphere having a high oxygen concentration and a pressure may be applied to the atmosphere.
 このように窓部615から造形槽610内に酸素を供給することにより、窓部615側の領域では、酸素濃度が上昇し、可視光を照射されても光重合性化合物が硬化しないバッファ領域642が形成される。一方で、バッファ領域642より上側の領域では、酸素の濃度がバッファ領域642より十分に低くなり、可視光の照射によって、光重合性化合物が硬化可能な硬化用領域644となる。 By supplying oxygen from the window 615 into the modeling tank 610 in this manner, in the region on the window 615 side, the oxygen concentration increases, and the buffer region 642 where the photopolymerizable compound is not cured even when irradiated with visible light. Is formed. On the other hand, in the region above the buffer region 642, the concentration of oxygen is sufficiently lower than that of the buffer region 642, and becomes a curing region 644 where the photopolymerizable compound can be cured by irradiation with visible light.
 続いて、前記バッファ領域側642から可視光を選択的に照射して、硬化用領域644で光重合性化合物の硬化物を形成する工程を行う。具体的には、一次硬化物作製の基点となる造形ステージ620を、硬化用領域644とバッファ領域642との界面近傍に配置する。そして、バッファ領域642側に配置された光源660から造形ステージ620の底面側に、選択的に可視光を照射する。これにより、造形ステージ620の底面近傍(硬化用領域644)の光重合性化合物が硬化して、一次硬化物の最上部が形成される。 Subsequently, a step of selectively irradiating visible light from the buffer region side 642 to form a cured product of the photopolymerizable compound in the curing region 644 is performed. Specifically, the modeling stage 620 that is the base point for producing the primary cured product is disposed in the vicinity of the interface between the curing region 644 and the buffer region 642. Then, visible light is selectively irradiated from the light source 660 arranged on the buffer region 642 side to the bottom surface side of the modeling stage 620. Thereby, the photopolymerizable compound in the vicinity of the bottom surface of the modeling stage 620 (curing region 644) is cured, and the uppermost portion of the primary cured product is formed.
 その後、造形ステージ620を上昇(バッファ領域642から離れる方向に移動)させる。これにより、硬化物651より造形槽610底部側の硬化用領域644に、未硬化の樹脂組成物が新たに供給される。そして、造形ステージ620および硬化物651を連続的に上昇させながら、光源660から可視光を連続的、かつ選択的(硬化させる領域)に照射する。これにより、造形ステージ620底面から造形槽610の底部側にかけて硬化物が連続して形成され、継ぎ目がなく、強度の高い一次造形物が製造される。なお、本実施形態においても、一次硬化物の形状は、最終的に作製する立体造形物の形状と同様とする。 Thereafter, the modeling stage 620 is raised (moved away from the buffer area 642). As a result, the uncured resin composition is newly supplied from the cured product 651 to the curing region 644 on the bottom side of the modeling tank 610. Then, visible light is irradiated continuously and selectively (a region to be cured) from the light source 660 while the modeling stage 620 and the cured product 651 are continuously raised. As a result, a cured product is continuously formed from the bottom surface of the modeling stage 620 to the bottom side of the modeling tank 610, and a primary modeled object having no seam and high strength is manufactured. In this embodiment as well, the shape of the primary cured product is the same as the shape of the three-dimensional model to be finally produced.
 その後、得られた一次硬化物に対し、必要に応じて、さらに可視光を照射してもよい。可視光の照射は、所望の範囲のみ行ってもよく、一次硬化物全体に対して行ってもよい。上述のように、このような可視光照射を行うと、一次硬化物内部の光重合性化合物の重合性が高まり、得られる立体造形物の反りが抑制されやすくなる。 Thereafter, if necessary, the obtained primary cured product may be further irradiated with visible light. Irradiation with visible light may be performed only in a desired range or may be performed on the entire primary cured product. As described above, when such visible light irradiation is performed, the polymerizability of the photopolymerizable compound inside the primary cured product is increased, and warping of the resulting three-dimensional model is easily suppressed.
 その後、一次硬化物に含まれる熱重合性化合物を、公知の方法で加熱し、硬化させる。一次硬化物を加熱する際には、一次硬化物が変形しない温度とすることが好ましく、例えば光重合性化合物の硬化物のガラス転移温度(Tg)より低い温度とすることが好ましい。 Thereafter, the thermopolymerizable compound contained in the primary cured product is heated and cured by a known method. When heating the primary cured product, the temperature is preferably such that the primary cured product is not deformed. For example, the temperature is preferably lower than the glass transition temperature (Tg) of the cured product of the photopolymerizable compound.
 なお、上述のCLIP法では、樹脂組成物の粘度が高いと、造形槽610の硬化用領域644に新たな樹脂組成物が充填されにくい。そのため、形成された硬化物651を持ち上げにくかったり、無理に持ち上げると樹脂組成物が硬化用領域644に均一に充填されず、得られる立体造形物の強度が低下したりすることがあった。これに対し、バッファ領域642の厚みを厚くすれば、硬化用領域644に新たな樹脂組成物が充填されやすくなると考えられる。しかしながら、従来の紫外光のような短波長の光は、バッファ領域642の厚みが厚くなると、硬化用領域644に十分に届き難く、従来はバッファ領域642の厚みを厚くすることができなかった。 In the CLIP method described above, if the viscosity of the resin composition is high, it is difficult to fill the curing region 644 of the modeling tank 610 with a new resin composition. For this reason, it may be difficult to lift the formed cured product 651, or the resin composition may not be uniformly filled in the curing region 644 if it is forcibly lifted, and the strength of the resulting three-dimensional model may be reduced. On the other hand, if the thickness of the buffer region 642 is increased, it is considered that the curing region 644 is easily filled with a new resin composition. However, conventional light having a short wavelength, such as ultraviolet light, cannot reach the curing region 644 sufficiently when the thickness of the buffer region 642 is increased, and conventionally the thickness of the buffer region 642 cannot be increased.
 これに対し、可視光はその波長が長いことから、バッファ領域642の厚みが厚くとも、十分に硬化用領域644まで到達しやすい。したがって、本発明の製造方法によれば、バッファ領域642の厚みを厚くすることが可能であり、強度の高い立体造形物を作製することができる。 On the other hand, since the wavelength of visible light is long, even if the buffer region 642 is thick, it can easily reach the curing region 644. Therefore, according to the manufacturing method of the present invention, it is possible to increase the thickness of the buffer region 642, and it is possible to produce a three-dimensional model with high strength.
 以下において、本発明の具体的な実施例を説明する。なお、これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, specific examples of the present invention will be described. These examples do not limit the scope of the present invention.
 1.材料
 実施例および比較例における樹脂組成物の調製に際し、以下に示す材料を準備した。
 (光重合性化合物)
 ・アクリレート系化合物:トリメチルプロパントリアクリレート、およびジアクリレート(Sartomer社製CN120Z)
 ・シリコーンアクリレート系化合物:(Bluestar Silicones社製、UV RCA 170)
1. Materials Upon preparation of the resin compositions in Examples and Comparative Examples, the following materials were prepared.
(Photopolymerizable compound)
Acrylate compounds: trimethylpropane triacrylate and diacrylate (CN120Z manufactured by Sartomer)
Silicone acrylate compound: (manufactured by Bluestar Silicones, UV RCA 170)
 (熱重合性化合物)
 ・エポキシ系化合物:ポリ[2-(クロロメチル)オキシラン-alt-4,4’-(プロパン-2,2-ジイル)ジフェノール](Huntsman社製 Araldite 506)、およびその硬化剤(4,4’-メチレンビス(2,6-ジメチルアニリン)
 ・シリコーン系化合物:一液付加硬化型シリコーン(信越化学工業社製、KE-1056)、およびその硬化剤(N,N-ジメチルオクチルアミン)
 ・ウレタン系化合物:イソホロンジイソシアネート、およびその硬化剤(ポリテトラメチレンオキシド)
 ・シアネートエステル系化合物:1-ビス(4-シアナトフェニル)エタン、ならびにその硬化剤(亜鉛(II)アセチルアセトナート一水和物を1500ppm含有するイソボルニルアクリレート溶液および2-(5-クロロ-2-ベンゾトリアゾリル)-6-tert-ブチル-p-クレゾール)
(Thermopolymerizable compound)
Epoxy compound: poly [2- (chloromethyl) oxirane-alt-4,4 ′-(propane-2,2-diyl) diphenol] (Araldite 506 manufactured by Huntsman) and its curing agent (4, 4 '-Methylenebis (2,6-dimethylaniline)
Silicone compound: One-component addition-curable silicone (manufactured by Shin-Etsu Chemical Co., Ltd., KE-1056) and its curing agent (N, N-dimethyloctylamine)
-Urethane compounds: isophorone diisocyanate and its curing agent (polytetramethylene oxide)
Cyanate ester compounds: 1-bis (4-cyanatophenyl) ethane and its curing agent (isobornyl acrylate solution containing 1500 ppm of zinc (II) acetylacetonate monohydrate and 2- (5-chloro -2-benzotriazolyl) -6-tert-butyl-p-cresol)
 (可視光重合開始剤)
 ・カンファーキノン(東京化成工業社製、極大吸収470nm)
 ・3-ケトクマリン(東京化成工業社製、極大吸収460nm)
(Visible light polymerization initiator)
・ Camphorquinone (manufactured by Tokyo Chemical Industry Co., Ltd., maximum absorption 470 nm)
・ 3-Ketocoumarin (manufactured by Tokyo Chemical Industry Co., Ltd., maximum absorption 460 nm)
 (紫外光重合開始剤)
 ・アルキルフェノン系光重合開始剤(BASF社製、IRGACURE184、極大吸収330nm)
(Ultraviolet photopolymerization initiator)
・ Alkylphenone photopolymerization initiator (BASF, IRGACURE184, maximum absorption 330 nm)
 (紫外光吸収剤)
 ・ベンゾフェノン系紫外光吸収剤:ADEKA社製、アデカスタブ1413
 ・ベンゾトリアゾール系紫外光吸収剤:ADEKA社製、アデカスタブLA-32
 ・トリアジン系紫外光吸収剤:ADEKA社製、アデカスタブLA-46
 ・ベンゾエート系紫外光吸収剤:住友化学社製、スミソルブ400
(Ultraviolet light absorber)
Benzophenone ultraviolet absorber: ADEKA, ADK STAB 1413
Benzotriazole ultraviolet absorber: ADEKA, ADK STAB LA-32
Triazine ultraviolet light absorber: ADEKA, ADK STAB LA-46
・ Benzoate UV absorber: Sumitomo Chemical 400, manufactured by Sumitomo Chemical Co., Ltd.
 (光安定剤)
 ・ヒンダードアミン系光安定剤:住友化学社製、スミソルブ500
(Light stabilizer)
・ Hindered amine light stabilizer: Sumitomo Chemical Co., Ltd.
 (フィラー)
 ・硫酸マグネシウムウィスカー:宇部マテリアルズ社製、モスハイジ
 ・セルロースナノファイバー:スギノマシン社製、BiNFis
(Filler)
・ Magnesium sulfate whisker: Ube Materials, Moss Heidi ・ Cellulose nanofiber: Sugino Machine, BiNFis
 2.樹脂組成物の調製
 (実施例1~9、および比較例1~5)
 下記表1に示す材料および質量比で、各成分を混合し、樹脂組成物を得た。混合は、遊星方式混練機(プライミクス社製ハイビスミックス2P-1)により、公転速度60rpm、自転速度180rpmで5分間行った。
2. Preparation of resin composition (Examples 1 to 9 and Comparative Examples 1 to 5)
With the materials and mass ratios shown in Table 1 below, each component was mixed to obtain a resin composition. The mixing was performed for 5 minutes at a revolution speed of 60 rpm and a rotation speed of 180 rpm using a planetary kneading machine (Hibismix 2P-1 manufactured by PRIMIX Corporation).
 3.立体造形物の作製
 上述の樹脂組成物を用い、それぞれ下記に示す方法で立体造形物を作製した。
3. Production of a three-dimensional modeled object Using the above-mentioned resin composition, a three-dimensional modeled object was manufactured by the method shown below, respectively.
 (比較例1~5、実施例1~3)
 図1に示す構成を有する立体造形物の製造装置の造形槽510に、上記で作製した樹脂組成物をそれぞれ投入した。そして、比較例1~5については、光源530として波長370nm、出力70mWのレーザーダイオード(日亜化学工業社製NDU4116)を、また実施例1~3については、光源530として、波長460nm、出力100mWのレーザーダイオード(日亜化学工業社製NDB4216)を用いて、光の照射および造形ステージ520の降下を繰り返して、JIS K7161-2(ISO 527-2)1A形の試験片形状の一次硬化物を得た。なお、引張試験片の長手方向が造形方向(ステージの降下方向)となる一次硬化物、および引張試験片の長手方向が造形方向に水平となる一次硬化物をそれぞれ作製した。得られた一次硬化物を、イソプロピルアルコールで洗浄した。
 比較例1および4については、当該一次硬化物を、そのまま立体造形物とした。
 一方、比較例2、3、および5、ならびに実施例1および2の一次硬化物は、下記の表1に示す条件で熱硬化させた。
 また、実施例3の一次硬化物については、キセノンランプにより波長400~700nmの光を、照射強度が5mW/cmとなるように、立体造形物(試験片)の両面にそれぞれ5分ずつ照射した。その後、下記の表1に示す条件で熱硬化させた。
(Comparative Examples 1 to 5, Examples 1 to 3)
Each of the resin compositions prepared above was put into a modeling tank 510 of the three-dimensional modeled manufacturing apparatus having the configuration shown in FIG. In Comparative Examples 1 to 5, a laser diode having a wavelength of 370 nm and an output of 70 mW is used as the light source 530 (NDU 4116 manufactured by Nichia Corporation), and in Examples 1 to 3, the light source 530 is having a wavelength of 460 nm and an output of 100 mW. Using a laser diode (NDB4216 manufactured by Nichia Corporation), light irradiation and lowering of the modeling stage 520 were repeated to obtain a primary cured product of the test piece shape of JIS K7161-2 (ISO 527-2) type 1A Obtained. In addition, the primary hardened | cured material from which the longitudinal direction of a tensile test piece turns into a modeling direction (down direction of a stage) and the primary hardened | cured material from which the longitudinal direction of a tensile test piece becomes horizontal in a modeling direction were each produced. The obtained primary cured product was washed with isopropyl alcohol.
About the comparative examples 1 and 4, the said primary cured material was made into the three-dimensional molded item as it was.
On the other hand, the primary cured products of Comparative Examples 2, 3, and 5 and Examples 1 and 2 were thermally cured under the conditions shown in Table 1 below.
In addition, for the primary cured product of Example 3, light having a wavelength of 400 to 700 nm was irradiated by a xenon lamp on both surfaces of the three-dimensional modeled object (test piece) for 5 minutes so that the irradiation intensity was 5 mW / cm 2. did. Thereafter, it was thermoset under the conditions shown in Table 1 below.
 (実施例4~9)
 立体造形物の作製には、図2に示す製造装置600の造形槽610に樹脂組成物を投入した。当該造形槽610の底部には、重合阻害剤である酸素の透過が可能なBiogeneral社製の0.0025インチ厚のTeflon(登録商標)AF2400フィルム(窓部615)が配置されている。そして、造形槽610の外側の雰囲気を酸素雰囲気としたうえで、適度に加圧を行った。これにより、造形槽610の底部側に、樹脂組成物および酸素を含むバッファ領域642が形成され、バッファ領域642より上部は、バッファ領域より酸素濃度が低い硬化用領域644となった。
 そして、可視光源660:DLP式プロジェクタ(Optoma社製HD 142X)から光を面状に照射しながら造形ステージ620を上昇させた。このとき、可視光の照射強度は5mW/cmとした。また、造形ステージ620の引き上げ速度は、50mm/hrとした。そして、JIS K7161-2(ISO 527-2) 1A形の試験片形状となるように、立体造形物を作製した。当該方法により、引張試験片の長手方向が水平方向および造形方向(造形ステージ620の引き上げ方向)となる一次硬化物、および、さらには引張試験片の長手方向が造形方向に水平となる一次硬化物をそれぞれ作製した。得られた立体造形物をイソプロピルアルコールで洗浄した。
 実施例4、5、および7~9の一次硬化物は、下記の表1に示す条件で、熱硬化させた。
 一方、実施例6の一次硬化物については、キセノンランプにより波長400~700nmの光を、照射強度が5mW/cmとなるように、立体造形物(試験片)の両面にそれぞれ5分ずつ照射した。その後、下記の表1に示す条件で熱硬化させた。
(Examples 4 to 9)
For the production of the three-dimensional model, the resin composition was put into the model tank 610 of the manufacturing apparatus 600 shown in FIG. At the bottom of the modeling tank 610, a Teflon (registered trademark) AF2400 film (window 615) having a thickness of 0.0025 inches manufactured by Biogeneral, which can transmit oxygen as a polymerization inhibitor, is disposed. And after making the atmosphere outside the modeling tank 610 into an oxygen atmosphere, it pressurized moderately. Thereby, the buffer region 642 containing the resin composition and oxygen was formed on the bottom side of the modeling tank 610, and the upper part of the buffer region 642 became a curing region 644 having a lower oxygen concentration than the buffer region.
Then, the modeling stage 620 was raised while irradiating light from a visible light source 660: DLP projector (HD 142X manufactured by Optoma) in a planar shape. At this time, the irradiation intensity of visible light was 5 mW / cm 2 . The pulling speed of the modeling stage 620 was 50 mm / hr. Then, a three-dimensionally shaped object was prepared so as to have a test piece shape of JIS K7161-2 (ISO 527-2) type 1A. By the said method, the primary hardened | cured material from which the longitudinal direction of a tensile test piece becomes a horizontal direction and a modeling direction (drawing direction of the modeling stage 620), and also the primary cured | curing material from which the longitudinal direction of a tensile test piece becomes horizontal in a modeling direction Were prepared. The obtained three-dimensional model was washed with isopropyl alcohol.
The primary cured products of Examples 4, 5, and 7 to 9 were thermally cured under the conditions shown in Table 1 below.
On the other hand, the primary cured product of Example 6 was irradiated with light of a wavelength of 400 to 700 nm from a xenon lamp on both surfaces of the three-dimensional structure (test piece) for 5 minutes so that the irradiation intensity was 5 mW / cm 2. did. Thereafter, it was thermoset under the conditions shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 4.評価
 得られた立体造形物を、以下の方法で評価した。得られた結果を表2に示す。
4). Evaluation The obtained three-dimensional molded item was evaluated by the following method. The obtained results are shown in Table 2.
 (強度)
 長手方向が造形方向となる立体造形物、および長手方向が造形方向に水平となる立体造形物について、それぞれ引張強度をJIS K7161-1に準拠して引張試験にて評価した。このとき、掴み具間の距離は115mm、試験速度は5mm/分とした。また、破断時の応力を試験片の断面積で割った値を、各引張強度として算出した。
(Strength)
Tensile strength was evaluated by a tensile test in accordance with JIS K7161-1 for a three-dimensional object whose longitudinal direction is the modeling direction and a three-dimensional object whose longitudinal direction is horizontal to the modeling direction. At this time, the distance between the gripping tools was 115 mm, and the test speed was 5 mm / min. Moreover, the value which divided the stress at the time of a fracture | rupture by the cross-sectional area of the test piece was computed as each tensile strength.
 長手方向が造形方向に水平となる立体造形物については、以下の基準で評価した。
 ◎:水平方向の引張強度が100MPa以上である
 ○:水平方向の引張強度が20MPa以上100MPa未満である
 ×:水平方向の引張強度が20MPa未満である
About the three-dimensional molded item whose longitudinal direction is horizontal to the modeling direction, the following criteria were evaluated.
A: Horizontal tensile strength is 100 MPa or more. O: Horizontal tensile strength is 20 MPa or more and less than 100 MPa. X: Horizontal tensile strength is less than 20 MPa.
 長手方向が造形方向となる立体造形物については、以下の造形強度比で評価した。
 造形方向強度比=造形方向の引張強度/造形方向に水平方向の引張強度
 ◎:造形方向強度比が0.9以上
 ○:造形方向強度比が0.6以上0.9未満
 ×:造形方向強度比が0.6未満
About the three-dimensional molded item whose longitudinal direction is the modeling direction, the following modeling strength ratio was evaluated.
Modeling direction strength ratio = Tensile strength in the modeling direction / Tensile strength in the horizontal direction in the modeling direction ◎: Modeling direction strength ratio is 0.9 or more ○: Modeling direction strength ratio is 0.6 or more and less than 0.9 ×: Modeling direction strength Ratio is less than 0.6
 (反り)
 上述の立体造形物(長手方向が造形方向に水平方向)を金属製定盤上に置き、レーザ変位計(キーエンス社製LK-G5000)を用いて厚み方向にスキャンした。そして、立体造形物の反り量を以下のように算出した。
 反り量=試験片の高さの最大値-試験片の高さの最小値
(warp)
The above-described three-dimensional model (the longitudinal direction is horizontal to the modeling direction) was placed on a metal surface plate, and scanned in the thickness direction using a laser displacement meter (LK-G5000 manufactured by Keyence Corporation). And the curvature amount of the three-dimensional molded item was calculated as follows.
Warpage amount = maximum value of specimen height-minimum value of specimen height
 ◎:0.5mm未満
 ○:0.5mm以上2mm未満
 ×:2mm以上
A: Less than 0.5 mm O: 0.5 mm or more and less than 2 mm X: 2 mm or more
 (耐光性)
 上述の立体造形物(長手方向が造形方向に水平方向)に対して、スガ試験機株式会社製7.5kWスーパーキセノンウェザーメータSX75を用い、JISD0205に準拠して耐光性試験を行った。耐光性試験は、ブラックパネル温度60℃、相対湿度50%の環境下にて、キセノンアーク灯を用いて行った。また、波長範囲300~400nmの光を、試料面放射強度が75W/mとなるように、珪酸塩ガラスのアウターガラスフィルター及び石英ガラスのインナーフィルターを介して300時間照射した。その後、耐光性試験後の強度保持率を以下のように算出し、評価した。
 強度保持率=耐光性試験後の引張強度/耐光性試験前の引張強度
 ◎:強度保持率が0.9以上
 ○:強度保持率が0.8以上0.9未満
 △:強度保持率が0.6以上0.8未満
 ×:強度保持率が0.4以上0.6未満
 ××:強度保持率が0.4未満
Figure JPOXMLDOC01-appb-T000002
(Light resistance)
A light resistance test was performed on the above-mentioned three-dimensional modeled object (the longitudinal direction is horizontal to the modeling direction) using a 7.5 kW super xenon weather meter SX75 manufactured by Suga Test Instruments Co., Ltd. according to JIS D0205. The light resistance test was performed using a xenon arc lamp in an environment of a black panel temperature of 60 ° C. and a relative humidity of 50%. Further, light having a wavelength range of 300 to 400 nm was irradiated for 300 hours through an outer glass filter made of silicate glass and an inner filter made of quartz glass so that the sample surface radiation intensity became 75 W / m 2 . Thereafter, the strength retention after the light resistance test was calculated and evaluated as follows.
Strength retention ratio = tensile strength after light resistance test / tensile strength before light resistance test ◎: Strength retention ratio is 0.9 or more ○: Strength retention ratio is 0.8 or more and less than 0.9 △: Strength retention ratio is 0 .6 or more and less than 0.8 ×: Strength retention ratio of 0.4 or more and less than 0.6 XX: Strength retention ratio of less than 0.4
Figure JPOXMLDOC01-appb-T000002
 上記表2に示されるように、熱重合性樹脂を含まない場合には、得られた立体造形物が反りやすかった(比較例1および4)。また、熱重合性樹脂を含み、かつ紫外光吸収剤を含まない場合(比較例2および5)には耐光性が低くなりやすかった。また特に、紫外光で硬化させた比較例2では、反りの評価も低かった。これは、一次硬化物を作製する際の光によって劣化したため、熱重合性化合物を添加した効果が得られなかったと考えられる。一方、紫外光吸収剤を含む樹脂組成物を紫外光で硬化させると、十分に硬化できず、強度が非常に低くなった(比較例3)。 As shown in Table 2 above, when the thermopolymerizable resin was not included, the obtained three-dimensional model was easy to warp (Comparative Examples 1 and 4). Moreover, when a heat-polymerizable resin was included and an ultraviolet light absorber was not included (Comparative Examples 2 and 5), the light resistance was likely to be low. In particular, in Comparative Example 2 cured with ultraviolet light, the evaluation of warpage was low. Since this deteriorated by light at the time of producing the primary cured product, it is considered that the effect of adding the thermopolymerizable compound could not be obtained. On the other hand, when the resin composition containing an ultraviolet light absorber was cured with ultraviolet light, the resin composition could not be sufficiently cured and the strength was very low (Comparative Example 3).
 これに対し、光重合性化合物、熱重合性化合物、可視光重合開始剤、および紫外光吸収剤を含む樹脂組成物においては、耐光性が高く、かつ水平方向および造形方向共に強度が高かった。紫外光吸収剤を含んでいたとしても、可視光で硬化させたため、硬化が阻害されにくく、強度が高かったと推察される(実施例1~9)。また、これらの実施例は、熱重合性化合物を含むため、反りも生じ難くかった。 In contrast, a resin composition containing a photopolymerizable compound, a thermopolymerizable compound, a visible light polymerization initiator, and an ultraviolet light absorber had high light resistance and high strength in both the horizontal direction and the molding direction. Even if an ultraviolet light absorber was included, it was presumed that since it was cured with visible light, the curing was hardly inhibited and the strength was high (Examples 1 to 9). Moreover, since these Examples contained a thermopolymerizable compound, it was difficult for warpage to occur.
 特に、一次硬化物の作製後、さらに光照射工程を含む場合には、硬化物に反りが生じ難かった(実施例3および6)。一方、フィラーを含む場合には、得られる立体造形物の強度が高まりやすかった(実施例2および7)。さらに、光安定剤を含む場合には特に耐光性が高まりやすかった(実施例5)。なお、立体造形方法として、SLA法より、CLIP法のほうが、造形方向の強度が高かった。CLIP法では、継ぎ目なく立体造形物を作製するため、造形方向の強度が高くなったと考えられる。 In particular, when a light irradiation step was further included after the production of the primary cured product, the cured product was hardly warped (Examples 3 and 6). On the other hand, when the filler was included, the strength of the resulting three-dimensional model was likely to increase (Examples 2 and 7). Furthermore, when a light stabilizer was included, the light resistance was particularly likely to increase (Example 5). As a three-dimensional modeling method, the CLIP method had higher strength in the modeling direction than the SLA method. In the CLIP method, it is considered that the strength in the modeling direction is increased because a three-dimensional model is produced without a seam.
 本出願は、2018年3月1日出願の特願2018-036684号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2018-036684 filed on Mar. 1, 2018. The contents described in the application specification and the drawings are all incorporated herein.
 本発明の樹脂組成物によれば、反りが少なく、強度が高く、さらには耐光性が良好な造形物を提供できる。したがって、本発明は、樹脂組成物を用いた立体造形物の適用の幅を広げ、同分野の技術の進展および普及に貢献することが期待される。 According to the resin composition of the present invention, it is possible to provide a molded article with little warpage, high strength, and good light resistance. Therefore, the present invention is expected to broaden the application range of the three-dimensional structure using the resin composition and contribute to the progress and spread of the technology in the same field.
 500、600 製造装置
 510、610 造形槽
 615 窓部
 520、620 造形ステージ
 521 ベース
 530、660 光源
 531 ガルバノミラー
 550 樹脂組成物
 642 バッファ領域
 644 硬化用領域
 651 硬化物
 
 
500, 600 Manufacturing apparatus 510, 610 Modeling tank 615 Window unit 520, 620 Modeling stage 521 Base 530, 660 Light source 531 Galvano mirror 550 Resin composition 642 Buffer region 644 Curing region 651 Cured product

Claims (10)

  1.  液体状の樹脂組成物に可視光を選択的に照射して、前記樹脂組成物の硬化物からなる立体造形物を製造する方法に使用される樹脂組成物であって、
     光重合性化合物と、
     熱重合性化合物と、
     可視光重合開始剤と、
     紫外光吸収剤と、
     を含む樹脂組成物。
    A resin composition used in a method of producing a three-dimensional structure formed of a cured product of the resin composition by selectively irradiating a liquid resin composition with visible light,
    A photopolymerizable compound;
    A thermopolymerizable compound;
    A visible light polymerization initiator;
    An ultraviolet light absorber;
    A resin composition comprising:
  2.  前記光重合性化合物および/または前記熱重合性化合物が、芳香環、トリアジン環、エステル結合、ウレタン結合、およびウレア結合からなる群から選ばれる少なくとも一種の構造を、分子内に含む、
     請求項1に記載の樹脂組成物。
    The photopolymerizable compound and / or the thermopolymerizable compound includes in its molecule at least one structure selected from the group consisting of an aromatic ring, a triazine ring, an ester bond, a urethane bond, and a urea bond.
    The resin composition according to claim 1.
  3.  前記可視光重合開始剤が、波長400nm以上の領域に吸収極大を有する、
     請求項1または2に記載の樹脂組成物。
    The visible light polymerization initiator has an absorption maximum in a wavelength region of 400 nm or more,
    The resin composition according to claim 1 or 2.
  4.  光安定剤をさらに含む、
     請求項1~3のいずれか一項に記載の樹脂組成物。
    Further comprising a light stabilizer,
    The resin composition according to any one of claims 1 to 3.
  5.  フィラーをさらに含む、
     請求項1~4のいずれか一項に記載の樹脂組成物。
    Further including a filler,
    The resin composition according to any one of claims 1 to 4.
  6.  請求項1~5のいずれか一項に記載の樹脂組成物に可視光を選択的に照射して、前記光重合性化合物の硬化物を含む一次硬化物を形成する光造形工程を含む、
     立体造形物の製造方法。
    An optical modeling step of selectively irradiating the resin composition according to any one of claims 1 to 5 with visible light to form a primary cured product including a cured product of the photopolymerizable compound;
    Manufacturing method of a three-dimensional molded item.
  7.  前記一次硬化物を、さらに熱硬化させる熱硬化工程を含む、
     請求項6に記載の立体造形物の製造方法。
    Including a thermosetting step of further thermosetting the primary cured product,
    The manufacturing method of the three-dimensional molded item of Claim 6.
  8.  前記熱硬化工程前に、前記一次硬化物にさらに可視光を照射する光照射工程を含む、
     請求項7に記載の立体造形物の製造方法。
    Before the thermosetting step, including a light irradiation step of further irradiating the primary cured product with visible light,
    The manufacturing method of the three-dimensional molded item of Claim 7.
  9.  前記光造形工程が、
     前記樹脂組成物および酸素を含み、酸素により前記光重合性化合物の硬化が阻害されるバッファ領域、ならびに前記樹脂組成物を少なくとも含み、前記バッファ領域より酸素濃度が低く、前記光重合性化合物の硬化が可能な硬化用領域を、造形物槽内に隣接して形成する第1の工程と、
     前記バッファ領域側から前記樹脂組成物に可視光を選択的に照射して、前記硬化用領域で前記光重合性化合物を硬化させる第2の工程と、
     を含み、
     前記第2の工程では、形成された硬化物を前記バッファ領域とは反対側に移動させながら、前記硬化用領域に連続的に可視光を照射し、前記一次硬化物を形成する、
     請求項6~8のいずれか一項に記載の立体造形物の製造方法。
    The stereolithography process
    A buffer region containing the resin composition and oxygen, wherein the curing of the photopolymerizable compound is inhibited by oxygen; and at least the resin composition, wherein the oxygen concentration is lower than the buffer region, and the photopolymerizable compound is cured. A first step of forming an area for curing adjacent to the molded article tank;
    A second step of selectively irradiating the resin composition with visible light from the buffer region side and curing the photopolymerizable compound in the curing region;
    Including
    In the second step, while moving the formed cured product to the side opposite to the buffer region, the curing region is continuously irradiated with visible light to form the primary cured product,
    The method for manufacturing a three-dimensional structure according to any one of claims 6 to 8.
  10.  請求項1~5のいずれか一項に記載の樹脂組成物の硬化物である、立体造形物。 A three-dimensionally shaped article, which is a cured product of the resin composition according to any one of claims 1 to 5.
PCT/JP2019/007101 2018-03-01 2019-02-25 Resin composition and production method for three dimensional shaped object using same, and three dimensional shaped object WO2019167895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503497A JP7180666B2 (en) 2018-03-01 2019-02-25 RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018036684 2018-03-01
JP2018-036684 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019167895A1 true WO2019167895A1 (en) 2019-09-06

Family

ID=67808851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007101 WO2019167895A1 (en) 2018-03-01 2019-02-25 Resin composition and production method for three dimensional shaped object using same, and three dimensional shaped object

Country Status (2)

Country Link
JP (1) JP7180666B2 (en)
WO (1) WO2019167895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112057750A (en) * 2020-08-06 2020-12-11 恒新增材制造研究中心(佛山)有限公司 Tissue compensator for radiotherapy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224127A (en) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JP2008285489A (en) * 2007-05-18 2008-11-27 Ormco Corp Orthodontic adhesive
JP2015089943A (en) * 2013-11-05 2015-05-11 ディーエスエム アイピー アセッツ ビー.ブイ. Stabilized matrix-filled liquid radiation-curable resin compound for addition molding
JP2016509962A (en) * 2013-02-12 2016-04-04 カーボンスリーディー,インコーポレイテッド Method and apparatus for three-dimensional fabrication
WO2017040883A1 (en) * 2015-09-04 2017-03-09 Carbon, Inc. Cyanate ester dual cure resins for additive manufacturing
WO2017059222A1 (en) * 2015-10-01 2017-04-06 Dsm Ip Assets B.V. Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413226B2 (en) * 2013-11-12 2018-10-31 セイコーエプソン株式会社 Manufacturing method of three-dimensional structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224127A (en) * 1988-07-13 1990-01-26 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JP2008285489A (en) * 2007-05-18 2008-11-27 Ormco Corp Orthodontic adhesive
JP2016509962A (en) * 2013-02-12 2016-04-04 カーボンスリーディー,インコーポレイテッド Method and apparatus for three-dimensional fabrication
JP2015089943A (en) * 2013-11-05 2015-05-11 ディーエスエム アイピー アセッツ ビー.ブイ. Stabilized matrix-filled liquid radiation-curable resin compound for addition molding
WO2017040883A1 (en) * 2015-09-04 2017-03-09 Carbon, Inc. Cyanate ester dual cure resins for additive manufacturing
WO2017059222A1 (en) * 2015-10-01 2017-04-06 Dsm Ip Assets B.V. Liquid, hybrid uv/vis radiation curable resin compositions for additive fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112057750A (en) * 2020-08-06 2020-12-11 恒新增材制造研究中心(佛山)有限公司 Tissue compensator for radiotherapy and preparation method thereof
CN112057750B (en) * 2020-08-06 2023-04-07 恒新增材制造研究中心(佛山)有限公司 Tissue compensator for radiotherapy and preparation method thereof

Also Published As

Publication number Publication date
JPWO2019167895A1 (en) 2021-02-25
JP7180666B2 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
TWI513751B (en) A hardened composition, a hardened product, an optical material, and an optical lens
JP5885585B2 (en) Curable composition and cured product thereof
JP5704691B2 (en) Polymerizable diamond and resin composition containing the same
WO2016088646A1 (en) Curable composition containing semiconductor nanoparticles, cured product, optical material and electronic material
JP2007199710A (en) Method for manufacturing liquid crystal display panel and sealing agent thereof
CN115943062A (en) Dual cure additive manufacturing resin for producing flame retardant objects
JP7115491B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
JP7309315B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
WO2019167895A1 (en) Resin composition and production method for three dimensional shaped object using same, and three dimensional shaped object
JP6874559B2 (en) Curable composition, manufacturing method of three-dimensional model and three-dimensional model
JP7163956B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
EP3685989B1 (en) Object-gripping attachment and industrial robot using object-gripping attachment
JP7163958B2 (en) Polymerizable composition and method for producing three-dimensional shaped article
JPWO2020066736A1 (en) Curable resin composition, cured product and three-dimensional model
JP7173137B2 (en) Polymerizable composition for three-dimensional modeling, method for producing three-dimensional object using the same, and three-dimensional object
JP5769636B2 (en) Method for forming lens or lens array
JP7036035B2 (en) Method for manufacturing resin composition and three-dimensional model
JP7036034B2 (en) Method for manufacturing resin composition and three-dimensional model
JPWO2019146132A1 (en) Composition for optical three-dimensional modeling, three-dimensional modeled object, and manufacturing method thereof
JP2019183028A (en) Resin composition for optical molding
JP5387421B2 (en) Resin composition and transparent composite substrate
JP2012251008A (en) Photocurable film and solar cell
TW202146495A (en) Curable resin composition, cured object, and three-dimensional object
JP2017193706A (en) Particle-containing thermosetting resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760341

Country of ref document: EP

Kind code of ref document: A1