WO2021140851A1 - Sliding member and piston ring - Google Patents

Sliding member and piston ring Download PDF

Info

Publication number
WO2021140851A1
WO2021140851A1 PCT/JP2020/046832 JP2020046832W WO2021140851A1 WO 2021140851 A1 WO2021140851 A1 WO 2021140851A1 JP 2020046832 W JP2020046832 W JP 2020046832W WO 2021140851 A1 WO2021140851 A1 WO 2021140851A1
Authority
WO
WIPO (PCT)
Prior art keywords
dlc
region
film
less
sliding member
Prior art date
Application number
PCT/JP2020/046832
Other languages
French (fr)
Japanese (ja)
Inventor
正明 高谷
シンルイ デン
祐司 島
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to JP2021531664A priority Critical patent/JP6938807B1/en
Publication of WO2021140851A1 publication Critical patent/WO2021140851A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to sliding members, particularly sliding members that require high reliability, such as automobile parts such as piston rings.
  • Examples of this hard carbon film include amorphous carbon called diamond-like carbon (DLC).
  • DLC diamond-like carbon
  • the structural essence of DLC is a mixture of diamond bonds (sp 3 bonds) and graphite bonds (sp 2 bonds) as carbon bonds. Therefore, DLC has hardness, abrasion resistance, thermal conductivity, and chemical stability similar to diamond, while having solid lubricity similar to graphite, and is therefore suitable as a protective film for, for example, automobile parts. is there.
  • Patent Document 1 discloses a piston ring formed by coating the outer peripheral surface with a hydrogen-free DLC (ta-C: tetrahedramal aminophorus Carbon) film.
  • a hydrogen-free DLC film is preferable in that it can avoid deterioration of wear resistance due to hydrogen separation in a high temperature environment.
  • the DLC film contains carbon as a main component, it generally tends to be inferior in heat resistance. That is, the conventional hydrogen-free DLC film has a problem that the hardness decreases in a high temperature environment of 400 ° C. or higher.
  • the sliding environment becomes extremely severe due to high temperature and high surface pressure.
  • the sliding environment of sliding members other than piston rings has been getting hotter.
  • the sliding member is desired to have high heat resistance, in which a decrease in hardness of the DLC film can be suppressed even in the above-mentioned high temperature environment.
  • the conventional hydrogen-free DLC film has a problem that when it is slid under a lubricating oil containing an organic molybdenum-based compound, the wear of the DLC film is promoted and sufficient wear resistance cannot be obtained.
  • an amorphous carbon film (DLC film) forming a sliding surface of a sliding member is provided with a predetermined amount of silicon (Si) and boron (B). It is said that high heat resistance and high wear resistance under a lubricating oil containing an organic molybdenum-based compound can be realized by adopting a component composition that contains carbon and the balance is substantially free of hydrogen. I got the knowledge of.
  • the present invention has a DLC film having excellent heat resistance, can obtain high wear resistance regardless of whether or not the lubricating oil contains an organic molybdenum compound, and has a lower friction coefficient. It is an object of the present invention to provide a sliding member capable of realizing the above.
  • a first region containing a predetermined amount of Si and B, and Si and B were formed on the surface of a hydrogen-free amorphous carbon film (DLC film).
  • DLC film hydrogen-free amorphous carbon film
  • the abstract structure of the present invention completed based on the above findings is as follows.
  • the surface of the amorphous carbon film contains silicon: 2 atomic% or more and 20 atomic% or less, and boron: 2 atomic% or more and 15 atomic% or less, and the balance is carbon, which is substantially hydrogen-free.
  • the first region having a composition and the second region having a component composition consisting of carbon and substantially free of hydrogen are mixed.
  • the thickness of the amorphous carbon film is 20 ⁇ m or less, the thickness of the amorphous carbon film exceeds 20 ⁇ m in the entire range in the thickness direction of the amorphous carbon film.
  • the first region and the second region are mixed in a cross section perpendicular to the thickness direction in a range of at least 20 ⁇ m from the surface of the amorphous carbon film in the thickness direction, and the first region in the cross section.
  • the sliding member according to (1) above, wherein B'/ (A'+ B') is 0.05 or more and 0.40 or less, where A'is the area of A'and the area of the second region is B'.
  • a piston ring made of the sliding member according to any one of (1) to (6) above, the outer peripheral surface of which is the sliding surface.
  • the sliding member of the present invention has a DLC film having excellent heat resistance, can obtain high wear resistance regardless of whether or not the lubricating oil contains an organic molybdenum compound, and realizes a further low coefficient of friction. It is possible to do.
  • FIG. 1 It is a schematic cross-sectional view of the sliding member 100 by 1st Embodiment of this invention. It is a figure which schematically explains a part of the manufacturing process of the sliding member 100 by 1st Embodiment of this invention. It is a schematic cross-sectional view of the sliding member 200 according to the 2nd Embodiment of this invention. It is sectional drawing of the piston ring 300 by one Embodiment of this invention. It is an SEM image of the surface of the DLC film in the invention example (No. 4) of Table 1.
  • FIG. It is a schematic diagram which shows the form of the reciprocating sliding test. It is a schematic diagram explaining the calculation method of the wear depth.
  • the sliding member 100 is used under lubricating oil, and has a base material 10 and a surface 20A formed on the base material 10. It has an amorphous carbon film (DLC film) 20 as a sliding surface. Further, optionally, an intermediate layer 12 may be provided between the base material 10 and the amorphous carbon film 20.
  • DLC film amorphous carbon film
  • the sliding member 200 is used under lubricating oil, and has a base material 10 and a surface 30A formed on the base material 10. It has an amorphous carbon film (DLC film) 30 as a sliding surface. Further, optionally, an intermediate layer (not shown) may be provided between the base material 10 and the amorphous carbon film 30.
  • DLC film amorphous carbon film
  • the sliding members 100 and 200 according to the present embodiment are used in the presence of a lubricating oil containing an organic molybdenum compound or in the presence of a lubricating oil containing no organic molybdenum compound. That is, the use of the sliding members 100 and 200 in combination with a lubricating oil containing an organic molybdenum compound or a lubricating oil not containing an organic molybdenum compound also constitutes the present invention. Further, the sliding members 100 and 200, an arbitrary mating sliding member, and a lubricating oil containing an organic molybdenum-based compound or a lubricating oil containing no organic molybdenum-based compound supplied to the sliding surfaces of both of them. A sliding structure including the above also constitutes the present invention.
  • the organic molybdenum-based compound is preferably one or more organic molybdenum-based compounds selected from molybdenum dithiocarbamate (Mo-DTC) and molybdenum dithiophosphate (Mo-DTP). These organic molybdenum compounds can be decomposed by heat due to sliding to form a tribo film of molybdenum disulfide (MoS 2) on the sliding surface of the mating material that slides with the DLC film.
  • Mo-DTC molybdenum dithiocarbamate
  • Mo-DTP molybdenum dithiophosphate
  • the material of the base material 10 is not particularly limited as long as it has the strength required as the base material of the sliding member.
  • preferred materials for the base material 10 include steel, martensitic stainless steel, austenitic stainless steel, and high-grade cast iron.
  • resin is mentioned as the material of the base material 10
  • the material of the base material 10 is an aluminum alloy or the like. Can be mentioned.
  • the roughness of the surface of the base material 10 is preferably 0.01 ⁇ m or more in arithmetic average roughness Ra.
  • the surface roughness of the base material 10 is less than 0.01 ⁇ m in Ra, the surface becomes almost a mirror surface, and the first DLC layer 14 and the second DLC layer 16 (see FIGS. 1 and 2) having appropriate surface roughness described later are formed. Because it cannot be done.
  • the upper limit of the surface roughness of the base material 10 applied to the first embodiment is not particularly limited, but the surface roughness of the base material 10 is 0.15 ⁇ m or less in Ra in consideration of the polishing allowance of the final surface polishing. Is preferable.
  • the surface roughness of the base material 10 can be controlled by adjusting the degree of polishing of the base material surface. Further, the surface of the base material can be honed to intentionally form the surface roughness.
  • the surface roughness of the base material 10 is not particularly limited, but it can be the same as when applied to the first embodiment.
  • the intermediate layer 12 has a function of relaxing the stress at the interface with the base material 10 by being formed between the base material 10 and the DLC films 20 and 30, and enhancing the adhesion of the DLC films 20 and 30.
  • the intermediate layer 12 is composed of one or more elements selected from the group consisting of Cr, Ti, Co, V, Mo, Si and W or their carbides, nitrides and carbonitrides. It is preferable to use the above.
  • the thickness of the intermediate layer 12 is preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more.
  • the thickness of the intermediate layer 12 is preferably 0.6 ⁇ m or less, and is 0. More preferably, it is 5.5 ⁇ m or less.
  • the intermediate layer 12 As a method for forming the intermediate layer 12, for example, a sputtering method can be mentioned.
  • the washed base material 10 is placed in the vacuum chamber of the PVD film forming apparatus, and the intermediate layer 12 is formed by sputter discharge of the target with Ar gas introduced.
  • the target may be selected from Cr, Ti, Co, V, Mo, Si and W.
  • the thickness of the intermediate layer 12 can be adjusted by adjusting the discharge time of the target.
  • the DLC film 20 applied to the first embodiment is formed on the surface of the base material 10 when the intermediate layer 12 is not formed, and when the intermediate layer 12 is formed, the DLC film 20 is formed on the surface of the base material 10. , Formed on the surface of the intermediate layer 12.
  • the DLC film 20 is composed of a first DLC layer (Si—B-containing H-free DLC layer) 14 containing a predetermined amount of Si and B, and a second DLC containing only C without containing Si and B.
  • the layers (H-free DLC layer) 16 are alternately laminated a plurality of times while having a predetermined surface roughness. Then, referring to FIG. 2 in addition to FIG.
  • the surface of the uppermost second DLC layer (H-free DLC layer) 16 having a predetermined surface roughness is polished by a predetermined amount to form the DLC film 20.
  • the first DLC layer (Si—B-containing H-free DLC layer) 14 is exposed on the surface 20A, and the first region (Si—B-containing region) 18A and the second DLC layer (H-free DLC layer) 16 remain.
  • the second region (ta-C region) 18B is mixed.
  • FIGS. 1 and 2 show an example in which the uppermost layer is the second DLC layer 16, the present invention is not limited to this, and the uppermost layer may be the first DLC layer 14.
  • a DLC film 20 is formed by polishing the surface of the uppermost first DLC layer 14 having a predetermined surface roughness by a predetermined amount, and the first DLC layer (Si—B-containing H) is formed on the surface 20A.
  • the first region (Si—B-containing region) 18A in which the free DLC layer (14) remains and the second region (ta-C region) 18B in which the second DLC layer (H-free DLC layer) 16 is exposed are mixed. Become.
  • the lowermost layer is not particularly limited, and may be the first DLC layer 14 or the second DLC layer 16.
  • the DLC film 30 applied to the second embodiment is formed on the surface of the base material 10 when the intermediate layer is not formed, and is intermediate when the intermediate layer is formed. Formed on the surface of the layer.
  • the DLC film 30 is composed of only C without containing Si and B, using the first DLC portion (Si—B-containing H-free DLC portion) 24 containing a predetermined amount of Si and B as a matrix.
  • the second DLC part (H-free DLC part) 26 has a film structure dispersed in the matrix.
  • the surface of the DLC film 30 has been polished by a predetermined amount, and as a result, the first region (Si-) in which the first DLC portion (Si—B-containing H-free DLC portion) 24 is exposed on the surface 30A of the DLC film 30.
  • the B-containing region) 28A and the second region (ta-C region) 28B where the second DLC portion (H-free DLC portion) 26 is exposed are mixed.
  • the first DLC layer 14 and the first DLC part 24 contain silicon: 2 atomic% or more and 20 atomic% or less, and boron: 2 atomic% or more and 15 atomic% or less, and the balance is carbon and is substantially hydrogen-free.
  • the first DLC layer 14 and the first DLC unit 24 preferably further contain a predetermined amount of one or both of nitrogen (N) and oxygen (O). The fact that it is amorphous carbon can be confirmed by Raman spectrum measurement using a Raman spectrophotometer (Ar laser).
  • the first DLC layer 14 and the first DLC part 24 are improved in the heat resistance of the DLC films 20 and 30 and the wear resistance under the lubricating oil containing the organic molybdenum compound.
  • the present inventors consider the action of obtaining such an effect as follows.
  • the carbon dangling bond in the DLC film and Mo in the lubricating oil combine to form hard molybdenum carbide (MoC) particles.
  • MoC molybdenum carbide
  • the MoC particles accelerate the wear of the DLC film.
  • the first DLC layer 14 and the first DLC part 24 contain a predetermined amount of Si and B, the dangling bond density of carbon in the first DLC layer 14 and the first DLC part 24 is reduced. As a result, the formation of hard MoC particles is suppressed. As a result, high wear resistance can be obtained under a lubricating oil containing an organic molybdenum compound.
  • the first DLC layer 14 and the first DLC unit 24 contain a predetermined amount of Si and B
  • the first DLC layer 14 is exposed as a sliding surface due to the reaction of Si and B with oxygen in a high temperature environment. It is considered that a dense SiO 2 film and a B 2 O 3 film are formed on the surface of the first DLC portion 24, and these films function as protective films to improve heat resistance.
  • the Si content is preferably 2 atomic% or more and 5 atomic% or more
  • the B content is preferably 2 atomic% or more and 5 atomic% or more
  • the Si content and B content are preferably 10 atomic% or more.
  • the Si content is preferably 20 atomic% or less and preferably 15 atomic% or less
  • the B content is preferably 15 atomic% or less and preferably 12 atomic% or less, and is preferably 10 atomic% or less. Is more preferable.
  • the total of the Si content and the B content is preferably 30 atomic% or less.
  • first DLC layer 14 and the first DLC part 24 contain hydrogen
  • the temperature of the first DLC layer 14 and the first DLC part 24 becomes high due to sliding
  • hydrogen is desorbed and the first DLC layer 14 and the first DLC part 24 deteriorate.
  • wear of the first DLC layer 14 and the first DLC portion 24 is promoted. Therefore, it is assumed that the first DLC layer 14 and the first DLC unit 24 do not substantially contain hydrogen. This makes it possible to avoid deterioration of wear resistance due to the release of hydrogen in a high temperature environment.
  • substantially free of hydrogen as used herein means that the hydrogen content in the first DLC layer 14 and the first DLC unit 24 is 3 atomic% or less.
  • the first DLC layer 14 and the first DLC unit 24 may contain nitrogen (N).
  • N nitrogen
  • BN has a layered lattice structure with low shear resistance, it exhibits a friction reducing effect, and Si 3 N 4 has excellent fracture toughness, which contributes to improvement of wear resistance.
  • the N content is preferably 5 atomic% or more.
  • the N content exceeds 15 atomic%, the formation of the sp 3 bond of carbon is inhibited, so that the first DLC layer and the first DLC portion having the desired hardness cannot be obtained, and the heat resistance and wear resistance Both deteriorate. Therefore, when the first DLC layer 14 and the first DLC unit 24 contain nitrogen, the N content thereof is 15 atomic% or less, preferably 12 atomic% or less.
  • the first DLC layer 14 and the first DLC unit 24 may contain oxygen (O).
  • O oxygen
  • the surfaces of the first DLC layer 14 and the first DLC portion 24 become hot due to sliding, oxide layers of SiO 2 and B 2 O 3 are likely to be formed, and the oxide layers of SiO 2 and B 2 O 3 are easily formed in the lubricating oil.
  • the O content is preferably 2 atomic% or more.
  • the total content of nitrogen and oxygen is preferably 15 atomic% or less.
  • the second DLC layer 16 and the second DLC portion 26 have a substantially hydrogen-free component composition composed of carbon.
  • the fact that it is amorphous carbon can be confirmed by Raman spectrum measurement using a Raman spectrophotometer (Ar laser).
  • the second DLC layer 16 and the second DLC portion 26 contribute to the improvement of the wear resistance under the lubricating oil containing no organic molybdenum compound and the reduction of the friction coefficient.
  • the present inventors consider the action of obtaining such an effect as follows.
  • the second DLC layer 16 and the second DLC portion 26 are substantially composed of carbon only, graphitization due to sliding heat is promoted, which contributes to a decrease in the friction coefficient. Further, by reducing the friction coefficient, the sliding load is reduced, and the amount of wear is suppressed under the lubricating oil containing no organic molybdenum compound.
  • the second DLC layer 16 and the second DLC section 26 are also substantially free of hydrogen. This makes it possible to avoid deterioration of wear resistance due to the release of hydrogen in a high temperature environment.
  • substantially free of hydrogen as used herein means that the hydrogen content in the second DLC layer 16 and the second DLC section 26 is 3 atomic% or less.
  • the hydrogen content of the DLC film is evaluated by RBS (Rutherford Backscattering Spectrometry) / HFS (Hydrogen Forward Scattering Spectroscopy) for the DLC film formed on a flat surface or a surface having a sufficiently large curvature. be able to.
  • RBS Rutherford Backscattering Spectrometry
  • HFS Hydrogen Forward Scattering Spectroscopy
  • the DLC film formed on an uneven sliding surface such as the outer peripheral surface of the piston ring is evaluated by combining RBS / HFS and SIMS (Secondary Ion Mass Spectrometry).
  • RBS / HFS is a known method for analyzing a film composition, it cannot be applied to the analysis of uneven surfaces. Therefore, RBS / HFS and SIMS are combined as follows.
  • a mirror-polished flat test piece (hardened SKH51 disk, ⁇ 25 ⁇ thickness 5 mm, hardness HRC60 to 63) is subjected to carbon to be measured as a reference value. Form a film.
  • the film is formed on the reference sample by introducing C 2 H 2 , Ar, and H 2 as atmospheric gases using a reactive sputtering method. Then, by varying the flow rate of H 2 and / or C 2 H 2 flow rate is introduced to adjust the amount of hydrogen contained in the carbon film. In this way, carbon films composed of hydrogen and carbon and having different hydrogen contents are formed, and the hydrogen content and carbon content of these are evaluated by RBS / HFS.
  • SIMS SIMS analysis
  • the hydrogen content and carbon content (unit: atomic%) obtained by RBS / HFS and the secondary ions of hydrogen and carbon obtained by SIMS.
  • an empirical formula calibration curve showing the relationship with the strength ratio.
  • the hydrogen content and the carbon content can be calculated from the secondary ionic strengths of hydrogen and carbon of SIMS measured on the outer peripheral surface of the actual piston ring.
  • the value of the secondary ionic strength by SIMS the average value of the secondary ionic strength of each element observed at least at a depth of 20 nm or more from the surface of the carbon film and in the range of 50 nm square is adopted.
  • the Si, B, N and O contents of the first DLC layer and the first DLC part shall be measured by X-ray photoelectron spectroscopy (XPS) under the following conditions.
  • XPS X-ray photoelectron spectroscopy
  • Quantitative analysis of elements in XPS is performed based on the photoelectron peak area. Since the peak area is proportional to the atomic concentration and the sensitivity of the electron of interest, the value obtained by dividing the peak area by the relative sensitivity coefficient is proportional to the atomic concentration. Therefore, relative quantification can be performed with the sum of the quantified values of each element as 100 atomic%.
  • first region (Si—B-containing region) 18A and the second region (ta-C region) 18B are mixed on the surface 20A of the DLC film 20. deep.
  • first region (Si—B containing region) 28A and the second region (taC region) 28B are mixed on the surface 30A of the DLC film 30. ..
  • B / (A + B) is 0.05 or more and 0.40 or less, that is, the first region (Si ⁇ ). It is important to combine the second region (ta-C region) 18B and 28A at a predetermined ratio while mainly containing the B-containing region) 18A and 28A.
  • B / (A + B) is set to 0.05 or more, preferably 0.10 or more.
  • B / (A + B) exceeds 0.40, the first region (Si—B-containing region) 18A and 28A is too small on the surfaces 20A and 30A of the DLC film, and the second region (ta-C region) 18B, 28B is excessive. In this case, the heat resistance and the wear resistance under the lubricating oil containing the organic molybdenum compound become insufficient. Therefore, B / (A + B) is set to 0.40 or less, preferably 0.35 or less.
  • B / (A + B) shall be calculated by the following method.
  • the first region (Si-B-containing region) and the second region (Ta-C region) are different in the scanning electron microscope (SEM) due to the presence or absence of Si and B. It can be observed as a contrast. Therefore, the area of each region in the field of view can be calculated by analyzing the obtained image and binarizing it. Specifically, any three places on the surface of the DLC film are observed by FE-SEM, and a secondary electron image is taken. The observation conditions are an acceleration voltage of 5 kV and a magnification of 10,000 times.
  • the captured image is binarized by image analysis software, the area of the first region is V1, the area of the second region is V2, V2 / (V1 + V2) is obtained for each captured image, and the obtained three values are countable. On average, it is B / (A + B).
  • first regions 18A and 28A and the second regions 18B and 28B are "mixed" on the surfaces 20A and 30A of the DLC film means that the first regions 18A and 28A and the second regions 18B are on the surfaces 20A and 30A of the DLC film. , 28B are distributed and exist.
  • the indentation hardness of the first regions 18A and 28A is smaller than the indentation hardness of the second regions 18B and 28B.
  • the indentation hardness of the first regions 18A and 28A is preferably 15 GPa or more and 35 GPa or less.
  • the indentation hardness is 15 GPa or more, the wear resistance of the DLC film is not insufficient.
  • the indentation hardness is 35 GPa or less, the toughness of the DLC film is not insufficient, and chipping and peeling are unlikely to occur.
  • the indentation hardness of the second regions 18B and 28B is preferably 25 GPa or more and 50 GPa or less. If the indentation hardness is 25 GPa or more, the wear resistance and heat resistance of the DLC film will not be insufficient. On the other hand, when the indentation hardness is 50 GPa or less, the load of finishing is not increased, so that the cost increase can be suppressed.
  • the thickness of the DLC films 20 and 30 is not particularly limited, but is preferably 0.5 ⁇ m or more and 50 ⁇ m or less. This is because if the thickness is 0.5 ⁇ m or more, the durability of the DLC film is not insufficient, and if it is 50 ⁇ m or less, the adhesion to the base material is insufficient and peeling does not occur. In the present invention, the thickness of the DLC film shall be measured by carotest or by observing the cross section of the resin-embedded film.
  • B'/ (A'+ B') is 0.05 or more and 0.40 or less is maintained, where A'is the area of the first region and B'is the area of the second region in the cross section. It is preferable to be done.
  • B'/ (A'+ B') shall be obtained according to the above-mentioned method for obtaining B / (A + B).
  • the DLC film is polished to form a first sample having a polished surface in which 45 to 55% of the thickness is exposed from the surface of the DLC film.
  • the polished surface of the first sample and the polished surface of the second sample are each observed by FE-SEM, and a secondary electron image is taken.
  • the captured image is binarized by image analysis software, the area of the first region is V1', the area of the second region is V2', and V2'/ (V1'+ V2') is obtained in each captured image and obtained.
  • the three values are countably averaged to obtain B'/ (A'+ B'). If B'/ (A'+ B') is 0.05 or more and 0.40 or less in both the first sample and the second sample, B'/ (A) in the entire range in the thickness direction of the DLC film. It is considered that the state in which'+ B') is 0.05 or more and 0.40 or less is maintained.
  • the DLC film is polished to have a first sample having a polished surface where a position of 10 ⁇ m from the surface of the DLC film is exposed in the thickness direction, and a first sample having a polished surface and a thickness direction from the surface of the DLC film.
  • the polished surface of the first sample and the polished surface of the second sample are each observed by FE-SEM, and a secondary electron image is taken.
  • the captured image is binarized by image analysis software, the area of the first region is V1', the area of the second region is V2', and V2'/ (V1'+ V2') is obtained in each captured image and obtained.
  • B'/ (A'+ B') is 0.05 or more and 0.40 or less in both the first sample and the second sample, B is in the range of at least 20 ⁇ m in the thickness direction from the surface of the DLC film. It is considered that the state in which'/ (A'+ B') is 0.05 or more and 0.40 or less is maintained.
  • the surface roughness of each of the first DLC layer 14 and the second DLC layer 16 is preferably 0.01 ⁇ m or more and 0.15 ⁇ m or less in terms of arithmetic mean roughness Ra.
  • a cross-sectional sample in the thickness direction of the DLC film is produced by focused ion beam (FIB) processing, a transmission electron microscope image (TEM image) is observed, and the adjacent TEM image is adjacent based on the change in brightness of the obtained TEM image.
  • FIB focused ion beam
  • TEM image transmission electron microscope image
  • the adjacent TEM image is adjacent based on the change in brightness of the obtained TEM image.
  • the surface shape (cross-sectional shape) of each DLC layer is defined as the boundary between adjacent layers where the change in brightness is halved.
  • the arithmetic average roughness Ra is obtained according to JIS B0601 (2001) using surface roughness measurement software or the like. The measurement shall be performed three times, and the average value of the three times shall be adopted.
  • each of the first DLC layer 14 and the second DLC layer 16 are not particularly limited, but a desired B / (A + B) is realized and a desired B'/ (A'+ B') is realized. ) Can be maintained as appropriate.
  • the surface roughness of the DLC films 20 and 30 is preferably 0.1 ⁇ m or less in terms of arithmetic mean roughness Ra. As a result, the aggression of the DLC film to the mating material can be reduced.
  • the DLC films 20 and 30 can be formed by using a PVD method such as ion plating by vacuum arc discharge (VA method) using a carbon target, for example.
  • VA method ion plating by vacuum arc discharge
  • the PVD method can form a DLC film having high hardness and excellent wear resistance containing almost no hydrogen.
  • a DLC film is formed by using the ion plating method by vacuum arc discharge, its hardness can be adjusted by a bias voltage applied to the base material or the like. Further, the film thickness of the DLC film can be adjusted by changing conditions such as the discharge time of the target.
  • FCVA method filter type cathode vacuum arc method
  • a carbon alloy target containing Si and B can be used for film formation of the first DLC layer (Si—B-containing H-free DLC layer) 14 and the first DLC portion (Si—B-containing H-free DLC portion) 24. That is, in order for the first DLC layer 14 and the first DLC portion 24 to contain a predetermined amount of Si and B, for example, graphite containing silicon carbide (SiC) and boron carbide (B 4 C) is used as the cathode material. By adjusting these contents in the cathode material, the Si content and the B content in the first DLC layer 14 and the first DLC unit 24 can be controlled. Further, in order to contain a predetermined amount of N and O in the first DLC layer 14 and the first DLC unit 24, N and O may be added to the carbon alloy target.
  • SiC silicon carbide
  • B 4 C boron carbide
  • a carbon target containing no Si and B can be used for film formation of the second DLC layer (H-free DLC layer) 16 and the second DLC part (H-free DLC part) 26.
  • a base material 10 having a surface roughness of 0.01 ⁇ m or more is prepared, and an intermediate layer 12 is optionally formed on the surface. To do. After that, a plurality of sets of a first DLC layer (Si—B-containing H-free DLC layer) 14 and a second DLC layer (H-free DLC layer) 16 are alternately arranged on the surface of the base material 10 or the surface of the intermediate layer 12. Laminate.
  • the surface of the base material 10 is provided with a predetermined surface roughness, and carbon fine particles (droplets) and the like are incorporated into the film in the process of film formation, so that the first DLC layer 14 and the first DLC layer 14 A predetermined surface roughness is provided on each surface of the 2DLC layer 16.
  • the laminated structure of the first DLC layer 14 and the second DLC layer 16 is a group that rotates a Si—B-containing carbon alloy target for forming the first DLC layer 14 and a carbon target for forming the second DLC layer 16. It can be obtained by arranging the base material in a concentric circle around the material. For example, if the Si—B-containing carbon alloy target and the carbon target are arranged so as to be offset by 180 °, a laminated structure of the first DLC layer 14 and the second DLC layer 16 can be obtained.
  • the thickness ratio of the first DLC layer 14 and the second DLC layer 16 can be controlled by adjusting the rotation speed of the base material and the target discharge current.
  • B / (A + B) is controlled in the range of 0.05 or more and 0.40 or less.
  • a Si—B-containing carbon alloy target for forming the first DLC portion 24 and a carbon target for forming the second DLC portion 26 are used. It can be obtained by arranging the rotating base material in a concentric circle around the base material. At that time, if the Si—B-containing carbon alloy target and the carbon target are arranged close to each other, a film structure in which the second DLC portion 26 is dispersed in the matrix of the first DLC portion 24 can be obtained.
  • the dispersion ratio of the first DLC unit 24 and the second DLC unit 26 can be controlled by adjusting the rotation speed of the base material and the target discharge current.
  • the hard regions 18A and 28A and the soft regions 18B and 28B can be mixed on the surfaces 20A and 30A of the DLC coatings 20 and 30, and B'
  • the state in which / (A'+ B') is 0.05 or more and 0.40 or less can be maintained.
  • the sliding members 100 and 200 include a piston ring, a piston, a piston pin, a tappet, a valve lifter, a shim, and a rocker arm used for a sliding portion of an internal combustion engine in which lubricating oil such as engine oil is interposed.
  • lubricating oil such as engine oil is interposed.
  • Cams, camshafts, timing gears, timing chains, etc., vanes, injectors, plungers, cylinders, etc. used in fuel supply systems, etc. can be applied to various products.
  • the piston ring 300 has a ring shape with four surfaces of an outer peripheral surface 32, an inner peripheral surface 34, and upper and lower surfaces 36A and 36B, and the outer peripheral surface 32 is shown in FIG. It is formed by the DLC film 20 shown or the DLC film 30 shown in FIG. That is, the piston ring 300 of the present embodiment is composed of the sliding member 100 or the sliding member 200, and its outer peripheral surface 22 is the surface 20A of the DLC film shown in FIG. 1 or the surface of the DLC film shown in FIG. It becomes 30A.
  • DLC films of various examples shown in Table 1 were formed on the surface of a base material (surface roughness Ra: 0.01 ⁇ m) which is a columnar body ( ⁇ 6 mm ⁇ height 14 mm) of SUJ2 material (JIS G 4805). A sliding member was obtained.
  • the intermediate layer shown in Table 1 was formed on the surface of the base material, and the DLC film shown in Table 1 was formed on the intermediate layer to obtain a sliding member.
  • a film forming apparatus by a vacuum arc method was used for the formation of the DLC film.
  • SiC silicon carbide
  • B 4 C boron carbide
  • Si-B-containing carbon alloy target made of graphite was prepared a carbon target containing no Si and B.
  • the Si—B-containing carbon alloy target and the carbon target were arranged around the rotating base material in a concentric circle centered on the base material, shifted by 180 °.
  • a DLC film having a laminated structure of a first DLC layer and a second DLC layer was formed.
  • the surface of the DLC film was polished by a predetermined amount to reduce Ra to 0.1 ⁇ m or less.
  • the thickness ratio of the first DLC layer and the second DLC layer is controlled by adjusting the target discharge current, and by variously changing this thickness ratio, B / (A + B) and B'/ ( A'+ B') was controlled.
  • B / (A + B) and B'/ ( A'+ B') was controlled.
  • one or both of nitrogen and oxygen were further contained in the Si—B-containing carbon alloy target for forming the first DLC layer.
  • a first DLC layer was formed using a B-containing carbon alloy target containing boron carbide (B 4 C) and made of graphite.
  • a first DLC layer was formed using a Si-containing carbon alloy target containing silicon carbide (SiC) and made of graphite.
  • the Si content, B content, N content, and O content of the first DLC layer were determined by the methods described above and are shown in Table 1.
  • the thickness of the DLC film was measured by the Carotest and is shown in Table 1.
  • the B / (A + B) on the surface of the DLC film was determined by the method described above and is shown in Table 1.
  • the values of the first sample and the second sample were obtained by the method described above, and are shown in Table 1.
  • the indentation hardness of the first region and the second region was measured and shown in Table 1.
  • the indentation hardness was measured using an ultra-fine indentation hardness tester manufactured by Elionix Inc. As a condition, the test was carried out using a Belkovic indenter under a load such that the indentation depth was about 1/10 of the thickness of the DLC film.
  • Lubricating oil (1) Base oil PAO (2) Engine oil 0W-8 (Mo-DTC additive-free oil) (3) Engine oil 0W-8 (Mo-DTC added oil) (4) Engine oil 0W-20 (Mo-DTC additive-free oil) (5) Engine oil 0W-20 (Mo-DTC added oil) Lubricating oil temperature: 80 ° C
  • the sliding member of the present invention has a DLC film having excellent heat resistance, can obtain high wear resistance regardless of whether or not the lubricating oil contains an organic molybdenum compound, and realizes a further low coefficient of friction. It is possible to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is a sliding member which has a DLC film with excellent heat resistance, by which high abrasion resistance can be achieved regardless of whether a lubricating oil contains an organic molybdenum-based compound, and by which a low friction coefficient can be achieved. A sliding member 100 according to the present disclosure has: a substrate 10; and an amorphous carbon film 20 which is formed on the substrate 10 and has a surface 20A as a sliding surface. The present disclosure is characterized in that, on the surface 20A of the amorphous carbon film, a first region 18A having a component composition which does not substantially contain hydrogen and contains 2-20 at% of silicon and 2-15 at% of boron, with the remainder consisting of carbon coexists with a second region 18B having a component composition which does not substantially contain hydrogen and consists of carbon, and when, on the surface 20A, the area of the first region 18A is defined as A, and the area of the second region 18B is defined as B, B/(A+B) is 0.05-0.40.

Description

摺動部材及びピストンリングSliding members and piston rings
 本発明は、摺動部材、特にピストンリング等の自動車部品など、高い信頼性を要求される摺動部材に関する。 The present invention relates to sliding members, particularly sliding members that require high reliability, such as automobile parts such as piston rings.
 近年、自動車エンジンを中心とする内燃機関において、高出力化、長寿命化、燃費向上が求められている。そこで、例えば内燃機関等で使用される摺動部材の摺動面には、摩擦係数が低いことで知られている硬質炭素皮膜を形成することが一般的に行われている。 In recent years, in internal combustion engines centered on automobile engines, higher output, longer life, and improved fuel efficiency have been required. Therefore, for example, it is generally practiced to form a hard carbon film known to have a low coefficient of friction on the sliding surface of a sliding member used in an internal combustion engine or the like.
 この硬質炭素皮膜としては、ダイヤモンドライクカーボン(Diamond Like Carbon:DLC)と呼ばれる非晶質炭素が例示される。DLCの構造的本質は、炭素の結合としてダイヤモンド結合(sp3結合)とグラファイト結合(sp2結合)とが混在したものである。よって、DLCは、ダイヤモンドに類似した硬度、耐摩耗性、熱伝導性、化学安定性を有し、一方でグラファイトに類似した固体潤滑性を有することから、例えば自動車部品などの保護膜として好適である。 Examples of this hard carbon film include amorphous carbon called diamond-like carbon (DLC). The structural essence of DLC is a mixture of diamond bonds (sp 3 bonds) and graphite bonds (sp 2 bonds) as carbon bonds. Therefore, DLC has hardness, abrasion resistance, thermal conductivity, and chemical stability similar to diamond, while having solid lubricity similar to graphite, and is therefore suitable as a protective film for, for example, automobile parts. is there.
 特許文献1には、水素を含まないDLC(ta-C:tetrahedral amourphous Carbon)皮膜を外周面に被覆してなるピストンリングが開示されている。 Patent Document 1 discloses a piston ring formed by coating the outer peripheral surface with a hydrogen-free DLC (ta-C: tetrahedramal aminophorus Carbon) film.
特表2013-528697号公報Special Table 2013-528697
 特許文献1のように、水素フリーのDLC皮膜は、高温環境下における水素の離脱に起因する耐摩耗性の劣化を回避することができる点では好ましい。しかしながら、DLC皮膜は炭素を主成分とするため、一般に耐熱性に劣る傾向がある。すなわち、従来の水素フリーDLC皮膜は、400℃以上の高温環境下において硬度が低下してしまうという問題があった。例えば、環境保全に対応して燃費を向上させたダウンサイジングターボエンジン用のピストンリングの場合、高温かつ高面圧という、非常に厳しい摺動環境となる。ピストンリング以外の摺動部材においても、近年摺動環境は高温化しつつある。そのため、近年摺動部材には、上記のような高温環境下でもDLC皮膜の硬度低下が抑えられるという、高い耐熱性が望まれている。また、従来の水素フリーDLC皮膜では、有機モリブデン系化合物を含む潤滑油下で摺動させると、DLC皮膜の摩耗が促進されて、十分な耐摩耗性を得ることができないという問題があった。 As in Patent Document 1, a hydrogen-free DLC film is preferable in that it can avoid deterioration of wear resistance due to hydrogen separation in a high temperature environment. However, since the DLC film contains carbon as a main component, it generally tends to be inferior in heat resistance. That is, the conventional hydrogen-free DLC film has a problem that the hardness decreases in a high temperature environment of 400 ° C. or higher. For example, in the case of a piston ring for a downsizing turbo engine whose fuel efficiency is improved in response to environmental protection, the sliding environment becomes extremely severe due to high temperature and high surface pressure. In recent years, the sliding environment of sliding members other than piston rings has been getting hotter. Therefore, in recent years, the sliding member is desired to have high heat resistance, in which a decrease in hardness of the DLC film can be suppressed even in the above-mentioned high temperature environment. Further, the conventional hydrogen-free DLC film has a problem that when it is slid under a lubricating oil containing an organic molybdenum-based compound, the wear of the DLC film is promoted and sufficient wear resistance cannot be obtained.
 これらの問題を解決すべく本発明者らが検討したところ、摺動部材の摺動面を形成する非晶質炭素皮膜(DLC皮膜)を、所定量のケイ素(Si)及びホウ素(B)を含み、かつ、残部が炭素からなる実質的に水素を含まない成分組成とすることによって、高い耐熱性と、有機モリブデン系化合物を含む潤滑油下での高い耐摩耗性を実現することができるとの知見を得た。 As a result of studies by the present inventors to solve these problems, an amorphous carbon film (DLC film) forming a sliding surface of a sliding member is provided with a predetermined amount of silicon (Si) and boron (B). It is said that high heat resistance and high wear resistance under a lubricating oil containing an organic molybdenum-based compound can be realized by adopting a component composition that contains carbon and the balance is substantially free of hydrogen. I got the knowledge of.
 しかしながら、本発明者らがさらに検討を進めたところ、上記のようなSi-B含有水素フリーDLC皮膜の場合、有機モリブデン系化合物を含まない潤滑油下では高い耐摩耗性が得られないこと、また、摺動熱によるグラファイト化が促進されにくくなり、低摩擦係数を得にくくなることが判明した。 However, as a result of further studies by the present inventors, in the case of the above-mentioned Si-B-containing hydrogen-free DLC film, high abrasion resistance cannot be obtained under a lubricating oil containing no organic molybdenum compound. Further, it was found that graphitization due to sliding heat is less likely to be promoted, and it is difficult to obtain a low friction coefficient.
 そこで本発明は、上記課題に鑑み、耐熱性に優れたDLC皮膜を有し、潤滑油に有機モリブデン系化合物を含むか否かに関わらず高い耐摩耗性を得ることができ、さらに低い摩擦係数を実現することが可能な摺動部材を提供することを目的とする。 Therefore, in view of the above problems, the present invention has a DLC film having excellent heat resistance, can obtain high wear resistance regardless of whether or not the lubricating oil contains an organic molybdenum compound, and has a lower friction coefficient. It is an object of the present invention to provide a sliding member capable of realizing the above.
 上記課題を解決すべく本発明者らが鋭意検討したところ、水素フリーの非晶質炭素皮膜(DLC皮膜)の表面に、所定量のSi及びBを含有する第1領域と、Si及びBを含有せずCのみからなる第2領域とを混在させておき、しかも、当該表面における第1領域及び第2領域の面積比率を所定の範囲とすることによって、耐熱性、潤滑油の種類に依らない高い耐摩耗性、及び低い低摩擦係数の全ての特性を実現できることを見出した。 As a result of diligent studies by the present inventors in order to solve the above problems, a first region containing a predetermined amount of Si and B, and Si and B were formed on the surface of a hydrogen-free amorphous carbon film (DLC film). By mixing the second region consisting of only C without containing it, and setting the area ratio of the first region and the second region on the surface within a predetermined range, it depends on the heat resistance and the type of lubricating oil. It has been found that all the properties of no high wear resistance and low friction coefficient can be realized.
 上記知見に基づき完成された本発明の要旨構成は以下のとおりである。
 (1)基材と、
 該基材上に形成され、表面が摺動面となる非晶質炭素皮膜と、
を有し、
 前記非晶質炭素皮膜の前記表面には、ケイ素:2原子%以上20原子%以下、及びホウ素:2原子%以上15原子%以下を含み、残部が炭素からなる実質的に水素を含まない成分組成を有する第1領域と、炭素からなる実質的に水素を含まない成分組成を有する第2領域とが混在しており、
 前記表面における前記第1領域の面積をA、前記第2領域の面積をBとして、B/(A+B)が0.05以上0.40以下であることを特徴とする摺動部材。
The abstract structure of the present invention completed based on the above findings is as follows.
(1) Base material and
An amorphous carbon film formed on the base material and whose surface is a sliding surface,
Have,
The surface of the amorphous carbon film contains silicon: 2 atomic% or more and 20 atomic% or less, and boron: 2 atomic% or more and 15 atomic% or less, and the balance is carbon, which is substantially hydrogen-free. The first region having a composition and the second region having a component composition consisting of carbon and substantially free of hydrogen are mixed.
A sliding member having a B / (A + B) of 0.05 or more and 0.40 or less, where A is the area of the first region and B is the area of the second region on the surface.
 (2)前記非晶質炭素皮膜の厚さが20μm以下の場合は、前記非晶質炭素皮膜の厚み方向の全範囲において、前記非晶質炭素皮膜の厚さが20μm超えの場合には、前記非晶質炭素皮膜の前記表面から厚み方向に少なくとも20μmの範囲において、前記厚み方向に垂直な断面において、前記第1領域と前記第2領域が混在しており、前記断面における前記第1領域の面積をA’、前記第2領域の面積をB’として、B’/(A’+B’)が0.05以上0.40以下である、上記(1)に記載の摺動部材。 (2) When the thickness of the amorphous carbon film is 20 μm or less, the thickness of the amorphous carbon film exceeds 20 μm in the entire range in the thickness direction of the amorphous carbon film. The first region and the second region are mixed in a cross section perpendicular to the thickness direction in a range of at least 20 μm from the surface of the amorphous carbon film in the thickness direction, and the first region in the cross section. The sliding member according to (1) above, wherein B'/ (A'+ B') is 0.05 or more and 0.40 or less, where A'is the area of A'and the area of the second region is B'.
 (3)前記第1領域の成分組成が、窒素:15原子%以下及び酸素:15原子%以下の少なくとも一方をさらに含む、上記(1)又は(2)に記載の摺動部材。 (3) The sliding member according to (1) or (2) above, wherein the component composition of the first region further contains at least one of nitrogen: 15 atomic% or less and oxygen: 15 atomic% or less.
 (4)前記第1領域のインデンテーション硬さが前記第2領域のインデンテーション硬さよりも小さい、上記(1)~(3)のいずれか一項に記載の摺動部材。 (4) The sliding member according to any one of (1) to (3) above, wherein the indentation hardness of the first region is smaller than the indentation hardness of the second region.
 (5)前記非晶質炭素皮膜の厚さが0.5μm以上50μm以下である、上記(1)~(4)のいずれか一項に記載の摺動部材。 (5) The sliding member according to any one of (1) to (4) above, wherein the thickness of the amorphous carbon film is 0.5 μm or more and 50 μm or less.
 (6)前記基材と前記非晶質炭素皮膜との間に、Cr、Ti、Co、V、Mo、Si及びWからなる群から選択された一つ以上の元素またはその炭化物、窒化物、炭窒化物からなる中間層を有する、上記(1)~(5)のいずれか一項に記載の摺動部材。 (6) One or more elements selected from the group consisting of Cr, Ti, Co, V, Mo, Si and W, or carbides and nitrides thereof, between the base material and the amorphous carbon film. The sliding member according to any one of (1) to (5) above, which has an intermediate layer made of carbide.
 (7)上記(1)~(6)のいずれか一項に記載の摺動部材からなるピストンリングであって、その外周面が前記摺動面であるピストンリング。 (7) A piston ring made of the sliding member according to any one of (1) to (6) above, the outer peripheral surface of which is the sliding surface.
 本発明の摺動部材は、耐熱性に優れたDLC皮膜を有し、潤滑油に有機モリブデン系化合物を含むか否かに関わらず高い耐摩耗性を得ることができ、さらに低い摩擦係数を実現することが可能である。 The sliding member of the present invention has a DLC film having excellent heat resistance, can obtain high wear resistance regardless of whether or not the lubricating oil contains an organic molybdenum compound, and realizes a further low coefficient of friction. It is possible to do.
本発明の第1の実施形態による摺動部材100の模式断面図である。It is a schematic cross-sectional view of the sliding member 100 by 1st Embodiment of this invention. 本発明の第1の実施形態による摺動部材100の製造工程の一部を模式的に説明する図である。It is a figure which schematically explains a part of the manufacturing process of the sliding member 100 by 1st Embodiment of this invention. 本発明の第2の実施形態による摺動部材200の模式断面図である。It is a schematic cross-sectional view of the sliding member 200 according to the 2nd Embodiment of this invention. 本発明の一実施形態によるピストンリング300の断面斜視図である。It is sectional drawing of the piston ring 300 by one Embodiment of this invention. 表1の発明例(No.4)におけるDLC皮膜表面のSEM画像である。It is an SEM image of the surface of the DLC film in the invention example (No. 4) of Table 1. FIG. 往復摺動試験の形態を示す模式図である。It is a schematic diagram which shows the form of the reciprocating sliding test. 摩耗深さの算出方法を説明する模式図である。It is a schematic diagram explaining the calculation method of the wear depth.
 (摺動部材)
 図1を参照して、本発明の第1の実施形態による摺動部材100は、潤滑油下で使用されるものであり、基材10と、この基材10上に形成され、表面20Aが摺動面となる非晶質炭素皮膜(DLC皮膜)20と、を有する。また、任意で、基材10と非晶質炭素皮膜20との間に中間層12を有してもよい。
(Sliding member)
With reference to FIG. 1, the sliding member 100 according to the first embodiment of the present invention is used under lubricating oil, and has a base material 10 and a surface 20A formed on the base material 10. It has an amorphous carbon film (DLC film) 20 as a sliding surface. Further, optionally, an intermediate layer 12 may be provided between the base material 10 and the amorphous carbon film 20.
 図3を参照して、本発明の第2の実施形態による摺動部材200は、潤滑油下で使用されるものであり、基材10と、この基材10上に形成され、表面30Aが摺動面となる非晶質炭素皮膜(DLC皮膜)30と、を有する。また、任意で、基材10と非晶質炭素皮膜30との間に中間層(図示せず)を有してもよい。 With reference to FIG. 3, the sliding member 200 according to the second embodiment of the present invention is used under lubricating oil, and has a base material 10 and a surface 30A formed on the base material 10. It has an amorphous carbon film (DLC film) 30 as a sliding surface. Further, optionally, an intermediate layer (not shown) may be provided between the base material 10 and the amorphous carbon film 30.
 本実施形態による摺動部材100,200は、有機モリブデン系化合物を含む潤滑油の存在下で、又は、有機モリブデン系化合物を含まない潤滑油の存在下で使用される。すなわち、摺動部材100,200と、有機モリブデン系化合物を含む潤滑油又は有機モリブデン系化合物を含まない潤滑油とを組み合わせた使用も、本発明を構成する。さらには、摺動部材100,200と、任意の相手側摺動部材と、これら両者の摺動面に供給される有機モリブデン系化合物を含む潤滑油又は有機モリブデン系化合物を含まない潤滑油と、を含む摺動構造も、本発明を構成する。 The sliding members 100 and 200 according to the present embodiment are used in the presence of a lubricating oil containing an organic molybdenum compound or in the presence of a lubricating oil containing no organic molybdenum compound. That is, the use of the sliding members 100 and 200 in combination with a lubricating oil containing an organic molybdenum compound or a lubricating oil not containing an organic molybdenum compound also constitutes the present invention. Further, the sliding members 100 and 200, an arbitrary mating sliding member, and a lubricating oil containing an organic molybdenum-based compound or a lubricating oil containing no organic molybdenum-based compound supplied to the sliding surfaces of both of them. A sliding structure including the above also constitutes the present invention.
 有機モリブデン系化合物は、モリブデンジチオカーバメイト(Mo-DTC)及びモリブデンジチオフォスフェート(Mo-DTP)から選択される1以上の有機モリブデン系化合物であることが好ましい。これらの有機モリブデン系化合物は、摺動による熱によって分解して、DLC皮膜と摺動する相手材の摺動面に二硫化モリブデン(MoS2)のトライボフィルムを形成することができる。 The organic molybdenum-based compound is preferably one or more organic molybdenum-based compounds selected from molybdenum dithiocarbamate (Mo-DTC) and molybdenum dithiophosphate (Mo-DTP). These organic molybdenum compounds can be decomposed by heat due to sliding to form a tribo film of molybdenum disulfide (MoS 2) on the sliding surface of the mating material that slides with the DLC film.
 [基材]
 基材10の材質は、摺動部材の基材として必要な強度を有するものであれば特に限定されない。本実施形態の摺動部材100,200をピストンリングとする場合、基材10の好ましい材料としては、鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、高級鋳鉄等が挙げられる。本実施形態の摺動部材100,200をCVTなどのシールリングとする場合、基材10の材料としては樹脂が挙げられ、コンプレッサのベーンなどとする場合、基材10の材料としてはアルミ合金等が挙げられる。
[Base material]
The material of the base material 10 is not particularly limited as long as it has the strength required as the base material of the sliding member. When the sliding members 100 and 200 of the present embodiment are used as a piston ring, preferred materials for the base material 10 include steel, martensitic stainless steel, austenitic stainless steel, and high-grade cast iron. When the sliding members 100 and 200 of the present embodiment are used as a seal ring such as a CVT, resin is mentioned as the material of the base material 10, and when it is used as a vane of a compressor or the like, the material of the base material 10 is an aluminum alloy or the like. Can be mentioned.
 第1の実施形態に適用される場合、基材10の表面(DLC皮膜を形成する表面)の粗さは、算術平均粗さRaで0.01μm以上であることが好ましい。基材10の表面粗さがRaで0.01μm未満の場合、当該表面がほぼ鏡面となり、後述する適度な表面粗さの第1DLC層14及び第2DLC層16(図1,2参照)を形成することができないからである。第1の実施形態に適用される基材10の表面粗さの上限は特に限定されないが、最終表面研磨の研磨代を考慮すると、基材10の表面粗さはRaで0.15μm以下であることが好ましい。基材10の表面粗さは、基材表面の研磨の程度を調整することにより制御できる。また、基材表面にホーニング加工を施して、意図的に表面粗さを形成することもできる。なお、第2の実施形態に適用される場合、基材10の表面粗さは特に限定されないが、第1の実施形態に適用される場合と同様とすることができる。 When applied to the first embodiment, the roughness of the surface of the base material 10 (the surface forming the DLC film) is preferably 0.01 μm or more in arithmetic average roughness Ra. When the surface roughness of the base material 10 is less than 0.01 μm in Ra, the surface becomes almost a mirror surface, and the first DLC layer 14 and the second DLC layer 16 (see FIGS. 1 and 2) having appropriate surface roughness described later are formed. Because it cannot be done. The upper limit of the surface roughness of the base material 10 applied to the first embodiment is not particularly limited, but the surface roughness of the base material 10 is 0.15 μm or less in Ra in consideration of the polishing allowance of the final surface polishing. Is preferable. The surface roughness of the base material 10 can be controlled by adjusting the degree of polishing of the base material surface. Further, the surface of the base material can be honed to intentionally form the surface roughness. When applied to the second embodiment, the surface roughness of the base material 10 is not particularly limited, but it can be the same as when applied to the first embodiment.
 「基材表面のRa」は、以下の方法により測定するものとする。すなわち、基材表面の任意の位置において、JIS B0601(2001)に従い、基準長さ:1.25mm、カットオフ値λc:0.25mm、カットオフ比λc/λs=100の条件で、基材の粗さ曲線を測定し、算術平均粗さRaを求める。なお、測定は3回行い、その3回の平均値を採用するものとする。 "Ra on the surface of the base material" shall be measured by the following method. That is, at an arbitrary position on the surface of the base material, according to JIS B0601 (2001), the base material has a reference length of 1.25 mm, a cutoff value of λc: 0.25 mm, and a cutoff ratio of λc / λs = 100. The roughness curve is measured to obtain the arithmetic mean roughness Ra. The measurement shall be performed three times, and the average value of the three times shall be adopted.
 [中間層]
 中間層12は、基材10とDLC皮膜20,30との間に形成されることにより基材10との界面の応力を緩和し、DLC皮膜20,30の密着性を高める機能を有する。この機能を発揮する観点から、中間層12は、Cr、Ti、Co、V、Mo、Si及びWからなる群から選択された一つ以上の元素またはその炭化物、窒化物、炭窒化物からなるものとすることが好ましい。DLC皮膜20,30の密着性を十分に高める観点から、中間層12の厚さは、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましい。また、摺動時に中間層12が塑性流動を起こしてDLC皮膜20,30が剥離することを十分に抑制する観点から、中間層12の厚さは、0.6μm以下であることが好ましく、0.5μm以下であることがより好ましい。
[Middle class]
The intermediate layer 12 has a function of relaxing the stress at the interface with the base material 10 by being formed between the base material 10 and the DLC films 20 and 30, and enhancing the adhesion of the DLC films 20 and 30. From the viewpoint of demonstrating this function, the intermediate layer 12 is composed of one or more elements selected from the group consisting of Cr, Ti, Co, V, Mo, Si and W or their carbides, nitrides and carbonitrides. It is preferable to use the above. From the viewpoint of sufficiently enhancing the adhesion of the DLC films 20 and 30, the thickness of the intermediate layer 12 is preferably 0.1 μm or more, and more preferably 0.2 μm or more. Further, from the viewpoint of sufficiently suppressing the intermediate layer 12 from causing plastic flow during sliding and peeling off the DLC films 20 and 30, the thickness of the intermediate layer 12 is preferably 0.6 μm or less, and is 0. More preferably, it is 5.5 μm or less.
 中間層12の形成方法としては、例えばスパッタリング法を挙げることができる。洗浄後の基材10をPVD成膜装置の真空チャンバ内に配置し、Arガスを導入した状態でターゲットのスパッタ放電によって、中間層12を成膜する。ターゲットは、Cr、Ti、Co、V、Mo、Si及びWから選択すればよい。中間層12の厚さは、ターゲットの放電時間により調整できる。 As a method for forming the intermediate layer 12, for example, a sputtering method can be mentioned. The washed base material 10 is placed in the vacuum chamber of the PVD film forming apparatus, and the intermediate layer 12 is formed by sputter discharge of the target with Ar gas introduced. The target may be selected from Cr, Ti, Co, V, Mo, Si and W. The thickness of the intermediate layer 12 can be adjusted by adjusting the discharge time of the target.
 [DLC皮膜]
 図1を参照して、第1の実施形態に適用されるDLC皮膜20は、中間層12を形成しない場合には、基材10の表面上に形成され、中間層12を形成する場合には、中間層12の表面上に形成される。図1に示すように、DLC皮膜20は、所定量のSi及びBを含有する第1DLC層(Si-B含有HフリーDLC層)14と、Si及びBを含有せずCのみからなる第2DLC層(HフリーDLC層)16とが、所定の表面粗さを持ちつつ複数回交互に積層されてなる。そして、図1に加えて図2も参照して、所定の表面粗さを有する最上層の第2DLC層(HフリーDLC層)16の表面が所定量研磨されることによって、DLC皮膜20が形成され、その表面20Aには、第1DLC層(Si-B含有HフリーDLC層)14が露出した第1領域(Si-B含有領域)18Aと、第2DLC層(HフリーDLC層)16が残存した第2領域(ta-C領域)18Bとが混在している。
[DLC film]
With reference to FIG. 1, the DLC film 20 applied to the first embodiment is formed on the surface of the base material 10 when the intermediate layer 12 is not formed, and when the intermediate layer 12 is formed, the DLC film 20 is formed on the surface of the base material 10. , Formed on the surface of the intermediate layer 12. As shown in FIG. 1, the DLC film 20 is composed of a first DLC layer (Si—B-containing H-free DLC layer) 14 containing a predetermined amount of Si and B, and a second DLC containing only C without containing Si and B. The layers (H-free DLC layer) 16 are alternately laminated a plurality of times while having a predetermined surface roughness. Then, referring to FIG. 2 in addition to FIG. 1, the surface of the uppermost second DLC layer (H-free DLC layer) 16 having a predetermined surface roughness is polished by a predetermined amount to form the DLC film 20. The first DLC layer (Si—B-containing H-free DLC layer) 14 is exposed on the surface 20A, and the first region (Si—B-containing region) 18A and the second DLC layer (H-free DLC layer) 16 remain. The second region (ta-C region) 18B is mixed.
 なお、図1及び図2では、最上層を第2DLC層16とした例を示したが、本発明はこれに限定されず、最上層を第1DLC層14としてもよい。その場合、所定の表面粗さを有する最上層の第1DLC層14の表面が所定量研磨されることによって、DLC皮膜20が形成され、その表面20Aには、第1DLC層(Si-B含有HフリーDLC層)14が残存した第1領域(Si-B含有領域)18Aと、第2DLC層(HフリーDLC層)16が露出した第2領域(ta-C領域)18Bとが混在することになる。 Although FIGS. 1 and 2 show an example in which the uppermost layer is the second DLC layer 16, the present invention is not limited to this, and the uppermost layer may be the first DLC layer 14. In that case, a DLC film 20 is formed by polishing the surface of the uppermost first DLC layer 14 having a predetermined surface roughness by a predetermined amount, and the first DLC layer (Si—B-containing H) is formed on the surface 20A. The first region (Si—B-containing region) 18A in which the free DLC layer (14) remains and the second region (ta-C region) 18B in which the second DLC layer (H-free DLC layer) 16 is exposed are mixed. Become.
 なお、最下層に関しても特に限定されず、第1DLC層14であっても第2DLC層16であってもよい。 The lowermost layer is not particularly limited, and may be the first DLC layer 14 or the second DLC layer 16.
 図3を参照して、第2の実施形態に適用されるDLC皮膜30は、中間層を形成しない場合には、基材10の表面上に形成され、中間層を形成する場合には、中間層の表面上に形成される。図3に示すように、DLC皮膜30は、所定量のSi及びBを含有する第1DLC部(Si-B含有HフリーDLC部)24をマトリックスとして、Si及びBを含有せずCのみからなる第2DLC部(HフリーDLC部)26が、当該マトリックス中に分散された皮膜構造を有する。DLC皮膜30は、その表面が所定量研磨されており、その結果、DLC皮膜30の表面30Aには、第1DLC部(Si-B含有HフリーDLC部)24が露出した第1領域(Si-B含有領域)28Aと、第2DLC部(HフリーDLC部)26が露出した第2領域(ta-C領域)28Bとが混在している。 With reference to FIG. 3, the DLC film 30 applied to the second embodiment is formed on the surface of the base material 10 when the intermediate layer is not formed, and is intermediate when the intermediate layer is formed. Formed on the surface of the layer. As shown in FIG. 3, the DLC film 30 is composed of only C without containing Si and B, using the first DLC portion (Si—B-containing H-free DLC portion) 24 containing a predetermined amount of Si and B as a matrix. The second DLC part (H-free DLC part) 26 has a film structure dispersed in the matrix. The surface of the DLC film 30 has been polished by a predetermined amount, and as a result, the first region (Si-) in which the first DLC portion (Si—B-containing H-free DLC portion) 24 is exposed on the surface 30A of the DLC film 30. The B-containing region) 28A and the second region (ta-C region) 28B where the second DLC portion (H-free DLC portion) 26 is exposed are mixed.
 <第1DLC層/第1DLC部の成分組成>
 第1DLC層14及び第1DLC部24は、ケイ素:2原子%以上20原子%以下、及びホウ素:2原子%以上15原子%以下を含み、残部が炭素からなる実質的に水素を含まない成分組成を有する。第1DLC層14及び第1DLC部24は、さらに所定量の窒素(N)及び酸素(O)の一方又は両方を含むことが好ましい。なお、非晶質炭素であることは、ラマン分光光度計(Arレーザ)を用いたラマンスペクトル測定により確認できる。第1DLC層14及び第1DLC部24は、このような成分組成を有することにより、DLC皮膜20,30の耐熱性の向上と、有機モリブデン系化合物を含む潤滑油下での耐摩耗性の向上に寄与する。このような効果が得られる作用について、本発明者らは以下のように考えている。
<Component composition of 1st DLC layer / 1st DLC part>
The first DLC layer 14 and the first DLC part 24 contain silicon: 2 atomic% or more and 20 atomic% or less, and boron: 2 atomic% or more and 15 atomic% or less, and the balance is carbon and is substantially hydrogen-free. Has. The first DLC layer 14 and the first DLC unit 24 preferably further contain a predetermined amount of one or both of nitrogen (N) and oxygen (O). The fact that it is amorphous carbon can be confirmed by Raman spectrum measurement using a Raman spectrophotometer (Ar laser). By having such a component composition, the first DLC layer 14 and the first DLC part 24 are improved in the heat resistance of the DLC films 20 and 30 and the wear resistance under the lubricating oil containing the organic molybdenum compound. Contribute. The present inventors consider the action of obtaining such an effect as follows.
 一般に、有機モリブデン系化合物を含む潤滑油の存在下では、DLC皮膜中のカーボンのダングリングボンドと潤滑油中のMoが結合し、硬質なモリブデンカーバイド(MoC)粒子が生成する。このMoC粒子が、DLC皮膜の摩耗を促進する。これに対し、本実施形態では、第1DLC層14及び第1DLC部24が所定量のSi及びBを含有するため、第1DLC層14及び第1DLC部24中のカーボンのダングリングボンド密度が減少し、その結果、硬質なMoC粒子の生成が抑制される。その結果、有機モリブデン系化合物を含む潤滑油下で高い耐摩耗性を得ることができる。 Generally, in the presence of a lubricating oil containing an organic molybdenum compound, the carbon dangling bond in the DLC film and Mo in the lubricating oil combine to form hard molybdenum carbide (MoC) particles. The MoC particles accelerate the wear of the DLC film. On the other hand, in the present embodiment, since the first DLC layer 14 and the first DLC part 24 contain a predetermined amount of Si and B, the dangling bond density of carbon in the first DLC layer 14 and the first DLC part 24 is reduced. As a result, the formation of hard MoC particles is suppressed. As a result, high wear resistance can be obtained under a lubricating oil containing an organic molybdenum compound.
 また、第1DLC層14及び第1DLC部24が所定量のSi及びBを含有する場合、高温環境下においてSi及びBが酸素と反応することによって、摺動面として露出した際の第1DLC層14及び第1DLC部24の表面に緻密なSiO2皮膜及びB23皮膜が形成され、これら皮膜が保護膜として機能して、耐熱性が向上するものと考えられる。 Further, when the first DLC layer 14 and the first DLC unit 24 contain a predetermined amount of Si and B, the first DLC layer 14 is exposed as a sliding surface due to the reaction of Si and B with oxygen in a high temperature environment. It is considered that a dense SiO 2 film and a B 2 O 3 film are formed on the surface of the first DLC portion 24, and these films function as protective films to improve heat resistance.
 Si含有量が2原子%未満の場合、又は、B含有量が2原子%未満の場合、上記作用による耐熱性の向上及び有機モリブデン系化合物を含む潤滑油下での耐摩耗性の向上の効果を十分に得ることができない。よって、Si含有量は、2原子%以上とし、5原子%以上とすることが好ましく、B含有量は2原子%以上とし、5原子%以上とすることが好ましく、Si含有量とB含有量の合計は10原子%以上とすることが好ましい。 When the Si content is less than 2 atomic%, or when the B content is less than 2 atomic%, the effect of improving heat resistance due to the above action and improving wear resistance under lubricating oil containing an organic molybdenum compound is effective. Cannot be obtained sufficiently. Therefore, the Si content is preferably 2 atomic% or more and 5 atomic% or more, the B content is preferably 2 atomic% or more and 5 atomic% or more, and the Si content and B content. The total of is preferably 10 atomic% or more.
 Si含有量が20原子%超えの場合、炭素のsp3結合が大幅に減少するため、所望の硬度を有するDLC皮膜を得ることができず、耐熱性及び耐摩耗性ともに劣化する。B含有量が15原子%超えの場合、C/B合金カソードの放電が非常に不安定になるため、所望の硬度を有するDLC皮膜を得ることができず、耐熱性及び耐摩耗性ともに劣化する。よって、Si含有量は、20原子%以下とし、15原子%以下とすることが好ましく、B含有量は15原子%以下とし、12原子%以下とすることが好ましく、10原子%以下とすることがより好ましい。Si含有量とB含有量の合計は30原子%以下とすることが好ましい。 When the Si content exceeds 20 atomic%, the sp 3 bond of carbon is significantly reduced, so that a DLC film having a desired hardness cannot be obtained, and both heat resistance and wear resistance deteriorate. When the B content exceeds 15 atomic%, the discharge of the C / B alloy cathode becomes very unstable, so that a DLC film having a desired hardness cannot be obtained, and both heat resistance and wear resistance deteriorate. .. Therefore, the Si content is preferably 20 atomic% or less and preferably 15 atomic% or less, and the B content is preferably 15 atomic% or less and preferably 12 atomic% or less, and is preferably 10 atomic% or less. Is more preferable. The total of the Si content and the B content is preferably 30 atomic% or less.
 第1DLC層14及び第1DLC部24が水素を含有する場合、摺動によって第1DLC層14及び第1DLC部24が高温になると、水素が脱離して第1DLC層14及び第1DLC部24が劣化することによって、第1DLC層14及び第1DLC部24の摩耗が促進される。よって、第1DLC層14及び第1DLC部24は、実質的に水素を含まないものとする。これにより、高温環境下における水素の離脱に起因する耐摩耗性の劣化を回避することができる。ここで、本明細書において「実質的に水素を含まない」とは、第1DLC層14及び第1DLC部24中の水素含有量が3原子%以下であることを意味する。 When the first DLC layer 14 and the first DLC part 24 contain hydrogen, when the temperature of the first DLC layer 14 and the first DLC part 24 becomes high due to sliding, hydrogen is desorbed and the first DLC layer 14 and the first DLC part 24 deteriorate. As a result, wear of the first DLC layer 14 and the first DLC portion 24 is promoted. Therefore, it is assumed that the first DLC layer 14 and the first DLC unit 24 do not substantially contain hydrogen. This makes it possible to avoid deterioration of wear resistance due to the release of hydrogen in a high temperature environment. Here, "substantially free of hydrogen" as used herein means that the hydrogen content in the first DLC layer 14 and the first DLC unit 24 is 3 atomic% or less.
 第1DLC層14及び第1DLC部24は窒素(N)を含んでもよい。Nを含有させることによって、B-N結合及びSi-N結合が形成される。BNはせん断抵抗の低い層状格子構造を有するため、摩擦低減効果を発揮し、Si34は優れた破壊靭性を有するため、耐摩耗性の向上に寄与する。この観点から、N含有量は5原子%以上とすることが好ましい。ただし、N含有量が15原子%超えになると、炭素のsp3結合の形成を阻害するため、所望の硬度を有する第1DLC層及び第1DLC部を得ることができず、耐熱性及び耐摩耗性ともに劣化する。よって、第1DLC層14及び第1DLC部24が窒素を含む場合、そのN含有量は15原子%以下とし、好ましくは12原子%以下とする。 The first DLC layer 14 and the first DLC unit 24 may contain nitrogen (N). By containing N, a BN bond and a Si—N bond are formed. Since BN has a layered lattice structure with low shear resistance, it exhibits a friction reducing effect, and Si 3 N 4 has excellent fracture toughness, which contributes to improvement of wear resistance. From this viewpoint, the N content is preferably 5 atomic% or more. However, when the N content exceeds 15 atomic%, the formation of the sp 3 bond of carbon is inhibited, so that the first DLC layer and the first DLC portion having the desired hardness cannot be obtained, and the heat resistance and wear resistance Both deteriorate. Therefore, when the first DLC layer 14 and the first DLC unit 24 contain nitrogen, the N content thereof is 15 atomic% or less, preferably 12 atomic% or less.
 第1DLC層14及び第1DLC部24は酸素(O)を含んでもよい。Oを含有させることによって、摺動によって第1DLC層14及び第1DLC部24の表面が高温になった際に、SiO2及びB23の酸化物層が形成されやすくなり、潤滑油中の有機モリブデン系化合物の分解・硫化反応によるMoS2の生成を促進する結果、潤滑性が向上して、低摩擦かつ高い耐摩耗性を実現することができる。この観点から、O含有量は2原子%以上とすることが好ましい。ただし、O含有量が15原子%超えになると、C-O-C結合及びC=O結合が増え、第1DLC層及び第1DLC部の密度が低下し、耐熱性及び耐摩耗性ともに劣化する。よって、第1DLC層14及び第1DLC部24が酸素を含む場合、そのO含有量は15原子%以下とする。 The first DLC layer 14 and the first DLC unit 24 may contain oxygen (O). By containing O, when the surfaces of the first DLC layer 14 and the first DLC portion 24 become hot due to sliding, oxide layers of SiO 2 and B 2 O 3 are likely to be formed, and the oxide layers of SiO 2 and B 2 O 3 are easily formed in the lubricating oil. As a result of promoting the production of MoS 2 by the decomposition / sulfurization reaction of the organic molybdenum compound, the lubricity is improved, and low friction and high wear resistance can be realized. From this point of view, the O content is preferably 2 atomic% or more. However, when the O content exceeds 15 atomic%, the COC bond and the C = O bond increase, the densities of the first DLC layer and the first DLC portion decrease, and both heat resistance and abrasion resistance deteriorate. Therefore, when the first DLC layer 14 and the first DLC unit 24 contain oxygen, the O content thereof is set to 15 atomic% or less.
 また、低摩擦係数を維持しつつ、高い耐摩耗性を実現する観点から、窒素と酸素の合計含有量は15原子%以下とすることが好ましい。 Further, from the viewpoint of achieving high wear resistance while maintaining a low friction coefficient, the total content of nitrogen and oxygen is preferably 15 atomic% or less.
 <第2DLC層/第2DLC部の成分組成>
 第2DLC層16及び第2DLC部26は、炭素からなる実質的に水素を含まない成分組成を有する。なお、非晶質炭素であることは、ラマン分光光度計(Arレーザ)を用いたラマンスペクトル測定により確認できる。第2DLC層16及び第2DLC部26は、このような成分組成を有することにより、有機モリブデン系化合物を含まない潤滑油下での耐摩耗性の向上と、摩擦係数の低下に寄与する。このような効果が得られる作用について、本発明者らは以下のように考えている。
<Component composition of 2nd DLC layer / 2nd DLC part>
The second DLC layer 16 and the second DLC portion 26 have a substantially hydrogen-free component composition composed of carbon. The fact that it is amorphous carbon can be confirmed by Raman spectrum measurement using a Raman spectrophotometer (Ar laser). By having such a component composition, the second DLC layer 16 and the second DLC portion 26 contribute to the improvement of the wear resistance under the lubricating oil containing no organic molybdenum compound and the reduction of the friction coefficient. The present inventors consider the action of obtaining such an effect as follows.
 第2DLC層16及び第2DLC部26は、実質的に炭素のみからなることから、摺動熱によるグラファイト化が促進され、摩擦係数の低下に寄与する。また、摩擦係数の低減により、摺動負荷が低減し、有機モリブデン系化合物を含まない潤滑油下で摩耗量が抑制される。 Since the second DLC layer 16 and the second DLC portion 26 are substantially composed of carbon only, graphitization due to sliding heat is promoted, which contributes to a decrease in the friction coefficient. Further, by reducing the friction coefficient, the sliding load is reduced, and the amount of wear is suppressed under the lubricating oil containing no organic molybdenum compound.
 第1DLC層14及び第1DLC部24と同様に、第2DLC層16及び第2DLC部26も、実質的に水素を含まないものとする。これにより、高温環境下における水素の離脱に起因する耐摩耗性の劣化を回避することができる。ここで、本明細書において「実質的に水素を含まない」とは、第2DLC層16及び第2DLC部26中の水素含有量が3原子%以下であることを意味する。 Similar to the first DLC layer 14 and the first DLC section 24, the second DLC layer 16 and the second DLC section 26 are also substantially free of hydrogen. This makes it possible to avoid deterioration of wear resistance due to the release of hydrogen in a high temperature environment. Here, "substantially free of hydrogen" as used herein means that the hydrogen content in the second DLC layer 16 and the second DLC section 26 is 3 atomic% or less.
 <DLC皮膜の水素含有量の測定方法>
 DLC皮膜の水素含有量の評価は、摺動部が平坦な面や曲率が十分大きな面に形成されたDLC皮膜に対してはRBS(Rutherford Backscattering Spectrometry)/HFS(Hydrogen Forward Scattering Spectrometry)によって評価することができる。これに対して、ピストンリングの外周面など平坦でない摺動面に形成されたDLC皮膜に対しては、RBS/HFS及びSIMS(Secondary Ion Mass Spectrometry)を組み合わせることによって評価する。RBS/HFSは公知の皮膜組成の分析方法であるが、平坦でない面の分析には適用できないので、以下のようにしてRBS/HFS及びSIMSを組み合わせる。
<Measurement method of hydrogen content of DLC film>
The hydrogen content of the DLC film is evaluated by RBS (Rutherford Backscattering Spectrometry) / HFS (Hydrogen Forward Scattering Spectroscopy) for the DLC film formed on a flat surface or a surface having a sufficiently large curvature. be able to. On the other hand, the DLC film formed on an uneven sliding surface such as the outer peripheral surface of the piston ring is evaluated by combining RBS / HFS and SIMS (Secondary Ion Mass Spectrometry). Although RBS / HFS is a known method for analyzing a film composition, it cannot be applied to the analysis of uneven surfaces. Therefore, RBS / HFS and SIMS are combined as follows.
 まず、平坦な面を有する基準試料として、鏡面研磨した平坦な試験片(焼入処理を施したSKH51ディスク、φ25×厚さ5mm、硬さHRC60~63)に、基準値の測定対象となる炭素皮膜を形成する。 First, as a reference sample having a flat surface, a mirror-polished flat test piece (hardened SKH51 disk, φ25 × thickness 5 mm, hardness HRC60 to 63) is subjected to carbon to be measured as a reference value. Form a film.
 基準試料への成膜は、反応性スパッタリング法を用いて、雰囲気ガスとしてC22、Ar、H2を導入して行う。そして、導入するH2流量及び/又はC22流量を変えることによって、炭素皮膜に含まれる水素量を調整する。このようにして水素と炭素によって構成され、水素含有率が異なる炭素皮膜を形成し、これらをRBS/HFSで水素含有量と炭素含有量を評価する。 The film is formed on the reference sample by introducing C 2 H 2 , Ar, and H 2 as atmospheric gases using a reactive sputtering method. Then, by varying the flow rate of H 2 and / or C 2 H 2 flow rate is introduced to adjust the amount of hydrogen contained in the carbon film. In this way, carbon films composed of hydrogen and carbon and having different hydrogen contents are formed, and the hydrogen content and carbon content of these are evaluated by RBS / HFS.
 次に、上記の試料をSIMSで分析し、水素と炭素の二次イオン強度を測定する。ここで、SIMS分析は、平坦でない面、例えばピストンリングの外周面に形成された皮膜でも測定できる。したがって、炭素皮膜が施された基準試料の同一の皮膜について、RBS/HFSによって得られた水素含有量と炭素含有量(単位:原子%)と、SIMSによって得られた水素と炭素の二次イオン強度の比率との関係を示す実験式(計量線)を求める。このようにすることで、実際のピストンリングの外周面について測定したSIMSの水素と炭素の二次イオン強度から、水素含有量と炭素含有量を算出することができる。なお、SIMSによる二次イオン強度の値は、少なくとも炭素皮膜の表面から20nm以上の深さ、且つ50nm四方の範囲において観測されたそれぞれの元素の二次イオン強度の平均値を採用する。 Next, the above sample is analyzed by SIMS to measure the secondary ionic strength of hydrogen and carbon. Here, SIMS analysis can also measure a film formed on an uneven surface, for example, the outer peripheral surface of a piston ring. Therefore, for the same film of the reference sample with the carbon film, the hydrogen content and carbon content (unit: atomic%) obtained by RBS / HFS and the secondary ions of hydrogen and carbon obtained by SIMS. Obtain an empirical formula (calibration curve) showing the relationship with the strength ratio. By doing so, the hydrogen content and the carbon content can be calculated from the secondary ionic strengths of hydrogen and carbon of SIMS measured on the outer peripheral surface of the actual piston ring. As the value of the secondary ionic strength by SIMS, the average value of the secondary ionic strength of each element observed at least at a depth of 20 nm or more from the surface of the carbon film and in the range of 50 nm square is adopted.
 <第1DLC層/第1DLC部のSi、B、N及びO含有量の測定方法>
 第1DLC層及び第1DLC部のSi、B、N及びO含有量は、X線光電子分光法(XPS)により以下の条件下で測定するものとする。XPSにおける元素の定量分析は、光電子ピーク面積をもとに行う。ピーク面積は原子濃度および注目電子の感度に比例するので、ピーク面積を相対感度係数で割った値は原子濃度に比例した値となる。よって、各元素の定量値の和を100原子%とした相対定量ができる。
・測定装置:PHI社製 QuanteraSXM
・X線源:単色化Al(1486.6eV)
・検出領域:100μmφ
・検出深さ:約4~5nm(取出角45°)
・測定スペクトル:ワイド,C1s,Si2p,B1s,N1s,O1s
<Measuring method of Si, B, N and O contents of the first DLC layer / first DLC part>
The Si, B, N and O contents of the first DLC layer and the first DLC part shall be measured by X-ray photoelectron spectroscopy (XPS) under the following conditions. Quantitative analysis of elements in XPS is performed based on the photoelectron peak area. Since the peak area is proportional to the atomic concentration and the sensitivity of the electron of interest, the value obtained by dividing the peak area by the relative sensitivity coefficient is proportional to the atomic concentration. Therefore, relative quantification can be performed with the sum of the quantified values of each element as 100 atomic%.
-Measuring device: QuanteraSXM manufactured by PHI
-X-ray source: Monochromatic Al (1486.6 eV)
・ Detection area: 100 μmφ
-Detection depth: Approximately 4 to 5 nm (extraction angle 45 °)
-Measurement spectrum: wide, C1s, Si2p, B1s, N1s, O1s
 <DLC皮膜の表面における第1領域と第2領域の複合比率>
 図1及び図2を参照して、第1実施形態では、DLC皮膜20の表面20Aに第1領域(Si-B含有領域)18Aと第2領域(ta-C領域)18Bとを混在させておく。また、図3を参照して、第2実施形態でも、DLC皮膜30の表面30Aに第1領域(Si-B含有領域)28Aと第2領域(ta-C領域)28Bとを混在させておく。そして、表面20A,30Aにおける第1領域の面積をA、第2領域の面積をBとして、B/(A+B)が0.05以上0.40以下であること、つまり、第1領域(Si-B含有領域)18A,28Aを主としつつ、第2領域(ta-C領域)18B,28Aを所定比率で複合させることが重要である。
<Composite ratio of first region and second region on the surface of DLC film>
With reference to FIGS. 1 and 2, in the first embodiment, the first region (Si—B-containing region) 18A and the second region (ta-C region) 18B are mixed on the surface 20A of the DLC film 20. deep. Further, referring to FIG. 3, also in the second embodiment, the first region (Si—B containing region) 28A and the second region (taC region) 28B are mixed on the surface 30A of the DLC film 30. .. Then, assuming that the area of the first region on the surfaces 20A and 30A is A and the area of the second region is B, B / (A + B) is 0.05 or more and 0.40 or less, that is, the first region (Si−). It is important to combine the second region (ta-C region) 18B and 28A at a predetermined ratio while mainly containing the B-containing region) 18A and 28A.
 B/(A+B)が0.05未満の場合、DLC皮膜の表面20A,30Aにおいて第2領域(ta-C領域)18B,28Bが過少であり、第1領域(Si-B含有領域)18A,28Aが過多となる。この場合、有機モリブデン系化合物を含まない潤滑油下での耐摩耗性が不十分となり、また、低摩擦係数を得ることができない。よって、B/(A+B)は0.05以上とし、好ましくは0.10以上とする。 When B / (A + B) is less than 0.05, the second regions (ta-C regions) 18B and 28B are too small on the surfaces 20A and 30A of the DLC film, and the first regions (Si-B-containing regions) 18A, 28A is excessive. In this case, the wear resistance under the lubricating oil containing no organic molybdenum compound becomes insufficient, and a low coefficient of friction cannot be obtained. Therefore, B / (A + B) is set to 0.05 or more, preferably 0.10 or more.
 B/(A+B)が0.40超えの場合、DLC皮膜の表面20A,30Aにおいて第1領域(Si-B含有領域)18A,28Aが過少であり、第2領域(ta-C領域)18B,28Bが過多となる。この場合、耐熱性と有機モリブデン系化合物を含む潤滑油下での耐摩耗性が不十分となる。よって、B/(A+B)は0.40以下とし、好ましくは0.35以下とする。 When B / (A + B) exceeds 0.40, the first region (Si—B-containing region) 18A and 28A is too small on the surfaces 20A and 30A of the DLC film, and the second region (ta-C region) 18B, 28B is excessive. In this case, the heat resistance and the wear resistance under the lubricating oil containing the organic molybdenum compound become insufficient. Therefore, B / (A + B) is set to 0.40 or less, preferably 0.35 or less.
 なお、B/(A+B)は以下の方法で求めるものとする。図5に例示するように、第1領域(Si-B含有領域)と第2領域(Ta-C領域)とでは、Si及びBの有無に起因して、走査型電子顕微鏡(SEM)において異なるコントラストとして観察することができる。よって、得られた画像を解析し2値化することで、視野中の各領域の面積を算出することができる。具体的には、DLC皮膜の表面の任意の3ヶ所を、FE-SEMで観察して、二次電子像を撮影する。観察条件は、加速電圧:5kV、倍率:10,000倍とする。撮影された画像を画像解析ソフトにより2値化し、第1領域の面積をV1、第2領域の面積をV2として、各撮影画像においてV2/(V1+V2)を求め、得られた3つの値を可算平均して、B/(A+B)とする。 B / (A + B) shall be calculated by the following method. As illustrated in FIG. 5, the first region (Si-B-containing region) and the second region (Ta-C region) are different in the scanning electron microscope (SEM) due to the presence or absence of Si and B. It can be observed as a contrast. Therefore, the area of each region in the field of view can be calculated by analyzing the obtained image and binarizing it. Specifically, any three places on the surface of the DLC film are observed by FE-SEM, and a secondary electron image is taken. The observation conditions are an acceleration voltage of 5 kV and a magnification of 10,000 times. The captured image is binarized by image analysis software, the area of the first region is V1, the area of the second region is V2, V2 / (V1 + V2) is obtained for each captured image, and the obtained three values are countable. On average, it is B / (A + B).
 なお、DLC皮膜の表面20A,30Aに第1領域18A,28Aと第2領域18B,28Bとが「混在」するとは、DLC皮膜の表面20A,30Aに第1領域18A,28A及び第2領域18B,28Bが分散して存在することを意味するものである。 The fact that the first regions 18A and 28A and the second regions 18B and 28B are "mixed" on the surfaces 20A and 30A of the DLC film means that the first regions 18A and 28A and the second regions 18B are on the surfaces 20A and 30A of the DLC film. , 28B are distributed and exist.
 <第1領域及び第2領域のインデンテーション硬さ>
 第1領域18A,28Aのインデンテーション硬さは、第2領域18B,28Bのインデンテーション硬さよりも小さい。
<Indentation hardness of the first region and the second region>
The indentation hardness of the first regions 18A and 28A is smaller than the indentation hardness of the second regions 18B and 28B.
 第1領域18A,28Aのインデンテーション硬さは15GPa以上35GPa以下であることが好ましい。インデンテーション硬さが15GPa以上であれば、DLC皮膜の耐摩耗性が不十分となることがない。一方、インデンテーション硬さが35GPa以下であれば、DLC皮膜の靭性が不足することがなく、欠けや剥離が発生しにくい。 The indentation hardness of the first regions 18A and 28A is preferably 15 GPa or more and 35 GPa or less. When the indentation hardness is 15 GPa or more, the wear resistance of the DLC film is not insufficient. On the other hand, when the indentation hardness is 35 GPa or less, the toughness of the DLC film is not insufficient, and chipping and peeling are unlikely to occur.
 第2領域18B,28Bのインデンテーション硬さは25GPa以上50GPa以下であることが好ましい。インデンテーション硬さが25GPa以上であれば、DLC皮膜の耐摩耗性及び耐熱性が不十分となることがない。一方、インデンテーション硬さが50GPa以下であれば、仕上げ加工の負荷が高くなることがないため、コスト上昇を抑えられる。 The indentation hardness of the second regions 18B and 28B is preferably 25 GPa or more and 50 GPa or less. If the indentation hardness is 25 GPa or more, the wear resistance and heat resistance of the DLC film will not be insufficient. On the other hand, when the indentation hardness is 50 GPa or less, the load of finishing is not increased, so that the cost increase can be suppressed.
 <DLC皮膜の厚さ>
 DLC皮膜20,30の厚さは、特に限定されないが0.5μm以上50μm以下であることが好ましい。0.5μm以上であれば、DLC皮膜の耐久性が不足することがなく、50μm以下であれば、母材との密着性が不足となって剥離が生じることがないからである。なお、本発明において、DLC皮膜の厚さはカロテスト、又は樹脂包埋した皮膜断面の観察により測定するものとする。
<Thickness of DLC film>
The thickness of the DLC films 20 and 30 is not particularly limited, but is preferably 0.5 μm or more and 50 μm or less. This is because if the thickness is 0.5 μm or more, the durability of the DLC film is not insufficient, and if it is 50 μm or less, the adhesion to the base material is insufficient and peeling does not occur. In the present invention, the thickness of the DLC film shall be measured by carotest or by observing the cross section of the resin-embedded film.
 <DLC皮膜の厚み方向の形態>
 本発明の効果を摺動の過程で維持する観点から、DLC皮膜20,30の厚さが20μm以下の場合は、DLC皮膜20,30の厚み方向の全範囲において、また、DLC皮膜20,30の厚さが20μm超えの場合には、DLC皮膜の表面20A,30Aから厚み方向に少なくとも20μmの範囲において、厚み方向に垂直な断面において、第1領域18A,28Aと第2領域18B,28Bが混在しており、前記断面における第1領域の面積をA’、第2領域の面積をB’として、B’/(A’+B’)が0.05以上0.40以下である状態が維持されることが好ましい。
<Morphology of DLC film in the thickness direction>
From the viewpoint of maintaining the effect of the present invention in the sliding process, when the thickness of the DLC films 20 and 30 is 20 μm or less, the entire range of the DLC films 20 and 30 in the thickness direction and the DLC films 20 and 30 When the thickness of the DLC film exceeds 20 μm, the first regions 18A and 28A and the second regions 18B and 28B are formed in a cross section perpendicular to the thickness direction in a range of at least 20 μm in the thickness direction from the surfaces 20A and 30A of the DLC film. It is mixed, and the state where B'/ (A'+ B') is 0.05 or more and 0.40 or less is maintained, where A'is the area of the first region and B'is the area of the second region in the cross section. It is preferable to be done.
 なお、B’/(A’+B’)は、上述のB/(A+B)の求め方に準じて求めるものとする。具体的には、DLC皮膜の厚さが20μm以下の場合、DLC皮膜を研磨して、DLC皮膜の表面から厚さの45~55%の位置が露出した研磨面を有する第1のサンプルと、DLC皮膜の表面から80~90%の位置が露出した研磨面を有する第2のサンプルを用意する。第1のサンプルの研磨面及び第2のサンプルの研磨面を、それぞれFE-SEMで観察して、二次電子像を撮影する。撮影された画像を画像解析ソフトにより2値化し、第1領域の面積をV1’、第2領域の面積をV2’として、各撮影画像においてV2’/(V1’+V2’)を求め、得られた3つの値を可算平均して、B’/(A’+B’)とする。第1のサンプル及び第2のサンプルの両方で、B’/(A’+B’)が0.05以上0.40以下であれば、DLC皮膜の厚み方向の全範囲において、B’/(A’+B’)が0.05以上0.40以下である状態が維持されていると見なす。 Note that B'/ (A'+ B') shall be obtained according to the above-mentioned method for obtaining B / (A + B). Specifically, when the thickness of the DLC film is 20 μm or less, the DLC film is polished to form a first sample having a polished surface in which 45 to 55% of the thickness is exposed from the surface of the DLC film. Prepare a second sample with a polished surface that is 80-90% exposed from the surface of the DLC film. The polished surface of the first sample and the polished surface of the second sample are each observed by FE-SEM, and a secondary electron image is taken. The captured image is binarized by image analysis software, the area of the first region is V1', the area of the second region is V2', and V2'/ (V1'+ V2') is obtained in each captured image and obtained. The three values are countably averaged to obtain B'/ (A'+ B'). If B'/ (A'+ B') is 0.05 or more and 0.40 or less in both the first sample and the second sample, B'/ (A) in the entire range in the thickness direction of the DLC film. It is considered that the state in which'+ B') is 0.05 or more and 0.40 or less is maintained.
 DLC皮膜の厚さが20μm超えの場合、DLC皮膜を研磨して、DLC皮膜の表面から厚み方向に10μmの位置が露出した研磨面を有する第1のサンプルと、DLC皮膜の表面から厚み方向に20μmの位置が露出した研磨面を有する第2のサンプルを用意する。第1のサンプルの研磨面及び第2のサンプルの研磨面を、それぞれFE-SEMで観察して、二次電子像を撮影する。撮影された画像を画像解析ソフトにより2値化し、第1領域の面積をV1’、第2領域の面積をV2’として、各撮影画像においてV2’/(V1’+V2’)を求め、得られた3つの値を可算平均して、B’/(A’+B’)とする。第1のサンプル及び第2のサンプルの両方で、B’/(A’+B’)が0.05以上0.40以下であれば、DLC皮膜の表面から厚み方向に少なくとも20μmの範囲において、B’/(A’+B’)が0.05以上0.40以下である状態が維持されていると見なす。 When the thickness of the DLC film exceeds 20 μm, the DLC film is polished to have a first sample having a polished surface where a position of 10 μm from the surface of the DLC film is exposed in the thickness direction, and a first sample having a polished surface and a thickness direction from the surface of the DLC film. Prepare a second sample with a polished surface exposed at a position of 20 μm. The polished surface of the first sample and the polished surface of the second sample are each observed by FE-SEM, and a secondary electron image is taken. The captured image is binarized by image analysis software, the area of the first region is V1', the area of the second region is V2', and V2'/ (V1'+ V2') is obtained in each captured image and obtained. The three values are countably averaged to obtain B'/ (A'+ B'). If B'/ (A'+ B') is 0.05 or more and 0.40 or less in both the first sample and the second sample, B is in the range of at least 20 μm in the thickness direction from the surface of the DLC film. It is considered that the state in which'/ (A'+ B') is 0.05 or more and 0.40 or less is maintained.
 <第1DLC層及び第2DLC層の表面粗さ及び厚さ>
 第1の実施形態において、図1を参照して、上記のように、DLC皮膜の表面20AにおいてB/(A+B)が0.05以上0.40以下を満たし、かつ、DLC皮膜の厚み方向にB’/(A’+B’)が0.05以上0.40以下である状態を維持するためには、積層させる第1DLC層14及び第2DLC層16が所定の表面粗さを有し、かつ、所定の厚みを有する必要がある。
<Surface roughness and thickness of the first DLC layer and the second DLC layer>
In the first embodiment, with reference to FIG. 1, as described above, B / (A + B) on the surface 20A of the DLC film satisfies 0.05 or more and 0.40 or less, and in the thickness direction of the DLC film. In order to maintain the state where B'/ (A'+ B') is 0.05 or more and 0.40 or less, the first DLC layer 14 and the second DLC layer 16 to be laminated have a predetermined surface roughness and , Must have a predetermined thickness.
 この観点から、第1DLC層14及び第2DLC層16の各々の表面粗さは、算術平均粗さRaで0.01μm以上0.15μm以下とすることが好ましい。この範囲に表面粗さを制御することによって、後述の研磨加工の結果、所望のB/(A+B)を実現しやすくなり、また、所望のB’/(A’+B’)を維持しやすくなるからである。なお、「各DLC層表面のRa」は、以下の方法により測定するものとする。すなわち、DLC皮膜の厚さ方向の断面試料を集束イオンビーム(FIB)加工によって製作し、透過型電子顕微鏡像(TEM像)を観察し、得られたTEM像の輝度の変化に基づいて、隣接する層間の境界を確定する。具体的には、輝度の変化が1/2となる箇所を隣接する層間の境界として、各DLC層の表面形状(断面形状)とする。得られた各DLC層の断面形状に基づいて、表面粗さ計測ソフトウェア等を用いてJIS B0601(2001)に準拠して、算術平均粗さRaを求める。なお、測定は3回行い、その3回の平均値を採用するものとする。 From this point of view, the surface roughness of each of the first DLC layer 14 and the second DLC layer 16 is preferably 0.01 μm or more and 0.15 μm or less in terms of arithmetic mean roughness Ra. By controlling the surface roughness within this range, as a result of the polishing process described later, it becomes easy to realize the desired B / (A + B), and it becomes easy to maintain the desired B'/ (A'+ B'). Because. "Ra on the surface of each DLC layer" shall be measured by the following method. That is, a cross-sectional sample in the thickness direction of the DLC film is produced by focused ion beam (FIB) processing, a transmission electron microscope image (TEM image) is observed, and the adjacent TEM image is adjacent based on the change in brightness of the obtained TEM image. Determine the boundary between layers. Specifically, the surface shape (cross-sectional shape) of each DLC layer is defined as the boundary between adjacent layers where the change in brightness is halved. Based on the cross-sectional shape of each DLC layer obtained, the arithmetic average roughness Ra is obtained according to JIS B0601 (2001) using surface roughness measurement software or the like. The measurement shall be performed three times, and the average value of the three times shall be adopted.
 また、第1DLC層14及び第2DLC層16の各々の厚さ及び厚さ比は、特に限定されないが、所望のB/(A+B)を実現し、かつ、所望のB’/(A’+B’)を維持できるように適宜設定すればよい。 Further, the thickness and the thickness ratio of each of the first DLC layer 14 and the second DLC layer 16 are not particularly limited, but a desired B / (A + B) is realized and a desired B'/ (A'+ B') is realized. ) Can be maintained as appropriate.
 <第1DLC部/第2DLC部の混合比>
 第2の実施形態において、図3を参照して、上記のように、DLC皮膜の表面30AにおいてB/(A+B)が0.05以上0.40以下を満たし、かつ、DLC皮膜の厚み方向にB’/(A’+B’)が0.05以上0.40以下である状態を維持するためには、後述の製造条件の制御によって、DLC皮膜30中の第1DLC部24及び第2DLC部26の混合比を適宜調整すればよい。
<Mixing ratio of 1st DLC part / 2nd DLC part>
In the second embodiment, with reference to FIG. 3, as described above, B / (A + B) on the surface 30A of the DLC film satisfies 0.05 or more and 0.40 or less, and in the thickness direction of the DLC film. In order to maintain the state where B'/ (A'+ B') is 0.05 or more and 0.40 or less, the first DLC part 24 and the second DLC part 26 in the DLC film 30 are controlled by controlling the manufacturing conditions described later. The mixing ratio of the above may be adjusted as appropriate.
 <DLC皮膜の表面粗さ>
 DLC皮膜20,30の表面粗さは、算術平均粗さRaで0.1μm以下とすることが好ましい。これにより、DLC皮膜による相手材への攻撃性を低減することができる。なお、「DLC皮膜のRa」は、以下の方法により測定するものとする。すなわち、DLC皮膜の任意の位置において、JIS B0601(2001)に従い、基準長さ:1.25mm、カットオフ値λc:0.25mm、カットオフ比λc/λs=100の条件で、DLC皮膜の粗さ曲線を測定し、算術平均粗さRaを求める。なお、測定は3回行い、その3回の平均値を採用するものとする。
<Surface roughness of DLC film>
The surface roughness of the DLC films 20 and 30 is preferably 0.1 μm or less in terms of arithmetic mean roughness Ra. As a result, the aggression of the DLC film to the mating material can be reduced. The "Ra of the DLC film" shall be measured by the following method. That is, at an arbitrary position of the DLC film, according to JIS B0601 (2001), the rough DLC film is provided under the conditions of a reference length: 1.25 mm, a cutoff value of λc: 0.25 mm, and a cutoff ratio of λc / λs = 100. The dimension curve is measured to obtain the arithmetic mean roughness Ra. The measurement shall be performed three times, and the average value of the three times shall be adopted.
 <DLC皮膜の形成方法>
 DLC皮膜20,30は、例えば、カーボンターゲットを用いた真空アーク放電(VA法)によるイオンプレーティング等のPVD法を用いて形成することができる。PVD法は、水素をほとんど含まない高硬度で耐摩耗性に優れたDLC皮膜を形成することができる。真空アーク放電によるイオンプレーティング法を用いてDLC皮膜を成膜する場合、その硬さは、基材に印加するバイアス電圧等によって調整できる。また、DLC皮膜の膜厚は、ターゲットの放電時間等の条件を変えることで調整できる。なお、フィルター型陰極真空アーク方式(FCVA法)を用いることでもよい。
<Method of forming DLC film>
The DLC films 20 and 30 can be formed by using a PVD method such as ion plating by vacuum arc discharge (VA method) using a carbon target, for example. The PVD method can form a DLC film having high hardness and excellent wear resistance containing almost no hydrogen. When a DLC film is formed by using the ion plating method by vacuum arc discharge, its hardness can be adjusted by a bias voltage applied to the base material or the like. Further, the film thickness of the DLC film can be adjusted by changing conditions such as the discharge time of the target. The filter type cathode vacuum arc method (FCVA method) may be used.
 第1DLC層(Si-B含有HフリーDLC層)14及び第1DLC部(Si-B含有HフリーDLC部)24の成膜には、Si及びBを含有するカーボン合金ターゲットを用いることができる。すなわち、第1DLC層14及び第1DLC部24に所定量のSi及びBを含有させるためには、例えば、カソード材料として炭化ケイ素(SiC)及び炭化ホウ素(B4C)を含有するグラファイトを用いることができ、カソード材料中におけるこれらの含有量を調整することによって、第1DLC層14及び第1DLC部24中のSi含有量及びB含有量を制御することができる。また、第1DLC層14及び第1DLC部24中に所定量のN及びOを含有させるためには、上記カーボン合金ターゲット中にN及びOを添加しておけばよい。 A carbon alloy target containing Si and B can be used for film formation of the first DLC layer (Si—B-containing H-free DLC layer) 14 and the first DLC portion (Si—B-containing H-free DLC portion) 24. That is, in order for the first DLC layer 14 and the first DLC portion 24 to contain a predetermined amount of Si and B, for example, graphite containing silicon carbide (SiC) and boron carbide (B 4 C) is used as the cathode material. By adjusting these contents in the cathode material, the Si content and the B content in the first DLC layer 14 and the first DLC unit 24 can be controlled. Further, in order to contain a predetermined amount of N and O in the first DLC layer 14 and the first DLC unit 24, N and O may be added to the carbon alloy target.
 第2DLC層(HフリーDLC層)16及び第2DLC部(HフリーDLC部)26の成膜には、Si及びBを含有しないカーボンターゲットを用いることができる。 A carbon target containing no Si and B can be used for film formation of the second DLC layer (H-free DLC layer) 16 and the second DLC part (H-free DLC part) 26.
 第1の実施形態において、積層構造によるDLC皮膜20を形成する場合、まず、表面粗さがRaで0.01μm以上の基材10を用意し、任意で、当該表面上に中間層12を形成する。その後、基材10の表面又は中間層12の表面上に、第1DLC層(Si-B含有HフリーDLC層)14と、第2DLC層(HフリーDLC層)16とを、複数組、交互に積層させる。その際、基材10の表面に所定の表面粗さが設けられていることや、成膜の過程で皮膜内に炭素微小粒子(ドロップレット)などが取り込まれることによって、第1DLC層14及び第2DLC層16の各々の表面には所定の表面粗さが設けられる。 In the first embodiment, when forming the DLC film 20 having a laminated structure, first, a base material 10 having a surface roughness of 0.01 μm or more is prepared, and an intermediate layer 12 is optionally formed on the surface. To do. After that, a plurality of sets of a first DLC layer (Si—B-containing H-free DLC layer) 14 and a second DLC layer (H-free DLC layer) 16 are alternately arranged on the surface of the base material 10 or the surface of the intermediate layer 12. Laminate. At that time, the surface of the base material 10 is provided with a predetermined surface roughness, and carbon fine particles (droplets) and the like are incorporated into the film in the process of film formation, so that the first DLC layer 14 and the first DLC layer 14 A predetermined surface roughness is provided on each surface of the 2DLC layer 16.
 第1DLC層14と第2DLC層16の積層構造は、第1DLC層14を成膜するためのSi-B含有カーボン合金ターゲットと、第2DLC層16を成膜するためのカーボンターゲットを、回転する基材の周囲に、当該基材を中心とした同心円状に配置することによって得ることができる。例えば、Si-B含有カーボン合金ターゲットとカーボンターゲットを180°ずらして配置すれば、第1DLC層14と第2DLC層16の積層構造が得られる。第1DLC層14と第2DLC層16の厚さ比率は、基材の回転数やターゲット放電電流を調整することにより制御することができる。 The laminated structure of the first DLC layer 14 and the second DLC layer 16 is a group that rotates a Si—B-containing carbon alloy target for forming the first DLC layer 14 and a carbon target for forming the second DLC layer 16. It can be obtained by arranging the base material in a concentric circle around the material. For example, if the Si—B-containing carbon alloy target and the carbon target are arranged so as to be offset by 180 °, a laminated structure of the first DLC layer 14 and the second DLC layer 16 can be obtained. The thickness ratio of the first DLC layer 14 and the second DLC layer 16 can be controlled by adjusting the rotation speed of the base material and the target discharge current.
 次に、最上層の第2DLC層16又は第1DLC層14の表面を研磨して、DLC皮膜20を形成する。その際の研磨量を調整することによって、B/(A+B)を0.05以上0.40以下の範囲に制御する。 Next, the surface of the uppermost second DLC layer 16 or the first DLC layer 14 is polished to form the DLC film 20. By adjusting the polishing amount at that time, B / (A + B) is controlled in the range of 0.05 or more and 0.40 or less.
 第2の実施形態において、分散構造によるDLC皮膜30を形成する場合、第1DLC部24を成膜するためのSi-B含有カーボン合金ターゲットと、第2DLC部26を成膜するためのカーボンターゲットを、回転する基材の周囲に、当該基材を中心とした同心円状に配置することによって得ることができる。その際、Si-B含有カーボン合金ターゲットとカーボンターゲットを近づけて配置すれば、第1DLC部24のマトリックス中に第2DLC部26が分散した皮膜構造が得られる。第1DLC部24と第2DLC部26の分散比率は、基材の回転数やターゲット放電電流を調整することにより制御することができる。 In the second embodiment, when the DLC film 30 having a dispersed structure is formed, a Si—B-containing carbon alloy target for forming the first DLC portion 24 and a carbon target for forming the second DLC portion 26 are used. , It can be obtained by arranging the rotating base material in a concentric circle around the base material. At that time, if the Si—B-containing carbon alloy target and the carbon target are arranged close to each other, a film structure in which the second DLC portion 26 is dispersed in the matrix of the first DLC portion 24 can be obtained. The dispersion ratio of the first DLC unit 24 and the second DLC unit 26 can be controlled by adjusting the rotation speed of the base material and the target discharge current.
 このような方法で、DLC皮膜20,30の表面20A,30Aに硬質領域18A,28Aと軟質領域18B,28Bとを混在させることができ、また、DLC皮膜20,30の厚み方向にわたって、B’/(A’+B’)が0.05以上0.40以下である状態を維持することができる。 In this way, the hard regions 18A and 28A and the soft regions 18B and 28B can be mixed on the surfaces 20A and 30A of the DLC coatings 20 and 30, and B' The state in which / (A'+ B') is 0.05 or more and 0.40 or less can be maintained.
 [摺動部材の適用]
 本発明の一実施形態による摺動部材100,200は、エンジンオイルなどの潤滑油が介在する内燃機関の摺動部に使用されるピストンリング、ピストン、ピストンピン、タペット、バルブリフタ、シム、ロッカーアーム、カム、カムシャフト、タイミングギア、タイミングチェーン等や、燃料供給系に使用されるベーン、インジェクタ、プランジャ、シリンダ等、種々の製品に適用することができる。
[Application of sliding members]
The sliding members 100 and 200 according to one embodiment of the present invention include a piston ring, a piston, a piston pin, a tappet, a valve lifter, a shim, and a rocker arm used for a sliding portion of an internal combustion engine in which lubricating oil such as engine oil is interposed. , Cams, camshafts, timing gears, timing chains, etc., vanes, injectors, plungers, cylinders, etc. used in fuel supply systems, etc. can be applied to various products.
 (ピストンリング)
 図4を参照して、本発明の一実施形態によるピストンリング300は、外周面32、内周面34、及び上下面36A,36Bの4面によってリング形状を呈し、外周面32が図1に示すDLC皮膜20又は図3に示すDLC皮膜30により形成される。すなわち、本実施形態のピストンリング300は、上記摺動部材100又は摺動部材200からなるものであり、その外周面22が図1に示すDLC皮膜の表面20A又は図3に示すDLC皮膜の表面30Aとなる。これにより、摺動面となる外周面22では、優れた耐熱性を得ることができ、潤滑油に有機モリブデン系化合物を含むか否かに関わらず高い耐摩耗性を得ることができ、さらに低い摩擦係数を実現することが可能である。
(piston ring)
With reference to FIG. 4, the piston ring 300 according to the embodiment of the present invention has a ring shape with four surfaces of an outer peripheral surface 32, an inner peripheral surface 34, and upper and lower surfaces 36A and 36B, and the outer peripheral surface 32 is shown in FIG. It is formed by the DLC film 20 shown or the DLC film 30 shown in FIG. That is, the piston ring 300 of the present embodiment is composed of the sliding member 100 or the sliding member 200, and its outer peripheral surface 22 is the surface 20A of the DLC film shown in FIG. 1 or the surface of the DLC film shown in FIG. It becomes 30A. As a result, excellent heat resistance can be obtained on the outer peripheral surface 22 which is a sliding surface, and high wear resistance can be obtained regardless of whether or not the lubricating oil contains an organic molybdenum compound, which is even lower. It is possible to achieve a coefficient of friction.
 [サンプルの製造]
 SUJ2材(JIS G 4805)の柱状体(φ6mm×高さ14mm)である基材(表面粗さRa:0.01μm)の表面に、表1に示す種々の例のDLC皮膜を形成して、摺動部材を得た。No.4,5では、基材の表面に表1に示す中間層を形成し、当該中間層上に、表1に示すDLC皮膜を形成して、摺動部材を得た。DLC皮膜の成膜は、真空アーク方式による成膜装置を用いた。具体的には、炭化ケイ素(SiC)及び炭化ホウ素(B4C)を含有し、グラファイトからなるSi-B含有カーボン合金ターゲットと、Si及びBを含有しないカーボンターゲットを用意した。これらSi-B含有カーボン合金ターゲット及びカーボンターゲットを、回転する基材の周囲に、当該基材を中心とした同心円状に、180°ずらして配置した。このようにして、第1DLC層と第2DLC層の積層構造からなるDLC皮膜を形成した。なお、DLC皮膜の表面は、所定量研磨することにより、Raを0.1μm以下とした。第1DLC層と第2DLC層の厚さ比率は、ターゲット放電電流を調整することにより制御し、この厚さ比率を種々変更することにより、DLC皮膜の表面におけるB/(A+B)及びB’/(A’+B’)を制御した。なお、一部の例(No.11~13)では、第1DLC層を形成するためのSi-B含有カーボン合金ターゲットに、窒素及び酸素の一方又は両方をさらに含有させた。No.14では、炭化ホウ素(B4C)を含有し、グラファイトからなるB含有カーボン合金ターゲットを用いて、第1DLC層を形成し、No.15では、炭化ケイ素(SiC)を含有し、グラファイトからなるSi含有カーボン合金ターゲットを用いて、第1DLC層を形成した。
[Production of sample]
DLC films of various examples shown in Table 1 were formed on the surface of a base material (surface roughness Ra: 0.01 μm) which is a columnar body (φ6 mm × height 14 mm) of SUJ2 material (JIS G 4805). A sliding member was obtained. In Nos. 4 and 5, the intermediate layer shown in Table 1 was formed on the surface of the base material, and the DLC film shown in Table 1 was formed on the intermediate layer to obtain a sliding member. For the formation of the DLC film, a film forming apparatus by a vacuum arc method was used. Specifically, containing silicon carbide (SiC) and boron carbide (B 4 C), and Si-B-containing carbon alloy target made of graphite, was prepared a carbon target containing no Si and B. The Si—B-containing carbon alloy target and the carbon target were arranged around the rotating base material in a concentric circle centered on the base material, shifted by 180 °. In this way, a DLC film having a laminated structure of a first DLC layer and a second DLC layer was formed. The surface of the DLC film was polished by a predetermined amount to reduce Ra to 0.1 μm or less. The thickness ratio of the first DLC layer and the second DLC layer is controlled by adjusting the target discharge current, and by variously changing this thickness ratio, B / (A + B) and B'/ ( A'+ B') was controlled. In some examples (Nos. 11 to 13), one or both of nitrogen and oxygen were further contained in the Si—B-containing carbon alloy target for forming the first DLC layer. No. In No. 14, a first DLC layer was formed using a B-containing carbon alloy target containing boron carbide (B 4 C) and made of graphite. In No. 15, a first DLC layer was formed using a Si-containing carbon alloy target containing silicon carbide (SiC) and made of graphite.
 各例において、第1DLC層のSi含有量、B含有量、N含有量、及びO含有量は、既述の方法により求め、表1に示した。また、DLC皮膜の厚さは、カロテストにより測定し、表1に示した。また、DLC皮膜の表面におけるB/(A+B)は、既述の方法により求め、表1に示した。また、B’/(A’+B’)については、既述の方法によって第1のサンプル及び第2のサンプルの値を求め、表1に示した。また、第1領域及び第2領域のインデンテーション硬さを測定し、表1に示した。インデンテーション硬さの測定は、株式会社エリオニクス製の超微小押し込み硬さ試験機を用いて行った。条件としては、ベルコビッチ圧子を用いて、押し込み深さがDLC皮膜の厚さの1/10程度となる荷重にて試験を行った。 In each example, the Si content, B content, N content, and O content of the first DLC layer were determined by the methods described above and are shown in Table 1. The thickness of the DLC film was measured by the Carotest and is shown in Table 1. The B / (A + B) on the surface of the DLC film was determined by the method described above and is shown in Table 1. For B'/ (A'+ B'), the values of the first sample and the second sample were obtained by the method described above, and are shown in Table 1. In addition, the indentation hardness of the first region and the second region was measured and shown in Table 1. The indentation hardness was measured using an ultra-fine indentation hardness tester manufactured by Elionix Inc. As a condition, the test was carried out using a Belkovic indenter under a load such that the indentation depth was about 1/10 of the thickness of the DLC film.
 [耐熱性の評価]
 表1の各例において2つのサンプルを作製した。第1のサンプルは、大気中400℃の雰囲気にて5時間の熱処理を行い、第2のサンプルは、大気中500℃の雰囲気にて5時間の熱処理を行った。各サンプルについて、熱処理前後にDLC皮膜のインデンテーション硬さを測定した。なお、インデンテーション硬さの測定は、株式会社エリオニクス製の超微小押し込み硬さ試験機を用いて行った。条件としては、ベルコビッチ圧子を用いて、押し込み深さがDLC皮膜の厚さの1/10程度となる荷重にて、押し込み領域が第1領域(Si-B含有領域)と第2領域(ta-C領域)の両方を含む条件下にて、試験を行った。結果を表2に示す。なお、表2には、熱処理前の硬さに対する熱処理後の硬さの減少率を示した。
[Evaluation of heat resistance]
Two samples were prepared for each example in Table 1. The first sample was heat-treated in an atmosphere of 400 ° C. for 5 hours, and the second sample was heat-treated in an atmosphere of 500 ° C. for 5 hours. For each sample, the indentation hardness of the DLC film was measured before and after the heat treatment. The indentation hardness was measured using an ultra-fine indentation hardness tester manufactured by Elionix Inc. As a condition, using a Belkovic indenter, the pushing region is the first region (Si-B containing region) and the second region (ta-) under a load such that the pushing depth is about 1/10 of the thickness of the DLC film. The test was carried out under the condition including both of C region). The results are shown in Table 2. Table 2 shows the reduction rate of the hardness after the heat treatment with respect to the hardness before the heat treatment.
 [耐摩耗性及び摩擦係数の評価]
 摺動相手材としてSUJ2材(JIS G 4805)のディスク(φ25mm×t8mm)を用意し、各例の摺動部材について、図6に模式図を示した振動摩擦摩耗試験(オプチモール社:SRV試験機)により、次の試験条件で往復動試験を行った。
 試験時間   : 60min
 荷重     : 500N
 往復動周波数 : 50Hz
 振幅     : 3mm
 潤滑油    : (1)ベースオイル PAO
          (2)エンジンオイル0W- 8(Mo-DTC無添加オイル)
          (3)エンジンオイル0W- 8(Mo-DTC添加オイル)
          (4)エンジンオイル0W-20(Mo-DTC無添加オイル)
          (5)エンジンオイル0W-20(Mo-DTC添加オイル)
 潤滑油温   : 80℃
[Evaluation of wear resistance and friction coefficient]
A SUJ2 material (JIS G 4805) disc (φ25 mm × t8 mm) was prepared as the sliding mating material, and the sliding members of each example were subjected to the vibration friction and wear test (Optimor: SRV test) whose schematic diagram is shown in FIG. The reciprocating test was conducted under the following test conditions.
Test time: 60 min
Load: 500N
Reciprocating frequency: 50Hz
Amplitude: 3 mm
Lubricating oil: (1) Base oil PAO
(2) Engine oil 0W-8 (Mo-DTC additive-free oil)
(3) Engine oil 0W-8 (Mo-DTC added oil)
(4) Engine oil 0W-20 (Mo-DTC additive-free oil)
(5) Engine oil 0W-20 (Mo-DTC added oil)
Lubricating oil temperature: 80 ° C
 表1に示す各例について、試験終了時における摩擦係数をSRV試験機から読み取った。また、表1に示す各例について、図7を参照して、試験終了後の摺動部材について、摺動痕幅aを光学顕微鏡により測定し、以下に式に基づいて摩耗深さdを算出した。結果を表2に示す。なお、表2の摩耗深さは、比較例No.13との相対比で示した。
 摩耗深さd=r-(r2-a21/2
For each example shown in Table 1, the coefficient of friction at the end of the test was read from the SRV tester. Further, for each example shown in Table 1, the sliding mark width a is measured with an optical microscope for the sliding member after the test is completed with reference to FIG. 7, and the wear depth d is calculated based on the following formula. did. The results are shown in Table 2. The wear depth in Table 2 is based on Comparative Example No. It is shown as a relative ratio with 13.
Wear depth d = r- (r 2- a 2 ) 1/2
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の摺動部材は、耐熱性に優れたDLC皮膜を有し、潤滑油に有機モリブデン系化合物を含むか否かに関わらず高い耐摩耗性を得ることができ、さらに低い摩擦係数を実現することが可能である。 The sliding member of the present invention has a DLC film having excellent heat resistance, can obtain high wear resistance regardless of whether or not the lubricating oil contains an organic molybdenum compound, and realizes a further low coefficient of friction. It is possible to do.
 100  摺動部材
  10  基材
  12  中間層
  14  第1DLC層(Si-B含有HフリーDLC層)
  16  第2DLC層(HフリーDLC層)
  18A 第1領域(Si-B含有領域)
  18B 第2領域(ta-C領域)
  20  非晶質炭素皮膜(DLC皮膜)
  20A 非晶質炭素皮膜の表面(摺動面)
 200  摺動部材
  24  第1DLC部(Si-B含有HフリーDLC部)
  26  第2DLC部(HフリーDLC部)
  28A 第1領域(Si-B含有領域)
  28B 第2領域(ta-C領域)
  30  非晶質炭素皮膜(DLC皮膜)
  30A 非晶質炭素皮膜の表面(摺動面)
 300  ピストンリング
  32  ピストンリングの外周面
  34  ピストンリングの内周面
  36A ピストンリングの上面(上側面)
  36B ピストンリングの下面(下側面)
100 Sliding member 10 Base material 12 Intermediate layer 14 First DLC layer (Si-B-containing H-free DLC layer)
16 Second DLC layer (H-free DLC layer)
18A 1st region (Si-B containing region)
18B second region (ta-C region)
20 Amorphous carbon film (DLC film)
20A Amorphous carbon film surface (sliding surface)
200 Sliding member 24 1st DLC part (Si-B-containing H-free DLC part)
26 Second DLC section (H-free DLC section)
28A 1st region (Si-B containing region)
28B second region (ta-C region)
30 Amorphous carbon film (DLC film)
30A Amorphous carbon film surface (sliding surface)
300 Piston ring 32 Outer peripheral surface of piston ring 34 Inner peripheral surface of piston ring 36A Upper surface (upper side surface) of piston ring
36B Piston ring lower surface (lower side surface)

Claims (7)

  1.  基材と、
     該基材上に形成され、表面が摺動面となる非晶質炭素皮膜と、
    を有し、
     前記非晶質炭素皮膜の前記表面には、ケイ素:2原子%以上20原子%以下、及びホウ素:2原子%以上15原子%以下を含み、残部が炭素からなる実質的に水素を含まない成分組成を有する第1領域と、炭素からなる実質的に水素を含まない成分組成を有する第2領域とが混在しており、
     前記表面における前記第1領域の面積をA、前記第2領域の面積をBとして、B/(A+B)が0.05以上0.40以下であることを特徴とする摺動部材。
    With the base material
    An amorphous carbon film formed on the base material and whose surface is a sliding surface,
    Have,
    The surface of the amorphous carbon film contains silicon: 2 atomic% or more and 20 atomic% or less, and boron: 2 atomic% or more and 15 atomic% or less, and the balance is carbon, which is substantially hydrogen-free. The first region having a composition and the second region having a component composition consisting of carbon and substantially free of hydrogen are mixed.
    A sliding member having a B / (A + B) of 0.05 or more and 0.40 or less, where A is the area of the first region and B is the area of the second region on the surface.
  2.  前記非晶質炭素皮膜の厚さが20μm以下の場合は、前記非晶質炭素皮膜の厚み方向の全範囲において、前記非晶質炭素皮膜の厚さが20μm超えの場合には、前記非晶質炭素皮膜の前記表面から厚み方向に少なくとも20μmの範囲において、前記厚み方向に垂直な断面において、前記第1領域と前記第2領域が混在しており、前記断面における前記第1領域の面積をA’、前記第2領域の面積をB’として、B’/(A’+B’)が0.05以上0.40以下である、請求項1に記載の摺動部材。 When the thickness of the amorphous carbon film is 20 μm or less, the amorphous carbon film is in the entire thickness direction of the thickness direction, and when the thickness of the amorphous carbon film is more than 20 μm, the amorphous carbon film is said to be amorphous. In the range of at least 20 μm in the thickness direction from the surface of the quality carbon film, the first region and the second region are mixed in the cross section perpendicular to the thickness direction, and the area of the first region in the cross section is defined. The sliding member according to claim 1, wherein A', the area of the second region is B', and B'/ (A'+ B') is 0.05 or more and 0.40 or less.
  3.  前記第1領域の成分組成が、窒素:15原子%以下及び酸素:15原子%以下の少なくとも一方をさらに含む、請求項1又は2に記載の摺動部材。 The sliding member according to claim 1 or 2, wherein the component composition of the first region further contains at least one of nitrogen: 15 atomic% or less and oxygen: 15 atomic% or less.
  4.  前記第1領域のインデンテーション硬さが前記第2領域のインデンテーション硬さよりも小さい、請求項1~3のいずれか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 3, wherein the indentation hardness of the first region is smaller than the indentation hardness of the second region.
  5.  前記非晶質炭素皮膜の厚さが0.5μm以上50μm以下である、請求項1~4のいずれか一項に記載の摺動部材。 The sliding member according to any one of claims 1 to 4, wherein the thickness of the amorphous carbon film is 0.5 μm or more and 50 μm or less.
  6.  前記基材と前記非晶質炭素皮膜との間に、Cr、Ti、Co、V、Mo、Si及びWからなる群から選択された一つ以上の元素またはその炭化物、窒化物、炭窒化物からなる中間層を有する、請求項1~5のいずれか一項に記載の摺動部材。 One or more elements selected from the group consisting of Cr, Ti, Co, V, Mo, Si and W or carbides, nitrides and carbonitrides thereof between the base material and the amorphous carbon film. The sliding member according to any one of claims 1 to 5, which has an intermediate layer made of.
  7.  請求項1~6のいずれか一項に記載の摺動部材からなるピストンリングであって、その外周面が前記摺動面であるピストンリング。 A piston ring made of the sliding member according to any one of claims 1 to 6, wherein the outer peripheral surface thereof is the sliding surface.
PCT/JP2020/046832 2020-01-10 2020-12-15 Sliding member and piston ring WO2021140851A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021531664A JP6938807B1 (en) 2020-01-10 2020-12-15 Sliding members and piston rings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020003200 2020-01-10
JP2020-003200 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021140851A1 true WO2021140851A1 (en) 2021-07-15

Family

ID=76787491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046832 WO2021140851A1 (en) 2020-01-10 2020-12-15 Sliding member and piston ring

Country Status (2)

Country Link
JP (1) JP6938807B1 (en)
WO (1) WO2021140851A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating
JP2008286354A (en) * 2007-05-21 2008-11-27 Nippon Piston Ring Co Ltd Sliding member
JP2012530188A (en) * 2009-06-18 2012-11-29 スルザー メタプラス ゲーエムベーハー Protective coating, coating member having protective coating, and method for producing protective coating
JP2015193918A (en) * 2014-03-21 2015-11-05 株式会社豊田中央研究所 Slide member and slide machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating
JP2008286354A (en) * 2007-05-21 2008-11-27 Nippon Piston Ring Co Ltd Sliding member
JP2012530188A (en) * 2009-06-18 2012-11-29 スルザー メタプラス ゲーエムベーハー Protective coating, coating member having protective coating, and method for producing protective coating
JP2015193918A (en) * 2014-03-21 2015-11-05 株式会社豊田中央研究所 Slide member and slide machine

Also Published As

Publication number Publication date
JP6938807B1 (en) 2021-09-22
JPWO2021140851A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
JP4400603B2 (en) Member with hard carbon coating
US11293548B2 (en) Sliding member and coating film
EP2826983B1 (en) Combination of cylinder and piston ring
US10100929B2 (en) Piston ring
WO2017043022A1 (en) Sliding member and piston ring
US10619739B2 (en) Piston ring
JP2008286354A (en) Sliding member
EP3330579A1 (en) Piston ring and manufacturing method thereof
EP4039846A1 (en) Sliding member and method for producing same, and coating film
JP2019066024A (en) piston ring
JP7284700B2 (en) sliding mechanism
WO2017130587A1 (en) Sliding member and production method therefor
EP3660180B1 (en) Sliding member and piston ring
JP2018076958A (en) piston ring
WO2021124788A1 (en) Combination of cylinder and piston ring
WO2015052761A1 (en) Piston ring and seal ring for turbocharger
WO2021140851A1 (en) Sliding member and piston ring
JP2019082241A (en) piston ring
WO2020209133A1 (en) Sliding member and piston ring
JP2021055718A (en) Sliding member and piston ring
WO2015052762A1 (en) Piston ring and seal ring for turbocharger
JP2021110403A (en) Slide member and piston ring
WO2019107442A9 (en) Sliding member
CN115003936A (en) Piston ring and method for manufacturing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021531664

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912695

Country of ref document: EP

Kind code of ref document: A1