JP7163958B2 - Polymerizable composition and method for producing three-dimensional shaped article - Google Patents

Polymerizable composition and method for producing three-dimensional shaped article Download PDF

Info

Publication number
JP7163958B2
JP7163958B2 JP2020514124A JP2020514124A JP7163958B2 JP 7163958 B2 JP7163958 B2 JP 7163958B2 JP 2020514124 A JP2020514124 A JP 2020514124A JP 2020514124 A JP2020514124 A JP 2020514124A JP 7163958 B2 JP7163958 B2 JP 7163958B2
Authority
JP
Japan
Prior art keywords
polymerizable composition
flame retardant
meth
mass
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020514124A
Other languages
Japanese (ja)
Other versions
JPWO2019203134A1 (en
Inventor
健 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2019203134A1 publication Critical patent/JPWO2019203134A1/en
Application granted granted Critical
Publication of JP7163958B2 publication Critical patent/JP7163958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、重合性組成物及び立体造形物の製造方法に関し、より詳しくは、難燃性に優れる立体造形物を製造可能とする重合性組成物及び立体造形物の製造方法に関する。 TECHNICAL FIELD The present invention relates to a polymerizable composition and a method for producing a three-dimensional shaped article, and more particularly to a polymerizable composition and a method for producing a three-dimensional shaped article that enable production of a three-dimensional shaped article having excellent flame retardancy.

従来、金型を必要とせず、安価かつ短期間で試作品を作製する方法として光造形が用いられてきたが、近年、材料や造形技術の進歩にともない、最終製品への応用が求められるようになってきた。
光造形の中でも、酸素による硬化阻害層を形成させながら光照射を行う連続的液体界面製造法(Continuous Liquid Interface Production(CLIP)法)が、造形速度が速いことや積層構造を形成せず造形方向への強度が高いことから、近年注目されている(例えば、特許文献1及び2参照。)。しかしながら、電気電子部品や自動車部品等において難燃性を求められる部品が多いのに対し、当該特許文献に開示の方法では、十分な難燃性を有する立体造形物を得られるに至っていない。
Conventionally, stereolithography has been used as a method for producing prototypes at low cost and in a short period of time without the need for molds. has become
Among stereolithography, the Continuous Liquid Interface Production (CLIP) method, in which light irradiation is performed while forming a hardening inhibition layer with oxygen, has a high molding speed and a high molding direction without forming a laminated structure. It has been attracting attention in recent years because of its high strength against stress (see, for example, Patent Documents 1 and 2). However, there are many electrical and electronic parts, automobile parts, and the like that require flame retardancy, and the method disclosed in the patent document has not yet yielded a three-dimensional molded article with sufficient flame resistance.

光造形において、材料に難燃剤を添加することは知られているが(例えば、特許文献3参照。)、CLIP法では比較的強度の高い活性エネルギー線(紫外線)が酸素の存在下で照射されるため、ハロゲン系やリン系難燃剤が分解し、また、金属水酸化物系難燃剤は酸化されるため、難燃剤としての十分な機能を果たせないという問題があることが分かった。 In stereolithography, it is known to add a flame retardant to the material (see, for example, Patent Document 3). As a result, the halogen-based and phosphorus-based flame retardants are decomposed, and the metal hydroxide-based flame retardants are oxidized.

また、フィラーを加えることによって、立体造形物の強度を大幅に向上させることが可能であるが、フィラーを加えることによって重合性組成物の粘度が高くなるため、造形ステージ下に形成されつつある造形物の最下層と基材との間に未硬化の重合性液体を充填するには多大な時間を要するようになる。このことは、造形時間が長くなってしまう点で好ましくない。この問題を解決する手段として、酸素供給量を増やすことによって、重合阻害層を厚くし、十分な厚さの流動層を確保することが考えられる。しかしながら、より厚い重合阻害層を介して最下層で重合性液体を硬化させるためには、より強いパワーの紫外線を照射する必要がある。このとき、重合性液体は、より高い酸素濃度下でより高いエネルギーの紫外線を照射されることから、難燃剤はより過酷な環境にさらされ、分解又は酸化劣化することによって機能を発現できなくなりやすいといった問題がある。 In addition, by adding filler, it is possible to greatly improve the strength of the three-dimensional model, but since the addition of filler increases the viscosity of the polymerizable composition, the model that is being formed under the modeling stage It becomes very time consuming to fill the uncured polymerizable liquid between the bottom layer of the article and the substrate. This is not preferable in that the molding time becomes long. As a means of solving this problem, it is conceivable to increase the amount of oxygen supplied to increase the thickness of the polymerization inhibiting layer and secure a sufficiently thick fluidized bed. However, in order to harden the polymerizable liquid in the lowermost layer through the thicker polymerization inhibiting layer, it is necessary to irradiate ultraviolet light with a higher power. At this time, since the polymerizable liquid is irradiated with higher energy ultraviolet rays under a higher oxygen concentration, the flame retardant is exposed to a harsher environment and is likely to become unable to exhibit its function due to decomposition or oxidative deterioration. There is such a problem.

特表2016-509962号公報Japanese Patent Publication No. 2016-509962 特表2016-509964号公報Japanese Patent Application Publication No. 2016-509964 特開2007-262401号公報Japanese Patent Application Laid-Open No. 2007-262401

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、難燃性に優れる立体造形物を製造可能とする重合性組成物及び立体造形物の製造方法を提供することである。 The present invention has been made in view of the above problems and circumstances, and the problem to be solved is to provide a polymerizable composition and a method for producing a three-dimensional shaped article that can produce a three-dimensional shaped article having excellent flame retardancy. is.

本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有することにより、難燃性に優れる立体造形物を製造可能とする重合性組成物及び立体造形物の製造方法を提供できることを見出し、本発明に至った。 In order to solve the above problems, the present inventors, in the process of studying the causes of the above problems, have found that flame retardancy is improved by containing a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent. The inventors have found that it is possible to provide a polymerizable composition and a method for producing a three-dimensional shaped article that are capable of producing a three-dimensional shaped article that is excellent in the above, resulting in the present invention.

すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problems related to the present invention are solved by the following means.

1.立体造形物の製造に用いられる重合性組成物であって、
液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有し、
前記難燃剤が、ハロゲン系難燃剤、リン系難燃剤及び窒素系難燃剤から選択される少なくとも一つであり、
前記難燃剤保護剤が、アミン系光安定剤であり、
前記難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、2~20質量部の範囲内であり、
前記難燃剤保護剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であり、かつ、前記立体造形物の製造方法が、下記工程(a)~(c)を含むことを特徴とする重合性組成物。
(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造
形槽中に酸素を供給する工程
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
1. A polymerizable composition used for manufacturing a three-dimensional object,
Containing a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent,
The flame retardant is at least one selected from halogen-based flame retardants, phosphorus-based flame retardants and nitrogen-based flame retardants,
The flame retardant protective agent is an amine light stabilizer,
The content of the flame retardant is in the range of 2 to 20 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition,
The content of the flame retardant protective agent is in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and the method for producing the three-dimensional object comprises: A polymerizable composition comprising the following steps (a) to (c).
(a) a step of supplying oxygen into a modeling tank containing the polymerizable composition through a substrate that transmits oxygen and active energy rays; (b) the oxygen inhibits the effect of the polymerizable composition; (c) curing the polymerizable composition by selectively irradiating the active energy ray that has passed through the buffer region to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; A step of continuously irradiating the active energy ray while moving the polymerizable composition to form three-dimensionally and continuously a modeled object obtained by curing the polymerizable composition.

2.立体造形物の製造に用いられる重合性組成物であって、
液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有し、
前記難燃剤が、金属水酸化物系難燃剤であり、
前記難燃剤保護剤が、フェノール系酸化防止剤、ホスファイト系酸化防止剤及びチオール系酸化防止剤から選択される少なくとも一つであり、
前記難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、5~50質量部の範囲内であり、
前記難燃剤保護剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であり、かつ、
前記立体造形物の製造方法が、下記工程(a)~(c)を含むことを特徴とする重合性組成物。
(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造形槽中に酸素を供給する工程
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
3.前記光重合性化合物が、(メタ)アクリロイル基を有する化合物であることを特徴とする第1項又は第2項に記載の重合性組成物。
2. A polymerizable composition used for manufacturing a three-dimensional object,
Containing a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent,
The flame retardant is a metal hydroxide flame retardant,
The flame retardant protective agent is at least one selected from phenolic antioxidants, phosphite antioxidants and thiol antioxidants,
The content of the flame retardant is in the range of 5 to 50 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition,
The content of the flame retardant protective agent is in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and
The polymerizable composition, wherein the method for producing the three-dimensional object includes the following steps (a) to (c).
(a) a step of supplying oxygen into a modeling tank containing the polymerizable composition through a base material that is permeable to oxygen and active energy rays;
(b) selectively irradiating active energy rays that have passed through the buffer region where the effect of the polymerizable composition is inhibited by the oxygen to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; and curing the polymerizable composition
(c) a step of continuously irradiating the active energy ray while moving the cured polymerizable composition to three-dimensionally and continuously form a shaped article obtained by curing the polymerizable composition;
3. 3. The polymerizable composition according to item 1 or 2 , wherein the photopolymerizable compound is a compound having a (meth)acryloyl group.

.さらに、液体状の熱重合性化合物を含有することを特徴とする第1項から第項までのいずれか一項に記載の重合性組成物。 4 . 4. The polymerizable composition according to any one of items 1 to 3 , further comprising a liquid thermally polymerizable compound.

.さらに、フィラーを含有することを特徴とする第1項から第項までのいずれか一項に記載の重合性組成物。 5 . 5. The polymerizable composition according to any one of items 1 to 4 , further comprising a filler.

.重合性組成物を用いる立体造形物の製造方法であって、
前記重合性組成物が、第1項から第項までのいずれか一項に記載の重合性組成物であり、
下記工程(a)~(c)を含み、かつ、
前記工程(b)では、1~200mW/cmの範囲内の活性エネルギー線を照射することを特徴とする立体造形物の製造方法。
(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造形槽中に酸素を供給する工程
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
6 . A method for producing a three-dimensional object using a polymerizable composition,
The polymerizable composition is the polymerizable composition according to any one of items 1 to 5 ,
including the following steps (a) to (c), and
A method for producing a three-dimensional object, wherein in the step (b), an active energy ray within a range of 1 to 200 mW/cm 2 is applied.
(a) a step of supplying oxygen into a modeling tank containing the polymerizable composition through a substrate that transmits oxygen and active energy rays; (b) the oxygen inhibits the effect of the polymerizable composition; (c) curing the polymerizable composition by selectively irradiating the active energy ray that has passed through the buffer region to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; A step of continuously irradiating the active energy ray while moving the polymerizable composition to form three-dimensionally and continuously a modeled object obtained by curing the polymerizable composition.

.前記酸素を供給する工程では、前記造形槽中への酸素の透過流束を3.4×10~170×10kmol/(s・m)の範囲内とすることを特徴とする第項に記載の立体造形物の製造方法。 7 . In the step of supplying oxygen, the permeation flux of oxygen into the modeling tank is set within a range of 3.4×10 3 to 170×10 3 kmol/(s·m 2 ). 6. The method for producing a three-dimensional model according to 6 above.

本発明の上記手段により、難燃性に優れる立体造形物を製造可能とする重合性組成物及び立体造形物の製造方法を提供することができる。 By the above-described means of the present invention, it is possible to provide a polymerizable composition and a method for producing a three-dimensional shaped article that enable production of a three-dimensional shaped article having excellent flame retardancy.

本発明の効果の発現機構・作用機構については、以下のように推察している。 The expression mechanism and action mechanism of the effects of the present invention are speculated as follows.

本発明の重合性組成物は、液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有することを特徴とする。
上述したように、CLIP法では、比較的強度の高い活性エネルギー線(紫外線)が酸素の存在下で照射される。このような場合に、難燃性を付与するために材料中に難燃剤を添加していると、難燃剤が紫外線により分解又は酸化劣化し、難燃剤としての機能を十分に発揮することができない。
そこで、本発明では、難燃剤に加えて難燃剤保護剤を添加することにより、酸素供給下で比較的強い紫外線を照射された場合でも難燃剤が分解又は酸化劣化することを防止し、これにより形成された立体造形物に十分な難燃性を付与することができるものと考えている。
The polymerizable composition of the present invention is characterized by containing a liquid photopolymerizable compound, a flame retardant, and a flame retardant protecting agent.
As described above, in the CLIP method, relatively high-intensity active energy rays (ultraviolet rays) are irradiated in the presence of oxygen. In such a case, if a flame retardant is added to the material to impart flame retardancy, the flame retardant will decompose or deteriorate due to oxidation by ultraviolet rays, and the function as a flame retardant cannot be fully exhibited. .
Therefore, in the present invention, by adding a flame retardant protective agent in addition to the flame retardant, the flame retardant is prevented from decomposing or oxidatively deteriorating even when exposed to relatively strong ultraviolet rays under the supply of oxygen. We believe that sufficient flame retardancy can be imparted to the formed three-dimensional object.

本発明の立体造形物の製造方法に適用可能な製造装置の一例としての概略図Schematic diagram as an example of a manufacturing apparatus applicable to the method for manufacturing a three-dimensional object of the present invention 基材21の近傍の酸素濃度分布を示す模式図Schematic diagram showing the oxygen concentration distribution in the vicinity of the substrate 21

本発明の重合性組成物は、立体造形物の製造に用いられる重合性組成物であって、液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有し、前記難燃剤が、ハロゲン系難燃剤、リン系難燃剤及び窒素系難燃剤から選択される少なくとも一つであり、前記難燃剤保護剤が、アミン系光安定剤であり、前記難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、2~20質量部の範囲内であり、前記難燃剤保護剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であり、かつ、立体造形物の製造方法が、下記工程(a)~(c)を含むことを特徴とする。
(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造形槽中に酸素を供給する工程
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
又は、立体造形物の製造に用いられる重合性組成物であって、液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有し、前記難燃剤が、金属水酸化物系難燃剤であり、前記難燃剤保護剤が、フェノール系酸化防止剤、ホスファイト系酸化防止剤及びチオール系酸化防止剤から選択される少なくとも一つであり、前記難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、5~50質量部の範囲内であり、前記難燃剤保護剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であり、かつ、前記立体造形物の製造方法が、上記工程(a)~(c)を含むことを特徴とする。
れらの特徴は、下記各実施形態に係る発明に共通する技術的特徴である。
The polymerizable composition of the present invention is a polymerizable composition used in the production of a three-dimensional object, and contains a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent, and the flame retardant is at least one selected from halogen-based flame retardants, phosphorus-based flame retardants and nitrogen-based flame retardants, the flame retardant protective agent is an amine-based light stabilizer, and the content of the flame retardant is It is within the range of 2 to 20 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and the content of the flame retardant protective agent is in the range of 100 parts by mass of the resin component in the polymerizable composition is in the range of 0.1 to 5 parts by mass, and the method for producing a three-dimensional object includes the following steps (a) to (c).
(a) a step of supplying oxygen into a modeling tank containing the polymerizable composition through a substrate that transmits oxygen and active energy rays; (b) the oxygen inhibits the effect of the polymerizable composition; (c) curing the polymerizable composition by selectively irradiating the active energy ray that has passed through the buffer region to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; A step of continuously irradiating the active energy ray while moving the polymerizable composition to form three-dimensionally and continuously a modeled object obtained by curing the polymerizable composition.
Alternatively, a polymerizable composition used for producing a three-dimensional object, comprising a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent, wherein the flame retardant is a metal hydroxide-based A flame retardant, the flame retardant protective agent is at least one selected from phenolic antioxidants, phosphite antioxidants and thiol antioxidants, and the content of the flame retardant is the polymerization is in the range of 5 to 50 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and the content of the flame retardant protective agent is in the range of 100 parts by mass of the resin component in the polymerizable composition. , in the range of 0.1 to 5 parts by mass, and the method for producing the three-dimensionally shaped article includes the steps (a) to (c).
These features are technical features common to the inventions according to the following embodiments.

本発明の実施態様としては、少ない光量又は短い時間での硬化を可能とする観点から、光重合性化合物が、(メタ)アクリロイル基を有する化合物であることが好ましい。 As an embodiment of the present invention, the photopolymerizable compound is preferably a compound having a (meth)acryloyl group from the viewpoint of enabling curing with a small amount of light or a short time.

また、難燃剤が、ハロゲン系難燃剤、リン系難燃剤、窒素系難燃剤及び金属水酸化物系難燃剤から選択される少なくとも一つであることが好ましい。 Also, the flame retardant is preferably at least one selected from halogen-based flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants, and metal hydroxide-based flame retardants.

また、難燃剤保護剤が、フェノール系酸化防止剤、ホスファイト系酸化防止剤、チオール系酸化防止剤及びアミン系光安定剤から選択される少なくとも一つであることが好ましい。 Moreover, the flame retardant protective agent is preferably at least one selected from phenol antioxidants, phosphite antioxidants, thiol antioxidants and amine light stabilizers.

また、立体造形物に耐熱性を付与する(荷重たわみ温度を向上させる)観点から、更に、液体状の熱重合性化合物を含有することが好ましい。 Moreover, from the viewpoint of imparting heat resistance to the three-dimensional object (improving the deflection temperature under load), it is preferable to further contain a liquid thermally polymerizable compound.

また、難燃剤が、ハロゲン系難燃剤、リン系難燃剤及び窒素系難燃剤から選択される少なくとも一つであり、難燃剤保護剤が、アミン系光安定剤であることが好ましい。有機系の難燃剤は、主に光により分解するため、光安定剤と組み合わせることにより、有機系の難燃剤の分解を抑制することができる。
この場合、難燃性の発現と機械特性低下抑制の観点から、難燃剤の含有量が、重合性組成物中の樹脂成分100質量部に対して、2~20質量部の範囲内であり、難燃剤保護剤の含有量が、重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であることが好ましい。
Moreover, it is preferable that the flame retardant is at least one selected from a halogen-based flame retardant, a phosphorus-based flame retardant and a nitrogen-based flame retardant, and the flame retardant protective agent is an amine-based light stabilizer. Since organic flame retardants are mainly decomposed by light, the decomposition of organic flame retardants can be suppressed by combining them with light stabilizers.
In this case, the content of the flame retardant is in the range of 2 to 20 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, from the viewpoint of exhibiting flame retardancy and suppressing deterioration of mechanical properties, The content of the flame retardant protective agent is preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition.

また、難燃剤が、金属水酸化物系難燃剤であり、難燃剤保護剤が、フェノール系酸化防止剤、ホスファイト系酸化防止剤及びチオール系酸化防止剤から選択される少なくとも一つであることが好ましい。無機系(水酸化物系)の難燃剤は、主に酸素により酸化劣化するため、酸化防止剤と組み合わせることにより、無機系の難燃剤の酸化劣化を抑制することができる。
この場合、難燃性の発現と機械特性低下抑制との観点から、難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、5~50質量部の範囲内であり、難燃剤保護剤の含有量が、重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であることが好ましい。
The flame retardant is a metal hydroxide flame retardant, and the flame retardant protective agent is at least one selected from phenolic antioxidants, phosphite antioxidants and thiol antioxidants. is preferred. Inorganic (hydroxide) flame retardants are oxidatively deteriorated mainly by oxygen. Therefore, by combining them with antioxidants, the oxidative deterioration of inorganic flame retardants can be suppressed.
In this case, from the viewpoint of expressing flame retardancy and suppressing deterioration of mechanical properties, the content of the flame retardant is within the range of 5 to 50 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition. The content of the flame retardant protective agent is preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition.

また、立体造形物の強度を向上させる観点から、更に、フィラーを含有することが好ましい。 Moreover, it is preferable to further contain a filler from the viewpoint of improving the strength of the three-dimensional object.

本発明は、重合性組成物を用いる立体造形物の製造方法であって、重合性組成物が、本発明の重合性組成物であり、下記工程(a)~(c)を含み、かつ、工程(b)では、1~200mW/cmの範囲内の活性エネルギー線を照射することを特徴とする立体造形物の製造方法を提供することができる。
(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造形槽中に酸素を供給する工程
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
The present invention provides a method for producing a three-dimensional object using a polymerizable composition, wherein the polymerizable composition is the polymerizable composition of the present invention, comprises the following steps (a) to (c), and In the step (b), it is possible to provide a method for producing a three-dimensional object, characterized by irradiating with an active energy ray within the range of 1 to 200 mW/cm 2 .
(a) a step of supplying oxygen into a modeling tank containing the polymerizable composition through a substrate that transmits oxygen and active energy rays; (b) the oxygen inhibits the effect of the polymerizable composition; (c) curing the polymerizable composition by selectively irradiating the active energy ray that has passed through the buffer region to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; A step of continuously irradiating the active energy ray while moving the polymerizable composition to form three-dimensionally and continuously a modeled object obtained by curing the polymerizable composition.

本発明の実施態様としては、適切な重合阻害層の厚さを確保することにより十分な厚さの樹脂流動層を得るという観点から、酸素を供給する工程では、造形槽中への酸素の透過流束を3.4×10~170×10kmol/(s・m)の範囲内とすることが好ましい。As an embodiment of the present invention, from the viewpoint of obtaining a sufficiently thick resin fluidized layer by ensuring an appropriate thickness of the polymerization inhibition layer, in the step of supplying oxygen, permeation of oxygen into the modeling tank It is preferable to set the flux within the range of 3.4×10 3 to 170×10 3 kmol/(s·m 2 ).

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 DETAILED DESCRIPTION OF THE INVENTION The present invention, its constituent elements, and embodiments and modes for carrying out the present invention will be described in detail below. In addition, in the present application, "-" representing a numerical range is used in the sense that the numerical values described before and after it are included as a lower limit value and an upper limit value.

《重合性組成物》
本発明の重合性組成物は、立体造形物の製造に用いられる重合性組成物であって、液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有し、前記難燃剤が、ハロゲン系難燃剤、リン系難燃剤及び窒素系難燃剤から選択される少なくとも一つであり、前記難燃剤保護剤が、アミン系光安定剤であり、前記難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、2~20質量部の範囲内であり、前記難燃剤保護剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であり、かつ、立体造形物の製造方法が、下記工程(a)~(c)を含むことを特徴とする。
<<polymerizable composition>>
The polymerizable composition of the present invention is a polymerizable composition used in the production of a three-dimensional object, and contains a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent, and the flame retardant is at least one selected from halogen-based flame retardants, phosphorus-based flame retardants and nitrogen-based flame retardants, the flame retardant protective agent is an amine-based light stabilizer, and the content of the flame retardant is It is within the range of 2 to 20 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and the content of the flame retardant protective agent is in the range of 100 parts by mass of the resin component in the polymerizable composition is in the range of 0.1 to 5 parts by mass, and the method for producing a three-dimensional object includes the following steps (a) to (c).

(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造形槽中に酸素を供給する工程
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
又は、立体造形物の製造に用いられる重合性組成物であって、液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有し、前記難燃剤が、金属水酸化物系難燃剤であり、前記難燃剤保護剤が、フェノール系酸化防止剤、ホスファイト系酸化防止剤及びチオール系酸化防止剤から選択される少なくとも一つであり、前記難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、5~50質量部の範囲内であり、前記難燃剤保護剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であり、かつ、前記立体造形物の製造方法が、上記工程(a)~(c)を含むことを特徴とする。
(a) a step of supplying oxygen into a modeling tank containing the polymerizable composition through a substrate that transmits oxygen and active energy rays; (b) the oxygen inhibits the effect of the polymerizable composition; (c) curing the polymerizable composition by selectively irradiating the active energy ray that has passed through the buffer region to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; A step of continuously irradiating the active energy ray while moving the polymerizable composition to form three-dimensionally and continuously a modeled object obtained by curing the polymerizable composition.
Alternatively, a polymerizable composition used for producing a three-dimensional object, comprising a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent, wherein the flame retardant is a metal hydroxide-based A flame retardant, the flame retardant protective agent is at least one selected from phenolic antioxidants, phosphite antioxidants and thiol antioxidants, and the content of the flame retardant is the polymerization is in the range of 5 to 50 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and the content of the flame retardant protective agent is in the range of 100 parts by mass of the resin component in the polymerizable composition. , in the range of 0.1 to 5 parts by mass, and the method for producing the three-dimensionally shaped article includes the steps (a) to (c).

以下、本発明の重合性組成物に含まれる各種材料について、説明する。 Various materials contained in the polymerizable composition of the present invention are described below.

〈光重合性化合物〉
本発明に係る光重合性化合物は、常温(25℃)で液体状であり、活性エネルギー線の照射によってラジカル重合し、硬化する化合物であれば特に制限されない。光重合性化合物は、モノマーであってもよく、オリゴマーであってもよく、プレポリマーであってもよく、また、これらの混合物であってもよい。重合性組成物には、光重合性化合物が1種のみ含まれていてもよく、2種以上含まれていてもよい。
<Photopolymerizable compound>
The photopolymerizable compound according to the present invention is not particularly limited as long as it is a compound that is liquid at room temperature (25° C.) and undergoes radical polymerization and cures upon irradiation with active energy rays. The photopolymerizable compound may be a monomer, an oligomer, a prepolymer, or a mixture thereof. The polymerizable composition may contain only one type of photopolymerizable compound, or may contain two or more types.

光重合性化合物としては、活性エネルギー線の照射によってラジカル重合可能な基を有していればその種類は特に制限されず、例えば、エチレン基、プロペニル基、ブテニル基、ビニルフェニル基、アリルエーテル基、ビニルエーテル基、マレイル基、マレイミド基、(メタ)アクリルアミド基、アセチルビニル基、ビニルアミド基、(メタ)アクリロイル基等を分子内に一つ以上有する化合物が挙げられる。これらの中でも、分子内に不飽和カルボン酸エステル構造を一つ以上含む不飽和カルボン酸エステルであることが好ましく、(メタ)アクリロイル基を含む(メタ)アクリレート系化合物であることが特に好ましい。
なお、「(メタ)アクリル」との記載は、メタクリル及び/又はアクリルを表し、「(メタ)アクリロイル」との記載は、メタクリロイル及び/又はアクリロイルを表し、「(メタ)アクリレート」との記載は、メタクリレート及び/又はアクリレートを表す。
The type of the photopolymerizable compound is not particularly limited as long as it has a radically polymerizable group upon irradiation with an active energy ray. Examples include ethylene group, propenyl group, butenyl group, vinylphenyl group and allyl ether group. , a vinyl ether group, a maleyl group, a maleimide group, a (meth)acrylamide group, an acetylvinyl group, a vinylamide group, a (meth)acryloyl group and the like in the molecule. Among these, unsaturated carboxylic acid esters containing one or more unsaturated carboxylic acid ester structures in the molecule are preferred, and (meth)acrylate compounds containing (meth)acryloyl groups are particularly preferred.
Incidentally, the description "(meth) acrylic" represents methacrylic and / or acrylic, the description "(meth) acryloyl" represents methacryloyl and / or acryloyl, the description "(meth) acrylate" , represents methacrylate and/or acrylate.

アリルエーテル基を有する化合物としては、フェニルアリルエーテル、o-,m-,p-クレゾールモノアリルエーテル、ビフェニル-2-オールモノアリルエーテル、ビフェニル-4-オールモノアリルエーテル、ブチルアリルエーテル、シクロヘキシルアリルエーテル、シクロヘキサンメタノールモノアリルエーテル、フタル酸ジアリルエーテル、イソフタル酸ジアリルエーテル、ジメタノールトリシクロデカンジアリルエーテル、1,4-シクロヘキサンジメタノールジアリルエーテル、アルキレン(炭素数2~5)グリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ポリグリセリン(重合度2~5)ジアリルエーテル、トリメチロールプロパントリアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル及びテトラアリルオキシエタン、ペンタエリスリトールトリアリルエーテル、ジグリセリントリアリルエーテル、ソルビトールトリアリルエーテル、ポリグリセリン(重合度3~13)ポリアリルエーテル等が挙げられる。 Compounds having an allyl ether group include phenyl allyl ether, o-, m-, p-cresol monoallyl ether, biphenyl-2-ol monoallyl ether, biphenyl-4-ol monoallyl ether, butyl allyl ether, and cyclohexyl allyl. Ether, Cyclohexanemethanol Monoallyl Ether, Phthalic Acid Diallyl Ether, Isophthalic Acid Diallyl Ether, Dimethanol Tricyclodecane Diallyl Ether, 1,4-Cyclohexanedimethanol Diallyl Ether, Alkylene (C2-5) Glycol Diallyl Ether, Polyethylene Glycol diallyl ether, glycerin diallyl ether, trimethylolpropane diallyl ether, pentaerythritol diallyl ether, polyglycerin (degree of polymerization 2-5) diallyl ether, trimethylolpropane triallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether and tetraallyl Oxyethane, pentaerythritol triallyl ether, diglycerin triallyl ether, sorbitol triallyl ether, polyglycerin (degree of polymerization 3 to 13) polyallyl ether and the like.

ビニルエーテル基を有する化合物としては、ブチルビニルエーテル、ブチルプロペニルエーテル、ブチルブテニルエーテル、ヘキシルビニルエーテル、1,4-ブタンジオールジビニルエーテル、エチルヘキシルビニルエーテル、フェニルビニルエーテル、ベンジルビニルエーテル、エチルエトキシビニルエーテル、アセチルエトキシエトキシビニルエーテル、シクロヘキシルビニルエーテル、トリシクロデカンビニルエーテル、アダマンチルビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリシクロデカンジメタノールジビニルエーテル、ビスフェノールAのEO付加物ジビニルエーテル、シクロヘキサンジオールジビニルエーテル、シクロペンタジエンビニルエーテル、ノルボルニルジメタノールジビニルエーテル、ジビニルレゾルシン、ジビニルハイドロキノン、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールビニルエーテル、ブチレンジビニルエーテル、ジブチレングリコールジビニルエーテル、4-シクロヘキサンジビニルエーテル、オキサノルボナンジビニルエーテル、ネオペンチルグリコールジビニルエーテル、グリセリントリビニルエーテル、オキセタンジビニルエーテル、グリセリンエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数6)、トリメチロールプロパントリビニルエーテル、トリビニルエーテルエチレンオキシド付加物トリビニルエーテル(エチレンオキシドの付加モル数3)、ペンタエリスリトールトリビニルエーテル、ジトリメチロールプロパンヘキサビニルエーテル及びそれらのオキシエチレン付加物等が挙げられる。 Examples of compounds having a vinyl ether group include butyl vinyl ether, butyl propenyl ether, butyl butenyl ether, hexyl vinyl ether, 1,4-butanediol divinyl ether, ethylhexyl vinyl ether, phenyl vinyl ether, benzyl vinyl ether, ethyl ethoxy vinyl ether, acetyl ethoxy ethoxy vinyl ether, Cyclohexyl vinyl ether, tricyclodecane vinyl ether, adamantyl vinyl ether, cyclohexanedimethanol divinyl ether, tricyclodecanedimethanol divinyl ether, EO adduct divinyl ether of bisphenol A, cyclohexanediol divinyl ether, cyclopentadiene vinyl ether, norbornyldimethanol divinyl ether , divinyl resorcin, divinyl hydroquinone, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol vinyl ether, butylene divinyl ether, dibutylene glycol divinyl ether, 4-cyclohexanedivinyl ether, oxano Lubonane divinyl ether, neopentyl glycol divinyl ether, glycerin trivinyl ether, oxetane divinyl ether, glycerin ethylene oxide adduct trivinyl ether (addition mole number of ethylene oxide: 6), trimethylolpropane trivinyl ether, trivinyl ether ethylene oxide adduct trivinyl ether (addition of ethylene oxide number of moles 3), pentaerythritol trivinyl ether, ditrimethylolpropane hexavinyl ether and their oxyethylene adducts.

マレイミド基を有する化合物としては、フェニルマレイミド、シクロヘキシルマレイミド、n-ヘキシルマレイミド等が挙げられる。 Compounds having a maleimide group include phenylmaleimide, cyclohexylmaleimide, n-hexylmaleimide and the like.

(メタ)アクリルアミド基を有する化合物としては、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ビスメチレンアクリルアミド、ジ(エチレンオキシ)ビスプロピルアクリルアミド、トリ(エチレンオキシ)ビスプロピルアクリルアミド、(メタ)アクリロイルモルホリン等が挙げられる。 Compounds having a (meth)acrylamide group include (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, and N-hydroxyethyl(meth)acrylamide. , N-butyl (meth)acrylamide, isobutoxymethyl (meth)acrylamide, diacetone (meth)acrylamide, bismethylene acrylamide, di(ethyleneoxy)bispropylacrylamide, tri(ethyleneoxy)bispropylacrylamide, (meth)acryloylmorpholine etc.

(メタ)アクリレート系化合物としては、イソアミル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミルスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-エチルヘキシル-ジグリコール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、メトキシエトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、グリセリン(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、t-ブチルシクロヘキシル(メタ)アクリレート等を含む単官能の(メタ)アクリレートモノマー、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、シクロヘキサンジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジイルジメチレンジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等を含む2官能の(メタ)アクリレートモノマー、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート等を含む3官能以上の(メタ)アクリレートモノマー、及びこれらのオリゴマーやプレポリマー等が挙げられる。 (Meth)acrylate compounds include isoamyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate , isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, tridecyl (meth)acrylate, isomyrstyl (meth)acrylate, isostearyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclo Pentenyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, 2-ethylhexyl-diglycol (meth)acrylate, 2-(meth)acryloyloxyethylhexa Hydrophthalic acid, methoxyethoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, methoxypropylene glycol (meth)acrylate, phenoxy ethyl (meth)acrylate, pentachlorophenyl (meth)acrylate, pentabromophenyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, dicyclopentanyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, Polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, glycerin (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, benzyl (meth)acrylate, 2-(2-ethoxyethoxy)ethyl (meth)acrylate, 2-ethylhexyl Carbitol (meth)acrylate, 2-(meth)acryloyloxyethyl succinate, 2-(meth)acryloyloxyethyl phthalate, 2-(meth)acryloyloxyethyl-2-hydroxyethyl-phthalate acid, 2-(meth)acryloyloxyethylhexahydrophthalic acid, monofunctional (meth)acrylate monomers including t-butylcyclohexyl (meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth) ) acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth) acrylates, 1,9-nonanediol di(meth)acrylate, cyclohexanedi(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tricyclodecanediyldimethylene di(meth)acrylate, Dimethylol-tricyclodecane di(meth)acrylate, polyester di(meth)acrylate, PO adduct di(meth)acrylate of bisphenol A, neopentyl glycol hydroxypivalate di(meth)acrylate, polytetramethylene glycol di(meth) Bifunctional (meth)acrylate monomers including acrylates, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol monohydroxypenta ( Trifunctional or higher functional (meth)acrylate monomers including meth)acrylate, glycerin propoxytri(meth)acrylate, pentaerythritol ethoxytetra(meth)acrylate and the like, and oligomers and prepolymers thereof.

また、(メタ)アクリレート系化合物は、各種(メタ)アクリレートモノマーやそのオリゴマーを更に変性したもの(変性物)であってもよい。変性物としては、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート等のエチレンオキサイド変性(メタ)アクリレートモノマー、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性グリセリントリ(メタ)アクリレート等のプロピレンオキサイド変性(メタ)アクリレートモノマー、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート等のカプロラクトン変性(メタ)アクリレートモノマー、カプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のカプロラクタム変性(メタ)アクリレートモノマー等が挙げられる。 Further, the (meth)acrylate-based compound may be a (modified product) obtained by further modifying various (meth)acrylate monomers or oligomers thereof. Modified products include triethylene glycol diacrylate, polyethylene glycol diacrylate, ethylene oxide-modified trimethylolpropane tri(meth)acrylate, ethylene oxide-modified pentaerythritol tetraacrylate, ethylene oxide-modified bisphenol A di(meth)acrylate, ethylene oxide-modified Ethylene oxide-modified (meth)acrylate monomers such as nonylphenol (meth)acrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, propylene oxide-modified pentaerythritol tetraacrylate, propylene oxide-modified Propylene oxide-modified (meth)acrylate monomers such as glycerin tri(meth)acrylate, caprolactone-modified (meth)acrylate monomers such as caprolactone-modified trimethylolpropane tri(meth)acrylate, caprolactams such as caprolactam-modified dipentaerythritol hexa(meth)acrylate A modified (meth)acrylate monomer and the like are included.

(メタ)アクリレート系化合物は、更に、各種オリゴマーを(メタ)アクリレート化した化合物(以下、変性(メタ)アクリレート系化合物ともいう。)であってもよい。このような変性(メタ)アクリレート系化合物としては、ポリブタジエン(メタ)アクリレートオリゴマー、ポリイソプレン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、ウレタン(メタ)アクリレート系化合物、シリコーン(メタ)アクリレート系化合物、ポリエステル(メタ)アクリレートオリゴマー、直鎖(メタ)アクリルオリゴマー等が挙げられる。これらの中でも特に、エポキシ(メタ)アクリレート系化合物、ウレタン(メタ)アクリレート系化合物、及びシリコーン(メタ)アクリレート系化合物を好適に用いることができる。 The (meth)acrylate-based compound may also be a compound (hereinafter also referred to as a modified (meth)acrylate-based compound) in which various oligomers are (meth)acrylated. Examples of such modified (meth)acrylate compounds include polybutadiene (meth)acrylate oligomers, polyisoprene (meth)acrylate oligomers, epoxy (meth)acrylate oligomers, urethane (meth)acrylate compounds, and silicone (meth)acrylate compounds. , polyester (meth)acrylate oligomers, linear (meth)acrylic oligomers, and the like. Among these, epoxy (meth)acrylate-based compounds, urethane (meth)acrylate-based compounds, and silicone (meth)acrylate-based compounds are particularly suitable for use.

エポキシ(メタ)アクリレート系化合物は、1分子内にエポキシ基と(メタ)アクリレート基とをそれぞれ一つ以上含む化合物であればよく、例えば、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェニル型エポキシ(メタ)アクリレート、トリフェノールメタン型エポキシ(メタ)アクリレートや、クレゾールノボラック型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート等のノボラック型エポキシ(メタ)アクリレート等が挙げられる。 The epoxy (meth)acrylate compound may be a compound containing one or more epoxy groups and one or more (meth)acrylate groups in one molecule, for example, bisphenol A type epoxy (meth)acrylate, bisphenol F type epoxy ( Novolak type epoxy (meth)acrylates such as meth)acrylate, bisphenyl type epoxy (meth)acrylate, triphenolmethane type epoxy (meth)acrylate, cresol novolac type epoxy (meth)acrylate, and phenol novolac type epoxy (meth)acrylate etc.

ウレタン(メタ)アクリレート系化合物は、二つ以上のイソシアネート基を有する脂肪族ポリイソシアネート化合物又は二つ以上のイソシアネート基を有する芳香族ポリイソシアネート化合物と、ヒドロキシ基を有する(メタ)アクリル酸誘導体等とを反応させて得られる、ウレタン結合及び(メタ)アクリロイル基を有する化合物とすることができる。 A urethane (meth)acrylate compound is an aliphatic polyisocyanate compound having two or more isocyanate groups or an aromatic polyisocyanate compound having two or more isocyanate groups, and a (meth)acrylic acid derivative having a hydroxy group. It can be a compound having a urethane bond and a (meth)acryloyl group obtained by reacting.

ウレタン(メタ)アクリレート系化合物の原料となるイソシアネート化合物としては、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。
また、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物を挙げることができる。
Isocyanate compounds that are raw materials for urethane (meth)acrylate compounds include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4′. - diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris(isocyanate phenyl ) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecane triisocyanate and the like.
In addition, chain-extended isocyanate compounds obtained by reacting polyols such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diols, polyether diols, polyester diols, and polycaprolactone diols with excess isocyanate compounds. can be mentioned.

ウレタン(メタ)アクリレート系化合物の原料となるヒドロキシ基を有する(メタ)アクリル酸誘導体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の2価のアルコールのモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールプロパン、グリセリン等の3価のアルコールのモノ(メタ)アクリレートやジ(メタ)アクリレート、ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of (meth)acrylic acid derivatives having a hydroxy group that serve as raw materials for urethane (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate. , hydroxyalkyl (meth)acrylates such as 4-hydroxybutyl (meth)acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2 such as polyethylene glycol Trihydric alcohol mono(meth)acrylate, trimethylolethane, trimethylolpropane, trihydric alcohol mono(meth)acrylate and di(meth)acrylate such as glycerin, epoxy(meth)acrylate such as bisphenol A type epoxy acrylate etc.

ウレタン(メタ)アクリレート系化合物は、市販されているものであってもよく、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL210、EBECRYL220、EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260(いずれもダイセル・オルネクス社製)、アートレジンUN-330、アートレジンSH-500B、アートレジンUN-1200TPK、アートレジンUN-1255、アートレジンUN-3320HB、アートレジンUN-7100、アートレジンUN-9000A、アートレジンUN-9000H(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6HA、U-6LPA、U-10H、U-15HA、U-108、U-108A、U-122A、U-122P、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4000、UA-4100、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AH-600、AI-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が挙げられる。 Urethane (meth)acrylate compounds may be commercially available, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL210, EBECRYL220, EBECRYL230、EBECRYL270、EBECRYL1290、EBECRYL2220、EBECRYL4827、EBECRYL4842、EBECRYL4858、EBECRYL5129、EBECRYL6700、EBECRYL8402、EBECRYL8803、EBECRYL8804、EBECRYL8807、EBECRYL9260(いずれもダイセル・オルネクス社製)、アートレジンUN-330、アートレジンSH-500B、アートResin UN-1200TPK, Artresin UN-1255, Artresin UN-3320HB, Artresin UN-7100, Artresin UN-9000A, Artresin UN-9000H (all manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA , U-3HA, U-4HA, U-6H, U-6HA, U-6LPA, U-10H, U-15HA, U-108, U-108A, U-122A, U-122P, U-324A, U -340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4000, UA-4100, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all manufactured by Shin-Nakamura Chemical Co., Ltd.), AH-600, AI-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.) etc.

ウレタン(メタ)アクリレート系化合物は、ポリイソシアネートのイソシアネート基を(メタ)アクリレート基を有するブロック剤によりブロック化して得られるブロックイソシアネートであってもよい。 The urethane (meth)acrylate compound may be a blocked isocyanate obtained by blocking the isocyanate group of polyisocyanate with a blocking agent having a (meth)acrylate group.

ブロックイソシアネートを得るために用いられるポリイソシアネートは、前述の「ウレタン(メタ)アクリレート系化合物の原料となるイソシアネート化合物であってもよく、これらの化合物とポリオールやポリアミンとを反応させた化合物であってもよい。
ポリオールとしては、従来公知のポリエーテルポリオール、ポリエステルポリオール、ポリマーポリオール、植物油ポリオール、更にはリン含有ポリオールやハロゲン含有ポリオール等の難燃ポリオール等が挙げられる。これらのポリオールは、ブロックイソシアネート中に1種のみ含まれていてもよく、2種以上が含まれていてもよい。
The polyisocyanate used to obtain the blocked isocyanate may be an isocyanate compound that is used as a raw material for the urethane (meth)acrylate compound described above, and is a compound obtained by reacting these compounds with a polyol or a polyamine. good too.
Polyols include conventionally known polyether polyols, polyester polyols, polymer polyols, vegetable oil polyols, and flame-retardant polyols such as phosphorus-containing polyols and halogen-containing polyols. One of these polyols may be contained in the blocked isocyanate, or two or more thereof may be contained.

イソシアネート等と反応させるポリエーテルポリオールとしては、少なくとも2個以上の活性水素基を有する化合物(具体的には、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール類、エチレンジアミン等のアミン類、エタノールアミン、ジエタノールアミン等のアルカノールアミン類等)とアルキレンオキサイド(具体的には、エチレンオキシド、プロピレンオキシド等)との付加反応により合成される化合物が挙げられる。
ポリエーテルポリオールの合成方法は、例えば、Gunter Oertel,“Polyurethane Handbook”(1985) Hanser Publishers社(ドイツ),p.42-53に記載の方法を参照することができる。
Polyether polyols to be reacted with isocyanate or the like include compounds having at least two active hydrogen groups (specifically, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol, ethylenediamine and alkanolamines such as ethanolamine and diethanolamine) and alkylene oxide (specifically, ethylene oxide, propylene oxide, etc.).
Methods for synthesizing polyether polyols are described, for example, in Gunter Oertel, "Polyurethane Handbook" (1985) Hanser Publishers (Germany), p. 42-53 can be referred to.

ポリエステルポリオールとしては、アジピン酸、フタル酸等の多価カルボン酸と、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等の多価アルコールとの縮合反応物や、ナイロン製造時の廃物、トリメチロールプロパン、ペンタエリストールの廃物、フタル酸系ポリエステルの廃物、廃品を処理し誘導したポリエステルポリオール等が挙げられる(例えば、岩田敬治「ポリウレタン樹脂ハンドブック」(1987)日刊工業新聞社、p.117の記載参照。)。 Polyester polyols include condensation reaction products of polyhydric carboxylic acids such as adipic acid and phthalic acid and polyhydric alcohols such as ethylene glycol, 1,4-butanediol, and 1,6-hexanediol, and those used in nylon production. Waste, trimethylolpropane, waste of pentaerythrol, waste of phthalic acid polyester, polyester polyol derived from treated waste, etc. (for example, Keiji Iwata "Polyurethane Resin Handbook" (1987) Nikkan Kogyo Shimbun, p. .117).

ポリマーポリオールとしては、ポリエーテルポリオールとエチレン性不飽和単量体(例えば、ブタジエン、アクリロニトリル、スチレン等)とをラジカル重合触媒の存在下に反応させた重合体ポリオールが挙げられる。ポリマーポリオールとしては、分子量が5000~12000程度のものが特に好ましい。 Examples of polymer polyols include polymer polyols obtained by reacting polyether polyols with ethylenically unsaturated monomers (eg, butadiene, acrylonitrile, styrene, etc.) in the presence of radical polymerization catalysts. Polymer polyols having a molecular weight of about 5,000 to 12,000 are particularly preferred.

植物油ポリオールとしては、ひまし油、やし油等のヒドロキシ基含有植物油等が挙げられる。また、ひまし油又は水添ひまし油を原料として得られるひまし油誘導体ポリオールも好適に用いることができる。ひまし油誘導体ポリオールとしては、ひまし油、多価カルボン酸及び短鎖ジオールの反応で得られるひまし油ポリエステル、ひまし油やひまし油ポリエステルのアルキレンオキシド付加物等が挙げられる。 Vegetable oil polyols include hydroxy group-containing vegetable oils such as castor oil and coconut oil. Castor oil derivative polyols obtained from castor oil or hydrogenated castor oil can also be suitably used. Examples of castor oil derivative polyols include castor oil polyesters obtained by reacting castor oil, polyvalent carboxylic acids and short-chain diols, and alkylene oxide adducts of castor oils and castor oil polyesters.

難燃ポリオールとしては、リン酸化合物にアルキレンオキシドを付加して得られるリン含有ポリオールや、エピクロルヒドリンやトリクロロブチレンオキシドを開環重合して得られるハロゲン含有ポリオール、芳香環を有する活性水素化合物にアルキレンオキシドを付加して得られる芳香族系エーテルポリオール、芳香環を有する多価カルボン酸と多価アルコールとの縮合反応で得られる芳香族系エステルポリオール等が挙げられる。 Flame-retardant polyols include phosphorus-containing polyols obtained by adding alkylene oxide to a phosphoric acid compound, halogen-containing polyols obtained by ring-opening polymerization of epichlorohydrin or trichlorobutylene oxide, active hydrogen compounds having aromatic rings, and alkylene oxide and aromatic ester polyols obtained by the condensation reaction of a polyhydric carboxylic acid having an aromatic ring and a polyhydric alcohol.

イソシアネート等と反応させるポリオールのヒドロキシ価(水酸基価)としては、5~300mgKOH/gの範囲内であることが好ましく、10~250mgKOH/gの範囲内であることがより好ましい。ヒドロキシ価は、JIS K 0070:1992に規定された方法で測定することができる。 The hydroxyl value (hydroxyl value) of the polyol to be reacted with isocyanate or the like is preferably in the range of 5 to 300 mgKOH/g, more preferably in the range of 10 to 250 mgKOH/g. A hydroxy value can be measured by the method specified in JIS K 0070:1992.

また、イソシアネート等と反応させるポリアミンとしては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、ヘキサメチレンペンタアミン、ビスアミノプロピルピペラジン、トリス(2-アミノエチル)アミン、イソホロンジアミン、ポリオキシアルキレンポリアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。 Examples of polyamines to be reacted with isocyanate include ethylenediamine, diethylenetriamine, triethylenetetraamine, hexamethylenepentamine, bisaminopropylpiperazine, tris(2-aminoethyl)amine, isophoronediamine, polyoxyalkylenepolyamine, diethanolamine, tri ethanolamine and the like.

ポリイソシアネートのイソシアネート基をブロックするためのブロック剤としては、(メタ)アクリロイル基を有し、かつ、イソシアネート基と反応し、加熱により脱離できるものであればよい。
このようなブロック剤としては、t-ブチルアミノエチルメタクリレート(TBAEMA)、t-ペンチルアミノエチルメタクリレート(TPAEMA)、t-ヘキシルアミノエチルメタクリレート(THAEMA)、t-ブチルアミノプロピルメタクリレート(TBAPMA)等が挙げられる。
As the blocking agent for blocking the isocyanate groups of the polyisocyanate, any agent may be used as long as it has a (meth)acryloyl group, reacts with the isocyanate group, and can be eliminated by heating.
Such blocking agents include t-butylaminoethyl methacrylate (TBAEMA), t-pentylaminoethyl methacrylate (TPAEMA), t-hexylaminoethyl methacrylate (THAEMA), t-butylaminopropyl methacrylate (TBAPMA), and the like. be done.

ポリイソシアネートのブロック化反応は、一般に-20~150℃で行うことができるが、好ましくは0~100℃である。150℃以下であれば副反応を防止することができ、他方、-20℃以上であれば反応速度を適度な範囲とすることができる。 The blocking reaction of polyisocyanate can generally be carried out at -20 to 150°C, preferably 0 to 100°C. If the temperature is 150°C or lower, side reactions can be prevented, while if the temperature is -20°C or higher, the reaction rate can be controlled within an appropriate range.

ポリイソシアネートとブロック剤とのブロック化反応は、溶剤の存在の有無に関わらず、行うことができる。溶剤を用いる場合は、イソシアネート基に対して不活性な溶剤を用いることが好ましい。
また、ブロック化反応においては、反応触媒を使用することができる。具体的な反応触媒としては、スズ、亜鉛、鉛等の有機金属塩、金属アルコキシド、第3級アミン等が挙げられる。
The blocking reaction between the polyisocyanate and the blocking agent can be carried out with or without the presence of solvent. When a solvent is used, it is preferable to use a solvent that is inert to isocyanate groups.
Moreover, a reaction catalyst can be used in the blocking reaction. Specific reaction catalysts include organic metal salts of tin, zinc, lead, etc., metal alkoxides, tertiary amines, and the like.

上述のように調製されるブロックイソシアネートを光重合性化合物として用いる場合、まず、光照射によりアクリロイル基部分を重合させる。その後、加熱することによってブロック剤を外し、生成したイソシアネートを新たにポリオールやポリアミン等と重合させることによって、ポリウレタンやポリウレア又はこれらの混合物を含む立体造形物を得ることができる。 When the blocked isocyanate prepared as described above is used as the photopolymerizable compound, first, the acryloyl group portion is polymerized by light irradiation. After that, the blocking agent is removed by heating, and the generated isocyanate is newly polymerized with a polyol, polyamine, or the like to obtain a three-dimensional object containing polyurethane, polyurea, or a mixture thereof.

シリコーン(メタ)アクリレート系化合物は、主鎖にポリシロキサン結合を有し、その末端及び/又は側鎖に(メタ)アクリル酸を付加した化合物とすることができる。シリコーン(メタ)アクリレート系化合物の原料となるシリコーンは、公知の1官能、2官能、3官能又は4可能のシラン化合物(例えば、アルコキシシラン等)が任意の組み合わせで重合したオルガノポリシロキサンとすることができる。 A silicone (meth)acrylate-based compound can be a compound having a polysiloxane bond in its main chain and having (meth)acrylic acid added to its terminals and/or side chains. The silicone, which is the raw material for the silicone (meth)acrylate compound, should be an organopolysiloxane obtained by polymerizing any combination of known monofunctional, difunctional, trifunctional or tetrafunctional silane compounds (e.g., alkoxysilane, etc.). can be done.

シリコーンアクリレートの具体例としては、市販のTEGORad2500(商品名、テゴケミーサービスGmbH社製)の他、X-22-4015(商品名、信越化学工業株式会社製)のようなヒドロキシ基を有する有機変性シリコーンとアクリル酸とを酸触媒下でエステル化させたもの、KBM402、KBM403(商品名、いずれも信越化学工業株式会社製)のようなエポキシシラン等の有機変性シラン化合物とアクリル酸とを反応させたもの等が挙げられる。 Specific examples of silicone acrylates include commercially available TEGORad2500 (trade name, manufactured by Tego Chemie Service GmbH), and organic modified products having a hydroxy group such as X-22-4015 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.). Acrylic acid is reacted with an organically modified silane compound such as epoxysilane such as KBM402 and KBM403 (trade names, both manufactured by Shin-Etsu Chemical Co., Ltd.) obtained by esterifying silicone and acrylic acid in the presence of an acid catalyst. etc.

(光重合開始剤)
本発明の重合性組成物には、光重合開始剤が含まれていることが好ましい。光重合開始剤は、活性エネルギー線の照射によってラジカルを発生させることが可能であり、光重合性化合物を重合させることが可能な化合物であれば特に制限されず、公知のラジカル重合開始剤とすることができる。
(Photoinitiator)
The polymerizable composition of the present invention preferably contains a photopolymerization initiator. The photopolymerization initiator is not particularly limited as long as it is a compound capable of generating radicals by irradiation with active energy rays and capable of polymerizing a photopolymerizable compound, and is a known radical polymerization initiator. be able to.

ラジカル重合開始剤としては、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF社製、IRGACURE 907(「IRGACURE」は同社の登録商標)等)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(BASF社製、IRGACURE 1173(「IRGACURE」は同社の登録商標)等)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン(BASF社製、IRGACURE 127等)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(BASF社製、IRGACURE 2959等)、2,2-ジメトキシー1,2-ジフェニルエタンー1-オン(BASF社製、IRGACURE 651等)、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ベンジル、メチルフェニルグリオキシエステル、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4′-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3′,4,4′-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3′-ジメチル-4-メトキシベンゾフェノン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、ミヒラ-ケトン、4,4′-ジエチルアミノベンゾフェノン、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン、2,4-ジエチルオキサンテン-9-オン等が挙げられる。 Radical polymerization initiators include 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (manufactured by BASF, IRGACURE 907 (“IRGACURE” is a registered trademark of the same company), etc.), 2 -hydroxy-2-methyl-1-phenylpropan-1-one (manufactured by BASF, IRGACURE 1173 ("IRGACURE" is a registered trademark of the same company), etc.), 2-hydroxy-1-{4-[4-(2- Hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2-methyl-propan-1-one (manufactured by BASF, IRGACURE 127 etc.), 1-[4-(2-hydroxyethoxy)-phenyl]-2- Hydroxy-2-methyl-1-propan-1-one (manufactured by BASF, IRGACURE 2959, etc.), 2,2-dimethoxy-1,2-diphenylethan-1-one (manufactured by BASF, IRGACURE 651, etc.), benzyldimethyl Ketal, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxy-cyclohexyl -phenyl-ketone, 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone, benzoin, benzoin methyl ether , benzoin isopropyl ether, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, benzyl, methylphenylglyoxyester, benzophenone, o-benzoyl benzoin methyl acid-4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, acrylated benzophenone, 3,3',4,4'-tetra(t-butyl peroxycarbonyl)benzophenone, 3,3′-dimethyl-4-methoxybenzophenone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, Michra-ketone, 4,4 ′-diethylaminobenzophenone, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, 9,1 0-phenanthrenequinone, camphorquinone, 2,4-diethyloxanthen-9-one and the like.

ラジカル重合開始剤は、重合性組成物の総質量(100質量%)に対して、0.01~10質量%の範囲内で含まれることが好ましく、0.1~5質量%の範囲内で含まれることがより好ましく、0.3~3質量%の範囲内で含まれることが更に好ましい。ラジカル重合開始剤が当該範囲内で含まれると、光重合性化合物を効率よく重合させることが可能となる。 The radical polymerization initiator is preferably contained within the range of 0.01 to 10% by mass, relative to the total mass (100% by mass) of the polymerizable composition, and within the range of 0.1 to 5% by mass. More preferably, it is contained within the range of 0.3 to 3% by mass. When the radical polymerization initiator is contained within this range, it becomes possible to efficiently polymerize the photopolymerizable compound.

〈難燃剤〉
本発明の重合性組成物は、難燃剤を含むことを特徴とする。
難燃剤としては、形成される立体造形物に難燃性を付与することができれば特に制限されないが、例えば、ハロゲン系難燃剤、リン系難燃剤、窒素系難燃剤、金属水酸化物系難燃剤等が挙げられる。これらは、1種単独で用いてもよいし、又は2種以上を併用してもよい。
<Flame retardants>
The polymerizable composition of the present invention is characterized by containing a flame retardant.
The flame retardant is not particularly limited as long as it can impart flame retardancy to the formed three-dimensional object, but for example, halogen flame retardants, phosphorus flame retardants, nitrogen flame retardants, and metal hydroxide flame retardants. etc. These may be used individually by 1 type, or may use 2 or more types together.

ハロゲン系難燃剤としては、臭素化合物や塩素化合物が挙げられるが、毒性問題から塩素化合物は好ましくない。臭素化合物としては、例えば、p-ジブロモベンゼン、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、テトラデカブロモ-p-ジフェノキシベンゼン、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン、ヘキサブロモベンゼン、2,2′-エチレンビス(4,5,6,7-テトラブロモイソインドリン-1,3-ジオン(例えば、SAYTEX BT-93(アルべマール社製)等)、エタン-1,2-ビス(ペンタブロモフェニル)(例えば、SAYTEX 8010(アルベマール社製)等)や、臭素化エポキシオリゴマー(例えば、SR-T1000、SR-T2000(以上、阪本薬品工業製)等)や、市販品として、ファイアカットP-801(鈴裕化学社製)等が挙げられるが、これらに限定されるものではない。 Halogen-based flame retardants include bromine compounds and chlorine compounds, but chlorine compounds are not preferred due to toxicity problems. Bromine compounds include, for example, p-dibromobenzene, pentabromodiphenyl ether, octabromodiphenyl ether, tetradecabromo-p-diphenoxybenzene, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane, hexabromobenzene, 2, 2′-ethylenebis(4,5,6,7-tetrabromoisoindoline-1,3-dione (eg, SAYTEX BT-93 (manufactured by Albemarle), etc.), ethane-1,2-bis(penta Bromophenyl) (e.g., SAYTEX 8010 (manufactured by Albemarle), etc.), brominated epoxy oligomers (e.g., SR-T1000, SR-T2000 (manufactured by Sakamoto Chemical Industries), etc.), and commercially available products such as Firecut P -801 (manufactured by Suzuhiro Kagaku Co., Ltd.) and the like, but are not limited thereto.

ハロゲン系難燃剤の含有量は、ハロゲン系難燃剤の種類、重合性組成物中の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、重合性組成物の全固形分(不揮発分)100質量%に対して、ハロゲン含有率が5~15質量%の範囲内となるように含有されていることが好ましい。 The content of the halogen-based flame retardant is appropriately selected depending on the type of halogen-based flame retardant, other components in the polymerizable composition, and the desired degree of flame retardancy. It is preferable that the halogen content is in the range of 5 to 15% by mass with respect to 100% by mass of the total solid content (non-volatile content).

また、ハロゲン系難燃剤を難燃剤として使用する場合、難燃助剤として、例えば、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等のアンチモン系化合物、酸化スズ、水酸化スズ等のスズ系化合物、酸化モリブテン、モリブテン酸アンモニウム等のモリブテン系化合物、酸化ジルコニウム、水酸化ジルコニウム等のジルコニウム系化合物、ホウ酸亜鉛、メタホウ酸バリウム等のホウ素系化合物、シリコーンオイル、シランカップリング剤、高分子量シリコーン等のケイ素系化合物、塩素化ポリエチレン等を併用してもよい。 In addition, when a halogen-based flame retardant is used as a flame retardant, flame retardant aids include, for example, antimony compounds such as antimony trioxide, antimony tetroxide, and antimony pentoxide; and tin compounds such as tin oxide and tin hydroxide. , molybdenum compounds such as molybdenum oxide and ammonium molybdate, zirconium compounds such as zirconium oxide and zirconium hydroxide, boron compounds such as zinc borate and barium metaborate, silicone oils, silane coupling agents, high molecular weight silicones, etc. A silicon-based compound, chlorinated polyethylene, or the like may be used in combination.

リン系難燃剤としては、ポリリン酸メラミン等のポリリン酸化合物、芳香族リン酸エステル、芳香族縮合リン酸エステル等が挙げられる。具体的には、リン酸メラミン、ポリリン酸メラミン、リン酸グアニジン、ポリリン酸グアニジン、リン酸アンモニウム、ポリリン酸アンモニウム、リン酸アミドアンモニウム、ポリリン酸アミドアンモニウム、リン酸カルバメート、ポリリン酸カルバメート等のリン酸塩系化合物やポリリン酸塩系化合物、赤リン、有機リン酸エステル、ホスファゼン、ホスホン酸、ホスフィン酸、ホスフィンオキシド、ホスホラン、ホスホルアミドや、市販品として、ヒシガードセレクトN-6ME(日本化学工業社製)等を使用することができる。 Phosphorus-based flame retardants include polyphosphoric acid compounds such as melamine polyphosphate, aromatic phosphoric acid esters, aromatic condensed phosphoric acid esters, and the like. Specifically, phosphoric acids such as melamine phosphate, melamine polyphosphate, guanidine phosphate, guanidine polyphosphate, ammonium phosphate, ammonium polyphosphate, amide ammonium phosphate, amide ammonium polyphosphate, carbamate phosphate, and carbamate polyphosphate Salt compounds, polyphosphate compounds, red phosphorus, organic phosphates, phosphazenes, phosphonic acids, phosphinic acids, phosphine oxides, phosphoranes, phosphoramides, and commercial products such as Hishiguard Select N-6ME (manufactured by Nippon Kagaku Kogyo Co., Ltd. ) etc. can be used.

窒素系難燃剤としては、メラミンシアヌレート等のメラミン系化合物、トリアジン、グアニジン等が挙げられる。具体的には、メラミン、メラム、メレム、メロン、メラミンシアヌレート(例えば、メラミンシアヌレートMC-4000(日産化学工業社製)等)等のメラミン系化合物、シアヌル酸、イソシアヌル酸、トリアゾール系化合物、テトラゾール、ジアゾ化合物、尿素等を使用することができる。 Nitrogen-based flame retardants include melamine-based compounds such as melamine cyanurate, triazine, and guanidine. Specifically, melamine compounds such as melamine, melam, melem, melon, melamine cyanurate (e.g., melamine cyanurate MC-4000 (manufactured by Nissan Chemical Industries, Ltd.)), cyanuric acid, isocyanuric acid, triazole compounds, Tetrazoles, diazo compounds, urea and the like can be used.

金属水酸化物系難燃剤としては、水酸化アルミニウム、水酸化マグネシウム(例えば、キスマ5E(協和化学工業社製)等)、塩基性炭酸マグネシウム、水酸化カルシウム、ハイドロタルサイト類等が挙げられる。 Metal hydroxide flame retardants include aluminum hydroxide, magnesium hydroxide (eg, Kisuma 5E (manufactured by Kyowa Chemical Industry Co., Ltd.), etc.), basic magnesium carbonate, calcium hydroxide, hydrotalcites, and the like.

〈難燃剤保護剤〉
本発明の重合性組成物は、難燃剤を保護することを目的として、難燃剤保護剤が含有されている。
難燃剤保護剤としては、例えば、フェノール系酸化防止剤、ホスファイト系酸化防止剤、チオール系酸化防止剤、アミン系光安定剤等が挙げられる。特に、難燃剤として、ハロゲン系難燃剤、リン系難燃剤又は窒素系難燃剤を用いた場合には、難燃剤保護剤はアミン系光安定剤であることが好ましく、難燃剤として、金属水酸化物系難燃剤を用いた場合には、難燃剤保護剤はフェノール系酸化防止剤、ホスファイト系酸化防止剤又はチオール系酸化防止剤であることが好ましい。
難燃剤保護剤は、1種単独で用いてもよいし、又は2種以上を併用してもよい。
<Flame retardant protective agent>
The polymerizable composition of the present invention contains a flame retardant protective agent for the purpose of protecting the flame retardant.
Examples of flame retardant protective agents include phenol antioxidants, phosphite antioxidants, thiol antioxidants, amine light stabilizers, and the like. In particular, when a halogen-based flame retardant, a phosphorus-based flame retardant, or a nitrogen-based flame retardant is used as the flame retardant, the flame retardant protective agent is preferably an amine-based light stabilizer. When a physical flame retardant is used, the flame retardant protective agent is preferably a phenolic antioxidant, a phosphite antioxidant or a thiol antioxidant.
The flame retardant protective agent may be used singly or in combination of two or more.

難燃剤としてハロゲン系難燃剤、リン系難燃剤又は窒素系難燃剤、難燃剤保護剤としてアミン系光安定剤を用いた場合、難燃剤の含有量は、重合性組成物中の樹脂成分100質量部に対して、2~20質量部の範囲内であ、難燃剤保護剤の含有量は、重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内である。
難燃剤の含有量が2質量部以上であれば、十分な難燃性が発現し、20質量部以下であれば、難燃剤の添加による機械強度の低下が十分に抑制できる。また、難燃剤保護剤の含有量が0.1質量部以上であれば、難燃剤を保護する機能が発現し、5質量部以下であれば、難燃剤保護剤添加による機械強度の低下が十分に抑制できる。
When a halogen-based flame retardant, a phosphorus-based flame retardant or a nitrogen-based flame retardant is used as the flame retardant, and an amine-based light stabilizer is used as the flame retardant protective agent, the content of the flame retardant is 100 mass of the resin component in the polymerizable composition. part, and the content of the flame retardant protective agent is in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition. is within .
If the content of the flame retardant is 2 parts by mass or more, sufficient flame retardancy is exhibited, and if it is 20 parts by mass or less, the decrease in mechanical strength due to the addition of the flame retardant can be sufficiently suppressed. Further, if the content of the flame retardant protective agent is 0.1 parts by mass or more, the function of protecting the flame retardant is exhibited, and if it is 5 parts by mass or less, the mechanical strength is sufficiently reduced due to the addition of the flame retardant protective agent. can be suppressed to

一方で、難燃剤として金属水酸化物系難燃剤、難燃剤保護剤としてフェノール系酸化防止剤、ホスファイト系酸化防止剤又はチオール系酸化防止剤を用いた場合、難燃剤の含有量は、重合性組成物中の樹脂成分100質量部に対して、5~50質量部の範囲内であ、難燃剤保護剤の含有量は、重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内である。
難燃剤の含有量が5質量部以上であれば、十分な難燃性が発現し、50質量部以下であれば、難燃剤の添加による機械強度の低下が十分に抑制できる。また、難燃剤保護剤の含有量が0.1質量部以上であれば、難燃剤を保護する機能が発現し、5質量部以下であれば、難燃剤保護剤添加による機械強度の低下が十分に抑制できる。
On the other hand, when using a metal hydroxide flame retardant as a flame retardant and a phenol antioxidant, phosphite antioxidant or thiol antioxidant as a flame retardant protective agent, the content of the flame retardant is 5 to 50 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and the content of the flame retardant protective agent is in the range of 100 parts by mass of the resin component in the polymerizable composition, It is within the range of 0.1 to 5 parts by mass .
If the content of the flame retardant is 5 parts by mass or more, sufficient flame retardancy is exhibited, and if it is 50 parts by mass or less, the decrease in mechanical strength due to the addition of the flame retardant can be sufficiently suppressed. Further, if the content of the flame retardant protective agent is 0.1 parts by mass or more, the function of protecting the flame retardant is exhibited, and if it is 5 parts by mass or less, the mechanical strength is sufficiently reduced due to the addition of the flame retardant protective agent. can be suppressed to

フェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4′-チオビス(6-t-ブチル-m-クレゾール)、2,2′-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2′-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4′-ブチリデンビス(6-t-ブチル-m-クレゾール)、2,2′-エチリデンビス(4,6―ジ-t-ブチルフェノール)、2,2′-エチリデンビス(4-sec-ブチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-t-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-t-ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕や、市販品として、アデカスタブAO-20(ADEKA社製)等が挙げられる。 Phenolic antioxidants include, for example, 2,6-di-t-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-di-t-butyl- 4-hydroxybenzyl)phosphonate, 1,6-hexamethylenebis[(3,5-di-t-butyl-4-hydroxyphenyl)propionamide], 4,4′-thiobis(6-t-butyl-m -cresol), 2,2'-methylenebis(4-methyl-6-t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 4,4'-butylidenebis(6-t -butyl-m-cresol), 2,2'-ethylidenebis(4,6-di-t-butylphenol), 2,2'-ethylidenebis(4-sec-butyl-6-t-butylphenol), 1, 1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, 1,3,5-tris(2,6-dimethyl-3-hydroxy-4-t-butylbenzyl)isocyanurate , 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl) -2,4,6-trimethylbenzene, 2-t-butyl-4-methyl-6-(2-acryloyloxy-3-t-butyl-5-methylbenzyl)phenol, stearyl (3,5-di-t -butyl-4-hydroxyphenyl)propionate, tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)methylpropionate]methane, thiodiethylene glycol bis[(3,5-di-t-butyl -4-hydroxyphenyl)propionate], 1,6-hexamethylenebis[(3,5-di-t-butyl-4-hydroxyphenyl)propionate], bis[3,3-bis(4-hydroxy-3- t-butylphenyl)butyric acid]glycol ester, bis[2-t-butyl-4-methyl-6-(2-hydroxy-3-t-butyl-5-methylbenzyl)phenyl]terephthalate, 1,3, 5-tris[(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxyethyl]isocyanurate, 3,9-bis[1,1-dimethyl-2-{(3-t-butyl-4 -hydroxy-5-methylphenyl)propionyloxy}ethyl]-2,4,8,10-tetrao Xaspiro[5,5]undecane, triethylene glycol bis[(3-t-butyl-4-hydroxy-5-methylphenyl)propionate], and commercial products such as ADEKA STAB AO-20 (manufactured by ADEKA). .

ホスファイト系酸化防止剤としては、トリスノニルフェニルホスファイト、トリス〔2-t-ブチル-4-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4′-n-ブチリデンビス(2-t-ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2′-メチレンビス(4,6-t-ブチルフェニル)-2-エチルヘキシルホスファイト、2,2′-メチレンビス(4,6-t-ブチルフェニル)-オクタデシルホスファイト、2,2′-エチリデンビス(4,6-ジ-t-ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス-t-ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2,4,6-トリ-t-ブチルフェノールのホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトや、市販品として、アデカスタブPEP-36(ADEKA社製)等が挙げられる。 Phosphite antioxidants include trisnonylphenyl phosphite, tris[2-t-butyl-4-(3-t-butyl-4-hydroxy-5-methylphenylthio)-5-methylphenyl]phosphite , tridecylphosphite, octyldiphenylphosphite, di(decyl)monophenylphosphite, di(tridecyl)pentaerythritol diphosphite, di(nonylphenyl)pentaerythritol diphosphite, bis(2,4-di-t -butylphenyl)pentaerythritol diphosphite, bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-t-butylphenyl)pentaerythritol Diphosphite, bis(2,4-dicumylphenyl) pentaerythritol diphosphite, tetra(tridecyl)isopropylidene diphenol diphosphite, tetra(tridecyl)-4,4′-n-butylidene bis(2-t- butyl-5-methylphenol) diphosphite, hexa(tridecyl)-1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane triphosphite, tetrakis(2,4-di-t -butylphenyl)biphenylenediphosphonite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 2,2′-methylenebis(4,6-t-butylphenyl)-2- Ethylhexylphosphite, 2,2'-methylenebis(4,6-t-butylphenyl)-octadecylphosphite, 2,2'-ethylidenebis(4,6-di-t-butylphenyl)fluorophosphite, tris( 2-[(2,4,8,10-tetrakis-t-butyldibenzo[d,f][1,3,2]dioxaphosphepin-6-yl)oxy]ethyl)amine, 2,4, Phosphite of 6-tri-t-butylphenol, tris(2,4-di-t-butylphenyl)phosphite, and commercially available products such as ADEKA STAB PEP-36 (manufactured by ADEKA).

チオール系酸化防止剤としては、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、ペンタエリスリトールテトラ(β-アルキルチオプロピオン酸エステル)類や、市販品として、スミライザーTPM(ジミリスチル-3,3’-チオジプロピオナート)(住友化学社製)等が挙げられる。 Thiol-based antioxidants include dilauryl thiodipropionate, dimyristyl thiodipropionate, dialkylthiodipropionates such as distearyl thiodipropionate, pentaerythritol tetra (β-alkylthiopropionate), and commercially available Products include Sumilizer TPM (dimyristyl-3,3'-thiodipropionate) (manufactured by Sumitomo Chemical Co., Ltd.).

アミン系光安定剤としては、ヒンダードアミン系光安定剤が挙げられる。ヒンダードアミン系光安定剤としては、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-t-オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-sec-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-sec-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-sec-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-sec-トリアジン-6-イル〕アミノウンデカンや、市販品として、アデカスタブLA-52(ADEKA社製)等が挙げられる。 Amine light stabilizers include hindered amine light stabilizers. Hindered amine light stabilizers include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6,6 - tetramethyl-4-piperidyl benzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis ( 1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butanetetracarboxy tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butanetetracarboxylate, bis(2,2,6,6-tetramethyl-4-piperidyl) )・di(tridecyl)-1,2,3,4-butanetetracarboxylate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)・di(tridecyl)-1,2,3, 4-butane tetracarboxylate, bis(1,2,2,4,4-pentamethyl-4-piperidyl)-2-butyl-2-(3,5-di-t-butyl-4-hydroxybenzyl)malonate, 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperidinol/diethyl succinate polycondensate, 1,6-bis(2,2,6,6-tetramethyl- 4-piperidylamino)hexane/2,4-dichloro-6-morpholino-s-triazine polycondensate, 1,6-bis(2,2,6,6-tetramethyl-4-piperidylamino)hexane/2, 4-dichloro-6-t-octylamino-s-triazine polycondensate, 1,5,8,12-tetrakis[2,4-bis(N-butyl-N-(2,2,6,6-tetra methyl-4-piperidyl)amino)-sec-triazin-6-yl]-1,5,8,12-tetraazadodecane, 1,5,8,12-tetrakis[2,4-bis(N-butyl- N-(1,2,2,6,6-pentamethyl-4-piperidyl)amino)-sec-triazin-6-yl]-1,5,8-12-tetraazadodecane, 1,6,11-tris [2,4-bis(N-butyl-N-(2,2,6,6-tetramethyl-4-piperidyl)amino)-sec-triazin-6-yl]aminoundecane, 1,6,11-tris [2,4-bis(N-butyl-N-(1,2, 2,6,6-Pentamethyl-4-piperidyl)amino)-sec-triazin-6-yl]aminoundecane, and commercially available products such as ADEKA STAB LA-52 (manufactured by ADEKA).

〈熱重合性化合物〉
本発明に係る重合性組成物は、熱重合性化合物を含有することが好ましい。
熱重合性化合物は、常温(25℃)で液体状であり、熱によって重合する化合物であれば特に制限されない。
このような熱重合性化合物としては、環状エーテル基、シアネート基、イソシアネート基及びヒドロシリル基からなる群から選ばれる少なくとも一種の基を含む化合物が挙げられる。
<Thermal polymerizable compound>
The polymerizable composition according to the invention preferably contains a thermally polymerizable compound.
The thermally polymerizable compound is not particularly limited as long as it is a compound that is liquid at room temperature (25° C.) and polymerized by heat.
Examples of such thermally polymerizable compounds include compounds containing at least one group selected from the group consisting of cyclic ether groups, cyanate groups, isocyanate groups and hydrosilyl groups.

環状エーテル基を有する化合物としては、エポキシドやオキセタン、テトラヒドロフラン、テトラヒドロピラン等を含む化合物が挙げられる。これらの中でも、重合性等の観点から、エポキシ基を有する化合物(以下、エポキシ系化合物ともいう。)が好ましい。
エポキシ系化合物としては、分子内に一つ又は二つ以上のエポキシ基を有するエポキシ系化合物が挙げられる。例えば、ビフェニル型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、スチルベン型エポキシ化合物、ハイドロキノン型エポキシ化合物等の結晶性エポキシ化合物、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、ナフトールノボラック型エポキシ化合物等のノボラック型エポキシ化合物、フェニレン骨格含有フェノールアラルキル型エポキシ化合物、ビフェニレン骨格含有フェノールアラルキル型エポキシ化合物、フェニレン骨格含有ナフトールアラルキル型エポキシ化合物等のフェノールアラルキル型エポキシ化合物、トリフェノールメタン型エポキシ化合物、アルキル変性トリフェノールメタン型エポキシ化合物、グリシジルアミン、4官能ナフタレン型エポキシ化合物等の多官能型エポキシ化合物、ジシクロペンタジエン変性フェノール型エポキシ化合物、テルペン変性フェノール型エポキシ化合物、シリコーン変性エポキシ化合物等の変性フェノール型エポキシ化合物、トリアジン核含有エポキシ化合物等の複素環含有エポキシ化合物、ナフチレンエーテル型エポキシ等が挙げられる。
Compounds having a cyclic ether group include compounds containing epoxides, oxetanes, tetrahydrofuran, tetrahydropyran, and the like. Among these, compounds having an epoxy group (hereinafter also referred to as epoxy-based compounds) are preferred from the viewpoint of polymerizability and the like.
Epoxy-based compounds include epoxy-based compounds having one or more epoxy groups in the molecule. For example, crystalline epoxy compounds such as biphenyl-type epoxy compounds, bisphenol A-type epoxy compounds, bisphenol F-type epoxy compounds, stilbene-type epoxy compounds, hydroquinone-type epoxy compounds, cresol novolac-type epoxy compounds, phenol novolak-type epoxy compounds, naphthol novolac-type Novolak type epoxy compounds such as epoxy compounds, phenol aralkyl type epoxy compounds containing a phenylene skeleton, phenol aralkyl type epoxy compounds containing a biphenylene skeleton, phenol aralkyl type epoxy compounds such as naphthol aralkyl type epoxy compounds containing a phenylene skeleton, triphenol methane type epoxy compounds, Polyfunctional epoxy compounds such as alkyl-modified triphenolmethane-type epoxy compounds, glycidylamine, and tetrafunctional naphthalene-type epoxy compounds, modified phenols such as dicyclopentadiene-modified phenol-type epoxy compounds, terpene-modified phenol-type epoxy compounds, and silicone-modified epoxy compounds. type epoxy compounds, heterocyclic ring-containing epoxy compounds such as triazine nucleus-containing epoxy compounds, and naphthylene ether type epoxies.

シアネート基を有する化合物は、分子内に一つ又は二つ以上のシアネート基を有する化合物であればよい。例えば、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、2,2′-又は4,4′-ジシアナトビフェニル、ビス(4-シアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-シアナトフェニル)プロパン、2,2-ビス(3-ジブロモ-4-ジシアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)フォスファイト、トリス(4-シアナトフェニル)フォスフェート、ビス(3-クロロ-4-シアナトフェニル)メタン、4-シアナトビフェニル、4-クミルシアナトベンゼン、2-t-ブチル-1,4-ジシアナトベンゼン、2,4-ジメチル-1,3-ジシアナトベンゼン、2,5-ジ-t-ブチル-1,4-ジシアナトベンゼン、テトラメチル-1,4-ジシアナトベンゼン、4-クロロ-1,3-ジシアナトベンゼン、3,3′,5,5′-テトラメチル-4,4′-ジシアナトジフェニルビス(3-クロロ-4-シアナトフェニル)メタン、1,1,1-トリス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)エタン、2,2-ビス(3,5-ジクロロ-4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-シアナトフェニル)プロパン、ビス(p-シアノフェノキシフェノキシ)ベンゼン、ジ(4-シアナトフェニル)ケトン、シアン酸化ノボラック、シアン酸化ビスフェノールポリカーボネートオリゴマー等が挙げられる。 The compound having a cyanate group may be a compound having one or two or more cyanate groups in the molecule. For example, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 2,2′- or 4,4′-dicyanatobiphenyl, bis(4-cyanatophenyl)methane, 2,2-bis(4 -cyanatophenyl)propane, 2,2-bis(3,5-dichloro-4-cyanatophenyl)propane, 2,2-bis(3-dibromo-4-dicyanatophenyl)propane, bis(4-cyanatophenyl)propane, anatophenyl)ether, bis(4-cyanatophenyl)thioether, bis(4-cyanatophenyl)sulfone, tris(4-cyanatophenyl)phosphite, tris(4-cyanatophenyl)phosphate, bis(3 -chloro-4-cyanatophenyl)methane, 4-cyanatobiphenyl, 4-cumylcyanatobenzene, 2-t-butyl-1,4-dicyanatobenzene, 2,4-dimethyl-1,3-dicyanato Benzene, 2,5-di-t-butyl-1,4-dicyanatobenzene, tetramethyl-1,4-dicyanatobenzene, 4-chloro-1,3-dicyanatobenzene, 3,3',5, 5′-tetramethyl-4,4′-dicyanatodiphenylbis(3-chloro-4-cyanatophenyl)methane, 1,1,1-tris(4-cyanatophenyl)ethane, 1,1-bis( 4-cyanatophenyl)ethane, 2,2-bis(3,5-dichloro-4-cyanatophenyl)propane, 2,2-bis(3,5-dibromo-4-cyanatophenyl)propane, bis( p-cyanophenoxyphenoxy)benzene, di(4-cyanatophenyl)ketone, novolac cyanide, bisphenol cyanide polycarbonate oligomer and the like.

イソシアネート基を有する化合物は、分子内に一つ又は二つ以上のイソシアネート基を有する化合物であれば特に制限されず、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ナフチレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキシレンジイソシアネート、ジイソシアネートメチルシクロヘキサン等の脂環族ジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、トリメチロールプロパンとヘキサメチレンジイソシアネートの1対3付加物、ヘキサメチレンジイソシアネートの環状3量体等の3官能以上のポリイソシアネート、これらの化合物のイソシアネート基をブロック剤(例えば、アルコール類、フェノール類、ラクタム類、オキシム類、アセト酢酸アルキルエステル類、マロン酸アルキルエステル類、フタルイミド類、イミダゾール類、塩化水素、シアン化水素、亜硫酸水素ナトリウム等)で保護したブロックイソシアネート基を有するブロックイソシアネート等が挙げられる。 The compound having an isocyanate group is not particularly limited as long as it is a compound having one or two or more isocyanate groups in the molecule. Diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, cyclohexylene diisocyanate, alicyclic diisocyanate such as diisocyanatemethylcyclohexane, aliphatic diisocyanate such as hexamethylene diisocyanate, triphenylmethane triisocyanate, tris(isocyanatophenyl)thiophosphate, trimethylolpropane and Trifunctional or higher polyisocyanates such as 1:3 adducts of hexamethylene diisocyanate and cyclic trimers of hexamethylene diisocyanate, blocking agents for the isocyanate groups of these compounds (e.g., alcohols, phenols, lactams, oximes , acetoacetic acid alkyl esters, malonic acid alkyl esters, phthalimides, imidazoles, hydrogen chloride, hydrogen cyanide, sodium hydrogen sulfite, etc.).

ヒドロシリル基を有する化合物は、分子内に一つ又は二つ以上のヒドロシリル基を有する化合物であればよく、例えば、メチルヒドロシロキサン-ジメチルシロキサンコポリマー等が挙げられる。
ヒドロシリル基を有する化合物は、末端又は側鎖にビニル基を有するポリオルガノシロキサンと付加反応することにより得られる。ビニル基を有するポリシロキサンとしては、各末端ケイ素原子にビニル基が置換されたポリジメチルシロキサン、各末端ケイ素原子にビニル基が置換されたジメチルシロキサン-ジフェニルシロキサンコポリマー、各末端ケイ素原子にビニル基が置換されたポリフェニルメチルシロキサン、各末端にトリメチルシリル基を有するビニルメチルシロキサン-ジメチルシロキサンコポリマー等が挙げられる。
The compound having a hydrosilyl group may be any compound having one or more hydrosilyl groups in the molecule, and examples thereof include methylhydrosiloxane-dimethylsiloxane copolymers.
A compound having a hydrosilyl group can be obtained by an addition reaction with a polyorganosiloxane having a terminal or side chain vinyl group. Polysiloxane having a vinyl group includes polydimethylsiloxane in which each terminal silicon atom is substituted with a vinyl group, dimethylsiloxane-diphenylsiloxane copolymer in which each terminal silicon atom is substituted with a vinyl group, and vinyl group at each terminal silicon atom. Substituted polyphenylmethylsiloxanes, vinylmethylsiloxane-dimethylsiloxane copolymers having trimethylsilyl groups at each end, and the like.

(硬化剤、硬化促進剤)
重合性組成物に熱重合性化合物が含まれている場合、当該熱重合性化合物を硬化させるための硬化剤や硬化促進剤が更に含まれていることが好ましい。硬化剤や硬化促進剤の種類は、熱重合性化合物の種類等に応じて適宜選択される。
(Curing agent, curing accelerator)
When the polymerizable composition contains a thermally polymerizable compound, it preferably further contains a curing agent and a curing accelerator for curing the thermally polymerizable compound. The types of curing agent and curing accelerator are appropriately selected according to the type of the thermally polymerizable compound.

硬化剤や硬化促進剤としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等の炭素数2~20の直鎖脂肪族ジアミン、メタフェニレンジアミン、パラフェニレンジアミン、パラキシレンジアミン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルプロパン、4,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルスルホン、4,4′-ジアミノジシクロヘキサン、ビス(4-アミノフェニル)フェニルメタン、1,5-ジアミノナフタレン、メタキシレンジアミン、パラキシレンジアミン、1,1-ビス(4-アミノフェニル)シクロヘキサン、N,N-ジメチル-n-オクチルアミン、ジシアノジアミド等のアミノ類、アニリン変性レゾール樹脂やジメチルエーテルレゾール樹脂等のレゾール型フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、t-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル樹脂等のフェノールアラルキル樹脂、ナフタレン骨格やアントラセン骨格のような縮合多環構造を有するフェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン、ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物を含む酸無水物等、ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物、イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物、カルボン酸含有ポリエステル樹脂等の有機酸類等、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)、アセチルアセトナート亜鉛等の有機金属塩が挙げられる。
重合性組成物には、これら硬化剤や硬化促進剤が1種のみ含まれていてもよく、2種以上含まれていてもよい。
硬化剤や硬化促進剤の量は、熱重合性化合物の種類や量に合わせて適宜選択される。
Curing agents and curing accelerators include linear aliphatic diamines having 2 to 20 carbon atoms such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, metaphenylenediamine, paraphenylenediamine, paraxylenediamine, 4, 4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodicyclohexane, bis(4-aminophenyl)phenylmethane , 1,5-diaminonaphthalene, metaxylenediamine, paraxylenediamine, 1,1-bis(4-aminophenyl)cyclohexane, N,N-dimethyl-n-octylamine, aminos such as dicyanodiamide, aniline-modified resol Resins, resol-type phenolic resins such as dimethyl ether resol resins, phenolic novolac resins, cresol novolac resins, t-butylphenol novolac resins, novolac-type phenolic resins such as nonylphenol novolak resins, phenylene skeleton-containing phenol aralkyl resins, biphenylene skeleton-containing phenol aralkyl resins, etc. phenolic aralkyl resins, phenolic resins having a condensed polycyclic structure such as a naphthalene skeleton or anthracene skeleton, polyoxystyrenes such as polyparaoxystyrene, hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), etc. Cyclic acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), acid anhydrides including aromatic acid anhydrides such as benzophenonetetracarboxylic acid (BTDA), polysulfides, thioesters, thioethers, etc. Isocyanate compounds such as polymercaptan compounds, isocyanate prepolymers, blocked isocyanates, organic acids such as carboxylic acid-containing polyester resins, etc., zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, cobalt bisacetylacetonate (II ), trisacetylacetonate cobalt (III), and acetylacetonate zinc.
The polymerizable composition may contain only one type of these curing agents and curing accelerators, or may contain two or more types thereof.
The amounts of the curing agent and curing accelerator are appropriately selected according to the type and amount of the thermally polymerizable compound.

〈フィラー〉
本発明の重合性組成物は、フィラーを含有することが好ましい。重合性組成物に含まれるフィラーは特に制限されず、有機フィラーでも無機フィラーであってもよい。
フィラーは、1種のみ含まれていてもよく、2種以上が含まれていてもよい。
<Filler>
The polymerizable composition of the invention preferably contains a filler. The filler contained in the polymerizable composition is not particularly limited, and may be an organic filler or an inorganic filler.
Only one filler may be contained, or two or more fillers may be contained.

フィラーとしては、ソーダ石灰ガラス、ケイ酸ガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、石英ガラス等からなるガラスフィラー、アルミナ、酸化ジルコニウム、酸化チタン、チタン酸ジルコン酸鉛、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化スズ等からなるセラミックフィラー、鉄、チタン、金、銀、銅、スズ、鉛、ビスマス、コバルト、アンチモン、カドミウム等の金属単体、又はこれらの合金等からなる金属フィラー、グラファイト、グラフェン、カーボンナノチューブ等からなるカーボンフィラー、ポリエステル、ポリアミド、ポリアラミド、ポリパラフェニレンベンゾビスオキサゾール、多糖類等からなる有機高分子繊維、チタン酸カリウムウィスカー、シリコーンカーバイトウィスカー、シリコンナイトライドウィスカー、α-アルミナウィスカー、酸化亜鉛ウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、水酸化マグネシウムウィスカー、塩基性硫酸マグネシウムウィスカー、ケイ酸カルシウムウィスカー等からなるウィスカー状無機化合物(上記セラミックフィラーの針状の単結晶も含む。)、タルク、マイカ、クレイ、ワラストナイト、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母、バーミキュラライト等からなる粘土鉱物等が挙げられる。また、フィラーとしては、ポリエチレンやポリプロピレン等からなるポリオレフィンフィラー、FEP(四フッ化エチレン-六フッ化プロピレン共重合体)、PFA(四フッ化エチレン-パーフルオロアルコキシエチレン共重合体)、ETFE(四フッ化エチレン-エチレン共重合体)等からなるフッ素樹脂フィラー等が挙げられる。 Fillers include glass fillers such as soda lime glass, silicate glass, borosilicate glass, aluminosilicate glass, quartz glass, alumina, zirconium oxide, titanium oxide, lead zirconate titanate, silicon carbide, silicon nitride, and aluminum nitride. , ceramic fillers made of tin oxide, etc., simple metals such as iron, titanium, gold, silver, copper, tin, lead, bismuth, cobalt, antimony, cadmium, etc., or metal fillers made of alloys thereof, graphite, graphene, carbon Carbon fillers such as nanotubes, polyester, polyamide, polyaramid, polyparaphenylenebenzobisoxazole, organic polymer fibers such as polysaccharides, potassium titanate whiskers, silicone carbide whiskers, silicon nitride whiskers, α-alumina whiskers, whisker-like inorganic compounds comprising zinc oxide whiskers, aluminum borate whiskers, calcium carbonate whiskers, magnesium hydroxide whiskers, basic magnesium sulfate whiskers, calcium silicate whiskers, etc. (including needle-like single crystals of the above ceramic fillers); Talc, mica, clay, wollastonite, hectorite, saponite, stevensite, hydrite, montmorillonite, nonthrite, bentonite, Na-type tetrasilicic fluoromica, Li-type tetrasilicic fluoromica, Na-type fluorine teniolite, Li-type fluorine Examples include swelling mica such as teniolite, and clay minerals such as vermicularite. Examples of fillers include polyolefin fillers made of polyethylene, polypropylene, etc., FEP (tetrafluoroethylene-hexafluoropropylene copolymer), PFA (tetrafluoroethylene-perfluoroalkoxyethylene copolymer), ETFE (tetrafluoroethylene-perfluoroalkoxyethylene copolymer), fluororesin fillers such as fluoroethylene-ethylene copolymer).

上記の中でも、有機高分子繊維が好ましく、特に多糖類からなるナノファイバーであることが好ましい。多糖類としては、セルロース、ヘミセルロース、リグノセルロース、キチン、キトサン等が挙げられる。これらのうち、得られる立体造形物の強度をより高める観点から、セルロース及びキチンが好ましく、セルロースがより好ましい。 Among the above, organic polymer fibers are preferable, and nanofibers made of polysaccharides are particularly preferable. Polysaccharides include cellulose, hemicellulose, lignocellulose, chitin, chitosan, and the like. Among these, cellulose and chitin are preferable, and cellulose is more preferable, from the viewpoint of further increasing the strength of the three-dimensional molded article obtained.

セルロースからなる繊維状のフィラー、すなわち、セルロースナノファイバー(以下、単にナノセルロースともいう。)は、植物由来の繊維質又は植物の細胞壁の機械的な解繊、酢酸菌による生合成、2,2,6,6-tetramethylpiperidine-1-oxyl radical(TEMPO)等のN-オキシル化合物による酸化又は電解紡糸法等によって得られる、繊維状のナノフィブリルを主成分とするセルロースナノファイバーであってもよい。また、ナノセルロースは、植物由来の繊維質又は植物の細胞壁を機械的に解繊した後に酸処理等をして得られる、ウィスカー状(針状)に結晶化したナノフィブリルを主成分とするセルロースナノクリスタルであってもよく、その他の形状であってもよい。ナノセルロースは、セルロースを主成分とすればよく、リグニン及びヘミセルロース等を含んでいてもよい。 A fibrous filler made of cellulose, that is, cellulose nanofiber (hereinafter also simply referred to as nanocellulose) is produced by mechanical defibration of plant-derived fibers or plant cell walls, biosynthesis by acetic acid bacteria, 2, 2. , 6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) or the like, or cellulose nanofibers composed mainly of fibrous nanofibrils obtained by electrospinning or the like. In addition, nanocellulose is cellulose whose main component is whisker-like (needle-like) crystallized nanofibrils obtained by mechanically defibrating plant-derived fibers or plant cell walls and then subjecting them to acid treatment, etc. It may be nanocrystals or other shapes. Nanocellulose may contain cellulose as a main component, and may contain lignin, hemicellulose, and the like.

フィラーの形状は特に制限されず、例えば繊維状(ウィスカー状を含む)であってもよく、粒子状であってもよいが、立体造形物の強度向上の観点から、繊維状であることが好ましい。
フィラーが粒子状である場合、その平均粒径は0.005~200μmの範囲内であることが好ましく、0.01~100μmの範囲内であることがより好ましく、0.1~50μmの範囲内であることが更に好ましい。粒子状のフィラーの平均粒径が0.1μm以上であると、立体造形物の強度が高まりやすくなる。一方、平均粒径が50μm以下であると、立体造形物を高精細に形成しやすくなる。なお、平均粒径は、重合性組成物を透過型電子顕微鏡(TEM)で撮像して得られた画像を解析して、測定することができる。
The shape of the filler is not particularly limited, and may be, for example, fibrous (including whisker-like) or particulate, but from the viewpoint of improving the strength of the three-dimensional object, fibrous is preferred. .
When the filler is particulate, its average particle size is preferably in the range of 0.005 to 200 μm, more preferably in the range of 0.01 to 100 μm, and more preferably in the range of 0.1 to 50 μm. is more preferable. When the average particle size of the particulate filler is 0.1 μm or more, the strength of the three-dimensionally shaped article tends to increase. On the other hand, when the average particle size is 50 µm or less, it becomes easier to form a three-dimensional object with high definition. The average particle size can be measured by analyzing an image obtained by imaging the polymerizable composition with a transmission electron microscope (TEM).

一方、フィラーが繊維状である場合、その平均繊維径は、0.002~20μmの範囲内であることが好ましい。平均繊維径が0.002μm以上であると、立体造形物の強度が高まりやすくなる。平均繊維径が20μm以下であると、フィラーが重合性組成物の粘度を高めすぎず、立体造形物の精度が良好になりやすい。フィラーの平均繊維径は、0.005~10μmの範囲内であることがより好ましく、0.01~8μmの範囲内であることが更に好ましく、0.02~5μmの範囲内であることが特に好ましい。 On the other hand, when the filler is fibrous, the average fiber diameter is preferably within the range of 0.002 to 20 μm. When the average fiber diameter is 0.002 μm or more, the strength of the three-dimensional object tends to increase. When the average fiber diameter is 20 µm or less, the filler does not excessively increase the viscosity of the polymerizable composition, and the accuracy of the three-dimensionally shaped article tends to be good. The average fiber diameter of the filler is more preferably in the range of 0.005 to 10 μm, still more preferably in the range of 0.01 to 8 μm, and particularly in the range of 0.02 to 5 μm. preferable.

フィラーの平均繊維長は、0.2~200μmの範囲内であることが好ましい。平均繊維長が0.2μm以上であると、立体造形物の強度が高まりやすくなる。平均繊維長が200μm以下であると、フィラー同士が絡み合うことによって生じるフィラーの沈降が生じにくい。フィラーの平均繊維長は、0.5~100μmの範囲内であることがより好ましく、1~60μmの範囲内であることが更に好ましく、1~40μmの範囲内であることが特に好ましい。 The average fiber length of the filler is preferably within the range of 0.2-200 μm. When the average fiber length is 0.2 μm or more, the strength of the three-dimensional object tends to increase. When the average fiber length is 200 μm or less, sedimentation of the filler due to entanglement of the filler with each other is less likely to occur. The average fiber length of the filler is more preferably in the range of 0.5-100 μm, still more preferably in the range of 1-60 μm, and particularly preferably in the range of 1-40 μm.

フィラーのアスペクト比は、10~10000の範囲内であることが好ましい。アスペクト比が10以上であると、立体造形物の強度がより高くなりやすい。アスペクト比が10000以下であると、フィラー同士が絡み合って生じるフィラーの沈降が生じにくい。フィラーのアスペクト比は、12~8000の範囲内であることがより好ましく、15~2000の範囲内であることが更に好ましく、18~800の範囲内であることが特に好ましい。 The aspect ratio of the filler is preferably within the range of 10-10,000. When the aspect ratio is 10 or more, the strength of the three-dimensional object tends to be higher. If the aspect ratio is 10,000 or less, the fillers are less likely to sediment due to entanglement of the fillers. The aspect ratio of the filler is more preferably within the range of 12-8000, more preferably within the range of 15-2000, and particularly preferably within the range of 18-800.

フィラーの平均繊維径、平均繊維長及びアスペクト比は、重合性組成物を透過型電子顕微鏡(TEM)で撮像して得られた画像を解析して、測定することができる。 The average fiber diameter, average fiber length and aspect ratio of the filler can be measured by analyzing an image obtained by photographing the polymerizable composition with a transmission electron microscope (TEM).

重合性組成物に含まれるフィラーの量は、重合性組成物の全質量(100質量%)に対して、1~50質量%の範囲内であることが好ましく、5~40質量%の範囲内であることがより好ましい。フィラーの量が当該範囲であると、強度の高い立体造形物が得られやすくなる。 The amount of filler contained in the polymerizable composition is preferably in the range of 1 to 50% by mass, and in the range of 5 to 40% by mass, relative to the total mass (100% by mass) of the polymerizable composition. is more preferable. When the amount of the filler is within this range, it becomes easier to obtain a three-dimensionally shaped article with high strength.

フィラーは、光重合性化合物や熱重合性化合物と反応可能な官能基を有する表面修飾剤によって表面修飾されていてもよい。フィラーが表面修飾されていると、フィラーと光重合性化合物、又はフィラーと熱重合性化合物との密着性が高まり、より強度の高い立体造形物が得られやすくなる。表面修飾剤は、光重合性化合物や熱重合性化合物と反応可能な基、及びフィラーに結合可能又はフィラーに吸着可能な基を有するものであればよく、その種類は特に制限されない。 The filler may be surface-modified with a surface-modifying agent having a functional group capable of reacting with a photopolymerizable compound or a thermally polymerizable compound. When the surface of the filler is modified, the adhesion between the filler and the photopolymerizable compound or between the filler and the thermally polymerizable compound is enhanced, making it easier to obtain a three-dimensional object with higher strength. The surface modifier is not particularly limited as long as it has a group capable of reacting with a photopolymerizable compound or a thermally polymerizable compound and a group capable of binding to or adsorbing to the filler.

表面修飾剤に含まれる、フィラーに結合可能又はフィラーに吸着可能な基や構造としては、Si原子、Ti原子、Zr原子、カルボキシ基、アミノ基、イミノ基、シアノ基、アゾ基、アジ基、チオール基、スルホ基、(メタ)アクリロイル基、エポキシ基、イソシアネート基等が挙げられる。これらの中でも、フィラーに対する反応性等の観点から、Si原子、Ti原子、Zr原子が好ましく、特にSi原子が好ましい。
また、表面修飾剤に含まれる、光重合性化合物又は熱重合性化合物と反応可能な基としては、(メタ)アクリロイル基、アミノ基、イミノ基、エポキシ基、グリシジル基、オキセタニル基、イソシアネート基、シアネート基、ビニル基、スチリル基、ヒドロシリル基、メルカプト基、ウレイド基等が挙げられる。
Groups and structures that can be bonded to or adsorbed on fillers contained in the surface modifier include Si atoms, Ti atoms, Zr atoms, carboxy groups, amino groups, imino groups, cyano groups, azo groups, azide groups, Thiol group, sulfo group, (meth)acryloyl group, epoxy group, isocyanate group and the like. Among these, Si atoms, Ti atoms, and Zr atoms are preferred, and Si atoms are particularly preferred, from the viewpoint of reactivity with fillers and the like.
In addition, the group capable of reacting with the photopolymerizable compound or thermally polymerizable compound contained in the surface modifier includes a (meth)acryloyl group, an amino group, an imino group, an epoxy group, a glycidyl group, an oxetanyl group, an isocyanate group, cyanate group, vinyl group, styryl group, hydrosilyl group, mercapto group, ureido group and the like.

以上のことから、表面修飾剤は、シランカップリング剤、チタンカップリング剤又はジルコニウム系カップリング剤であることが好ましく、シランカップリング剤であることが特に好ましい。 For the above reasons, the surface modifier is preferably a silane coupling agent, a titanium coupling agent or a zirconium coupling agent, and particularly preferably a silane coupling agent.

シランカップリング剤としては、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等の反応性官能基を有する化合物、トリメチルメトキシシラン、トリメチルエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリブトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジヘキシルジメトキシシラン、トリヘキシルメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、n-プロピルトリアセトキシシラン、n-プロピルトリクロロシラン、1-プロピン-3-イルトリメトキシシラン、1-プロピン-3-イルトリエトキシシラン、1-プロピン-3-イルトリブトキシシラン、2-シクロヘキセン-1-イルトリエトキシシラン、1,3-ヘキサジイン-5-イルトリエトキシシラン等の脂肪族炭化水素基を有する化合物、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン、アンスリルトリメトキシシラン、フェナンスリルトリメトキシシラン、ビフェニルトリメトキシシラン、ジフェニルジメトキシシラン、トリフェニルメトキシシラン、メチルフェニルジメトキシシラン、2-メチルベンジルトリメトキシシラン、3-メチルベンジルトリメトキシシラン、4-メチルベンジルトリメトキシシラン等の芳香族炭化水素基を有する化合物、ヘキサメチルジシラザン等のシラザン系化合物等が挙げられる。 Silane coupling agents include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltri methoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl )-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl- 3-aminopropyltrimethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane compounds having reactive functional groups such as trimethylmethoxysilane, trimethylethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltributoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, hexyl trimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, dihexyldimethoxysilane, trihexylmethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, hexadecyltrimethoxysilane, n-propyltriacetoxysilane, n-propyltrichlorosilane , 1-propyn-3-yltrimethoxysilane, 1-propyn-3-yltriethoxysilane, 1-propyn-3-yltributoxysilane, 2-cyclohexene-1-yltriethoxysilane, 1,3-hexadiyne Compounds having an aliphatic hydrocarbon group such as -5-yltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane n, naphthyltrimethoxysilane, naphthyltriethoxysilane, anthryltrimethoxysilane, phenanthryltrimethoxysilane, biphenyltrimethoxysilane, diphenyldimethoxysilane, triphenylmethoxysilane, methylphenyldimethoxysilane, 2-methylbenzyltrimethoxysilane Compounds having an aromatic hydrocarbon group such as silane, 3-methylbenzyltrimethoxysilane and 4-methylbenzyltrimethoxysilane, silazane compounds such as hexamethyldisilazane, and the like can be mentioned.

チタンカップリング剤としては、メチルトリメトキシチタン、エチルトリエトキシチタン、n-プロピルトリメトキシチタン、i-プロピルトリエトキシチタン、n-ヘキシルトリメトキシチタン、シクロヘキシルトリエトキシチタン、フェニルトリメトキシチタン、3-クロロプロピルトリエトキシチタン、3-アミノプロピルトリメトキシチタン、3-アミノプロピルトリエトキシチタン、3-(2-アミノエチル)-アミノプロピルトリメトキシチタン、3-(2-アミノエチル)-アミノプロピルトリエトキシチタン、3-(2-アミノエチル)-アミノプロピルメチルジメトキシチタン、3-アニリノプロピルトリメトキシチタン、3-メルカプトプロピルトリエトキシチタン、3-イソシアネートプロピルトリメトキシチタン、3-グリシドキシプロピルトリエトキシチタン、3-ウレイドプロピルトリメトキシチタンなどのトリアルコキシチタン類、ジメチルジエトキシチタン、ジエチルジエトキシチタン、ジ-n-プロピルジメトキシチタン、ジ-i-プロピルジエトキシチタン、ジ-n-ペンチルジメトキシチタン、ジ-n-オクチルジエトキシチタン、ジ-n-シクロヘキシルジメトキシチタン、ジフェニルジメトキシチタン等が挙げられる。 Titanium coupling agents include methyltrimethoxytitanium, ethyltriethoxytitanium, n-propyltrimethoxytitanium, i-propyltriethoxytitanium, n-hexyltrimethoxytitanium, cyclohexyltriethoxytitanium, phenyltrimethoxytitanium, 3- Chloropropyltriethoxytitanium, 3-aminopropyltrimethoxytitanium, 3-aminopropyltriethoxytitanium, 3-(2-aminoethyl)-aminopropyltrimethoxytitanium, 3-(2-aminoethyl)-aminopropyltriethoxytitanium Titanium, 3-(2-aminoethyl)-aminopropylmethyldimethoxytitanium, 3-anilinopropyltrimethoxytitanium, 3-mercaptopropyltriethoxytitanium, 3-isocyanatopropyltrimethoxytitanium, 3-glycidoxypropyltriethoxy titanium, trialkoxytitaniums such as 3-ureidopropyltrimethoxytitanium, dimethyldiethoxytitanium, diethyldiethoxytitanium, di-n-propyldimethoxytitanium, di-i-propyldiethoxytitanium, di-n-pentyldimethoxytitanium , di-n-octyldiethoxytitanium, di-n-cyclohexyldimethoxytitanium, diphenyldimethoxytitanium and the like.

ジルコニウム系カップリング剤としては、トリ-n-ブトキシ・エチルアセトアセテートジルコニウム、ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(n-プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム等が挙げられる。 Zirconium-based coupling agents include tri-n-butoxy-ethylacetoacetate zirconium, di-n-butoxy-bis(ethylacetoacetate) zirconium, n-butoxy-tris(ethylacetoacetate) zirconium, tetrakis(n-propyl acetoacetate)zirconium, tetrakis(acetylacetoacetate)zirconium, tetrakis(ethylacetoacetate)zirconium, di-n-butoxy bis(acetylacetoacetate)zirconium and the like.

上記の中でも、特に反応性の官能基を有するシランカップリング剤が好ましい。なお、フィラーを表面修飾剤で表面修飾する方法は特に制限されず、例えば任意の溶媒にフィラーを分散させ、当該分散液内に表面修飾剤を添加して、撹拌した後に濾過等で溶媒を除去し、加熱乾燥する方法等とすることができる。フィラーを表面修飾剤で表面修飾する際には、フィラー100質量部に対して、表面修飾剤を0.1~5質量部程度添加して処理することが好ましい。 Among the above, a silane coupling agent having a particularly reactive functional group is preferred. The method of surface-modifying the filler with a surface-modifying agent is not particularly limited. For example, the filler is dispersed in an arbitrary solvent, the surface-modifying agent is added to the dispersion, and the solvent is removed by filtration or the like after stirring. Then, a method of heat drying can be used. When the filler is surface-modified with a surface modifier, it is preferable to add about 0.1 to 5 parts by mass of the surface modifier to 100 parts by mass of the filler.

〈その他の成分〉
重合性組成物には、活性エネルギー線の照射による立体造形物の形成を可能にし、かつ得られる立体造形物に強度のムラを顕著に生じさせない限りにおいて、光増感剤、重合阻害剤、紫外線吸収剤、酸化防止剤、染料や顔料等の色材、消泡剤、界面活性剤等の任意の添加剤が更に含まれていてもよい。
<Other ingredients>
The polymerizable composition contains photosensitizers, polymerization inhibitors, ultraviolet rays, as long as it enables the formation of a three-dimensional object by irradiation with active energy rays and does not significantly cause unevenness in the intensity of the three-dimensional object obtained. Optional additives such as absorbents, antioxidants, colorants such as dyes and pigments, antifoaming agents, and surfactants may be further included.

〈重合性組成物の調製方法〉
重合性組成物は、光重合性化合物、難燃剤及び難燃剤保護剤と、必要に応じて、熱重合性化合物、フィラー、光重合開始剤、硬化剤、硬化促進剤等を任意の順で混合することで調製できる。
<Method for preparing polymerizable composition>
The polymerizable composition includes a photopolymerizable compound, a flame retardant, a flame retardant protective agent, and, if necessary, a thermally polymerizable compound, a filler, a photopolymerization initiator, a curing agent, a curing accelerator, etc., mixed in any order. It can be prepared by

重合性組成物の混合に用いられる装置としては公知のものを使用できる。例えば、ウルトラタラックス(IKAジャパン社製)、TKホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DCPスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、スターバースト(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO 3000(美粒社製)などの高圧衝撃式分散装置が挙げられる。
また、あわとり練太郎(シンキー社製)やカクハンター(写真化学社製)等の自転公転ミキサーや、ハイビスミックス(プライミクス社製)、ハイビスディスパー(プライミクス社製)等の遊星式混合機、Nanoruptor(ソニック・バイオ社製)等の超音波分散装置も好適に用いることが可能である。
A known device can be used for mixing the polymerizable composition. For example, Ultra Turrax (manufactured by IKA Japan), TK Homomixer (manufactured by Primix), TK Pipeline Homomixer (manufactured by Primix), TK Filmix (manufactured by Primix), Clearmix (manufactured by M Technic), Clea SS5 (manufactured by M Technic Co., Ltd.), Cavitron (manufactured by Eurotech Co., Ltd.), Medialess stirrer such as Fine Flow Mill (manufactured by Taiheiyo Kiko Co., Ltd.), Visco Mill (manufactured by Aimex), Apex Mill (manufactured by Kotobuki Kogyo Co., Ltd.), Star Mill (Ashizawa, manufactured by Fine Tech), DCP Super Flow (manufactured by Nihon Eirich Co., Ltd.), MP Mill (manufactured by Inoue Seisakusho), Spike Mill (manufactured by Inoue Seisakusho), Mighty Mill (manufactured by Inoue Seisakusho), SC Mill (Mitsui Mining Co., Ltd.) and other media agitators, Ultimizer (Sugino Machine Co., Ltd.), Starburst (Sugino Machine Co., Ltd.), Nanomizer (Yoshida Kikai Co., Ltd.), NANO 3000 (Miryu Co., Ltd.), etc. apparatus.
In addition, a rotation and revolution mixer such as Awatori Mixer (manufactured by Thinky) and Kakuhunter (manufactured by Shashin Kagaku), planetary mixers such as Hivis Mix (manufactured by Primix) and Hivis Disper (manufactured by Primix), Nanoruptor (manufactured by Sonic Bio), etc., can also be suitably used.

〈立体造形物の製造方法〉
本発明の立体造形物の製造方法としては、少なくとも下記工程を有する方法が挙げられる。
<Method for manufacturing three-dimensional object>
Examples of the method for producing a three-dimensional object of the present invention include a method having at least the following steps.

工程(a):酸素及び活性エネルギー線を透過する基材を介して、重合性組成物を含む造形槽中に酸素を供給する工程
工程(b):酸素により重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、酸素の濃度がより低く重合性組成物が硬化可能な硬化領域に選択的に照射して、重合性組成物を硬化する工程
工程(c):硬化した重合性組成物を移動させながら活性エネルギー線を連続的に照射して、重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
Step (a): A step of supplying oxygen into a modeling tank containing a polymerizable composition through a base material that transmits oxygen and active energy rays. Step (b): The effect of the polymerizable composition is inhibited by oxygen. A step of selectively irradiating a curing region where the concentration of oxygen is lower and in which the polymerizable composition can be cured is irradiated with an active energy ray that has passed through the buffer region, thereby curing the polymerizable composition Step (c): Cured A step of continuously irradiating the active energy ray while moving the polymerizable composition to three-dimensionally and continuously form a modeled article obtained by curing the polymerizable composition.

なお、工程(c)に続けて、更に活性エネルギー線を照射する工程を有していてもよい。また、重合性組成物中に熱重合性化合物が含まれている場合には、工程(c)に続けて、不要な樹脂等を洗浄等により取り除いた後、加熱し、熱重合性化合物を熱硬化させる工程を有していてもよい。 In addition, you may have the process of irradiating an active energy ray further following a process (c). Further, when a thermally polymerizable compound is contained in the polymerizable composition, following the step (c), after removing unnecessary resin etc. by washing etc., heating is performed to heat the thermally polymerizable compound. It may have a step of curing.

以下、本発明の立体造形物の製造方法に用いることのできる立体造形物の製造装置について説明する。 A three-dimensional object manufacturing apparatus that can be used in the three-dimensional object manufacturing method of the present invention will be described below.

(製造装置)
図1に示すとおり、立体造形物の製造装置1は、液体状の重合性組成物10を貯留可能な造形槽20と、上下方向(深さ方向)に往復移動可能な造形ステージ30と、活性エネルギー線を照射するための光源40とを備えて構成されている。
(manufacturing device)
As shown in FIG. 1, a three-dimensional object manufacturing apparatus 1 includes a modeling tank 20 capable of storing a liquid polymerizable composition 10, a modeling stage 30 capable of reciprocating in the vertical direction (depth direction), and an active and a light source 40 for irradiating energy rays.

造形槽20の底部には、重合性組成物10を透過させず、活性エネルギー線及び酸素を透過させる基材21が設けられている。
基材21としては、上記のように重合性組成物10を透過させず、活性エネルギー線及び酸素を透過させる性質を有するものであれば特に限定はされないが、例えば、TEFLON(登録商標) AF 1600フルオロポリマーフィルム、TEFLON(登録商標) AF 2400フルオロポリマーフィルムのような非晶質の熱可塑性フルオロポリマー等のフルオロポリマーフィルム、パーフルオロポリエーテル(PFPE)、特に架橋PFPEフィルム、架橋シリコーンポリマーフィルム等が挙げられる。
造形槽20は、製造しようとする立体造形物よりも広い幅を有し、収容可能かつ重合性組成物と相互作用しないものであれば、その材質等は特に制限されない。
At the bottom of the modeling tank 20, a base material 21 is provided that is impermeable to the polymerizable composition 10 and permeable to active energy rays and oxygen.
The base material 21 is not particularly limited as long as it does not allow the polymerizable composition 10 to pass therethrough as described above, but allows active energy rays and oxygen to pass therethrough. Fluoropolymer films, such as amorphous thermoplastic fluoropolymers such as TEFLON® AF 2400 fluoropolymer films, perfluoropolyethers (PFPE), especially crosslinked PFPE films, crosslinked silicone polymer films, and the like. mentioned.
The material of the modeling bath 20 is not particularly limited as long as it has a wider width than the three-dimensional model to be manufactured, can be accommodated, and does not interact with the polymerizable composition.

光源40としては、公知のものを使用することができる。光源40から照射される、光重合性化合物を重合させる活性エネルギー線としては、紫外線、X線、電子線、γ線、可視光線等が挙げられる。
光源40から照射される活性エネルギー線の照射強度は、1~200mW/cmの範囲内であることが、光重合性成分の硬化、重合阻害層の厚さ及び樹脂の流動性等の観点から好ましい。
また、光源40に液晶パネルやデジタルミラーデバイス(DMD)等の空間光変調器(Spatial Light Modulator:SLM)41を有するSLM投影光学系を用いてもよい。これにより、活性エネルギー線を所望の領域に面照射することができる。
A known light source can be used as the light source 40 . Examples of the active energy ray for polymerizing the photopolymerizable compound emitted from the light source 40 include ultraviolet rays, X-rays, electron beams, γ-rays, visible rays, and the like.
The irradiation intensity of the active energy ray emitted from the light source 40 should be in the range of 1 to 200 mW/cm 2 from the viewpoint of curing of the photopolymerizable component, thickness of the polymerization inhibiting layer, fluidity of the resin, and the like. preferable.
Alternatively, an SLM projection optical system having a spatial light modulator (SLM) 41 such as a liquid crystal panel or a digital mirror device (DMD) may be used as the light source 40 . As a result, a desired region can be surface-irradiated with active energy rays.

上述した立体造形物の製造装置1においては、以下のようにして立体造形物が製造される。
まず、造形槽20に重合性組成物10を充填する。そして、造形槽20の底部に設けられた基材21を介して、造形槽20中の重合性組成物10側に酸素を導入する。これにより、導入された酸素が、上向きの矢印14の方向に酸素の濃度が低下していくとともに、酸素の濃度が所定の濃度以上となる領域がバッファ領域11となり、酸素の濃度が所定の濃度未満の領域は硬化領域12となる。
In the three-dimensional object manufacturing apparatus 1 described above, a three-dimensional object is manufactured as follows.
First, the modeling tank 20 is filled with the polymerizable composition 10 . Then, oxygen is introduced into the modeling bath 20 on the side of the polymerizable composition 10 through the base material 21 provided at the bottom of the modeling bath 20 . As a result, the introduced oxygen decreases in oxygen concentration in the direction of the upward arrow 14, and the region where the oxygen concentration is equal to or higher than a predetermined concentration becomes the buffer region 11, and the oxygen concentration reaches the predetermined concentration. The area below is the hardened area 12 .

酸素の導入方法は、重合性組成物10を収容した造形槽20において上述したような酸素の濃度勾配を形成することができれば、特に制限されない。例えば、図2に示すように、基材21の下側にある酸素の流路13に酸素を供給し基材21の外側(流路13側)を酸素濃度が高い雰囲気とし、当該雰囲気に圧力をかける方法とすることができる。これにより、基材21の下側にある酸素の流路13に供給された酸素が、流路13から基材21を介して重合性組成物10側に拡散していくことから、重合性組成物10を収容した造形槽20にいては、図2に示したように酸素の濃度勾配が形成される。
この際、造形槽20中への酸素の透過流束を3.4×10~170×10kmol/(s・m)の範囲内とすることが好ましい。酸素の透過流束が3.4×10kmol/(s・m)以上であれば、樹脂の流動層となる硬化阻害層を得ることができ、170×10kmol/(s・m)以下であれば、硬化阻害層を介して十分に樹脂を硬化させることができる。
なお、造形槽20中への酸素の透過流束は、下式により求めることができる。
A method for introducing oxygen is not particularly limited as long as the oxygen concentration gradient as described above can be formed in the modeling tank 20 containing the polymerizable composition 10 . For example, as shown in FIG. 2, oxygen is supplied to the oxygen channel 13 under the base material 21, and the outside of the base material 21 (channel 13 side) is made into an atmosphere with a high oxygen concentration, and the atmosphere is pressurized. can be used as a method of applying As a result, the oxygen supplied to the oxygen channel 13 below the base material 21 diffuses from the channel 13 to the polymerizable composition 10 side through the base material 21, so that the polymerizable composition In the modeling tank 20 containing the object 10, an oxygen concentration gradient is formed as shown in FIG.
At this time, it is preferable that the permeation flux of oxygen into the modeling tank 20 is within the range of 3.4×10 3 to 170×10 3 kmol/(s·m 2 ). If the permeation flux of oxygen is 3.4 ×10 3 kmol/(s·m 2 ) or more, it is possible to obtain a hardening inhibition layer that becomes a fluidized layer of the resin, 2 ) If it is below, the resin can be sufficiently cured through the curing inhibition layer.
The permeation flux of oxygen into the modeling tank 20 can be obtained by the following formula.

透過流束(kmol/(s・m))
=透過係数(kmol・m/(s・m・kPa))×圧力差(kPa)/厚さ(m)
Permeation flux (kmol/(s·m 2 ))
= Permeability coefficient (kmol m/(s m2 kPa)) x pressure difference (kPa)/thickness (m)

このように基材21を介して造形槽20内に酸素が供給されることにより、重合性組成物10の基材21側の領域は、酸素濃度が上昇し、活性エネルギー線が照射されても光重合性化合物が硬化しないバッファ領域11となる。一方で、バッファ領域11より上側の領域は、酸素が重合性組成物10中に拡散することにより、酸素濃度がバッファ領域11より十分に低くなり、活性エネルギー線の照射によって光重合性化合物が硬化可能な硬化領域12となる。 By supplying oxygen into the modeling tank 20 through the base material 21 in this way, the oxygen concentration in the region of the polymerizable composition 10 on the side of the base material 21 increases, and even if the active energy ray is irradiated, The photopolymerizable compound becomes a buffer region 11 that is not cured. On the other hand, in the region above the buffer region 11, oxygen diffuses into the polymerizable composition 10, so that the oxygen concentration becomes sufficiently lower than the buffer region 11, and the photopolymerizable compound is cured by irradiation with active energy rays. A possible cure area 12 results.

続いて、光源40から照射される活性エネルギー線を、造形槽20の下方から硬化領域12に選択的に照射して、重合性組成物10(光重合性化合物)を硬化させる。より具体的には、造形ステージ30を、硬化領域12とバッファ領域11との界面近傍に配置し、バッファ領域11側に配置された光源40から造形ステージ30の底面側に向かって、選択的に活性エネルギー線を照射する。これにより、造形ステージ30の底面近傍(硬化領域12)の光重合性化合物が硬化して、立体造形物の最上部が形成される。 Subsequently, active energy rays emitted from the light source 40 are selectively applied to the curing region 12 from below the modeling tank 20 to cure the polymerizable composition 10 (photopolymerizable compound). More specifically, the modeling stage 30 is arranged near the interface between the curing region 12 and the buffer region 11, and the light source 40 arranged on the buffer region 11 side is selectively directed toward the bottom surface of the modeling stage 30. Irradiate with active energy rays. As a result, the photopolymerizable compound near the bottom surface (curing region 12) of the modeling stage 30 is cured to form the top of the three-dimensional object.

その後、造形ステージ30を上昇(バッファ領域11から離れる方向に移動)させる。これにより、造形槽20底部側の硬化領域12に、未硬化の重合性組成物10が新たに供給される。そして、造形ステージ30及び硬化物50を連続的に上昇させながら、光源40から活性エネルギー線を連続的かつ選択的(硬化させる領域)に照射する。これにより、造形ステージ30底面から造形槽20の底部側にかけて硬化物が連続して形成され、継ぎ目がなく、強度の高い立体造形物が製造される。 After that, the modeling stage 30 is raised (moved in a direction away from the buffer area 11). As a result, the uncured polymerizable composition 10 is newly supplied to the curing region 12 on the bottom side of the modeling bath 20 . Then, while the modeling stage 30 and the cured product 50 are continuously raised, the light source 40 continuously and selectively irradiates the active energy ray (area to be cured). As a result, the cured product is continuously formed from the bottom surface of the modeling stage 30 to the bottom side of the modeling tank 20, and a seamless and high-strength three-dimensional modeled object is manufactured.

その後、立体造形物に対し、必要に応じて、更に活性エネルギー線を照射してもよい。活性エネルギー線の照射は、所望の範囲のみに行ってもよく、立体造形物全体に対して行ってもよい。このように、活性エネルギー線の照射を行うと、立体造形物内部の光重合性化合物の重合性が高まり、得られる立体造形物の反りが抑制されやすくなる。
なお、造形中に造形ステージ30を上下方向(深さ方向)以外の方向に移動させると、造形槽20内の重合性組成物に浸漬している立体造形物の下方部が、液の抵抗を受けて本来あるべき位置からずれる可能性が生じることから、造形ステージ30を上下方向(深さ方向)方向においてのみ移動させることが好ましい。ただし、立体造形物の精度の低下が許容され、又は他の手段と併用することによって立体造形物の精度を担保することが可能な場合は、上下方向(深さ)以外の方向において造形ステージ30を移動させながら立体造形を行うことも可能である。例えば、造形ステージ30を、上下方向(深さ)方向に加えて、上下方向(深さ)に垂直な面(基材21に平行な面)においても移動させることも可能である。
After that, the three-dimensional object may be further irradiated with active energy rays, if necessary. Irradiation of the active energy ray may be performed only on a desired range, or may be performed on the entire three-dimensional molded article. By irradiating the active energy ray in this way, the polymerizability of the photopolymerizable compound inside the three-dimensional object is increased, and the resulting three-dimensional object is likely to be prevented from warping.
In addition, when the modeling stage 30 is moved in a direction other than the vertical direction (depth direction) during modeling, the lower part of the three-dimensional model immersed in the polymerizable composition in the modeling tank 20 will reduce the resistance of the liquid. It is preferable to move the modeling stage 30 only in the vertical direction (depth direction), since there is a possibility that it may be shifted from the original position. However, if it is possible to reduce the accuracy of the three-dimensional object, or if it is possible to secure the accuracy of the three-dimensional object by using it in combination with other means, the modeling stage 30 It is also possible to perform three-dimensional modeling while moving the . For example, it is possible to move the modeling stage 30 not only in the vertical direction (depth) but also in a plane perpendicular to the vertical direction (depth) (a plane parallel to the substrate 21).

また、重合性組成物中に熱重合性化合物が含まれる場合には、立体造形物を公知の方法で加熱し、硬化させる。加熱する際には、立体造形物が変形しない温度とすることが好ましく、例えば、光重合性化合物のガラス転移温度(Tg)より低い温度とすることが好ましい。 Moreover, when a thermally polymerizable compound is contained in the polymerizable composition, the three-dimensionally shaped article is heated by a known method to be cured. When heating, it is preferable to set the temperature to a temperature at which the three-dimensional object is not deformed. For example, it is preferable to set the temperature to a temperature lower than the glass transition temperature (Tg) of the photopolymerizable compound.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these.

《重合性組成物の調製》
光重合性化合物を含む光重合性液体、難燃剤、難燃剤保護剤、熱重合性化合物を含む熱重合性液体及びフィラーを表Iに記載の組成となるように混合し、その混合物を遊星方式混練機(プライミクス社製ハイビスミックス2P-1)により、公転速度60rpm、自転速度180rpmで5分間混練することにより、重合性組成物1~19を調製した。
なお、表I中における光重合性液体A~C、難燃剤A~D、難燃剤保護剤A~D、熱重合性液体A~D及びフィラーは、以下に示すとおりである。
<<Preparation of polymerizable composition>>
A photopolymerizable liquid containing a photopolymerizable compound, a flame retardant, a flame retardant protective agent, a thermally polymerizable liquid containing a thermally polymerizable compound, and a filler are mixed so as to have the composition shown in Table I, and the mixture is subjected to a planetary system. Polymerizable compositions 1 to 19 were prepared by kneading for 5 minutes at a revolution speed of 60 rpm and an autorotation speed of 180 rpm using a kneader (Hibismix 2P-1 manufactured by Primix).
The photopolymerizable liquids A to C, flame retardants A to D, flame retardant protective agents A to D, thermally polymerizable liquids A to D and fillers in Table I are as shown below.

(光重合性液体)
A:光重合性化合物としてのウレタンジアクリレート(Sartomer社製、CN983)100質量部と、重合開始剤としての1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製、IRGACURE184)1質量部との混合物
B:光重合性化合物としてのトリメチルプロパントリアクリレート100質量部と、重合開始剤としての1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製、IRGACURE184)1質量部との混合物
C:光重合性化合物としてのシリコーンアクリレート(Bluestar Silicones社製、UV RCA170)100質量部と、重合開始剤としての2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF社製、IRGACURE907)1質量部との混合物
(Photopolymerizable liquid)
A: A mixture of 100 parts by mass of urethane diacrylate (CN983, manufactured by Sartomer) as a photopolymerizable compound and 1 part by mass of 1-hydroxy-cyclohexyl-phenyl-ketone (IRGACURE184, manufactured by BASF) as a polymerization initiator. B: 100 parts by weight of trimethylpropane triacrylate as a photopolymerizable compound and 1-hydroxy-cyclohexyl-phenyl-ketone as a polymerization initiator (manufactured by BASF, IRGACURE 184) 1 part by weight mixture C: photopolymerizable compound 100 parts by mass of silicone acrylate (manufactured by Bluestar Silicones, UV RCA170) as a polymerization initiator, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (manufactured by BASF, IRGACURE907) A mixture with 1 part by mass

(難燃剤)
A:ハロゲン系難燃剤であるファイアカットP-801(鈴裕化学社製)
B:リン系難燃剤であるヒシガードセレクトN-6ME(日本化学工業社製)
C:窒素系難燃剤であるメラミンシアヌレートMC-4000(日産化学工業社製)
D:金属水酸化物系難燃剤として水酸化マグネシウム キスマ5E(協和化学工業社製)
(Flame retardants)
A: Fire Cut P-801, a halogen-based flame retardant (manufactured by Suzuhiro Chemical Co., Ltd.)
B: Hishiguard Select N-6ME, a phosphorus-based flame retardant (manufactured by Nippon Kagaku Kogyo Co., Ltd.)
C: Melamine cyanurate MC-4000 (manufactured by Nissan Chemical Industries, Ltd.), which is a nitrogen-based flame retardant
D: Magnesium hydroxide Kisuma 5E (manufactured by Kyowa Chemical Industry Co., Ltd.) as a metal hydroxide-based flame retardant

(難燃剤保護剤)
A:フェノール系酸化防止剤であるアデカスタブAO-20(ADEKA社製)
B:ホスファイト系酸化防止剤であるアデカスタブPEP-36(ADEKA社製)
C:チオール系酸化防止剤であるスミライザーTPM(住友化学社製)
D:アミン系光安定剤であるアデカスタブLA-52(ADEKA社製)
(Flame retardant protective agent)
A: ADEKA STAB AO-20, a phenolic antioxidant (manufactured by ADEKA)
B: ADEKA STAB PEP-36, a phosphite-based antioxidant (manufactured by ADEKA)
C: Sumilizer TPM, a thiol-based antioxidant (manufactured by Sumitomo Chemical Co., Ltd.)
D: ADEKA STAB LA-52 which is an amine light stabilizer (manufactured by ADEKA)

(熱重合性液体)
A(エポキシ):熱重合性化合物としてのポリ[2-(クロロメチル)オキシラン-alt-4,4′-(プロパン-2,2-ジイル)ジフェノール](Huntsman社製、Araldite 506)55質量部と、硬化剤としての4,4′-メチレンビス(2,6-ジメチルアニリン)45質量部との混合物
B(ウレタン):熱重合性化合物としてのポリ(プロピレングリコール)ビス(2-アミノプロピルエーテル)50質量部と、硬化剤としての2,2′-ジメチル-4,4′-メチレンビス(シクロヘキサン-1-イルアミン)50質量部との混合物
C(シリコーン):付加硬化型シリコーンKE-1056(信越化学工業社製)
D(シアネートエステル):熱重合性化合物としての1,1-ビス(4-シアナトフェニル)エタン100質量部と、硬化剤としての亜鉛(II)アセチルアセトナート一水和物を1500ppm含有するイソボルニルアクリレート溶液5質量部との混合物
(Thermal polymerizable liquid)
A (epoxy): Poly[2-(chloromethyl)oxirane-alt-4,4′-(propane-2,2-diyl)diphenol] (Araldite 506, manufactured by Huntsman) as a thermally polymerizable compound 55 mass part and 45 parts by mass of 4,4′-methylenebis(2,6-dimethylaniline) as a curing agent B (urethane): Poly(propylene glycol) bis(2-aminopropyl ether) as a thermally polymerizable compound ) and 50 parts by mass of 2,2′-dimethyl-4,4′-methylenebis(cyclohexan-1-ylamine) as a curing agent C (silicone): addition curing silicone KE-1056 (Shin-Etsu manufactured by Kagaku Kogyo Co., Ltd.)
D (cyanate ester): 100 parts by mass of 1,1-bis(4-cyanatophenyl)ethane as a thermally polymerizable compound and 1500 ppm of zinc (II) acetylacetonate monohydrate as a curing agent. Mixture with 5 parts by mass of bornyl acrylate solution

(フィラー)
フィラーとして、以下の多糖類ナノファイバーを用いた。
スギノマシン社製のセルロースナノファイバー2質量%分散液であるBiNFi-s 1000gをスターラーで撹拌しながら、3-イソシアネートプロピルトリエトキシシラン(信越化学工業社製、KBE-9007)を0.3g添加した。その後、20分間撹拌を続け、エタノールで溶媒置換を行い、多糖類ナノファイバーを得た。
(filler)
The following polysaccharide nanofibers were used as fillers.
0.3 g of 3-isocyanatopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-9007) was added while stirring 1000 g of BiNFi-s, a 2% by mass dispersion of cellulose nanofibers manufactured by Sugino Machine, with a stirrer. . After that, stirring was continued for 20 minutes, and the solvent was replaced with ethanol to obtain polysaccharide nanofibers.

《テストピースの作製》
調製した重合性組成物1~19を用いて、テストピース(立体造形物)1~19を作製した。
《Preparation of test piece》
Test pieces (three-dimensional objects) 1 to 19 were produced using the prepared polymerizable compositions 1 to 19.

テストピースの作製には、図1に示す製造装置1を用いた。造形槽20の底部には、基材21として、重合阻害剤である酸素の透過が可能なBiogeneral社製の64μm厚のTeflon(登録商標)AF2400フィルムを配置した。
この64μm厚のAF2400フィルムの酸素透過率を日立分光社製Gasperm-100で測定し、酸素透過係数を算出したところ、0.005kmol・m/(s・m・kPa)であった。
A manufacturing apparatus 1 shown in FIG. 1 was used for manufacturing the test piece. A 64 μm thick Teflon (registered trademark) AF2400 film manufactured by Biogeneral, which is permeable to oxygen, which is a polymerization inhibitor, was placed as a base material 21 at the bottom of the modeling tank 20 .
The oxygen transmission rate of this AF2400 film with a thickness of 64 μm was measured with a Gasperm-100 manufactured by Hitachi Spectroscopy Co., Ltd., and the oxygen transmission coefficient was calculated to be 0.005 kmol·m/(s·m 2 ·kPa).

そして、造形槽20の底部から44kPaの加圧下で酸素を供給することにより、基材21上に、重合性組成物10及び酸素を含むバッファ領域11が形成され、バッファ領域11より上部に、バッファ領域11より酸素濃度が低い硬化領域12が形成された。
なお、酸素の透過流束は、3.4×10kmol/(s・m)である。
Then, by supplying oxygen from the bottom of the modeling tank 20 under a pressure of 44 kPa, a buffer region 11 containing the polymerizable composition 10 and oxygen is formed on the base material 21, and a buffer region 11 is formed above the buffer region 11. A cured region 12 having a lower oxygen concentration than region 11 was formed.
The permeation flux of oxygen is 3.4×10 3 kmol/(s·m 2 ).

そして、光源40として紫外線源:LEDプロジェクタ(Texas Instruments社製のDLP(VISITECH LE4910H UV-388))から光を面状に照射しながら造形ステージ30を上昇させることにより、燃焼試験用テストピース、引張試験用テストピース及び荷重たわみ温度測定用テストピースを作製した。このとき、紫外線の照射強度は、1mW/cmとした。また、造形ステージ30の引き上げ速度は、50mm/hrとした。Then, as the light source 40, an ultraviolet light source: an LED projector (Texas Instruments DLP (VISITECH LE4910H UV-388)) is used to irradiate light from a surface, while the modeling stage 30 is raised while a test piece for a combustion test, a tensile A test piece for testing and a test piece for measurement of deflection temperature under load were produced. At this time, the irradiation intensity of the ultraviolet rays was set to 1 mW/cm 2 . Moreover, the lifting speed of the modeling stage 30 was set to 50 mm/hr.

なお、テストピース16の作製においては、加圧条件を2150kPaとし、紫外線の照射強度を200mWcmとした。このときの酸素の透過流束は、168×10kmol/(s・m)である。In the production of the test piece 16, the pressurization condition was set to 2150 kPa, and the irradiation intensity of ultraviolet rays was set to 200 mWcm 2 . The permeation flux of oxygen at this time is 168×10 3 kmol/(s·m 2 ).

また、テストピース9~16の作製では、得られたテストピースをイソプロピルアルコールで洗浄した後、オーブン中で120℃で4時間加熱を行った後、更に150℃で4時間、更に180℃で4時間の加熱処理を行った。
テストピース17及び18の作製では、得られたテストピースをイソプロピルアルコールで洗浄した後、オーブン中で120℃で8時間加熱処理を行った。
テストピース19の作製では、得られたテストピースをイソプロピルアルコールで洗浄した後、オーブン中で、120℃で4時間加熱を行った後、更に150℃で4時間、更に180℃で4時間、更に220℃で4時間の加熱処理を行った。
In the preparation of test pieces 9 to 16, the obtained test pieces were washed with isopropyl alcohol, heated in an oven at 120° C. for 4 hours, further heated at 150° C. for 4 hours, and further heated at 180° C. for 4 hours. heat treatment for hours.
In the production of test pieces 17 and 18, the obtained test pieces were washed with isopropyl alcohol and then heat-treated in an oven at 120° C. for 8 hours.
In the preparation of test piece 19, the obtained test piece was washed with isopropyl alcohol, heated in an oven at 120° C. for 4 hours, further heated at 150° C. for 4 hours, further heated at 180° C. for 4 hours, and further heated at 180° C. for 4 hours. Heat treatment was performed at 220° C. for 4 hours.

また、燃焼試験用テストピースは、125mm×13mm×1.5mmの短冊状のテストピースを長手方向が造形方向(造形ステージ30の引き上げ方向)となるように光造形を行った。
引張試験用テストピースは、JIS K 7161-2(ISO 527-2) 1A型の引張試験用テストピースを長手方向が造形方向となるように光造形を行った。
荷重たわみ温度測定用テストピースは、80mm×10mm×4mmのテストピースを長手方向が造形方向となるように光造形を行った。
Also, as the test piece for the combustion test, a strip-shaped test piece of 125 mm×13 mm×1.5 mm was subjected to stereolithography so that the longitudinal direction was the molding direction (lifting direction of the molding stage 30).
As a test piece for tensile test, a JIS K 7161-2 (ISO 527-2) type 1A test piece for tensile test was subjected to stereolithography so that the longitudinal direction was the molding direction.
As the test piece for measuring deflection temperature under load, a test piece of 80 mm x 10 mm x 4 mm was subjected to stereolithography so that the longitudinal direction was the molding direction.

《評価》
得られたテストピース1~19について、下記各評価を行った。
評価結果を表Iに示す。
"evaluation"
The obtained test pieces 1 to 19 were subjected to the following evaluations.
The evaluation results are shown in Table I.

〈燃焼性の評価〉
燃焼試験用テストピースを用い、UL-94の試験方法により燃焼試験を実施し、下記評価基準に従って燃焼性を評価した。
<Evaluation of combustibility>
Using a test piece for combustion test, a combustion test was conducted according to the test method of UL-94, and flammability was evaluated according to the following evaluation criteria.

○:V-0を達成した
△:HBを達成したが、V-0を達成できなかった
×:HBを達成できなかった
○: Achieved V-0 △: Achieved HB, but could not achieve V-0 ×: Could not achieve HB

〈引張強度の評価〉
引張試験用テストピースについて、JIS K 7161-1に準拠し、下記評価基準に従って引張強度を評価した。このとき、掴み具間の距離は115mm、試験速度は5mm/分とした。そして、破断時の応力を試験片の断面積で割った値を引張強度として算出した。
<Evaluation of tensile strength>
The tensile strength of the test piece for tensile test was evaluated according to the following evaluation criteria in accordance with JIS K 7161-1. At this time, the distance between the grips was 115 mm, and the test speed was 5 mm/min. Then, the value obtained by dividing the stress at break by the cross-sectional area of the test piece was calculated as the tensile strength.

◎:150MPa≦引張強度
○:40MPa≦引張強度<150MPa
△:10MPa≦引張強度<40MPa
◎: 150 MPa ≤ tensile strength ○: 40 MPa ≤ tensile strength < 150 MPa
△: 10 MPa ≤ tensile strength < 40 MPa

〈荷重たわみ温度の測定〉
荷重たわみ温度測定用テストピースについて、ISO75-1及び2に準拠し、東洋精機製作所製熱ひずみ測定装置を使用して、フラットワイズ方式にて支点間距離64mm、曲げ応力0.45MPaで荷重たわみ温度を測定し、下記評価基準に従って評価した。
<Measurement of deflection temperature under load>
Regarding the test piece for measuring the deflection temperature under load, in accordance with ISO 75-1 and 2, using a thermal strain measuring device manufactured by Toyo Seiki Seisakusho, the deflection temperature under load is measured at a flatwise method with a distance between fulcrums of 64 mm and a bending stress of 0.45 MPa. was measured and evaluated according to the following evaluation criteria.

◎:150℃以上
○:50℃以上、150℃未満
◎: 150 ° C. or higher ○: 50 ° C. or higher and less than 150 ° C.

Figure 0007163958000001
Figure 0007163958000001

表Iから明らかなように、本発明の重合性組成物を用いたテストピースは、比較例のテストピースと比べて、優れた引張強度及び荷重たわみ温度を有しつつ、燃焼性に優れていることが分かる。
具体的には、難燃剤保護材を含まない重合性組成物1を用いて作製したテストピース1と、難燃剤を含まない重合性組成物2を用いて作製したテストピース2とに比べて、難燃剤と難燃剤保護材との両方を含む重合性組成物3~19を用いて作製したテストピース3~19は、難燃性が向上した。難燃剤保護材が存在すると、重合性組成物が、酸素の存在下で比較的強度の高い活性エネルギー線(紫外線)に照射されたとしても、難燃剤の分解又は酸化が抑制され、難燃剤はその機能を十分に果たすことが可能となる。
As is clear from Table I, the test pieces using the polymerizable composition of the present invention have excellent tensile strength and deflection temperature under load and excellent combustibility compared to the test pieces of the comparative examples. I understand.
Specifically, compared to the test piece 1 produced using the polymerizable composition 1 containing no flame retardant protective material and the test piece 2 produced using the polymerizable composition 2 containing no flame retardant, Test pieces 3 to 19 prepared using polymerizable compositions 3 to 19 containing both a flame retardant and a flame retardant protective material exhibited improved flame retardancy. When the flame retardant protective material is present, even if the polymerizable composition is irradiated with relatively high intensity active energy rays (ultraviolet rays) in the presence of oxygen, decomposition or oxidation of the flame retardant is suppressed, and the flame retardant is It becomes possible to perform the function sufficiently.

特に、テストピース3~8からも分かるように、難燃剤がハロゲン系難燃剤、リン系難燃剤、又は窒素系難燃剤であり、難燃剤保護剤がアミン系光安定剤である場合、重合性組成物中の樹脂成分(光重合性化合物、熱重合性化合物)100質量部に対して、難燃剤を2~20質量部含有し、難燃剤保護剤を0.1~5質量部含有するもの(テストピース4、5、7及び8)は、難燃剤の分解又は酸化を防止することと、難燃剤又は難燃剤保護材の添加による機械強度の低下を防止することを同時に実現することができる。なお、テストピース17についても同様である。 In particular, as can be seen from test pieces 3 to 8, when the flame retardant is a halogen-based flame retardant, a phosphorus-based flame retardant, or a nitrogen-based flame retardant, and the flame retardant protective agent is an amine-based light stabilizer, polymerizable A composition containing 2 to 20 parts by mass of a flame retardant and 0.1 to 5 parts by mass of a flame retardant protective agent per 100 parts by mass of the resin component (photopolymerizable compound, thermally polymerizable compound) in the composition. (Test pieces 4, 5, 7 and 8) can simultaneously prevent the decomposition or oxidation of the flame retardant and prevent the decrease in mechanical strength due to the addition of the flame retardant or flame retardant protective material. . Incidentally, the same applies to the test piece 17 as well.

また、熱重合性化合物を更に含有する重合性組成物9~19を用いて作製したテストピース9~19は、熱重合性化合物の熱重合により、より高い耐熱性を有する重合体が形成されるため、立体造形物の耐熱性が更に向上した。
特に、テストピース9~14からも分かるように、難燃剤が金属水酸化物系難燃剤であり、難燃剤保護剤がフェノール系酸化防止剤、ホスファイト系酸化防止剤又はチオール系酸化防止剤である場合、重合性組成物中の樹脂成分(光重合性化合物、熱重合性化合物)100質量部に対して、難燃剤を5~50質量部含有し、難燃剤保護剤を0.1~5質量部含有するもの(テストピース10、11、13及び14)は、難燃剤の分解又は酸化を防止することと、難燃剤又は難燃剤保護材の添加による機械強度の低下を防止することを同時に実現することができる。なお、テストピース1及び1についても同様である。
また、テストピース15及び16からも分かるように、フィラーを更に含有する重合性組成物16を用いて作製したテストピース16は、フィラーの補強効果により立体造形物の機械強度が更に向上した。
In addition, in test pieces 9 to 19 produced using polymerizable compositions 9 to 19 further containing a thermally polymerizable compound, a polymer having higher heat resistance is formed by thermal polymerization of the thermally polymerizable compound. Therefore, the heat resistance of the three-dimensional object was further improved.
In particular, as can be seen from test pieces 9 to 14, the flame retardant is a metal hydroxide flame retardant, and the flame retardant protective agent is a phenol antioxidant, a phosphite antioxidant, or a thiol antioxidant. In some cases, the resin component (photopolymerizable compound, thermally polymerizable compound) in the polymerizable composition contains 5 to 50 parts by mass of the flame retardant and 0.1 to 5 parts by mass of the flame retardant protective agent. Those containing parts by mass (test pieces 10, 11, 13 and 14) simultaneously prevent the decomposition or oxidation of the flame retardant and prevent the decrease in mechanical strength due to the addition of the flame retardant or flame retardant protective material. can be realized. The same applies to the test pieces 1-8 and 1-9 .
In addition, as can be seen from test pieces 15 and 16, test piece 16 produced using polymerizable composition 16 further containing filler further improved the mechanical strength of the three-dimensional object due to the reinforcing effect of the filler.

以上から、液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有することが、難燃性に優れた立体造形物を製造可能とする重合性組成物及び立体造形物の製造方法を提供することに有用であることが確認できた。 From the above, the polymerizable composition and the three-dimensional shaped article that contain a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent can produce a three-dimensional shaped article with excellent flame retardancy. It has been confirmed that it is useful for providing a manufacturing method.

本発明の重合性組成物は、難燃性に優れる立体造形物を製造可能とする重合性組成物であり、継ぎ目がなく強度の高い立体造形物を製造することができる。 INDUSTRIAL APPLICABILITY The polymerizable composition of the present invention is a polymerizable composition that enables production of a three-dimensional shaped article having excellent flame retardancy, and enables production of a seamless three-dimensional shaped article with high strength.

1 製造装置
10 重合性組成物
11 バッファ領域
12 硬化領域
13 酸素の流路
14 重合性組成物を収容した造形槽における酸素の濃度変化方向を示す矢印
15 酸素の流路内における酸素の移動方向を示す矢印
20 造形槽
21 基材
30 造形ステージ
40 光源
41 空間光変調器
50 硬化物
1 Manufacturing apparatus 10 Polymerizable composition 11 Buffer region 12 Curing region 13 Oxygen channel 14 Arrow 15 showing the direction of oxygen concentration change in the modeling tank containing the polymerizable composition The direction of movement of oxygen in the oxygen channel Indicated arrow 20 modeling tank 21 substrate 30 modeling stage 40 light source 41 spatial light modulator 50 cured product

Claims (7)

立体造形物の製造に用いられる重合性組成物であって、
液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有し、
前記難燃剤が、ハロゲン系難燃剤、リン系難燃剤及び窒素系難燃剤から選択される少なくとも一つであり、
前記難燃剤保護剤が、アミン系光安定剤であり、
前記難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、2~20質量部の範囲内であり、
前記難燃剤保護剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であり、かつ、
前記立体造形物の製造方法が、下記工程(a)~(c)を含むことを特徴とする重合性組成物。
(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造形槽中に酸素を供給する工程
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
A polymerizable composition used for manufacturing a three-dimensional object,
Containing a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent,
The flame retardant is at least one selected from halogen-based flame retardants, phosphorus-based flame retardants and nitrogen-based flame retardants,
The flame retardant protective agent is an amine light stabilizer,
The content of the flame retardant is in the range of 2 to 20 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition,
The content of the flame retardant protective agent is in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and
The polymerizable composition, wherein the method for producing the three-dimensional object includes the following steps (a) to (c).
(a) a step of supplying oxygen into a modeling tank containing the polymerizable composition through a substrate that transmits oxygen and active energy rays; (b) the oxygen inhibits the effect of the polymerizable composition; (c) curing the polymerizable composition by selectively irradiating the active energy ray that has passed through the buffer region to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; A step of continuously irradiating the active energy ray while moving the polymerizable composition to form three-dimensionally and continuously a modeled object obtained by curing the polymerizable composition.
立体造形物の製造に用いられる重合性組成物であって、A polymerizable composition used for manufacturing a three-dimensional object,
液体状の光重合性化合物と、難燃剤と、難燃剤保護剤とを含有し、Containing a liquid photopolymerizable compound, a flame retardant, and a flame retardant protective agent,
前記難燃剤が、金属水酸化物系難燃剤であり、The flame retardant is a metal hydroxide flame retardant,
前記難燃剤保護剤が、フェノール系酸化防止剤、ホスファイト系酸化防止剤及びチオール系酸化防止剤から選択される少なくとも一つであり、The flame retardant protective agent is at least one selected from phenolic antioxidants, phosphite antioxidants and thiol antioxidants,
前記難燃剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、5~50質量部の範囲内であり、The content of the flame retardant is in the range of 5 to 50 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition,
前記難燃剤保護剤の含有量が、前記重合性組成物中の樹脂成分100質量部に対して、0.1~5質量部の範囲内であり、かつ、The content of the flame retardant protective agent is in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the resin component in the polymerizable composition, and
前記立体造形物の製造方法が、下記工程(a)~(c)を含むことを特徴とする重合性組成物。The polymerizable composition, wherein the method for producing the three-dimensional object includes the following steps (a) to (c).
(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造(a) a structure containing the polymerizable composition through a substrate that transmits oxygen and active energy rays;
形槽中に酸素を供給する工程Process of supplying oxygen into the shape tank
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程(b) selectively irradiating active energy rays that have passed through the buffer region where the effect of the polymerizable composition is inhibited by the oxygen to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; and curing the polymerizable composition
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程(c) a step of continuously irradiating the active energy ray while moving the cured polymerizable composition to three-dimensionally and continuously form a shaped article obtained by curing the polymerizable composition;
前記光重合性化合物が、(メタ)アクリロイル基を有する化合物であることを特徴とする請求項1又は請求項2に記載の重合性組成物。 3. The polymerizable composition according to claim 1, wherein the photopolymerizable compound is a compound having a (meth)acryloyl group. さらに、液体状の熱重合性化合物を含有することを特徴とする請求項1から請求項までのいずれか一項に記載の重合性組成物。 4. The polymerizable composition according to any one of claims 1 to 3 , further comprising a liquid thermally polymerizable compound. さらに、フィラーを含有することを特徴とする請求項1から請求項までのいずれか一項に記載の重合性組成物。 5. The polymerizable composition according to any one of claims 1 to 4 , further comprising a filler. 重合性組成物を用いる立体造形物の製造方法であって、
前記重合性組成物が、請求項1から請求項までのいずれか一項に記載の重合性組成物であり、
下記工程(a)~(c)を含み、かつ、
前記工程(b)では、1~200mW/cmの範囲内の活性エネルギー線を照射することを特徴とする立体造形物の製造方法。
(a)酸素及び活性エネルギー線を透過する基材を介して、前記重合性組成物を含む造形槽中に酸素を供給する工程
(b)前記酸素により前記重合性組成物の効果が阻害されるバッファ領域を透過した活性エネルギー線を、前記酸素の濃度がより低く前記重合性組成物が硬化可能な硬化領域に選択的に照射して、前記重合性組成物を硬化する工程
(c)前記硬化した重合性組成物を移動させながら前記活性エネルギー線を連続的に照射して、前記重合性組成物が硬化してなる造形物を立体的かつ連続的に形成する工程
A method for producing a three-dimensional object using a polymerizable composition,
The polymerizable composition is the polymerizable composition according to any one of claims 1 to 5 ,
including the following steps (a) to (c), and
A method for producing a three-dimensional object, wherein in the step (b), an active energy ray within a range of 1 to 200 mW/cm 2 is applied.
(a) a step of supplying oxygen into a modeling tank containing the polymerizable composition through a substrate that transmits oxygen and active energy rays; (b) the oxygen inhibits the effect of the polymerizable composition; (c) curing the polymerizable composition by selectively irradiating the active energy ray that has passed through the buffer region to the curing region where the oxygen concentration is lower and the polymerizable composition can be cured; A step of continuously irradiating the active energy ray while moving the polymerizable composition to form three-dimensionally and continuously a modeled object obtained by curing the polymerizable composition.
前記工程(a)では、前記造形槽中への酸素の透過流束を3.4×10~170×10kmol/(s・m)の範囲内とすることを特徴とする請求項に記載の立体造形物の製造方法。 3. The method according to claim 1, wherein in the step (a), the permeation flux of oxygen into the modeling tank is within the range of 3.4×10 3 to 170×10 3 kmol/(s·m 2 ). 7. The method for manufacturing a three-dimensional model according to 6 .
JP2020514124A 2018-04-17 2019-04-12 Polymerizable composition and method for producing three-dimensional shaped article Active JP7163958B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018078793 2018-04-17
JP2018078793 2018-04-17
PCT/JP2019/015887 WO2019203134A1 (en) 2018-04-17 2019-04-12 Polymerizable composition and method for producing three-dimensional modeled object

Publications (2)

Publication Number Publication Date
JPWO2019203134A1 JPWO2019203134A1 (en) 2021-05-20
JP7163958B2 true JP7163958B2 (en) 2022-11-01

Family

ID=68239124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020514124A Active JP7163958B2 (en) 2018-04-17 2019-04-12 Polymerizable composition and method for producing three-dimensional shaped article

Country Status (2)

Country Link
JP (1) JP7163958B2 (en)
WO (1) WO2019203134A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL299390A (en) 2021-06-09 2023-02-01 Altana New Tech Gmbh Dual Cure Cyanate Ester Inkjet Composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201500A (en) 2000-01-20 2001-07-27 Hitachi Ltd Photosetting resin and solid channel member
JP2015043793A (en) 2013-08-27 2015-03-12 ディーダブルエス エス・アール・エル Method for manufacturing artificial teeth
JP2015229271A (en) 2014-06-04 2015-12-21 東洋インキScホールディングス株式会社 Curable material for optical stereoscopic molding and stereoscopic molded article
JP2016509962A (en) 2013-02-12 2016-04-04 カーボンスリーディー,インコーポレイテッド Method and apparatus for three-dimensional fabrication
WO2017179139A1 (en) 2016-04-13 2017-10-19 株式会社日立製作所 Resin powder, resin molded article, and laser powder molding device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106404A (en) * 1996-06-19 1998-01-13 Takemoto Oil & Fat Co Ltd Manufacture of optical three dimensional shaped article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201500A (en) 2000-01-20 2001-07-27 Hitachi Ltd Photosetting resin and solid channel member
JP2016509962A (en) 2013-02-12 2016-04-04 カーボンスリーディー,インコーポレイテッド Method and apparatus for three-dimensional fabrication
JP2015043793A (en) 2013-08-27 2015-03-12 ディーダブルエス エス・アール・エル Method for manufacturing artificial teeth
JP2015229271A (en) 2014-06-04 2015-12-21 東洋インキScホールディングス株式会社 Curable material for optical stereoscopic molding and stereoscopic molded article
WO2017179139A1 (en) 2016-04-13 2017-10-19 株式会社日立製作所 Resin powder, resin molded article, and laser powder molding device

Also Published As

Publication number Publication date
WO2019203134A1 (en) 2019-10-24
JPWO2019203134A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP5704691B2 (en) Polymerizable diamond and resin composition containing the same
JP5587869B2 (en) Curable composition and cured product thereof
JP5796788B2 (en) Curable resin composition and cured product thereof
EP3849806B1 (en) Dual cure additive manufacturing resins for production of flame retardant objects
WO2019035387A1 (en) Rubber composition for shaping three-dimensional laminate
KR20180016272A (en) Liquid crystal sealing agent and liquid crystal display cell using the same, and manufacturing method for liquid crystal display cell
JP7163958B2 (en) Polymerizable composition and method for producing three-dimensional shaped article
JP7115491B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
EP3685989A1 (en) Resin composition, method for manufacturing three-dimensional object using resin composition, three-dimensional object, and object-gripping attachment, and industrial robot using object-gripping attachment
WO2020246489A1 (en) Curable resin composition, cured product thereof, and method for manufacturing three-dimensional article
JP7309315B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
KR101606303B1 (en) Resin composition for optical material
JP7163956B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
JP7180666B2 (en) RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT
JP6370382B2 (en) Liquid crystal sealant and liquid crystal display panel manufacturing method
JP2016089156A (en) Active energy ray-curable resin composition
TW202311431A (en) Curable resin composition
JP7173137B2 (en) Polymerizable composition for three-dimensional modeling, method for producing three-dimensional object using the same, and three-dimensional object
JP2020200450A (en) Curable resin composition, cured product thereof, and method of manufacturing three-dimensional object
JP2020204020A (en) Resin composition, cured film and electronic component
JP2016199672A (en) Photo/moisture curable resin composition, adhesive for electronic components, and adhesive for display elements
JP7210844B2 (en) Shaped film and photocurable composition
WO2024068708A1 (en) Radiation-curable resin composition used for manufacturing three-dimensional mold
WO2021125024A1 (en) Curable resin composition, cured object, and three-dimensional object
JP2023180708A (en) Curable resin composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R150 Certificate of patent or registration of utility model

Ref document number: 7163958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150