JP2021110403A - Slide member and piston ring - Google Patents

Slide member and piston ring Download PDF

Info

Publication number
JP2021110403A
JP2021110403A JP2020003199A JP2020003199A JP2021110403A JP 2021110403 A JP2021110403 A JP 2021110403A JP 2020003199 A JP2020003199 A JP 2020003199A JP 2020003199 A JP2020003199 A JP 2020003199A JP 2021110403 A JP2021110403 A JP 2021110403A
Authority
JP
Japan
Prior art keywords
hard
region
dlc
dlc film
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020003199A
Other languages
Japanese (ja)
Other versions
JP7396905B2 (en
Inventor
和也 亀田
Kazuya KAMEDA
和也 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2020003199A priority Critical patent/JP7396905B2/en
Publication of JP2021110403A publication Critical patent/JP2021110403A/en
Application granted granted Critical
Publication of JP7396905B2 publication Critical patent/JP7396905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

To provide a slide member which can materialize all of excellent heat resistance, low aggression to a mating material, high wear resistance, and a low friction coefficient.SOLUTION: A slide member 100 has a base material 10 and an amorphous carbon film 20 formed on the base material 10, and having a surface 20A being a slide surface. The amorphous carbon film 20 has a component composition containing a hydrogen content in an amount of 3 atom% or less and the remainder composed of carbon, and has a thickness of 3 μm or more. The arithmetic average roughness of the surface 20A of the amorphous carbon film is 0.10 μm or less. A hard region 18A with an indentation hardness of 25 GPa or more, and a soft region 18B with an indentation hardness of 20 GPa or less are mixedly formed on the surface 20A of the amorphous carbon film, and when an area of the hard region 18A on the surface 20A is denoted as A, and an area of the soft region 18B is denoted as B, A/(A+B) is 0.20 or more, and 0.70 or less.SELECTED DRAWING: Figure 1

Description

本発明は、摺動部材、特にピストンリング等の自動車部品など、高い信頼性を要求される摺動部材に関する。 The present invention relates to sliding members, particularly sliding members that require high reliability, such as automobile parts such as piston rings.

近年、自動車エンジンを中心とする内燃機関において、高出力化、長寿命化、燃費向上が求められている。そこで、例えば内燃機関等で使用される摺動部材の摺動面には、摩擦係数が低いことで知られている硬質炭素皮膜を形成することが一般的に行われている。 In recent years, in internal combustion engines centered on automobile engines, higher output, longer life, and improved fuel efficiency have been required. Therefore, for example, it is generally practiced to form a hard carbon film known to have a low friction coefficient on the sliding surface of a sliding member used in an internal combustion engine or the like.

この硬質炭素皮膜としては、ダイヤモンドライクカーボン(Diamond Like Carbon:DLC)と呼ばれる非晶質炭素が例示される。DLCの構造的本質は、炭素の結合としてダイヤモンド結合(sp3結合)とグラファイト結合(sp2結合)とが混在したものである。よって、DLCは、ダイヤモンドに類似した硬度、耐摩耗性、熱伝導性、化学安定性を有し、一方でグラファイトに類似した固体潤滑性を有することから、例えば自動車部品などの保護膜として好適である。 Examples of this hard carbon film include amorphous carbon called diamond-like carbon (DLC). The structural essence of DLC is a mixture of diamond bonds (sp 3 bonds) and graphite bonds (sp 2 bonds) as carbon bonds. Therefore, DLC has hardness, abrasion resistance, thermal conductivity, and chemical stability similar to diamond, while having solid lubricity similar to graphite, and is therefore suitable as a protective film for, for example, automobile parts. be.

DLC皮膜は、その硬さに応じて有利に発揮できる特性が異なる。一般に、硬質なDLC皮膜は、sp2比率が低いため低摩擦係数を得にくいものの、耐摩耗性には優れる。他方で、軟質なDLC皮膜は、sp2比率が高く低摩擦係数を得られるものの、耐摩耗性は硬質なDLC皮膜に及ばない。 The DLC film has different characteristics that can be advantageously exhibited depending on its hardness. In general, a hard DLC film has a low sp 2 ratio, so that it is difficult to obtain a low friction coefficient, but it is excellent in wear resistance. On the other hand, the soft DLC film has a high sp 2 ratio and a low friction coefficient can be obtained, but the wear resistance is not as good as that of the hard DLC film.

そこで、硬質なDLC皮膜と軟質なDLC皮膜を組み合わせた摺動部材が提案されている。特許文献1には、ピストンリングの外周面にDLC皮膜が形成されており、このDLC皮膜は、硬度の異なる2種類の層が2層以上積層された積層皮膜であり、2種類の層の硬度差が500〜1700HVであり、硬度の高い層が硬度の低い層の厚さと同一又はそれ以上の厚さを有し、DLC皮膜全体の厚さが5.0μm以上であることが記載されている。 Therefore, a sliding member that combines a hard DLC film and a soft DLC film has been proposed. In Patent Document 1, a DLC film is formed on the outer peripheral surface of the piston ring, and this DLC film is a laminated film in which two or more layers having different hardness are laminated, and the hardness of the two layers is high. It is stated that the difference is 500 to 1700 HV, the high hardness layer has a thickness equal to or greater than the thickness of the low hardness layer, and the total thickness of the DLC film is 5.0 μm or more. ..

特開2012−202522号公報Japanese Unexamined Patent Publication No. 2012-202522

特許文献1には、積層皮膜からなるDLC皮膜の最表層が硬度の高い層であることが記載されている。しかしながら、本発明者の検討によると、以下のことが判明した。すなわち、DLC皮膜の最表層が硬度の高い層であると、摺動の初期にDLC皮膜の表面のsp2比率が低いことから、摺動の過程で硬度の低い層が露出したとしても、摺動の初期で低い摩擦係数を得ることができなかった。他方で、DLC皮膜の最表層が硬度の低い層である場合には、DLC皮膜の耐熱性が不十分であるとともに、耐摩耗性が低く、さらに相手材への攻撃性が高いという問題があった。 Patent Document 1 describes that the outermost layer of the DLC film made of a laminated film is a layer having high hardness. However, according to the study of the present inventor, the following has been found. That is, if the outermost layer of the DLC film is a layer with high hardness, the sp 2 ratio of the surface of the DLC film is low at the initial stage of sliding, so even if the layer with low hardness is exposed during the sliding process, friction is performed. A low coefficient of friction could not be obtained in the early stages of motion. On the other hand, when the outermost layer of the DLC film is a layer having a low hardness, there is a problem that the heat resistance of the DLC film is insufficient, the wear resistance is low, and the aggression to the mating material is high. rice field.

そこで本発明は、上記課題に鑑み、優れた耐熱性、相手材に対する低い攻撃性、高い耐摩耗性、及び低い摩擦係数の全てを実現することが可能な摺動部材を提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a sliding member capable of achieving all of excellent heat resistance, low aggression against a mating material, high wear resistance, and low friction coefficient. do.

上記課題を解決すべく本発明者が鋭意検討したところ、摺動前の段階で、つまり摺動部材が未使用の段階で、非晶質炭素皮膜(DLC皮膜)の表面に硬質領域と軟質領域とを混在させておき、しかも、当該表面における硬質領域及び軟質領域の面積比率を所定の範囲とすることによって、優れた耐熱性、相手材に対する低い攻撃性、高い耐摩耗性、及び低い摩擦係数の全ての特性を実現できることを見出した。 As a result of diligent studies by the present inventor in order to solve the above problems, a hard region and a soft region are formed on the surface of the amorphous carbon film (DLC film) before sliding, that is, when the sliding member is not used. By setting the area ratio of the hard region and the soft region on the surface to a predetermined range, excellent heat resistance, low aggression against the mating material, high wear resistance, and low friction coefficient It was found that all the characteristics of the above can be realized.

上記知見に基づき完成された本発明の要旨構成は以下のとおりである。
(1)基材と、
該基材上に形成され、表面が摺動面となる、水素含有量が3原子%以下であり、残部が炭素からなる成分組成を有する、厚さが3μm以上の非晶質炭素皮膜と、
を有し、
前記非晶質炭素皮膜の前記表面は、算術平均粗さRaが0.10μm以下であり、
前記非晶質炭素皮膜の前記表面には、インデンテーション硬さが25GPa以上の硬質領域と、インデンテーション硬さが20GPa以下の軟質領域とが混在しており、
前記表面における硬質領域の面積をA、軟質領域の面積をBとして、A/(A+B)が0.20以上0.70以下であることを特徴とする摺動部材。
The abstract structure of the present invention completed based on the above findings is as follows.
(1) Base material and
An amorphous carbon film having a hydrogen content of 3 atomic% or less and a component composition in which the balance is composed of carbon and having a thickness of 3 μm or more, which is formed on the base material and whose surface is a sliding surface.
Have,
The surface of the amorphous carbon film has an arithmetic mean roughness Ra of 0.10 μm or less.
On the surface of the amorphous carbon film, a hard region having an indentation hardness of 25 GPa or more and a soft region having an indentation hardness of 20 GPa or less are mixed.
A sliding member having an A / (A + B) of 0.20 or more and 0.70 or less, where A is an area of a hard region and B is an area of a soft region on the surface.

(2)前記非晶質炭素皮膜において、
前記表面の硬質領域の部位では、前記表面からの深さ方向に硬質部位のみが存在し、
前記表面の軟質領域の部位では、前記表面からの深さ方向にまず軟質部位が位置し、その後、硬質部位が位置する、上記(1)に記載の摺動部材。
(2) In the amorphous carbon film,
In the portion of the hard region of the surface, only the hard portion exists in the depth direction from the surface.
The sliding member according to (1) above, wherein in the portion of the soft region of the surface, the soft portion is first located in the depth direction from the surface, and then the hard portion is located.

(3)前記基材と前記非晶質炭素皮膜との間に、Cr、Ti、Co、V、Mo、Si及びWからなる群から選択された一つ以上の元素またはその炭化物、窒化物、炭窒化物からなる中間層を有する、上記(1)又は(2)に記載の摺動部材。 (3) One or more elements selected from the group consisting of Cr, Ti, Co, V, Mo, Si and W, or carbides and nitrides thereof, between the base material and the amorphous carbon film. The sliding member according to (1) or (2) above, which has an intermediate layer made of carbide.

(4)上記(1)〜(3)のいずれか一項に記載の摺動部材からなるピストンリングであって、その外周面が前記摺動面であるピストンリング。 (4) A piston ring made of the sliding member according to any one of (1) to (3) above, wherein the outer peripheral surface thereof is the sliding surface.

本発明の摺動部材は、優れた耐熱性、相手材に対する低い攻撃性、高い耐摩耗性、及び低い摩擦係数の全てを実現することができる。 The sliding member of the present invention can realize all of excellent heat resistance, low aggression against the mating material, high wear resistance, and low friction coefficient.

本発明の一実施形態による摺動部材100の模式断面図である。It is a schematic cross-sectional view of the sliding member 100 by one Embodiment of this invention. 本発明の一実施形態による摺動部材100の製造工程の一部を模式的に説明する図である。It is a figure which schematically explains a part of the manufacturing process of the sliding member 100 by one Embodiment of this invention. 本発明の一実施形態によるピストンリング200の断面斜視図である。It is sectional drawing of the piston ring 200 by one Embodiment of this invention.

(摺動部材)
図1を参照して、本発明の一実施形態による摺動部材100は、潤滑油下で使用されるものであり、基材10と、この基材10上に形成され、表面20Aが摺動面となる非晶質炭素皮膜(DLC皮膜)20と、を有する。また、任意で、基材10と非晶質炭素皮膜20との間に中間層12を有してもよい。
(Sliding member)
With reference to FIG. 1, the sliding member 100 according to the embodiment of the present invention is used under lubricating oil, and is formed on the base material 10 and the base material 10, and the surface 20A slides on the base material 10. It has an amorphous carbon film (DLC film) 20 as a surface. Further, optionally, an intermediate layer 12 may be provided between the base material 10 and the amorphous carbon film 20.

[基材]
基材10の材質は、摺動部材の基材として必要な強度を有するものであれば特に限定されない。本実施形態の摺動部材100をピストンリングとする場合、基材10の好ましい材料としては、鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、高級鋳鉄等が挙げられる。本実施形態の摺動部材100をCVTなどのシールリングとする場合、基材10の材料としては樹脂が挙げられ、コンプレッサのベーンなどとする場合、基材10の材料としてはアルミ合金等が挙げられる。
[Base material]
The material of the base material 10 is not particularly limited as long as it has the strength required as the base material of the sliding member. When the sliding member 100 of the present embodiment is a piston ring, preferred materials for the base material 10 include steel, martensitic stainless steel, austenitic stainless steel, and high-grade cast iron. When the sliding member 100 of the present embodiment is a seal ring such as a CVT, resin is mentioned as the material of the base material 10, and when it is used as a vane of a compressor or the like, aluminum alloy or the like is mentioned as the material of the base material 10. Be done.

基材10の表面(DLC皮膜を形成する表面)の粗さは、算術平均粗さRaで0.01μm以上であることが好ましい。基材10の表面粗さがRaで0.01μm未満の場合、当該表面がほぼ鏡面となり、後述する適度な表面粗さの硬質DLC層14(図1,2参照)を形成することができないからである。基材10の表面粗さの上限は特に限定されないが、DLC皮膜20の成膜を容易にする観点から、基材10の表面粗さはRaで1.3μm以下であることが好ましい。基材10の表面粗さは、基材表面の研磨の程度を調整することにより制御できる。また、基材表面にホーニング加工を施して、意図的に表面粗さを形成することもできる。 The roughness of the surface of the base material 10 (the surface on which the DLC film is formed) is preferably 0.01 μm or more in arithmetic average roughness Ra. When the surface roughness of the base material 10 is less than 0.01 μm in Ra, the surface becomes almost a mirror surface, and the hard DLC layer 14 (see FIGS. 1 and 2) having an appropriate surface roughness described later cannot be formed. Is. The upper limit of the surface roughness of the base material 10 is not particularly limited, but from the viewpoint of facilitating the formation of the DLC film 20, the surface roughness of the base material 10 is preferably 1.3 μm or less in Ra. The surface roughness of the base material 10 can be controlled by adjusting the degree of polishing of the base material surface. Further, the surface of the base material can be honed to intentionally form the surface roughness.

「基材表面のRa」は、以下の方法により測定するものとする。すなわち、基材表面の任意の位置において、JIS B0601(2001)に従い、基準長さ:1.25mm、カットオフ値λc:0.25mm、カットオフ比λc/λs=100の条件で、基材の粗さ曲線を測定し、算術平均粗さRaを求める。なお、測定は3回行い、その3回の平均値を採用するものとする。 "Ra on the surface of the base material" shall be measured by the following method. That is, at an arbitrary position on the surface of the base material, according to JIS B0601 (2001), the base material has a reference length of 1.25 mm, a cutoff value of λc: 0.25 mm, and a cutoff ratio of λc / λs = 100. The roughness curve is measured to obtain the arithmetic mean roughness Ra. The measurement shall be performed three times, and the average value of the three times shall be adopted.

[中間層]
中間層12は、基材10とDLC皮膜20との間に形成されることにより基材10との界面の応力を緩和し、DLC皮膜20の密着性を高める機能を有する。この機能を発揮する観点から、中間層12は、Cr、Ti、Co、V、Mo、Si及びWからなる群から選択された一つ以上の元素またはその炭化物、窒化物、炭窒化物からなるものとすることが好ましい。DLC皮膜20の密着性を十分に高める観点から、中間層12の厚さは、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましい。また、摺動時に中間層12が塑性流動を起こしてDLC皮膜20が剥離することを十分に抑制する観点から、中間層12の厚さは、0.6μm以下であることが好ましく、0.5μm以下であることがより好ましい。
[Middle class]
The intermediate layer 12 has a function of relaxing the stress at the interface with the base material 10 and enhancing the adhesion of the DLC film 20 by being formed between the base material 10 and the DLC film 20. From the viewpoint of demonstrating this function, the intermediate layer 12 is composed of one or more elements selected from the group consisting of Cr, Ti, Co, V, Mo, Si and W or their carbides, nitrides and carbonitrides. It is preferable to use the above. From the viewpoint of sufficiently enhancing the adhesion of the DLC film 20, the thickness of the intermediate layer 12 is preferably 0.1 μm or more, and more preferably 0.2 μm or more. Further, from the viewpoint of sufficiently suppressing the intermediate layer 12 from causing plastic flow during sliding and peeling off the DLC film 20, the thickness of the intermediate layer 12 is preferably 0.6 μm or less, preferably 0.5 μm. It is more preferable that it is as follows.

中間層12の形成方法としては、例えばスパッタリング法を挙げることができる。洗浄後の基材10をPVD成膜装置の真空チャンバ内に配置し、Arガスを導入した状態でターゲットのスパッタ放電によって、中間層12を成膜する。ターゲットは、Cr、Ti、Co、V、Mo、Si及びWから選択すればよい。中間層12の厚さは、ターゲットの放電時間により調整できる。 As a method for forming the intermediate layer 12, for example, a sputtering method can be mentioned. The washed base material 10 is placed in the vacuum chamber of the PVD film forming apparatus, and the intermediate layer 12 is formed by sputter discharge of the target with Ar gas introduced. The target may be selected from Cr, Ti, Co, V, Mo, Si and W. The thickness of the intermediate layer 12 can be adjusted by adjusting the discharge time of the target.

[DLC皮膜]
<DLC皮膜の成分組成>
DLC皮膜20は、水素含有量が3原子%以下であり、残部が炭素からなる成分組成を有する。なお、非晶質炭素であることは、ラマン分光光度計(Arレーザ)を用いたラマンスペクトル測定により確認できる。
[DLC film]
<Component composition of DLC film>
The DLC film 20 has a component composition in which the hydrogen content is 3 atomic% or less and the balance is carbon. The amorphous carbon can be confirmed by Raman spectrum measurement using a Raman spectrophotometer (Ar laser).

DLC皮膜が水素を含有する場合、摺動によってDLC皮膜が高温になると、水素が脱離してDLC皮膜が劣化することによって、DLC皮膜の摩耗が促進される。よって、本実施形態において、DLC皮膜20は、実質的に水素を含まないもの、すなわち水素含有量が3原子%以下であるものとする。これにより、高温環境下における水素の離脱に起因する耐摩耗性の劣化を回避することができる。 When the DLC film contains hydrogen, when the temperature of the DLC film becomes high due to sliding, the hydrogen is desorbed and the DLC film is deteriorated, so that the wear of the DLC film is promoted. Therefore, in the present embodiment, it is assumed that the DLC film 20 does not substantially contain hydrogen, that is, the hydrogen content is 3 atomic% or less. This makes it possible to avoid deterioration of wear resistance due to the release of hydrogen in a high temperature environment.

<DLC皮膜の水素含有量の測定方法>
DLC皮膜の水素含有量の評価は、摺動部が平坦な面や曲率が十分大きな面に形成されたDLC皮膜に対してはRBS(Rutherford Backscattering Spectrometry)/HFS(Hydrogen Forward Scattering Spectrometry)によって評価することができる。これに対して、ピストンリングの外周面など平坦でない摺動面に形成されたDLC皮膜に対しては、RBS/HFS及びSIMS(Secondary Ion Mass Spectrometry)を組み合わせることによって評価する。RBS/HFSは公知の皮膜組成の分析方法であるが、平坦でない面の分析には適用できないので、以下のようにしてRBS/HFS及びSIMSを組み合わせる。
<Measurement method of hydrogen content of DLC film>
The hydrogen content of the DLC film is evaluated by RBS (Rutherford Backscattering Spectrometry) / HFS (Hydrogen Forward Scattering Spectroscopy) for the DLC film formed on a flat surface or a surface having a sufficiently large curvature. be able to. On the other hand, the DLC film formed on an uneven sliding surface such as the outer peripheral surface of the piston ring is evaluated by combining RBS / HFS and SIMS (Secondary Ion Mass Spectrometry). Although RBS / HFS is a known method for analyzing a film composition, it cannot be applied to the analysis of uneven surfaces. Therefore, RBS / HFS and SIMS are combined as follows.

まず、平坦な面を有する基準試料として、鏡面研磨した平坦な試験片(焼入処理を施したSKH51ディスク、φ25×厚さ5mm、硬さHRC60〜63)に、基準値の測定対象となる炭素皮膜を形成する。 First, as a reference sample having a flat surface, a mirror-polished flat test piece (hardened SKH51 disk, φ25 × thickness 5 mm, hardness HRC60 to 63) is subjected to carbon to be measured as a reference value. Form a film.

基準試料への成膜は、反応性スパッタリング法を用いて、雰囲気ガスとしてC22、Ar、H2を導入して行う。そして、導入するH2流量及び/又はC22流量を変えることによって、炭素皮膜に含まれる水素量を調整する。このようにして水素と炭素によって構成され、水素含有率が異なる炭素皮膜を形成し、これらをRBS/HFSで水素含有量と炭素含有量を評価する。 The film is formed on the reference sample by introducing C 2 H 2 , Ar, and H 2 as atmospheric gases using a reactive sputtering method. Then, by varying the flow rate of H 2 and / or C 2 H 2 flow rate is introduced to adjust the amount of hydrogen contained in the carbon film. In this way, carbon films composed of hydrogen and carbon and having different hydrogen contents are formed, and the hydrogen content and carbon content of these are evaluated by RBS / HFS.

次に、上記の試料をSIMSで分析し、水素と炭素の二次イオン強度を測定する。ここで、SIMS分析は、平坦でない面、例えばピストンリングの外周面に形成された皮膜でも測定できる。したがって、炭素皮膜が施された基準試料の同一の皮膜について、RBS/HFSによって得られた水素含有量と炭素含有量(単位:原子%)と、SIMSによって得られた水素と炭素の二次イオン強度の比率との関係を示す実験式(計量線)を求める。このようにすることで、実際のピストンリングの外周面について測定したSIMSの水素と炭素の二次イオン強度から、水素含有量と炭素含有量を算出することができる。なお、SIMSによる二次イオン強度の値は、少なくとも炭素皮膜の表面から20nm以上の深さ、且つ50nm四方の範囲において観測されたそれぞれの元素の二次イオン強度の平均値を採用する。 Next, the above sample is analyzed by SIMS to measure the secondary ionic strength of hydrogen and carbon. Here, SIMS analysis can also measure a film formed on an uneven surface, for example, the outer peripheral surface of a piston ring. Therefore, for the same film of the reference sample with the carbon film, the hydrogen content and carbon content (unit: atomic%) obtained by RBS / HFS and the secondary ions of hydrogen and carbon obtained by SIMS. Obtain an empirical formula (calibration curve) showing the relationship with the strength ratio. By doing so, the hydrogen content and the carbon content can be calculated from the secondary ionic strengths of hydrogen and carbon of SIMS measured on the outer peripheral surface of the actual piston ring. As the value of the secondary ionic strength by SIMS, the average value of the secondary ionic strength of each element observed at least at a depth of 20 nm or more from the surface of the carbon film and in the range of 50 nm square is adopted.

<DLC皮膜の厚さ>
本実施形態において、DLC皮膜20の厚さは3μm以上とする。厚さが3μm未満の場合、DLC皮膜20によって期待される本発明の効果が十分に発揮されないからである。DLC皮膜の厚さの上限は特に限定されないが、基材との密着性を確保して剥離を防ぐ観点から、DLC皮膜20の厚さは40μm以下であることが好ましい。なお、本発明において、DLC皮膜の厚さは、DLC皮膜の厚さ方向に沿った断面を含む樹脂埋め込み試料を観察し、当該断面において、基材または中間層の凹部からDLC皮膜の表面までの長さを測定することにより求めるものとする。
<Thickness of DLC film>
In the present embodiment, the thickness of the DLC film 20 is 3 μm or more. This is because when the thickness is less than 3 μm, the effect of the present invention expected by the DLC film 20 is not sufficiently exhibited. The upper limit of the thickness of the DLC film is not particularly limited, but the thickness of the DLC film 20 is preferably 40 μm or less from the viewpoint of ensuring adhesion to the substrate and preventing peeling. In the present invention, the thickness of the DLC film is determined by observing a resin-embedded sample including a cross section along the thickness direction of the DLC film, and in the cross section, from the recess of the base material or the intermediate layer to the surface of the DLC film. It shall be obtained by measuring the length.

<DLC皮膜の表面形態>
図1及び図2を参照して、本実施形態では、摺動前の段階で、つまり摺動部材100が未使用の段階で、DLC皮膜20の表面20Aに硬質領域18Aと軟質領域18Bとを混在させておく。さらに、表面20Aにおける硬質領域の面積をA、軟質領域の面積をBとして、A/(A+B)が0.20以上0.70以下であることが重要である。
<Surface morphology of DLC film>
With reference to FIGS. 1 and 2, in the present embodiment, the hard region 18A and the soft region 18B are formed on the surface 20A of the DLC film 20 before sliding, that is, when the sliding member 100 is not used. Keep mixed. Further, it is important that A / (A + B) is 0.20 or more and 0.70 or less, where A is the area of the hard region and B is the area of the soft region on the surface 20A.

「硬質領域」とは、インデンテーション硬さが25GPa以上のDLC領域を意味するものとし、硬質領域のインデンテーション硬さは30GPa以上であることが好ましい。硬質領域のインデンテーション硬さの上限は特に限定されないが、DLC皮膜の後加工性の観点から、硬質領域のインデンテーション硬さは60GPa以下であることが好ましい。 The “hard region” means a DLC region having an indentation hardness of 25 GPa or more, and the indentation hardness of the hard region is preferably 30 GPa or more. The upper limit of the indentation hardness of the hard region is not particularly limited, but from the viewpoint of post-workability of the DLC film, the indentation hardness of the hard region is preferably 60 GPa or less.

「軟質領域」とは、インデンテーション硬さが20GPa以下のDLC領域を意味するものとし、軟質領域のインデンテーション硬さは15GPa以下であることが好ましい。軟質領域のインデンテーション硬さの下限は特に限定されないが、耐熱性の観点から、軟質領域のインデンテーション硬さは5GPa以上であることが好ましい。 The “soft region” means a DLC region having an indentation hardness of 20 GPa or less, and the indentation hardness of the soft region is preferably 15 GPa or less. The lower limit of the indentation hardness of the soft region is not particularly limited, but from the viewpoint of heat resistance, the indentation hardness of the soft region is preferably 5 GPa or more.

A/(A+B)が0.20未満の場合、DLC皮膜の表面20Aにおいて硬質領域18Aが過少であり、軟質領域18Bが過多となる。この場合、以下の3つのデメリットがある。第一に、軟質領域18Bは硬質領域18Aと比べて耐熱性に劣る傾向があることから、DLC皮膜20の耐熱性が不十分となる。第二に、軟質領域18Bは硬質領域18Aと比べて耐摩耗性に劣る傾向があることから、DLC皮膜20の耐摩耗性が不十分となる。第三に、相手材への攻撃性が高くなる。これは、以下のようなメカニズムによるものと考えられる。図2を参照して、DLC皮膜の表面20Aにおいて軟質領域18Bが過多となると、硬質DLC層14が表面粗さを維持したままDLC皮膜20の内部に存在することになる。すると、摺動の過程で硬質DLC層14の多数の凸部が相手材と接触することになり、その結果、相手材への攻撃性が高くなる。 When A / (A + B) is less than 0.20, the hard region 18A is too small and the soft region 18B is too large on the surface 20A of the DLC film. In this case, there are the following three disadvantages. First, since the soft region 18B tends to be inferior in heat resistance to the hard region 18A, the heat resistance of the DLC film 20 becomes insufficient. Secondly, since the soft region 18B tends to be inferior in wear resistance to the hard region 18A, the wear resistance of the DLC film 20 becomes insufficient. Thirdly, the aggression to the partner material is increased. This is considered to be due to the following mechanism. With reference to FIG. 2, when the soft region 18B is excessive on the surface 20A of the DLC film, the hard DLC layer 14 is present inside the DLC film 20 while maintaining the surface roughness. Then, in the process of sliding, a large number of convex portions of the hard DLC layer 14 come into contact with the mating material, and as a result, the aggression to the mating material becomes high.

これに対して、A/(A+B)が0.20以上の場合、耐熱性及び耐摩耗性に優れる硬質領域18Aが十分存在するため、DLC皮膜20の耐熱性及び耐摩耗性を確保することができる。また、相手材への攻撃性を低くすることもできる。これは、図2を参照して、摺動前の段階でDLC皮膜の表面20Aに硬質DLC層14がある程度露出して、硬質領域18Aを形成していれば、硬質DLC層14の凸部は除去され平坦面となっているからである。つまり、摺動の過程で硬質DLC層14の露出割合が高まっても、凸部による相手材の攻撃は起こらない。よって、A/(A+B)は0.20以上とし、好ましくは0.25以上とする。 On the other hand, when A / (A + B) is 0.20 or more, the hard region 18A having excellent heat resistance and wear resistance is sufficiently present, so that the heat resistance and wear resistance of the DLC film 20 can be ensured. can. It is also possible to reduce the aggression to the partner material. This is because if the hard DLC layer 14 is exposed to some extent on the surface 20A of the DLC film and forms the hard region 18A at the stage before sliding, the convex portion of the hard DLC layer 14 will be formed with reference to FIG. This is because it has been removed to form a flat surface. That is, even if the exposure ratio of the hard DLC layer 14 increases in the sliding process, the protrusion does not attack the mating material. Therefore, A / (A + B) is set to 0.20 or more, preferably 0.25 or more.

A/(A+B)が0.70超えの場合、DLC皮膜の表面20Aにおいて硬質領域18Aが過多であり、軟質領域18Bが過少となる。この場合、摺動の初期段階で、sp2比率が高く低摩擦に寄与する軟質領域18BがDLC皮膜の表面20Aにほとんど露出していないことから、摺動の初期で摩擦係数が高くなってしまう。 When A / (A + B) exceeds 0.70, the hard region 18A is excessive and the soft region 18B is excessive on the surface 20A of the DLC film. In this case, since the soft region 18B having a high sp 2 ratio and contributing to low friction is hardly exposed on the surface 20A of the DLC film at the initial stage of sliding, the friction coefficient becomes high at the initial stage of sliding. ..

これに対して、A/(A+B)が0.70以下の場合、摺動の初期段階で、軟質領域18BがDLC皮膜の表面20Aにある程度露出しているため、摺動の初期で低い摩擦係数を得ることができる。なお、摺動の過程で、sp2比率が低く低摩擦には不利な硬質DLC層14が多く露出することになるが、摺動が進行していることから、摩擦熱によって硬質DLC層表面のsp3成分が継続的にsp2成分に変化するため、低い摩擦係数は維持される。よって、A/(A+B)は0.70以下とし、好ましくは0.65以下とする。 On the other hand, when A / (A + B) is 0.70 or less, the soft region 18B is exposed to some extent on the surface 20A of the DLC film at the initial stage of sliding, so that the friction coefficient is low at the initial stage of sliding. Can be obtained. In the process of sliding, a large amount of the hard DLC layer 14 which has a low sp 2 ratio and is disadvantageous for low friction is exposed. However, since the sliding is progressing, the surface of the hard DLC layer is exposed by frictional heat. The low coefficient of friction is maintained because the sp 3 component is continuously changed to the sp 2 component. Therefore, A / (A + B) is set to 0.70 or less, preferably 0.65 or less.

なお、A/(A+B)は以下の方法で求めるものとする。DLC皮膜をラマン分光法で測定して得たラマン分光スペクトルにおけるGバンドのピーク強度に対するDバンドのピーク強度の比ID/IGは、DLC皮膜の硬さと相関があり、DLC皮膜が硬いほど、ID/IGは低くなる。よって、ある測定点で得られたID/IGの値から、当該測定点が硬質領域であるか軟質領域であるかを判定することができる。ID/IGは、具体的には、ラマン分光スペクトルをガウス関数によるカーブフィッティングによって、1350cm-1付近にピークを持つDバンドと1550cm-1付近にピークを持つGバンドとに分離し、Gバンドのピーク強度に対するDバンドのピーク強度の比を求めることにより得られる。なお、本発明において用いるID/IGは、ピーク強度の比である。具体的には、DLC皮膜の表面の任意の位置で25mm×25mmの測定領域を3つ設定し、レニショー株式会社製 inViaReflexラマン分光測定器を使用して、当該測定領域内のID/IGを測定する。測定条件は、Arイオン励起レーザー波長:532.0nm、レーザー出力:50mW、対物レンズ:100倍、減光器を通した条件とする。各測定領域内の全ての測定点のうち、硬質領域と判定された測定点数をV1、軟質領域と判定された測定点数をV2として、各測定領域においてV1/(V1+V2)を求め、得られた3つの値を可算平均して、A/(A+B)とする。 In addition, A / (A + B) shall be obtained by the following method. The ratio ID / IG of the peak intensity of the D band to the peak intensity of the G band in the Raman spectroscopic spectrum obtained by measuring the DLC film by Raman spectroscopy correlates with the hardness of the DLC film. / IG becomes low. Therefore, it is possible to determine whether the measurement point is a hard region or a soft region from the ID / IG value obtained at a certain measurement point. Specifically, ID / IG separates the Raman spectroscopic spectrum into a D band having a peak near 1350 cm -1 and a G band having a peak near 1550 cm -1 by curve fitting by a Gaussian function. It is obtained by determining the ratio of the peak intensity of the D band to the peak intensity. The ID / IG used in the present invention is a ratio of peak intensities. Specifically, three measurement regions of 25 mm × 25 mm are set at arbitrary positions on the surface of the DLC film, and ID / IG in the measurement region is measured using an inViaReflex Raman spectrophotometer manufactured by Renishaw Co., Ltd. do. The measurement conditions are an Ar ion-excited laser wavelength: 532.0 nm, a laser output: 50 mW, an objective lens: 100 times, and a dimmer. Of all the measurement points in each measurement region, V1 was determined as the hard region and V2 was determined as the soft region, and V1 / (V1 + V2) was obtained in each measurement region. The three values are countably averaged to obtain A / (A + B).

なお、DLC皮膜の表面20Aに硬質領域18Aと軟質領域18Bとが「混在」するとは、DLC皮膜の表面20Aに硬質領域18A及び軟質領域18Bが分散して存在することを意味するものである。 The fact that the hard region 18A and the soft region 18B are "mixed" on the surface 20A of the DLC film means that the hard region 18A and the soft region 18B are dispersed and exist on the surface 20A of the DLC film.

<DLC皮膜の形成方法>
図1及び図2を参照して、DLC皮膜20の形成方法を説明する。DLC皮膜20は、例えば、カーボンターゲットを用いた真空アーク放電(VA法)によるイオンプレーティング等のPVD法を用いて形成することができる。PVD法は、水素をほとんど含まない高硬度で耐摩耗性に優れたDLC皮膜を形成することができる。真空アーク放電によるイオンプレーティング法を用いてDLC皮膜を成膜する場合、その硬さは、(i)カソードの放電量、(ii)アーク電流値、及び(iii)基材に印加するバイアス電圧によって調整できる。いずれの指標も高くするほど、硬さの小さいDLC皮膜が得られる。また、DLC皮膜の膜厚は、ターゲットの放電時間等の条件を変えることで調整できる。なお、フィルター型陰極真空アーク方式(FCVA法)を用いることでもよい。
<Method of forming DLC film>
A method of forming the DLC film 20 will be described with reference to FIGS. 1 and 2. The DLC film 20 can be formed, for example, by using a PVD method such as ion plating by vacuum arc discharge (VA method) using a carbon target. The PVD method can form a DLC film having high hardness and excellent wear resistance containing almost no hydrogen. When a DLC film is formed using the ion plating method by vacuum arc discharge, the hardness is (i) the discharge amount of the cathode, (ii) the arc current value, and (iii) the bias voltage applied to the substrate. Can be adjusted by. The higher the index, the lower the hardness of the DLC film. Further, the film thickness of the DLC film can be adjusted by changing conditions such as the discharge time of the target. The filter type cathode vacuum arc method (FCVA method) may be used.

まず、表面粗さがRaで0.01μm以上の基材10を用意し、任意で、当該表面上に中間層12を形成する。その後、基材10の表面又は中間層12の表面上に、上記(i)〜(iii)を所定値に設定した第1の条件で、硬質DLC層14を形成する。基材10の表面に所定の表面粗さが設けられていることや、成膜の過程で皮膜内に埃などが取り込まれることによって、硬質DLC層14の表面には所定の表面粗さが設けられる。 First, a base material 10 having a surface roughness of Ra of 0.01 μm or more is prepared, and an intermediate layer 12 is optionally formed on the surface. After that, the hard DLC layer 14 is formed on the surface of the base material 10 or the surface of the intermediate layer 12 under the first condition in which the above (i) to (iii) are set to predetermined values. The surface of the hard DLC layer 14 is provided with a predetermined surface roughness due to the fact that the surface of the base material 10 is provided with a predetermined surface roughness and that dust and the like are taken into the film in the process of film formation. Be done.

ここで、硬質DLC層14の表面粗さは、算術平均粗さRaで0.1μm以上0.8μm以下とすることが好ましい。この範囲に表面粗さを制御することによって、後述の研磨加工の結果、所望のA/(A+B)を実現しやすくなるからである。なお、「硬質DLC層表面のRa」は、以下の方法により測定するものとする。すなわち、硬質DLC層表面の任意の位置において、JIS B0601(2001)に従い、基準長さ:1.25mm、カットオフ値λc:0.25mm、カットオフ比λc/λs=100の条件で、硬質DLC層の粗さ曲線を測定し、算術平均粗さRaを求める。なお、測定は3回行い、その3回の平均値を採用するものとする。 Here, the surface roughness of the hard DLC layer 14 is preferably 0.1 μm or more and 0.8 μm or less in terms of arithmetic average roughness Ra. This is because by controlling the surface roughness within this range, it becomes easier to achieve the desired A / (A + B) as a result of the polishing process described later. The "Ra on the surface of the hard DLC layer" shall be measured by the following method. That is, at an arbitrary position on the surface of the hard DLC layer, according to JIS B0601 (2001), the hard DLC is under the conditions of a reference length: 1.25 mm, a cutoff value of λc: 0.25 mm, and a cutoff ratio of λc / λs = 100. The roughness curve of the layer is measured to obtain the arithmetic mean roughness Ra. The measurement shall be performed three times, and the average value of the three times shall be adopted.

硬質DLC層14の厚さは、目標とするDLC皮膜20の厚さを考慮して適宜決定すればよく、目標とするDLC皮膜20の厚さとほぼ同等にすればよい。 The thickness of the hard DLC layer 14 may be appropriately determined in consideration of the target thickness of the DLC film 20, and may be substantially equal to the target thickness of the DLC film 20.

次に、硬質DLC層14の表面に、上記(i)〜(iii)を変更した第2の条件で、軟質DLC層16を形成する。軟質DLC層16の表面粗さは、硬質DLC層14の表面粗さをほぼ同程度に引き継ぐことになる。軟質DLC層14の厚さは特に限定されないが、0.1μm以上5.0μm以下とすることが好ましい。0.1μm未満の場合、後述の研磨量の調整が困難となる恐れがあり、5.0μm超えの場合、所望のA/(A+B)を実現するために必要な研磨量が増えて、コスト及び生産性の面から好ましくない。 Next, the soft DLC layer 16 is formed on the surface of the hard DLC layer 14 under the second condition in which the above (i) to (iii) are changed. The surface roughness of the soft DLC layer 16 inherits the surface roughness of the hard DLC layer 14 to almost the same extent. The thickness of the soft DLC layer 14 is not particularly limited, but is preferably 0.1 μm or more and 5.0 μm or less. If it is less than 0.1 μm, it may be difficult to adjust the polishing amount described later, and if it exceeds 5.0 μm, the polishing amount required to achieve the desired A / (A + B) increases, resulting in cost and cost. It is not preferable from the viewpoint of productivity.

次に、軟質DLC層14表面を研磨して、DLC皮膜20を形成する。その際の研磨量を調整することによって、A/(A+B)を0.20以上0.70以下の範囲に制御する。すなわち、研磨量を多くするほど、硬質DLC層の露出部分(硬質領域18A)が増えることになるため、A/(A+B)は大きくなる。 Next, the surface of the soft DLC layer 14 is polished to form the DLC film 20. By adjusting the polishing amount at that time, A / (A + B) is controlled in the range of 0.20 or more and 0.70 or less. That is, as the amount of polishing increases, the exposed portion (hard region 18A) of the hard DLC layer increases, so that A / (A + B) becomes large.

このような方法で、DLC皮膜20の表面20Aに硬質領域18Aと軟質領域18Bとを混在させることができる。 In such a method, the hard region 18A and the soft region 18B can be mixed on the surface 20A of the DLC film 20.

<DLC皮膜の表面粗さ>
上記のような研磨の結果、DLC皮膜20の表面粗さは、算術平均粗さRaで0.10μm以下となる。なお、「DLC皮膜のRa」は、以下の方法により測定するものとする。すなわち、DLC皮膜の任意の位置において、JIS B0601(2001)に従い、基準長さ:1.25mm、カットオフ値λc:0.25mm、カットオフ比λc/λs=100の条件で、DLC皮膜の粗さ曲線を測定し、算術平均粗さRaを求める。なお、測定は3回行い、その3回の平均値を採用するものとする。
<Surface roughness of DLC film>
As a result of the polishing as described above, the surface roughness of the DLC film 20 becomes 0.10 μm or less in arithmetic average roughness Ra. The "Ra of the DLC film" shall be measured by the following method. That is, at an arbitrary position of the DLC film, according to JIS B0601 (2001), the rough DLC film is provided under the conditions of a reference length: 1.25 mm, a cutoff value of λc: 0.25 mm, and a cutoff ratio of λc / λs = 100. The radius curve is measured to obtain the arithmetic mean roughness Ra. The measurement shall be performed three times, and the average value of the three times shall be adopted.

<DLC皮膜の厚み方向の形態>
図1及び図2に示すように、DLC皮膜20において、表面20Aの硬質領域18Aの部位では、当該表面からの深さ方向に硬質部位(硬質DLC層14)のみが存在し、表面20Aの軟質領域18Bの部位では、当該表面からの深さ方向にまず軟質部位(軟質DLC層14の残存部分)が位置し、その後、硬質部位(硬質DLC層14)が位置する。この構成により、優れた耐熱性、相手材に対する低い攻撃性、高い耐摩耗性、及び低い摩擦係数の全てを実現することができる。
<Morphology of DLC film in the thickness direction>
As shown in FIGS. 1 and 2, in the DLC film 20, only the hard portion (hard DLC layer 14) is present in the portion of the hard region 18A of the surface 20A in the depth direction from the surface, and the surface 20A is soft. In the region 18B, the soft portion (remaining portion of the soft DLC layer 14) is first located in the depth direction from the surface, and then the hard portion (hard DLC layer 14) is located. With this configuration, excellent heat resistance, low aggression against the mating material, high wear resistance, and low friction coefficient can all be realized.

(摺動部材の製造方法)
本発明の一実施形態による摺動部材100の製造方法は、
基材10を用意する工程と、
任意で、前記基材10の表面に中間層12を形成する工程と、
前記基材10の表面、又は、前記中間層12の表面に、所定の表面粗さを有する硬質DLC層14を形成する工程と、
前記硬質DLC層14上に軟質DLC層16を形成する工程と、
前記軟質DLC層16を研磨して、DLC皮膜20を形成する工程と、
を有し、その研磨量を調整して、DLC皮膜20の表面20Aに、硬質DLC層14が露出した硬質領域18Aと、軟質DLC層16が残存した軟質領域18Bとを混在させ、かつ、表面20Aにおける硬質領域18Aの面積をA、軟質領域18Bの面積をBとして、A/(A+B)を0.20以上0.70以下に制御することを特徴とする。
(Manufacturing method of sliding member)
The method for manufacturing the sliding member 100 according to the embodiment of the present invention is as follows.
The process of preparing the base material 10 and
Optionally, a step of forming the intermediate layer 12 on the surface of the base material 10 and
A step of forming a hard DLC layer 14 having a predetermined surface roughness on the surface of the base material 10 or the surface of the intermediate layer 12.
The step of forming the soft DLC layer 16 on the hard DLC layer 14 and
A step of polishing the soft DLC layer 16 to form a DLC film 20 and
The hard region 18A where the hard DLC layer 14 is exposed and the soft region 18B where the soft DLC layer 16 remains are mixed on the surface 20A of the DLC film 20 by adjusting the polishing amount thereof, and the surface is It is characterized in that A / (A + B) is controlled to 0.20 or more and 0.70 or less, where A is the area of the hard region 18A and B is the area of the soft region 18B in 20A.

本発明の一実施形態による摺動部材100は、エンジンオイルなどの潤滑油が介在する内燃機関の摺動部に使用されるピストンリング、ピストン、ピストンピン、タペット、バルブリフタ、シム、ロッカーアーム、カム、カムシャフト、タイミングギア、タイミングチェーン等や、燃料供給系に使用されるベーン、インジェクタ、プランジャ、シリンダ等、種々の製品に適用することができる。 The sliding member 100 according to the embodiment of the present invention includes a piston ring, a piston, a piston pin, a tappet, a valve lifter, a shim, a rocker arm, and a cam used for a sliding portion of an internal combustion engine in which lubricating oil such as engine oil is interposed. , Camshafts, timing gears, timing chains, etc., vanes, injectors, plungers, cylinders, etc. used in fuel supply systems, etc. can be applied to various products.

(ピストンリング)
図3を参照して、本発明の一実施形態によるピストンリング200は、外周面22、内周面24、及び上下面26A,26Bの4面によってリング形状を呈し、外周面22が図1に示すDLC皮膜20により形成される。すなわち、本実施形態のピストンリング200は、上記摺動部材100からなるものであり、その外周面22が図1に示すDLC皮膜の表面20Aとなる。これにより、摺動面となる外周面22では、優れた耐熱性を得ることができ、相手材であるシリンダの内周面に対する攻撃性が低く、さらに高い耐摩耗性と低い摩擦係数を実現することが可能である。
(piston ring)
With reference to FIG. 3, the piston ring 200 according to the embodiment of the present invention has a ring shape with four surfaces of an outer peripheral surface 22, an inner peripheral surface 24, and upper and lower surfaces 26A and 26B, and the outer peripheral surface 22 is shown in FIG. It is formed by the DLC film 20 shown. That is, the piston ring 200 of the present embodiment is made of the sliding member 100, and the outer peripheral surface 22 thereof is the surface 20A of the DLC film shown in FIG. As a result, excellent heat resistance can be obtained on the outer peripheral surface 22 which is the sliding surface, the aggression against the inner peripheral surface of the cylinder which is the mating material is low, and further high wear resistance and low friction coefficient are realized. It is possible.

呼称径80mm、厚さ2.5mm、幅1.2mmの寸法からなるシリコンクロム鋼のピストンリングの外周面(表面粗さRa:0.1μm)に、中間層として厚さ3μm程度のCr層を形成した。その後、中間層上に、表1に示す種々の水準のDLC皮膜を形成して、摺動部材を得た。DLC皮膜の形成は、以下の手順で行った。まず、真空アーク方式による成膜装置を用い、グラファイトをカソードとして、アーク電流値及びバイアス電圧の条件を種々に設定して、中間層の表面に、表1に示す「硬質領域硬さ」を有する硬質DLC層を成膜した。このとき、硬質DLC層の表面粗さRaは、全水準で0.2〜0.5μmの範囲内であった。引き続き、アーク電流値及びバイアス電圧を高く変更した条件で、硬質DLC層の表面に、表1に示す「軟質領域硬さ」を有する軟質DLC層を成膜した。その後、軟質DLC層を研磨して、DLC皮膜とした。その際、軟質DLC層の研磨量を調整することによって、DLC皮膜の表面における硬質領域の面積をA、軟質領域の面積をBとした際のA/(A+B)の値を制御した。ただし、水準No.1では、軟質DLC層のみを形成し、水準No.11では、硬質DLC層のみを形成した。表1には、DLC皮膜の水素含有量、厚さ、表面Ra、硬質領域のインデンテーション硬さ、軟質領域のインデンテーション硬さ、及びA/(A+B)を示した。なお、インデンテーション硬さの測定は、株式会社エリオニクス製の超微小押し込み硬さ試験機を用いて行った。条件としては、ベルコビッチ圧子を用いて、押し込み深さがDLC皮膜の厚さの1/10程度となる荷重にて試験を行った。1.0mm×1.0mmの測定領域において、10μm間隔で100×100点の多点で負荷−除荷硬さ試験を行い、負荷−除荷曲線より判断して異常値を除外すると、結果として2水準の数値が検出される。そのうちで低硬度のものを軟質領域の硬さ、高硬度のものを硬質領域の硬さとする。DLC皮膜の水素含有量、厚さ、表面Ra、及びA/(A+B)は、既述の方法で測定した。 A Cr layer with a thickness of about 3 μm is provided as an intermediate layer on the outer peripheral surface (surface roughness Ra: 0.1 μm) of a silicon chrome steel piston ring having dimensions of a nominal diameter of 80 mm, a thickness of 2.5 mm, and a width of 1.2 mm. Formed. Then, DLC films of various levels shown in Table 1 were formed on the intermediate layer to obtain a sliding member. The DLC film was formed by the following procedure. First, using a film forming apparatus by a vacuum arc method, various conditions of arc current value and bias voltage are set using graphite as a cathode, and the surface of the intermediate layer has the "hard region hardness" shown in Table 1. A hard DLC layer was formed. At this time, the surface roughness Ra of the hard DLC layer was in the range of 0.2 to 0.5 μm at all levels. Subsequently, a soft DLC layer having the "soft region hardness" shown in Table 1 was formed on the surface of the hard DLC layer under the condition that the arc current value and the bias voltage were changed to high. Then, the soft DLC layer was polished to obtain a DLC film. At that time, by adjusting the polishing amount of the soft DLC layer, the value of A / (A + B) was controlled when the area of the hard region on the surface of the DLC film was A and the area of the soft region was B. However, the level No. In No. 1, only the soft DLC layer was formed, and the level No. In No. 11, only the hard DLC layer was formed. Table 1 shows the hydrogen content, thickness, surface Ra, indentation hardness of the hard region, indentation hardness of the soft region, and A / (A + B) of the DLC film. The indentation hardness was measured using an ultrafine indentation hardness tester manufactured by Elionix Inc. As a condition, the test was carried out using a Belkovic indenter under a load such that the indentation depth was about 1/10 of the thickness of the DLC film. In the measurement area of 1.0 mm × 1.0 mm, the load-unload hardness test was performed at multiple points of 100 × 100 points at 10 μm intervals, and the load-unload curve was judged to exclude abnormal values. Two levels of numbers are detected. Among them, the one with low hardness is defined as the hardness in the soft region, and the one with high hardness is defined as the hardness in the hard region. The hydrogen content, thickness, surface Ra, and A / (A + B) of the DLC film were measured by the methods described above.

なお、A/(A+B)=0.00の水準No.2では、DLC皮膜の表面に硬質DLC層は露出しておらず、表面の全体が軟質DLC層からなっており、軟質DLC層の下方に硬質DLC層が存在する。A/(A+B)=1.00の水準No.11では、DLC皮膜は硬質DLC層のみからなる。それ以外の水準No.3〜10では、DLC皮膜の表面に硬質領域と軟質領域とが混在しており、硬質領域の部位では、表面からの深さ方向に硬質部位のみが存在し、軟質領域の部位では、表面からの深さ方向にまず軟質部位が位置し、その後、硬質部位が位置するような皮膜形態となる。 The level No. of A / (A + B) = 0.00. In No. 2, the hard DLC layer is not exposed on the surface of the DLC film, the entire surface is composed of the soft DLC layer, and the hard DLC layer exists below the soft DLC layer. Level No. of A / (A + B) = 1.00. In 11, the DLC film consists only of a hard DLC layer. Other levels No. In 3 to 10, hard regions and soft regions are mixed on the surface of the DLC film, and in the hard region portion, only the hard region exists in the depth direction from the surface, and in the soft region portion, from the surface. The film form is such that the soft part is first located in the depth direction of the, and then the hard part is located.

[耐熱性の評価]
各水準のピストンリングから切断して得た試験片を電気炉に投入して、雰囲気温度250℃で100時間の熱処理を行った。その後、試験片のDLC皮膜の表面を光学顕微鏡で観察した。その際、DLC皮膜に部分的な剥離、脱落、又は消失が見られた水準は「×」とし、剥離、脱落、及び消失のいずれも見られなかった水準は「〇」とした。結果を表1に示す。
[Evaluation of heat resistance]
The test pieces obtained by cutting from the piston rings of each level were put into an electric furnace and heat-treated at an atmospheric temperature of 250 ° C. for 100 hours. Then, the surface of the DLC film of the test piece was observed with an optical microscope. At that time, the level at which partial peeling, shedding, or disappearance was observed in the DLC film was marked with "x", and the level at which no peeling, shedding, or disappearing was observed was marked with "〇". The results are shown in Table 1.

[耐摩耗性及び摩擦係数の評価]
各水準のピストンリングから切断して得た試験片を用いて、以下の試験条件で転動すべり疲労試験を行った。この試験は、回転するドラムと摺動する試験片にくり返し荷重を加え、試験片の摩耗量からDLC皮膜の耐摩耗性を評価するものである。
荷重:20〜50N、サインカーブ50Hz
相手材(ドラム):直径80mmのSUJ2材
摺動速度:正転逆転パターン運転(±10m/s)、速度±10m/sで20秒保持
加速度:0.23m/s2
潤滑油:無添加モーターオイル、0.1cc/min
ドラム表面温度:80℃
試験時間:正転逆転パターン運転を1サイクルとして10サイクル
試験後に、接触式形状測定機で試験片の摩耗量を測定し、摩耗量が1.0μm以下の水準を「◎」、摩耗量が1.0μm超え2.0μm以下の水準を「○」、摩耗量が2.0μm超えの水準を「×」とした。また、5サイクルまでの摩擦係数を測定し、摩擦係数が0.16以下の水準を「○」、0.16超えの水準を「×」とした。結果を表1に示す。
[Evaluation of wear resistance and friction coefficient]
A rolling slip fatigue test was conducted under the following test conditions using test pieces obtained by cutting from piston rings of each level. In this test, a load is repeatedly applied to a test piece that slides with a rotating drum, and the wear resistance of the DLC film is evaluated from the amount of wear of the test piece.
Load: 20-50N, sine curve 50Hz
Mating material (drum): SUJ2 material with a diameter of 80 mm Sliding speed: Forward / reverse rotation pattern operation (± 10 m / s), holding for 20 seconds at a speed of ± 10 m / s Acceleration: 0.23 m / s 2
Lubricating oil: Additive-free motor oil, 0.1cc / min
Drum surface temperature: 80 ° C
Test time: After 10 cycles of 10 cycles with forward / reverse pattern operation as one cycle, the wear amount of the test piece is measured with a contact type shape measuring machine, and the wear amount is "◎" when the wear amount is 1.0 μm or less, and the wear amount is 1. The level of more than 0.0 μm and less than 2.0 μm was designated as “◯”, and the level of wear amount exceeding 2.0 μm was designated as “x”. Further, the friction coefficient up to 5 cycles was measured, and the level where the friction coefficient was 0.16 or less was set as "◯" and the level where the friction coefficient exceeded 0.16 was set as "x". The results are shown in Table 1.

[相手材に対する攻撃性の評価]
摺動相手材としてSUJ2材(JIS G 4805)のディスク(φ25mm×t8mm)を用意し、各水準の摺動部材について、振動摩擦摩耗試験(オプチモール社:SRV試験機)により、次の試験条件で往復動試験を行った。試験後に、相手材の摩耗量を測定し、摩耗量が1.0μm以下の水準を「◎」、摩耗量が1.0μm超え2.0μm以下の水準を「○」、摩耗量が2.0μm超えの水準を「×」とした。結果を表1に示す。
試験時間 : 10min
荷重 : 100N
往復動周波数 : 50Hz
振幅 : 3.0mm
潤滑油 : エンジンオイル5W−30(エステル)
潤滑油温 : 80℃
[Evaluation of aggression against partner material]
Prepare a SUJ2 material (JIS G 4805) disc (φ25 mm x t8 mm) as the sliding partner material, and perform the following test conditions for the sliding members of each level by vibration friction wear test (Optimor: SRV tester). A reciprocating motion test was conducted at. After the test, the amount of wear of the mating material is measured, and the level of wear of 1.0 μm or less is “◎”, the level of wear of more than 1.0 μm and less than 2.0 μm is “○”, and the amount of wear is 2.0 μm. The level exceeding is set as "x". The results are shown in Table 1.
Test time: 10 min
Load: 100N
Reciprocating frequency: 50Hz
Amplitude: 3.0 mm
Lubricating oil: Engine oil 5W-30 (ester)
Lubricating oil temperature: 80 ° C

Figure 2021110403
Figure 2021110403

表1から明らかなように、A/(A+B)が0.20未満の比較例No.1〜3では、硬質領域が過少で軟質領域が過多であったため、耐熱性及び耐摩耗性の観点で劣っていた。これらの比較例のうちNo.2及びNo.3では、表面粗さを維持したままDLC皮膜の内部に存在する硬質DLC層が、摺動の過程で露出して相手材と接触するため、相手材への攻撃性が高くなった。また、A/(A+B)が0.70超えの比較例No.10及びNo.11では、軟質領域が過少で硬質領域が過多であったため、摩擦係数の観点で劣っていた。なお、これらの比較例のうちNo.11は、表面Raが0.10μmを超えた硬質DLC層が、摺動初期から相手材と接触するため、相手材への攻撃性が高くなった。 As is clear from Table 1, Comparative Example No. in which A / (A + B) is less than 0.20. In Nos. 1 to 3, the hard region was too small and the soft region was too large, so that they were inferior in terms of heat resistance and wear resistance. Among these comparative examples, No. 2 and No. In No. 3, the hard DLC layer existing inside the DLC film while maintaining the surface roughness is exposed in the process of sliding and comes into contact with the mating material, so that the aggression to the mating material is increased. Further, Comparative Example No. in which A / (A + B) exceeds 0.70. 10 and No. In No. 11, the soft region was too small and the hard region was too large, so that it was inferior in terms of friction coefficient. Of these comparative examples, No. In No. 11, since the hard DLC layer having a surface Ra of more than 0.10 μm comes into contact with the mating material from the initial stage of sliding, the aggression to the mating material is high.

これに対して、A/(A+B)が0.20以上0.70以下の発明例No.4〜9においては、DLC皮膜表面における硬質領域と軟質領域の面積比率が最適化されたため、耐熱性、相手材に対する攻撃性、耐摩耗性、及び摩擦係数の全ての観点で良好な結果が得られた。 On the other hand, Invention Example No. in which A / (A + B) is 0.20 or more and 0.70 or less. In 4 to 9, since the area ratio of the hard region to the soft region on the surface of the DLC film was optimized, good results were obtained in all aspects of heat resistance, aggression against the mating material, wear resistance, and friction coefficient. Was done.

本発明の摺動部材は、優れた耐熱性、相手材に対する低い攻撃性、高い耐摩耗性、及び低い摩擦係数の全てを実現することができる。 The sliding member of the present invention can realize all of excellent heat resistance, low aggression against the mating material, high wear resistance, and low friction coefficient.

100 摺動部材
10 基材
12 中間層
14 硬質DLC層
16 軟質DLC層
18A 硬質領域
18B 軟質領域
20 非晶質炭素皮膜(DLC皮膜)
20A 非晶質炭素皮膜の表面(摺動面)
200 ピストンリング
22 ピストンリングの外周面
24 ピストンリングの内周面
26A ピストンリングの上面(上側面)
26B ピストンリングの下面(下側面)
100 Sliding member 10 Base material 12 Intermediate layer 14 Hard DLC layer 16 Soft DLC layer 18A Hard region 18B Soft region 20 Amorphous carbon film (DLC film)
20A Amorphous carbon film surface (sliding surface)
200 Piston ring 22 Outer peripheral surface of piston ring 24 Inner peripheral surface of piston ring 26A Upper surface (upper side surface) of piston ring
26B Piston ring lower surface (lower side surface)

Claims (4)

基材と、
該基材上に形成され、表面が摺動面となる、水素含有量が3原子%以下であり、残部が炭素からなる成分組成を有する、厚さが3μm以上の非晶質炭素皮膜と、
を有し、
前記非晶質炭素皮膜の前記表面は、算術平均粗さRaが0.10μm以下であり、
前記非晶質炭素皮膜の前記表面には、インデンテーション硬さが25GPa以上の硬質領域と、インデンテーション硬さが20GPa以下の軟質領域とが混在しており、
前記表面における硬質領域の面積をA、軟質領域の面積をBとして、A/(A+B)が0.20以上0.70以下であることを特徴とする摺動部材。
With the base material
An amorphous carbon film having a hydrogen content of 3 atomic% or less and a component composition in which the balance is composed of carbon and having a thickness of 3 μm or more, which is formed on the base material and whose surface is a sliding surface.
Have,
The surface of the amorphous carbon film has an arithmetic mean roughness Ra of 0.10 μm or less.
On the surface of the amorphous carbon film, a hard region having an indentation hardness of 25 GPa or more and a soft region having an indentation hardness of 20 GPa or less are mixed.
A sliding member having an A / (A + B) of 0.20 or more and 0.70 or less, where A is an area of a hard region and B is an area of a soft region on the surface.
前記非晶質炭素皮膜において、
前記表面の硬質領域の部位では、前記表面からの深さ方向に硬質部位のみが存在し、
前記表面の軟質領域の部位では、前記表面からの深さ方向にまず軟質部位が位置し、その後、硬質部位が位置する、請求項1に記載の摺動部材。
In the amorphous carbon film,
In the portion of the hard region of the surface, only the hard portion exists in the depth direction from the surface.
The sliding member according to claim 1, wherein in the portion of the soft region of the surface, the soft portion is first located in the depth direction from the surface, and then the hard portion is located.
前記基材と前記非晶質炭素皮膜との間に、Cr、Ti、Co、V、Mo、Si及びWからなる群から選択された一つ以上の元素またはその炭化物、窒化物、炭窒化物からなる中間層を有する、請求項1又は2に記載の摺動部材。 One or more elements selected from the group consisting of Cr, Ti, Co, V, Mo, Si and W or carbides, nitrides and carbonitrides thereof between the base material and the amorphous carbon film. The sliding member according to claim 1 or 2, which has an intermediate layer made of. 請求項1〜3のいずれか一項に記載の摺動部材からなるピストンリングであって、その外周面が前記摺動面であるピストンリング。 A piston ring made of the sliding member according to any one of claims 1 to 3, wherein the outer peripheral surface thereof is the sliding surface.
JP2020003199A 2020-01-10 2020-01-10 Sliding members and piston rings Active JP7396905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020003199A JP7396905B2 (en) 2020-01-10 2020-01-10 Sliding members and piston rings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003199A JP7396905B2 (en) 2020-01-10 2020-01-10 Sliding members and piston rings

Publications (2)

Publication Number Publication Date
JP2021110403A true JP2021110403A (en) 2021-08-02
JP7396905B2 JP7396905B2 (en) 2023-12-12

Family

ID=77059468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003199A Active JP7396905B2 (en) 2020-01-10 2020-01-10 Sliding members and piston rings

Country Status (1)

Country Link
JP (1) JP7396905B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011083714A1 (en) 2011-09-29 2013-04-04 Federal-Mogul Burscheid Gmbh Sliding element with DLC coating
US9624975B2 (en) 2014-03-21 2017-04-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Sliding member and sliding machine
EP3392369B1 (en) 2015-12-18 2023-07-19 Nippon Piston Ring Co., Ltd. Coating film, manufacturing method therefor, and pvd apparatus
DE102016003036A1 (en) 2016-03-12 2016-08-25 Daimler Ag Method for coating a substrate, coating for a substrate and sliding element

Also Published As

Publication number Publication date
JP7396905B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
CN107587107B (en) Hard carbon coating
US20110143976A1 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
JPWO2015115601A1 (en) Piston ring and manufacturing method thereof
US10670147B2 (en) Sliding member and piston ring
WO2017022660A1 (en) Piston ring and manufacturing method thereof
JP2020200803A (en) piston ring
JP6762887B2 (en) piston ring
JP7298083B2 (en) Piston ring and its manufacturing method
EP3660180B1 (en) Sliding member and piston ring
WO2015114822A1 (en) Compression ring and base material for compression ring
JP7284700B2 (en) sliding mechanism
JP2021110403A (en) Slide member and piston ring
WO2019022010A1 (en) Retainer for rolling bearings, and rolling bearing
KR102426073B1 (en) Combination structure of cylinder and piston ring
WO2020209133A1 (en) Sliding member and piston ring
JP2018141197A (en) Sliding member and method for manufacturing the same
JP6757769B2 (en) piston ring
JP6938807B1 (en) Sliding members and piston rings
CN115413313B (en) Piston ring and method for manufacturing same
JP7445828B1 (en) piston ring
KR102616390B1 (en) sliding member
JP2021055718A (en) Sliding member and piston ring
JP2020193656A (en) Combination of sliding member and lubricant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231130

R150 Certificate of patent or registration of utility model

Ref document number: 7396905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150