WO2017130587A1 - Sliding member and production method therefor - Google Patents

Sliding member and production method therefor Download PDF

Info

Publication number
WO2017130587A1
WO2017130587A1 PCT/JP2016/087104 JP2016087104W WO2017130587A1 WO 2017130587 A1 WO2017130587 A1 WO 2017130587A1 JP 2016087104 W JP2016087104 W JP 2016087104W WO 2017130587 A1 WO2017130587 A1 WO 2017130587A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard carbon
carbon layer
hydrogen
layer
sliding member
Prior art date
Application number
PCT/JP2016/087104
Other languages
French (fr)
Japanese (ja)
Inventor
勝啓 辻
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Publication of WO2017130587A1 publication Critical patent/WO2017130587A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to a sliding member, particularly a sliding member that requires high reliability, such as an automobile part, and a manufacturing method thereof.
  • a hard carbon film that is known to have a low friction coefficient is generally formed on a sliding surface of a sliding member used in an internal combustion engine or the like.
  • amorphous carbon called diamond-like carbon (DLC) is used.
  • the structural essence of DLC is a combination of diamond bonds (SP3 bonds) and graphite bonds (SP2 bonds) as carbon bonds. Therefore, DLC has hardness, wear resistance, thermal conductivity and chemical stability similar to diamond, while it has solid lubricity similar to graphite, which protects sliding members such as automobile parts. Suitable as a membrane.
  • hydrogen-containing hard carbon layer As the hard carbon film formed on the surface of the sliding member, one containing hydrogen (hereinafter referred to as “hydrogen-containing hard carbon layer”) and one not containing hydrogen (hereinafter referred to as “hydrogen-free hard carbon layer”). ").
  • hydrogen-containing hard carbon layer has a low friction coefficient, since a part of carbon bonding hands is terminated with hydrogen, there is a tendency that adhesion with a base material is poor.
  • the hydrogen-free hard carbon layer has a high friction coefficient, but tends to be excellent in adhesion to the base material. There are the following conventional techniques combining these two.
  • a hydrogen-free hard carbon layer is formed on a substrate by a vacuum arc ion plating method using a filtered cathode method, and an uppermost layer is formed on the hydrogen-free hard carbon layer by a plasma CVD method. It is described that a hydrogen-containing hard carbon layer having a hydrogen content of 0.17 to 0.34 atomic% is formed.
  • This technique combines a low-wear property and excellent adhesion by combining a hydrogen-free hard carbon layer and a hydrogen-containing hard carbon layer. Since the hydrogen-free hard carbon layer is formed by a vacuum arc discharge method using a filtered cathode method, the surface thereof has high flatness.
  • a hydrogen-free hard carbon layer having a thickness of 0.5 to 200 nm is formed on a substrate by a vacuum arc ion plating method that does not use a filtered cathode method, and further, by a vacuum arc ion plating method. It describes that a hydrogen-containing hard carbon layer having a hydrogen content of 5 to 25 atomic% is formed on a hydrogen-free hard carbon layer.
  • the hydrogen-free hard carbon layer is formed by a vacuum arc ion plating method that does not use a filtered cathode method, but since the thickness is as thin as 200 nm or less, the surface has high flatness. It is characterized by having
  • Patent Documents 1 and 2 the adhesion between the entire hard carbon coating and the base material is improved by interposing a hydrogen-free hard carbon layer with high adhesion between the base material and the hydrogen-containing hard carbon layer. I was paying attention to. However, Patent Documents 1 and 2 do not consider any adhesion between the hydrogen-free hard carbon layer and the hydrogen-containing hard carbon layer thereon. According to the study of the present inventor, in the prior art, peeling occurs between the hydrogen-free hard carbon layer and the hydrogen-containing hard carbon layer under severe sliding conditions, and as a result, the service life of the sliding member is shortened. It turns out that there is a problem.
  • an object of the present invention is to provide a sliding member in which delamination hardly occurs even under severe sliding conditions and a method for manufacturing the same.
  • Patent Documents 1 and 2 when forming a hydrogen-containing hard carbon layer on a hydrogen-free hard carbon layer, it has been aimed to make the surface of the hydrogen-free hard carbon layer as flat as possible.
  • the present inventor has conceived of roughening the surface of the hydrogen-free hard carbon layer. That is, the present inventor aimed to suppress peeling between the two layers by an anchor effect due to the unevenness by forming a hydrogen-containing hard carbon layer on a hydrogen-free hard carbon layer having many unevenness on the surface. And not only simply roughening the surface of the hydrogen-free hard carbon layer, but also when the surface has a specific surface shape (uneven structure), it has been found that peeling between the two layers can be sufficiently suppressed.
  • the invention has been completed.
  • first hard carbon layer having a thickness substantially not containing hydrogen of 0.35 ⁇ m or more and 1.5 ⁇ m or less on the substrate by a vacuum arc ion plating method that does not use the filtered cathode method.
  • the first step Second step of forming a second hard carbon layer having a hydrogen content of 5 atomic% or more and 25 atomic% or less on the first hard carbon layer by a vacuum arc ion plating method that does not use a filtered cathode method
  • the first step is performed so that the surface shape of the first hard carbon layer satisfies the protruding peak height Rpk: 0.08 ⁇ m or more and 0.90 ⁇ m or less. Manufacturing method of sliding member used.
  • the sliding member of the present invention hardly causes delamination even under severe sliding conditions. Moreover, the manufacturing method of the sliding member of this invention can manufacture the sliding member which is hard to produce delamination under severe sliding conditions with high productivity.
  • a sliding member 100 is used under lubricating oil, and is formed on a base material 10 and a surface (sliding surface side) of the base material.
  • a second hard carbon layer 16 hydrogen-containing hard carbon layer having a hydrogen content of 5 atomic% to 25 atomic%.
  • the first hard carbon layer 14 and the second hard carbon layer 16 as well as any gradient layer described later are collectively referred to as a “hard carbon coating 18”.
  • the material of the base material 10 is not particularly limited as long as it has a strength necessary for the base material of the sliding member.
  • preferable materials for the substrate 10 include steel, martensitic stainless steel, austenitic stainless steel, high-grade cast iron, and the like.
  • the intermediate layer 12 has a function of relaxing the stress at the interface with the base material 10 and improving the adhesion of the hard carbon film 18 by being formed between the base material 10 and the hard carbon film 18.
  • the intermediate layer 12 is preferably made of one or more selected from Cr, Ti, Si and W, carbides, nitrides, and carbonitrides thereof.
  • the intermediate layer is not limited to a single layer made of a metal or a compound selected from the above, and may have a multilayer structure in which a plurality of layers are stacked.
  • the thickness of the intermediate layer 12 is preferably 0.02 ⁇ m or more and 0.6 ⁇ m or less. If the thickness is less than 0.02 ⁇ m, sufficient adhesion to the hard carbon coating 18 may not be obtained. If the thickness exceeds 0.6 ⁇ m, plastic flow tends to occur, and the intermediate layer 12 It is because it becomes easy to peel.
  • Examples of the method for forming the intermediate layer 12 include a sputtering method.
  • the substrate 10 after cleaning is placed in a vacuum chamber of a PVD film forming apparatus, and Ar gas is introduced, using a sputtering source 22 (see FIG. 2) having a Cr, Ti, or WC target.
  • Layer 12 can be deposited.
  • a hydrocarbon gas containing Si as a constituent element such as tetramethylsilane (TMS) is introduced, and the intermediate layer 12 can be formed by plasma CVD.
  • TMS tetramethylsilane
  • the sputtering source 22 is not used.
  • the thickness of the intermediate layer 12 can be adjusted by the discharge time.
  • the hard carbon coating 18 is in contact with the substrate 10 or preferably the first hard carbon layer 14 formed in contact with the intermediate layer 12 and the first hard carbon layer 14 formed in contact with the first hard carbon layer. Two hard carbon layers 16.
  • the first hard carbon layer 14 does not substantially contain hydrogen and consists of amorphous carbon (DLC) only. Amorphous carbon can be confirmed by Raman spectrum measurement using a Raman spectrophotometer (Ar laser).
  • “substantially does not contain hydrogen” means a gas that is inevitably generated during film formation, or gas that is adsorbed on the inner wall of the film formation chamber as it is released during film formation.
  • the first hard carbon layer 14 is formed without introducing a compound containing hydrogen, such as methane, diborane, and silane, from the outside, specifically, by HFS (Hydrogen-Forward-Scattering) analysis. It means that the hydrogen content in the hard carbon coating is 3 atomic% or less.
  • the first hard carbon layer 14 increases the adhesion between the base material 10 and the intermediate layer 12 and the hard carbon coating 18.
  • the second hard carbon layer 16 has a hydrogen content of 5 atomic% to 25 atomic%. Within this range, wear acceleration during sliding in an oil lubrication environment containing an organomolybdenum compound is small, and a high film formation rate can be achieved at the same time.
  • the hydrogen content is preferably more than 10 atomic% and not more than 20 atomic%. When the hydrogen content is less than 5 atomic%, the wear resistance is good, but the deposition rate is slow and the productivity is low. On the other hand, when the hydrogen content exceeds 25 atomic%, a high film formation speed can be obtained, but there is a large amount of wear and wear by organic molybdenum compounds may be promoted. Not suitable for use in
  • the surface shape of the first hard carbon layer 14 (that is, the shape of the interface between the first hard carbon layer 14 and the second hard carbon layer 16) is the protruding peak height Rpk: 0.08. It is important to satisfy the range of ⁇ m to 0.90 ⁇ m. When Rpk is less than 0.08 ⁇ m, peeling between the first hard carbon layer 14 and the second hard carbon layer 16 occurs, and as a result, the service life of the sliding member is shortened. On the other hand, if Rpk exceeds 0.90 ⁇ m, the surface roughness of the second hard carbon layer 16 formed on the first hard carbon layer 14 becomes too large, and post-processing is required. From the above viewpoint, Rpk is preferably 0.08 ⁇ m or more and 0.55 ⁇ m or less.
  • a cross-sectional sample in the film thickness direction of the hard carbon coating 18 is manufactured by focused ion beam (FIB) processing, and a transmission electron microscope image (TEM image) is observed.
  • FIB focused ion beam
  • TEM image transmission electron microscope image
  • the cross-sectional shape of the base material is the boundary between the base material and the intermediate layer
  • the cross-sectional shape of the intermediate layer is the boundary between the intermediate layer and the first hard carbon layer
  • the cross-sectional shape of the first hard carbon layer is the first hard
  • the change in luminance of the obtained TEM image is the boundary between the carbon layer and the second hard carbon layer
  • the cross-sectional shape of the second hard carbon layer is the surface of this layer or the boundary with the protective layer provided before FIB processing.
  • the calculation method of the thickness of each layer is as follows.
  • a regression line is obtained by the least square method for each measurement point constituting the cross-sectional shape of the substrate, and this straight line is taken as the x-axis and the normal direction as the y-axis.
  • middle layer, a 1st hard carbon layer, and a 2nd hard carbon layer is converted into xy coordinate defined here.
  • the height of the cross-sectional shape of each layer from the base material is the average value of the y-coordinates of the respective cross-sectional shapes.
  • the thickness of the intermediate layer is calculated from the average value of the y coordinates of the cross-sectional shape of the intermediate layer from the x axis.
  • the thickness of the first hard carbon layer is calculated by subtracting the thickness of the intermediate layer from the average value of the y coordinates of the cross-sectional shape of this layer, and the thickness of the second hard carbon layer is It is calculated by subtracting the average value of the y-coordinates of the cross-sectional shape of the first hard carbon layer from the average value of the y-coordinates of the cross-sectional shape.
  • the Rpk of the surface of the first hard carbon layer is calculated based on the cross-sectional shape of the obtained first hard carbon layer using surface roughness measurement software or the like according to JIS B0671-2: 2002.
  • an arc evaporation source 20 having a carbon cathode and a sputtering source 22 having a metal cathode for forming an intermediate layer are turned. It is often arranged in a positional relationship facing each other across the table. This is because, for example, when the arc evaporation source 20 having a carbon cathode is discharged and formed into a film, the turntable can be used as a screen to suppress the coating of the sputtering source Cr, such as Cr, with the carbon surface by carbon. It is.
  • FIG. 4 schematically shows the relationship between the thickness of the coating formed on the surface of the workpiece located in the region P at the start of introduction of the hydrocarbon-based gas and the flow rate of the hydrocarbon gas.
  • the plasma generated by the arc evaporation source is shielded by the work of the other rotation axis located near the arc evaporation source, so that almost no film is formed.
  • the conditions for forming the first hard carbon layer 14 are preferably as follows. That is, the bias voltage is preferably ⁇ 150 V or more and 0 V or less, the arc discharge current is preferably 40 A or more and 90 A or less, and the substrate temperature before the first hard carbon layer 14 is formed is preferably 110 ° C. or less. 80 ° C. or lower is more preferable.
  • the thickness of the first hard carbon layer 14 can be controlled by the film formation time, and is 0.35 ⁇ m or more and 1.5 ⁇ m or less. This is because if the thickness is less than 0.35 ⁇ m, it is difficult to roughen the surface of the first hard carbon layer 14, so that it is difficult to make Rpk within the range of the present invention. On the other hand, when the thickness exceeds 1.5 ⁇ m, the surface of the first hard carbon layer 14 becomes too rough due to the carbon microparticles emitted from the cathode along with the arc discharge, and the carbon microparticles are integrated with the surrounding coating. This is because the boundary and voids (voids) are generated, and delamination occurs.
  • the conditions for forming the second hard carbon layer 16 are not particularly limited, but are preferably as follows. That is, the bias voltage is preferably ⁇ 150 V to 0 V, the arc discharge current is preferably 40 A to 90 A, and the hydrocarbon gas flow rate is preferably 50 sccm to 250 sccm.
  • the total thickness of the first hard carbon layer 14 and the second hard carbon layer 16 is preferably 5 ⁇ m or more, and more preferably 7 ⁇ m or more.
  • the total thickness is preferably 30 ⁇ m or less. Even if it exceeds 30 ⁇ m, there is no functional problem, but the film thickness is excessive and the film formation cost increases.
  • a sliding member according to an embodiment of the present invention includes a piston ring, a piston, a piston pin, a tappet, a valve lifter, and the like used for a sliding part of an internal combustion engine in which a lubricating oil containing an organic molybdenum compound such as engine oil is interposed. It can be applied to shims, rocker arms, cams, camshafts, timing gears, and timing chains.
  • the sliding member of the present invention is preferably used in the presence of a lubricating oil containing an organomolybdenum compound. Since the outermost layer has a hydrogen content of 5 to 25 at%, the progress of wear due to the reaction with the Mo oxide can be relatively suppressed even under lubricating oil containing an organomolybdenum compound.
  • the organomolybdenum compound in the lubricating oil is preferably one or more organomolybdenum compounds selected from molybdenum dithiocarbamate (Mo-DTC) or molybdenum dithiophosphate (Mo-DTP).
  • Mo-DTC molybdenum dithiocarbamate
  • Mo-DTP molybdenum dithiophosphate
  • a SUJ2 cylinder having a diameter of 6 mm and a length of 12 mm was used as a base material, and an intermediate layer and a hard carbon film were formed on the curved surface as shown in the Examples and Comparative Examples described in Table 1 under the following conditions.
  • the base material was arrange
  • the film was formed not on the entire curved surface but on a part of the curved surface along the axial direction.
  • the base material was held on the work holder 28 for film formation using the part where the film was not formed.
  • the used turntable 26 has a plurality of work holders having rotation axes. C. D. Is 600 mm.
  • a film-forming jig holding a substrate was attached to one of the axes.
  • a dummy pole made of SUS304TPD of ⁇ 89 was disposed on the remaining rotation axis.
  • the SUJ2 cylinder Prior to the formation of the hard carbon film, the SUJ2 cylinder is cleaned, evacuated after being placed on one rotating shaft of the turntable, and heated using a heater 30 within a temperature range of 200 ° C. or less. Urged the release of adsorbed components. Then, discharge cleaning and formation of an intermediate layer were performed.
  • the first hard carbon layer was formed in the same chamber, and the second hard carbon layer was further formed.
  • a graphite carbon cathode (carbon: 99 atomic% or more) was attached to the arc evaporation source.
  • argon was mixed with acetylene as a hydrocarbon gas and introduced.
  • the first hard carbon layer of the example has a bias voltage of ⁇ 150 V or more and 0 V or less, an arc discharge current of 40 A or more and 90 A or less, and a substrate temperature before forming the first hard carbon layer: 110 ° C. or less for a predetermined time. It formed by performing film-forming.
  • the hydrogen content of the hard carbon film is measured by RBS (Rutherford Backscattering Spectrometry) / HFS (Hydrogen Forward Scattering Spectrometer) of a film formed in a region that is flat or has a sufficiently large radius of curvature and can be regarded as a flat surface for measurement.
  • the hydrogen content (unit: atomic%) in a film is measured by RBS / HFS on a plurality of reference samples on which a film with different hydrogen contents is formed on a plane.
  • the secondary ion intensity of each of hydrogen and carbon is measured for this reference sample by SIMS (Secondary Ion Mass Spectrometry: Secondary Ion-microprobe Mass Spectrometry).
  • carbon content is calculated
  • a carbon film was formed on a mirror-polished flat test piece (quenched SKH51 material disc, ⁇ 25 ⁇ thickness 5 (mm), hardness HRC60-63, surface roughness Ra 0.02 ⁇ m or less).
  • the film formation of the reference sample was performed using a reactive sputtering method and introducing acetylene, argon, and hydrogen as the atmospheric gas.
  • the amount of hydrogen contained in the coating film of the first reference sample was adjusted by changing the flow rate of introduced hydrogen and the overall pressure.
  • hard carbon films composed of only hydrogen and carbon and having different hydrogen contents were formed, and the carbon film compositions (all elements including hydrogen) of these reference samples were evaluated by RBS / HFS. Then, it was confirmed that the total of hydrogen and carbon was 98 atomic% or more among the components of the entire hard carbon film formed on the reference sample, and that carbon was 97 atomic% or more among the components excluding hydrogen.
  • the coating of the reference sample was analyzed by SIMS, and the secondary ion intensity of hydrogen and carbon was measured.
  • the SIMS analysis can be performed on a non-planar part such as a piston ring or a camshaft. Therefore, for the same coating of the reference sample, an empirical formula showing the relationship between the amount of hydrogen and carbon (unit: atomic%) obtained by RBS / HFS and the ratio of secondary ion intensity of hydrogen and carbon obtained by SIMS.
  • the amount of hydrogen and the amount of carbon can be calculated from the SIMS hydrogen and carbon secondary ion intensity measured for the actual sliding member.
  • the coating film formed on the actual sliding member was analyzed by SIMS, and the ratio between the hydrogen amount and the carbon amount was determined using the above empirical formula.
  • the value of the secondary ion intensity by SIMS adopted the average value of the secondary ion intensity of each element observed at least at a depth of 20 nm or more from the coating surface and in the range of 50 nm.
  • elements other than hydrogen including carbon were further measured by EDX (Energy Dispersive X-ray spectroscopy) and WDX (Wavelength-dispersive X-ray spectroscopy). From these results, the composition ratio of the coating film containing hydrogen can be evaluated.
  • the hydrogen content of the second hard carbon layer measured in this way is shown in Table 1.
  • the surface on which the hard carbon film of the test piece prepared in the example and the comparative example was formed was polished with a wrapping film (diamond # 4000) so as to have an arithmetic average roughness Ra of 0.03 ⁇ m or less. A reciprocating test was performed.
  • the amount of coating wear by such a reciprocating test was obtained by the following method. Using a confocal laser microscope (Olympus, model: LEXT OLS4000), the three-dimensional shape of the coating surface including the vicinity of the sliding portion after the reciprocating test was measured. First, the three-dimensional shape of the side surface of the cylinder on which the coating film before being subjected to the reciprocating test was formed was measured, and the surface shape in the vertical direction (sliding direction) with respect to the rotational symmetry axis of the cylinder was measured at 10 locations (FIG. 6 ( A)). And the average of the nth shape was calculated
  • the sliding surface (surface) of the test piece was observed visually or with an optical microscope (100 to 400 times), and the presence or absence of film damage was evaluated according to the following criteria.
  • the case where pits with a size of 100 ⁇ m or more are observed on the sliding surface of the test piece is “pit missing”, and the case where the first hard carbon layer and the second hard carbon layer are separated is called “delamination”. Indicated.
  • the sliding member of the present invention can reduce the coefficient of friction while maintaining high wear resistance during sliding under lubricating oil containing an organomolybdenum compound, and is less likely to cause delamination.
  • SYMBOLS 100 Sliding member 10 Base material 12 Intermediate layer 14 1st hard carbon layer (non-hydrogen containing hard carbon layer) 16 Second hard carbon layer (hydrogen-containing hard carbon layer) 18 Hard carbon coating 20 Arc type evaporation source with carbon cathode 22 Sputtering source with metal cathode 24 Vacuum vessel 26 Turntable 28 Rotating work holder 30 Heater 60 Test piece (SUS2 cylinder) 68 Sliding mating material (SUS2 disc)

Abstract

The present invention provides a sliding member, in which interlayer peeling is less likely to occur even under tough sliding conditions. The present invention is a sliding member 100 used with lubricating oil, and is characterized by having a base material 10, a first hard carbon layer 14 formed on the base material and not containing substantial amounts of hydrogen, and a second hard carbon layer 16 formed in contact with the first hard carbon layer and having a hydrogen content of 5-25 at.%, wherein the surface shape of the first hard carbon layer has a protruding peak height Rpk of 0.08-0.90 µm, and the thickness of the first hard carbon layer is 0.35-1.5 µm.

Description

摺動部材及びその製造方法Sliding member and manufacturing method thereof
 本発明は、摺動部材、特に自動車部品などの高い信頼性を要求される摺動部材と、その製造方法に関する。 The present invention relates to a sliding member, particularly a sliding member that requires high reliability, such as an automobile part, and a manufacturing method thereof.
 近年、自動車エンジンを中心とする内燃機関において、高出力化、長寿命化、燃費向上が求められている。そこで、例えば内燃機関等で使用される摺動部材の摺動面には、摩擦係数が低いことで知られている硬質炭素被膜を形成することが一般的に行われている。この炭素被膜には、ダイヤモンドライクカーボン(DLC)と呼ばれる非晶質炭素が用いられる。DLCの構造的本質は、炭素の結合としてダイヤモンド結合(SP3結合)とグラファイト結合(SP2結合)とが混在したものである。よって、DLCは、ダイヤモンドに類似した硬度、耐摩耗性、熱伝導性、化学安定性を有し、一方でグラファイトに類似した固体潤滑性を有することから、例えば自動車部品などの摺動部材の保護膜として好適である。摺動部材の表面に形成される硬質炭素被膜としては、水素を含有するもの(以下、「水素含有硬質炭素層」と称する)と、水素を含有しないもの(以下、「水素非含有硬質炭素層」と称する)とがある。水素含有硬質炭素層は、摩擦係数が低いが、炭素の結合の手の一部が水素によって終端されているため、母材との密着性が乏しい傾向がある。これに対し、水素非含有硬質炭素層は、摩擦係数は高いが、母材との密着性には優れる傾向がある。この両者を組み合わせた以下のような従来技術がある。 In recent years, internal combustion engines such as automobile engines have been required to have higher output, longer life, and improved fuel efficiency. Therefore, for example, a hard carbon film that is known to have a low friction coefficient is generally formed on a sliding surface of a sliding member used in an internal combustion engine or the like. For this carbon film, amorphous carbon called diamond-like carbon (DLC) is used. The structural essence of DLC is a combination of diamond bonds (SP3 bonds) and graphite bonds (SP2 bonds) as carbon bonds. Therefore, DLC has hardness, wear resistance, thermal conductivity and chemical stability similar to diamond, while it has solid lubricity similar to graphite, which protects sliding members such as automobile parts. Suitable as a membrane. As the hard carbon film formed on the surface of the sliding member, one containing hydrogen (hereinafter referred to as “hydrogen-containing hard carbon layer”) and one not containing hydrogen (hereinafter referred to as “hydrogen-free hard carbon layer”). "). Although the hydrogen-containing hard carbon layer has a low friction coefficient, since a part of carbon bonding hands is terminated with hydrogen, there is a tendency that adhesion with a base material is poor. On the other hand, the hydrogen-free hard carbon layer has a high friction coefficient, but tends to be excellent in adhesion to the base material. There are the following conventional techniques combining these two.
 特許文献1には、フィルタードカソード法を用いた真空アークイオンプレーティング法によって、基材上に水素非含有硬質炭素層を形成し、プラズマCVD法によって、水素非含有硬質炭素層上に最上層として水素含有量が0.17~0.34原子%の水素含有硬質炭素層を形成することが記載されている。この技術は、水素非含有硬質炭素層と水素含有硬質炭素層とを組み合わせて、低摩耗性と優れた密着性を両立させるものである。そして、水素非含有硬質炭素層はフィルタードカソード法を用いた真空アーク放電法によってされるため、その表面は高い平坦性を有している。 In Patent Document 1, a hydrogen-free hard carbon layer is formed on a substrate by a vacuum arc ion plating method using a filtered cathode method, and an uppermost layer is formed on the hydrogen-free hard carbon layer by a plasma CVD method. It is described that a hydrogen-containing hard carbon layer having a hydrogen content of 0.17 to 0.34 atomic% is formed. This technique combines a low-wear property and excellent adhesion by combining a hydrogen-free hard carbon layer and a hydrogen-containing hard carbon layer. Since the hydrogen-free hard carbon layer is formed by a vacuum arc discharge method using a filtered cathode method, the surface thereof has high flatness.
 特許文献2には、フィルタードカソード法を用いない真空アークイオンプレーティング法によって、基材上に厚さ0.5~200nmの水素非含有硬質炭素層を形成し、さらに、真空アークイオンプレーティング法によって、水素非含有硬質炭素層上に、水素含有量が5~25原子%の水素含有硬質炭素層を形成することが記載されている。この文献に記載の発明では、水素非含有硬質炭素層はフィルタードカソード法を用いない真空アークイオンプレーティング法によって形成されるが、厚さが200nm以下と薄いことから、その表面が高い平坦性を有する点を特徴としている。 In Patent Document 2, a hydrogen-free hard carbon layer having a thickness of 0.5 to 200 nm is formed on a substrate by a vacuum arc ion plating method that does not use a filtered cathode method, and further, by a vacuum arc ion plating method. It describes that a hydrogen-containing hard carbon layer having a hydrogen content of 5 to 25 atomic% is formed on a hydrogen-free hard carbon layer. In the invention described in this document, the hydrogen-free hard carbon layer is formed by a vacuum arc ion plating method that does not use a filtered cathode method, but since the thickness is as thin as 200 nm or less, the surface has high flatness. It is characterized by having
特開2000-128516号公報JP 2000-128516 A 特開2003- 26414号公報JP 2003-26414 A
 特許文献1,2では、母材と水素含有硬質炭素層との間に、密着性の高い水素非含有硬質炭素層を介在させることによって、硬質炭素被膜全体と母材との密着性を高めることに着目していた。しかしながら、特許文献1,2では、水素非含有硬質炭素層とその上の水素含有硬質炭素層との間の密着性は何ら考慮されていない。本発明者の検討によると、従来技術では厳しい摺動条件下において水素非含有硬質炭素層と水素含有硬質炭素層との間で剥離が生じ、その結果、摺動部材の使用寿命が短くなるという問題があることが判明した。 In Patent Documents 1 and 2, the adhesion between the entire hard carbon coating and the base material is improved by interposing a hydrogen-free hard carbon layer with high adhesion between the base material and the hydrogen-containing hard carbon layer. I was paying attention to. However, Patent Documents 1 and 2 do not consider any adhesion between the hydrogen-free hard carbon layer and the hydrogen-containing hard carbon layer thereon. According to the study of the present inventor, in the prior art, peeling occurs between the hydrogen-free hard carbon layer and the hydrogen-containing hard carbon layer under severe sliding conditions, and as a result, the service life of the sliding member is shortened. It turns out that there is a problem.
 本発明は上記課題に鑑み、厳しい摺動条件下でも層間剥離が生じにくい摺動部材およびその製造方法を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a sliding member in which delamination hardly occurs even under severe sliding conditions and a method for manufacturing the same.
 特許文献1,2では、水素非含有硬質炭素層上に水素含有硬質炭素層を形成する際、水素非含有硬質炭素層の表面は極力平坦にすることが志向されてきた。しかしながら、本発明者は上記目的を達成するべく、むしろ、水素非含有硬質炭素層の表面を粗面化することを着想した。すなわち本発明者は、表面に凹凸が多い水素非含有硬質炭素層上に水素含有硬質炭素層を形成することによって、当該凹凸によるアンカー効果で両層間の剥離を抑制することを志向した。そして、単に水素非含有硬質炭素層の表面を粗面化するのみならず、当該表面が特定条件の表面形状(凹凸構造)を有する場合に、両層間の剥離を十分に抑制できることを見出し、本発明を完成するに至った。 In Patent Documents 1 and 2, when forming a hydrogen-containing hard carbon layer on a hydrogen-free hard carbon layer, it has been aimed to make the surface of the hydrogen-free hard carbon layer as flat as possible. However, in order to achieve the above object, the present inventor has conceived of roughening the surface of the hydrogen-free hard carbon layer. That is, the present inventor aimed to suppress peeling between the two layers by an anchor effect due to the unevenness by forming a hydrogen-containing hard carbon layer on a hydrogen-free hard carbon layer having many unevenness on the surface. And not only simply roughening the surface of the hydrogen-free hard carbon layer, but also when the surface has a specific surface shape (uneven structure), it has been found that peeling between the two layers can be sufficiently suppressed. The invention has been completed.
 すなわち、本発明の要旨構成は以下のとおりである。
 (1)基材と、
 該基材上に形成された、水素を実質的に含まない第一の硬質炭素層と、
 該第一の硬質炭素層上に形成された、水素含有量が5原子%以上25原子%以下の第二の硬質炭素層と、
を有し、前記第一の硬質炭素層の表面形状が、突出山部高さRpk:0.08μm以上0.90μm以下を満たし、
 前記第一の硬質炭素層の厚さが0.35μm以上1.5μm以下であることを特徴とする、潤滑油下で使用される摺動部材。
That is, the gist configuration of the present invention is as follows.
(1) a base material;
A first hard carbon layer substantially free of hydrogen formed on the substrate;
A second hard carbon layer having a hydrogen content of 5 atomic% or more and 25 atomic% or less formed on the first hard carbon layer;
The surface shape of the first hard carbon layer satisfies a protruding peak height Rpk: 0.08 μm or more and 0.90 μm or less,
A sliding member used under lubricating oil, wherein the thickness of the first hard carbon layer is 0.35 µm or more and 1.5 µm or less.
 (2)前記第二の硬質炭素層の水素含有量が10原子%超え20原子%以下である、上記(1)に記載の摺動部材。 (2) The sliding member according to (1), wherein the hydrogen content of the second hard carbon layer is more than 10 atomic% and not more than 20 atomic%.
 (3)前記第一の硬質炭素層及び前記第二の硬質炭素層の合計厚さが5μm以上である、上記(1)又は(2)に記載の摺動部材。 (3) The sliding member according to (1) or (2), wherein a total thickness of the first hard carbon layer and the second hard carbon layer is 5 μm or more.
 (4)前記第一の硬質炭素層と前記第二の硬質炭素層との間に、水素含有量が前記第一の硬質炭素層から前記第二の硬質炭素層に向けて増加する傾斜層を有する、上記(1)~(3)のいずれか一項に記載の摺動部材。 (4) An inclined layer in which the hydrogen content increases from the first hard carbon layer toward the second hard carbon layer between the first hard carbon layer and the second hard carbon layer. The sliding member according to any one of the above (1) to (3).
 (5)前記基材と前記第一の硬質炭素層との間に、Cr、Ti、Si及びW、その炭化物、窒化物、炭窒化物から選択された一つ以上からなる中間層を有する、上記(1)~(4)のいずれか一項に記載の摺動部材。 (5) Between the base material and the first hard carbon layer, an intermediate layer composed of one or more selected from Cr, Ti, Si and W, carbides, nitrides, and carbonitrides thereof, The sliding member according to any one of (1) to (4) above.
 (6)フィルタードカソード法を用いない真空アークイオンプレーティング法によって、基材上に、水素を実質的に含まない厚さが0.35μm以上1.5μm以下である第一の硬質炭素層を形成する第一工程と、
 フィルタードカソード法を用いない真空アークイオンプレーティング法によって、前記第一の硬質炭素層上に、水素含有量が5原子%以上25原子%以下の第二の硬質炭素層を形成する第二工程と、
を有し、前記第一工程は、前記第一の硬質炭素層の表面形状が、突出山部高さRpk:0.08μm以上0.90μm以下を満たすように行うことを特徴とする、潤滑油下で使用される摺動部材の製造方法。
(6) Forming a first hard carbon layer having a thickness substantially not containing hydrogen of 0.35 μm or more and 1.5 μm or less on the substrate by a vacuum arc ion plating method that does not use the filtered cathode method. The first step,
Second step of forming a second hard carbon layer having a hydrogen content of 5 atomic% or more and 25 atomic% or less on the first hard carbon layer by a vacuum arc ion plating method that does not use a filtered cathode method When,
And the first step is performed so that the surface shape of the first hard carbon layer satisfies the protruding peak height Rpk: 0.08 μm or more and 0.90 μm or less. Manufacturing method of sliding member used.
 本発明の摺動部材は、厳しい摺動条件下でも層間剥離が生じにくい。また、本発明の摺動部材の製造方法は、厳しい摺動条件下でも層間剥離が生じにくい摺動部材を高い生産性で製造することができる。 The sliding member of the present invention hardly causes delamination even under severe sliding conditions. Moreover, the manufacturing method of the sliding member of this invention can manufacture the sliding member which is hard to produce delamination under severe sliding conditions with high productivity.
本発明の一実施形態による摺動部材100の模式断面図である。It is a schematic cross section of the sliding member 100 by one Embodiment of this invention. 本発明の一実施形態において、第一及び第二の硬質炭素層14,16の成膜に用いる成膜装置の模式図である。In one embodiment of the present invention, it is a schematic diagram of a film forming apparatus used for forming a first hard carbon layer and a second hard carbon layer. 図2において、第二の硬質炭素層(水素含有硬質炭素層)16を成膜する状況を説明する図である。In FIG. 2, it is a figure explaining the condition which forms the 2nd hard carbon layer (hydrogen containing hard carbon layer) 16 into a film. 図3のワークホルダーAにおける第二の硬質炭素層(水素含有硬質炭素層)の厚さ及び炭化水素系ガスの流量の経時変化を示す模式的グラフである。It is a typical graph which shows the time-dependent change of the thickness of the 2nd hard carbon layer (hydrogen containing hard carbon layer) in the work holder A of FIG. 3, and the flow volume of hydrocarbon type gas. 往復摺動試験の形態を示す模式図である。It is a schematic diagram which shows the form of a reciprocating sliding test. (A)は、実験例において硬質炭素被膜の表面形状を測定する方法を説明する模式的グラフであり、(B)は、実験例において硬質炭素被膜の摩耗部断面積を算出する方法を説明する模式的グラフである。(A) is a schematic graph explaining the method of measuring the surface shape of a hard carbon film in an experimental example, (B) explains the method of calculating the wear part cross-sectional area of a hard carbon film in an experimental example. It is a schematic graph.
 (摺動部材)
 図1を参照して、本発明の一実施形態による摺動部材100は、潤滑油下で使用されるものであり、基材10と、この基材の表面(摺動面側)に形成された中間層12と、この中間層上に形成された、水素を実質的に含まない第一の硬質炭素層14(水素非含有硬質炭素層)と、この第一の硬質炭素層に接して形成された、水素含有量が5原子%以上25原子%以下の第二の硬質炭素層16(水素含有硬質炭素層)と、を有する。なお、本明細書において、第一の硬質炭素層14及び第二の硬質炭素層16、さらには後述する任意の傾斜層を合わせて、「硬質炭素被膜18」と称する。
(Sliding member)
Referring to FIG. 1, a sliding member 100 according to an embodiment of the present invention is used under lubricating oil, and is formed on a base material 10 and a surface (sliding surface side) of the base material. The intermediate layer 12, the first hard carbon layer 14 (hydrogen-free hard carbon layer) substantially free of hydrogen formed on the intermediate layer, and the first hard carbon layer in contact therewith And a second hard carbon layer 16 (hydrogen-containing hard carbon layer) having a hydrogen content of 5 atomic% to 25 atomic%. In the present specification, the first hard carbon layer 14 and the second hard carbon layer 16 as well as any gradient layer described later are collectively referred to as a “hard carbon coating 18”.
 (基材)
 基材10の材質は、摺動部材の基材として必要な強度を有するものであれば特に限定されない。本実施形態の摺動部材100をピストンリングとする場合、基材10の好ましい材料としては、鋼、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、高級鋳鉄等が挙げられる。
(Base material)
The material of the base material 10 is not particularly limited as long as it has a strength necessary for the base material of the sliding member. When the sliding member 100 of the present embodiment is a piston ring, preferable materials for the substrate 10 include steel, martensitic stainless steel, austenitic stainless steel, high-grade cast iron, and the like.
 (中間層)
 中間層12は、基材10と硬質炭素被膜18との間に形成されることにより基材10との界面の応力を緩和し、硬質炭素膜18の密着性を高める機能を有する。この機能を発揮する観点から、中間層12は、Cr、Ti、Si及びW、その炭化物、窒化物、炭窒化物から選択された一つ以上からなるものとすることが好ましい。中間層は、前記から選択された金属や化合物からなる単層に限定されず、複数層を積層した多層構造としてもよい。中間層12の厚さは、0.02μm以上0.6μm以下であることが好ましい。厚さが0.02μm未満の場合、その上の硬質炭素被膜18との密着性が十分に得られない可能性があり、厚さが0.6μmを超えると、塑性流動を起こしやすくなり、中間層12が剥離しやすくなるからである。
(Middle layer)
The intermediate layer 12 has a function of relaxing the stress at the interface with the base material 10 and improving the adhesion of the hard carbon film 18 by being formed between the base material 10 and the hard carbon film 18. From the viewpoint of exerting this function, the intermediate layer 12 is preferably made of one or more selected from Cr, Ti, Si and W, carbides, nitrides, and carbonitrides thereof. The intermediate layer is not limited to a single layer made of a metal or a compound selected from the above, and may have a multilayer structure in which a plurality of layers are stacked. The thickness of the intermediate layer 12 is preferably 0.02 μm or more and 0.6 μm or less. If the thickness is less than 0.02 μm, sufficient adhesion to the hard carbon coating 18 may not be obtained. If the thickness exceeds 0.6 μm, plastic flow tends to occur, and the intermediate layer 12 It is because it becomes easy to peel.
 中間層12の形成方法としては、例えばスパッタリング法を挙げることができる。洗浄後の基材10をPVD成膜装置の真空チャンバ内に配置し、Arガスを導入した状態で、Cr、Ti又はWCのターゲットを備えたスパッタ源22(図2参照)を用いて、中間層12を成膜することができる。中間層としてSiCを形成する場合は、テトラメチルシラン(TMS)等、構成元素としてSiを含む炭化水素系ガスを導入し、プラズマCVD法によって中間層12を成膜することができる。この場合はスパッタ源22を使用しない。なお、中間層12の厚さは放電時間により調整できる。 Examples of the method for forming the intermediate layer 12 include a sputtering method. The substrate 10 after cleaning is placed in a vacuum chamber of a PVD film forming apparatus, and Ar gas is introduced, using a sputtering source 22 (see FIG. 2) having a Cr, Ti, or WC target. Layer 12 can be deposited. When SiC is formed as the intermediate layer, a hydrocarbon gas containing Si as a constituent element such as tetramethylsilane (TMS) is introduced, and the intermediate layer 12 can be formed by plasma CVD. In this case, the sputtering source 22 is not used. The thickness of the intermediate layer 12 can be adjusted by the discharge time.
 (硬質炭素被膜)
 硬質炭素被膜18は、基材10上に接して、又は好適には中間層12上に接して形成された第一の硬質炭素層14と、第一の硬質炭素層に接して形成された第二の硬質炭素層16とを有する。
(Hard carbon coating)
The hard carbon coating 18 is in contact with the substrate 10 or preferably the first hard carbon layer 14 formed in contact with the intermediate layer 12 and the first hard carbon layer 14 formed in contact with the first hard carbon layer. Two hard carbon layers 16.
 第一の硬質炭素層14は、実質的に水素を含まず、非晶質炭素(DLC)のみからなる。非晶質炭素であることは、ラマン分光光度計(Arレーザ)を用いたラマンスペクトル測定により確認できる。ここで、本発明において「実質的に水素を含まない」とは、成膜中の不可避的に発生するリークや、成膜室内壁の吸着ガスが成膜中に放出されることによって混入するガス成分を除き、メタンやジボラン、シランなどの水素を含む化合物を外部より導入することなく第一の硬質炭素層14を形成することを意味し、具体的には、HFS(Hydrogen Forward Scattering)分析による硬質炭素被膜中の水素含有量が3原子%以下であることを意味する。第一の硬質炭素層14によって、基材10及び中間層12と硬質炭素被膜18との間の密着性が高まる。 The first hard carbon layer 14 does not substantially contain hydrogen and consists of amorphous carbon (DLC) only. Amorphous carbon can be confirmed by Raman spectrum measurement using a Raman spectrophotometer (Ar laser). Here, in the present invention, “substantially does not contain hydrogen” means a gas that is inevitably generated during film formation, or gas that is adsorbed on the inner wall of the film formation chamber as it is released during film formation. This means that the first hard carbon layer 14 is formed without introducing a compound containing hydrogen, such as methane, diborane, and silane, from the outside, specifically, by HFS (Hydrogen-Forward-Scattering) analysis. It means that the hydrogen content in the hard carbon coating is 3 atomic% or less. The first hard carbon layer 14 increases the adhesion between the base material 10 and the intermediate layer 12 and the hard carbon coating 18.
 第二の硬質炭素層16は、水素含有量を5原子%以上25原子%以下とする。この範囲であれば有機モリブデン系化合物を含有するオイル潤滑環境下での摺動における摩耗促進が少なく、かつ速い成膜速度との両立が可能となる。水素含有量は、10原子%超え20原子%以下が好ましい。水素含有量が5原子%を下回ると、耐摩耗性は良好であるが、成膜速度が遅く生産性が低い。これに対して、水素含有量が25原子%を超えると、速い成膜速度が得られるが、摩耗量が多く、有機モリブデン系化合物による摩耗が促進された可能性があり、厳しい摺動環境下での用途に適さない。 The second hard carbon layer 16 has a hydrogen content of 5 atomic% to 25 atomic%. Within this range, wear acceleration during sliding in an oil lubrication environment containing an organomolybdenum compound is small, and a high film formation rate can be achieved at the same time. The hydrogen content is preferably more than 10 atomic% and not more than 20 atomic%. When the hydrogen content is less than 5 atomic%, the wear resistance is good, but the deposition rate is slow and the productivity is low. On the other hand, when the hydrogen content exceeds 25 atomic%, a high film formation speed can be obtained, but there is a large amount of wear and wear by organic molybdenum compounds may be promoted. Not suitable for use in
 ここで本発明では、第一の硬質炭素層14の表面形状(すなわち、第一の硬質炭素層14と第二の硬質炭素層16との界面の形状)が、突出山部高さRpk:0.08μm以上0.90μm以下を満たすことが肝要である。Rpkが0.08μm未満の場合、第一の硬質炭素層14と第二の硬質炭素層16との間の剥離が生じ、その結果、摺動部材の使用寿命が短くなる。また、Rpkが0.90μmを超えると、第一の硬質炭素層14の上に成膜した第二の硬質炭素層16の表面粗さが大きくなりすぎて、後加工が必要となる。上記観点から、Rpkは、0.08μm以上0.55μm以下であることが好ましい。 Here, in the present invention, the surface shape of the first hard carbon layer 14 (that is, the shape of the interface between the first hard carbon layer 14 and the second hard carbon layer 16) is the protruding peak height Rpk: 0.08. It is important to satisfy the range of μm to 0.90 μm. When Rpk is less than 0.08 μm, peeling between the first hard carbon layer 14 and the second hard carbon layer 16 occurs, and as a result, the service life of the sliding member is shortened. On the other hand, if Rpk exceeds 0.90 μm, the surface roughness of the second hard carbon layer 16 formed on the first hard carbon layer 14 becomes too large, and post-processing is required. From the above viewpoint, Rpk is preferably 0.08 μm or more and 0.55 μm or less.
 ここで、中間層、第一の硬質炭素層、及び第二の硬質炭素層の厚さ、並びに第一の硬質炭素層の表面のRpkの測定・決定の方法の一例を以下に示す。硬質炭素被膜18の膜厚方向の断面試料を集束イオンビーム(FIB)加工によって製作し、透過型電子顕微鏡像(TEM像)を観察する。そして、基材の断面形状は基材と中間層との境界、中間層の断面形状は中間層と第一の硬質炭素層との境界、第一の硬質炭素層の断面形状は第一の硬質炭素層と第二の硬質炭素層との境界、第二の硬質炭素層の断面形状はこの層の表面又はFIB加工前に設けられる保護層との境界を、得られたTEM像の輝度の変化によって求める。具体的には、輝度の変化が1/2となる箇所を隣接する層間の境界として、基材、中間層、第一の硬質炭素層、及び第二の硬質炭素層の表面形状(断面形状)とする。 Here, an example of a method for measuring and determining the thickness of the intermediate layer, the first hard carbon layer, the second hard carbon layer, and the Rpk of the surface of the first hard carbon layer is shown below. A cross-sectional sample in the film thickness direction of the hard carbon coating 18 is manufactured by focused ion beam (FIB) processing, and a transmission electron microscope image (TEM image) is observed. The cross-sectional shape of the base material is the boundary between the base material and the intermediate layer, the cross-sectional shape of the intermediate layer is the boundary between the intermediate layer and the first hard carbon layer, and the cross-sectional shape of the first hard carbon layer is the first hard The change in luminance of the obtained TEM image is the boundary between the carbon layer and the second hard carbon layer, the cross-sectional shape of the second hard carbon layer is the surface of this layer or the boundary with the protective layer provided before FIB processing. Ask for. Specifically, the surface shape (cross-sectional shape) of the base material, the intermediate layer, the first hard carbon layer, and the second hard carbon layer, with the location where the luminance change becomes ½ as the boundary between adjacent layers And
 まず各層の厚さの算出方法は以下のとおりである。基材の断面形状を構成する各測定点に対して最小二乗法によって回帰直線を求め、この直線をx軸、法線方向をy軸とする。そして、中間層、第一の硬質炭素層及び第二の硬質炭素層の各断面形状の測定点の座標を、ここで定めたxy座標に変換する。この時、各層の断面形状の基材からの高さは、それぞれの断面形状のy座標の平均値となる。これより、中間層の厚さは、x軸から中間層の断面形状のy座標の平均値により算出される。同様に、第一の硬質炭素層の厚さは、この層の断面形状のy座標の平均値より中間層の厚さを引くことによって算出され、第二の硬質炭素層の厚さはこの層の断面形状のy座標の平均値より第一の硬質炭素層の断面形状のy座標の平均値を引くことによって算出される。 First, the calculation method of the thickness of each layer is as follows. A regression line is obtained by the least square method for each measurement point constituting the cross-sectional shape of the substrate, and this straight line is taken as the x-axis and the normal direction as the y-axis. And the coordinate of the measurement point of each cross-sectional shape of an intermediate | middle layer, a 1st hard carbon layer, and a 2nd hard carbon layer is converted into xy coordinate defined here. At this time, the height of the cross-sectional shape of each layer from the base material is the average value of the y-coordinates of the respective cross-sectional shapes. Accordingly, the thickness of the intermediate layer is calculated from the average value of the y coordinates of the cross-sectional shape of the intermediate layer from the x axis. Similarly, the thickness of the first hard carbon layer is calculated by subtracting the thickness of the intermediate layer from the average value of the y coordinates of the cross-sectional shape of this layer, and the thickness of the second hard carbon layer is It is calculated by subtracting the average value of the y-coordinates of the cross-sectional shape of the first hard carbon layer from the average value of the y-coordinates of the cross-sectional shape.
 第一の硬質炭素層の表面のRpkは、得られた第一の硬質炭素層の断面形状を基に、表面粗さ計測ソフトウェア等を用いてJIS B0671-2:2002に準拠して算出する。 The Rpk of the surface of the first hard carbon layer is calculated based on the cross-sectional shape of the obtained first hard carbon layer using surface roughness measurement software or the like according to JIS B0671-2: 2002.
 第一の硬質炭素層14及び第二の硬質炭素層16は、フィルタードカソード法を用いない、カーボンターゲットを用いた真空アーク放電によるイオンプレーティング法によって成膜する。真空アーク放電を利用して炭素カソード(グラファイト製)を蒸発、イオン化させることによって、第一の硬質炭素層14を形成する際には、アーク放電にともなってカソードより放出される炭素微小粒子(ドロップレット)が第一の硬質炭素層内に取り込まれることによって、その表面に凸部を形成する。本発明では、この際に所定の成膜条件を採用することによって、上記のRpkを満足する凸部構造を得ることが肝要である。 The first hard carbon layer 14 and the second hard carbon layer 16 are formed by an ion plating method by vacuum arc discharge using a carbon target without using a filtered cathode method. When the first hard carbon layer 14 is formed by evaporating and ionizing a carbon cathode (made of graphite) using vacuum arc discharge, carbon fine particles (drops) released from the cathode along with the arc discharge A lett) is taken into the first hard carbon layer to form a convex portion on the surface thereof. In the present invention, it is important to obtain a convex structure satisfying the above Rpk by employing predetermined film forming conditions.
 図2~4を参照して、本実施形態での第一の硬質炭素層14及び第二の硬質炭素層16の成膜について説明する。 With reference to FIGS. 2 to 4, the film formation of the first hard carbon layer 14 and the second hard carbon layer 16 in this embodiment will be described.
 一定の規模の生産性を有する成膜装置では、図2,3に示すように、炭素カソードを有するアーク式蒸発源20と、中間層を形成するための金属カソードを有するスパッタ源22を、ターンテーブルを挟んで対面する位置関係に配置されることが多い。これは、例えば炭素カソードを有するアーク式蒸発源20が放電し成膜している時に、ターンテーブルが衝立となってスパッタ源のCrなど金属カソード表面への炭素による被覆を抑制することができるからである。ピストンリングなどのように、概ね回転対称な形状を有する成膜面や平面でない基材に成膜する場合、自公転する回転軸を複数有する多軸のターンテーブルを用いることが一般的である(図2,3)。 As shown in FIGS. 2 and 3, in a film forming apparatus having a certain scale of productivity, an arc evaporation source 20 having a carbon cathode and a sputtering source 22 having a metal cathode for forming an intermediate layer are turned. It is often arranged in a positional relationship facing each other across the table. This is because, for example, when the arc evaporation source 20 having a carbon cathode is discharged and formed into a film, the turntable can be used as a screen to suppress the coating of the sputtering source Cr, such as Cr, with the carbon surface by carbon. It is. When forming a film on a non-planar substrate having a generally rotationally symmetric shape such as a piston ring, it is common to use a multi-axis turntable having a plurality of rotational axes that rotate and revolve ( Figures 2 and 3).
 炭素カソードを有するアーク式蒸発源20を動作させ、所定膜厚の水素を含まない第一の硬質炭素層14を形成する。その後、引き続いて水素を含有する硬質炭素層を形成する。その際に、成膜の連続性を保つため放電は維持したまま、図示しないガス導入経路よりメタンやアセチレンなどの炭化水素系ガスを導入する。 An arc-type evaporation source 20 having a carbon cathode is operated to form a first hard carbon layer 14 not containing hydrogen having a predetermined thickness. Thereafter, a hard carbon layer containing hydrogen is subsequently formed. At that time, a hydrocarbon gas such as methane or acetylene is introduced from a gas introduction path (not shown) while maintaining the discharge in order to maintain the continuity of the film formation.
 この時、急激な膜質の変化が生じないように炭化水素系ガスの流量は時間の経過とともに多くなるよう制御し、その後、一定の流量とすることが好ましい。これにより、第一の硬質炭素層14と第二の硬質炭素層16との間に、水素含有量が第一の硬質炭素層14から第二の硬質炭素層16に向けて増加する傾斜層を形成することができる。 At this time, it is preferable to control the flow rate of the hydrocarbon-based gas so as to increase with the lapse of time so as not to cause a sudden change in film quality, and thereafter to maintain a constant flow rate. Thereby, an inclined layer in which the hydrogen content increases from the first hard carbon layer 14 toward the second hard carbon layer 16 between the first hard carbon layer 14 and the second hard carbon layer 16 is provided. Can be formed.
 炭化水素系ガスの導入を開始した時点において、図3のAの位置にあるワークホルダー28(ターンテーブルの回転軸に平行な自転軸を有するワーク固定治具)に固定されたワーク表面での被膜形成に着目し、炭化水素系ガスの導入開始時には領域Pに位置する部分のワーク表面に形成された被膜の厚さと炭化水素ガスの流量との関係を模式的に図4に示す。領域Pではアーク式蒸発源の近くに位置する他の自転軸のワークによって、アーク式蒸発源によって生成されたプラズマが遮蔽されるため、被膜はほとんど形成されない。 The coating on the surface of the workpiece fixed to the workpiece holder 28 (the workpiece fixing jig having a rotation axis parallel to the rotation axis of the turntable) at the position A in FIG. Focusing on the formation, FIG. 4 schematically shows the relationship between the thickness of the coating formed on the surface of the workpiece located in the region P at the start of introduction of the hydrocarbon-based gas and the flow rate of the hydrocarbon gas. In the region P, the plasma generated by the arc evaporation source is shielded by the work of the other rotation axis located near the arc evaporation source, so that almost no film is formed.
 時間が経過しアーク式蒸発源によって生成されたプラズマに曝される領域Qに入ると、被膜形成が始まり処理時間の経過とともに膜厚が厚くなる。そして領域Qから領域Pに移行すると、また被膜形成が一時的に停止する。このような状況が繰り返されながら被膜形成が進行する。このため、領域Qに滞在する前後の成膜速度や被膜を形成するアーク放電によって炭素カソードより放出された炭素の寄与と炭化水素系ガス成分からの寄与の比率が不連続となるため、形成された被膜の膜質も不連続になる。このため、水素を含まない硬質炭素層と、水素含有硬質炭素層との間には不連続な界面が生じやすく、ピストンリングなどのような過酷な摺動環境下で用いると層間剥離が生じる場合がある。 When time passes and the region Q is exposed to the plasma generated by the arc evaporation source, film formation starts and the film thickness increases as the processing time elapses. When the region Q is shifted to the region P, the film formation is temporarily stopped. While this situation is repeated, film formation proceeds. For this reason, the rate of film formation before and after staying in the region Q and the ratio of the contribution of carbon released from the carbon cathode by the arc discharge forming the coating and the contribution from the hydrocarbon-based gas component are discontinuous, and thus formed. The film quality of the coated film becomes discontinuous. For this reason, a discontinuous interface tends to occur between the hard carbon layer that does not contain hydrogen and the hydrogen-containing hard carbon layer, and delamination occurs when used in harsh sliding environments such as piston rings There is.
 本発明では、第一の硬質炭素層14の表面形状が、突出山部高さRpk:0.08μm以上0.90μm以下を満たすことによって、このような層間剥離を抑制できる。このような表面形状を形成する観点から、第一の硬質炭素層14を成膜する際の条件は、以下のとおりとすることが好ましい。すなわち、バイアス電圧は-150V以上0V以下とすることが好ましく、アーク放電電流は40A以上90A以下とすることが好ましく、第一の硬質炭素層14形成前の基材温度は110℃以下が好ましく、80℃以下がより好ましい。 In the present invention, when the surface shape of the first hard carbon layer 14 satisfies the protruding peak height Rpk: 0.08 μm or more and 0.90 μm or less, such delamination can be suppressed. From the viewpoint of forming such a surface shape, the conditions for forming the first hard carbon layer 14 are preferably as follows. That is, the bias voltage is preferably −150 V or more and 0 V or less, the arc discharge current is preferably 40 A or more and 90 A or less, and the substrate temperature before the first hard carbon layer 14 is formed is preferably 110 ° C. or less. 80 ° C. or lower is more preferable.
 第一の硬質炭素層14の厚さは、成膜時間によって制御することができ、0.35μm以上1.5μm以下とする。厚さが0.35μm未満の場合、第一の硬質炭素層14の表面を粗面化しにくいため、Rpkを本発明の範囲にすることが困難となるからである。また、厚さが1.5μmを超えると、アーク放電にともなってカソードより放出される炭素微小粒子によって第一の硬質炭素層14の表面が粗面化しすぎて、炭素微小粒子が周りの被膜と一体化せず、境界や空孔(ボイド)が生じ、層間剥離が生じるからである。 The thickness of the first hard carbon layer 14 can be controlled by the film formation time, and is 0.35 μm or more and 1.5 μm or less. This is because if the thickness is less than 0.35 μm, it is difficult to roughen the surface of the first hard carbon layer 14, so that it is difficult to make Rpk within the range of the present invention. On the other hand, when the thickness exceeds 1.5 μm, the surface of the first hard carbon layer 14 becomes too rough due to the carbon microparticles emitted from the cathode along with the arc discharge, and the carbon microparticles are integrated with the surrounding coating. This is because the boundary and voids (voids) are generated, and delamination occurs.
 第二の硬質炭素層16を成膜する際の条件は特に限定されないが、以下のとおりとすることが好ましい。すなわち、バイアス電圧は-150V以上0V以下とすることが好ましく、アーク放電電流は40A以上90A以下とすることが好ましく、炭化水素系ガス流量は50sccm以上250sccm以下とすることが好ましい。 The conditions for forming the second hard carbon layer 16 are not particularly limited, but are preferably as follows. That is, the bias voltage is preferably −150 V to 0 V, the arc discharge current is preferably 40 A to 90 A, and the hydrocarbon gas flow rate is preferably 50 sccm to 250 sccm.
 第一の硬質炭素層14及び第二の硬質炭素層16の合計厚さは5μm以上とすることが好ましく、7μm以上とすることがより好ましい。合計厚さ5μm以上の場合に、その厚さを全て、成膜速度が遅い第一の硬質炭素層で形成したと仮定した場合に比べて、成膜速度を短縮する効果を十分に得ることができる。合計厚さは30μm以下であることが好ましい。30μmを越えても機能上問題はないが、過剰な膜厚であり成膜コストが高くなるからである。 The total thickness of the first hard carbon layer 14 and the second hard carbon layer 16 is preferably 5 μm or more, and more preferably 7 μm or more. When the total thickness is 5 μm or more, it is possible to sufficiently obtain the effect of shortening the film formation rate compared to the case where all the thicknesses are assumed to be formed by the first hard carbon layer having a low film formation rate. it can. The total thickness is preferably 30 μm or less. Even if it exceeds 30 μm, there is no functional problem, but the film thickness is excessive and the film formation cost increases.
 (摺動部材)
 本発明の実施形態による摺動部材は、エンジンオイルなどの、有機モリブデン系化合物を含有する潤滑油が介在する内燃機関の摺動部に使用されるピストンリング、ピストン、ピストンピン、タペット、バルブリフタ、シム、ロッカーアーム、カム、カムシャフト、タイミングギア、タイミングチェーンに適用することができる。
(Sliding member)
A sliding member according to an embodiment of the present invention includes a piston ring, a piston, a piston pin, a tappet, a valve lifter, and the like used for a sliding part of an internal combustion engine in which a lubricating oil containing an organic molybdenum compound such as engine oil is interposed. It can be applied to shims, rocker arms, cams, camshafts, timing gears, and timing chains.
 本発明の摺動部材は、有機モリブデン系化合物を含む潤滑油の存在下で使用されることが好ましい。最外層の被膜の水素含有量が5~25at%であるため、有機モリブデン系化合物を含有した潤滑油下でもMo酸化物との反応による摩耗の進行を比較的抑制できる。 The sliding member of the present invention is preferably used in the presence of a lubricating oil containing an organomolybdenum compound. Since the outermost layer has a hydrogen content of 5 to 25 at%, the progress of wear due to the reaction with the Mo oxide can be relatively suppressed even under lubricating oil containing an organomolybdenum compound.
 潤滑油中の有機モリブデン系化合物は、モリブデンジチオカーバメイト(Mo-DTC)又はモリブデンジチオフォスフェート(Mo-DTP)から選択される1以上の有機モリブデン系化合物であることが好ましい。 The organomolybdenum compound in the lubricating oil is preferably one or more organomolybdenum compounds selected from molybdenum dithiocarbamate (Mo-DTC) or molybdenum dithiophosphate (Mo-DTP).
 試験片として、φ6mm×長さ12mmのSUJ2製円柱を基材とし、その曲面に以下の条件で、表1に記載の実施例及び比較例に示すとおり中間層及び硬質炭素被膜を形成した。図2,3に示すようなアーク式蒸発源を備える成膜装置の真空チャンバ内に基材を配置した。 As a test piece, a SUJ2 cylinder having a diameter of 6 mm and a length of 12 mm was used as a base material, and an intermediate layer and a hard carbon film were formed on the curved surface as shown in the Examples and Comparative Examples described in Table 1 under the following conditions. The base material was arrange | positioned in the vacuum chamber of the film-forming apparatus provided with an arc type evaporation source as shown in FIG.
 成膜はこの曲面全体ではなく軸方向に沿った曲面の一部に形成した。成膜しない部分を利用して基材を成膜用のワークホルダー28に保持した。そして使用したターンテーブル26は自転軸を備えた複数のワークホルダーを有し、各自転軸のP.C.D.は600mmである。その内の1軸に、基材を保持した成膜冶具を取り付けた。残りの自転軸には、φ89のSUS304TPD製のダミーポールを配置した。ターンテーブルの回転速度は4rpm、自転軸は4×127/23=22.1rpmとした。 The film was formed not on the entire curved surface but on a part of the curved surface along the axial direction. The base material was held on the work holder 28 for film formation using the part where the film was not formed. The used turntable 26 has a plurality of work holders having rotation axes. C. D. Is 600 mm. A film-forming jig holding a substrate was attached to one of the axes. A dummy pole made of SUS304TPD of φ89 was disposed on the remaining rotation axis. The rotation speed of the turntable was 4 rpm, and the rotation axis was 4 × 127/23 = 22.1 rpm.
 硬質炭素被膜の成膜に先立ち、SUJ2製円柱は洗浄を行い、ターンテーブルの1つの自転軸に設置した後に真空排気し、ヒーター30を用いて試験片の温度が200℃以下の範囲で加熱し、吸着成分の放出を促した。そして、放電洗浄及び中間層の形成を実施した。 Prior to the formation of the hard carbon film, the SUJ2 cylinder is cleaned, evacuated after being placed on one rotating shaft of the turntable, and heated using a heater 30 within a temperature range of 200 ° C. or less. Urged the release of adsorbed components. Then, discharge cleaning and formation of an intermediate layer were performed.
 中間層形成後、続けて同一チャンバ内で、第一の硬質炭素層を形成し、さらに第二の硬質炭素層を形成した。アーク式蒸発源には、グラファイト製炭素カソード(炭素99原子%以上)を取り付けた。第二の硬質炭素層の成膜時には、炭化水素系ガスとしてアセチレンとともにアルゴンを混合して導入した。実施例の第一の硬質炭素層は、バイアス電圧:-150V以上0V以下、アーク放電電流:40A以上90A以下、第一の硬質炭素層形成前の基材温度:110℃以下の条件で所定時間成膜を行うことで形成した。比較例1及び比較例2の第一の硬質炭素層は、前記実施例と同一条件について、成膜時間を変更して形成した。実施例の第二の硬質炭素層は、バイアス電圧:-150V以上0V以下、アーク放電電流:40A以上90A以下、炭化水素系ガス流量:50sccm以上250sccm以下の条件で所定時間成膜を行い形成した。比較例3及び比較例4の第二の硬質炭素層は、前記実施例の条件について炭化水素系ガス流量を記載範囲外として形成した。 After forming the intermediate layer, the first hard carbon layer was formed in the same chamber, and the second hard carbon layer was further formed. A graphite carbon cathode (carbon: 99 atomic% or more) was attached to the arc evaporation source. At the time of forming the second hard carbon layer, argon was mixed with acetylene as a hydrocarbon gas and introduced. The first hard carbon layer of the example has a bias voltage of −150 V or more and 0 V or less, an arc discharge current of 40 A or more and 90 A or less, and a substrate temperature before forming the first hard carbon layer: 110 ° C. or less for a predetermined time. It formed by performing film-forming. The first hard carbon layers of Comparative Example 1 and Comparative Example 2 were formed by changing the film formation time under the same conditions as in the above Examples. The second hard carbon layer of the example was formed by forming a film for a predetermined time under conditions of bias voltage: −150 V to 0 V, arc discharge current: 40 A to 90 A, and hydrocarbon gas flow rate: 50 sccm to 250 sccm. . The second hard carbon layers of Comparative Example 3 and Comparative Example 4 were formed with the hydrocarbon gas flow rate outside the stated range for the conditions of the above Examples.
 (Rpk、膜厚、成膜速度の評価)
 既述の方法で、TEM像から第一の硬質炭素層の表面におけるRpkを求めた。また、同じTEM像を用いて、既述の方法で、中間層、第一の硬質炭素層及び第二の硬質炭素層の厚さを求めた。結果を表1に示す。得られた硬質炭素被膜の厚さを成膜時間で除することによって、成膜速度を算出した。実施例1~5及び比較例1~4における第一の硬質炭素層の成膜速度の平均値を1とした際の、第一及び第二の硬質炭素層の全体(硬質炭素被膜)の成膜速度を指数化して、表1に示す。
(Evaluation of Rpk, film thickness, deposition rate)
Rpk on the surface of the first hard carbon layer was determined from the TEM image by the method described above. Moreover, the thickness of the intermediate | middle layer, the 1st hard carbon layer, and the 2nd hard carbon layer was calculated | required by the method as stated above using the same TEM image. The results are shown in Table 1. The film formation rate was calculated by dividing the thickness of the obtained hard carbon film by the film formation time. Formation of the whole of the first and second hard carbon layers (hard carbon coating) when the average value of the film formation rate of the first hard carbon layer in Examples 1 to 5 and Comparative Examples 1 to 4 is 1. The film speed is indexed and shown in Table 1.
 (第二の硬質炭素層の水素含有量の測定)
 硬質炭素被膜の水素含有量は、平坦又は曲率半径が十分に大きく測定上平面と見なせる領域に形成された被膜を、RBS(Rutherford Backscattering Spectrometry)/HFS(Hydrogen Forward Scattering Spectrometry)により、測定する。
(Measurement of hydrogen content of the second hard carbon layer)
The hydrogen content of the hard carbon film is measured by RBS (Rutherford Backscattering Spectrometry) / HFS (Hydrogen Forward Scattering Spectrometer) of a film formed in a region that is flat or has a sufficiently large radius of curvature and can be regarded as a flat surface for measurement.
 まず、平面に水素含有量が異なる被膜が形成された複数の基準試料をRBS/HFSにより被膜中の水素含有量(単位:原子%)を測定する。次に、この基準試料をSIMS(二次イオン質量分析法:Secondary Ion-microprobe Mass Spectrometry)により、水素と炭素のそれぞれの二次イオン強度を測定する。そして、これらの比率とRBS/HFSによって求めた水素含有量とから、炭素含有量を求める。 First, the hydrogen content (unit: atomic%) in a film is measured by RBS / HFS on a plurality of reference samples on which a film with different hydrogen contents is formed on a plane. Next, the secondary ion intensity of each of hydrogen and carbon is measured for this reference sample by SIMS (Secondary Ion Mass Spectrometry: Secondary Ion-microprobe Mass Spectrometry). And carbon content is calculated | required from these ratios and the hydrogen content calculated | required by RBS / HFS.
 基準試料として、鏡面研磨した平坦な試験片(焼入処理したSKH51材ディスク、φ25×厚さ5(mm)、硬度がHRC60~63、表面粗さRa0.02μm以下)に炭素被膜を形成した。 As a reference sample, a carbon film was formed on a mirror-polished flat test piece (quenched SKH51 material disc, φ25 × thickness 5 (mm), hardness HRC60-63, surface roughness Ra 0.02 μm or less).
 基準試料の成膜は反応性スパッタリング法を用い、雰囲気ガスとしてアセチレン、アルゴン、水素を導入して行った。そして、第1の基準試料の被膜に含まれる水素量は導入する水素流量と全体の圧力を変えることによって調整した。このようにして水素と炭素のみによって構成され、水素含有量の異なる硬質炭素被膜を形成し、これらの基準試料の炭素被膜の組成(水素を含めたすべての元素)をRBS/HFSによって評価した。そして基準試料に形成された硬質炭素被膜全体の成分の中で水素と炭素の合計が98原子%以上、且つ水素を除いた成分の中で炭素が97原子%以上であることを確認した。 The film formation of the reference sample was performed using a reactive sputtering method and introducing acetylene, argon, and hydrogen as the atmospheric gas. The amount of hydrogen contained in the coating film of the first reference sample was adjusted by changing the flow rate of introduced hydrogen and the overall pressure. In this way, hard carbon films composed of only hydrogen and carbon and having different hydrogen contents were formed, and the carbon film compositions (all elements including hydrogen) of these reference samples were evaluated by RBS / HFS. Then, it was confirmed that the total of hydrogen and carbon was 98 atomic% or more among the components of the entire hard carbon film formed on the reference sample, and that carbon was 97 atomic% or more among the components excluding hydrogen.
 次に基準試料の被膜をSIMSで分析し、水素と炭素の二次イオン強度を測定した。ここでSIMS分析はピストンリングやカムシャフトなどのように平面でない部分での測定ができる。したがって基準試料の同一の被膜につき、RBS/HFSによって得られた水素量と炭素量(単位:原子%)とSIMSによって得られた水素と炭素の二次イオン強度の比率との関係を示す実験式(検量線)を求めることで実際の摺動部材について測定したSIMSの水素と炭素の二次イオン強度から水素量と炭素量を算定することができる。 Next, the coating of the reference sample was analyzed by SIMS, and the secondary ion intensity of hydrogen and carbon was measured. Here, the SIMS analysis can be performed on a non-planar part such as a piston ring or a camshaft. Therefore, for the same coating of the reference sample, an empirical formula showing the relationship between the amount of hydrogen and carbon (unit: atomic%) obtained by RBS / HFS and the ratio of secondary ion intensity of hydrogen and carbon obtained by SIMS. By obtaining the (calibration curve), the amount of hydrogen and the amount of carbon can be calculated from the SIMS hydrogen and carbon secondary ion intensity measured for the actual sliding member.
 次に、実際の摺動部材に形成された被膜をSIMSにより分析し、上記実験式を用いて水素量と炭素量の比率を求めた。なお、SIMSによる二次イオン強度の値は少なくとも被膜表面から20nm以上の深さ、且つ50nmの範囲において観測されたそれぞれの元素の二次イオン強度の平均値を採用した。そして炭素を含む水素以外の元素についてはさらにEDX(エネルギー分散X線分光法:Energy Dispersive X-ray spectrometry)やWDX(波長分散X線分光法:Wavelength-dispersive X-ray spectrometry)によって測定した。これらの結果より、被膜の水素を含む組成比率を評価することができる。このように測定した第二の硬質炭素層の水素含有量を表1に示した。 Next, the coating film formed on the actual sliding member was analyzed by SIMS, and the ratio between the hydrogen amount and the carbon amount was determined using the above empirical formula. In addition, the value of the secondary ion intensity by SIMS adopted the average value of the secondary ion intensity of each element observed at least at a depth of 20 nm or more from the coating surface and in the range of 50 nm. Further, elements other than hydrogen including carbon were further measured by EDX (Energy Dispersive X-ray spectroscopy) and WDX (Wavelength-dispersive X-ray spectroscopy). From these results, the composition ratio of the coating film containing hydrogen can be evaluated. The hydrogen content of the second hard carbon layer measured in this way is shown in Table 1.
 (被膜摩耗量の評価)
 上記で作製した実施例、比較例の試験片の硬質炭素被膜を形成した面を、算術平均粗さRa0.03μm以下となるようにラッピングフィルム(ダイヤモンド#4000)により研磨し、以下の方法で、往復動試験を行った。
(Evaluation of coating wear)
The surface on which the hard carbon film of the test piece prepared in the example and the comparative example was formed was polished with a wrapping film (diamond # 4000) so as to have an arithmetic average roughness Ra of 0.03 μm or less. A reciprocating test was performed.
 各実施例および比較例の試験片について、摺動相手材(ランダムな方向に研磨することで表面粗さRa:0.05~0.08μmの範囲に調整したSUJ2製ディスク)を用いて、図5に模式図を示した振動摩擦摩耗試験(オプチモール社:SRV4試験機)により、次の試験条件で往復動試験を行い、試験終了時における摩擦係数を測定した。
 試験時間   : 60min
 荷重     : 400N
 往復動周波数 : 50Hz
 振幅     : 3mm
 潤滑油    : エンジンオイル(0W-20/有機Mo添加オイル) 潤滑油温   : 80℃
FIG. 5 schematically shows the test piece of each example and comparative example using a sliding mating material (SUJ2 disc adjusted to a surface roughness Ra of 0.05 to 0.08 μm by polishing in a random direction). A reciprocating motion test was performed under the following test conditions by a vibration friction wear test (Optimol Co., Ltd .: SRV4 testing machine) shown in the figure, and a friction coefficient at the end of the test was measured.
Test time: 60 min
Load: 400N
Reciprocating frequency: 50Hz
Amplitude: 3 mm
Lubricating oil: Engine oil (OW-20 / organic Mo added oil) Lubricating oil temperature: 80 ° C
 このような往復動試験による被膜摩耗量は以下の方法で求めた。共焦点型レーザ顕微鏡(オリンパス製、型式:LEXT OLS4000)を用いて、往復動試験後の摺動部近傍を含めた被膜表面の三次元形状を測定した。まず往復動試験に供する前の被膜を形成した円筒の側面の三次元形状を測定し、円筒の回転対称軸に対して垂直方向(摺動方向)の表面形状を10箇所測定した(図6(A))。そして1番目の形状からn番目の形状の平均を求めた。そして、試験後の摺動部近傍においても同様に10箇所測定し、摺動方向に平行な表面形状の平均値を求めた。これらの形状の差より、往復動試験によって摩耗した被膜の断面積を算出した(図6(B))。実施例1の被膜摩耗量を基準(1.00)とした指数値として、結果を表1に示す。 The amount of coating wear by such a reciprocating test was obtained by the following method. Using a confocal laser microscope (Olympus, model: LEXT OLS4000), the three-dimensional shape of the coating surface including the vicinity of the sliding portion after the reciprocating test was measured. First, the three-dimensional shape of the side surface of the cylinder on which the coating film before being subjected to the reciprocating test was formed was measured, and the surface shape in the vertical direction (sliding direction) with respect to the rotational symmetry axis of the cylinder was measured at 10 locations (FIG. 6 ( A)). And the average of the nth shape was calculated | required from the 1st shape. Ten points were similarly measured in the vicinity of the sliding portion after the test, and the average value of the surface shapes parallel to the sliding direction was obtained. From the difference between these shapes, the cross-sectional area of the coating worn by the reciprocating test was calculated (FIG. 6B). The results are shown in Table 1 as index values based on the coating wear amount of Example 1 as a reference (1.00).
 (被膜損傷の有無の評価)
 試験片の摺動面(表面)を目視又は光学顕微鏡(100~400倍)で観察し、被膜損傷の有無を以下の基準で評価した。試験片の摺動面に100μm以上の大きさのピットが認められる場合を「ピット状欠落」、第一硬質炭素層と第二硬質炭素層の層間が剥離しているものを「層間剥離」と表記した。
(Evaluation of film damage)
The sliding surface (surface) of the test piece was observed visually or with an optical microscope (100 to 400 times), and the presence or absence of film damage was evaluated according to the following criteria. The case where pits with a size of 100 μm or more are observed on the sliding surface of the test piece is “pit missing”, and the case where the first hard carbon layer and the second hard carbon layer are separated is called “delamination”. Indicated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、第一の硬質炭素層の表面形状が、突出山部高さRpk:0.08μm以上0.90μm以下を満たす場合に、第一の硬質炭素層と第二の硬質炭素層との間の剥離が起きなかった。 As apparent from Table 1, when the surface shape of the first hard carbon layer satisfies the protruding peak height Rpk: 0.08 μm to 0.90 μm, the first hard carbon layer and the second hard carbon layer There was no separation between the two.
 本発明の摺動部材は、有機モリブデン化合物を含有する潤滑油下の摺動において、高い耐摩耗性を維持しつつ、摩擦係数を低減することが可能であり、かつ、層間剥離が生じにくい。 The sliding member of the present invention can reduce the coefficient of friction while maintaining high wear resistance during sliding under lubricating oil containing an organomolybdenum compound, and is less likely to cause delamination.
 100 摺動部材
 10 基材
 12 中間層
 14 第一の硬質炭素層(水素非含有硬質炭素層)
 16 第二の硬質炭素層(水素含有硬質炭素層)
 18 硬質炭素被膜
 20 炭素カソードを備えるアーク式蒸発源
 22 金属カソードを有するスパッタ源
 24 真空容器
 26 ターンテーブル
 28 自転するワークホルダー
 30 ヒーター
 60 試験片(SUS2製円柱)
 68 摺動相手材(SUS2製ディスク)
DESCRIPTION OF SYMBOLS 100 Sliding member 10 Base material 12 Intermediate layer 14 1st hard carbon layer (non-hydrogen containing hard carbon layer)
16 Second hard carbon layer (hydrogen-containing hard carbon layer)
18 Hard carbon coating 20 Arc type evaporation source with carbon cathode 22 Sputtering source with metal cathode 24 Vacuum vessel 26 Turntable 28 Rotating work holder 30 Heater 60 Test piece (SUS2 cylinder)
68 Sliding mating material (SUS2 disc)

Claims (6)

  1.  基材と、
     該基材上に形成された、水素を実質的に含まない第一の硬質炭素層と、
     該第一の硬質炭素層上に形成された、水素含有量が5原子%以上25原子%以下の第二の硬質炭素層と、
    を有し、前記第一の硬質炭素層の表面形状が、突出山部高さRpk:0.08μm以上0.90μm以下を満たし、
     前記第一の硬質炭素層の厚さが0.35μm以上1.5μm以下であることを特徴とする、潤滑油下で使用される摺動部材。
    A substrate;
    A first hard carbon layer substantially free of hydrogen formed on the substrate;
    A second hard carbon layer having a hydrogen content of 5 atomic% or more and 25 atomic% or less formed on the first hard carbon layer;
    The surface shape of the first hard carbon layer satisfies a protruding peak height Rpk: 0.08 μm or more and 0.90 μm or less,
    A sliding member used under lubricating oil, wherein the thickness of the first hard carbon layer is 0.35 µm or more and 1.5 µm or less.
  2.  前記第二の硬質炭素層の水素含有量が10原子%超え20原子%以下である、請求項1に記載の摺動部材。 The sliding member according to claim 1, wherein the hydrogen content of the second hard carbon layer is more than 10 atomic% and not more than 20 atomic%.
  3.  前記第一の硬質炭素層及び前記第二の硬質炭素層の合計厚さが5μm以上である、請求項1又は2に記載の摺動部材。 The sliding member according to claim 1 or 2, wherein a total thickness of the first hard carbon layer and the second hard carbon layer is 5 µm or more.
  4.  前記第一の硬質炭素層と前記第二の硬質炭素層との間に、水素含有量が前記第一の硬質炭素層から前記第二の硬質炭素層に向けて増加する傾斜層を有する、請求項1~3のいずれか一項に記載の摺動部材。 Between the first hard carbon layer and the second hard carbon layer, there is an inclined layer in which the hydrogen content increases from the first hard carbon layer toward the second hard carbon layer. Item 4. The sliding member according to any one of Items 1 to 3.
  5.  前記基材と前記第一の硬質炭素層との間に、Cr、Ti、Si及びW、その炭化物、窒化物、炭窒化物から選択された一つ以上の材料からなる中間層を有する、請求項1~4のいずれか一項に記載の摺動部材。 An intermediate layer made of one or more materials selected from Cr, Ti, Si, and W, carbides, nitrides, and carbonitrides thereof is provided between the base material and the first hard carbon layer. Item 5. The sliding member according to any one of Items 1 to 4.
  6.  フィルタードカソード法を用いない真空アークイオンプレーティング法によって、基材上に、水素を実質的に含まない厚さが0.35μm以上1.5μm以下である第一の硬質炭素層を形成する第一工程と、
     フィルタードカソード法を用いない真空アークイオンプレーティング法によって、前記第一の硬質炭素層上に、水素含有量が5原子%以上25原子%以下の第二の硬質炭素層を形成する第二工程と、
    を有し、前記第一工程は、前記第一の硬質炭素層の表面形状が、突出山部高さRpk:0.08μm以上0.90μm以下を満たすように行うことを特徴とする、潤滑油下で使用される摺動部材の製造方法。
    First step of forming a first hard carbon layer having a thickness substantially not containing hydrogen of 0.35 μm or more and 1.5 μm or less on a substrate by a vacuum arc ion plating method without using a filtered cathode method When,
    Second step of forming a second hard carbon layer having a hydrogen content of 5 atomic% or more and 25 atomic% or less on the first hard carbon layer by a vacuum arc ion plating method that does not use a filtered cathode method When,
    And the first step is performed so that the surface shape of the first hard carbon layer satisfies the protruding peak height Rpk: 0.08 μm or more and 0.90 μm or less. Manufacturing method of sliding member used.
PCT/JP2016/087104 2016-01-25 2016-12-13 Sliding member and production method therefor WO2017130587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016011718A JP6599251B2 (en) 2016-01-25 2016-01-25 Sliding member and manufacturing method thereof
JP2016-011718 2016-01-25

Publications (1)

Publication Number Publication Date
WO2017130587A1 true WO2017130587A1 (en) 2017-08-03

Family

ID=59397993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087104 WO2017130587A1 (en) 2016-01-25 2016-12-13 Sliding member and production method therefor

Country Status (2)

Country Link
JP (1) JP6599251B2 (en)
WO (1) WO2017130587A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157156A (en) * 2018-03-08 2019-09-19 日本アイ・ティ・エフ株式会社 Composite film and method for forming the same
CN113698231A (en) * 2020-05-22 2021-11-26 揖斐电株式会社 Carbon composite member
EP3660180B1 (en) 2017-10-20 2023-04-12 Kabushiki Kaisha Riken Sliding member and piston ring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061006B2 (en) * 2018-04-20 2022-04-27 株式会社豊田中央研究所 Sliding members and sliding machines

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128516A (en) * 1998-10-30 2000-05-09 Riken Corp Composite diamond-like carbon film having low wear and excellent adhesion
JP2003027214A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Amorphous carbon film, method for producing amorphous carbon film and member coated with amorphous carbon film
JP2003026414A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Amorphous carbon coating film, method of producing the same, and member coated with the amorphous carbon coating film
JP2003082458A (en) * 2001-09-10 2003-03-19 Sumitomo Electric Ind Ltd Apparatus and method for forming amorphous carbon film
JP2007131893A (en) * 2005-11-09 2007-05-31 Osg Corp Dlc coating film and dlc-coated tool
WO2015163470A1 (en) * 2014-04-24 2015-10-29 京セラ株式会社 Coated tool
WO2016042945A1 (en) * 2014-09-16 2016-03-24 株式会社リケン Coated slide member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128516A (en) * 1998-10-30 2000-05-09 Riken Corp Composite diamond-like carbon film having low wear and excellent adhesion
JP2003027214A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Amorphous carbon film, method for producing amorphous carbon film and member coated with amorphous carbon film
JP2003026414A (en) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd Amorphous carbon coating film, method of producing the same, and member coated with the amorphous carbon coating film
JP2003082458A (en) * 2001-09-10 2003-03-19 Sumitomo Electric Ind Ltd Apparatus and method for forming amorphous carbon film
JP2007131893A (en) * 2005-11-09 2007-05-31 Osg Corp Dlc coating film and dlc-coated tool
WO2015163470A1 (en) * 2014-04-24 2015-10-29 京セラ株式会社 Coated tool
WO2016042945A1 (en) * 2014-09-16 2016-03-24 株式会社リケン Coated slide member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660180B1 (en) 2017-10-20 2023-04-12 Kabushiki Kaisha Riken Sliding member and piston ring
JP2019157156A (en) * 2018-03-08 2019-09-19 日本アイ・ティ・エフ株式会社 Composite film and method for forming the same
JP7162799B2 (en) 2018-03-08 2022-10-31 日本アイ・ティ・エフ株式会社 Composite coating and method of forming composite coating
CN113698231A (en) * 2020-05-22 2021-11-26 揖斐电株式会社 Carbon composite member

Also Published As

Publication number Publication date
JP2017133049A (en) 2017-08-03
JP6599251B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
JP5575989B2 (en) Combination of cylinder and piston ring
JP6494505B2 (en) Hard carbon film
US11293548B2 (en) Sliding member and coating film
WO2017130587A1 (en) Sliding member and production method therefor
JP6109325B2 (en) Combination of aluminum alloy mating material and piston ring
JP6364685B2 (en) Piston ring and manufacturing method thereof
JP6557342B2 (en) Piston ring and manufacturing method thereof
JPWO2017022659A1 (en) piston ring
JP2003247060A (en) Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
JP6533818B2 (en) Sliding member and piston ring
WO2012140890A1 (en) Sliding member
JP2009203556A (en) Method for manufacturing amorphous carbon film and sliding component coated with amorphous carbon
JP6453826B2 (en) Sliding member and manufacturing method thereof
JP7284700B2 (en) sliding mechanism
JP2019116677A (en) Sliding member
WO2015052761A1 (en) Piston ring and seal ring for turbocharger
JP4374153B2 (en) piston ring
JP2019082241A (en) piston ring
JP4374154B2 (en) piston ring
JP6604557B2 (en) Piston ring and engine
JP6413060B1 (en) Hard carbon film, method for producing the same, and sliding member
JP6938807B1 (en) Sliding members and piston rings
JP2018141197A (en) Sliding member and method for manufacturing the same
WO2015052762A1 (en) Piston ring and seal ring for turbocharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888171

Country of ref document: EP

Kind code of ref document: A1